
Sensitivity optimization of the one beam
Z-scan technique and a Z-scan technique

immune to nonlinear absorption
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2Instituto Nacional de Astrofı́sica, Óptica y Electrónica, Luis Enrique Erro

Tonantzintla. 72840, México
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Abstract: It is presented a criteria for selecting the optimum aperture
radius for the one beam Z-scan technique (OBZT), based on the analysis of
the transmittance of the aperture. It is also presented a modification to the
OBZT by directly measuring the beam radius in the far field with a rotating
disk, which allows to determine simultaneously the non-linear absorptive
coefficient and non-linear refractive index, much less sensitive to wave front
distortions caused by inhomogeneities of the sample with a negligible loss
of signal to noise ratio. It is demonstrated its equivalence to the OBZT.
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1. Introduction

Since the publication of the one beam Z-scan technique (OBZT) by Bahae-Sheik et al. in 1989
[1], it has become very popular for determining nonlinear absorptive coefficient and refractive
index of a thin sample, because its simplicity and sensitivity. The nonlinear refractive index is
determined from the transmittance of the sample measured through an aperture in the far field
as the sample is displaced around the focal position of a Gaussian beam propagating along z
axis.

However, the aperture introduces important disadvantages, namely, it must be aligned with
the axis of the beam (z axis) to measure on axis transmitted power (P), second, P is only a
small fraction of the total laser power (P0), compromising the signal to noise ratio (SNR), and
perhaps the most important of all, when the sample exhibits nonlinear absorption, there is no
way to know whether changes in P due to changes in the refractive index or absorption when
the sample is displaced, forcing to repeat the experiment without the aperture for measuring the
nonlinear absorption and deduct it, as will be seen later.

Since then, several modifications have been proposed to improve the sensitivity of the OBZT,
namely, modifying the beam profile to enhance the aperture transmittance [2], substituting the
aperture [3] or eliminating the aperture [4] where the beam width is directly measured using a
laser beam profiler based on CCD camera.

Although the effect of the aperture has been studied for Gaussian beams [5, 6] little attention
has been paid to the selection of the aperture radius for optimizing the signal to noise ratio of
the OBZT.

The present paper presents a criteria for selecting the optimum aperture radius, based on the
analysis of the physical variable of the OBZT, it is presented also a Z-scan technique based on
a direct measurement of the beam width in the far field, fast and cheap, it is demonstrated its
equivalence, the signal to noise ratio of the OBZT with the optimum aperture radius is compared
with the technique presented, such technique allows to measure simultaneously the nonlinear
absorption and refractive index.

2. Description of the chopper-width technique

Many techniques have been developed for measuring the beam width of a Gaussian beam, such
as the slit scan technique [7, 8], the pinhole technique [9], but among all, the most extended is
the knife-edge technique [10, 11], because is an inexpensive, and accurate beam profiler. In this
technique, a knife located at ( ζ ) eclipses the beam transversely to its propagation axis (z axis),
the beam width (W (ζ )) is determined from the derivative plot of the transmitted power versus
the knife-edge position. This method is simple but a bit tedious, slow and noise sensitive. These
issues can be overcome with the technique described below.

The chopper-width measurement technique basically consists in to extract W (ζ ), from the
rise or fall time, of a electric signal [12] generated by switch- on and switch-off the beam
light, with a slotted rotating disk (named chopper) at the position (ζ ) [13]. This technique
is alike to the knife-edge technique but faster, allowing real-time measurements. The width
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W (ζ ) measured in this technique is larger than the obtained with the knife-edge technique,
due the curved trajectory to cut the beam, rather than perpendicular. This drawback can be
overcome calibrating the chopper-width technique, this is presented in the appendix at the end
of this work. Let us consider a Gaussian beam propagating along the z axis impinging on a
photoreceptor, the chopper is located at the ζ position where the W (ζ ) is to be measured,
like the chopper has l slots and rotates with constant angular frequency Ω0, as shown in Fig.
1. To each blade will take τ = θ

Ω0
seconds to sweep the angle θ subtended by the beam. If

R >>W (ζ ), τ is given by

τ ∼= 2W (ζ )
Ω0R

(1)

where R is the distance from the axis of rotation to the beam axis, therefore, Eq. (1) provides a
way to measure W (ζ ) from the time τ .

