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Instance selection algorithms are used for reducing the number of training instances. However, most of

them suffer from long runtimes which results in the incapability to be used with large datasets. In this

work, we introduce an Instance Ranking per class using Borders (instances near to instances belonging

to different classes), using this ranking we propose an instance selection algorithm (IRB). We evaluated

the proposed algorithm using k-NN with small and large datasets, comparing it against state of the art

instance selection algorithms. In our experiments, for large datasets IRB has the best compromise

between time and accuracy. We also tested our algorithm using SVM, LWLR and C4.5 classifiers, in all

cases the selection computed by our algorithm obtained the best accuracies in average.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Supervised classification is a process in which, using a pre-
viously labeled set known as training set, individual instances are
assigned to a class based on their characteristics. Supervised
classification uses a training set (denoted in this document by T)
for extracting (learning) models or rules in order to classify
(assign a class or a label) unseen instances. The supervised
classification task is carried out by algorithms known as classi-
fiers. Commonly, an element pAT is named an instance, which
has the form p¼ ðpa1,pa2, . . . ,panÞ where pai is the i-th feature or
attribute of p.

Supervised classification is used in many areas such as med-
icine [1–4], bioinformatics [5–7], economy [8,9] and industry [10].
In these areas commonly there are large datasets containing both
categorical and numeric data. When classifiers extract models
using T, it could happen that some instances in T do not provide
relevant information in the learning phase, that is, there are
irrelevant instances in T. The problem is to discard this kind of
instances, therefore a process for discarding them must be
applied. This process is known as Instance Selection (IS)
[11–16], which selects a subset S� T such that S does not contain
irrelevant instances and Acc(S) is as high as possible, where Acc(S)
is the classification accuracy obtained by using S as training for a
classifier. Additionally, for large datasets, using a classifier with
the whole training set sometimes would be unfeasible (given the
time complexity), even with state of the art classifiers. An IS
ll rights reserved.
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algorithm reduces the size of the training set and therefore
training and classification runtimes are reduced too, mainly for
instance-based classifiers (those that use the whole training set
for classifying unseen instances). For these reasons, in order to
obtain a subset of the best instances in T (that allows to obtain as
high accuracy as possible) an IS algorithm is usually applied.
Nevertheless, the majority of the IS algorithms fall into the same
problem and they cannot deal with large datasets because their
selection criteria need long runtimes. Therefore a fast IS algorithm
is needed to perform instance selection in large datasets. In this
work, a fast IS algorithm based on ranking is proposed. The main
characteristic of our algorithm is that it constructs, taking into
account border instances, a ranking for the instances of each class
(which provides useful information for discriminating among
classes). This ranking assigns high scores to border instances.
Then, in order to have a good representation of each class, our
algorithm selects some instances from three different ranges in
the ranking: the best, the medium and the worst ranked. In our
experiments, for small datasets the selection obtained by the
proposed algorithm reaches an accuracy comparable to that
obtained by the selection of DROP3 (one of the most successful
IS algorithms); while for large datasets our algorithm has the best
compromise between time and accuracy.

The rest of the paper is organized as follows: Section 2
presents works related to Instance Selection. Section 3 describes
the proposed IS algorithm. Section 4 presents experiments for
tuning the proposed IS algorithm parameters and for comparing
its accuracy against state of the art IS algorithms. In Section 5 an
evaluation in terms of accuracy and runtime is performed with
large datasets. In Section 6, conclusions and future research
directions are presented.
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2. Related work

In the literature, there are different ways to categorize
instance selection algorithms [13,17–19]. In this paper we will
use the categorization proposed by [17,13] where IS algorithms
are divided into two groups: Wrapper algorithms where the
selection criterion is based on the accuracy obtained by a
classifier, and Filter algorithms where the selection criterion is
not based on a classifier. In the following subsections, some IS
algorithms belonging to either wrapper or filter type are briefly
described.

2.1. Wrapper

The selection rule in most wrapper algorithms is related to the
k-NN (k-nearest neighbor) classifier [20]. An earlier IS algorithm is
CNN (condensed nearest neighbor) [21], which starts with S¼ |
and randomly includes in S an instance from each class and
repeatedly includes in S those instances in T misclassified by S.
Another IS algorithm based on CNN is GCNN (generalized con-
densed nearest neighbor) rule [22] which includes in S instances
of T, which are not represented by S. In the GCNN selection, an
instance is represented when the difference between the dis-
tances to its nearest neighbors and its nearest enemies (i.e.
nearest instances from a different class) are higher than a user
specified threshold.

