
Hardware Architecture for
Pairing-Based Cryptography

by
EDUARDO CUEVAS FARFÁN

Ing. UDLAP

A Dissertation
Submitted to the Program in Computer Science,

Computer Science Department
in partial fulfillment of the requirements for the degree of

MASTER IN COMPUTER SCIENCE

at the

National Institute for Astrophysics, Optics and Electronics
November 2013

Tonantzintla, Puebla

Advisors:

Dr. René Armando Cumplido Parra, INAOE
Dr. Miguel Morales Sandoval, CINVESTAV

c©INAOE 2013
All rights reserved

The author hereby grants to INAOE permission to reproduce and to
distribute copies of this thesis document in whole or in part

Abstract

Bilinear pairings over elliptic curves are an emerging research field in cryptogra-

phy. First cryptographic protocols based on bilinear pairings were proposed by

the year 2000 and currently they are not standardized. The computation of bilin-

ear pairings relies on arithmetic over finite fields. The bilinear pairing is the most

time-consuming in Pairing-based cryptosystems which has motivated its imple-

mentation in dedicated hardware. In the literature, several works have focused in

the design of custom hardware architectures for efficient implementation of this

arithmetic, but in a non-standardized environment a flexible design is preferred in

order to support changes in the specifications. This thesis presents the design and

implementation of a novel programmable cryptoprocessor for computing bilinear

pairings over binary fields in FPGA, which is able to support different algorithms

and corresponding parameters such as the elliptic curve, the tower field and the

distortion map. The results show that high flexibility is achieved by the proposed

cryptoprocessor at a competitive timing and area usage when it is compared to

custom designs for pairings defined over singular/supersingular elliptic curves at

a 128-bit security level.

i

ii ABSTRACT

Resumen

Los emparejamientos bilineales sobre curvas eĺıpticas son un área de investigación

creciente en criptograf́ıa. Los primeros protocolos basados en emparejamientos

bilineales fueron propuestos en el año 2000 y actualmente no han sido estandariza-

dos. El cálculo de emparejamientos bilineales recae en operaciones aritméticas de

campo finito. El emparejamiento bilineal es la operación que más tiempo con-

sume en los criptosistemas basados en emparejamientos, lo que ha motivado su

implementación en hardware dedicado. En la literatura, diferentes trabajos se han

enfocado en el diseño de arquitecturas hardware dedicadas en la implementación

eficiente de dichas operaciones aritméticas, pero en un ambiente de trabajo no

estandarizado un diseño flexible es preferido con el propósito de dar soporte a los

cambios en las especificaciones de los protocolos. Esta tesis presenta el diseño y

la implementación de un novedoso criptoprocesador programable para el cálculo

de emparejamientos bilineales sobre curvas eĺıpticas en FPGA, que es capaz de

soportar diferentes algoritmos de emparejamiento y sus parámetros correspondi-

entes como son la curva eĺıptica, la torre de campos y el mapa de distorsión. Los

resultados demuestran que el criptoprocesador propuesto alcanza un alto grado

de flexibilidad con un tiempo de procesamiento y uso de recursos competitivos

cuando es comparado con diseños dedicados para emparejamientos definidos so-

bre curvas eĺıpticas singulares y supersingulares, a un nivel de seguridad de 128

bits.

iii

iv RESUMEN

Agradecimientos

Quiero extender mi más profundo agradecimiento al Consejo Nacional de Ciencia

y Tecnoloǵıa por el financiamiento otorgado para la realización de mis estudios de

maestrá a traves de la beca número 325137. De la misma manera quiero agradecer

al Instituto Nacional de Astrof́ısica, Óptica y Electrónica por todos los servicios

recibidos durante mi estancia en la institución.

Quiero agradecer de una forma muy especial a mis asesores, el Dr. René

Cumplido Parra y Dr. Miguel Morales Sandoval por su paciente gúıa durante el

desarrollo de esta tesis. Todos los consejos, sugerencias y correcciones siempre

serán muy agradecidos ya que sin ellos este trabajo no hubiera rendido los frutos

que al d́ıa de hoy ha rendido.

De la misma manera quiero agradecer a mi comité de sinodales, la Dra. Claudia

Feregrino Uribe, el Dr. Miguel Arias Estrada y el Dr. Enrique Muñoz de Cote,

por su valiosas revisiones que permitieron que este trabajo tenga la calidad que

alcanzó.

Un agradecimiento especial a Dra. Claudia Feregrino, Dr. Ignacio Algredo y

Dra. Alicia Morales por toda su ayuda y colaboración para la publicación de los

art́ıculos derivados de esta tesis.

Aunque ajenos a la institución, quiero agradecer a todas las personas con

las que trabaje durante los 9 meses de mi estancia en Intel Guadalajara por

todos las experiencias y conocimientos compartidos en este tiempo, en especial

para Joaqúın Garćıa, Remedios Villafranco, Laura Fuentes, Gabriel Labrada, Arie

Herrera, Iyaly Hernandez, Leoswaldo Mancilla, Victor Escamilla y Omar Alvizo.

A todos mis amigos de la maestŕıa les agradezco mucho todas las experiencias,

compañia y ayuda que brindaron durante esta aventura de más de 2 años. Siem-

pre recordaré el trabajo en los cubos, las idas a cenar, las tardes de cineclub y

por supuesto el café; Paco, Harold, Miguel, Merlo, Yared, Paty, Kenshi, Marisol,

v

vi RESUMEN

Ivan, Metzli, Daniel, Richy, Alberto, Lindsey, Chang, Josue y David. Un agradec-

imiento especial a Harold y Miguel por ayudarme con todos los trámites para mi

graduación.

Y sin duda alguna agradezco a mi familia por todo el apoyo me han dado a lo

largo de los años para afrontar cada uno de los retos que me pongo. Sin su apoyo

incondicional jamas podŕıa alcanzar nada de lo que me he propuesto. Empezando

con mis papas Leonor y Oscar; mis hermanos Fabricio y Elva; mis abuelos Silvia,

Salvador y Leonor; mis t́ıos y primos. Gracias por todas sus porras.

Y por último pero no menos importante, quiero dar un agradecimiento muy

especial a Kenia Ortiz por estar a mi lado desde hace algunos años, por siempre

motivarme, inspirarme y siempre estar ah́ı a pesar de la distancia. Gracias por

todo tu cariño y paciencia.

With love to Kenia, for being my lighthouse in the nights.

viii RESUMEN

Contents

Abstract i

Resumen iii

Preface xiii

1 Introduction 1

1.1 Information security . 1

1.1.1 Modern cryptography . 1

1.1.2 Identity-based cryptography 7

1.1.3 Pairing-based cryptography 9

1.2 Problem description . 10

1.3 Bilinear pairings computation . 11

1.3.1 Software implementations 12

1.3.2 Non-flexible hardware implementations 13

1.3.3 Flexible hardware implementations 15

1.4 Hypothesis . 16

1.5 Thesis objectives . 17

1.5.1 General objective . 17

1.5.2 Specific objectives . 17

1.6 Thesis outline . 17

2 Pairing-based cryptography 19

2.1 Binary finite fields and elliptic curves 19

2.1.1 Binary finite fields and arithmetic over F2m 19

2.1.2 Elliptic curves . 26

2.2 Bilinear pairings . 29

ix

x CONTENTS

2.2.1 Tate pairing . 29

2.2.2 Eta pairing . 31

2.3 Cryptographic schemes . 33

2.3.1 Encryption . 33

2.3.2 Signature . 34

2.3.3 Key agreement . 35

3 Pairing cryptoprocessor design 39

3.1 Design specifications . 40

3.2 Instruction Set Architecture . 41

3.2.1 Instruction set . 42

3.2.2 Instruction format . 44

3.3 F2m arithmetic modules . 46

3.3.1 Addition . 46

3.3.2 Modular reduction . 46

3.3.3 Novel KAO-LFSR multiplier 49

3.3.4 Serial multiplier . 54

3.3.5 Squaring . 57

3.3.6 Square root . 58

3.4 Cryptoprocessor datapath . 59

3.5 Program control . 62

3.6 Programmability . 63

4 Implementation results 71

4.1 Validation strategy . 71

4.1.1 Metrics of performance . 72

4.2 Implementation of F2m arithmetic modules 73

4.2.1 Implementation results of the KOA-LFSR multiplier . . . 73

4.2.2 Serial multiplier implementation results 76

4.3 Cryptoprocessor implementation results 77

4.4 Comparisons . 79

5 Conclusions 85

5.1 Objectives review . 85

5.2 Summary of contributions . 87

5.3 Future work . 88

Preface

Information is perhaps the most important asset in current times. Several tech-

nologies have been developed in order to bring protection to such important asset,

being cryptography the most powerful tool of information security technologies.

Four fundamental aspects are undertaken by cryptography: confidentiality, data

integrity, authentication and non-repudiation. Public key cryptosystems used

nowadays are based on keys contained in certificates, which require a complex

infrastructure for real life applications.

Identity-based cryptography is a new trend of asymmetric key cryptosystems.

Different to other asymmetric schemes, Identity-based cryptography states that

the public key of any entity should be derived from the identity of that entity;

with this paradigm, the infrastructure required by other kinds of cryptography like

the Public Key Cryptography is simplified. Although the paradigm of Identity-

based cryptography was early proposed in 1985 by Shamir [1], it was until 2001

when Boneh and Franklin proposed the first practical scheme for encryption based

on identity [2]. The encryption scheme proposed by Boneh and Franklin makes

use of bilinear pairings over elliptic curves to work. Since that work, a growing

amount of research focused on cryptographic schemes based on bilinear pairings

has been carried out, leading to the new kind of cryptography named Pairing-

based cryptography.

Nevertheless, algorithms and parameters for computing bilinear pairings are

still under development. Improvements are constantly reported, sometimes based

on different parameters as the kind of elliptic curve, the tower field definition or

distortion maps. Custom architectures are not able to support such changes, so

a flexible solution able to manage several parameters like the elliptic curve, the

tower field, the distortion map, or the version of the pairing algorithm is preferred,

being flexible architectures more suitable for different applications.

xi

xii PREFACE

This thesis proposes a programmable cryptoprocessor able to compute bilinear

pairings in elliptic curves over binary fields F2m . Different to other architectures

previously reported in the literature, the proposed cryptoprocessor is the only

one being programmable and flexible. Furthermore, it is the only one designed

for bilinear pairings on elliptic curves defined over F2m . The proposed cryptopro-

cessor is able to execute different versions of the pairing algorithm. Also, it is able

to support different parameters in the pairing computation as the elliptic curve,

tower field and distortion map. The proposed cryptoprocessor is able to support

different parameters such as the elliptic curve, tower field and distortion map as

well as different versions of the pairing algorithm. The proposed cryptoprocessor

outperforms software implementations, including GPU implementations, requires

fewer area resources than custom architectures, and achieves competitive perfor-

mance.

Chapter 1

Introduction

1.1 Information security

Information is one of the most important assets for current society, from com-

mon people to global organizations. For common people, their personal data

represents their privacy; for global companies, information represents their com-

petitive advantage over other companies; for governments, information represents

the security for their citizen. Information in the incorrect hands can be used in

many malicious ways. Most of the information in our days is in digital format,

which makes information protection a real challenge. Digital information can be

stored in very small devices without being noticed by anybody. Many times, it is

not required a physical contact in order to access such a high value asset.

The current information security solutions are a variety of standardized se-

curity protocols. Nevertheless, with current information technologies like cloud

computing, pervasive computing, mobile computing, embedded and distributed

systems, etc., new types of attacks and vulnerabilities emerge, being necessary to

make adjustments and/or to propose new protocols in order to keep information

secure.

1.1.1 Modern cryptography

Cryptography is defined as the art and science of keeping messages secure. The

history of cryptography is very ancient, but in modern days it has been formalized

as a branch of applied mathematics that makes use of algorithms in order to

provide information security services.

1

2 CHAPTER 1. INTRODUCTION

Information security systems are designed to cover four fundamental aspects:

confidentiality, data integrity, authentication and non-repudiation. These four

aspects are called information security services [3]. Confidentiality is the prop-

erty that gives the warranty that the information is only accessible by authorized

entities. Even if an unauthorized entity is able to access a confidential file, that

entity should not be able to understand its content. Integrity refers to the war-

ranty that the information has not been modified by some unauthorized entity.

Even if the information comes from a reliable source, an intruder may be able

to modify the information. Authentication consists in the ability of verifying the

origin of the information. This service validates the identity of the source, and

also prevents phishing. Non-repudiation refers to the warranty that the source of

some information cannot falsely deny the origin of that information.

Confidentiality then is achieved through an encryption algorithm whose ob-

jective is to make the original file “unreadable”, so the information can be stored

or transmitted without risk of being disclosed. The encryption algorithm encodes

and mixes the bits of information by substitutions and transpositions, with the

goal of obtaining statistic diffusion and confusion, so the information becomes

“unreadable”. Only the authorized entities are able to revert the process by a

decryption algorithm and so retrieve the information [4].

In the past, cryptographic algorithms were kept secret but this practice was

not reliable because, once the algorithm was disclosed the system was compro-

mised. Nowadays, cryptographic algorithms are public and the security relays

on a parameter called key. A key is an input parameter in the encryption and

decryption algorithms which determines the output. A security system should

have a very large amount of keys, and only the authorized entities should know

the correct key to encrypt and decrypt the information. According with Schneier,

a cryptosystem is the set of algorithms, all possible keys, all possible information,

and respective encrypted information [4].

Transmitter

Information Encryption
Algorithm

Encryption Key
Encrypted
information

Decryption Key

Decrypted
informationDecryption

Algorithm Receiver
Insecure
channel

Figure 1.1: Encryption and decryption scheme.

In figure 1.1, a cryptosystem for encryption and decryption is shown viewed

1.1. INFORMATION SECURITY 3

as a communication system. In this illustration, a transmitter sends some in-

formation through an insecure channel, so the information is encrypted by an

encryption algorithm using an encryption key. The encrypted information can

only be disclosed using the decryption algorithm and the right decryption key. In

this sense, if a wrong decryption key is used, the output of the decryption algo-

rithm will be “unreadable”. Notice that the same key can be used for encryption

and decryption preserving the security of the scheme [4].

Transmitter

Information

Signed
information

Transmitter's
Validation Key

Validated
informationSignature

Validation
Algorithm ReceiverInsecure

channel

Digital
Signature
Algorithm

Transmitter's
Signature Key

Figure 1.2: Digital signature scheme.

Data integrity, authentication and non-repudiation are achieved by the use

of digital signatures. This cryptographic scheme is depicted in figure 1.2 as a

communication system. In this scenario, the transmitter signs the information

using a signature key and a signature algorithm. The receiver then validates the

signature using a validation key and a validation algorithm. If the signature is

correctly verified, the receiver can be sure that the originator of the information is

the transmitter (authentication) and so the transmitter cannot deny the informa-

tion’s origin (non-repudiation). Usually, the digital signature is generated using

the information itself, if this information is modified the validation algorithm will

not succeed, ensuring the truthfulness of the information (data integrity) [3].

The signature key is only known by the transmitter and must be kept secret,

such that nobody else is able to sign using the transmitter’s key. The validation

key must be related to the signature key, such that validation key is easily com-

puted from the signature key but computing the signature key from the validation

key is not practical [4]. Notice that for digital signatures, the signature key and

the validation key cannot be the same.

The cryptosystems for encryption/decryption and digital signature can be

merge as shown in figure 1.3. The cryptosystem depicted in figure 1.3 is able

to provide the four services of information security described above. Encryp-

tion/decryption modules are in charge of the confidentiality, the digital signature

modules provide data integrity, authentication and non-repudiation.

4 CHAPTER 1. INTRODUCTION

Transmitter

Information
Signed

information

Transmitter's
Validation Key Decrypted

and
validated

informationSignature
Validation
Algorithm ReceiverInsecure

channel

Digital
Signature
Algorithm

Transmitter's
Signature Key

Encryption
Algorithm

Encryption Key Encrypted
and signed
information

Decryption Key
Decrypted
and signed
informationDecryption

Algorithm

Figure 1.3: Cryptosystem that bring confidentiality, authentication, data integrity
and non-repudiation services.

Several cryptographic protocols, schemes, algorithms and functions have been

proposed as solution to provide security to information. In figure 1.4, a general

view of modern cryptography is shown. At the top of this general view are the

information security protocols like TLS/SSL and IPSec. A security protocol is a

series of steps, that involve two or more parties, and is designed to accomplish a

security task. Protocol steps have to be executed in restricted order. The pro-

tocol is directly related to the intended application, different applications have

different needs, so several protocols have been proposed to cover different kind

of applications. A protocol cannot be ambiguous and must specify every action

for every possible situation. In the protocol, all the parameters regarding the

security of the system are defined, like the size of the key, how keys are gener-

ated, transmitted and stored, among others. All protocols are based on different

cryptographic schemes or cryptosystems, which can be of two kinds, symmetric

or asymmetric [4].

Viewing the cryptosystem as a communication system as in previous examples,

symmetric key cryptosystems use the same key in both transmitter and receiver

sides. The encryption and decryption scheme shown in figure 1.1 can be imple-

mented under this scenario, using the same key for encryption and decryption

and keeping that key in secret. The digital signature cannot be accomplished by

symmetric key cryptosystems [4].

There are two kinds of symmetric cryptosystems: block ciphers and stream

ciphers. Block ciphers take as input a fixed size of information (a block) and

encrypt that block using the secret key. Stream ciphers work in a continuous way,

encrypting one digit of information at a time, usually a digit may be a single bit

but not necessary. The aim of a cipher is to produce a “unreadable” output given

the input information. Ciphers use substitutions and transpositions of bits or

chunks of bits to produce statistic diffusion and confusion along information bits,

with more diffusion and confusion more “unreadable” becomes the information.

1.1. INFORMATION SECURITY 5

Block ciphers produce more statistic diffusion and confusion along information

bits than stream ciphers, but stream ciphers are considerably faster [4].

Information Security
Protocols

(TLS/SSL,IPSec)

Cryptographic Schemes

Symmetric key Asymmetric key

RSA ECC Pairing

Block
Ciphers

Stream
Ciphers

Substitution and transposition
of elements

Computationally hard problems

Finite Field
Arithmetic

Others

F2m

PKI PBC Others

FpF3m

Figure 1.4: General view of modern cryptography.

On the other hand, asymmetric key cryptosystems use two different keys one

at the transmitter’s side and other at the receiver’s side. In these cryptosystems

each entity has two related keys: a private key and a public key. The private key is

kept in secret while the public key is available to everyone. When encrypting any

information, the transmitter uses the receiver’s public key. When decrypting, the

receiver uses its own private key. In contrast, for digital signatures the transmitter

uses its private key for signing and receiver uses the transmitter’s public key

for signature validation. This type of cryptography is also called Public Key

Cryptography (PKC) [4] being RSA and Elliptic Curve Cryptography (ECC) the

most common PKC cryptosystems.

In asymmetric key cryptosystems, public and private keys are interrelated such

that, the public key is easily derived from the private key but it is no feasible to

derive the private key form the public one. Computationally hard problems are

used in order to achieve this feature [4]. The next mathematical problems are

typically used: big numbers factorization [5], discrete logarithm problem [6], and

6 CHAPTER 1. INTRODUCTION

the discrete logarithm problem over elliptic curves [7, 8]. In this sense, RSA is

based on the big numbers factorization, while ECC sustains its security on the

discrete logarithm problem over elliptic curves.

Although the cryptosystems that work under the PKC scheme could bring

the four information security services, there are some drawbacks with this scheme

affecting directly the security. The first drawback is that keys have to be gener-

ated and distributed in a secure way, because there is the risk that an adversary

generates and publishes a public key with the intention of supplanting the iden-

tity of an authorized entity. In this scenario, any entity has to be sure of the

origin of any public key before validating or encrypting any information. Keys

usually have a limited lifetime, even those keys whose lifetime have ended, must

be treated properly in order to avoid confusion and missuses.

Additionally, once a pair of private and public keys is defined, those keys have

to be used for a long period of time since it is impractical to change keys frequently.

In fact, according with the recommendations of the National Institute of Standards

and Technology (NIST), the lifetime of a key may extend to 3 years [3]. With that

extended lifetime, an adversary has enough time to perform several attacks against

the cryptosystem. In this sense, the size of the keys has to be quite large in order

to make brute force attacks infeasible, especially for the public key. The NIST

recommendation for key’s size for 2010 to 2030 is published in [9], for a private

key is at least 112 bits length, and for a public key is 2048 bits length when using

RSA or 224 bits length when using ECC. Beyond 2030 the recommendation is at

least 128 bits for a private key, 3072 bits for an RSA public key, and 256 for an

ECC public key.

Information Encryption
Algorithm

Receiver's Public
Key Ceritificate

Encrypted
information

Receiver's Private Key

Decrypted
informationDecryption

Algorithm
Transmitter Receiver

Public Key Infraestructure

Certification
Authority

Registration
Authority

Certificate
Repository

Policies and
procedures

Figure 1.5: Infrastructure of public key cryptography.

Due to the drawbacks mentioned above, PKC requires a complex infrastruc-

ture in order to work properly [10]. In figure 1.5, it is illustrated the infrastructure

1.1. INFORMATION SECURITY 7

for public key cryptography. Public and private keys are randomly generated and

distributed as digital certificates [11]. A digital certificate is an electronic docu-

ment that binds the identity of an entity with its respective key, as well as the key’s

lifetime. Digital certificates are generated by a trust authority called certification

authority. A registration authority guarantees that the certificate is legitimately

received by the corresponding entity, and also it validates the truthfulness of an

existing certificate. All certificates are archived in a repository database to con-

firm the status of a specific certificate. Policies and procedures have to be defined

to ensure the correct functionality of this infrastructure. Authorities are approved

usually by governments and official authorities.

Due to the growing of communications systems in recent years, the manage-

ment or distribution and validation of certificates has increased its complexity.

Recent schemes have been proposed in order to mitigate the complications found

in the certificate management infrastructure like Identity-based cryptography [12].

1.1.2 Identity-based cryptography

The Identity-based cryptography (IBE) was proposed by Shamir in 1985 [1]. The

paradigm described by the IBE states that the public key used for encrypting any

information, should be some information related to the identity of the receiver

for example the e-mail or the phone number. In figure 1.6, it is depicted the IBE

paradigm. In this scenario, the transmitter uses the receiver’s e-mail as public

key. The private key used for decrypting the information is then generated by a

trusted third party from the receiver’s e-mail. It is important to remark a third

party is required for generating the private keys in order to keep the security of

the system.

Information Encryption
Algorithm

receiver@e-mail.com

Encrypted
information

Receiver's Private Key

Decrypted
information

Trusted Third Party
(key generator)

Decryption
Algorithm

Transmitter Receiver

Figure 1.6: The Identity Based Cryptography paradigm.

There are many advantages of using identity information as public key [1]. The

8 CHAPTER 1. INTRODUCTION

identity information does not need to be validated, the receiver’s e-mail necessarily

belongs to the receivers. The identity information does not need to be distributed

by any special agent, the receiver distributes it in a natural way for example in

the receiver’s web page or business cards. In addition, the identity information

can be enhanced with some extra information, for example, some expiration date

for the information or some transmission policy. In this way, the key generator

also acts as a policy enforcer.