Then, it is proposed to use the width-measurement technique, based on Eq. (1), to obtain
Z-scan curves (we shall name chopper Z-scan technique) like Tsigaridas [4], but in a simpler
and inexpensive way. It is important to mention that until now, choppers have been used in the
OBZT as modulation instruments [14, 15], in order to improve the detection of P, however, here
the chopper is used as meter width. Before experimentally demonstrate the feasibility and ad-
vantages of this approach, let us present its justification and the comparison of the sensitivities
of chopper and OBZT.

�

2
W

�0

z

R

Fig. 1. Front view of a slotted disk which rotates at a frequency Ω0 and eclipses a Gaussian
beam shown in red. R is the distance from the rotation axis to the center of the beam, W is
the beam width, and θ is the angle subtended by the spot beam.
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3. Equivalence and sensitivities

In the OBZT (on axis measurement) for CW radiation, the normalized transmittance (T (z)) of
the aperture located at ζ fixed, is defined as [1]

T (z) =
P(W (z),ρ0)

P(W (∞),ρ0)
(2)

where z is the position of the nonlinear sample referred to the minimum waist position (z = 0)
and the power transmitted by the aperture is given by

P(W (z),ρ0) = P0

(
1− exp

(
− 2ρ2

0

W (z)2

))
(3)

ρ0 is the aperture radius, W (z) and W (∞) = WL are the beam radius at the position of the
aperture when the sample is located at z and far away (∞) from the focus (linear regime) re-
spectively, P0 is the optical power of the beam incident to the aperture. Henceforth, we shall
assume the implicit dependence of W on z in order to simplify the notation.

Taking into account that the reference is the unity, i.e. T (∞) = 1, then, the effect of the

presence of sample is measured from this value. Also, it is easy to realize that ΔT (z)
T (∞) represents

the relative change of the transmitted power in the linear regime, i.e. ΔP
P(WL,ρ0)

, also this fact
allows to establish the following relation

ΔT (z)
T (∞)

=
ΔP
P0

S−1 (4)

where the relative optical change and linear transmittance are respectively defined as

ΔP
P0

=
P(W,ρ0)−P(WL,ρ0)

P0
(5)

and

S = 1− exp

(
−2ρ2

0

W 2
L

)
(6)

The power transmitted (Eq. (3)) is what physically is measured (physical variable), hence,
the sensitivity of Z-scan technique is determined by the minimum value of this quantity can be
discerned (or discriminated) due to the presence of noise in the measurement.

3.1. The signal of the OBZT

In a Z-scan experiment due to the presence of the nonlinear sample, the beam width changes
from WL to W , therefore, the beam width change (ΔW ) is

ΔW =W −WL (7)

this causes that the transmitted power (P), changes by ΔP, let us calculate the optimum value
of ρ0 to detect ( ΔP

ΔW ), the equation to be solved is

∂ 2

∂ρ0∂W
P(W,ρ0) = 0 (8)

which gives the following result

ρ0 =
WL√

2
(9)
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i.e., when the aperture radius is 70.7% of WL (using the criteria of 1
e2 for measuring the beam

width), it is achieved the highest sensitivity for detecting changes in P. To reinforce this asser-
tion, in Fig. 2, it is shown an experimental plot of ΔP as function of the ratio ρ0

WL
, as can be seen

in such plot the maximum sensibility effectively occurs when ρ0
∼= 0.71WL, corroborating Eq.

(9), the experimental details are given in section 4.

