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Abstract. We show a right unitary transformation approach based on Susskind–

Glogower operators that diagonalizes a generalized Dicke Hamiltonian in the field basis

and delivers a tridiagonal Hamiltonian in the Dicke basis. This tridiagonal Hamiltonian

is diagonalized by a set of orthogonal polynomials satisfying a three-term recurrence

relation. Our result is used to deliver a closed form, analytic time evolution for the case

of a Jaynes–Cummings–Kerr model and to study the time evolution of the population

inversion, reduced field entropy, and Husimi’s Q-function of the field for ensembles of

interacting two-level systems under a Dicke–Kerr model.
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1. Introduction

The Jaynes–Cummings (JC) model is a fundamental building block in quantum optics;

it describes the interaction of a qubit with a quantum electromagnetic field under long

wave and rotating wave approximations. It is exactly solvable [1] and has proven useful

to describe phenomena as Rabi oscillations [2] and collapse and revivals of the atomic

inversion [3], among others; see [4] for a review on the model. If the number of qubits

increases, the model, known as the Dicke or Tavis–Cummings model, shows many-body

phenomena in the form of a superradiant phase [5]. The Dicke model is also exactly

solvable [6, 7, 8] and is known to show super-fluorescence and amplified spontaneous

emission; see [9] for a recent review.

In recent years, a general Dicke Hamiltonian, including quadratic self-interactions

on both the field and qubit ensemble was introduced to study the effect of the

nonlinearities and their relation to the Stark shift, in units of ~,

H = ωâ†â+ ω0Ŝz + γ
(
â†2â2 + Ŝ2

z

)
+ g

(
âŜ+ + â†Ŝ−

)
. (1)

In this model the frequencies for the field and two-level system transitions are given

by ω and ω0, the quadratic interactions are assumed to be equal and given by γ, while

the coupling between field and qubit is given by the parameter g. An exact solution to

this system was found by quantum inverse methods involving Bethe anzats [10]. The

importance of the Dicke model and its generalizations lies in its ability to describe

more than atoms interacting with the quantized field of a cavity; i.e. lasers. For

example, it may describe open dynamical cavity-QED systems [11], ion trap systems [12],

circuit-QED systems [13, 14], and Bose-Einstein condensates interacting with classical

or quantized electromagnetic fields [15, 16, 17].

In this contribution, we present an exact solution, up to the roots of a polynomial,

to a more general Dicke Hamiltonian by considering non-identical nonlinear interactions

in (1). In the following, we will discuss our general Dicke Hamiltonian and the physical

systems it can describe. We then show how a novel right unitary transform involving

Susskind–Glogower operators helps us diagonalize the Hamiltonian in the field basis.

With this at hand, it is simple to diagonalize the resulting tridiagonal Hamiltonian in

the Dicke basis via orthogonal polynomials satisfying a three-term recurrence relation.

In order to verify the validity of our exact solution, we recover the time evolution for a

system involving just the single qubit. Finally, we study the time evolution of different

ensemble sizes to illustrate the simplicity of our approach and the results it yields; we

focus on the population inversion dynamics of the qubit ensemble as well as the evolution

of the entropy and Q-function of the field.

2. The model

Let us consider a system composed by an ensemble of N identical two-level systems

(‘qubits’) that interact with each other. These qubitas are in the presence of a quantized

field and a Kerr medium. For the sake of simplicity, we move into the frame defined by
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the transformation Û(t) = e−iωf N̂t, where the excitation number operator is given by

N̂ = â†â+ Ĵz , and work with the Hamiltonian in units of ~,

Ĥ = δĴz + κ
(
â†â
)2

+ γĴ2
z + λ

(
âĴ+ + â†Ĵ−

)
. (2)

The qubits ensemble is described by collective Dicke operators satisfying the su(2)

algebra,
[
Ĵ+, Ĵ−

]
= 2Ĵz,

[
Ĵz, Ĵ±

]
= ±Ĵ±, while the annihilation and creation operators

for a single mode field satisfy
[
â, â†

]
= 1. The transition frequency of each qubit, ωq,

and the frequency of the field, ωf , are summarized by the detuning δ = ωq − ωf . The

Kerr medium is described by the parameter κ, while the qubit-qubit and ensemble-field

couplings are given by γ and λ, in that order.

