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RESUMEN

Se formulan funciones de particion aproximadas y sus derivadas para
moléculas diatémicas tomando en cuenta el nimero finito de niveles. Se desa-
rrolla adema&s un procedimiento para obtener expresiones analiticas compactas, sin
pardmetros libres, necesarias para la evaluacion eficiente de algunos coeficientes ter-
modinamicos de la funcién de particiéon para moléculas diatémicas de utilidad en
el modelado de atmésferas estelares de baja temperatura.

ABSTRACT

Approximate partition functions and their derivatives for diatomic molecules
are formulated taking into account the finite number of levels. A procedure is de-
veloped to derive compact analytic expressions, without free parameters, necessary
for the efficient evaluation of some thermodynamic coefficients from the partition
functions for diatomic molecules useful in modeling low temperature stellar atmo-
spheres.
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1. INTRODUCTION

To evaluate the partition function for the vibrational and rotational states of the diatomic molecules the
maximum numbers of vibrational and rotational states in diatomic molecules in a partially ionized and dis-
sociated perfect gas in thermodynamic equilibrium are very important for the numerical calculation of stellar
atmospheres. The objective of this work is to develop fast and efficient analytic methods to calculate the par-
tition functions from simple accurate expressions many times for a great number of diatomic molecules in the
iterative processes necessary to evaluate the equation of state for cool stellar atmospheres and low density, low
temperature plasmas. The partition function, called the sum over states or the grand sum (Zustandssumme)
by Boltzmann, is the sum of the products of the statistical weights of the energy states of a molecule multi-
plied by the Boltzmann factors. In the calculation of the thermodynamic properties of a gaseous system, it
is necessary to know the partition function for each chemical species in order to determine the populations in
plasmas, planetary and stellar atmospheres, as well as some other thermodynamic coefficients through the use
of the Helmholtz free energy, or using the Saha equation for ionization together with the molecular dissociation
equation. In a perfect gas, the particles interact only through elastic collisions. The particles are immersed
in a medium with a finite temperature and, therefore, governed by the internal energy of the gas; the fluctua-
tions in energy broaden the lines (Cardona & Corona-Galindo 2012). When the partition function of diatomic
molecules is evaluated, in most of the cases, the number of levels considered is taken as infinite and everything
is evaluated with this assumption. The physical conditions of the thermodynamic system impose restrictions
on the number of levels due to the broadening of the molecular lines (Cardona & Corona-Galindo 2012) in the
molecules in the gaseous system composed of atoms, molecules and their ions. To derive analytic expressions
for the partition functions we must transform the sums into integrals, supposing that the molecules have a
great but finite number of states and, therefore, one can consider that the states form a continuum. In a great
number of applications the partition functions are approximated by the statistical weights of the ground states
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of the molecules, which produces poor results. The partition functions for diatomic molecules are relevant for
the calculation of the equation of state in low temperature stellar atmospheres, where one wants to obtain the
physical conditions from stellar atmospheres modeling. The diatomic molecules are very important in setting
the atmospheric structure and the regions of instability for convection to occur inside the atmospheres. In what
follows in § 2 we define the molecular states of diatomic molecules and the main thermodynamic variables. In
§ 3 we present the procedures for obtaining the vibrational and rotational partition functions for the heteronu-
clear and homonuclear diatomic molecules. The numerical results for the vibrational and rotational partition
functions are given in § 4. Lastly, in § 5 some comments and conclusions about the procedure and results are
given.