Fig. 2. Sensitivity of an aperture of radius (ρ0) to detect changes in its transmitted power
(ΔP = P(W,ρ0)−P(WL,ρ0)), when the incident beam width changes from (WL →W ).

For this optimum aperture, Eq. (5) gives the following result

ΔP
P0

= exp(−1)− exp

(
−W 2

L

W 2

)
(10)

for small changes (ΔW <<WL), Eq. (10) can be approximated to

ΔP
P0

∼= 2exp(−1)

(−ΔW
WL

)
(11)

Eq. (11) is important because allows to relate beam width changes (ΔW ) with changes in the
transmitted power (Eq. (4)). Substituting Eq. (6), Eq. (9) and Eq. (11) into Eq. (4) gives

ΔT (z)
T (∞)

∼= 1.16

(−ΔW
WL

)
(12)

Eq. (12) provides the equivalence of the chopper technique. The minus sign in Eq. (12), means
that the chopper Z-scan curve is inverted with respect to the OBZT Z-scan, because when there
is a positive increment of beam width (ΔW > 0) the beam intensity and therefore the aperture
transmittance diminishes (ΔT < 0). In the following we shall work with ΔW

WL
instead of ΔT (z)

T (∞) .
To conclude this subsection, using Eq. (12), substituting Eq. (9) into Eq. (6) and using the fol-

lowing result [1] (assuming the same approximations, i.e. an incident circular Gaussian beam,
small incident power, small phase changes, and thin sample.)

ΔTp−v � 0.406(1−S)0.25 |ΔΦ0| (13)

the changes on-axis phase shift at the focus (ΔΦ0) can be related to the beam width changes, as
follows:

ΔWp−v

WL
� 0.273 |ΔΦ0| (14)

where ΔWp−v is the difference peak-valley of the chopper Z-scan curve.
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3.2. The signal for the chopper Z-scan

For the chopper Z-scan technique, the elapsed time τ for eclipsing the beam width (W ) is given
by Eq. (1), when W changes due to the presence of the sample, τ also changes by Δτ , given by:

Δτ =
2

Ω0R
ΔW (15)

therefore, the minimum Δτ that noise allows to discriminate, determines, the minimum ΔW that
can be resolved with this technique.

3.3. Calculus of noise power for both techniques

As mentioned before, the optical power is the physical variable to be measured for the OBZT
through a photoreceptor system, it usually consists of a photodiode and a trans-impedance
amplifier (see Fig. 3(a)), for this system the voltage Vph (which only depends on the sample
position z) is:

Vph = RLℜP (16)

RL is the amplifier zero frequency gain in Ohms, ℜ is the responsivity of the photodiode in
Ampere

Watt and P is the optical power incident to the photodiode in Watt.

+

Photo
diode

Operational
amplifier

Sample

Lens

Aperture

0     z �
Z

+

Vph(t)

Operational
amplifier

Sample

Lens

Vph

Chopper

Oscilloscope

(A)

(B)

0     z �
Z

Photo
diode

RL

CL

RL

CL

Fig. 3. A) One beam Z-scan set up, B) Chopper Z-scan set up.

In the case of small P, the photoreceptor is limited by thermal noise [16], therefore, the signal
to noise ratio ( S

N ) in this regime is

S
N

=
RL (ℜP)√
4kT RLΔ f

(17)

where k is the Boltzmann constant, T is the temperature in Kelvin and Δ f is the detection
bandwidth of the photoreceptor in Hz given by [17]

Δ f =
1.57

2πRLCL
(18)

the expression in parentheses in Eq. (17) is the photo-current generated by the photodiode.
The minimum signal detectable occurs when ( S

N = 1), also, assuming stationary noise sources
and non-memory measurements, then, the minimum change (ΔPmin) detectable is

ΔPmin = 2

√
4kT RLΔ f

RLℜ
(19)