In practice, there exist noisy instances in the training sets, i.e.
instances such that their description does not coincide with other
instances belonging to the same class. ENN (edited nearest
neighbor) [23] is an IS algorithm commonly used as noise filter.
ENN deletes the noisy instances as follows: it discards an instance
pAT when p does not coincide with the majority class of its k

nearest neighbors, in particular, ENN uses k¼3.
In [24], ICF (Iterative Case Filtering) algorithm was proposed,

which selects instances based on the neighbors (Reachable set)
and the associates (Coverage set) of an instance p. ICF deletes p

whenever p has more neighbors than associates. For any instance
p, the associate set is the set of instances having p as one of their
k-nearest neighbors.

Other IS algorithms related to the associate set are the DROPs
(Decremental Reduction Optimization Procedures) proposed in
[25]. The DROPs discard an instance p if its associates can be
correctly classified without p. According to the author’s experi-
mental results, the best DROP algorithms (among five proposed:
DROP1y DROP5) are DROP3 and DROP5, which outperform other
well known IS algorithms such as ENN and ICF.

The Class Boundary Preserving algorithm (CBP) presented in
[26] also uses the concept of reachable set. They propose an
extension of this concept using multiple levels, involving more
than just the nearest enemy. The extension consists in using the
i-th nearest enemy to obtain the reachable set of level i. Then,
using the multiple reachable sets and the nearest enemies they
determine geometric structure patterns in order to remove
redundant instances.

The algorithm presented in [27] uses a clustering approach for
instance selection that basically performs two steps. The first step
groups instances of each class into clusters. The second step uses
a wrapper process, which starts with an empty list of selected
instances s, then it starts a cycle obtaining a random cluster c.
From c the algorithm selects two random instances, one con-
tained in s and other that is not contained in s. The algorithm
swaps these instances and evaluates the accuracy; if this swap
improves the accuracy, then s keeps the new instance. If not, the
original instance is preserved. The cycle is repeated until either a
maximum number of iterations is achieved or a stopping criterion
is satisfied.
The IS algorithms described in the above paragraphs are
strongly related to the use of the k-NN classifier but there exist
IS algorithms that do not restrict the use of a specific classifier.
Examples of this kind of algorithms are the evolutionary ones,
which use the accuracy of a classifier as selection criterion. In
these IS algorithms, an instance p is deleted whenever it does not
contribute for either maintaining or improving the classification
accuracy. An evolutionary IS algorithm is proposed in [28] where
a memetic approach is used for selecting instances. The memetic
algorithms combine evolutionary algorithms and local search,
within the evolutionary cycle; a local search (among the chromo-
somes) is carried out in order to improve the accuracy and
reducing the size of the solutions.

Other evolutionary IS algorithm is CCIS (Cooperative Coevolu-
tionary Instance Selection) [29]. CCIS evolves two populations:
the selector population (SP) and the combination population (CP).
SP is obtained by splitting T into mutually exclusive blocks and
crossing-mutating two blocks (selector subpopulations); CP is
constructed via selecting an individual from each selector sub-
population. CCIS selects the best CP obtained after creating C

generations of CP followed by P generations of SP.
A characteristic of the evolutionary IS algorithms (and also all

those based on the classification accuracy as selection function) is
the long runtimes required, since at each step, for deciding
whether or not an instance should be removed from T, they
invoke a classifier.

2.2. Filter

Some IS algorithms nonbased on a classifier have been pro-
posed, this kind of algorithms are based on a selection function
which is not based on a supervised classifier. In the following
lines some works related to this approach are described.

The CLU (CLUstering) algorithm [30] is based on clustering.
CLU divides T into c clusters and the selected instances are the
centroids from each cluster. Another IS algorithm based on
clustering is named PSC (Prototype Selection by Clustering)
proposed in [31]. PSC selects border instances (instances near to
class boundaries). In order to select border instances, PSC divides
T into clusters and selects from nonhomogeneous clusters (which
contain objects from more than one class) those instances nearest
to another instance belonging to a different class. PSC not only
selects border instances but also some nonborder ones (the
centers of each homogeneous cluster) in order to retain repre-
sentative instances in nonborder regions.

Another algorithm that selects border instances is presented in
[32]. This work introduces a relation over pairs of instances, called
class conditional nearest neighbor (CCNN). Using this relation two
graphs are constructed, one for the information between
instances in the same class (within-class graph) and another that
represents the information for each pair of different classes
(between-class graph). The IS algorithm has two steps: the first
step removes ‘‘isolated’’ instances, for this, it uses a score based
on the Kullback–Leibler divergence measure [33] using the degree
distribution of the graphs, the instances with high score are
retained. The second step is an iterative step that aims to remove
instances selected in a previous step without affecting the
accuracy.