2. ENERGY STATES OF DIATOMIC MOLECULES

We consider a diatomic gas for which kg7 is small compared with the energy of dissociation FEjgjss; for
different molecules this amounts to the condition: T < Egiss/kp &~ 10* — 10° K, where kg is the Boltzmann
constant. At these temperatures the number of dissociated molecules in the gas would be quite insignificant.
At the same time, in most cases, there would be practically no molecules in the excited electronic states as
well, and the separation of any of these states from the ground state of the molecule is in general comparable
to the dissociation energy itself. Accordingly, in what follows and in the evaluation of the partition function
we take into account only the lowest electronic state of the molecule. Hence we consider only the vibrational
and rotational states of the diatomic molecules in the developments that follow. As the number of states in
diatomic molecules is not great (Cardona & Corona-Galindo 2012) the potential well is very close to the one of
the harmonic oscillator and rigid rotator, a parabolic potential well. And, on the other hand, the third order
terms in the potential are small and do not contribute to the sums of the partition functions. Therefore the
third order terms do not influence the results whatsoever, because the sums are over states and these do not
change for the finite number states for the given physical conditions, that is, the upper states are far away from
the dissociation limit. Therefore we will use the harmonic approximation in our development.

2.1. Vibrational states

The vibrational energy states of a diatomic molecule derived from quantum mechanics (Herzberg 1950;
Leighton 1959), for the intrinsic oscillator frequency vy, are given by the following expression

B, = ( + ;) hvo, (1)

for v =0, 1, 2 ..., the vibrational quantum number, where h is the Planck constant. The oscillator intrinsic
frequency is given by
1 |k

_ 1 Jk 2
o 20 /L, ()

with k the force constant of the oscillator and p the reduced mass of the diatomic molecule.

2.2. Rotational States

The rotational energy states of a diatomic molecule derived from quantum mechanics for the moment of
inertia I are expressed by
K(K +1)h?

E =
K 82l

3)

for K =0, 1, 2 ..., the rotational quantum number.
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2.3. Thermodynamics of a gaseous system composed of diatomic molecules

The main variables that describe a gaseous system in thermodynamic equilibrium are connected functionally
by the equation of state. The equation of state of a system, composed by atoms, diatomic molecules and their
ions, relates the temperature T, the pressure P and the total number density of particles N by the equation

P = Nkg T, (4)

where kp is the Boltzmann constant mentioned before. With these variables, together with the partition
function and taking into consideration the ionization and dissociation equations or the Helmholtz free energy,
most of the thermodynamic coefficients can be derived.

3. PARTITION FUNCTION FOR DIATOMIC MOLECULES

The so called internal or molecular partition function for the diatomic molecules, for most of the applications,
is composed of three independent partition functions that are the electronic, the vibrational, and rotational
parts of the physical description of the molecules under the adiabatic approximation (Born & Oppenheimer
1927). The electronic transitions are of higher energy followed by the vibrational transitions of intermediate
energy and the rotational transitions of lower energy. As was mentioned before, it is customary for the electronic
transition to take into account only the lower energy states in the calculation of the general partition function;
some results are given for the electronic partition function in Schadee (1964). There are situations where the
adiabatic approximation breaks down (Bransden & Joachain 2003), but this is not in general the case for
diatomic molecules (Brown & Carrington 2003) and for the physical conditions in stellar atmospheres and low
density plasmas. Consequently, we will consider the vibrational and rotational partition functions separately
and thus we can also compare directly each of them with the exact numerical evaluation of the partition
functions. Using the results for the maximum number of rotational and vibrational states (Cardona & Corona-
Galindo 2012) a procedure is developed to derive approximate compact analytic expressions, without any free
parameters, forming a complete set of homogeneous equations necessary for the efficient evaluation of some
thermodynamic coefficients of the partition functions for diatomic molecules useful for low temperature stellar
atmospheres and low density laboratory plasmas.

3.0.1. Vibrational partition function
The vibrational partition function is defined by the following expression
2y =3 e rorlrd), )

v=0

where 3 = % and ©y = hwy. This expression can be evaluated directly giving the following result

BT
Zy = <2sinh (592‘/»_1 . (6)

But as the number of vibrational states is finite (Cardona & Corona-Galindo 2012) the evaluation of the
sum can be carried out following the procedure presented below with the objective to obtain analytic equations.
Dividing the sum into two parts, where the first sum contains few lower states and the second sum contains
the rest of the states up to the maximum state, we have

Zy =3 e Ov(vhi) L N emsov(vid) (7)
v=0 v’
where the sum to evaluate is defined by