#184387 - $15.00 USD Received 29 Jan 2013; revised 4 Mar 2013; accepted 11 Mar 2013; published 20 Jun 2013
(C) 2013 OSA 1 July 2013 | Vol. 21,  No. 13 | DOI:10.1364/OE.21.015350 | OPTICS EXPRESS  15355



to obtain an expression for the magnitude of the minimum change of width detectable (ΔWOB
min

the superscript comes from One Beam), Eq. (19) is substituted into Eq. (11)∣∣∣∣ΔW OB
min

WL

∣∣∣∣= exp(1)

√
4kT RLΔ f
RLℜP0

(20)

the expression under the square root symbol, represents the thermal noise power (Pn), of course,
if other additive noise sources were present, Pn would represent the total noise power, hence,∣∣∣∣ΔW OB

min

WL

∣∣∣∣= 2.72
√

Pn

RLℜP0
(21)

the sensitivity of the OBZT is given by Eq. (21).
For the chopper Z-scan, the total laser power (P0) impinges on the photodiode, therefore,

a lower gain value of RL is needed, lowering the noise power due to this cause, however, the
bandwidth requirement (Δ f ) is greater than the OBZT, somewhat compensating the previous
advantage, as shown in the following subsection.

3.3.1. Bandwidth need of the chopper z-scan

For the chopper technique, the incident optical power impinging on the photodiode Pch(t) is a
periodic function of the time t, due to periodic eclipsing; Pch(t) is given by:

Pch(t) =
P0

2

(
1− er f

(√
2

Rsin(Ω0t)
W

))
(22)

let us define the following ratio

β =
R
W

(23)

for Ω0t << 1 the raising part of Eq. (22) can be approximated to

Pch(t)∼= P0

2

(
1− er f

(√
2βΩ0t

))
(24)

the Fourier series of Pch(t) using the approximation (Eq. (24)) is

Pch(t) =
1
2 − 2

π

∞
∑

m=0

1
2m+1 exp

(
− 1

8

(
2m+1

β

)2
)

sin((2m+1)Ω0t) (25)

if the series is cut up to m ≥ 2β (m integer) harmonic, the error is less than 0.6%, therefore the
chopper Z-scan bandwidth need (Δ fc) in Hz is:

Δ fc = 4β f0 (26)

where it has been used the fact that Ω0 = 2π f0 and Ω0t << 1, hence, the photoreceptor must
satisfy the following requirement

Δ fc ≤ Δ f (27)

where Δ f is given in Eq. (18).
The Eq. (26) can be approximately obtained under the following reasoning: the eclipsing

time τ was calculated in Eq. (1), therefore, the photoreceptor must at least be as fast as the
eclipsing time, consequently, its bandwidth Δ fc must be

Δ fc ≥ 1
τ
=

Ω0β
2

(28)

the following is also meet Ω0 = 2π f0 where f0 is the rotation frequency in Hz, thus, Eq. (28)
can be expressed as

Δ f ≥ πβ f0 (29)
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3.3.2. Minimum change of width detectable with the chopper Z-scan technique

The eclipsing time τ is the time elapsed for Vph(t) to vary from Vth1 to Vth2 as shown in Fig. 4,
therefore, Vph(t) is compared with the threshold voltages Vth1 and Vth2, hence, Vph(t) fluctua-
tions due to noise (n(t)) result in uncertainty in the comparison process ( jitter), in this case the
following relation is satisfied between the variance in the metric j of the time of the threshold
crossing [18]

Fig. 4. Establishment of the threshold voltages Vth1 and Vth2 using e−2 criteria for
measuring the beam width W from Vph(t) (black line) and the beam profile (red line).

var ( j(tc))∼= var(n(tc))(
dVph(tc)

dt

)2 (30)

where tc is the expected time of the threshold crossing and Vph(t) is the voltage delivered by
the photoreceptor system. In order to compare both techniques let us assume that the same
amplifier than the OBZT is used and Eq. (27) is satisfied, then,

Vph(t)∼= RLℜPch(t) (31)