Despite IBE was proposed in the 80’s, the mathematical foundation that would

ensure the safety of the system was unknown until 2001; when Boneh and Franklin

introduce the first practical encryption scheme for IBE [2]. The Boneh and

Franklin scheme, denoted as BF-IBE, base its security on the problem known

as bilinear Diffie-Hellman problem, which is a reduction of the discrete logarithm

problem over elliptic curves. The BF-IBE employs the concept of bilinear pairings

over elliptic curves in order to work.

In figure 1.7, it is depicted the IB-IBE. In this scheme, r is Alice’s private key,

s is the Server’s private Key, and P is a public parameter. Notice that Bob’s

public key QBob is derived from Bob’s e-mail. For encrypting a message, Alice

uses the public keys of the Server and Bob and its own private key to generate a

shared key. The shared key is computed using bilinear pairings. The message is

then encrypted with the shared key. Alice sends the encrypted message to Bob as

well as her public key rP . For decrypting the message, Bob requires his private

key sQBob which is computed by the Server. Bob is able to compute the shared

key using bilinear pairings again and decrypt the message.

Several cryptographic schemes have been proposed under the paradigm of

Identity-based cryptography: there are encryption schemes, signature schemes,

key agreement schemes, and others. In [13], it is reported a hierarchical scheme

for ID-Based encryption. In [14], it is presented a scheme called encryption with

keyword search that allows to find a keyword inside an encrypted message. Pater-

son proposed the first IBE signature scheme in [15]. More recent works for IBE

signature schemes are reported in [16, 17]. In works [18–20] there are presented

different schemes for key agreement for IBE.

1.1. INFORMATION SECURITY 9

+

+ +

Figure 1.7: The Boneh and Franklin Identity-based encryption scheme.

1.1.3 Pairing-based cryptography

Besides Identity-based cryptography, bilinear pairings have been used for more

cryptographic applications. The set of cryptography schemes that makes use

of bilinear pairings to work is called Pairing-based cryptography (PBC). In this

sense, Identity-based cryptography is a special case of PBC. A bilinear pairing is

a function e :G1×G1 → GT that maps two elements of an elliptic curve (G1) to

an element of a finite field (GT). Chapter 2 covers a detailed explanation about

bilinear pairings.

Boneh, et al. first proposed a PBC-based signature scheme in [21]. That

signature scheme makes use of bilinear pairings to provide the data integrity,

authentication and non-repudiation. That signature scheme is named short sig-

natures and has the advantage of providing a signature of length 160 bits, which

has the same security level as a 320-bits signature in DSA (Digital Signature Al-

gorithm [22]) or 1024-bits length in RSA. The short signature scheme serves as

the basis for other signatures schemes; for example, authors in [23] proposed a

scheme for blind and ring signature. Boldyreva introduced the threshold signa-

tures, multi-signature and blind signature schemes in [24]. Sakai and Kasahara

proposed a signature scheme that reduces the number of pairing computations

in [25]. A scheme where a user is able to add his/her signature without affecting

other signatures called aggregate signature is reported in [26].

10 CHAPTER 1. INTRODUCTION

The first key agreement scheme based in bilinear pairing was proposed by Joux

in [27]. That scheme called three-party one-round key agreement is based on the

Diffie-Hellman problem [6], and it allows three different parties to agree a common

shared key using individual secrets while minimizing the amount of sent messages

among parties. That work was latter extended to multiple parties by Barua et al.

in [28].

1.2 Problem description

As it has been shown in previous sections, a present problem with PKI is the com-

plexity of their infrastructure. That infrastructure requires the distribution and

management of certificates for all users that need secure communications. With

the growing number of users and applications, keeping the PKI’s infrastructure

has become quite expensive. IBE then offers a solution to simplify the complexity

of the PKI’s infrastructure.

Nevertheless IBE functionality requires the computation of bilinear pairings

over elliptic curves. Computing bilinear pairings requires about 75% of the pro-

cessing time involving finite field arithmetic operations. Finite field arithmetic

follows different rules that conventional arithmetic. Despite general purpose mul-

tiprocessors are very powerful, they do not bring support for finite field arithmetic.

Therefore finite field arithmetic has been emulated with conventional arithmetic,

becoming software implementations not appropriate for high speed applications

like real-time communications; for example, a single multiplication over F21223 re-

quires more than 240 AND operations and more than 480 XOR operations using

a 64-bits general purpose multiprocessor, moreover for computing a bilinear pair-

ing in than field are required more than 4,300 multiplications over F21223 . In [29],

authors report the fastest software implementation of the bilinear pairing named

eta over binary fields.

The processing time of software implementations is overcame by specialized

implementations in hardware. For example, the works [30–32] reported dedicated

architectures for computing the eta pairing over binary fields. Other work that

focuses on dedicated hardware implementations is [33], which proposes an archi-

tecture for the ate and optimal pairings over prime fields and ordinary curves.

Some implementations are dedicated for ternary fields, like the ones reported

1.3. BILINEAR PAIRINGS COMPUTATION 11

in [32] and [34].

Moreover, the pairing algorithms are not yet standardized. There are a grow-

ing number of algorithms and improvements. In [35], Silverman explains the Weil

and Tate pairings which are the first type of bilinear pairings proposed for crypto-

graphic applications. Barreto, et al. introduced some improvements for the Tate

pairing in [36] which allow a substantial reduction on the number of operations

performed. Later, Barreto, et al. proposed the eta pairing in [37], which is a

special case of the Tate pairing for supersingular curves. The authors of [38],

proposed different versions of the eta pairing algorithm. On the other hand, the

ate pairing presented in [39] by Hess, et al. generalizes the eta pairing for ordinary

curves. More recently, in [40] the author introduces the concept of optimal pair-

ings that improves the bilinear pairing computation over ordinary curves. In [41],

an algorithm for the Optimal eta pairing in supersingular hyper-elliptic curves is

reported. Besides the big variety of algorithms, the pairing algorithms have sev-

eral parameters that can be configured independently of the security level. Those

parameters are the elliptic curve, the tower field and the distortion map.

None of the works [30–34] are able to support different version of the pairing

algorithm neither to support different parameters. Despite those implementations

achieve fast and compact architectures, the flexibility on their functions is limited

to just one option among a increasing number of choices. Some other works have

tried to solve this problem by providing programmable implementations. The

work in [42] reports a programmable architecture for prime fields, meanwhile the

architecture reported in [38] is programmable for ternary fields. However, there

has not been reported any programmable solution for binary fields. Arithmetic

over binary fields is carry-free, therefore, it usually reports smaller and faster

implementations compared to prime fields.

1.3 Bilinear pairings computation

So far an introduction to the context of Identity-based cryptography has been

presented. In the previous section some works attempting to solve the tackled

problem in this thesis have been mentioned. In this section more details of each

work is provided. State of the art works have been divided in three categories:

software, no-flexible hardware, and flexible hardware implementations.

12 CHAPTER 1. INTRODUCTION

1.3.1 Software implementations

Regarding software implementations, the work reported in [29] reaches the fastest

implementation of pairing algorithms. Authors of that work modify the original

algorithms in order to have a better utilization of multithreaded architectures of

the new general purpose microprocessors. The Optimal ate pairing over prime

fields is the main algorithm studied in that work. The best result was achieved

with a 64 bit Intel Core i7 microprocessor with a clock frequency of 2.0 GHz. When

8 threads are used for the pairing algorithm computation, a total of 1,034,000 clock

cycles are required, resulting in a latency of 0.517 ms. Notice that when only one

thread is used, the latency is about 3.23 ms.

Authors of [43] proposed an alternative software implementation. In that work,

authors make use of a Graphic Processor Unit (GPU) in order to accelerate the

pairing computation. That work implemented the eta pairing over supersingular

curves for ternary fields, reaching a security level of 128 bits. Programming on

GPUs generally follows the paradigm of Single Program Multiple Data, therefore

authors of that work focused in computing several pairings at the same time. The

best results reported a throughput of 332 pairing operations per second, which is

equivalent to 3.01 ms per operation.

A different approach for software implementations is specialized software li-

braries for pairing computations. Specialized software libraries exploit certain

features of general purpose microprocessors to accelerate pairing computations;

for example, special data structures may be defined to reduce the number of

memory accesses as well as the memory consumption, or optimized arithmetic

primitives may be implemented. The work reported in [44] is a library specialized

in Pairing-based cryptography, which is designed for small devices like wireless

sensor networks. The library proposed in that work was designed for ternary

fields and supersingular elliptic curves. Besides the ability for computing pairing

algorithms, that library also includes support for hash functions and elliptic curve

arithmetic. That design was focused on optimizing the memory consumption. For

a security level of 66 bits, the library is able to compute the eta pairing in 5.32

ms.

Software implementations like [29] use very powerful general purpose micropro-

cessors, but even with the latest technology they cannot achieve the performance

reached with optimized architectures. According to [43], using GPUs to accelerate

1.3. BILINEAR PAIRINGS COMPUTATION 13

the pairing computation does not improve the processing time. [44] presented a

library suitable for very constrained environments but it does not reach a high

level of security.

1.3.2 Non-flexible hardware implementations

Ghosh et al. presented an architecture able to compute the eta pairing in binary

fields for a security level of 128 bits in [30]. The architecture presented in that work

is based on a Karatsuba-Ofman multiplier which uses a serial-parallel approach. A

trade-off between the serialization and the parallelization in the Karatsuba-Ofman

multiplier was performed in order to find the best results. Operations scheduling

were optimized mainly during Miller’s algorithm [45] stage, and parallelism was

used during the final exponentiation step. The area reported in that work is

15,167 slices with a processing time of 0.190 ms, the target device was a Xilinx

Virtex 6 FPGA device.

The authors of [31] proposed an custom architecture for computing the eta

pairing for a security level of 128 bits, being this architecture the fastest one re-

ported in the literature. That architecture implements field multiplication through

an hybrid sequential/parallel approach based on the Toeplitz matrix vector prod-

ucts. The authors of that work use an approach based on the Karatsuba-Ofman

algorithm in order to reduce the cost of the extended field multiplication. For

the final exponentiation, authors optimize the computation by a thoughtful im-

plementation, proposing specific improvements in the computation of inversion

over F24m . The architecture reported in that work was implemented in a Virtex 6

FPGA device, resulting in an area of 16,403 slices and a processing time of 0.102

ms. That work is the fastest implementation reported of the eta pairing for a

128-bit security level.

Beuchat et al. have reported several works improving the implementation of

the eta pairing computation culminating with [32]. That work presented an ar-

chitecture for binary fields and another for ternary fields. The central module of

both architectures is a full-parallel Karatsuba-Ofman Multiplier. Both cases use

a pipelined approach for improving the processing time. A valuable contribution

was the introduction of a family of irreducible polynomials which facilitates the

computation of square roots. Both architectures were split in two, one architec-

ture for computing the Miller’s algorithm and another for computing the final

14 CHAPTER 1. INTRODUCTION

exponentiation, integrating both under a pipeline fashion which also improves the

processing time. Although that work only achieves a security level of 105 bits

in binary field with an area of 78,874 slices and a processing time of 18.8µs, the

A · T product of 1.41 slices × ms is so far the smallest in the literature, targeting

a Virtex 4 FPGA device.

In [33], Cheung et al. presented an implementation of the Optimal ate pairing

considering prime fields. In that work a combination of the Reside Number System

[46] and the lazy reduction technique [47] is used for reducing the complexity of

the arithmetic operations in prime fields. Additionally an optimization at both

architectural and algorithmic level was performed. The target security level was

126 bits. Authors used an FPGA as technology for implementing the architecture

achieving a resource consumption of 7,032 slices, 32 DSPs and 101KB of memory,

and a processing time of 0.573 ms. The target device was a Xilinx Virtex 6.

In [34], the author explores the viability of implementing bilinear pairings

over composite-extended fields. The main idea is to represent the field Fq=pm as

a composite field where m = n · l for some n and some l. The arithmetic over

Fpm is implemented using operands over Fpn which are smaller. In the same way,

the arithmetic in the extended field Fpkm is implemented using operands over Fpn .

The author analyzed the impact of using this kind of fields over the security level

in order to do not compromise the security of the system. As a result, that work

developed a very compact hardware architecture for ternary fields, at a security

level of 128 bits. In order to manage the arithmetic operations over Fpn , the author

proposed a codification scheme. This codification could lead to some flexibility,

but it was not explicitly intended in that way. For a 128 bits security level using

a ternary field, that work requires an area of 4,755 slices and a time of 2.23 ms

for a Xilinx Virtex 4.

Even [30–33] are very specialized architectures reaching very compact and fast

implementation results, their biggest drawback is that only a couple of parameters

are configurable. Due to bilinear pairings are no yet standardized, a rigid design

could not be the best answer for a changing environment. From [34] it can be in-

ferred some flexibility but the design is not really intended in that way. Moreover,

parameters like the elliptic curve, tower field, and distortion map only affect the

implementation not the security of the system, so a rigid implementation cannot

be adapted to different schemes when these parameters change.

1.3. BILINEAR PAIRINGS COMPUTATION 15

1.3.3 Flexible hardware implementations

The work reported in [42] presented a programmable architecture for the Tate, ate,

and R-ate pairing over prime fields. The architecture centers its programmability

in configurable arithmetic units. Each unit is able to generate its own control

sequence according to the desired functionality. Each unit is formed by three

independent arithmetic operators. Each arithmetic operator has two inputs of

256 bits, and is able to compute an addition/subtraction/multiplication in Fq.
The multiplication is implemented using the Blakley algorithm [48] combined

with the Montgomery Ladder technique [49]. The Karatsuba technique is used

for reducing the size of the operands. The configurable arithmetic units and

the registers are interconnected by a data access unit which is able to access all

registers in parallel. Neither the instruction format nor the instruction set are

reported in that work. The security level scoped for that work was 128 bits. That

architecture was synthesized on a Xilinx Virtex 4 resulting in an area of 52,000

slices and a processing time of 16.4 ms for the best case.

In [38] it is proposed a coprocessor for computing the eta pairing in ternary

fields. Their design consists in an unified operator for multiplication, addition

and cubing over the field F3m . Multiplication is computed in a digit-serial way,

where D coefficients of the multiplication are computed in parallel, after m/D

clock cycles the result is completed. Adding and Cubing are easily computed

by XOR gates. The three operations are merged into a single operator sharing

as much components as possible. A total of 64 working registers implemented

by a dual-port RAM are used by that coprocessor to store partial results. The

architecture is controlled by a 32 bits instruction. That work was implemented for

a security level of 66 bits in a Xilinx Virtex 4, achieving a resource consumption of

1,851 slices and a latency of 0.137 ms. A total of 900 instructions were necessary

for computing the pairing algorithm.

Later in [41], Aranha et al. reported a novel algorithm for computing the

Optimal eta pairing in supersingular hyper-elliptic curves over prime fields for a

security level of 128 bits. The coprocessor proposed in [38] was adapted to support

that new algorithm, a total of 4,518 slices and a latency of 5.52 ms were required for

that architecture when targeting a Xilinx Virtex 4. A software implementations

was performed in that work reaching a best time of 1.1 ms with a 64 bit Intel

Core i5 540 with a clock frequency of 2.53 GHz.

16 CHAPTER 1. INTRODUCTION

Finally, [50] reports an Application Specific Instruction-set Processor (ASIP).

An ASIP consists in a set of instructions and an optimized hardware design to sup-

port those instructions. The ASIP reported in [50] focused on the ordinary curves

named Barreto-Naehrig, the underlying finite field is the prime field, reaching a

security level of 128 bits. The two main parts of that work are the multiplication

module and the data access module. Regarding field multiplication, authors chose

a Montgomery multiplier implemented in a multi-cycle approach. The proposed

data access module consists in an interface with a dual port RAM memory of 32

bits, able to load and store the pairing operands, which are 256 bits each. That

work computes the Optimal ate pairing in 15.8 ms, and the eta pairing in 28.8

ms. The hardware designed in that work was implemented in an ASIC, requiring

a total of 97 kGates.

Works introduced in this section show more flexibility in their functionality,

but there are some drawbacks that can be outperformed. Despite [38], [42] and [50]

are flexible enough to support different algorithms, they only support prime and

ternary fields. Arithmetic over binary fields is carry-free, therefore, it usually re-

ports smaller and faster implementations compared to prime and ternary fields.

A flexible implementation for pairing computation over binary fields has not been

reported. Authors in [41] show how a flexible architecture can be used for imple-

menting new algorithms, nevertheless the processing time can be improved.

1.4 Hypothesis

If the arithmetic operators for computing the binary field arithmetic, the instruc-

tion set and the instruction format are optimized, a programmable solution for

computing bilinear pairings over binary fields can be achieved being at least 75%

faster than software implementations and as much the same size of custom archi-

tecture for computing bilinear pairings. The proposed solution, a programmable

cryptoprocessor, should be able to support different versions of the pairing algo-

rithm and different parameters such as the elliptic curve, the tower field and the

distortion map.

1.5. THESIS OBJECTIVES 17

1.5 Thesis objectives

1.5.1 General objective

The general objective of this research work is to design a flexible hardware archi-

tecture for Pairing-based cryptography with a minimum security level of 128 bits,

through an efficient design that parallelizes the finite field arithmetic involved.

1.5.2 Specific objectives

The specific objectives defined in order to accomplish the goals of this thesis are:

1. Determine the requirements for a hardware architecture able to compute

bilinear pairings with different algorithms and parameters.

2. Define a strategy for the hardware architecture that allows flexibility in the

computation of bilinear pairings.

3. Propose a flexible hardware architecture for computing bilinear pairings

with different algorithms and parameter, the proposed architecture must be

competitive against similar architectures with similar security levels.

4. Evaluate the proposed hardware architecture under applications of Pairing-

based cryptography.

1.6 Thesis outline

This thesis document is organized as follows: chapter 2 presents the theory related

to the binary field arithmetic as well as the mathematical background required to

understand the computations of bilinear pairings over elliptic curves. Also that

chapter introduces some cryptographic schemes for Pairing-based cryptography.

Chapter 3 describes the proposed flexible architecture for pairing computation,

standing out the requirements considered for the design. The strategy followed for

validating the functionality of the proposed architecture is described in chapter 4.

Also this chapter presents the synthesis results and a comparison against related

works. Finally, chapter 5 summarizes this work and the achieved contributions.

The conclusions and future work are finally presented at the end of this chapter.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Pairing-based cryptography

Identity-based cryptography proposed by Shamir in 1985 [1] makes use of bilinear

pairings over elliptic curves as mathematical framework. Further, the new kind

of cryptography named Pairing-based cryptography requires the computation of

bilinear pairings. For cryptographic applications, elliptic curves are defined over

finite fields. In this chapter the theoretical background for computing bilinear

pairings over elliptic curves is discussed. First an introduction to finite fields and

elliptic curves is presented. Then, a detailed definition of bilinear pairings, two

types of them and the computation strategy are described. Finally, some basic

schemes for Pairing-based cryptography are presented.

2.1 Binary finite fields and elliptic curves

2.1.1 Binary finite fields and arithmetic over F2m

A finite field, represented as Fq where q = pm, is an algebraic structure defined

as a finite set of elements, two basic operations for those elements, and a set of

properties to be satisfied. p is called the characteristic of the finite field and m

is called the field’s extension [51]. For cryptographic applications p is typically 2,

3 or a prime number [52]. The number of elements on the finite field is given by

pm. In polynomial basis, the set of elements in Fq is all the polynomials of degree

at most m− 1, where each polynomial is an element in Fq and each coefficient of

the polynomial can only take its value from the set {0, ..., p− 1}. Additionally, Fq
is defined by a m-grade irreducible polynomial f(x). This irreducible polynomial

19

20 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

is used to satisfy the closure property by an operation called, modular reduction.

Finite field arithmetic refers to operations that can be performed with elements

in Fq. When p = 2, the finite field is called binary field. Usually a binary field

element is implemented by a m-length bit vector.

Lets F2m be the binary field generated by the irreducible polynomial f(x).

Consider A,B ∈ F2m each represented by a polynomial and implemented as a

bit vector of length m. An addition A ⊕ B, is defined as a polynomial addition

simply performed by a bitwise XOR gate among each coefficient with no carry

propagation among coefficients. Due to the operation is bitwise, the resulting bit

vector is at most leng m, which represents a polynomial with degree less than m.

That polynomial belongs to F2m .

A multiplication A⊗B can be seen as a two steps operation, see equation 2.1.

First, a polynomial multiplication C ′ = A ·B, where C ′ is a polynomial of degree

2m − 2, which do not belongs to F2m . Therefore a modular reduction C = C ′

mod f(x) is performed in a second step in order to compute the congruent element

with A⊗B which belongs to F2m [52].

C=A ·B mod f(x)=
m−1∑
i=0

aix
i ·

m−1∑
j=0

bjx
j mod f(x)

=
m−1∑
i=0

m−1∑
j=0

aibjx
i+j mod f(x) (2.1)

Multiplication is a very expensive operation, so much work has been done

to reduce its computational cost. There are several algorithms to compute the

field multiplication, among them and widely known is the classical algorithm also

named Schoolbook method consisting of a shift-and-add scheme [52]. Most of the

proposed field multiplication algorithms are based on this method whose com-

plexity is O(n2). In 1962, a multiplication algorithm was published by Karatsuba

and Ofman [53] with O(nlog23) complexity. The KOA algorithm computes the

first step of a field multiplication by using the divide and conquer technique. The

polynomial multiplication is computed recursively using three field multiplications

with low order operands. For simplicity, lets consider that m = 2t for t ≥ 0, so

that m/2 is always a power of 2.

2.1. BINARY FINITE FIELDS AND ELLIPTIC CURVES 21

KOA splits the multiplier and multiplicand as shown in equation 2.2.

A = (αm−1, αm−2, · · · , αm/2︸ ︷︷ ︸
AH

, αm/2 −1, · · · , α0︸ ︷︷ ︸
AL

) (2.2)

Thus, equation 2.3 holds:

A = AHxm/2 + AL (2.3)

where AH , AL are m/2-order polynomials.

The operand B is processed in the same way as A, and C ′ = A ·B is calculated

as:

C ′ = (AHxm/2 + AL) · (BHxm/2 +BL) = z2x
m + z1x

m/2 + z0 (2.4)

where, z2 = AH ·BH , z1 = AH ·BL + AL ·BH and z0 = AL ·BL.

At this point, A · B requires four multiplications with operands that are half

the size the initial ones. KOA can be used recursively to compute these new

multiplications and reducing the number of multiplications to three at the cost

of some more additions by redefining z1, as it is shown in equation 2.5. In F2m ,

additions and subtractions are the same operation, thus redefining z1 has no

substantial cost. The recursive Karatsuba-Ofman method for multiplying two

polynomials A,B ∈ F2m is shown in algorithm 1.

z1 = (AH + AL) · (BH +BL)− z2 − z0 (2.5)

The KOA algorithm receives as input the multiplier and multiplicand as well

as their bit-length (n). In the first call n = m. At each recursive call, operands

are divided resulting in n/2-bit vectors. The recursive KOA finishes when n = 1,

returning as a result the bitwise AND of A and B. Steps 7-8 in algorithm 1

perform a recursive call to KOA and the resulting polynomials z0, z1 and z2 are

(n − 1)-bit vectors. In step 9, the final multiplication C ′(x) = A(x) · B(x) is

calculated, resulting in a (2n− 1)-order polynomial. When all recursive calls are

finished, the final result is a (2m−1)-order polynomial. A graphical representation

of C ′(x) operation is depicted in Fig. 2.

Up to this point, it is assumed that m = 2k, but in many applications, such

as cryptography, m is not a power of 2. One strategy is padding with 0s the bit

vector representation of the input operands until reaching a power of 2 length,

but with this strategy many hardware is unused. Thus, a modification to KOA

22 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

called Binary Karatsuba Multiplier (BKM) was proposed in [52].