Z=3 et ®)
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where v’ and v* are the intermediate and maximum vibrational states, the former is chosen in order to have the
best approximation to the vibrational partition function and the latter is given by Cardona & Corona-Galindo
(2012). In order to obtain analytic functions to represent accurately the partition function, assuming many
states and the vibrational states, equation (8) may be approximated by a continuum and one can convert the
sum into an integral to derive the result

_ L [,-ssev _ -pev(v+}
Z= g [0 - e D] (9)

and the final result from equations (7) and (9), using v’ = 3, is

S o S 1 w1
Zy = e 0500V 4 o~1.500v 4 ,—2.500v o {efiw@v _ POV (v +;)] ) (10)

This is the approximate analytic partition function for the vibrational states of heteronuclear diatomic
molecules. The number of levels is not great and equation (9) is a poor approximation to the sum (8) and
therefore we have chosen the intermediate value v’ = 3 as the exponent of the first exponential of equation (9)
and not 3.5 obtained in the integration.

3.0.2. Rotational partition function
The definition of the partition function for the rotational states of diatomic molecules is given by
Zp=gn » (2K + 1)e POrKUFD (11)
K=0

with ©r = h?/872I and f3 is given above, and g, is the degeneracy factor. But we know that the sum in reality
has to be evaluated up to the maximum rotational state K*, hence

.
Zp=gn Y_ (2K + 1)e PORKETD (12)
K=0
or
.
Zp = gn |14 37290 4 576090 1 N " (2K 4 1) FORKUHD | (13)
K'=3

Transforming the sum into an integral, supposing very many states that the rotational states may be
approximated by a continuum, and carrying out the integration produces

1 -
Zr=gn |1+ 3¢ 20Or + 5e66Or + @ {6*125@1% _ ¢ PORKT(K +1)}] , (14)

for the approximate analytical rotational partition function for heteronuclear diatomic molecules.

3.0.3. Derivatives of vibrational and rotational partition functions with respect to T and N

The derivative of the vibrational partition function equation (5) with respect to T is given by

LdeY - L(;V [0.567 00OV 4 1.5¢~ 1509V 4 9 52500V ]
1 .
vd 330y )e OV — (1 + B0v (u* + 2)) eﬁ@v(v+2)] , (15)

and the derivative with respect to N is given by

dZV _ e*ﬁ@V(U*Jr%) d’U*

N N’ (16)
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where dv/dN is given for different physical physical conditions in Cardona & Corona-Galindo (2012). In this
case the exact derivative of the vibrational partition function with respect to IV is the same as the one obtained
above, and validates the procedure presented here.

For the derivative of the rotational partition function, equation (11) with respect to 7" one obtains

dZp _ Yn
dT  TBOgr

(14 BOR)e PO — (14 BORK*(K* + 1)) PORKT KT+ | (17)
and deriving with respect to N from equation (12) produces

dz s per gy K

TNI? = gn K*(K* + 1)~ #OrK" (K H)W . (18)

This is the exact derivative of the rotational partition function with respect to N. These equations for the
partition function and its derivatives form a homogenous group of expressions for the heteronuclear diatomic
molecules.

3.1. Homonuclear diatomic molecules

In the case of homonuclear diatomic molecules one has to take into account the degeneracy factor g, due
to the nuclear spins (Pathria 1972; Mohling 1982; Landau & Lifshitz 1980). The degeneracy factor is given by

gn = (281 +1)(252 + 1), (19)

for the possible orientations of the two nuclear spins (S; and S3). For two nuclei, each with spin S, there are
S(2S + 1) antisymmetric spin states and (S + 1)(2S + 1) symmetric ones. For diatomic molecules composed of
identical Fermi nuclei (S = 1/2,3/2, ...) one must therefore write the rotational partition function as

Z](2F) = S(QS + 1)chcn + (S + 1)(25 + 1)ZOdd’ (20)
where
K
Zeven = (2K +1)e7OnKUD, @)
K=0,2...

and
o

Zoaa = Y (2K + 1) POrKIEHL, (22)
K=1,3...