The Hamiltonian (2) describes the N -atom maser in general. In the special case of

equal self-interactions, κ = γ, it can be transformed into the N -atom maser including,

Kerr nonlinearity and Stark shift as discussed in [10]. Different parameter sets describe

particular physical models; e.g.,{δ, γ, λ} = 0 delivers the Kerr model [18, 19], {κ, γ} = 0

yield the Dicke or Tavis–Cummings model [5, 6] and {γ} = 0 gives the micromaser

with Kerr nonlinearity [20, 21, 22]. Furthermore, the general Hamiltonian (2) and its

reductions are experimentally feasible in cavity- and circuit-QED as well as trapped ions.

It may also be possible to realize some of these models with two-mode Bose-Einstein

condensates coupled to radiation fields [15, 23, 24, 25, 26].

The case of equal-self interactions, κ = γ, has been solved by inverse quantum

methods in the past [10]. This solution involves the Bethe ansatz method. The general

Hamiltonian (2) can also be solved by extending our right unitary approach to the

quantum Landau–Zener problem for a single two-level system presented in [27], which

delivers an evolution operator with the form

Û (t) = ÛA (t) ÛB (t) , Ûx = e−iĤxt, (3)

where the auxiliary Hamiltonians are given by

ĤA =

N/2∑
j=−N/2

F (j, n̂) |j〉〈j|+
N/2∑

j=−N/2+1

G (j, n̂) (|j〉〈j − 1|+ |j − 1〉〈j|) ,

(4)

ĤB =

N/2−1∑
j=−N/2

N/2−1−j∑
k=0

F (j, n̂) ρ̂k|j〉〈j|+

+ (1− δN,1)
N/2−1∑

j=−N/2+1

N/2−1−j∑
k=0

G (j, n̂) ρ̂k (|j〉〈j − 1|+ |j − 1〉〈j|) ,

(5)

where the ket |j〉 is a Dicke state, the operator ρ̂k is the density matrix for the pure state

of the field with k photons, the operator n̂ = â†â is the photon number operator and

the symbol δa,b represents Kronecker delta. These auxiliary Hamiltonians are diagonal
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in the field basis; i.e. they are given in terms of the photon number functions

F (j, n̂) = κ

(
n̂− N

2
+ j

)2

+ j (δ + γj) , (6)

G (j, n̂) = λ

[
N

2

(
N

2
+ 1

)
− j (j − 1)

]1/2 [
n̂+ 1 +

N

2
− j
]1/2

. (7)

There is, however, a simpler approach to solve this general radiation-matter interaction

model.

3. Exact solution

In order to present a simpler approach to solve Hamiltonian (2), let us define the right

unitary transformation

T̂ =

N
2∑

j=−N
2

V̂
N
2
+j|j〉〈j|, (8)

T̂ T̂ † = 1, (9)

T̂ †T̂ = 1−
N
2∑

j=−N
2
+1

N
2
−1+j∑
k=0

ρ̂k |j〉〈j|, ρ̂k = |k〉ff〈k|, (10)

where we have used the Susskind–Glogower operators,

V̂ =
1√

â†â+ 1
â, (11)

V̂ † = â†
1√

â†â+ 1
, (12)

which act as lowering and raising ladder operators on the Fock state basis, V̂ |n〉f =

|n − 1〉f and V̂ †|n〉f = |n + 1〉f in that order, and are right-unitary, V̂ V̂ † = 1 and