Algorithm 1 KOA[n,A,B]: Recursive Karatsuba-Ofman algorithm.

Require: n = 2t, t ≥ 0, n ≤ m,A,B being n-bit vectors
Ensure: C ′ = A ·B
1: if n = 1 then
2: return A�B
3: end if
4: A← AHxn/2 + AL

5: B ← BHxn/2 +BL

6: z2 ←KOA[n/2 , AH , BH]
7: z0 ←KOA[n/2 , AL, BL]
8: z1 ←KOA[n/2 , (AL + AH), (BL +BH)] + z2 + z0
9: C ′ ← z2x

n + z1x
n/2 + z0

10: return C ′

Figure 2.1: C ′ computation at step 9 of algortihtm 1.

Modular reduction. Algorithm 1 computes C ′ = z2x
m + z1x

m/2 + z0, where C ′

is a (2m − 1)-bit vector that does not belong to F2m and needs to be reduced

mod f(x). For general irreducible polynomials f(x), specialized reduction meth-

ods must be applied, such as the Barret reduction method [54] or the Montgomery

method [55].

For special f(x) classes, such as trinomials and pentanomials, the reduction

step of KOA algorithm can be performed using a matrix of XOR gates [52]. The

reduction technique is based on the fact that if f(x) = xm+g(x) , where g(x) is a

low order (< m) polynomial, the equivalence xm ≡ g(x) mod f(x) is sustained.

Therefore, a trinomial f(x) with form f(x) = xm + xa + 1 allows to express the

2.1. BINARY FINITE FIELDS AND ELLIPTIC CURVES 23

polynomial C ′ in the following way:

C ′ =
2m−2∑
i=0

cix
i =

m−1∑
i=0

cix
i +

2m−2∑
i=m

ci(x
a+i−m + xi−m)

=
m−1∑
i=0

cix
i

︸ ︷︷ ︸
(1)

+
m−1−a∑
i=0

ci+mx
a+i

︸ ︷︷ ︸
(2)

+
a−1∑
i=0

c2m−a+ix
a+i

︸ ︷︷ ︸
(3)

+
a−1∑
i=0

c2m−a+ix
i

︸ ︷︷ ︸
(4)

(2.6)

+
m−1∑
i=0

cm+ix
i

︸ ︷︷ ︸
(5)

The last expression in equation 2.6 states that C can be formulated as a m-bit

vector that results from adding five terms obtained from C ′, achieving the desired

reduction mod f(x). Graphically, this reduction is shown in Fig. 2.2.

Figure 2.2: Computation of C = C ′ mod f(x), where f(x) is a trinomial.

Squaring, •2 is a special case of multiplication when A = B that also requires

modular reduction [52].

C=A2=A⊗ A mod f(x)=
m−1∑
i=0

aix
i ⊗

m−1∑
i=0

aix
i mod f(x)

=
m−1∑
i=0

aix
2i mod f(x) (2.7)

Square root,
√• is the inverse operation of squaring. Given an element A, it

consists in computing the unique element C, such that A=C2 mod f(x) holds.

Squaring can be seen as a matrix multiplication A2 = MA, so square root is

also a matrix multiplication
√
A = M−1A. In both cases, M depends exclusively

24 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

on f(x). Being f(x) a trinomial or a pentanomial, squaring and square root

can be computed by reordering the input operands and performing a couple of

additions [52].

An interesting identity for any two elements A,B ∈ F2m is depicted in equation

2.8, which states that squaring is distributive over addition. This identity will be

useful for the proposed architecture design for pairing computation. It can be

demonstrated that this identity also holds for squaring root. More properties

about finite fields and other algebraic structures can be found in [51].

A2 +B2=
m−1∑
i=0

aix
2i mod f(x) +

m−1∑
i=0

bix
2i mod f(x) (2.8)

=
m−1∑
i=0

(ai + bi)x
2i mod f(x) = (A+B)2

Multiplicative inverse (•)−1 of an element A is defined as the unique element

A−1, such that 1=A ⊗ A−1 mod f(x) holds. There exist several algorithms to

compute A−1 given A. Some of them are based on the Euclidean algorithm for

computing the GCD, others use the Fermat’s Little Theorem. Multiplicative

inverse is considered the most expensive operation in F2m [52].

Extended finite fields

A field K2 containing a field K1 is called extension field of K1, for example F2m is

an extension field of F2. An irreducible polynomial g(x) of degree k is necessary

to define Fqk over Fq [56]. A sequence of field extensions is called tower field [56].

Here is an example of a tower field from Fq to Fq4 : first it is defined an extension

from Fq to Fq2 using the polynomial g(u) = (u2 +u+ 1), this extension is denoted

by the equation Fq2 = Fq[u]/(u2+u+1); next it is defined an extension from Fq2 to

Fq4 using the polynomial g(v) = (v2 +v+u), denoted by Fq4 = Fq2 [v]/(v2 +v+u).

A polynomial basis to represent elements in Fqk with elements of Fq can be con-

structed from a tower field [56]. Using the previous example, the basis {1, u, v, uv}
over Fq is constructed for representing elements in Fq4 . Using this basis, an ele-

ment G ∈ Fq4 is defined as a polynomial G = g0 + g1u + g2v + g3uv where each

coefficient gi ∈ Fq.
The basis constructed from the tower field allows to perform the arithmetic

2.1. BINARY FINITE FIELDS AND ELLIPTIC CURVES 25

over Fqk as operations over Fq. Addition is straightforward as a polynomial addi-

tion requiring only four additions over Fq.

A multiplication also follows the polynomial multiplication rules. Using the

Karatsuba-Ofman approach, it requires nine additions and several additions over

Fq. The exact amount of additions depends on the tower field. For the tower

field defined above see algorithm 2 [57]. Notice that during the multiplication, it

may occur cases like g1u · g1u = g21u
2. Due to the irreducible polynomials defining

the tower field, it can be deduced that u2 = u + 1 and v2 = u + v. Therefore,

g1u · g1u = g21u
2 = g21 + g21u when using the tower field defined above.

Algorithm 2 Multiplication over Fqk
Require: G = g0 + g1u+ g2v+ g3uv ∈ Fqk and H = h0 + h1u+ h2v+ h3uv ∈ Fqk
Ensure: W = G ·H
1: a0 ← g0 + g1; a1 ← h0 + h1; a2 ← g0 + g2;
2: a3 ← h0 + h2; a4 ← g1 + g3; a5 ← h1 + h3;
3: a5 ← g2 + g3; a7 ← h2 + h3; a8 ← a0 + a6; a9 ← a1 + a7;
4: m0 ← g0 · h0; m1 ← g1 · h1; m2 ← g2 · h2; m3 ← g3 · h3;
5: m4 ← a0 · a1; m5 ← a2 · a3; m6 ← a4 · a5; m7 ← a6 · a7; m8 ← a8 · a9;
6: a10 ← m0 +m1; a11 ← m0 +m4;
7: w0 ← a10 +m2 +m7; w1 ← a11 +m3 +m7;
8: w2 ← a10 +m5 +m6; w3 ← a11 +m5 +m8;
9: return W = w0 + w1u+ w2v + w3uv;

However, there are cases where some coefficients are either 0 or 1, then multipli-

cation is simplified. For example, considerW = (g0+g1u+v)·(h0+h1u+h2v+h3uv)

where g2 = 1 and g3 = 0. This product only requires six multiplications and four-

teen additions [58].

Squaring in Fq4 only requires four additions and four squaring over Fq, consid-

ering the previous tower field [58]:

G2=(g0 + g1u+ g2v + g3uv)2

=(g0 + g1 + g3)
2 + (g1 + g2)

2u+ (g2 + g3)
2v+g23uv (2.9)

Raising an element to the q-th power is an operation easily computed using

the tower field. For tower field defined in [37] this computation only requires five

26 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

additions over Fq:

Gq=(g0 + g1u+ g2v + g3uv)q

=(g0 + g1 + g2) + (g1 + g2 + g3)u+ (g2 + g3)v + g3uv (2.10)

2.1.2 Elliptic curves

Elliptic curves were first introduced in cryptosystems by Koblitz and Miller over

1985 [7, 8]. Since then, an entire area in cryptography has been developed called

Elliptic Curve Cryptography (ECC). The advantage of using ECC over other kind

of cryptosystems is that an equivalent level of security can be reached using shorter

keys, because the fact that the Discrete Logarithm Problem is harder to solve when

it is defined over elliptic curves [4]. Computing a bilinear pairing involves elliptic

curve operations. This section presents a brief introduction of elliptic curves in

cryptography.

An elliptic curve, denoted by E, is defined as a set of points (x, y) that satisfy

the Weierstrass equation denoted by equation 2.11.

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.11)

Elliptic curves can be defined over real numbers but for cryptographic appli-

cations are defined over finite fields. In Figure 2.3, it is shown an example of an

elliptic curve over real numbers 2.3(a) and over finite field of size 23 2.3(b). Notice

that the same equation is used in both examples.

(a) (b)

Figure 2.3: Elliptic curve defined by y2 = x3 − 9x + 3. 2.3(a) over real numbers.
2.3(b) over a finite field of size 23.

The number of points in an elliptic curve is very important because that num-

2.1. BINARY FINITE FIELDS AND ELLIPTIC CURVES 27

ber is close related to the security of ECC and Pairing-based cryptosystems. That

number is given by #E(Fq) = q + 1 − t where t is called the trace of Frobenius

and due to the Hasse’s theorem it is bounded by |t| < 2
√
q [35]. When the field’s

characteristic p divides t, denoted by p|t, the curve is called supersingular, other

way it is called ordinary. There are several types of bilinear pairings reported,

some bilinear pairings are defined for supersingular curves while other for ordi-

nary curves. so far in the literature, only supersingular curves are known when

the curve is defined over binary finite fields [12].

As mention at the beginning of this section, bilinear pairing computation in-

volves operation among elements of an elliptic curve. The basic operation for

points in an elliptic curve is the addition, which is described by the chord-and-

tangent rule. A geometric representation of the chord-and-tangent rule for real

numbers is depicted in figure 2.4. For adding two different points P,Q ∈ E over

real numbers, figure 2.4(a), a line is drawn through P and Q which intersects the

curve in a third point denominated as −(P + Q); then a second line is drawn

through the point −(P +Q) and the point ∞, intersecting again the curve in the

point which is the addition of P + Q. In figure 2.4(b), it is shown the geometric

representation of the chord-and-tangent rule for finite fields. Notice that when the

curve is defined over finite fields, the line through P and Q wraps the plot. The

identity element in this additive group is named the point at infinity, denoted by

∞ [35]. The set of points in E(Fq) and a rule for adding two elements in E(Fq)
called chord-and-tangent construct an algebraic structure called cyclic additive

group.

(a) (b)

Figure 2.4: Rule for adding P +Q. 2.4(a) over real numbers. 2.4(b) over a finite
field.

Other operation with points of an elliptic curve is the scalar multiplication.

28 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

The scalar multiplication is denoted as rP and defined by equation 2.12, where

r ∈ N, and P ∈ E(Fq), defined as r additions of the point P with itself.

rP = P + P + P + ...+ P︸ ︷︷ ︸
r

(2.12)

Other important concepts about elliptic curves, which are necessary for the

understanding of bilinear pairings are order of a point, torsion subgroup, and

embedding degree. The smallest possible value of r that makes rP =∞ is called

the order of P . The subset of points in E(Fq) of order r is named the r-Torsion

subgroup, denoted by E[r]. Given an elliptic curve E(Fq) and a point P ∈ E(Fq)
of order r such that GDC(r, q) = 1, the embedding degree of the curve is the

smallest integer k that satisfies r|qk − 1. For binary fields and supersingular

curves the maximum embedding degree achievable is k = 4 [36].

The discrete logarithm problem and elliptic curves

As stated in section 1.1.1, computationally hard problems are used in order to

bring support to several cryptosystems. These problems have to be easy to com-

pute in one way but hard to solve in the inverse way. For example, given a natural

number r and a point P over a elliptic curve E(Fq), computing Q = rP is rel-

atively easy, but given the points Q,P ∈ E(Fq) computing the natural number

r such that Q = rP is computationally infeasible. This problem is called the

Elliptic Curve Discrete Logarithm Problem (ECDLP) [7, 8] and it is the base of

an entire field in cryptography called Elliptic Curve Cryptography.

The best known algorithm for solving the ECDLP is the Pollard’s ρ algorithm

which has a exponential complexity [59]. However, the discrete logarithm problem

could be easier to solve when it is defined over other kind of groups for example,

when it is defined over multiplicative groups, the known index-calculus algorithms

solve the problem in a subexponential time [60–62]. In the early 1990s, Menezes,

Okamoto and Vanstone, proposed a method to reduce the ECDLP to the easier

problem over finite fields using bilinear pairings [63]. Nevertheless in the early

2000s, constructive scheme based on bilinear pairings were proposed [2, 27, 64],

showing that bilinear pairings allow the efficient implementation of a kind of

cryptography called Pairing-based cryptography.

2.2. BILINEAR PAIRINGS 29

2.2 Bilinear pairings

Let G1 be an additive group of order r and identity element ∞, let GT be a

multiplicative group of order r and identity element 1. A bilinear pairing is a

map:

ê :G1×G1 → GT (2.13)

that satisfies the following conditions ∀P,R,Q ∈ G1 [35]:

Bilinearity: ê(P +R,Q)=ê(P,Q)ê(R,Q) and

ê(P,Q+R)=ê(P,Q)ê(P,R)

Non-degeneracy: ê(P, P)6=1

Computability: ê is efficiently computed

The following properties of bilinear pairings can be easily verified [35]:

ê(P,∞) = 1 and ê(∞, P) = 1

ê(P,−Q) = ê(−P,Q) = ê(P,Q)−1

ê(sP, rQ) = ê(P,Q)sr ∀r, s ∈ N

ê(P,Q) = ê(Q,P)

Under certain circumstances, bilinear pairings are defined over two different

additive groups ê:G1×G2 → GT . This kind of pairing is called asymmetric pairing,

while the former is called symmetric. Additional to the previous conditions, it is

required that G1 and G2 be cyclic groups [35].

In the following subsection are introduced two of the most common bilinear

pairings reported in the literature.

2.2.1 Tate pairing

The Tate pairing is an asymmetric bilinear pairing over elliptic curves defined in

equation 2.14, where E(Fq)[r] and E(Fqk)[r] are additive groups formed by the set

of point r-Torsion on E(Fq) and E(Fqk) respectively, and F∗
qk

is an multiplicative

group formed by the elements in the extended field Fqk except for the element 0.

τ : E(Fq)[r]×E(Fqk)[r]→ F∗qk (2.14)

30 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

As is shown in [35], the curves E(Fq)[r] and E(Fqk)[r] are isomorphic, that is

both have the same algebraical structure; so the Tate pairing can be redefined as

a symmetric pairing τ : E(Fq)[r]×E(Fq)[r]→ F∗
qk

.

A formula for computing the Tate pairing is depicted in equation 2.15, where

DQ is a divisor of point Q, and fP is a function over the elliptic curve that returns

a finite field element. The computation of equation 2.15 is divided in two stages:

first fP (DQ) is computed by the Miller’s algorithm [65], second an exponentiation

to the (qk − 1)/r-th power, called final exponentiation is required [36].

τ(P,Q)= fP (DQ)(q
k−1)/r (2.15)

Miller’s algorithm

A divisor is a formal sum of points on the curve D =
∑

P∈E nP (P), where nP

are integers which only a finite number are nonzero and (P) is the notation for

a formal symbol of each point P ∈ E(Fq). The degree of a divisor is the sum of

all integers nP . Let f : E(Fq)→ Fqk be a function on the curve. The divisor of a

function f is div(f) ≡∑P∈E ordP (f)(P), where ordP (f) is the order of the zero

or the pole of f at the point P . A divisor is called principal if D = div(f) for

some function f . Two divisors C and D are equivalent if their difference C−D is a

principal divisor. Let P ∈ E(Fq)[r] where r is coprime to q, an let DP be a divisor

equivalent to (P)− (∞); under these circumstances the divisor rDP is principal,

and hence there is a function fP such that div(fP) = rDP = r(P) − r(∞). For

more details in the definition of divisor the reader could refer to [35].

In order to fP satisfy the necessary conditions of a bilinear pairing, the divisor

of fP must be, div(fP) = r(P) − r(∞) where r is the order of the point P [65].

When evaluating the pairing, the function fP must be evaluated on the point Q.

The Miller’s algorithm is a numeric method to construct the function fP using

the double-and-add rule for adding two points on the curve. In [35,65] a detailed

derivation of the Miller’a algorithm is presented. In algorithm 3, it is depicted

the general form of Miller’s algorithm.

Several improvements have been proposed to the original Miller’s algorithm,

the most significant are the elimination of denominators in lines 7 and 12 of

algorithm 3 [37], computing the function fP over points instead of divisor which

actually is the algorithm 3 [37], and reducing the number of loops [66].

2.2. BILINEAR PAIRINGS 31

Algorithm 3 General form of Miller’s algorithm

Require: r and P,Q ∈ E(F2m)[r].
Ensure: fP (Q) where div(fP) = r(P)− r(∞).
1: Let the binary representation of r be (rt, ..., r1, r0)
2: Select a point R ∈ E(F2m)[r] \ {∞, P,−Q,P −Q}
3: Set T = P and f = 1
4: for i = t− 1 to 0 do
5: Let l be the tangent line through T
6: Let v be the vertical line through 2T
7: Set f = f 2 · l(Q+R)

v(Q+R)
· v(R)
l(R)

8: Set T = 2 · T
9: if ri = 1 then
10: Let l be the line through T and P
11: Let v be the vertical line through T + P
12: Set f = f · l(Q+R)

v(Q+R)
· v(R)
l(R)

13: Set T = T + P
14: end if
15: end for
16: return f

Final exponentiation

In order the pairing be a unique element of Fqk , the result of the Miller’s algo-

rithm has to be raised to the (qk − 1)/r-th power [37]. This step in the pairing

computation is called final exponentiation. Computing the final exponentiation

require several operations over the extend field Fqk . Several improvements can

be performed in order to reduce its cost, two examples can be found in refer-

ences [36, 57].

2.2.2 Eta pairing

Several works have been proposed to optimize the Tate pairing computation at

an algorithmic level [37, 39, 66]. An especial case of the original Tate pairing for

supersingular curves is the eta pairing (ηT) presented in [37]. The ηT pairing

reduces by the half the FOR-loop of the Mille’s algorithm, being this pairing the

most popular algorithm for bilinear pairings over binary fields. The ηT pairing

requires a distortion map ψ : E(Fq)→ E(Fkq) for the point Q in order to E(Fkq)
be a cyclic group.

In algorithm 4, it is depicted the algorithm for computing the ηT over F2m .

32 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

Several parameters depend on the elliptic curve and finite field [37]. Lets consider

the supersingular curve E : y2 + y = x3 + x+ b over F2m , where b = {1, 0} and m

is odd, embedded degree k = 4, tower field defined as [37], and the distortion map

ψ(x, y) = (x+ u+ 1, y + xu+ v). Lets define β = −1 when m ≡ 1, 7 mod 8 and

b = 1 or m ≡ 3, 5 mod 8 and b = 0, or β = 1 in all other cases. α = 0, γ = 1 when

m ≡ 1, 5 mod 8 otherwise α = 1, γ = 0. δ = 1 if m ≡ 5, 7 mod 8, otherwise

δ = 0. An finally, ε = (−1)b if m ≡ 1, 7 mod 8 or ε = (−1)(1−b) if m ≡ 3, 5

mod 8.

In algorithm 4, lines 1 throw 8 are the Miller’s algorithm stage. Lines 2 and 5

set F,G ∈ F24m . Line 7 is a multiplication over the extended field, thanks to the

structure of G, this multiplication can be simplified. Finally, line 9 is the final

exponentiation that can be computed using several techniques [36,57,58].

Algorithm 4 Computation of ηT (P,Q) over F2m .

Require: P = (x1, y1), Q = (x2, y2) ∈ E(F2m).
Ensure: ηT (P,Q) ∈ F2km .
1: s← x1 + α
2: F ← s · (x1 + x2 + 1) + y1 + y2 + 1−β

2
+ (y2 + s) · u+ v

3: for i = 1 to (m+ 1)/2 do
4: s← x1 + γ, x1 ←

√
x1,y1 ← √y1

5: G← s · (x1 + x2 + γ) + y1 + y2 + (1 + γ) · x1 + δ + (s+ x2) · u+ v
6: x2 ← x22,y2 ← y22
7: F ← F ·G
8: end for
9: return F (22m−1)·(2m+1−ε2(m+1)/2)

Nevertheless, an alternative algorithm for computing the ηT using different

parameters for basis is presented in [67]. Besides, a version of the algorithm

for computing ηT where no square roots are required is presented in [57]. The

works [37, 57, 67] are able to compute bilinear pairings in very different ways.

The necessity of a flexible solution able to manage this variety of parameters

and algorithms emerge because development of algorithms and improvements are

still in process and the lack of a standard for computing bilinear pairings in

cryptographic applications.

2.3. CRYPTOGRAPHIC SCHEMES 33

2.3 Cryptographic schemes

So far in this chapter, it has been discussed a theoretical background about binary

finite fields, elliptic curves and bilinear pairings. The application of these concepts

in cryptography is presented in this section.

In the following cryptographic schemes, it is assumed the existence of a bilinear

pairing as defined in section 2.2. In all cases, P is an element of the group G1.

Zr denotes the set of integer numbers mod r, where r is the order of G1, and

Z∗r = Zr − {0}.

2.3.1 Encryption

An Identity-based encryption scheme is an asymmetric key scheme (see figure 1.1),

where the encryption key is derived from the identity of the receiver, for example

the receiver’s e-mail; and the decryption key is computed by a trusted third party

or Private Key Generator (PKG) using also the receiver’s e-mail.

Boneh and Franklin presented the first encryption scheme for IBE in [2] de-

noted by BF-IBE. The BF-IBE scheme requires an asymmetric pairing and it

consists in four steps: setup, extract, encrypt and decrypt. The security of BF-

IBE is based in the bilinear version of the Diffie-Hellman problem [68].

Setup: This step generates system parameters. The PKG chooses a ran-

dom element s ∈ Z∗r, and sets Ppub = sP . Two cryptographic hash functions

H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}n are chosen and made public. The public

key of the PKG is Ppub, private key of the PKG is s.

Extract: This step computes the receiver’s keys, given a receiver’s identifier

ID ∈ {0, 1}∗. The receiver’s public key is computed as QID = H1(ID) ∈ G1. The

receiver’s private key is computed by the PKG as SID = sQID.

Encrypt: This step is the encryption algorithm. The transmitter chooses a

random integer t. Given a message M ∈ {0, 1}n, the encrypted message is the

tuple C = 〈tP,M ⊕H2(g
t
ID)〉, where gID = e(QID, Ppub).

Decrypt: Given a encrypted message C = 〈U, V 〉, the original message M is

computed by M = V ⊕H2(e(SID, U)).