For the case of diatomic molecules composed of identical Bose nuclei (S = 0, 1,2, ...) one writes the rotational
partition function as

Z@) = (S +1)(25 + 1) Zoven + S(25 + 1) Zoda - (23)
Now, a change of variables in the equations (21) and (22) is performed. The even part is given by

.
owon = 3 (4K 4 1)¢PORKCKLD) (24)
K=0,1...

and transforming the sum into an integral the following result is obtained

Zeven =1+

—230R —ﬁ@RQK*(2K*+1)] . 9
5365 [e e (25)

The derivative with respect to temperature produces

dZeven _
dT  2T(Op

[(1 + BOR)e O — [1 + BOR2K™(2K* + 1)}e—ﬁ9R2K*<2K*+1>} : (26)
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and with respect to the total number density of particles gives

dZeven

= (KT l)e_BQRQK*(QK*H)K . (27)

dN

For the odd part the same procedure used above for the even part produces

K
Zoaa = Y (4K +3)e PORCGKINEKF2) (28)
K=12...

transforming the sum into an integral one obtains

1

Zoad = 276, [e—zﬂeR _ ¢ BOR(K+1)(2K +2)} , (29)
the derivative with respect to temperature is

AZoaa 1
dT  ~ 2TpOg

[(1 4 680R)e™ 9% — 1 4+ BOR(2K* 4+ 1)(2K* + 2)]e AORCET DK +2) | (30)

and the derivative with respect to the total number density of particles is given by

dZoqa . —BOR(2K*+1)(2K " +2) AK"
Zodd — (4K + 3)e - (31)

where dK*/dN is given for different approximations by Cardona & Corona-Galindo (2012). The expres-
sions (26) and (29) should be used in equations (20) and (23), and the derivatives (26), (27), (30) and (31) in
the derivatives of (20) and (23) with respect to temperature and to the total number density of particles. This
completes the set of equations that represent the partition functions for the heteronuclear and homonuclear
diatomic molecules and their derivatives for any application of the equation of state in low temperature stellar
atmospheres and low density laboratory plasma spectroscopy, without the need of free parameters or poly-
nomial adjustments. These results are very important for calculating stellar atmospheres models and this is
the main reason for developing these analytic partition functions to model low temperature atmospheres. The
equations of stellar atmospheres are nonlinear and nonlocal (Cardona, Crivellari, & Simonneau 2009) therefore
one has to iterate these equations many times in order to obtain good results. For that reason we do not
want to interpolate results of the partition functions developed in the literature mentioned in the articles. Our
approximate analytic partition functions and their derivatives are also important for developing diagnostics of
the physical conditions of plasmas of any type.

4. COMPARISONS AND NUMERICAL RESULTS

The expressions derived for the partition function are compared with some published results when possible.
But in general one cannot compare the partition functions and the derivatives of the vibrational and rotational
partition functions obtained above with other works because we do not have results for the separate vibrational
and rotational partition functions and their derivatives. When there are results in the literature about the
partition function they are obtained by truncating the sums to a prescribed value (Tatum 1966; Irwin 1981,
1988; Sauval & Tatum 1984; Rossi, Maciel, & Benavides-Soares 1985), or else the sums are evaluated with
the upper limit set to infinity. Nevertheless, we can compare with the numerical evaluation of the exact
vibrational and rotational partition functions, and with their derivatives with respect to temperature, using
the definitions of the partition functions for the vibrational and rotational components with the upper limit set
to the maximum number of states given by the physical conditions of the medium, and taking the molecular
constants from different tables (Huber & Herzberg 1979; Cox 2000; Cohen, Lide, & Trigg 2003). Figure 1 shows
the partition function evaluated from equation 10 and with the exact numerical calculation of the vibrational
partition function for the heteronuclear molecule CH for the total number density of 10'° cm™3. The results
have relative errors of less than 0.1% for the range of the figure. Figure 2 shows the same results for a density
of 10?2 cm ™3, with the same relative error. In Figure 3 the rotational partition function is drawn for the
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Fig. 1. Vibrational partition function for the diatomic
molecule CH as a function of temperature for a total
number density of particles of 10*° cm™3. Exact parti-
tion function (solid line) and equation 10 (dots).
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Fig. 3. Rotational partition function for the diatomic
molecule CH as a function of temperature for a total
number density of particles of 10'® cm™3. Exact parti-
tion function (solid line) and equation 14 (dots).