Pch (t) is given by Eq. (22). For noise with zero mean, var (n(t)) = Pn [19], Pn is the noise power
of n(t), therefore, equation (30) can be expressed as

var ( j(tc))∼= Pn(
dvph(tc)

dt

)2 (32)

from Eq. (1) and Eq. (32) we can establish the following relation

√
var (W )∼= Ω0R

2

√
Pn∣∣∣ dVph(tc)

dt

∣∣∣ (33)

Note that
dVph(t)

dt is proportional to the Gaussian profile, referring to Eq. (33) and Fig. 4 the
uncertainty in measuring ΔW is minimized if Vth1 and Vth2 are set as close as possible to the
maximum value of the profile, hence, if they are established where the profile drops to ±WL

3
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(i.e. Vth1
∼= 0.25Vph(t) and Vth2

∼= 0.75Vph(t)), then from Eq. (1)

tc =± 2WL

3Ω0R
(34)

using Eq. (31), Eq. (24) and Eq. (34) the derivative of Vph is

∣∣∣∣ d
dt

Vph(±tc)

∣∣∣∣=
√

2
π

e−
8
9 βΩ0 (RLℜP0) (35)

substituting Eq. (35) into Eq. (33) and taking into account that two comparisons are done (at
Vth1 and Vth2), the minimum relative change of the beam width (WCh

min the superscript comes
from Chopper) that this technique can resolve is

ΔWCh
min

WL
= 3

√
Pn

RLℜP0
(36)

comparing Eq. (36) with Eq. (21) under the same power of noise both techniques are almost
equally sensitive, however, the chopper technique does not require an aperture, eliminating the
need to align it with the beam axis and due to its larger bandwidth, a measurement is carried
out in fraction of second, allowing to perform an average over a much larger sample under the
same observation time, and perhaps the most important feature it is absorption immune.

Before turning to the experimental results it should be noted, that for practical purposes, due
to the physical variable for the chopper technique is time, then, according to Eq. (1), the relative
changes in the width are equal to the relative changes in the rising time (i.e. Δτ

τL
= ΔW

WL
), therefore

it can be obtained a Z-scan curve plotting τ versus z, and to use Eq. (37) derived from Eq. (1)
and Eq. (13) to estimate the phase change

Δτp−v

τL
� 0.273 |ΔΦ0| (37)

where Δτp−v is the peak-valley difference of the Z-scan curve, and τL is the rising time of Vph(t)
in the linear regime.

4. Experimental results

Equation (9) was verified using a single mode laser JDS 1145P 30mW HeNe, a positive lens
with 3.5cm focal length, an adjustable aperture, a power meter Thorlabs PM100 disposed ac-
cording to Fig. 5 under the following reasoning: Without the sample, the power of the light (P)

Lens

Power
meter

0 �� �

Z

Fig. 5. Set up for determining the optimum aperture radius for measuring transmitted power
changes.

passing through the aperture is function of its position (ζ ) along beam axis and its radius (ρ0),
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i.e. P(W (ζ ),ρ0), thus, the aperture was located at a distance (ζ ) where the beam width was
(W (ζ ) = 4.5mm); then P(W (ζ ),ρ0) was measured for ten increasing radius ρ0, after, the aper-
ture was displaced at (ζ1) where the width was (W (ζ1)= 4mm), P(W (ζ1),ρ0) was measured for
the same values of ρ0 as before. In Fig. 2 it is shown a plot of ΔP=P(W (ζ1),ρ0)−P(W (ζ ),ρ0)
versus ρ0

WL
where it can be seen that the optimum ρ0 for detecting changes in the transmitted

power is W (ζ )√
(2)

.