The BF-IBE scheme holds due to the equation 2.16.

e(QID, sP)t = e(QID, P)ts = e(sQID, tP) (2.16)

34 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

Sakai and Kasahara proposed a signature scheme that reduces the number

of pairing computations in [25]. The encryption scheme proposed in that work,

additionally integrates the signature into the encryption scheme. In [13], it is

reported a hierarchical scheme for ID-Based encryption. In that work, the PKG

is not a single entity but a hierarchy of entities, such that the workload of private

key generation is distributed. In [14], it is presented a scheme called encryption

with keyword search. That scheme allows to find a keyword inside a encrypted

message without disclosing the content of the encrypted message.

2.3.2 Signature

Boneh, Lynn and Shacham first proposed a signature scheme based on bilinear

pairing called short signatures [21]. RSA uses a signature length of 1024 bits,

while DSA uses a signature length of 320 bit. Short signatures uses a signature

length of 160 bits. The signature scheme proposed by Boneh et al. consist in

three steps: KeyGen, Sing, Validation.

KeyGen: Choose and publish a hash function H : {0, 1}∗ → G1. Signer

chooses a secret key x ∈ Z∗r, and publishes a validation key Ppub = xP .

Sign: The electronic signature for a message M ∈ {0, 1}∗ is σ = xH(M).

Validation: Given the public key Ppub, the message M and the signature σ,

the signature is verified by e(P, σ) = e(Ppub, H(M)).

The short signature scheme holds due to the equation 2.17.

e(P, xH(M)) = e(P,H(M))x = e(xP,H(M)) (2.17)

The short signature scheme proposed by Boneh et al., serves as basis for several

signature schemes. In [23] authors proposed a scheme for blind signature and ring

signature. Blind signature is a scheme where a user cannot obtain more than one

valid signature after one interaction with the signer. Blind signatures are typically

employed in privacy-related protocols where the signer and message author are

different parties, for example, in electronic voting and electronic payment systems.

Ring signature refers a kind of signature where the transmitter belongs to a set of

users (ring), each one with a pair of private and public keys. The ring signature

verifies that the message is signed by a member of the ring but it cannot be

disclosed who exact member performed the signature. Boldyreva introduced the

2.3. CRYPTOGRAPHIC SCHEMES 35

multisignature and blind signature schemes in [24]. Multisignature is a scheme

where a group of users can jointly sign the same message, such that a verifier

is able to verify that each member of the group have participated in the signing

process. In this scheme, the signature is rejected if not all members of the group

participated in the signing process. A scheme for aggregate signature is reported

in [26]. An aggregate signature is a scheme where any user can add its own

signature to a message, the receiver is able to verify the presence of a specific

signature over a particular message.

Paterson proposed a signature scheme for IBE in [15]. The Paterson’s signature

scheme requires three hash functions H1 : {0, 1}∗ → G1, H2 : {0, 1} → Zr, and

H3 : G1 → Zr. Given an identifier ID, the public key for signature verification is

computed as QID = H1(ID), the private key for signature generation is DID =

sQID, where s ∈ Zr is the private key of the PKG. The public key of the PKG is

Ppub = sP .

To sing a message M , the transmitter chooses a random k ∈ Zr and com-

putes the signature as the pair (R, S) ∈ G1 ×G1, where R = kP and S =

k−1(H2(M)P +H3(R)DID).

To verify a signature (U, V) on a message M , the receiver computes e(U, V)

and compares the result with the value e(P, P)H2(M) · e(Ppub, QID)H3(U).

The signature will be verified due to the equation 2.18.

e(R, S) = e(kP, k−1(H2(M)P +H3(R)DID))

= e(P, (H2(M)P +H3(R)DID))k·k
−1

= e(P,H2(M)P +H3(R)DID) (2.18)

= e(P,H2(M)P) · e(P,H3(R)DID)

= e(P, P)H2(M) · e(Ppub, QID)H3(R)

More recent works for IBE signature schemes are reported in [16,17].

2.3.3 Key agreement

A key agreement scheme is a cryptographic primitive where two or more parties

want to communicate securely, so all parties agree in a shared key from a secret

of each party. The agreement has to be secure such that parties do not disclose

their secrete to anyone. The first key agreement scheme based in bilinear pairings

36 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

was proposed by Joux in [27]. This scheme consider three parties A, B, C, with

secrete keys a, b, c ∈ Zr respectively. A broadcasts aP , B broadcasts bP , and C

broadcasts cP . Then, A computes KA = e(bP, cP)a, B computes KB = e(aP, cP)b

and C computes KBe(aP, bP)c. The shared key is KABC = KA = KB = KC =

e(P, P)abc. This key agreement scheme is based in the Diffie-Hellman problem for

bilinear pairings [68]. That work was latter extended to multiple parties by Barua

et al. in [28].

Chen et al. proposed an [20] a IBE key agreement scheme called ID-KEM

(Identity-based Key Encapsulation Mechanism). The ID-KEM scheme follows

the idea of hybrid encryption, where an asymmetric scheme is used for agreeing

a shared key, then the shared key is used for encrypt/decrypt a message symmet-

rically. The ID-KEM scheme requires three hash functions H1 : {0, 1}∗ → Zr,
H2 : GT → {0, 1}n, and H3 : ({0, 1}∗, Ppub)→ Zr; where Ppub is PKG’s public key.

The ID-KEM scheme consists of four steps: master key generation, private key

extraction, encapsulation, decapsulation.

Master key generation: The PKG chooses a random element s ∈ Z∗r and sets

its public key as Ppub = sP .

Private key extraction: The PKG computes the receiver’s private key as DID =
1

s+H1(ID)
P .

Encapsulation: The transmitter chooses a random encryption key to be shared

(M). The transmitters encapsulates the shared key as the pair (U, V), where

U = t · (Ppub +H1(ID)P), V = M ⊕H2(e(P, P)t), and t = H3(M,Ppub).

Decapsulation: The receiver retrieves the shared key from the pair (U, V), by

first computing M = H2(e(U,DID)) ⊕ V then t = H3(M,Ppub). The shared key

M is valid if t · (Ppub +H1(ID)P) = U .

The ID-KEM scheme holds due to the equation 2.19

e(U,DID) = e(t · (Ppub +H1(ID)P),
1

s+H1(ID)
P)

= e(t · (sP +H1(ID)P),
1

s+H1(ID)
P) (2.19)

= e(P, P)t

In works [18,19], they are reported other schemes for key agreement under the

IBE paradigm.

2.3. CRYPTOGRAPHIC SCHEMES 37

Summary

Bilinear pairings is the basic operation for cryptography named Pairing-based

cryptography. Bilinear pairings are defined over elliptic curves, which in turn are

defined defined over finite fields. In order to design hardware architecture that

computes efficiently a bilinear pairing, it is necessary to understand all concepts

related with the bilinear pairing operation. Those concepts includes the special

characteristics implied in the arithmetic over finite fields, in specific the binary

field; the main concepts regarding the theory of elliptic curves applied to cryp-

tography; and the definition, properties and algorithms for computing bilinear

pairings. All these concepts have been introduced in this chapter.

This chapter also presents a brief introduction to several cryptographic sche-

mes that belongs to the PBC. Among the presented schemes are encryption sche-

mes like the one reported in [2], digital signature scheme like the one reported

in [21], and key agreement schemes like the one reported in [27].

Next chapter describes the proposed flexible architecture for pairing compu-

tation, standing out the requirements considered for the design.

38 CHAPTER 2. PAIRING-BASED CRYPTOGRAPHY

Chapter 3

Pairing cryptoprocessor design

Several algorithms have been proposed in the literature for computing pairings;

however, there is no protocol or standard that defines a specific algorithm or

parameters to be considered in practical Pairing-based cryptography. So a flexible

cryptoprocessor for pairings that allows to manage several parameters such as the

elliptic curve, the tower field and the distortion map, or even different algorithms

is desired. The main objective of the proposed pairing cryptoprocessor is to bring

flexibility for the computation of bilinear pairings over binary fields, which is

achieved in this thesis by designing a programmable coprocessor.

The main components of the proposed coprocessor for pairing computation are

optimized modules for F2m arithmetic, whereas the control and flexibility of the

coprocessor is achieved by the programmability of the architecture by means of an

instruction set. The design of the coprocessor is guided by the goal of achieving a

high flexibility with the minimum penalty in performance and area consumption.

In order to reach a security level of 128 bits, the underlying finite field q = F2m to

define the elliptic curves and the extended finite field has the order m = 1223 [58].

In this chapter, it is presented the hardware architecture of the proposed pro-

grammable cryptoprocessor, which is designed for computing bilinear pairing al-

gorithms. First, the general design specifications are exposed, which are the basic

rules considered during the design process. Then, the Instruction Set Architecture

is exposed, which is formed by the set of instructions supported by the crypto-

processor and the instruction format specified. After, the datapath that brings

support to the instruction set architecture is described, giving a detailed explana-

tion of each architectural module. At the end of the chapter, it is explained the

39

40 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

main feature of the proposed cryptoprocessor, the programmability.

3.1 Design specifications

The design process was ruled by three general specifications:

• The architecture should only support arithmetic in F2m .

• Only operations among registers are supported.

• The multiplication, squaring and square root are always preceded by an

addition.

Each specification in the design process is explained and the impact of that spec-

ification in the coprocessor architecture is also detailed.

The first specification is that the architecture should only support arithmetic

in F2m . The pairing algorithms require as input points of an elliptic curve which

is defined over F2m , and so the elliptic curve points are represented as a pair (x, y)

with coordinates in F2m . All operations required by the pairing algorithm such as

the Miller’s one can be translated into arithmetic in F2m . In the case of the final

exponentiation, the required arithmetic operations are over the extended field

F2km . However, as it was shown in section 2.1.1, the arithmetic in extended fields

can be also translated to simpler arithmetic operations in F2m independently of

the tower field used.

A direct impact of the first specification is that the schedule of the instructions

should be enough to implement any pairing algorithm for any parameter like the

elliptic curve, distortion map or tower field. The number of registers required is a

key factor to meet this specification. It is necessary to provide enough memory for

storing partial results during the pairing computation. Further, the instructions

set to be considered has to cover all the operations in F2m used in the pairing

algorithms for binary fields, both for the algorithms reviewed in the literature

and future algorithms.

The second specification is that only operations among registers are supported.

Pairing algorithms do not require operations with constant values rather than 0

or 1, but those constant values can be easily computed. In the case of the value

0, for any element A ∈ F2m , A⊕A=0. For the value 1, it can be computed by the

3.2. INSTRUCTION SET ARCHITECTURE 41

equation A⊕(A⊕ 1)=1. Assuming that element A has a bit vector representation,

the operation A⊕ 1 is easily computed by the negation of the least significant bit

of A.

The second specification implies two considerations for the design. First, the

design requires hardware to support the operation A⊕ 1, which indeed is just

a single NOT gate. Second, only one instruction format is necessary for the

arithmetic operation instructions allowing a simpler decoding and a more compact

instruction format.

The third specification was defined after analyzing different pairing algorithms.

It was noted that, during the Miller’s algorithm, multiplication inputs are usually

additions among the coordinates of points P and Q. Also, it was noted that for

computing extended field arithmetic, input operands are usually additions. So,

because additions are widely used during pairing computations, the multiplication,

squaring and square root are always preceded by an addition.

The repercussion of the third specification is a trade-off to define the number

of inputs in the addition that precedes the multiplication, squaring and square

root. Choosing a two input addition requires less hardware in the implementation,

but the pairing algorithm programming requires executing more instructions, that

would lead to a longer latency in the pairing computation. On the other hand,

considering more inputs in the addition increases the amount of resources and

increases the time delay. However, less instructions are necessary when program-

ing the pairing algorithm so a shorter latency could be obtained. Moreover, the

number of addition operands prior a multiplication, squaring or square root is not

the same during the pairing computation; after defining a fixed number of inputs

in the addition, there are cases when the addition prior a multiplication, squaring

or square root requires less operands, so a mechanism to control the number of

valid operands in the addition is required.

3.2 Instruction Set Architecture

Based on the design specifications presented in the previous section, an Instruction

Set Architecture (ISA) was defined. The ISA has to support all the arithmetic

operations reported in the pairing algorithms for binary fields. These operations

are addition, multiplication, squaring and square root, which were explained theo-

42 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

retically in section 2.1.1. The second design specification forces the instruction set

to include an instruction for the operation A⊕ 1. Additionally, other instructions

are required for program control in order to support loops, especially the FOR

loop, as well as conditional and unconditional jumps.

Prior to define the instruction format, the organization of the working registers

was defined. For this, the pairing algorithms reported in [32, 37, 57, 67] were

analyzed. It was noted that Miller’s algorithm performs operations where there

are four main inputs, the coordinates of the input points of the elliptic curve.

During Miller’s algorithm computation, those points are mapped into an element

on the extended field F2km . Then during the final exponentiation, operations are

performed over elements in F2km .

A natural way to organize the working register is by grouping the registers

such that each group stores a single element of the extended field. Each group of

registers is called Bank. The size of each bank is defined by the size of the extension

of F2m , which is in fact the embedded degree. So far, the literature only report

pairings over binary fields using supersingular elliptic curves. The embedded

degree k of supersingular curves over binary fields is bounded by k ≤ 4 [36].

Therefore, each bank comprises up to four registers each of size m bits. Each

bank is intended to store an element in F2km .

This algorithm analysis was used also to define the number of inputs in the ad-

dition of third design specification. It was decided to consider four input operands

for the additions prior to multiplication, squaring and square root. In this sense,

the addition is always computed among the four registers of a specific bank. Each

register within a bank is designed with a read enable signal for those cases when

the addition requires less inputs.

3.2.1 Instruction set

The complete instruction set comprises 11 instruction described in this section.

Addition(D[], S[]). It computes an addition up to four elements in F2m stored

in a bank. S indicates the name of the source bank where the input operands are

stored. Inside brackets indicate which registers of bank S are read, for example:

F [0] indicates the register 0 of the bank F , and G[0, 2, 3] indicates the registers

0, 2, 3 of bank G. D indicates the destination bank where the result is stored.

Inside brackets indicate which registers of bank D are written. Notice that more

3.2. INSTRUCTION SET ARCHITECTURE 43

than one register of bank D can be written at the same time with the same result.

The instruction Addition(D[], S[]) is executed in one clock cycle. The source bank

conserves its values unless the source and destination bank are the same. When

only one register is indicated in the source bank, it implies just a movement of

registers. For example, Addition(G[0], F [0]) implies that the content of register

F0 is just moved to register G0. Examples:

Addition(G[0], F [0, 1, 2]): Computes F0 + F1 + F2 and stores the result

in register G0.

Addition(G[0, 3], F [1, 3]): Computes F1 + F2 and stores the result in

register G0 and G3.

Addition(G[2], F [1]): Move the value of register F1 to the register

G2.

Squaring(D[], S[]). It computes the squaring of the addition up to four ele-

ments in F2m stored in a bank. S indicates the source bank. D indicates the

destination bank. Inside brackets are indicated which registers of S and D are

accessed for being read or written respectively. The instruction Squaring(D[], S[])

is executed in one clock cycle. Examples:

Squaring(G[0], F [0, 1, 2]): Computes (F0+F1+F2)
2 and stores the result

in register G0.

Squaring(G[0, 3], F [1, 3]): Computes (F1 +F2)
2 and stores the result in

register G0 and G3.

Squaring(G[1], F [3]): Computes (F3)
2 and stores the result in reg-

ister G1.

SquareRoot(D[], S[]). It computes the root squaring of the addition up to four

elements in F2m stored in a bank. S indicates the source bank. D indicates the

destination bank. Inside brackets are indicated which registers of S and D are ac-

cessed for being read or written respectively. The instruction SquareRoot(D[], S[])

is executed in one clock cycle. Examples:

SquareRoot(G[1], F [3]): Computes
√

(F3) and stores the result in

register G1.

SquareRoot(G[0, 3], F [1, 3]): Computes
√

(F1 + F2) and stores the re-

sult in register G0 and G3.

44 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

LoadMult(S2[], S1[]). It loads a new pair of operands and starts the multipli-

cation of them. Each operand is the addition up to four elements in F2m stored in

a bank. S1 indicates the source bank for the first operand, while S2 indicates the

source bank for the second operand. Inside brackets are indicated which registers

of S1 and S2 are read. Examples:

LoadMult(F [0, 1], G[2, 3]): Begins the multiplication (F0+F1)·(G2+G3).

LoadMult(F [2], G[0, 1, 2, 3]): Begins the multiplication (F2) · (G0 + G1 +

G2 +G3).

MoveBank(D,S). It copies the values from the bank S to the bank D. For the

instruction MoveBank(D,S) the four registers of bank S are read and the four

registers of bank D are written. The instruction MoveBank(D,S) is executed in

one clock cycle. Example:

MoveBank(G,W): Copies the content of the four registers in the

bank W to the bank G, such that G0 = W0,

G1 = W1, G2 = W2 and G3 = W3.

StoreMult(D[]). It stores the result of a multiplication operation in the bank

D. Inside brackets is indicated which register in the bank D are written. Notice

that more than one register of bank D can be written at the same time with the

same result.

IncG0(). It increments the register G0 by 1. The register G0 was chosen to be

attached with extra hardware in order to perform the operation A⊕ 1 implied by

the second design specification.

Wait(n). It freezes the IP register for n clock cycles.

For(n). Hardware support to the instruction FOR-Loop n.

Jmp(n). Unconditional jump to the instruction at address n.

Jz(n). Conditional jump to the instruction at address n.

3.2.2 Instruction format

The arithmetic instructions were structured in order to preserve a unified format.

For the addition, squaring and square root, the instructions have two operands, a

source bank and a destination bank. The multiplication, different to the squaring

and the square root, requires two operands and produces one output. The multi-

3.2. INSTRUCTION SET ARCHITECTURE 45

plication instruction was split into two instructions for preserving the same format

as other instructions. The instruction LoadMult(S2[], S1[]), has two operands for

loading and starting a new multiplication, while the instruction StoreMult(D[])

only has one operand for storing the multiplication result, for this case the second

operand is just ignored during the decoding.

The case of the instruction IncG0() is also special. This instruction computes

the operation A = A⊕ 1 requiring just a single NOT gate to be implemented. It

was decided that this operation would be attached to a unique register in order

to reduce the resource consumption, specifically the register G0; otherwise, it was

necessary to include additional hardware for integrating that single NOT gate into

the architecture, which was not worthwhile. This instruction does not contradict

the instruction format as both operands are ignored during the decoding.

The instruction MoveBank(D[], S[]) is used to copy the values stored in a Bank

to another. It uses the same format as the previous instructions, two operands, a

source bank and a destination bank. Besides, there are four control instructions,

all with the same format. The four instructions have one single operand. The

parameter n was used as a constant value in the four cases.

The instruction format is coded into a 16-bit word. Figure 3.1 illustrates

the instruction format. For all instructions: CMD is a 4-bit field indicating the

functionality, OP2 is a 6-bit field used to indicate the destination bank, OP1 is

a 6-bit field used to indicate the source bank. The subfields S1 and S0 are used

to select the bank register. Subfields R3 to R0 are used to select the specific

registers within the bank, notice that more than one register within the bank can

be read at the same time. The same format is used for the control instructions

Jmp, For, Wait and Jz. For these instructions OP2 and OP1 act like a 12-bit

constant. This coding allows a total of four banks used as source banks and other

four banks used as destination banks. If needed, more banks could be addressed

by incrementing the number of bits in the fields OP1 and OP2.

3 2 1 0 S1 S0 R0R1R2R3 S1 S0 R0R1R2R3

CMD OP1OP2

015

Figure 3.1: Proposed instruction format.

46 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

3.3 F2m arithmetic modules

In this section, it is explained the design of each architectural module, especially

the F2m arithmetic modules. All modules are integrated into a final datapath,

which along with the instruction set architecture, compose the proposed crypto-

processor. Following the idea proposed in the hypothesis, each arithmetic module

was designed in order to optimize the processing time and the amount of hard-

ware resources consumed. The most complex arithmetic module is the multipli-

cation, for which especial attention was dedicated to improve the hardware cost

and processing time of the multiplication by proposing a modification in the field

multiplication algorithm.

3.3.1 Addition

In polynomial basis, an element A in the field F2m can be represented as a (m−1)-

degree polynomial as follows:

A = αm−1x
m−1 + αm−2x

m−2 + · · ·+ α1x+ α0

=
m−1∑
i=0

αix
i

where A is normally represented as a m-bit vector containing all coefficients defin-

ing its corresponding polynomial, that is, A = (αm−1, αm−2, · · · , α1, α0). Due to

the polynomial representation, addition in F2m is computed using a single bit-wise

XOR operation. Notice that there is no carry propagation in field addition.

Theoretical cost analysis

Addition is a very simple operation, area cost for a single field addition in F2m is

m XOR gates and so the time delay is the one of an XOR gate, denoted by TX .

3.3.2 Modular reduction

Modular reduction is required within multiplication, squaring and inversion. Rep-

resenting the irreducible polynomial f(x) as a bit-vector notice that fm = f0 = 1.

The operation xA(x) becomes a shift to the left operation on A(x) leading to a

3.3. F2M ARITHMETIC MODULES 47

(m + 1)-bit vector, xA(x) = (am−1, am−2, · · · . , a1, a0, 0). The resulting bit vec-

tor is the same with an extra 0 at the least significant position. If am−1 = 0,

modular reduction is not necessary because xA(x) is in the field F2m . However,

if am−1 = 1, the operation xA(x) is not in the field F2m , so the resulting polyno-

mial is reduced mod f(x), following equation 3.1, which defines xA(x) mod f(x)

considering fm = f0 = 1, where ⊕ represents a bitwise XOR operation and �
represents a bitwise AND operation.

xA(x) mod f(x) = (am−2 ⊕ [fm−1 � am−1], am−3 ⊕ [fm−2 � am−1], ... (3.1)

, a0 ⊕ [f1 � am−1], am−1)

Equation 3.1 is well modeled by the Linear Feedback Shift Register (LFSR)

shown in figure 3.2. The combinatorial logic denoted as CL-LFSR performs the

required arithmetic to compute xA(x) mod f(x). Therefore, d CL-LFSR blocks

could be connected in a cascade fashion to implement a parallel LFSR (PLSFR)

and to obtain xdA(x) mod f(x) in just one iteration. More details on the LFSR

and the PLFSR are described in [69].

. . .

x·A(x) mod f(x)
Combinatorial logic for LFSR

(CL-LFSR)

A(x)=am-1x
m-1+am-2x

m-2+...+a1x+a0

m

am-1

am-2 am-3 am-4 a0

fm-1 fm-2 fm-3 f1

xdA(x)mod f(x)(CL-LFSR)1

mA(x) ...m mm m
(CL-LFSR)2 (CL-LFSR)d

m

Figure 3.2: Modular reduction using Linear Feedback Shifts Registers.

Theoretical cost analysis

To calculate the PLFSR theoretical cost, only the special case of f(x) as a tri-

nomial of the form f(x) = xm + xa + 1 is considered. It is observed that only

fm = fm−a = f0 = 1, as a consequence most AND gates of a single LFSR in

48 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

figure 3.2 have 0 at its outputs, and most XOR gates perform a simple right shift

(αm−i ← αm−i−1), see equation 3.1. Simple shifts have no cost in hardware; there-

fore from all gates in a LFSR only one XOR gate is necessary to calculate xA(x)

when f(x) is a trinomial. For computing xdA(x) mod f(x), the number LFSR

required for the PLFSR is multiplied by the number of XORs per LFSR. A total

of d XOR gates are required for trinomials.