A different way for selecting instances is via instance relevance,
in this context, the most relevant instances in T are selected. The
ISR (Instance Selection based on Ranking) [34] is an example of
this type of algorithm inspired on the PageRank algorithm [35].
ISR computes the relevance of an instance within the training set
through the typicality concept (the quotient of the instances
average similarity with the rest of instances in its class and the
average similarity with all those instances of a different class).



Fig. 1. Dataset and selected instances by different IS algorithms. (a) A dataset with

two classes. (b) Instances selected by DROP3. (c) Instances selected by DROP5.

(d) Instances selected by PSC. (e) 35% best ranked instances selected by IRB. (f) 35%

medium ranked instances selected by IRB. (g) 35% worst ranked instances selected

by IRB. (h) Instances selected by IRB (35,3,3).
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Once the relevance has been computed, ISR uses a wrapper
process that includes in S (processing instances in a descending
order according to their relevance) those instances yielding the
highest number of correctly classified instances using T as test set.
The selection process is repeated until either there are no
misclassifications by S or there are no instances to process.

Another approach for reducing the number of instances is to
produce a sparse representation of the dataset, this approach is
used mainly by the area of sparse kernel selection methods
[36,37]. The kernel methods use an elegant nonlinear general-
ization, with a kernel function implicitly transforming the feature
space. The drawback with these methods is that the results are
associated with every training instance. Thus, the idea is to reduce
the number of examples, obtaining a sparse kernel representation
of the data selecting the most appropriate samples that represent
the kernel. However, these methods are still complex, in some
cases in Oðn3Þ [38], because of the optimization problem they
have to solve.

Most of the IS algorithms discussed before have a selection
criterion which needs long runtimes; this fact restricts the use of
such algorithms, mainly for large datasets where a costly selec-
tion process is inapplicable. For this reason, some strategies for
expediting the IS process have been proposed. Due their nature,
these approaches do not constitute IS algorithms by themselves
since they are fast ways for selecting instances using any IS
algorithm. In [39] a strategy of this kind, which is based on the
divide and conquer concept, is proposed. The main idea in the
strategy consists in dividing the training set into small mutually
exclusive blocks and then separately applying an IS algorithm to
each block. The instances selected from each block are merged in
subsets of approximately the same size and the IS algorithm is
applied over these subsets. The process is repeated until a
validation error starts to grow. Another strategy based on both
classifier ensembles and the divide and conquer concept is
proposed in [40]. Here, the idea consists of r rounds. In each
round the training data is divided into disjoint blocks and any IS
algorithm is separately applied over them. Those instances
selected for removal in each round are marked and, using a
voting criterion (like a classifier ensemble), the instances marked
more than t times are removed from the training set. Given that
these strategies accelerate any IS algorithm and the final runtime
depends on the speed of the algorithm used for instance selection,
the development of fast IS algorithms it is still a very important
research area since the use of fast IS algorithms with these
strategies would speed up even more the instance selection. In
this paper, a fast IS algorithm is proposed. Our algorithm differs
from others IS algorithms because it is based on computing a
ranking for the instances of each class. Using this ranking, from
each class different rank position instances are selected.
3. Proposed IS algorithm

In a training set, there exist either border or nonborder
instances. Border instances are those near to decision boundaries
between classes (instances near to instances belonging to differ-
ent classes). On the other hand, nonborder instances are the
opposite to the border ones.

After analyzing different IS algorithms we realized that many
of them select border instances. For example, let us consider a bi-
dimensional training set (Fig. 1(a)) and the results obtained by
DROP3, DROP5 and PSC depicted in Fig. 1(b)–(d), respectively.
According to these figures it can be noticed that the majority of
the instances selected by them are border instances, despite these
algorithms do not mention it. This gives us an intuition that
these IS algorithms retain mainly border instances because those
instances provide useful information for discriminating among
classes.

Thus, the ranking idea proposed on this paper tries to preserve
mainly borders of the dataset through the selection of border
instances, that are those instances near to instances from other
classes (nearest enemies).

Based on the idea of preserving border instances, we propose
the IRB (InstanceRank based on Borders) algorithm, which com-
putes the relevance of each instance of a class assigning high scores
to border instances and in order to have a better representation of
the dataset IRB selects some high (closer to the border), medium
and low ranked (farthest to the border) instances. The IRB algo-
rithm consists of three steps.

In the first step, like other IS algorithms [25], IRB uses the ENN
algorithm to filter noise and to smooth borders, this is, to reduce
the overlap between classes.