V̂ †V̂ = 1 − ρ̂0, where ρ̂k is the density matrix for the pure state of the field with k

photons. Again, the ket |j〉 is a Dicke or angular momentum state. Then, it is possible

to write the general Hamiltonian (2) as:

Ĥ = T̂ ĤSC T̂
†, (13)

where the auxiliary Hamiltonian is given by,

ĤSC =

N
2∑

j=−N
2

f (j, n̂) |j〉〈j|+

N
2∑

j=−N
2
+1

g (j, n̂) (|j〉〈j − 1|+ |j − 1〉〈j|) . (14)

We have used the notation ĤSC to bring forward that this Hamiltonian is semi-classical -

like because it is only expressed in terms of the number operator,

f (j, n̂) = κ

(
n̂− N

2
− j
)2

+ j (δ + γj) , (15)
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g (j, n̂) = λ

[
N

2

(
N

2
+ 1

)
− j (j − 1)

]1/2 [
n̂+ 1− N

2
− j
]1/2

. (16)

It is possible to express the dynamics of this model as the evolution operator

Û (t) = e−ıtĤ =
∑
m

1

m!

(
−ıtĤ

)m
, (17)

where powers of the form Ĥm are needed. These powers can be obtained by realizing

from (10) and (14) that T̂ ĤSC T̂
†T̂ ĤSC T̂

† = T̂ Ĥ2
SC T̂

† leads to Ĥm = T̂ H̃mT̂ † by

means of V̂
N
2
+j|k〉f = 0 and f〈k|(V̂ †)

N
2
+j = 0 for k = 0, . . . , N/2 + j − 1 and

j = −N/2 + 1, . . . , N/2. Thus, the evolution operator in the reduced form is given

by the expression

Û (t) = T̂ e−ıtĤSC T̂ †. (18)

The Hamiltonian ĤSC is diagonal in the field basis and is symmetric tridiagonal in the

Dicke basis; i.e. it is diagonalizable in the angular momentum basis. The eigenvalues of

this Hamiltonian can be found by the method of minors and are given by the roots of

the characteristic polynomial

pN+1 (ν) =

[
ν − f

(
−N

2
, n̂

)]
pN (ν)− g2

(
−N

2
+ 1, n̂

)
pN−1 (ν) (19)

with

p0 (ν) = 1, (20)

p1 (ν) = ν − f
(
N

2
, n̂

)
, (21)

pj (ν) =

[
ν − f

(
N

2
+ 1− j, n̂

)]
pj−1 (ν) +

− g2
(
N

2
+ 2− j, n̂

)
pj−2 (ν) , j ≥ 2

(22)

The eigenvectors are calculated from the eigenvalue equation for the Hamiltonian and

give

|vj〉 =

N
2∑

k=−N
2

c
(j)
k |k〉,

N
2∑

k=−N
2

|c(j)k |
2 = 1, (23)

where the amplitudes answer to the following recurrence relations,[
f

(
N

2
, n̂

)
− νj

]
c
(j)
N
2

+ g

(
N

2
, n̂

)
c
(j)
N
2
−1 = 0, (24)

[f (j, n̂)− νj] c(j)k + g (j, n̂) c
(j)
k−1 + g (j + 1, n̂) c

(j)
k+1 = 0, (25)[

f

(
−N

2
, n̂

)
− νj

]
c
(j)

−N
2

+ g

(
−N

2
+ 1, n̂

)
c
(j)
N
2
+1

= 0. (26)
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4. Examples

The time evolution given in the previous section accounts for the full dynamics of the

system and helps calculating any given quantity of interest. As an example, we will

focus on the time evolution of the reduced density matrix for the field where the initial

state is given by a pure state |ψ (0)〉 =
∑∞

j=0

∑N
2

k=−N
2

cj,k|j〉f |k〉,

ρf (t) =

N
2∑

j,k,l=−N
2

∞∑
p,q=0

cp+l−j,jc
∗
q+l−k,kUl,j

(
p+ l +

N

2
, t

)
×

× U∗l,k
(
q + l +

N

2
, t

)
|p〉ff〈q|. (27)