For computing a modular reduction using PLFSR, consider a polynomial g(x)

of degree 2m − 1 which is the output size of a multiplication or an squaring

operation. The polynomial g(x) can be written as equation 3.2.

g(x) = (a2m−1x
m−1 + ...+ am)xm + am−1x

m−1 + ...+ a0 (3.2)

= g2(x)xm + g1(x)

The polynomial g1(x) does not require modular reduction, but g2(x)xm does

and it can be implemented using PLFSR. The modular reduction of g(x) is com-

puted following the equation 3.3.

g(x) mod f(x) = g2(x)xm mod f(x) + g1(x) (3.3)

The PLFSR cost is m XOR gates as stated above but only computes the

first part of the modular reduction; additionally, m XOR gates are necessary to

complete the operation. A total of 2m XOR gates are required for computing

a modular reduction using PLFSR when f(x) is a trinomial. This reduction

technique is cheaper against the conventional method documented in [52] which

requires a total of 2m+ a XOR gates for trinomials.

Regarding the time delay, having PLFSR implies several LFSRs connected

in cascade, however corresponding time delay is not equivalent to the number of

LFSRs. The output of a XOR is also shifted and requires m shifts to return to the

original position. Most gates are simple shifts when using trinomial as irreducible

polynomial, with no hardware cost. For computing xdA(x) mod f(x), d LFSRs

are connected in cascade, if d < m the time delay is the delay of one XOR gate, lets

say TX . If m ≤ d < 2m, implies that at least two XOR gates are in cascade so the

time delay is 2TX . Formally the time delay of the PLFSR is (1 + (d mod m))TX

for trinomials.

For computing the modular reduction of the polynomial g(x) presented above,

3.3. F2M ARITHMETIC MODULES 49

a total of m shifts are required which results in a delay of 2TX . An extra XOR

gate delay is necessary for adding the least significant bits that not required mod-

ular reduction. The total time delay for the modular reduction is 3TX . The

conventional method has the same time delay as reported in [52].

3.3.3 Novel KAO-LFSR multiplier

In order to optimize the cost of the field multiplication, a modification of the KOA

algorithm was proposed in this thesis, which integrates the modular reduction step

within the algorithm itself. Considering the step 9 of algorithm 1 presented in

section 2.1.1, where z2 is multiplied by xn and z1 by xn/2 , the proposed approach

takes advantage of the modulo operation and integrates the modular reduction

step within KOA algorithm through equation 3.4.

C = C ′(x) mod f(x)

= (z2x
n + z1x

n/2 + z0) mod f(x)

= z2x
n mod f(x) + z1x

n/2 mod f(x) + z0 (3.4)

In the previous section, it was demonstrated that equation 3.4 can be solved

using LFSR. Following this approach, two PLFSR are required to compute z2x
n

mod f(x) andz1x
n/2 mod f(x). Therefore, the total number of shifts required

are: n shifts for z2x
n mod f(x) and n/2 shifts for z1x

n/2 mod f(x).

Different to the example shown in section 2.1.1, the field size is generalized to

be of any size. The proposed strategy is similar to that used in [70] and [71]. It

consists in splitting the input bit vectors by half using the function ceiling d·e to

ensure an integer result since m is generally an odd number, see equation 3.5:

A(x) = (αm−1, αm−2, · · · , αdm/2 e︸ ︷︷ ︸
AH

, αdm/2 e−1, · · · , α0︸ ︷︷ ︸
AL

) (3.5)

where AL size is dm/2e and AH size is m−dm/2e. The partition of a field element

as shown in equation 3.5 is used in every recursive call of the KOA algorithm.

To determine if a reduction is necessary, the first call is invoked with n = m,

the input operands size is m and the result size is 2m − 1, thus a reduction is

necessary. In the next calls to KOA for computing z0 and z1, n = dm/2e and the

result is size m so no modular reduction is required. The KOA call for computing

50 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

z2 neither requires modular reduction since n = m − dm/2e. In the subsequent

recursive calls to KOA, the operands are smaller so no more modular reductions

are required until the basic case of KOA algorithm, that makes all the KOA calls

to return. In total, only one reduction at the first call is necessary following the

proposed approach.

Algorithm 5 presents the proposed Karatsuba-Ofman algorithm based on Lin-

ear Feedback Shift Registers. It is worth to mention that the result C is already

reduced mod f(x). Steps 4 and 5 use the splitting strategy explained in equation

3.5 whereas steps 6-8 perform the recursive calls. Step 9 evaluates n = m which

is true only for the first call when using PLFSRs. For the rest of the calls n < m

and partial results sizes are smaller than m therefore a reduction is not needed.

Algorithm 5 KOA-LFSR[n,A,B]: Recursive Karatsuba-Ofman algorithm with
reduction step integrated using LFSR.

Require: n an integer smaller or equal to m; A,B ∈ F2m

Ensure: C = A ·B mod f(x)
1: if n = 1 then
2: return A�B
3: end if
4: A← AHxdn/2e + AL

5: B ← BHxdn/2e +BL

6: z2 ←KOA-LFSR[n− dn/2e , AH , BH]
7: z0 ←KOA-LFSR[dn/2e , AL, BL]
8: z1 ←KOA-LFSR[dn/2e , (AL + AH), (BL +BH)] + z2 + z0
9: if n = m then

10: C(x)← z2x
2dn/2 e mod f(x) + z1x

dn/2 e mod f(x) + z0
11: else
12: C(x)← z2x

2dn/2 e + z1x
dn/2 e + z0

13: end if
14: return C

As an example, consider the binary field F2163 , see figure 3.3. During the first

call, the KOA-LFSR algorithm splits the input operands according to equation 3.5

and makes three recursive calls (steps 6-8) with n ∈ {95, 96, 96} at a 2nd recursion

level. In the second call n = 95, so the KOA-LFSR splits the inputs again and

invokes three recursive calls with n ∈ {47, 48, 48}. For n = 96, recursive calls

are with n ∈ {48, 48, 48}, these calls are at the third recursion level. Splits and

recursive calls continue until the basic case when n = 1 and a single multiplication

is carried out with a simple AND gate.

3.3. F2M ARITHMETIC MODULES 51

Figure 3.3: Recursive calls tree for the KOA-LFSR algorithm for F2163 .

Figure 3.4 shows a diagram with the fully parallel KOA algorithm based on

the LFSR multiplier. Figure 3.4(a) shows the block diagram of the circuit for

computing the first call of KOA, where modular reduction is required and it is

implemented using PLFSR. Figure 3.4(b) is the block diagram of the circuit that

computes all the subsequent call of KOA for the case n < m. In this case simple

shifts are performed instead of PLFSR.

Theoretical cost analysis

The novel KOA-LFSR for finite field multiplication presented in the previous

section leads to the next space and time complexity analysis. To simplify this

analysis, only the special case of m being an even number is considered, that

is:dm/2 e = m/2 .

Let S be the cost in area of the KOA-LFSR algorithm hardware implemen-

tation. If m = 1, the total cost is only one 1-bit AND gate. If m > 1, the total

cost is given by three KOA recursive calls with half size operands: 3 · Sm/2 . In

addition, according to algorithm 5 the following XOR gates are also needed when

no reduction is required:

1. Two (n/2) XOR gates to perform (AL + AH) and (BL +BH), step 8.

2. Two (n− 1) XOR gates to add three (n− 1)-bit numbers, step 8.

3. One (n− 1)-bit XOR for the addition in step 12.

52 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

(a)

(b)

Figure 3.4: Fully Parallel Karatsuba-Ofman Multiplier based on LFSR for F2m .
3.4(a) First call (n = m) using Parallel Linear Feedback Shift Registers. 3.4(b)
Recursive calls (n < m) only use simple shift.

The total number of XOR gates is 4n− 3.

It has been stated that PLFSRs are used only in the first call of KOA-LFSR

algorithm. Thus, only in that first call two (m/2) XOR gates are required to

perform (AL +AH) and (BL +BH), see step 8 in algorithm 5. Also, two (m− 1)

XOR gates are required to add z0, z2 and (AL+AH)(BL+BH). Finally, two (m−1)

XOR gates are needed to compute the addition at step 10 in algorithm 5. The cost

of modular reduction by PLFSR depends on the number of shifts required. This

amount of shifts is fixed (m for z2x
m mod f(x) and m/2 for z1x

m/2 mod f(x)),

the number of XOR needed for these reductions is the number of shifts multiplied

by the number of XORs per shift. A total of 3m/2 XOR gates are required for

modular reduction using PLFSRs when f(x) is a trinomial. Finally, Equation

3.3. F2M ARITHMETIC MODULES 53

3.6 summarizes the area cost of the hardware implementation of the KOA-LFSR

algorithm when the irreducible polynomial is a trinomial, the hardware cost is

expressed in the number of required AND gates and XOR gates.

Sn =


1 · AND if n = 1

3Sn/2 + 4n− 3 ·XOR if n < m

3Sn/2 + 11n/2 − 3 ·XOR if n = m

(3.6)

Consider T as the time delay required for hardware implementation. Thus, TA

and TX are the delays for one AND and one XOR gate respectively. If m = 1, the

total KOA-LFSR delay is TA. If m > 1, the three KOA-LFSR calls in algorithm 5,

steps 6-8 can be performed in parallel, each with Tm/2 time cost. However, KOA-

LFSR call at step 8 requires two additions, (AH + AL) and (BH + BL). These

two operations can be performed in parallel with one TX delay. Once step 8 is

completed, another two additions are required leading to a cost of 2TX . Finally,

one addition is required at step 12, so the total cost is Tm/2 + 4TX .

For the first call, the use of PLFSRs adds some extra delay. Because at most

there are m LFSRs connected inside a PLFSR, only 2 XOR gates are actually

in cascade. For trinomials the PLFSR time delay is 2TX . Hence, the time delay

for the first call is Tn/2 + 4TX + 2TX . The overall time delay for the proposed

multiplier considering trinomials is expressed by equation 3.7.

Tn =


TA if n = 1

Tn/2 + 4TX if n < m

Tn/2 + 6TX if n = m

(3.7)

In Table 3.1, a theoretical cost comparison for the KOA algorithm with clas-

sical reduction and the proposed KOA-LFSR is presented considering the finite

fields defined by trinomials. The theoretical cost for the KOA classic is taken

from [72]. It is observed that the proposed KOA-LFSR algorithm achieves a re-

duction in hardware cost and in time delay required to implement the multiplier

in hardware.

54 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

Parameter KOA classic KOA-LFSR Case

Area
1 · AND 1 · AND n = 1

(Sn)
3Sn/2 + 4n− 3 ·XOR 3Sn/2 + 4n− 3 ·XOR n 6= m

3Sn/2 + 6n+ b− 3 ·XOR 3Sn/2 + 11n/2 − 3 ·XOR n = m
Time TA TA n = 1
delay Tn/2 + 4TX Tn/2 + 4TX n 6= m
(Tn) Tn/2 + 7TX Tn/2 + 6TX n = m

Table 3.1: Comparison of theoretical cost for the KOA classic vs the proposed
KOA-LFSR.

3.3.4 Serial multiplier

A fully parallel Karatsuba-Ofman multiplier of 1223 bits results in a extremely

huge design. Therefore, a serial-parallel approach of the Karatsuba-Ofman algo-

rithm (KOA), similar to the one used in [30] was implemented. Inputs of size

1223 are split twice following the KOA principle resulting in 9 partial operands of

size m/4. These 9 partial multiplications are computed serially by a fully-parallel

KOA of m/4 bits. Finally the 9 partial results are merged according with KOA to

complete the multiplication. Figure 3.5 shows the architecture for the F2m multi-

plication used in this work. This multiplier requires 9 clock cycles for computing

a field multiplication.

A (m-bits)

B (m-bits)

Fully-
Parallel
Hybrid
KOA

m/4-bits

<< << <<

A B (m-bits)

PLFSR
-bitsm

2

PLFSR
m-bits

Figure 3.5: Serial-parallel multiplier based on the Karatsuba-Ofman algorithm
with modular reduction by Parallel Linear Feedback Registers.

3.3. F2M ARITHMETIC MODULES 55

The output of the serial multiplier was designed to be registered, so after the

field multiplication is computed, the result remains available at the module’s out-

put. With this feature, the datapath does not require to store the multiplication

result exactly at the ninth clock cycle but when it is better for the program. The

design even allows to start a new multiplication without losing the previous re-

sult, in this case the previous result will remain available until the new result is

computed. From figure 3.5 the bottom registers at the right of the fully-parallel

KOA of m/4 bits are used with this purpose. These registers were placed prior

to merging the partial results in order to reduce the critical path in the serial

multiplier.

Further improvements over the original Karatsuba-Ofman algorithm were con-

sidered into the design of the serial multiplier. Firstly, the modular reduction was

incorporated into the KOA using the technique KOA-LFSR introduced in section

3.3.3. The KOA-LFSR only affects the first recursive call of the original KOA,

for the successive calls it was implemented the improvement proposed by Fan et

al. in [73] called overlap-free. The overlap-free technique split the input bits in

odd indexes and even indexes instead of splitting in the most significant part and

less significant part, saving one level of logic at each recursive call consuming the

same hardware.

Additionally, Zhou et al. shown in [70] that for small inputs size, the school-

book algorithm presents better results in resources and time than KOA. Based on

that report, the recursive KOA calls were truncated after s recursions and then

the schoolbook algorithm was used for the smaller multipliers. In this case, the

truncation was implemented in the fully-parallel KOA of m/4 bits.

Theoretical cost analysis

The theoretical cost of the serial multiplier is divided into three parts: the cost of

the fully-parallel hybrid KOA (fph-KOA) module, the cost before the fph-KOA

module, and the cost after the fph-KOA module, see figure 3.5. To simplify this

analysis, only the special case of m being an even number is considered, that is

when dm/2 e = m/2 .

Each input of the serial multiplier is first split using the KOA-LFSR strategy;

at this level inputs size is m bits and m/2 XOR gates are required by each input,

so first level needs m XOR gates. In the second split the overlap-free strategy

56 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

is used for three partial multiplications, at this level inputs size is m/2, so m/4

XOR gates are required by each input of each partial multiplication, then second

level needs 3m/2 XOR gates. Prior the fph-KOA module, the serial multiplier

requires 5m/2 XOR gates.

The output of the fph-KOA module is of size m/2 bits, those outputs are

merged to get 3 partial results of size m using the overlap-free technique. Each

merge require 3 additions with operands pf m/2 bits, requiring 9m/2 XOR gates.

The final merge has to be done using the KOA-LFSR technique. Two PLFSR

are required, one for m shifts and other for m/2 with a cost of 3m/2 XORs gates

for both PLFSR. Four more additions are required in the final merge, that is 4m

XOR gates are addionally require. The serial multiplier requires 10m XOR gates

after fph-KOA module. No extra hardware is necessary for the modular reduction

as this operation was integrated using PLFSRs.

Regarding the number of registers, each input requires nine register of size

m/4 to store the partial inputs. Partial results are momentarily stored in eight

registers of size m/2, the ninth partial result is taken directly form the output of

the fph-KOA module. Nine more register of size m/2 are used to store finally the

partial results keeping the result available at any time. A total of 13m registers

are needed for the serial multiplier.

Now lets analyze the hardware cost of the fph-KOA module which truncates

the recursion of KOA after s levels of recursion. A single recursion level of KOA

adds 4n − 3 XOR gates where n is the inputs size; for the next recursion level,

inputs are halved but three calls are invoked. The equation 3.8 expresses the

amount of XOR gates required for s recursive calls of KOA.

S = (4n− 3)︸ ︷︷ ︸
1st level

+ 3
(

4
n

2
− 3
)

︸ ︷︷ ︸
2nd level

+ 9
(

4
n

4
− 3
)

︸ ︷︷ ︸
3th level

+ · · ·+ 3s−1
(

4
n

2s−1
− 3
)

︸ ︷︷ ︸
s-th level

=
s∑
i=1

3i−1
(

4
n

2i−1
− 3
)

(3.8)

After s recursive calls, the KOA algorithm is truncated and the schoolbook

algorithm is used. The schoolbook algorithm cost is quadratic, that is w2 AND

gates and (w − 1)2 XOR gates are required, where w is the input size of the

schoolbook algorithm [70]. After s recursive calls of KOA, w = n/2(s+1). Then,

considering that the actual input of the fph-KOA module is sizem/4, the hardware

3.3. F2M ARITHMETIC MODULES 57

cost of the fph-KOA module is then expressed by equation 3.9.

S =

[
s∑
i=1

3i−1
(m

2i−1
− 3
)

+ 3
(m

4
− 1
)2]
·XOR +

3m2

8
· AND (3.9)

For the entire serial multiplier, the total amount of resources required is given

in table 3.2. Cost is divided in the number of XOR gates, AND gates and registers.

Table 3.2: Theoretical cost of the serial KOA multiplier.

XORs ANDs REGs

Area

∑s
i=1 3i−1

(
m

2i−1 − 3
)

+

3
(
m
4
− 1
)2

+ 23m
2

(3m2)/8 13m

Theoretical critical time delay is now discussed. The critical time delay in

this case is not the addition of all delays but the longest path between a pair of

registers.

Before the fully-parallel hybrid KOA two levels of recursion are performed,

each level has the delay of one XOR gate (TX). After the fph-KOA module

those two level of recursion are merged. The first merge is performed using the

overlap-free technique with a delay of 2TX . The final merge is done by the KOA-

LFSR, the delay of this merge is 6TX as stated in section 3.3.3. The delay after

the fph-KOA module is 8TX . For the fully-parallel hybrid KOA, each level of

recursion adds a delay of 3TX . The schoolbook algorithm has a critical delay of

dlog2weTX + TA [70]. Notice that the input size for the schoolbook algorithm

depends on the number of recursions s defined before the truncation of KOA. So

the delay of the fph-KOA module is (3s+ dlog2m/(4
s+1)e)TX + TA.

From all previous path analyzed, the longest path between two registers is the

path in the fully-parallel hybrid KOA, which is (3s+ dlog2m/(4
s+1)e)TX + TA.

3.3.5 Squaring

As it is shown in equation 2.7, squaring consists in an expansion of the input vector

interleaving a ‘0’ between each bit, followed by a modular reduction. PLFSR are

used for this purpose. Figure 3.6 illustrate the design.

58 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

m bits

2m-1 bits

0 ...am-1 am-2 am-3 a0

0 0 0

MOD_RED(PLFSR)
m bits

a1

0
a2

Figure 3.6: Squaring operation over F2m .

Theoretical cost analysis

The cost in area and time for the squaring module is indeed only the cost of the

modular reduction. This cost is because interleaving a ‘0’ between each bit does

not represent a hardware cost neither in area nor time.

3.3.6 Square root

Square root is also a cheap operation when using trinomials as irreducible poly-

nomial. Following the algorithm described in section 2.1.1, matrix M−1 can be

computed off-line because the irreducible polynomial is the same when comput-

ing the pairing. The matrix multiplication M−1A is very sparse, so just a couple

of additions are needed. For the irreducible trinomial f(x) = xm + xa + 1, the

equation 3.10 performs the computation of D =
∑
dix

im−1
i=0 , such that D2 = A

mod f(x) [52].

di =



a2i i < (a+ 1)/2

a2i + a2i−a (a+ 1)/2 ≤ i < (m+ 1)/2

a2i−a + a2i−m (m+ 1)/2 ≤ i < (m+ a)/2

a2i−m (m+ n)/2 ≤ i < m

(3.10)

Theoretical cost analysis

Analyzing equation 3.10, it can be verified that an addition if required for (a +

1)/2 ≥ i < (m+a)/2. This results in a total of (m−1)/2 additions, namely XOR

gates. In the same way, the time delay is the delay of that addition, that is only

one TX .

3.4. CRYPTOPROCESSOR DATAPATH 59

3.4 Cryptoprocessor datapath

The final datapath integrates all architectural modules and connect them with

the working registers. Figure 3.7 shows the proposed datapath. It contains six

bank registers named F , G, H, I, V , W , each bank has 4 registers of m bits each.

+1 G0 G1 G2 G3F0 F1 F2 F3

V0 V1 V2 V3 W0 W1 W2 W3

Gs
()2

nT(P,Q)

+

Fs

Q(X2,Y2)P(X1,Y1)

H0

H1

H2

H3

I0

I1

I2

I3

ROM
4K x16

PROGRAM
MEMORY

PROGAM
CONTROL

CLK START

FOR n

WAIT n

JMP n

IP

n

OP2

CMD

OP1

Jz n

R r

Figure 3.7: Proposed architecture for computing bilinear pairings over binary
fields.

An addition is directly performed at the output of banks F and G using a 4-

input XOR each. In order to indicate which registers are being added and which

not, each register within bank F and G has a read enable signal, with the implicit

repercussion of a 2-input multiplexer at the output of each register. Notice that

banks F and G also have two inputs, which means that there is a multiplexer

at the input for selecting which of the two inputs will be written. For the bank

F one input comes from banks V or H, the other comes from the input of the

entire cryptoprocessor. For the bank G one input comes from the result of the

arithmetic modules, the other comes from banks W or I.

Only banks F and G can be used as source banks for arithmetic operations.

For the multiplication, one operand comes from bank F and the other comes from

bank G. Only banks V , W and G can be used as destination banks for arithmetic

operations. Banks H and I are used as temporal storage of banks V and W

respectively using the MoveBank instruction, a multiplexer of 2 inputs is placed

at the output of each register in bank H and I. The MoveBank instruction only

supports certain movements: from V to F or H, from H to F , from W to G or

I, and from I to G.

60 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

There are two extra registers, Fs and Gs, used as alternative inputs for mul-

tiplication. Register Gs can be also used as input in the squaring module. Some

OR gates are used to drive the right input to the arithmetic module. All arith-

metic modules compute their respective operation at the same time, a 4-input

multiplexer is used for selecting the right result. The register G0 is equipped with

extra hardware for computing G0 = G0 ⊕ 1.

Theoretical cost analysis

The theoretical cost in hardware of the complete cryptoprocessor is the addition

of each module cost, plus the extra hardware required for the interconnection.

The addition at the output of banks F and G is performed by a 4-input XOR,

which in fact can be computed by three XOR gates of 2-inputs. Each addition

is of size m bits. In total 6m XOR gates are required for those additions. As

depicted in figure 3.7, five OR gates of m bits are used to drive correctly the data.

In total 5m OR gates are required.

Without counting the cost of arithmetic modules, the most hardware usage

relays on a series of multiplexers. One multiplexer of 4 inputs is used to select

the output of the arithmetic modules. A single multiplexer of 4-inputs can be

implemented with three multiplexers of 2 inputs. At the output of banks H and

I, there are eight multiplexers of 2 bits. At the input and output of banks F and

G there are eight multiplexers of 2 bits per bank. Each multiplexer is of size m

bits. In total there are 27m multiplexers of 2 bits.

The amount of registers is very straight forward. There 6 banks of 4 registers

each, plus 2 extra registers (Fs and Gs), each one of m bits. A total of 26m

registers is required.

In table 3.3, it is summarized the total cost of the proposed cryptoprocessor.

Notice that most of the area computed theoretically is due to the multiplication

module. The other modules with more area consumption are the multiplexers

used in the datapath. Also notice that despite the datapath uses several registers,

the serial multiplication consumes a third part of the total registers.

Regarding the theoretical critical time delay, recall that the critical time delay

in this case is the longest path between a pair of registers.

First lets analyze the path that follows the data that pass through the squaring

module. The path begins at bank F or G, data go through a multiplexer before

3.4. CRYPTOPROCESSOR DATAPATH 61

Table 3.3: Theoretical cost of the proposed cryptoprocessor.