The second step involves ranking instances of each class, given
an instance pi belonging to the class Cr with r¼ 1, . . . ,m; where m

is the number of classes, IRB analyzes the nearest enemies of pi
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(nearest instances from a different class). The main idea behind
the IRB algorithm is that the best ranked instances will be those
near to instances belonging to different classes (enemies), i.e
border instances. The IRB algorithm computes the rank of an
instance pi in a class Cr via the expression

rankðpiACrÞ ¼
1

k

X

pj AEðpiÞ

sðpi,pjÞ ð1Þ

where sðpi,pjÞ is the similarity between pi and pj, EðpiÞ is the set of
the k nearest enemies of pi.

This expression computes the average of the similarities from
an instance pi to its k nearest enemies (pj instances). This
evaluation is applied to each instance of each class Cr. Therefore
we obtain a ranking for the instances of each class in T.

Once the ranking has been computed, in the third step, IRB
selects a percentage of instances from each class. In order to have
a better representation of the dataset, IRB selects not only border
instances, but also instances in other regions. For this reason, IRB
selects border instances, the best ranked, and some nonborder
instances with medium and low rank. The pseudocode of IRB is
presented in Algorithm 1.

Algorithm 1. IRB pseudocode.
Input: high, medium, low percentage of instances to select
from high-ranked, medium-ranked, and low-ranked
instances respectively

T dataset

k number of nearest enemies used to compute the ranking

Result Instances selected Tout
1
 Tenn ¼ applyENNFilterðTÞ;

2
 foreach Class C do

3

4

5

foreach instance pi in Tenn in Class C do

9 rankðpiACÞ ¼ 1
k

P
pj AEðpiÞ

sðpi,pjÞ

end

�������

6
 end

7
 sortInstancesByClass();

8
 Tout ¼ |

9
 foreach Class C do

10
 9Tout ¼ Tout [ selectInstancesFromðC,high,medium,lowÞ;
10
 end

11
 return Tout
Table 1
Number of instances, number of numeric attributes (Attr-Num) and number of

categorial attributes (Attr-Cat) of the datasets used.

Dataset Instances Attr-Num Attr-Cat

Echocardiogram 132 7 2

Glass 214 10 0

Heart Cleveland 303 5 8

Heart Swiss 123 5 8

Hepatitis 155 6 13

Iris 150 4 0

Liver 345 7 0

Vehicle 846 18 0

Wine 178 13 0

Zoo 101 0 16
The complexity analysis of IRB is straightforward. Since, in the
worst case, each instance pi could have, at most, n�1 enemies, the
loop for obtaining the rank is Oðn2Þ, where n is the number of
instances; sorting the instances is Oðn log nÞ; and the instance
selection process is O(n). Therefore IRB is Oðn2Þ.

In Fig. 1(e)–(h), the results of applying IRB on the dataset shown
in Fig. 1(a) are presented. In Fig. 1(e) the best 35% ranked instances
are depicted, in this figure we can observe that the best ranked
instances tend to be closer to the border (border instances). In
Fig. 1(f) the 35% of medium-ranked instances are depicted, in this
figure the instances selected are farther from the border than the
instances in Fig. 1(e). In Fig. 1(g) the 35% low-ranked instances are
depicted, as we expected, these instances are the farthest from the
border. Our algorithm takes into account this situation assigning
the lowest values to farthest instances from the border. From these
results we can observe that border instances are those with highest
rank, therefore it would be desirable to select them. However, as it
is shown in Fig. 1(b)–(d), IS algorithms also select some nonborder
instances. For this reason IRB also selects some medium and low
ranked instances. In Fig. 1(h) we show the selection made by IRB:
35% of the best ranked, 3% of the medium ranked, and 3% of the
worst ranked. These three percentages (35,3,3) are parameters of
our algorithm. An experimental study about these parameters is
presented in Section 4.1.
4. Experiments over small and medium datasets

In this section we present three experiments. The first one has
as objective studying the behavior of our algorithm when its
parameters vary; through this study, we select the values used for
the rest of the paper. The second experiment was performed to
evaluate our algorithm using datasets commonly used in the
literature for evaluating IS algorithms. Since most IS algorithms
are not designed for large datasets, the datasets used in this
experiment are small and medium size datasets. The third
experiment evaluates the selection of the IS algorithms in terms
of the accuracy they reach for different supervised classifiers, this
is important because most of the IS algorithms only perform well
using k-NN; however as we will show further IRB performs well
with other classifiers.