The notation Ui,j (n̂, t) =
(
e−ıtĤSC

)
i,j

is used to describe the components of the semi-

classical time evolution operator. This allows us to calculate the mean photon number

evolution,

〈n̂ (t)〉 =

N
2∑

j,k,l=−N
2

∞∑
p=0

p cp+l−j,jc
∗
p+l−k,kUl,j

(
p+ l +

N

2
, t

)
U∗l,k

(
p+ l +

N

2
, t

)
,

(28)

and in consequence the population inversion 〈Ĵz(t)〉 = 〈N̂(t = 0)〉 − 〈n̂ (t)〉. Other

interesting quantities are the purity of the field,

P (t) = 1− Tr ρ̂2f , (29)

Tr ρ̂2 =

N
2∑

j,k,l,m,n,o=−N
2

∞∑
p,q=0

cp+l−j,jcq+o−m,mc
∗
q+l−k,kc

∗
p+o−n,n Uo,j

(
p+ l +

N

2
, t

)
×

Uo,m

(
q + o+

N

2
, t

)
U∗l,k

(
q + l +

N

2
, t

)
U∗o,n

(
p+ o+

N

2
, t

)
, (30)

and von Neumann entropy,

〈Ŝf (t)〉 = −Tr [ρ̂f (t) ln ρ̂f (t)] , (31)

which are a good measure of the degree of mixedness of the reduced system.

4.1. A Single qubit

Let us consider a system with just the single qubit,

Ĥ = κn̂2 +
δ

2
σ̂z + λ

(
âσ̂+ + â†σ̂−

)
, (32)

the semi-classical Hamiltonian is given by

Ĥ =

(
κ (n− 1)2 + δ

2
λ
√
n̂

λ
√
n̂ κn2 − δ

2
,

)
(33)
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Figure 1. Time evolution of the mean population inversion (a,b), reduced field

entropy (c,d) and Husimi’s Q-function for the field at times equal to half-minimum

(e,g) and minimum of entropy (f,h) for a single qubit interacting with a quantized

electromagnetic field on resonance, δ = 0, under the Jaynes-Cummings model, left

column (a,c,e,f), and under a Jaynes-Cummings-Kerr model, right column (b,d,g,h).

The initial state for both cases is |ψ(0)〉 = |α〉f | − 1
2 〉 with α = 5.

and it is possible to give a closed form time evolution operator as

Û(t) = T̂ e−itĤSC T̂ †, (34)

e−itĤSC = e−
ıt
2
κ[1+2n̂(n̂+1)]

{
cos

Ω(n̂)t

2
− i [β(n̂)σ̂z + 2λ

√
nσ̂x]

Ω(n̂)
sin

Ω(n̂)t

2

}
,(35)

β(n̂) = δ + κ (1− 2n̂) , (36)

Ω(n̂) =

√
[β(n̂)]2 + 4n̂λ2 (37)

It is trivial to apply the operator T̂ † (T̂ ) to any given initial state ket (bra) and then

apply the semi-classical exponential. Figure 1 shows the time evolution of the mean

population inversion (first row), entropy of the reduced field (second row) and Husimi’s

Q–function of the field (third row) for a single qubit as given by a Jaynes–Cummings

model (left column) and a Jaynes–Cummings–Kerr model (right column). Our results

are in accordance with those in the literature [3, 28] and we can proceed to sample the

dynamics of ensembles.

4.2. An ensemble of qubits

For an ensemble of qubits, the task of finding a closed form expression for the time

evolution becomes cumbersome but it is possible to numerically diagonalize the semi-

classical Hamiltonian and implement the time evolution of any given initial state. As an

example, we consider the evolution of ensembles of three, Fig. 2, and twenty five, Fig.