Module XORs ANDs ORs MUXs REGs
Addition 6m - - - -

Multiplication

∑s
i=1 3i−1

(
m

2i−1 − 3
)

+

3
(
m
4
− 1
)2

+ 23m
2

(3m2)/8 - - 13m

Squaring 2m - - - -
Square Root (m− 1)/2 - - - -

Datapath - - 5m 27m 26m

Total

∑s
i=1 3i−1

(
m

2i−1 − 3
)

+

3
(
m
4
− 1
)2

+ (40m−1)
2

(3m2)/8 5m 27m 39m

leaving the bank, then a 4-input XOR gate and an OR gate before entering the

squaring module. The delay of the squaring is 3TX . After the squaring module,

data travel along the 4-input multiplexer and reach a register. This path has a

delay of 3TM + TO + 5TX , where TM is the delay of a multiplexer of 2 inputs and

TO is the delay of an OR gate.

Now considering the square root, prior the square root module, the data pass

through the same path that for the squaring plus an extra OR gate. The delay of

the square root is in fact one TX . Data also pass through a 4-input multiplexer

and then finally reach a register. This path has a delay of 3TM + 2TO + 3TX .

When the data comes from the register Gs the path is evidently shorter so it is

not considered for analyzing the critical path.

The analysis of the multiplication module is divided into three parts because

there are some registers within the serial multiplier. The data from bank F or G

go through the multiplexer within the register, a 4-input XOR gate and an OR

gate before the multiplier, then inside the multiplier the signal has a delay of 2TX

before it reaches a register. This path has a delay of TM + TO + 4TX .

From section 3.3.4 it was known that the delay between registers within the

serial multiplier modules is (3s+ dlog2m/(4
s+1)e)TX +TA, where s is the number

of recursive calls of the fph-KOA module.

Before leaving the serial multiplier module, data have a delay of 8TX . Then

data go across the multiplexer of 4 inputs and reach a register. This other path

has a delay of 2TM + 8TX .

62 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

From this five paths, the longest one is again the delay in the fully-parallel

hybrid KOA module inside the serial multiplier. That is, the critical time delay

is defined for the expression (3s+ dlog2m/(4
s+1)e)TX + TA.

3.5 Program control

Program control module is used to implement the instructions Jmp, For, Wait and

Jz. These instructions make use of a 12-bit constant contained in the instruction

itself. Inside this module there is the 12-bit Instruction Pointer register (IP) used

to indicate the next instruction to be executed. A total of 4K instructions can

be addressed. The “START” signal resets the IP register to ‘0’. Normally the

IP register increments its value every clock cycle. When a control instructions is

loaded, the next value of the IP register depends on the instruction.

Lets briefly introduce the control instructions: Jmp, For, Wait and Jz. Instruc-

tion Jmp(n) is used to perform an unconditional jump to the address specified by

n. The instruction Wait(n) is used to freeze the IP register for n clock cycles.

The instruction For(n) is used to support a For-Loop in hardware with exactly n

iterations. At each iteration, if n = 0, the IP register increments by 1, if not, IP

register increments by 2. Instruction Jz() performs a test in the LSB of register

R, if R0 = 0, IP register increments by 1, if not, the IP register increments by

2. Theses control instructions allow the cryptoprocessor to present a more versa-

tile behavior and therefore computing more complex operations found in pairing

algorithms.

A generic implementation of the Miller’s algorithm requires a test over r, the

binary representation of the order of the points P and Q, see algorithm 1 of [37].

But so far the proposed pairing algorithms for binary fields do not require it,

the instruction Jz() is intended to cover that requirement if needed by a pairing

algorithm for binary fields. A register named R inside the program control module

is used for loading the input r with the “START” signal.

The hardware support for control instructions is performed using 12-bits com-

parators, 12-bits multiplexers and 12-bits registers. The hardware cost and time

delay of this module is very small compared with the cost of the arithmetic mod-

ules and the rest of the architecture. For these reasons the cost analysis has been

depreciated as do not represent a significant cost.

3.6. PROGRAMMABILITY 63

3.6 Programmability

The instructions set along with the datapath allow a lot of flexibility for pairing

computing because of its programmability. The algorithm for computing the ηT

presented in chapter 2 is rewritten in algorithm 6 for easier understanding.

Algorithm 6 Computation of ηT (P,Q) over F2m .

Require: P = (x1, y1), Q = (x2, y2) ∈ E(F2m).
Ensure: ηT (P,Q) ∈ F2km .
1: s← x1 + α
2: F ← s · (x1 + x2 + 1) + y1 + y2 + 1−β

2
+ (y2 + s) · u+ v

3: for i = 1 to (m+ 1)/2 do
4: s← x1 + γ, x1 ←

√
x1,y1 ← √y1

5: G← s · (x1 + x2 + γ) + y1 + y2 + (1 + γ) · x1 + δ + (s+ x2) · u+ v
6: x2 ← x22,y2 ← y22
7: F ← F ·G
8: end for
9: return F (22m−1)·(2m+1−ε2(m+1)/2)

Consider the algorithm depicted in algorithm 6 and assume that registers

F0 to F3 contain the values x1, y1, x2, y2 as shown in figure 3.7. The addition

G0 = F0 + F2 is computed by the instruction Addition(G[0], F [0, 2]), while W2 =

G0 + G1 + G2 + G3 is computed by the instruction Addition(W [2], G[0, 1, 2, 3]).

Notice that when only one register is accessed at the source bank, the instruction

Addition(D[], S[]) is equivalent to just move one register to other, for example the

instruction Addition(G[0], F [2]) is equivalent to G0 = F2.

Consider the operation y1 + y2 + 1−β
2

in line 2 of algorithm 6, where the result

depends on the value of β. 1−β
2

= 0 when β = 1, for computing G0 = y1 + y2 the

instruction Addition(G[0], F [1, 3]) is enough. Otherwise 1−β
2

= 1 when β = −1,

the instruction Addition(G[0], F [1, 3]) followed by the instruction IncG0() are re-

quired for computing G0 = y1 + y2 + 1.

Now consider the operation s · (x1 + x2 + γ) in line 5 of algorithm 6, both

operands depend on the value of γ, and previous that operation it is required to

compute x1 =
√
x1 (line 4). Every case is supported by the proposed architecture.

When γ = 0, consider the next sequence of instructions instead:

64 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

1: SquareRoot(G[0], F [0]): compute G0 =
√
x1

2: Addition(G[1], F [2]): move x2 to G1

3: LoadMult(F [0], G[0, 1]): begin s · (√x1 + x2)

When γ = 1, consider the next sequence of instructions.

1: Addition (G[0], F [0]): move x1 to G0

2: IncG0(): compute s = x1 + 1

3: Addition(Fs,G[0]): move s to Fs

4: SquareRoot(G[0], F [0]): compute G0 =
√
x1

5: IncG0(): compute G0 =
√
x1 + 1

6: Addition(G[1], F [2]): move x2 to G1

7: LoadMult(Fs,G[0, 1]): begin s · (√x1 + x2 + 1)

Notice here that the program complexity is close related to the amount of

operations and the data dependency. Also notice that other operations can be

computed while the multiplication is being executed. For this example in line 5 of

algorithm 6, the operation y1 + y2 + (1 + γ) · x1 + δ can be computed in parallel

with the multiplication s · (√x1 + x2 + γ).

The programmability of the proposed architecture also brings support for com-

puting the multiplicative inverse operation. This operation is very expensive for

hardware implementation because it requires several operations in an iterative

loop. Algorithms like the Binary Euclidean algorithm require comparators and

shifters. However, the Itoh-Tsujii algorithm computes a multiplicative inverse op-

eration using squarings and multiplications [52], so no extra hardware is required

for computing this algorithm in the proposed architecture. The implemented

Itoh-Tsujii algorithm is depicted in algorithm 7.

Arithmetic in the extended field is easily supported by the proposed crypto-

processor independently of the tower field. Consider the tower field defined in [37]:

Fq2 = Fq[u]/(u2+u+1), Fq4 = Fq2 [v]/(v2+v+u); which forms the basis for F24m as

{1, u, v, uv}, where u2 = u+ 1 and v2 = v+u. With this tower field squaring and

3.6. PROGRAMMABILITY 65

Algorithm 7 Itoh-Tsujii algorithm for computing the multiplicative inverse op-
eration.
Require: An element a ∈ F2m , the irreducible polynomial f(x) of degree m which

defines the finite field, an addition chain U of length t for m− 1.
Ensure: a−1 ∈ F2m .
1: βu0(a)← a;
2: for i = 1 to t do
3: βui(a)← [βui1 (a)]2

ui2 · βui2 (a) mod f(x);
4: end for
5: return β2

ut(a) mod f(x)

raising an element to the q-th power are computed with the following equations:

G2=(g0 + g1 + g3)
2 + (g1 + g2)

2u+ (g2 + g3)
2v+g23uv

Gq=(g0 + g1 + g2) + (g1 + g2 + g3)u+ (g2 + g3)v + g3uv

This operations can be easily computed by the proposed cryptoprocessor. Lets

assume that the element G ∈ F24m is stored in the bank G and the result will be

stored in the bank W. The next sequence of instructions computes G2:

1: Squaring(W [0], G[0, 1, 3]): compute W0 = (g0 + g1 + g3)
2

2: Squaring(W [1], G[1, 2]): compute W1 = (g1 + g2)
2

3: Squaring(W [2], G[2, 3]): compute W2 = (g2 + g3)
2

4: Squaring(W [3], G[3]): compute W3 = g23

The next sequence of instructions instead computes the element Gq:

1: Addition(W [0], G[0, 1, 2]): compute W0 = g0 + g1 + g2

2: Addition(W [1], G[1, 2, 3]): compute W1 = g1 + g2 + g3

3: Addition(W [2], G[2, 3]): compute W2 = g2 + g3

4: Addition(W [3], G[3]): compute W3 = g3

Now consider the tower field defined in [67]: Fq4 = Fq[u]/(u4 + u + 1); which

forms the following basis for F24m : {1, u, u2, u3}, where u4 = u+ 1. Squaring and

66 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

raising an element to the q-th power are computed with the following equations:

G2=(g0 + g2)
2 + g22u+ (g1 + g3)

2u2+g23u
3

Gq=(g0 + g2) + g2u+ (g1 + g3)u
2 + g3u

3

Instead of the previous sequences of instructions, the following one computes G2:

1: Squaring(W [0], G[0, 2]): compute W0 = (g0 + g2)
2

2: Squaring(W [1], G[2]): compute W1 = (g2)
2

3: Squaring(W [2], G[1, 3]): compute W2 = (g1 + g3)
2

4: Squaring(W [3], G[3]): compute W3 = g23

And the next one computes Gq:

1: Addition(W [0], G[0, 2]): compute W0 = g0 + g2

2: Addition(W [1], G[2]): compute W1 = g2+

3: Addition(W [2], G[1, 3]): compute W2 = g1 + g3

4: Addition(W [3], G[3]): compute W3 = g3

In these examples, notice how the programmability of the proposed cryptopro-

cessor is able to compute G2 and Gq for two different tower fields. No architectural

change is required for any case. Indeed, the amount of instructions is the same

for both cases.

The distortion map is another parameter usually required by different pairing

algorithms, which may be defined in different ways without affecting the security

of the system. For example consider the distortion map proposed by Barreto

in [37]: ψ(x, y) = (x + u + 1, y + xu + v) and the distortion map proposed for

Ronan in [67]: ψ(x, y) = (x + 1 + u + u2, y + (x + 1)u + u2). In a very similar

way as for the tower field, the proposed cryptoprocessor can compute the pairing

algorithm using any distortion map.

Different versions of the pairing algorithm are also supported by the pro-

grammability. For example a first version, denoted as Barreto-Beuchat version,

of the ηT algorithm is depicted in algorithm 8, which computes the Miller’s al-

gorithm and it makes uses of the extended field basis presented in [37], the final

exponentiation is computed using the algorithm introduced in [57]. Conversely,

3.6. PROGRAMMABILITY 67

algorithm 9 depicts a second version, denoted as Ronan version, of the ηT algo-

rithm which was originally presented in [67]. The table 3.4 resumes the different

parameters chosen in each version of the ηT algorithm. Notice that the elliptic

curve, the tower field and the distortion map are different for the two versions.

Table 3.4: Parameters used in pairing algorithms.

Parameter Barreto-Beuchat Ronan

Security level 128 bits
Finite field Fq=21223 ; f(x) = x1223 + x255 + 1

Embedded degree k=4
Elliptic curve E : Y 2 + Y = X3 +X E : Y 2 + Y = X3 +X + 1

Tower field
Fq2 = Fq[u]/(u2 + u+ 1) Fq4 = Fq[u]/(u4 + u+ 1)Fq4 = Fq2 [v]/(v2 + v + u)

Basis for Fq4
{1, u, v, uv} {1, u, u2, u3}
u2 = u+ 1

s4 = s+ 1
v2 = v + u

Distortion ψ(x, y) = (x+ u+ 1, ψ(x, y) = (x+ 1 + u+ u2,
map y + xu+ v) y + (x+ 1)u+ u2)

In algorithm 8, the line 8 is a multiplication in the extended field commonly

known as spare multiplication because the second operand is always of the form

G = g0 + g1u+ v, which substantially simplifies the multiplication, only requiring

six multiplications over Fq. The final exponentiation take advantages of the tower

field in several ways, the partial results T0 to T6 and D are indeed elements of Fq2 .
One multiplication over Fq2 (lines 13 and 16) requires three multiplication and 4

additions over Fq. The inversion of the element D requires three multiplications,

two additions, one squaring and one inversion over Fq. Only one multiplication

over Fq4 is computed in the Barreto-Beuchat version of the final exponentiation.

Algorithm 9 uses an approach called unrolled loop during the Miller’s algo-

rithm. Notice that two elements G0 and G1 are computed and multiplied prior

the multiplication F ·G. Due to the distortion map, G0 and G1 always have the

form G = g0+g1u+(g1+1)u2, so the multiplication G0 ·G1 is more simplified that

the spare multiplication of algorithm 8, it only requires three multiplication over

Fq. With the unrolled loop approach, notice that the FOR-loop of the Miller’s

algorithm only performs the half of iterations. The drawback here is that the line

12 is a full multiplication over Fq4 , which requires nine multiplications over Fq.
The final exponentiation in this case performs all operations over the extended

68 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

field. Five multiplications and one inversion over Fq4 are required in this scenario.

Summary

In this chapter, it was presented the proposed cryptoprocessor dedicated for com-

puting bilinear pairings. The design was focused to provide enough flexibility

to the cryptoprocessor in order to support different parameters as the distortion

map, tower field and elliptic curve. The design targeted a finite field of order

m = 1223 in order to reach a security level of 128 bits. The cryptoprocessor

was ruled under three main specifications: the architecture only brings support

to arithmetic operation over F2m , the parameters of the operations only can be

in registers, and the multiplication, squaring and square root are always preceded

by an addition. An instruction set architecture, formed by the set of supported

instructions and the instruction format, that bring support to all arithmetic op-

eration required by pairing algorithms and program control was presented. Each

architectural module was explained in detail. In this sense, a modification on

the original Karatsuba-Ofman algorithm for field multiplication which integrates

the modular reduction step into the polynomial multiplication was proposed. Fi-

nally, the programmability of the cryptoprocessor was explained through several

examples.

3.6. PROGRAMMABILITY 69

Algorithm 8 Barreto-Beuchat version of the ηT pairing algorithm.

Require: P = (x1, y1), Q = (x2, y2) ∈ E(F21223) and parameters of table 3.4
Ensure: ηT (P,Q) ∈ F24(1223)

1: {Miller’s algorithm}
2: s← x1 + 1;
3: F ← s · (x1 + x2 + 1) + y1 + y2 + (y2 + s) · u+ v;
4: for i = 1 to (m+ 1)/2 do
5: s← x1; x1 ←

√
x1; y1 ← √y1;

6: G← s · (x1 + x2) + y1 + y2 + x1 + 1 + (s+ x2) · u+ v;
7: x2 ← x22; y2 ← y22;
8: F ← F ·G;
9: end for
10: {Final exponentiation}
11: m0 ← f 2

0 ; m1 ← f 2
1 ; m2 ← f 2

2 ; m3 ← f 2
3

12: T0 ← (m0 +m1) +m1u; T1 ← (m2 +m3) +m3u;
13: T2 ← m3 +m2u; T3 ← (f0 + f1u) · (f2 + f3u);
14: T4 ← T0 + T2; D ← T3 + T4;
15: D ← D−1;
16: T5 ← T1 ·D; T6 ← T4 ·D;
17: V0 ← T5 + T6;
18: V1,W1 ← T5;
19: W0 ← T6;
20: V ← V0 + V1v; W ← W0 +W1v;
21: V ← V 2m+1;
22: for i = 1 to (m+1)/2 do
23: W ← W 2;
24: end for
25: F ← V ·W ;
26: W ← W−1;
27: F ← F ·W ;
28: return F

70 CHAPTER 3. PAIRING CRYPTOPROCESSOR DESIGN

Algorithm 9 Ronan version of the ηT pairing algorithm.

Require: P = (x1, y1), Q = (x2, y2) ∈ E(F2m).
Ensure: ηT (P,Q) ∈ F2km .
1: {Miller’s algorithm}
2: s← x1 + 1;
3: F ← s · (x1 + x2 + 1) + y1 + y2 + 1 + (y2 + s+ 1)u+ (y2 + s)u2;
4: for i = 1 to (m+ 1)/4 do
5: s← x1; x1 ←

√
x1; y1 ← √y1;

6: G0 ← s · (x1 + x2) + y1 + y2 + x1 + 1 + (s+ x2 + 1)u+ (s+ x2)u
2;

7: x2 ← x22; y2 ← y22;
8: s← x1; x1 ←

√
x1; y1 ← √y1;

9: G1 ← s · (x1 + x2) + y1 + y2 + x1 + 1 + (s+ x2 + 1)u+ (s+ x2)u
2;

10: x2 ← x22; y2 ← y22;
11: G← G0 ·G1;
12: F ← F ·G;
13: end for
14: {Final exponentiation}
15: U, V,W,G← F ;
16: for i = 1 to (m+1)/2 do
17: U ← U2;
18: end for
19: U ← U q;
20: W ← W q;
21: V ← W ;
22: W ← W q;
23: F ← W ;
24: W ← W q;
25: W ← W · U ;
26: W ← W ·G;
27: F ← F · V ;
28: U ← U q;
29: U ← U q;
30: F ← F · U ;
31: return F

Chapter 4

Implementation results

This chapter describes the experiments carried out in order to validate each ar-

chitectural module and the entire cryptoprocessor. The design was implemented

in a FPGA device, synthesis results are presented and compared with state-of-art

works.

4.1 Validation strategy

The hardware designs were modeled using VHDL as a description language. Sev-

eral experiments were performed in order to validate the correct behavior of each

architectural module and the complete architecture. A total of 1000 test data vec-

tors were created randomly in order to validate each hardware arithmetic module;

C/C++ routines based on the library Miracl1 were used to generate test data vec-

tors. A test bench was written to read the test vector from a file, to instantiate a

particular module and to simulate its behavior for all the test vector generated.

Xilinx ISim 13.2 was used as simulation environment.

Special attention was dedicated to the multiplication operation due to this

thesis presents a novel Karatsuba-Ofman multiplier. In this case, the validation

was performed for the different binary fields proposed for cryptography applica-

tions; some fields are recommended by the NIST [22], while others are proposed

by CERTICOM as a challenge2. Table 4.1 summarizes the irreducible polynomials

1Copyright 2012 CertiVox IOM Ltd. Online available:
https://certivox.com/solutions/miracl-crypto-sdk/

2http://www.certicom.com/index.php/curves-list

71

72 CHAPTER 4. IMPLEMENTATION RESULTS

used to validate the proposes KOA-LFSR multiplier. Notice that only trinomials

and pentanomials were considered.

Table 4.1: Irreducible polynomials used to validate the KOA-LFSR multiplier.

Trinomials Recommended Pentanomials Recommended
f(x) = by f(x) = by

x167 + x6 + 1 Other x131 + x13 + x2 + x+ 1 Certicom
x191 + x9 + 1 Certicom x163 + x7 + x6 + x3 + 1 NIST
x233 + x74 + 1 NIST x277 + x12 + x6 + x3 + 1 Other
x239 + x36 + 1 Certicom x283 + x12 + x7 + x5 + 1 NIST
x359 + x68 + 1 NIST x571 + x10 + x5 + x2 + 1 NIST

x409 + x87 + 1 NIST

The full cryptoprocessor was validated using a similar strategy. Two versions

of the ηT pairing were used for testing the correct functionality of the datapath,

both versions were presented in algorithms 8 and 9 in section 3.6.

Finally, in order to validate the cryptoprocessor under some Pairing-based

cryptography application, the Identity-based Key Encapsulation Mechanism (ID-

KEM) introduced in section 2.3.3 was implemented in software using the C/C++

Miracl library. ID-KEM scheme consists in four algorithms which in conjunction

have the purpose to establish a shared key among two parties, starting from the

receiver’s public key. In this case, the receiver’s public key is an identifier related to

the receiver’s identity. ID-KEM requires the computation of two bilinear pairings,

one extra pairing can be computed in order to ensures that the receiver’s private

key is well generated. A total of 35 different identifiers were tested, resulting in a

total of 105 bilinear pairing computations. This validation was performed for the

two versions of the ηT pairing algorithm presented previously.

4.1.1 Metrics of performance

Several metrics are used for evaluating hardware architectures, including the

amount of area resources, processing time, efficiency, etc. Their definitions are:

Area is a parameter used to measure the amount of hardware resources re-

quired by some architecture. The unit used for measure the area depends on

the implementation technology used, for an FPGA implementation typically the

number of Slices, or the number Look-Up Tables (LUTs) are reported. A Slice

4.2. IMPLEMENTATION OF F2M ARITHMETIC MODULES 73

is a configurable unit within an FPGA, a slice usually contains a few Look-Up

Tables and some registers depending on the FPGA technology. A LUT is logic cell

with x inputs used for implementing an arbitrary Boolean function of x inputs.

The amount of registers is another metric used for measure the area consumed by

some architecture.

Minimum period and maximum frequency are parameters used to measure the

maximum speed operation of some architecture. The minimum period is the in-

verse of the maximum frequency. Minimum period is measured in seconds and

maximum frequency is measured in hertz. Minimum period is preferred for combi-

national designs as it represents the maximum path delay. For sequential designs,

maximum frequency represents the maximum clock frequency the architecture can

operate with.

Clock cycles is a parameter used to measure the amount of clock cycles required

by some architecture to complete a determined computation.

Latency is a parameter used to measure the processing time of hardware de-

signs. It is obtained by multiplying the number of clock cycles by the minimum

period. The smaller the latency of the design, the better its processing time.

A · T product is a parameter used in hardware architectures comparisons to

bring a balanced comparison between the area consumed and the processing time.

The A · T product is defined as the area consumed times the processing time, in

this case the units used are Slices × Seconds. The smaller the A · T product of

the design, the better.

Program memory is a parameter used to measure the amount of RAM or

ROM memory required by the hardware implementation for storing the control

program. It is measured in bits.

4.2 Implementation of F2m arithmetic modules

4.2.1 Implementation results of the KOA-LFSR multiplier

This section discusses the implementation results of the KOA-LFSR multiplier.

The proposed multiplier was implemented using VHDL as a description language.