Fig. 2. Vibrational partition function for the diatomic
molecule CH as a function of temperature for a total
number density of particles of 10%2 cm™2. Exact parti-
tion function (solid line) and equation 10 (dots).
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Fig. 4. Rotational partition function for the diatomic
molecule CH as a function of temperature for a total
number density of particles of 1022 cm™3. Exact parti-
tion function (solid line) and equations 14 (dots).

exact partition function and equation 14 for a total density of 10'© cm ™3, with relative errors of less than
0.2% for the range of the figure. The degeneracy factor g, divides the results, as it is customary. Figure 4
displays the differences in the high density and temperature regimes among the exact partition function and
equation 14 for a total density of 10?2 cm ™3 with relative error of 0.5%. This shows the effect produced by few
rotational states in these physical conditions, violating the assumptions made for the derivation of equation 14.
In Figure 5 the derivative with respect to temperature for the vibrational partition function is drawn as a
function of temperature and for total number density of 10'° cm ™3, for the exact result and for equation 15.
Our result shows, close to the maximum, a relative error of the order of 0.4% comparing the exact result and
the one calculated with equation 15, and less than 0.1% for the range of the figure with the same results for
the total density of 10?2 cm™2, Figure 6. For the derivative of the rotational partition function the results
have a relative error of less than 0.4% for the low temperature region, and of 0.05% for the rest, as shown
in Figure 7 for a density of 10'® cm™3. Figure 8 shows the derivative of the rotational partition function for
a density of 10?2 cm™2 with errors of 0.4% and 0.8% for the low and high temperature regions, respectively.
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Fig. 5. Derivative of the vibrational partition func- Fig. 6. Derivative of the vibrational partition func-

tion for the diatomic molecule CH with respect to
temperature for a total number density of particles of
10'° ecm™3. Derivative of the exact partition function
(solid line) and equation 15 (dots).
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Fig. 7. Derivative of the rotational partition func- Fig. 8. Derivative of the rotational partition function

tion for the diatomic molecule CH with respect to
temperature for a total number density of particles of
10'° cm™3. Derivative of the exact partition function
(solid line) and equation 17 (dots).

for the diatomic molecule CH with respect to tem-
perature for the total number density of particles of
10?2 cm 3. Derivative of the exact partition function
(solid line) and equation 17 (dots).

The effect produced by few rotational states in these physical conditions, thus violating the assumptions made
for the derivation of equation 17 is shown. The derivatives with respect to the number density of particles
show a strange behavior below 103 K for both the vibrational and rotational partition functions, that appears
to be due to resonances. This strange behavior of the partition functions is a numerical problem that can be
corrected using the lowest terms of the power series of the exponentials. The CH molecule is important for cool
stellar atmospheres because this molecule shows bands in solar type and low temperature stars (Kurucz, van
Dishoeck, & Tarafdar 1987; Jorgensen et al. 1996). For the homonuclear molecule Hy the rotational partition
function is given in Figure 9 for a total number density of 10'° cm ™3, with relative error less than 0.5% in the
low temperature region, and of 0.2% for the rest of the figure. Similar results are obtained for a total density
of 10?2 cm™2 as shown in Figure 10. In Figure 11 the derivative of the rotational partition function with
respect to temperature is shown for a total number density of 10'° em™3 and in Figure 12 for a total density of
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Fig. 9. Rotational partition function for the homonu-
clear diatomic molecule Hy with respect to temperature
for a total number density of particles of 10'° cm™3.
Exact partition function (solid line) and equation 20 to-
gether with equations 25 and 29 (dots).
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Fig. 11. Derivative of the rotational partition function
for the homonuclear diatomic molecule Hz with respect
to temperature for a total number density of particles
of 10*® cm~3. Derivative of the exact partition function
(solid line) and equation 20 together with equations 26
and 30 (dots).
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Fig. 10. Rotational partition function for the homonu-
clear diatomic molecule Hy with respect to temperature
for a total number density of particles of 10?2 cm™3.
Exact partition function (solid line) and equation 20 to-
gether with equations 25 and 29 (dots).
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Fig. 12. Derivative of the rotational partition function
for the homonuclear diatomic molecule Hz with respect
to temperature for a total number density of particles
of 10%2 cm~3. Derivative of the exact partition function
(solid line) and equation 20 together with equations 26
and 30 (dots).