For the three experiments shown in this section we used 10
small and medium datasets, which have been commonly used for
evaluating IS algorithms (see Table 1). These datasets were taken
from the UCI Repository [41]; we used five Numeric (Glass, Iris,
Liver, Vehicle, Wine) and five Mixed (Echocardiogram, Heart-
Cleveland, Heart-Swiss, Hepatitis, Zoo). For each experiment, the
classification accuracy is obtained by the corresponding classifier
using as training set the subset selected by each IS algorithm. In
addition, the Orig column in each table indicates the accuracy
obtained by using the original training set i.e. the whole training
set without applying any instance selection algorithm. For com-
puting instance relevance, our algorithm uses a similarity func-
tion. In this work, we used the HVDM (Heterogeneous Value
Difference Metric) [42] function, since this function can be used
with numeric and mixed datasets.

For the three experiments, we applied 10 fold cross validation
over each dataset. In all tables presented in this section, the
symbol ‘‘*’’ represents a statistically significant difference with
respect to IRB according to the nonparametric Wilcoxon Signed
test with a confidence level a¼ 0:05 [43]. The results presented in
bold represent the best accuracy scores for each dataset. All
runtimes were obtained with a MacBook Pro with an Intel Core
2 Duo 2.4 GHz and 4 GB of RAM.

4.1. Parameters of our algorithm

We perform a series of experiments in order to obtain the best
values for the parameters of the proposed IS algorithm (% of high,
medium and low ranked instances). The first experiment was
done to evaluate the accuracy reached by the selection obtained
by IRB while increasing the percentage of border instances (high
ranked). We repeated the experiment 10 times using 10 fold cross



Table 3
Classification accuracy results obtained by testing IRB with different parameters

using k-NN (k¼3).

Dataset IRB(35,0,0) IRB(0,35,0) IRB(0,0,35)

Echocardiogram 91.76 88.11 86.22

Glass 64.44 59.30 56.73

Heart Cleveland 82.87 81.02 81.45

Heart Swiss 93.50 92.60 93.50
Hepatitis 83.42 82.65 80.77

Iris 93.26 92.93 89.13

Liver 62.35 59.57 53.04

Vehicle 66.43 63.62 66.52
Wine 84.66 81.91 84.22

Zoo 85.10 81.20 82.10

Average 80.78 78.29 77.57

Table 4
Classification accuracy results obtained using k-NN (k¼3).

Dataset 35,4,4 IRB(35,3,3) 35,2,2 35,1,1 35,0,0

Echocardiogram 93.39 93.39 93.39 93.39 93.39
Glass 63.98 63.98 62.75 61.65 61.65

Heart Cleveland 81.80 81.80 81.80 81.32 81.32

Heart Swiss 93.46 93.46 93.46 93.46 93.46
Hepatitis 84.54 85.17 84.54 84.54 84.54

Iris 94.67 94.67 94.67 94.67 94.67
Liver 63.18 63.46 63.75 65.19 64.03

Vehicle 65.36 65.01 64.77 64.89 62.41

Wine 89.28 88.73 88.73 88.73 88.17

Zoo 90.00 90.00 90.00 90.00 90.00

Average 81.97 81.97 81.79 81.78 81.36

Difference 0.00 0.18 0.01 0.42 –
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validation for each value of the first parameter from {20, 25, 30,
35, 40}. The results of these experiments are presented in Table 2.
The row ‘‘difference’’ represents the difference between the
average of a column and the following one on the left. From this
table, we can notice that the accuracy increases if the first
parameter also increases. However, the improvement in accuracy
from increasing the first parameter decreases each time. From
these experiments we decided to select 35% as the default value
for the first parameter for the following experiments, since the
improvement of using 40% instead of 35% is very small ð0:02Þ. The
second experiment evaluates separately each ranking level (high,
medium and low). Therefore we tested IRB with (35,0,0) (0,35,0),
(0,0,35), the results of these experiments are presented in Table 3.
We can see that the best results were obtained with (35,0,0),
which produced the best accuracy in average and the best
accuracy for nine from 10 datasets. This was a significant result
because it gives the intuition that our ranking performs well, i.e.
border instances (instances with high rank) are the most impor-
tant. Next, we decided to increase the last two parameters
(medium and low), this was made with the idea of getting a
better representation of the dataset by including some nonborder
instances. The results are presented in Table 4. The row ‘‘differ-
ence’’ represents the difference between the average of a column
and the following one on the right. In Table 4 we can observe that,
if we increase the last two parameters, the accuracy in average
increases. However, this difference is zero from (35,3,3) to
(35,4,4). Based on these results, we decided to use (35,3,3) for
the rest of the experiments. These results show that border
instances are the most important to be retained but also some
nonborder instances must be retained.