For synthesis, Xilinx ISE 13.2 was used targeting the Xilinx Virtex-6 (xc6vlx240t)

device and using default synthesis flags. For comparison purposes, the fully-

parallel Binary Karatsuba Multiplier (BKM) using the classical reduction pre-

74 CHAPTER 4. IMPLEMENTATION RESULTS

sented in [52] was implemented and synthesized. Those results are also presented

in this section.

In figure 4.1, it is shown the synthesis results for trinomials whereas in figure

4.2, it is shown the results for pentanomials. These graphs show the tendency of

LUTs used and the minimum clock period achieved by each architecture. These

results include the total hardware usage necessary for the multiplication and the

reduction step. These figures show that the proposed KOA-LFSR algorithm im-

proves the resources consumption and processing time when compared to the

BKM with classical reduction.

(a) (b)

Figure 4.1: Implementation results of KOA-LSFR for trinomials, where F2m is the
underlying finite field.

(a) (b)

Figure 4.2: Implementation results of KOA-LSFR for pentanomials, where F2m is
the underlying finite field.

These results not only confirm the theoretical improvement shown in table

3.1, but also demonstrate that the proposed multiplier helps the synthesis tool

to optimize the FPGAs resources usage. The KOA-LFSR algorithm has a very

regular structure from which the synthesis tool takes advantage and optimizes the

result. In figures 4.1 and 4.2, it is observed the area and time tendency when the

field size increases. For trinomials it is shown an average improvement of 13.63%

4.2. IMPLEMENTATION OF F2M ARITHMETIC MODULES 75

in area and 6.58% in processing time for the proposed KOA-LFSR multiplier;

whereas for pentanomials, the average improvement is 35% in area and 11.12% in

processing time for the proposed KOA-LFSR multiplier.

In table 4.2, the proposed multiplier is compared to different KOA based multi-

pliers. A brief discussion of other multipliers is discussed below. The KOA-LFSR

was re-synthesized for other devices to provide a comparison as fair as possible,

a direct comparison is difficult because other works do not always consider the

cost of the KOA multiplication and the modular reduction step together. Some

authors only work on the polynomial multiplier, others focus on the reduction for

general polynomials. Some works do not consider a fully-parallel approach.

Table 4.2: Comparative between the proposed KOA-LFSR and other multipliers.

Ref. Device m
Fully Includes

Area
Latency

parallel? reduction? (ns)
[74] Virtex E 191 yes yes 6,265 Slices 45.89

KOA-LFSR Virtex E 191 yes yes 7,093 Slices 19.31
[70] Virtex 5 163 yes no 7,488 LUTs N/R

KOA-LFSR Virtex 5 163 yes yes 7,786 LUTs 5.47
[75] Virtex 5 128 yes yes 6,941 LUTs 5.49

KOA-LFSR Virtex 5 131 yes yes 6,162 LUTs 5.75
[76] Virtex II 128 no no 2,473 Slices 378.00
[76] Virtex II 128 no no 3,978 Slices 153.00

KOA-LFSR Virtex II 131 yes yes 4,147 Slices 10.12
[76] Virtex II 240 no no 4,839 Slices 290.00

KOA-LFSR Virtex II 239 yes yes 10,510 Slices 10.71
[77] Spartan 3 128 yes no 10,172 Slices 59.52
[77] Spartan 3 128 no no 2,528 Slices 515.64

KOA-LFSR Spartan 3 131 yes yes 4,205 Slices 13.45
[77] Spartan 3 256 yes no N/R 69.77
[77] Spartan 3 256 no no 8,276 Slices 569.04

KOA-LFSR Spartan 3 239 yes yes 13,620 Slices 15.05

In [74], a multiplier based on the BKM technique is presented, which trun-

cates the recursion at a predefined number of bits and then uses a more efficient

multiplier. The idea in that work is that for small bit-length operands there are

better multipliers than the KOA approach. Thus, in that work the recursion is

truncated at different levels. Experimental tests with n ∈ {4, 8, 16} are presented

with best results when n = 8. That work reports the number of slices used and the

76 CHAPTER 4. IMPLEMENTATION RESULTS

time required. The modular reduction step is performed with the classic method

explained in section 2.1.1.

In [70], authors perform a detailed analysis of several KOA-based multipliers

implemented in FPGAs and ASICs. That work considers multipliers that are an

hybrid of the KOA and the schoolbook algorithms. First, it analyzes separately

both approaches and realizes that the schoolbook method is better for small fields.

Then, it implements a KOA multiplier that truncates recursive calls and executes

small multipliers with the schoolbook method. The KOA multiplier used on that

work uses a splitting strategy very similar to the one used in the KOA-LFSR.

In [70], experiments with several multipliers are carried out. In that work the

schoolbook method implementation is carried out manually so optimization in

area and time do not depends in a synthesis tool. Their results show the number

of LUTs required in their design.

In [75], a pipelined KOA based multiplier is presented. That multiplier trun-

cates KOA’s recursive calls after some steps and thereafter the schoolbook method

is used. Pipeline registers are placed between every KOA recursive call. That de-

sign is assessed considering several pipeline stages in order to find the best com-

promise between area and time. The modular reduction strategy is not explicitly

mentioned.

In [76], several combinations of parallel and serial multipliers are provided.

Results for a sequential 240-bit multiplier are presented, being comparable against

the results of the proposed KOA-LFSR approach for the finite field F2239 .

In the work reported in [77], different architectures of Karatsuba multipliers are

explored; some of them are fully-parallel while others are a hybrid of parallel and

serial multipliers. The fastest (fully-parallel) and the smallest architectures are

presented. The reduction step is not considered in that research. Since that work

only considers m as a power of 2, fields with order closer to 128 and 256 are chosen

for comparison. The number of slices is used for comparing area consumption.

4.2.2 Serial multiplier implementation results

As mentioned in section 3.3.4, for implementing the fully-parallel hybrid KOA

module inside the serial multiplier module, the KOA algorithm was truncated

after s recursive calls. In [70] it was shown experimentally that the optimal value

of s depends on the implementation technology. In this sense, the serial multiplier

4.3. CRYPTOPROCESSOR IMPLEMENTATION RESULTS 77

was synthesized using several values of s.

Table 4.3: Implementation results for serial multiplier using different values of s.

s LUTs FFs Minimum period Latency A · T
1 40,969 18,244 2.817 ns 25.353 ns 1.04
2 34,734 17,306 2.647 ns 23.823 ns 0.83
3 31,262 17,344 2.882 ns 25.938 ns 0.81
4 28,518 17,507 3.144 ns 28.296 ns 0.80
5 28,990 15,904 7.902 ns 35.559 ns 1.03
6 31,720 15,904 9.325 ns 83.925 ns 2.66

Since the proposed design is based on the serial multiplier reported by Ghosh

et al. in [30], a results comparison against that work is performed. In table 4.4

the best implementation achieved for the serial multiplier is compared against

[30]. Notice that the proposed serial multiplier includes the modular reduction

inside the multiplier, different to the multiplier reported in [30] which additionally

requires a modular reduction module.

Table 4.4: Comparative of F2m serial multipliers.

Design LUTs FFs
Minimum Clock

Latency A · T Requires
period cycles reduction?

This 28,518 17,507 3.144 ns 9 28.296 ns 0.80 yes
[30] 30,148 N/R 4 ns 10 40ns 1.21 no

4.3 Cryptoprocessor implementation results

The proposed architecture was implemented using VHDL as a description lan-

guage. Program memory was implemented with Xilinx’s Block Memory Generator

LogiCORE. Xilinx ISim 13.2 was used as simulation environment. For synthesis,

Xilinx ISE 13.2 was used targeting both Xilinx Virtex-6 (xc6vlx130t) and Xilinx

Virtex-4 (xc4vlx200) devices using flags by default except for flags -iobuf FALSE

and -register balancing YES. The -iobuf states if the synthesis tool attempts to

match the inputs and outputs of the design with real pins on the target devices.

The flag -register balancing moves registers through combinatorial logic to evenly

distribute the paths delay between registers, increasing the maximum clock fre-

quency.

78 CHAPTER 4. IMPLEMENTATION RESULTS

Table 4.5 shows the implementation results of the synthesis process regarding

FPGA resource consumption. The required area is 16,451 slices for a Virtex 6

device. From this area, about 43% is used by the field multiplier; being this module

the biggest individual one from all arithmetic modules as expected. Nevertheless,

the multiplexers inside each bank register consume a great amount of resources, a

total of 51%. The remaining 6% of the area is used for the rest of the arithmetic

modules. The number of FPGA registers used is also reported in table 4.5, about

33% of the total amount of registers is required by the serial multiplier while the

rest is used by the bank registers.

Table 4.5: FPGA resource consumption per architectural module.

Architectural Module Area (Slices) Registers
Full Cryptoprocessor 16,451 50,882

Serial Multiplier 7,130 17,507
Datapath 8,403 33,375
Additions 612 0
Squaring 153 0

Square root 153 0

In table 4.6, it is presented the synthesis results for Virtex 4 and Virtex 6

devices. Notice how the area is closely related to the technology, for a Virtex 4 a

total of 46,879 are used, considerably more slices than the slices used for a Virtex

6. This is due to one Virtex 6 slice contains 4 Look-Up Table (LUT) of 6 bits

input. In contrast, one Virtex 4 slice contains only 2 LUTs of 4 bits inputs. About

the maximum clock frequency, it depends on the longest path delay among two

registers. For the proposed architecture this path is inside the serial multiplier

with seven levels of logic. The maximum frequency the proposed cryptoprocessor

can operate with is 188.9 MHz for a Virtex 6 when using the flag register balancing

in the synthesis process. In the same way, time is closely related to the technology,

Virtex 6 is a 40 nm device able to work with a clock frequency up to 1,600 MHz,

while Virtex 4 is 90nm technology able to work with a clock frequency up to 500

MHz.

In table 4.7, it is compared the computation of two versions of the ηT algorithm

using the proposed cryptoprocessor. Both versions were introduced in algorithm

8 and 9 of section 3.6. The first version computes the Miller’s algorithm and it

makes use of the extended field basis presented in [37], the final exponentiation is

4.4. COMPARISONS 79

Table 4.6: Synthesis results of the proposed architecture for two different devices.

Device Area (Slices) Maximum Frequency (MHz)
Virtex 6 16,451 188.9
Virtex 4 46,879 85.6

computed using the algorithm introduced in [57]. First version is named Barreto-

Beuchat. The second version computes the ηT algorithm as reported in [67].

Second version is named Ronan version.

The column clock cycles shows the total of cycles required to compute the

complete pairing. The number of cycles depends directly on the algorithm. Using

the proposed cryptoprocessor, the pairing algorithms can be fairly compared be-

cause they are implemented using the same platform. Notice also that the amount

of program memory required by the Ronan version is almost double than the one

required by the Barreto-Beuchat version. That is because the operations in the

Ronan version are more dependent, so more instructions MoveBank(D[], S[]) are

required. Additionally, the final exponentiation in the Ronan version requires a

total of five multiplications over Fqk , while final exponentiation in the Barreto-

Beuchat version only performs one multiplication over Fqk , so less code is needed.

Table 4.7: Processing time of the proposed architecture for two different version
of ηT algorithm.

ηT Device
Program Clock Maximum

Latency
algorithm

memory cycles frequency
(us)

(kbits) (×103) (MHz)
Barreto- Virtex 6 5.3 51.5 188.9 273
Beuchat Virtex 4 5.3 51.5 85.6 601

Ronan
Virtex 6 10.3 57.6 188.9 305
Virtex 4 10.3 57.6 85.6 673

4.4 Comparisons

In this section, the implementation results of the proposed cryptoprocessor are

compared against state-of-art works.

A comparison against state-of-art custom implementations of the ηT pairing

for binary fields is presented in table 4.8. All works reported in this table reach

80 CHAPTER 4. IMPLEMENTATION RESULTS

a security level of 128 bits except for [32], which achieves a security level of 105

bits. For this comparison, only the implementation results of the Barreto-Beuchat

version of the ηT pairing is considered. It is noticed that custom implementations

are faster than the proposed architecture, which is expected because custom im-

plementations make use of parallelization and other techniques in order to achieve

faster results. A comparison with [32] make this statement more evident, but the

cost of faster architectures is the use of more hardware resources, which is also

evident in this comparison. It can be observed that the area consumed by the

proposed cryptoprocessor is very similar to works [30] and [31]. The A ·T product

reached in this work is 4.49, which is just 1.56x bigger than [30] and 2.64x bigger

than [31]. Compared to [32] the A ·T product is 3.18x bigger, but notice that [32]

only reaches a security level of 105 bits, if the results presented in that work are

extrapolated the area estimated is more than 130,000 Slices and the estimated

processing time is about 33 us. With these estimations the A · T product is 4.29,

essentially the same as the A · T of the proposed cryptoprocessor. These results

show that custom architectures are slightly faster/smaller than the proposed de-

sign, however the proposed architecture reaches a great flexibility which allows the

computation of bilinear pairing with different parameters and different versions

of the pairing algorithm. The given flexibility justifies the fact that the proposed

design does not improve the area and processing time of custom architectures.

Table 4.8: Comparative of the proposed architecture against custom architectures
for binary fields.

Ref. Device
Area

Maximum Clock
Latency A · T

(Slices)
frequency cycles

(us) (Slices×Seg.)
(MHz) (×103)

Barreto- Virtex 6 16,451 188.9 51.5 273 4.49
Beuchat Virtex 4 46,879 85.6 51.5 601 28.17

[30] Virtex 6 15,167 250.0 47.6 190 2.88
[31] Virtex 6 16,403 267.0 27.3 102 1.70
[32]* Virtex 4 78,874 130.0 2.4 18.8 1.41

*That work targeted a security level of 105 bits.

Table 4.9 compares the proposed cryptoprocessor against works in the litera-

ture that exhibit some degree of flexibility. Notice that in the literature there is no

flexible solution for binary fields reported. In table 4.9, the results compared are

from the Virtex 4 as works [38,42] used the same device. For the case of work [50],

4.4. COMPARISONS 81

authors implement their architecture in ASIC using a 30 nm standard cell library.

Even the work reported in [38] reports a smaller area and faster computation

time than the proposed design, that work only achieve a security level of 66 bits

whereas the proposed architecture achieves a security level of 128 bits, roughly

extrapolating the results of [38], the underlying finite field required for reach a

security level of 128 bits requires to be 5 times bigger, the area usually grows in

quadratic fashion and the time in lineal fashion, so the estimated area is 46,275

Slices and the estimated processing time is 685 us, with a A · T of 31.7, these

estimations are essentially the same as the proposed architecture, but the one

proposed is for binary fields. Comparing area consumption and processing time

with the work reported in [42], the proposed cryptoprocessor outperforms that

work in both parameters. Comparison with the ASIP reported in [50] is harder

because the target devices of this thesis is a FPGA, not an ASIC; anyway it can

be noticed that the proposed architecture is able to execute a pairing algorithm

23x faster.

Table 4.9: Comparative of the proposed architecture against works in the litera-
ture with some degree of flexibility.

Ref. Field
Area

Maximum Clock
Latency A · T

(Slices)
frequency cycles

(us) (Slices×Seg.)
(MHz) (×103)

Barreto- F2m 46,879 85.6 51.5 601 28.2
Beuchat
Ronan F2m 46,879 85.6 57.6 673 31.5
[38]* F3m 1,851 203 27.8 137 0.25
[42] Fp 52,000 50 1,729 34,600 1,799

[50]** Fp 97kGates 338 N/R 15,800 N/A

*That work targeted a security level of 66 bits.
**That work targeted an ASIC using a 30 nm standard cell library.

A comparative with state-of-art in software implementations for computing

bilinear pairings is presented in table 4.10. Software implementations are in fact

flexible implementations that use general purpose microprocessors. This compar-

ative includes the fastest implementation of pairing algorithms in GPUs, and a

specialized software library for pairing computations. This comparison only con-

siders the processing time. In all cases the proposed cryptoprocessor computes the

pairing algorithm faster. Although general purpose microprocessors or GPUs are

82 CHAPTER 4. IMPLEMENTATION RESULTS

very powerful technologies, they are limited to their own general purpose instruc-

tion set and fixed size operands. In this way, the proposed cryptoprocessor may

be used as a specialized co-processor for pairing computations, leaving the rest

of the computations of any Pairing-based protocol to be executed by the general

purpose microprocessor.

Table 4.10: Comparative of the proposed architecture with software implementa-
tions.

Ref. Device Field
Maximum

Latency
frequency

(us)
(MHz)

Barreto-Beuchat Virtex 6 F2m 188.9 273
Ronan Virtex 6 F2m 188.9 305

[78] Intel Core i7 F2m 2,000 517
[78] Intel Core i7 F2m 2,000 3,228
[43] NVidia GTX 480 F3m 1,401 3,010
[44] MICAz F3m 7.383 2.45×106

A parameter almost never reported is the total of memory required by the con-

trol of the hardware architectures, because it is not considered a crucial parameter

as the area consumption and processing time. In fact, memory optimization was

not a target of the proposed design. However, in mobile environments computing

resources are very constrained, and for example the amount of memory consumed

is critical. In this sense, the proposed instruction set architecture leads to very

compact programs. As noted in table 4.11, the work reported in [44] consumes

less memory than any other related work. It is observed in table 4.11 also that

the memory required by the proposed design in this thesis is half the memory

required by [44].

Summary

This chapter presented and discussed the implementation results achieved by the

architectural design of this thesis work. First, it was introduced the validation

strategy followed in this thesis to ensure the correct functionality of every architec-

tural module. Details in the implementation of the Karatsuba-Ofman multiplier

based on linear feedback shift registers was provided because this architecture was

4.4. COMPARISONS 83

Table 4.11: Comparison of memory consumption of the proposed architecture
against related works.

Ref.
Implementation

Field
Program

Type
Memory
(kbits)

Barreto-Beuchat Flexible F2m 5.3
Ronan Flexible F2m 10.3

[38] Flexible F3m 28.1
[34] Custom F3m 24
[50] ASIP Fp 32
[44] Software F3m 21.7

a novelty introduced in this thesis work. In order to select the best serial multi-

plier, the design of the serial multiplier was implemented for different recursion

levels in the KOA algorithm. The best implementation results for the serial multi-

plier obtained in this thesis is compared with the one reported in [30]. Finally, the

complete cryptoprocessor was implemented for the FPGA devices Virtex 6 and

Virtex 4. Then a comparison with works from the state-of-art was performed.

From the results obtained, the proposed cryptoprocessor is a very feasible

solution for bilinear pairing computation over binary fields. The programmability

reached by this architecture allows to compute bilinear pairings independently

of the elliptic curve, tower field, distortion map and the version of the pairing

algorithm required by the application.

84 CHAPTER 4. IMPLEMENTATION RESULTS

Chapter 5

Conclusions

This chapter presents final remarks about this thesis work. A brief summary about

the work performed is presented, emphasizing the most important points of the

architectural design. Then a recapitulation about the main research contributions

is depicted. Finally, some guidelines to improve the presented work and research

ideas are introduced.

5.1 Objectives review

This thesis work has introduced a novel programmable cryptoprocessor for com-

puting bilinear pairings over elliptic curves defined over binary fields. Bilinear

pairings are the mathematical background that brings support to Pairing-based

schemes such as Identity-based encryption, short signatures and key agreement

schemes. Different to other hardware architectures designed for binary fields, the

one presented in this work is able to compute different versions of the pairing

algorithm considering different elliptic curves, tower fields, and distortion maps,

all these using the same hardware. The proposed cryptoprocessor is the first

programmable solution for binary fields implemented in hardware, which addi-

tionally is able to compute pairing algorithms 1.9x faster than fastest software

implementations reported.

The proposed design followed three main specifications in the design: i) the

architecture should only support arithmetic in F2m , ii) only operations among

registers are supported, and iii) an addition is always performed before a multi-

plication, squaring and square root. Considering these specifications, an instruc-

85

86 CHAPTER 5. CONCLUSIONS

tion set architecture was proposed. This instruction set architecture consists in a

group of instructions and the instruction format.

Optimized architectural modules were designed in order to achieve the best

possible implementation results. Special attention was given to the field multipli-

cation module because this is the most complex module in terms of area consump-

tion and processing time. A modification to the Karatsuba-Ofman algorithm was

proposed, called KOA-LFSR. All architectural modules were integrated into a

datapath. A theoretical cost of each module and the full datapath was discussed.

A detailed discussion about the programmability was presented.

Architectural modules and the full cryptoprocessor were validated using Xil-

inx ISim as simulation environment. The cryptoprocessor was specially validated

using values taken from a Identity-Based Cryptographic scheme, resulting in a

successful validation. The implementation of the KOA-LFSR targeted several fi-

nite fields used in cryptographic applications. Results of the KOA-LFSR confirm

the theoretical improvement of this modification to the KOA algorithm. Imple-

mentation results of the cryptoprocessor show that the proposed design requires

a competitive amount of resources compared with related works, requiring in

average the 90% of the hardware required by related works. In addition, the

processing time is in average 28x shorter than the one achieved by flexible ar-

chitectures and almost as good as the custom architectures of the state-of-art,

in average 2.5x slower. The compact instruction format allows smaller programs

than related works, therefore it consumes less than the half of memory required

by other works.

The thesis objectives stated in section 1.5 were thoroughly accomplished. At

the end of this thesis a programmable architecture for computing bilinear pairings

was designed and implemented. It is worth to remark that bilinear pairings are the

mathematical background for Identity-based cryptography. The design focused a

binary finite field of size m = 1223, which is the size required to achieve a security

level of 128 bits. The design methodology was the optimization of arithmetic

modules and the integration of them into a programmable datapath.

The first specific objective was achieved through literature review and theoret-

ical analysis. As a result, it was observed that there is no standard or protocol for

Pairing-based Cryptographic schemes, in fact the development and improvement

of current schemes is still under development. Parameters like the elliptic curve,

the tower field, and the distortion map may vary across different implementation

5.2. SUMMARY OF CONTRIBUTIONS 87

without affecting the security of the system; so a flexible solution able to support

such changes is desired. The lack of a flexible solution for binary fields moti-

vated the design and implementation of an efficient and flexible cryptoprocessor

for Pairing-based cryptography.

The second specific objective was completed through the definition of a pro-

grammable cryptoprocessor. A programmable architecture was chosen because

it fits better to the desired flexibility of a software along with the efficiency of

a custom architecture. As evidence, this thesis proposed a set of architectural

specifications and the Instruction Set Architecture for a programmable solution.

For the third specific objective was also completed. In this sense, this thesis

design and implemented a set of arithmetic modules, among them a novel finite

field multiplier was proposed. A final datapath was designed and validated, which

is able to compute bilinear pairings with different parameters and using different

versions of the pairing algorithm.

Finally, the last specific objective was achieved in the validation stage. A

pairing-based scheme was implemented in software, and all pairing values were

used to verify the correct functionality of the proposed cryptoprocessor.

5.2 Summary of contributions

This thesis works has two main research contributions:

First, a programmable architecture for computing bilinear pairings, the most

time consuming and core operation for Identity-based cryptography, has been pro-

posed. This architecture is the first of this kind which has targeted binary fields.

This architecture computes bilinear pairings faster than state-of-art software im-

plementations, and also has a very competitive area/time compared with custom

and fixed architectures. In this way, the architecture preserves the speed up of spe-

cialized architectures and the flexibility of software implementations. Preliminary

results of this contribution were reported in a conference paper, submitted and

accepted to the 8th International Workshop on Reconfigurable Communication-

centric Systems-on-Chip1.