1022 cm~3. The derivatives show values for the relative error of around 0.5% for the high temperature regime,
but of less than 0.1% in the low temperature range of the values drawn, where again the problem of the number
of levels appears. The vibrational partition function for Hy shows the same behavior as the other heteronuclear
molecules. For the vibrational partition function of homonuclear diatomic molecules is not necessary to consider
the quantum statistics, as is the case for the rotational partition function of homonuclear diatomic molecules.
Thus, the vibrational partition function is calculated in the same way as for any other heteronuclear diatomic
molecule. Therefore for the hydrogen molecule we calculate the rotational partition function with the necessary
quantum statistics for homonuclear molecules. The calculations for other molecules produce similar results as
the ones presented above for the CH molecule, as is the case for the HCI molecule which is very important
because many experimental results are available for it (Herzberg 1950; Leighton 1959; Eisberg & Resnick



© Copyright 2013: Instituto de Astronomia, Universidad Nacional Auténoma de México

218 CARDONA & CORONA-GALINDO

1985). Therefore, these partition functions are very useful for approximating the vibrational and rotational
partition functions for any type of diatomic molecules and their derivatives. They are simple to calculate in
the evaluation of the equation of state for the construction of model atmospheres for low temperature stars.
The figures displayed are essential, because they show the results with respect to the exact calculations of the
partition functions and their derivatives for different total particle densities. These results are important for the
calculation of the populations and other thermodynamic parameters in the modeling of stellar atmospheres and
plasma diagnostics. To our knowledge, nowhere else can one find the derivatives of the partition functions with
respect to the main thermodynamic variables; they are fundamental for the evaluation of the Helmholtz free
energy and of the other thermodynamic coefficients using the Saha and dissociation equations, similarly to the
case for atoms (Cardona, Simonneau, & Crivellari 2009). The figures display the results of the comparisons,
giving good approximations for all the cases shown. In some of the figures one can appreciate very small
differences between the exact and the calculated partition function and their derivatives, which should be
taken into account. The absence of results published in the literature with respect to the exact partition
functions prevented a comparison with our results. Therefore, the best comparison that one can make for the
partition functions for diatomic molecules is with the exact calculations of the partition functions.

5. CONCLUSIONS AND COMMENTS

When one takes into account the interactions of the molecules with the medium in a gaseous system
the number of vibrational and rotational energy states available becomes finite (Cardona & Corona-Galindo
2012). The partition functions derived using the results for the number of vibrational and rotational states
in diatomic molecules are very general and simple, expressed in compact analytic equations that are functions
of the maximum quantum numbers of the molecular states and of the main properties of the molecules only.
That allows us for the first time to find the derivatives of the partition functions with respect to the total
number density of particles in a natural way completing the set of equations for the calculation of the physical
state of the material in stellar atmospheres of low temperature. The approximations made for the derivation
of the analytic expressions are valid for molecules that have enough states given by the physical condition of
the system under study. When the number of states is low one can calculate the exact partition function for
these states. These partition functions form a homogenous group of analytic equations that can be used in any
calculation of the equation of state for cool stellar atmospheres and low temperature plasmas. The partition
functions and their derivatives with respect to temperature and total number density of particles are very
helpful for calculating some thermodynamic coefficients for the radiative and convective transport of energy in
stellar atmospheres.

We acknowledge the technical advice of Maria de los Angeles Lépez Castillo.
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