4.2. Comparison against other instance selection algorithms

In this section, we report a comparison among IRB(35,3,3) (the
parameter values selected for our algorithm in the previous
experiments), ISR, DROP3, DROP5, CLU and PSC instance selection
algorithms. IRB was programmed in Java. For ISR we used the
program written by the authors in Java. For the DROPS we used
the C program written by the authors. For PSC we used the Matlab
implementation written by the authors. For CLU we implemented
the algorithm in Matlab. We have considered these algorithms in
our experiments because according to the results reported in
[25,24] the DROPs outperform in accuracy other relevant algo-
rithms such as ENN and ICF. ISR was included since it is an IS
algorithm based on ranking and CLU and PSC were included since
they are two of the fastest instance selection algorithms.
The algorithms GCNN, CCNN, CBP were not included because
according to results reported in [22,32,26] they are competitive in
Table 2
Classification accuracy results obtained by testing IRB with different value

(k¼3).

Dataset IRB(20,0,0) IRB(25,0,0)

Echocardiogram 92.01 92.59
Glass 59.40 60.69

Heart Cleveland 79.21 79.73

Heart Swiss 93.53 93.53
Hepatitis 83.34 82.98

Iris 91.33 92.53

Liver 59.80 61.92

Vehicle 57.83 58.83

Wine 93.16 93.21

Zoo 83.84 85.05

Average 79.34 80.10

Difference – 0.76
accuracy against DROP3 and their runtimes are similar or longer
than DROP3’s.

It is important to highlight that we did not compare against
strategies designed to accelerate the IS process as [39,29,40]
because they are not IS algorithms, they are strategies that can
be applied to speed up any IS algorithm. Moreover, since these
strategies are based on the divide and conquer approach, the
reduction in time would be of the same order for any IS algorithm.

For selecting the values for the parameters of our algorithm we
followed the same methodology used for CLU [30] and PSC [31].
For these algorithms it is required to fix the number of clusters N

to be created from the training set. In [31] several values of N

were tested and the best ones were N¼8C and N¼6C for CLU and
s for the parameter high that represent border instances using k-NN

IRB(30,0,0) IRB(35,0,0) IRB(40,0,0)

91.75 90.57 90.79

59.97 60.74 61.13

79.78 80.52 77.56

93.53 93.53 92.09

83.87 84.83 84.99
93.47 93.93 93.74

62.87 60.67 64.73
61.79 62.74 64.64
94.32 93.92 90.64

85.45 89.69 91.03

80.68 81.11 81.13

0.58 0.43 0.02



Table 6
Classification accuracy for the LWLR classifier.

Dataset Orig IRB ISR DROP3 DROP5 CLU PSC

Echocardiogram 95.71 93.04 86.07n 90.35 88.74 93.03 97.50
Glass 57.85 53.68 47.61 50.09 52.38 46.70n 56.06
Heart Cleveland 71.93 72.62 72.48 65.35n 73.18 75.18 69.93

Heart Swiss 96.42 93.72 93.46 93.72 92.88 92.04 76.72n

Hepatitis 79.99 82.58 68.54n 64.58n 70.29n 74.16n 73.37n

Iris 98.00 94.67 88.66n 92.00 92.00 88.00n 96.00
Liver 70.13 57.46 52.74 68.26n 69.54n 48.39n 68.57n

Vehicle 44.90 44.90 45.64 49.90 48.30 38.4n 40.30

Wine 92.15 86.54 76.30n 62.75n 60.78n 53.88n 88.72
Zoo 83.32 77.78 87.77n 88.88n 77.77 82.21 88.54n

Average 79.04 75.69 71.93 72.58 72.58 69.19 75.57

Table 7
Classification accuracy for the SVM classifier.

Dataset Orig IRB ISR DROP3 DROP5 CLU PSC

Echocardiogram 93.21 93.21 71.96n 93.21 88.92 93.21 89.28

Glass 72.29 44.05 45.32 59.74 63.50n 56.03n 65.84n

Heart Cleveland 84.79 82.10 76.70 81.18 82.12 80.21 81.17

Heart Swiss 92.25 93.80 93.46 93.71 93.71 92.05 85.44

Hepatitis 86.49 83.50 79.83 69.71n 69.71n 77.46 73.45n

Iris 96.66 94.67 84.00n 91.33 93.33 85.33n 93.33

Liver 70.72 57.98 56.44 58.26 56.78 52.50n 64.07
Vehicle 74.10 60.00 56.03 54.00 65.90 26.3n 44.30n

Wine 97.18 93.20 89.83 94.93 92.71 74.21n 95.52
Zoo 95.55 87.78 92.22 88.88 83.33 95.55n 95.55n

Average 86.32 79.02 74.58 78.49 79.00 73.28 78.79

Table 8
Classification accuracy for the C4.5 classifier.