3, qubits. The information about the particular initial conditions and parameter values

can be found in the figures and their captions. At the time, it is not our goal to report
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and in-depth analysis of the dynamics of generalized Dicke models but just to present

our diagonalization scheme to obtain an exact solution via Susskind-Glogower operators.

For this reason, we will just briefly comment some basic characteristics of the dynamics.

By considering an initial state given by the separable state consisting of a coherent field

and the ensemble in its ground state, |ψ(0)〉 = |α〉f |−N/2〉, it is possible to see that the

Dicke model presents strong collapse and revivals of the population inversion as long as

the mean photon number is larger than the number of qubits in the system. A clear

collapse of the population inversion is seen in any case studied here, up to N ∼ α2.

The strength of the oscillations in the population inversion diminishes as the number of

qubits in the system gets close to the mean photon number of the coherent state but they

become ever-present at smaller times as we get larger ensemble sizes for a fixed value of

the coherent state parameter. Meanwhile, the purity and entropy of such a Dicke model

signals an ever-present entangled state between the field and the ensemble as the number

of qubits gets close to or equal to the mean number of photons; i.e. the plots change from

strong, well-defined, unmodulated dips in the functions to a strongly modulated flat-

liner close to the value of a mixed reduced density matrix [29, 30, 31]. The Q-function

for the reduced field behaves as expected. For α � N , N + 1 well-defined phase blobs

appear and evolve half of them clock-wise and the other half counter-clock-wise as time

goes by. The revivals in the population inversion are associated to the overlapping of

these phase blobs; a stronger revival corresponding to a better overlapping.

However, when an interacting ensemble of qubits is considered under Dicke–Kerr

dynamics, the collapse and revivals of the population inversion are always weak but

well defined and periodical. Purity and entropy functions point a return to a quasi-

separable state on the first revival for the cases analyzed with the number of qubits less

or equal to the mean photon number of the field. The mean value of these functions

gradually increases with time and some dips appear periodically due to the constructive

interference of the wavefunction components, leading to revivals in the population

inversion. Under Dicke–Kerr dynamics the phase blobs seem heavily defined by the

Kerr process and for α = 5 four phase blobs appear and two of them evolve clockwise

while the other two do it counter-clockwise. This process produces an overlap of two and

two of the phase blobs leading to a weak local minimum in the purity/entropy but does

not register in the population inversion. It is only when the four phase blobs overlap

that a pronounced local minimum and a revival of the population inversion appears.

5. Conclusion

We have considered the general N -atom maser model which can be described by the

Dicke model plus dipople–dipole interactions and Kerr nonlinearity. As a side result,

we extend a previous result based on Susskind–Glogower operators that gives the exact

dynamics of a Jaynes–Cummings model as the product of two time evolution operators.

Our main result is a different and simpler approach involving Susskind–Glogower

operators and right unitary transformations that allow us to represent our generalized
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Figure 2. Time evolution of the mean population inversion (a,b), reduced field

purity (c,d) and Husimi’s Q-function for the field at times equal to half-minimum

(e,g) and minimum of entropy (f,h) for a quantized electromagnetic field interacting

on resonance, δ = 0, with three qubits under the Dicke model, left column (a,c,e,f),

and with three interacting qubits under a Dicke-Kerr model, right column (b,d,g,h).

The initial state for both cases is |ψ(0)〉 = |α〉f | − 3
2 〉 with α = 5.

Figure 3. Time evolution of the mean population inversion (a,b), reduced field

entropy (c,d) and Husimi’s Q-function for the field at times equal to half-minimum

(e,g) and minimum of entropy (f,h) for a quantized electromagnetic field interacting

on resonance, δ = 0, with twenty five qubits under the Dicke model, left column

(a,c,e,f), and with twenty five interacting qubits under a Dicke-Kerr model, right

column (b,d,g,h). The initial state for both cases is |ψ(0)〉 = |α〉f | − 25
2 〉 with α = 5.
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Dicke model as a transformed semi-classical -like Hamiltonian which is diagonal in the

field basis and tridiagonal in the Dicke basis; thus, the diagonalization of this semi-

classical Hamiltonian is known up to the roots of its characteristic polynomial. The

transformed semi-classical -like Hamiltonian gives the time evolution of the system and

provides access to the dynamics of any quantity of interest.