To carry out the OBZT, it was used a bacteriorhodopsin film 8μm thick, the JDS 1145P
laser, a 5 cm lens, a Thorlabs PIN photodiode SM1PD1A, a home-made trans-resistance am-
plifier with RL = 82kΩ, CL = 10nF and operational amplifier OP27, an oscilloscope model
TDS1012C-EDU for monitoring Vph, disposed according to the setup shown in Fig. 3(A), the
distance from the output laser to the lens was 50cm, the distance of the lens to the aperture was
50cm; to perform the chopper technique the same elements were used arranged according to
Fig. 3(B), replacing the aperture with a disk with 10 slots rotating at Ω0 = 18.85 rad

s (chopper
Thorlabs model MC1000A).

4.1. Discussion of results

For both techniques in order to minimize disruption to the sample, the laser power was attenu-
ated up to 40μW .

4.1.1. OBZT

For nonlinear absorptive samples, the OBZT curve is a mixture of nonlinear refractive and
absorptive contributions [20], therefore, in order to obtain a free absorption Z-scan curve, it is
proceeded as follows: A Z-scan experiment is performed without the aperture, the normalized
curve obtained is shown in the inset of Fig. 6, subsequently, a second Z-scan experiment is done
with the aperture, at the same positions as the inset of Fig. 6, the values measured are divided
by their corresponding values of the curve in the inset; in Fig. 6 it is shown the free nonlinear
absorption Z-scan curves for different aperture radii, where ΔV = Vph −VL, VL is the voltage
Vph measured when the sample is far from the focus (linear regime). Again, the optimum radius
turned out to be determined by the Eq. (9).

Fig. 6. Z-scan curves free of nonlinear absorption for a bacteriorhodopsin sample, using
different aperture radii (ρ0), WL = 3mm, the laser power was P0 = 40μW . In the inset is
shown the normalized Vph measured without aperture, useful to obtain the free nonlinear
absorption curves.
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Fig. 7. Rising part of Vph(t), notice the change of amplitude and slope as function of the
sample position, the arrow indicates the increasing sample position z.

4.1.2. Chopper Z-scan

In Fig. 7 it is shown the raising part of Vph(t) recorded with the oscilloscope, for illustrative
purposes different curves were displaced to the left as the position of the sample was increased,
from such figure it is clear how the chopper technique works: from the amplitude of Vph(t) the
nonlinear absorption is estimated and from the raising time (τ) the refractive index is estimated
because τ depends only on the beam width (see Fig. 4).

In Fig. 8 it is shown τ vs z (the position of the sample), also in the inset is shown the amplitude
of the pulses (such curve represents the transmitance).

From Fig. 8, it is demonstrated the capacity of chopper technique to estimate both nonlinear
absorption and refractive index in one experiment.

Fig. 8. Rising time (τ) of Vph(t) as function of the sample position (z), in the inset it is
shown the amplitude of Vph(t) versus z (which represents the nonlinear transmitance of the
sample).

In order to highlight the advantages of the chopper technique, in Fig. 9 are presented the
Z-scan curves of the relative changes of the physical variables obtained with the chopper and
OBZT techniques, for the OBZT the ratio ρ0

WL
was adjusted as small as our iris allowed ( ρ0

WL
= 0.1

in the small aperture limit [5] in order to minimize the nonlinear absorption effects), the laser
power was attenuated up to 10μW ; from Fig. 9 it is evident that the nonlinear absorption distorts
the OBZT Z-scan curve [20] even with this aperture radius, unlike the chopper technique.
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Fig. 9. Z-scan curves of the physical variables of the two techniques when P0 = 10μW ,
for the OBZT ρ0 = 0.1WL and a lock-in amplifier was needed, PL and τL are the values
measured for OBZT and chopper techniques respectively when the sample was located far
from the focus.