Dataset Orig IRB ISR DROP3 DROP5 CLU PSC

Echocardiogram 95.71 93.21 70.35n 84.10 92.85 94.46 93.10

Glass 67.29 59.74 51.79 60.19 53.76 49.67 60.58
Heart Cleveland 71.96 74.85 65.93n 68.59 72.16 75.58 69.89

Heart Swiss 93.71 93.71 93.46 93.71 93.71 92.05 87.05
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PSC respectively, where C is the number of classes in the training
set. In our experiments, we use these values for N.

For DROPs and ISR we used the best values for their para-
meters, which were suggested by their authors [34,25]. ISR uses a
specific classifier that is a variant of k-NN (k¼1) using weights,
the results of this algorithm are shown in the column ‘‘ISR’’. Even
more, we also present the results for the ISR algorithm with the
standard k-NN (k¼3) classifier, these results are presented in the
column ‘‘ISR-k-NN’’.

In Table 5 we present the results of applying k-NN (k¼3) using
as training the subsets selected by each evaluated IS algorithm. In
these experiments the best results were obtained by IRB followed
by ISR (with its special classifier). When ISR is used with the
standard k-NN, the accuracies decrease approximately 15%. The
DROP algorithms obtained very similar accuracy results but
lower than ISR. In these experiments CLU obtained the lowest
accuracies.

Even though IRB obtained the best accuracy it is important to
notice that, in most of the results, there is no significant statistical
difference with the other IS algorithms.

4.3. Comparison using other classifiers

In contrast with most IS algorithms which only perform well
using k-NN. One of the most interesting advantages of our IS
algorithm is that it performs well with other classifiers.

In order to show this characteristic, we tested the subsets
selected by each algorithm as training for LWLR, SVM and C4.5
classifiers. These classifiers were chosen because they represent
three quite different approaches for supervised classification. For
these classifiers we used their Weka implementations with the
default parameters [44]. We report the results in Tables 6–8.

For these three classifiers IRB was the best IS algorithm in
average. For the LWLR classifier, PSC obtained the second best
accuracy in average. The DROPs and ISR obtained lower accuracy
results than PSC. The worst result was obtained with CLU. For
SVM, PSC and DROPs algorithms obtained similar accuracy, but
lower than IRB, CLU obtained the worst accuracy. For C4.5, the
algorithm PSC obtained the second best accuracy in average. ISR
obtained the worst results and in most of the datasets it has a
statistical significant difference with IRB.

Taking into account the three classifier results, IRB obtained
the best results in average.
Hepatitis 76.70 82.50 72.75n 63.33n 63.41n 72.79n 73.50

Iris 93.99 94.00 58.00n 92.66 90.66 82.66 90.66

Liver 63.67 64.64 51.84n 59.48 63.67 54.19 63.67

Vehicle 73.80 66.00 49.30n 57.40 73.60 38.8n 74.00
Wine 94.44 91.50 63.59n 84.43 78.88 75.55n 90.77

Zoo 93.33 77.78 42.22n 81.10 88.88n 91.11n 93.33n

Average 82.46 79.79 61.92 74.49 77.15 72.68 79.65
5. Experiments over large datasets

In this section we present four different experiments. The first
one evaluates runtimes and accuracy results while increasing the
size of the datasets. The second experiment was performed to
Table 5
Classification accuracy for the selected algorithms, using k-NN (k¼3).

Dataset Orig. IRB ISR-k-NN I

Echocardiogram 94.82 93.39 69.93 9

Glass 72.94 63.98 53.70 6

Heart Cleveland 83.70 81.80 84.54 8

Heart Swiss 91.02 93.46 93.40 9

Hepatitis 79.95 85.17 78.66 7

Iris 94.66 94.67 58.00 9

Liver 61.76 63.46 56.72 6

Vehicle 70.69 65.01 52.24 5

Wine 92.7 88.73 74.70 9
Zoo 95.55 90.00 38.88 9

Average 83.78 81.97 65.98 8
evaluate the selection with other classifiers (SVM, C4.5, LWLR).
The third experiment shows the scalability of our algorithm with
large datasets. Given that the datasets used in these experiments
SR DROP3 DROP5 CLU PSC

1.96 94.29 91.61 79.80 75.50n

2.16 64.03 62.71 54.20n 59.43

1.77 66.02n 63.10n 72.60n 65.6n

3.40 93.40 93.40 93.40 78.84n

6.79n 79.30 76.00 76.60 79.37

4.00 92.67 94.67 89.33 94.66

0.81 64.90 64.00 52.70n 59.30

7.80n 59.90 60.40 41.61n 62.07

6.07 94.40 93.86 87.37 92.67

3.33 90.00 95.56 93.33 93.33

0.80 79.89 79.53 74.10 76.07
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are large, the subsets obtained by IRB are also large, therefore the
last experiment in this section shows the effect of decreasing the
values of the parameters of IRB for large datasets.
Table 10
Classification accuracy results obtained by different IS algorithms for large

datasets using k-NN (k¼3).