We use our result to derive a closed analytical form for the time evolution operator

of a single qubit interacting with a quantized field in the presence of a Kerr medium,

a Jaynes-Cummings-Kerr model. Also, we present the time evolution of the population

inversion, reduced field entropy and Husimi’s Q-function of the field for ensembles

consisting of three and twenty-five interacting two-level systems under a Dicke-Kerr

model where the interaction and Kerr nonlinearity are equal. This is done to show how

simple it is to deal with many atoms with our partial diagonalization approach.

It is possible that one could follow the dynamics of hundreds and maybe a

few thousands of qubits with our approach in a simple workstation with efficient

programming; e.g., this is of importance in the description of realistic micromasers

and may be relevant to the study of fields interacting with Bose-Einstein condensates

in the two-mode approximation.

Appendix A. Small rotations for a generalized quantum Rabi model

Some systems, e.g. circuit-QED and open-dynamical systems, may deliver a strong

coupled version of the general Dicke Hamiltonian in (2),

H = Ĥ0 + ĤI ,

Ĥ0 = ωf â
†â+ κ

(
â†â
)2

+ χ
(
â2 + â†2

)
+ ωqĴz +

ξ

N
Ĵ2
z ,

ĤI =
g√
N

(
â+ â†

) (
Ĵ+ + Ĵ−

)
. (A.1)

Notice that the A2 ∝
(
â+ â†

)2
term [5] has been kept for the sake of generality. The

presence of the strong interaction term deters the use of the approach presented above.

Here, we want to show two things. The first is that we can get rid of the second

order nonlinearity, χ, if it is weak compared to the frequency of the field. This allows

us to use a squeezed states basis for the field, described by the transformation,

T̂1 = e
χ

2ωf
(â2−â†2)

,
χ

ωf
� 1. (A.2)

that helps us get rid of the χ term. The second thing we want to show is that a small

rotation [32],

T̂2 = e
g̃

ω̃f+ωq
(â−â†)(Ĵ++Ĵ−)

,
g̃

ω̃f + ωq
� 1, (A.3)

has an effect similar to that of the rotating wave approximation. This small

rotation leads to just a Dicke Hamiltonian including a Kerr medium and dipole-dipole

interactions between the qubit ensemble components,

Ĥ = δĴz + κ
(
â†â
)2

+ γĴ2
z + λ

(
âĴ+ + â†Ĵ−

)
, (A.4)
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after we have moved to a frame defined by the total excitation number N̂ = â†â + Ĵz
rotating at the frequency of the field and defined the parameters δ = ωq −ωf + 2χ2/ωf ,

γ = ξ/N and λ = 2g (ωf − χ)
(
ω2
f − 2χ2

)
/
√
Nωf

(
ω2
f − 2χ2 + ωqωf

)
. Note that we

have taken the self-interaction nonlinearities κ and ξ a couple orders of magnitude

smaller than the transition frequency ωq in order to neglect products of couplings and

nonlinearities.

We want to emphasize that, while we cannot deal with the strong-coupling regime,

this small rotation method may be valid in the regime where phase transitions appear

gc =
√

(ωf − 2χ2/ωf ) (ωq − ξ) [24, 33].
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[25] Rodŕıguez-Lara B M and Lee R K 2011 Phys. Rev. E 84 016225
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[27] Rodŕıguez-Lara B M, Rodŕıguez-Méndez D and Moya-Cessa H 2011 Phys. Lett. A 375 3770 –3774
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[30] Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883–892
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