In Fig. 9, the OBZT curve is twice than the chopper curve, because of the following reason:
the Eq. (11) for the case of ρ0 	= WL√

2
is

ΔP
P0

∼=−
(

4
ρ2

0

W 2
L

exp

(
−2

ρ2
0

W 2
L

))
ΔW
WL

(38)

using ΔW
WL

= Δτ
τL

, ρ0
WL

= 0.1 and Eq. (3) for calculating P(W (∞),ρ0) = PL, the Eq. (38) gives the
following result:

ΔP
PL

= 1.98
(−Δτ)

τL
(39)

one might think that the OBZT is more sensitive than the chopper technique, however, it should
not be confused for the result of Eq. (39), the optical power is fully utilized in the chopper
technique, achieving a better signal to noise ratio (SNR) than the SNR of the OBZT, for ex-
ample, for the opening radius ρ0 = 0.1WL, the optical power detected with the OBZT (Eq. (3))
technique is 50 times less than the maximum power (P0) detected with the chopper technique,
this is the reason of the use of a device that improves the SNR (lock-in). The OBZT increases
its SNR as ρ0 is increased up to WL√

(2)
(value at which both techniques have the same SNR),

however, for this value, the contribution of the nonlinear absorption is very dominant, that it is
necessary a second experiment to estimate it and deduct it, as was done for obtaining Fig. 6.

Finally, in Fig. 10 it is shown Vph(t) measured when a sample distorts the beam profile,
such distortion induces fast changes in Vph(t), which are filtered by the finite bandwidth of the
amplifier (Eq. (18)), for this reason, it is advisable to keep the bandwidth as low as possible, i.e.

Δ f −→ Δ fc (40)

5. Conclusion

We have demonstrated that a direct measurement of the beam width through a chopper, the Z-
scan technique is simplified without compromising its sensitivity, also the speed of data acqui-
sition increases remarkably, allowing to perform averages with larger data, resulting in neater
Z-scan curves.
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Fig. 10. Picture of a Gaussian beam profile distorted by an inhomogeneous sample, the
graph shows the detected signal Vph(t), since the chopper technique works with the inte-
gral of the Gaussian profile and thanks to the limited bandwidth of the trans-impedance
amplifier, the speckle affects little to the measurement.

We have established that the aperture radius plays an important role in the sensitivity and
the optimum value is WL√

(2)
where WL is the beam width (using the criteria of 1

e2 ) in the linear

regime.
For OBZT, the Z-scan curves are distorted by the presence of nonlinear absorption accentu-

ated by increasing the radius of the aperture, forcing to correct them with the nonlinear absorp-
tion curve as can be seen in Fig. 6, whereas the proposed technique is immune to this effect.

A reliable method of measurement Gaussian beam by means of a chopper is given and con-
firmed experimentally as can be seen in Fig. 12.

We have found that the chopper technique is much less sensitive to wavefront distortions
caused by inhomogeneities of the sample unlike OBZT which strongly depends on it.

6. Appendix

As we mentioned, the chopper describes a curved trajectory rather than a straight one as with
the knife edge technique, this causes that the beam width measured with the chopper (Wch) is
larger than that of the knife (Wkn), this difference is negligible if condition (R >> W ) is met,
if not, the difference can be deducted if an expression for it is found, by measuring W (z) of a
Gaussian beam, propagating along z-axis with both techniques at different positions (ζ ) under
the same experimental conditions. In Fig. 11, Wkn is plotted versus Wch, the data fitting Eq. (41)
allows to find the relation between both techniques.

Wkn = 0.8Wch +74.8μm (41)

In Fig. 12 it is show the width measured of a the laser used in this paper, where it can be seen
an excellent agreement between knife and calibrated chopper techniques.
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Fig. 11. Calibration of the chopper width measurement.

Fig. 12. Equivalence in W measurements given by the calibrated chopper and knife edge
techniques.

Acknowledgments

This work has been sponsored by CONACyT, grants 51757 and 84008.

#184387 - $15.00 USD Received 29 Jan 2013; revised 4 Mar 2013; accepted 11 Mar 2013; published 20 Jun 2013
(C) 2013 OSA 1 July 2013 | Vol. 21,  No. 13 | DOI:10.1364/OE.21.015350 | OPTICS EXPRESS  15363