• Eduardo Cuevas-Farfán, Miguel Morales-Sandoval, René Cumplido, Claudia

Feregrino-Uribe, Ignacio Algredo-Badillo, “A programmable FPGA-based

1http://www.recosoc.org/

88 CHAPTER 5. CONCLUSIONS

cryptoprocessor for bilinear pairings over F2m ,” Presented at 8th Inter-

national Workshop on Reconfigurable Communication-centric Systems-on-

Chip, Darmstadt, Germany, July 2013.

Second, this thesis proposed a novel F2m multiplier called KOA-LFSR. The

proposed approach integrates the modular reduction within the polynomial mul-

tiplication step of the Karatsuba-Ofman algorithm. An array of Linear Feedback

Shift Registers (LFSR) connected in cascade are used to implement the reduction

step. This modification leads to a theoretical and practical improvement of the

original Karatsuba-Ofman algorithm. The design and implementation results of

this novel KOA-LFSR multiplier were reported in a journal article, which is now

published:

• E. Cuevas-Farfan, M. Morales-Sandoval, A. Morales-Reyes, C. Feregrino-

Uribe, I. Algredo-Badillo, P. Kitsos, and R. Cumplido, “Karatsuba-Ofman

Multiplier with Integrated Modular Reduction for GF(2m),” Advances in

Electrical and Computer Engineering, vol. 13, no. 2, pp. 310, 2013.

5.3 Future work

Further research looking for architectural improvements can be pursued. A thor-

ough architectural optimization process may be implemented in order to improve

the maximum clock frequency, being the pipelining technique one approach to

achieve that goal. An architectural change may be done, following the multipli-

cation strategy proposed in [31]. Resource consumption should be analyzed in

order to reach a smaller design, especially in those architectural modules where

more area consumption is identified. In this sense, a different approach for or-

ganizing the registers may be proposed in order to use less multiplexers. The

cryptoprocessor could be considered within a whole system for computing not

just pairing algorithms but Pairing-based schemes. A communication interface to

send/receive the operands should implemented. For this purpose an option is to

use a shared memory approach so that a master processor uses this memory to

transmit data and also to load the desired program. Finally, in order to accelerate

the codification for the cryptoprocessor, a compiler could be created in order to

translate faster instructions to its binary representation.

5.3. FUTURE WORK 89

Additionally, there are some research ideas that may be explored in more

detail in future works. These ideas include the study of a programmable and

field independent coprocessor, such that the architecture reaches total flexibility.

Research in other cryptographic modules, like Random Number Generators and

Hash Functions, focused for Pairing-based schemes may be driven. Finally, re-

search on architectures resistant to side-channel attacks could be pursued in order

to obtain safer and relivable architectures.

90 CHAPTER 5. CONCLUSIONS

List of Figures

1.1 Encryption and decryption scheme. 2

1.2 Digital signature scheme. 3

1.3 Cryptosystem that bring confidentiality, authentication, data in-

tegrity and non-repudiation services. 4

1.4 General view of modern cryptography. 5

1.5 Infrastructure of public key cryptography. 6

1.6 The Identity Based Cryptography paradigm. 7

1.7 The Boneh and Franklin Identity-based encryption scheme. 9

2.1 C ′ computation at step 9 of algortihtm 1. 22

2.2 Computation of C = C ′ mod f(x), where f(x) is a trinomial. . . 23

2.3 Elliptic curve defined by y2 = x3−9x+3. 2.3(a) over real numbers.

2.3(b) over a finite field of size 23. 26

2.4 Rule for adding P + Q. 2.4(a) over real numbers. 2.4(b) over a

finite field. 27

3.1 Proposed instruction format. 45

3.2 Modular reduction using Linear Feedback Shifts Registers. 47

3.3 Recursive calls tree for the KOA-LFSR algorithm for F2163 51

3.4 Fully Parallel Karatsuba-Ofman Multiplier based on LFSR for F2m .

3.4(a) First call (n = m) using Parallel Linear Feedback Shift Reg-

isters. 3.4(b) Recursive calls (n < m) only use simple shift. 52

3.5 Serial-parallel multiplier based on the Karatsuba-Ofman algorithm

with modular reduction by Parallel Linear Feedback Registers. . . 54

3.6 Squaring operation over F2m . 58

3.7 Proposed architecture for computing bilinear pairings over binary

fields. 59

91

92 LIST OF FIGURES

4.1 Implementation results of KOA-LSFR for trinomials, where F2m is

the underlying finite field. 74

4.2 Implementation results of KOA-LSFR for pentanomials, where F2m

is the underlying finite field. 74

List of Tables

3.1 Comparison of theoretical cost for the KOA classic vs the proposed

KOA-LFSR. 54

3.2 Theoretical cost of the serial KOA multiplier. 57

3.3 Theoretical cost of the proposed cryptoprocessor. 61

3.4 Parameters used in pairing algorithms. 67

4.1 Irreducible polynomials used to validate the KOA-LFSR multiplier. 72

4.2 Comparative between the proposed KOA-LFSR and other multipliers. 75

4.3 Implementation results for serial multiplier using different values of

s. 77

4.4 Comparative of F2m serial multipliers. 77

4.5 FPGA resource consumption per architectural module. 78

4.6 Synthesis results of the proposed architecture for two different devices. 79

4.7 Processing time of the proposed architecture for two different ver-

sion of ηT algorithm. 79

4.8 Comparative of the proposed architecture against custom architec-

tures for binary fields. 80

4.9 Comparative of the proposed architecture against works in the lit-

erature with some degree of flexibility. 81

4.10 Comparative of the proposed architecture with software implemen-

tations. 82

4.11 Comparison of memory consumption of the proposed architecture

against related works. 83

93

94 LIST OF TABLES

Bibliography

[1] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,” Ad-

vances in Cryptology, vol. 196, pp. 47–53, 1985.

[2] D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil Pair-

ing,” in Advances in Cryptology - CRYPTO 2001, vol. 2139, 2001, pp. 213–

229.

[3] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation

for Key Management Part 1 : General,” Special Publication (SP) 800-57,

NIST, no. July, 2012. [Online]. Available: http://csrc.nist.gov/publications/

nistpubs/800-57/sp800-57 part1 rev3 general.pdf

[4] B. Schneier, Applied Cryptography, 2nd ed. Wiley, 1996.

[5] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digi-

tal signatures and public-key cryptosystems,” Communications of the ACM,

vol. 21, no. 2, pp. 120–126, Feb. 1978.

[6] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans-

actions on Information Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[7] V. S. Miller, “Use of Elliptic Curves in Cryptography,” Advances in Cryptol-

ogy - CRYPTO 1985, pp. 417–426, 1986.

[8] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation,

vol. 48, no. 177, pp. 203–209, 1987.

[9] E. Barker and A. Roginsky, “Transitions : Recommendation for Transitioning

the Use of Cryptographic Algorithms and Key Lengths,” Special

Publication (SP) 800-131A, NIST, no. January, 2011. [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

95

96 BIBLIOGRAPHY

[10] K. G. Paterson and G. Price, “A comparison between traditional public key

infrastructures and identity-based cryptography,” Information Security Tech-

nical Report, vol. 8, no. 3, pp. 57–72, Jul. 2003.

[11] D. R. Kuhn, V. C. Hu, W. T. Polk, and S.-J. Chang, “Introduction

to Public key Technolgy and the Federal PKI Infraestructure,” Special

Publication (SP) 800-32, NIST, no. February, 2001. [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-32/sp800-32.pdf

[12] A. Menezes, “An Introduction to Pairing-Based Cryptography,” Recent

trends in cryptography, vol. 447, pp. 47–65, 2009.

[13] C. Gentry and A. Silverberg, “Hierarchical ID-Based Cryptography,” in Ad-

vances in Cryptology - ASIACRYPT 2002, Y. Zheng, Ed. Springer Berlin

/ Heidelberg, 2002, pp. 548–566.

[14] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public Key En-

cryption with Keyword Search,” in Advances in Cryptology - EUROCRYPT

2004. Springer Berlin / Heidelberg, 2004, pp. 506–522.

[15] K. Paterson, “ID-based signatures from pairings on elliptic curves,” Electron-

ics Letters, vol. 38, no. 18, p. 1025, 2002.

[16] S. Mishra, R. A. Sahu, S. Padhye, and R. S. Yadav, “Efficient ID-Based Multi-

proxy Signature Scheme from Bilinear Pairing Based on k-plus Problem,” in

Integrated Computing Technology. Springer Berlin / Heidelberg, 2011, pp.

113–122.

[17] R. A. Sahu and S. Padhye, “New ID-Based Proxy Multi-signature from Pair-

ings,” in Informatics Engineering and Information Science. Springer Berlin

/ Heidelberg, 2011, pp. 174–184.

[18] K. Y. Choi, J. Y. Hwang, and D. H. Lee, “Efficient ID-based Group Key

Agreement with Bilinear Maps,” in Public Key Cryptography - PKC 2004.

Springer Berlin / Heidelberg, 2004, pp. 130–144.

[19] H. M. Lee, K. J. Ha, and K. M. Ku, “ID-based Multi-party Authenticated

Key Agreement Protocols from Multilinear Forms,” in Information Security

- ISC 2005. Springer Berlin / Heidelberg, 2005, pp. 104–117.

BIBLIOGRAPHY 97

[20] L. Chen, Z. Cheng, J. Malone-Lee, and N. P. Smart, “Efficient ID-KEM

based on the SakaiKasahara key construction,” IEE Proceedings - Informa-

tion Security, vol. 153, no. 1, p. 19, 2006.

[21] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil Pair-

ing,” Journal of Cryptology, vol. 17, no. 4, pp. 297–319, Jul. 2004.

[22] “Digital Signature Standard (DSS),” Federal Information Processing

Standars Publication (FIPS) 186-3, NIST, 2009. [Online]. Available:

http://csrc.nist.gov/publications/fips/fips186-3/fips 186-3.pdf

[23] F. Zhang and K. Kim, “ID-Based Blind Signature and Ring Signature from

Pairings,” in Advances in Cryptology - ASIACRYPT 2002. Springer Berlin

/ Heidelberg, 2002, pp. 533–547.

[24] A. Boldyreva, “Threshold Signatures, Multisignatures and Blind Signatures

Based on the Gap-Diffie-Hellman-Group Signature Scheme,” in Public Key

Cryptography - PKC 2003, 2003, pp. 31–46.

[25] R. Sakai and M. Kasahara, “ID based Cryptosystems with Pairing on

Elliptic Curve,” Cryptology ePrint Archive: Report 2003/054, no. 54, 2003.

[Online]. Available: http://eprint.iacr.org/2003/054

[26] X. Cheng, J. Liu, and X. Wang, “Identity-Based Aggregate and Verifiably

Encrypted Signatures from Bilinear Pairing,” in Computational Science and

Its Applications - ICCSA 2005. Springer Berlin / Heidelberg, 2005, pp.

1046–1054.

[27] A. Joux, “A One Round Protocol for Tripartite Diffie Hellman,” Algorithmic

Number Theory, vol. 1838, pp. 385–393, 2000.

[28] R. Barua, R. Dutta, and P. Sarkar, “Extending Jouxs Protocol to Multi Party

Key Agreement,” in Progress in Cryptology - INDOCRYPT 2003, 2003, pp.

205–217.

[29] D. F. Aranha, E. Knapp, A. Menezes, and F. Rodŕıguez-Henŕıquez, “Paral-

lelizing the Weil and Tate Pairings,” in 13th IMA International Conference,

IMACC 2011, 2011, pp. 275–295.

98 BIBLIOGRAPHY

[30] S. Ghosh, D. Roychowdhury, and A. Das, “High Speed Cryptoprocessor for

ηT Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteris-

tic Two Fields,” in Cryptographic Hardware and Embedded Systems - CHES

2011, 2011, pp. 442–458.

[31] J. Adikari, M. A. Hasan, and C. Negre, “Towards Faster and Greener Cryp-

toprocessor for Eta Pairing on Supersingular Elliptic Curve over F21223 ,” in

19th International Conference, Selected Areas in Cryptography 2012, 2012,

pp. 166–183.

[32] J.-L. Beuchat, J. Detrey, N. Estibals, E. Okamoto, and F. Rodŕıguez-

Henŕıquez, “Fast Architectures for the ηT Pairing over Small-Characteristic

Supersingular Elliptic Curves,” IEEE Transactions on Computers, vol. 60,

no. 2, pp. 266–281, Feb. 2011.

[33] R. C. C. Cheung, S. Duquesne, J. Fan, N. Guillermin, I. Verbauwhede, and

G. X. Yao, “FPGA Implementation of Pairings Using Residue Number Sys-

tem and Lazy Reduction,” in Cryptographic Hardware and Embedded Systems

- CHES 2011, no. 07, 2011, pp. 421–441.

[34] N. Estibals, “Compact Hardware for Computing the Tate Pairing over 128-

Bit-Security Supersingular Curves,” in Pairing-Based Cryptography - Pairing

2010, vol. 6487, 2010, pp. 397–416.

[35] J. H. Silverman, The Arithmetics of Elliptic Curves, 2nd ed. Springer, 2009.

[36] P. S. L. M. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient Algorithms for

Pairing-Based Cryptosystems,” in Advances in Cryptology - CRYPTO 2002,

vol. 2442, 2002, pp. 354–369.

[37] P. S. L. M. Barreto, S. D. Galbraith, C. O. Héigeartaigh, and M. Scott,

“Efficient pairing computation on supersingular Abelian varieties,” Designs,

Codes and Cryptography, vol. 42, no. 3, pp. 239–271, Feb. 2007.

[38] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, and T. Tak-

agi, “Algorithms and Arithmetic Operators for Computing the ηT Pairing

in Characteristic Three,” IEEE Transactions on Computers, vol. 57, no. 11,

pp. 1454–1468, Nov. 2008.

BIBLIOGRAPHY 99

[39] F. Hess, N. P. Smart, and F. Vercauteren, “The Eta Pairing Revisited,”

IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4595–4602,

Oct. 2006.

[40] F. Vercauteren, “Optimal Pairings,” IEEE Transactions on Information The-

ory, vol. 56, no. 1, pp. 455–461, Jan. 2010.

[41] D. F. Aranha, J.-L. Beuchat, J. Detrey, and N. Estibals, “Optimal Eta Pair-

ing on Supersingular Genus-2 Binary Hyperelliptic Curves,” in Topics in

Cryptology CT-RSA 2012, ser. Lecture Notes in Computer Science, vol.

7178, 2012, pp. 98–115.

[42] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “High Speed Flexible

Pairing Cryptoprocessor on FPGA Platform,” in Pairing-Based Cryptography

- Pairing 2010, vol. 6487, 2010, pp. 450–466.

[43] Y. Katoh, Y.-j. Huang, C.-m. Cheng, and T. Takagi, “Efficient

Implementation of the ηT Pairing on GPU,” Cryptology ePrint Archive:

Report 2011/540, no. 540, 2011. [Online]. Available: http://eprint.iacr.org/

2011/540

[44] X. Xiong, D. S. Wong, and X. Deng, “TinyPairing: A Fast and Lightweight

Pairing-Based Cryptographic Library for Wireless Sensor Networks,” in 2010

IEEE Wireless Communication and Networking Conference. IEEE, Apr.

2010, pp. 1–6.

[45] V. S. Miller, “Short Programs for functions on Curves,” UNPUBLISHED, pp.

1–7, 1986. [Online]. Available: http://crypto.stanford.edu/miller/miller.pdf

[46] S. Duquesne, “RNS arithmetic in Fpk and application to fast pairing compu-

tation,” Journal of Mathematical Cryptology, vol. 5, no. 1, Jan. 2011.

[47] J. C. Bajard, S. Duquesne, M. Ercegovac, and N. Meloni, “Residue systems

efficiency for modular products summation: application to elliptic curves

cryptography,” in Proc. SPIE 6313, Advanced Signal Processing Algorithms,

Architectures, and Implementations XVI, F. T. Luk, Ed. SPIE, Aug. 2006.

[48] G. R. Blakely, “A Computer Algorithm for Calculating the Product AB Mod-

ulo M,” IEEE Transactions on Computers, vol. C-32, no. 5, pp. 497–500, May

1983.

100 BIBLIOGRAPHY

[49] M. Joye and S.-M. Yen, “The Montgomery Powering Ladder,” in Crypto-

graphic Hardware and Embedded Systems - CHES 2002, ser. Lecture Notes

in Computer Science, B. S. Kaliski, c. K. Koç, and C. Paar, Eds., vol. 2523.

Berlin, Heidelberg: Springer Berlin Heidelberg, Feb. 2003, pp. 291–302.

[50] D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter, M. Langenberg,

D. Auras, G. Ascheid, and R. Mathar, “Designing an ASIP for Cryptographic

Pairings over Barreto-Naehrig Curves,” in Cryptographic Hardware and Em-

bedded Systems - CHES 2009, C. Clavier and K. Gaj, Eds. Springer Berlin

/ Heidelberg, 2009, pp. 254–271.

[51] I. N. Herstain, Abstract Algebra, 3rd ed. Wiley, 1996.

[52] F. Rodŕıguez-Henŕıquez, A. Dı́az-Pérez, N. A. Saqib, and C. K. Koc, Cryp-

tographic Algorithms on Reconfigurable Hardware, ser. Signals and Commu-

nication Technology. Boston, MA: Springer US, 2006.

[53] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Au-

tomata,” Soviet Physics-Doklady, vol. 7, no. 7, pp. 595—-596, 1963.

[54] M. M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster Interleaved

Modular Multiplication Based on Barrett and Montgomery Reduction Meth-

ods,” IEEE Transactions on Computers, vol. 59, no. 12, pp. 1715–1721, Dec.

2010.

[55] C. K. Koc, “Montgomery reduction with even modulus,” IEE Proceedings of

Computers and Digital Techniques, vol. 141, no. 2, pp. 314–316, 2010.

[56] J.-P. Escofier, Galois Theory, ser. Graduate Texts in Mathematics. New

York, NY: Springer New York, 2001, vol. 204.

[57] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. Rodŕıguez-

Henŕıquez, “A Comparison Between Hardware Accelerators for the Modified

Tate Pairing over F2m and F3m ,” in Pairing-Based Cryptography - Pairing

2008, 2008, pp. 297–315.

[58] D. Hankerson, A. Menezes, and M. Scott, “Software Implementation of Pair-

ings,” in Identity-Based Cryptography, M. Joye and G. Neven, Eds. IOS

Press, 2008, ch. XI, pp. 188 – 206.

BIBLIOGRAPHY 101

[59] J. M. Pollard, “Monte Carlo Methods for Index Computation (mod p),”

Mathematics of Computation, vol. 32, no. 143, pp. 918–924, 1978.

[60] D. Coppersmith, “Fast evaluation of logarithms in fields of characteristic

two,” IEEE Transactions on Information Theory, vol. 30, no. 4, pp. 587–

594, Jul. 1984.

[61] D. M. Gordon, “Discrete Logarithms in GF (P) Using the Number Field

Sieve,” SIAM Journal on Discrete Mathematics, vol. 6, no. 1, pp. 124–138,

Feb. 1993.

[62] L. M. Adleman and M.-D. a. Huang, “Function Field Sieve Method for Dis-

crete Logarithms over Finite Fields,” Information and Computation, vol. 151,

no. 1-2, pp. 5–16, May 1999.

[63] A. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic curve log-

arithms to logarithms in a finite field,” IEEE Transactions on Information

Theory, vol. 39, no. 5, pp. 1639–1646, 1993.

[64] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil Pair-

ing,” Journal of Cryptology, vol. 17, no. 4, Jul. 2004.

[65] V. S. Miller, “The Weil Pairing, and Its Efficient Calculation,” Journal of

Cryptology, vol. 17, no. 4, pp. 235–261, Aug. 2004.

[66] S. D. Galbraith and J. F. Mckee, “Pairings on Elliptic Curves over Finite

Commutative Rings,” Cryptography and Coding, vol. 3796, pp. 392–409, 2005.

[67] R. Ronan, C. O’hEigeartaigh, C. Murphy, M. Scott, and T. Kerins, “FPGA

acceleration of the tate pairing in characteristic 2,” in 2006 IEEE Interna-

tional Conference on Field Programmable Technology. IEEE, Dec. 2006, pp.

213–220.

[68] R. Dutta, R. Barua, and P. Sarkar, “Pairing-Based Cryptographic Protocols:

A Survey,” Cryptology ePrint Archive: Report 2004/064, no. 64, 2004.

[Online]. Available: http://eprint.iacr.org/2004/064

[69] M. Morales-Sandoval, C. Feregrino-Uribe, and P. Kitsos, “Bit-serial and digit-

serial GF(2m) Montgomery multipliers using linear feedback shift registers,”

IET Computers & Digital Techniques, vol. 5, no. 2, pp. 86–94, 2010.

102 BIBLIOGRAPHY

[70] G. Zhou, H. Michalik, and L. Hinsenkamp, “Complexity Analysis and Ef-

ficient Implementations of Bit Parallel Finite Field Multipliers Based on

Karatsuba-Ofman Algorithm on FPGAs,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 18, no. 7, pp. 1057–1066, Jul. 2010.

[71] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba Algorithm

for Efficient Implementations,” Cryptology ePrint Archive, vol. 2006/224,

2006.

[72] E. Cuevas-Farfán, M. Morales-Sandoval, A. Morales-Reyes, C. Feregrino-

Uribe, I. Algredo-Badillo, P. Kitsos, and R. Cumplido, “Karatsuba-Ofman

Multiplier with Integrated Modular Reduction for GF(2m),” Advances in

Electrical and Computer Engineering, vol. 13, no. 2, pp. 3–10, 2013.

[73] H. Fan, J. Sun, M. Gu, and K. Lam, “Overlap-free KaratsubaOfman

polynomial multiplication algorithms,” IET Information Security, vol. 4,

no. 1, p. 8, 2010. [Online]. Available: http://digital-library.theiet.org/

content/journals/10.1049/iet-ifs.2009.0039

[74] A. B. El-sisi, S. M. Shohdy, and N. Ismail, “Reconfigurable Implementation

of Karatsuba Multiplier for Galois Field in Elliptic Curves,” Novel Algorithms

and Techniques in Telecommunications and Networking, pp. 97–92, 2010.

[75] G. Zhou, H. Michalik, and L. Hinsenkamp, “Improving Throughput of

AES-GCM with Pipelined Karatsuba Multipliers on FPGAs,” Reconfigurable

Computing: Architectures, Tools and Applications, vol. 5453, pp. 193–203,

2009.

[76] M. Machhout, M. Zeghid, W. El Hadj Youssef, B. Bouallegue, A. Baganne,

and R. Tourki, “Efficient Large Numbers Karatsuba-Ofman Multiplier De-

signs for Embedded Systems,” in Conference of the World Academy of Sci-

ence Engineering and Technology 28. WASET, 2009, pp. 992–1001.

[77] W. El hadj youssef, M. Machhout, M. Zeghid, B. Bouallegue, and R. Tourki,

“Efficient hardware architecture of recursive Karatsuba-Ofman multiplier,”

in 2008 3rd International Conference on Design and Technology of Integrated

Systems in Nanoscale Era. IEEE, Mar. 2008, pp. 1–6.

BIBLIOGRAPHY 103

[78] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López,

“Faster Explicit Formulas for Computing Pairings over Ordinary Curves,”

in Advances in Cryptology - EUROCRYPT 2011, Kenneth G. Paterson, Ed.

Tallinn, Estonia: Springer Berlin / Heidelberg, 2011, pp. 48–68.