Dataset Orig IRB Drop3 CLU PSC

Text 90.13 87.20 88.01 73.60n 88.59
Segmentation 95.19 89.48 91.24n 79.10n 91.43
Magic 83.80 81.14 80.89 67.75n 72.86n

Letter 94.90 88.02 92.47n 42.52n 77.89n

Chess 56.70 51.31 55.06n 30.20n 43.36

USPS 95.46 91.59 94.76n 78.25n 91.44

Shuttle 99.89 99.79 99.75 95.00n 96.80n

Poker 90k 61.54 54.90 – – –

Covertype 250k 92.73 86.50 – – –

Census Income KDD 93.91 94.70 – – –

Poker 350k 63.84 53.10 – – –

Average 88.01 84.07 86.03 68.63 80.34

Table 11
Classification accuracy for the LWLR classifier.

Dataset Orig IRB DROP3 CLU PSC

Text 90.05 88.35 66.95n 83.10n 87.53

Segmentation 77.43 73.14 39.81n 19.48n 37.62n

Magic 72.38 74.14 77.33n 54.71n 66.46n

Letter 40.27 24.47 28.46n 6.36n 9.73n

Chess 29.44 33.60 35.50 13.90n 34.68

USPS 33.86 32.15 33.83 15.98n 20.94n

Shuttle 86.89 86.90 76.12 69.86n 75.48n

Average 61.47 58.96 51.00 37.63 47.49

Table 12
Classification accuracy for the SVM classifier.

Dataset Orig IRB DROP3 CLU PSC

Text 92.03 88.87 83.54 77.93n 91.47

Segmentation 92.86 88.86 90.76n 21.57n 82.76n

Magic 79.16 78.49 76.83n 67.59n 68.35n

Letter 82.30 76.55 75.28n 6.37n 67.19n

Chess 47.76 45.95 46.11 11.22n 42.12

USPS 95.22 92.87 93.98n 18.70n 94.58n

Shuttle 96.96 95.55 91.39n 79.37n 78.83n

Average 83.76 81.02 79.67 40.39 75.04
5.1. Comparing against other IS algorithms

In order to show that IRB is a fast IS algorithm we performed a
series of experiments with datasets larger than those used in the
previous section. We compared our approach with CLU and PSC
because they are fast IS algorithms, we also included DROP3 because
it is an algorithm that produces high accuracy. ISR was not included
in these experiments due to its high space requirements for
obtaining their ranking, therefore applying ISR is unfeasible for large
datasets. For these experiments we also used 10 fold cross valida-
tion, as well as the Wilcoxon signed test with a confidence level
a¼ 0:05 [43] for evaluating statistically significant differences with
IRB, which are marked with an ‘*’’ in the tables.

In Table 9 we show the time spent (in seconds) by each IS
algorithm for selecting instances from 11 datasets, five with
categorical data (Chess, Poker 90k, Poker 350k, Covertype, Census
Income KDD) and six Numeric datasets (Text, Segmentation,
Magic, Letter, USPS, Shuttle). All these datasets were obtained
from the UCI Repository [41], except USPS obtained from [45],
and obtained from [46]. The Text dataset is a collection of 375
documents in Spanish about natural disasters in Mexico, divided
into four classes: hurricane, inundation, drought, and irrelevant.
This dataset has 2550 attributes, which represent the terms
(words) with frequency 410. Additionally, in Table 9, we show
the number of instances and the number of attributes of each
dataset. The ‘‘–’’ sign indicates that the experiment took more
than 100 h (360,000 s) for only one fold. The ‘‘Total’’ row shows
the sum of runtimes where all IS algorithms could be applied
(Text, Segmentation, USPS, Magic, Letter, Chess, Shuttle and Poker
90k). The results show that DROP3 is very slow when the dataset
has more than 30,000 instances. On the other hand CLU and PSC
are IS algorithms that run very fast with numeric datasets but
they do not run too fast with mixed datasets. The proposed
algorithm was the fastest for the largest datasets with mixed data,
and their runtimes were much shorter than the runtimes of
DROP3 for large numeric datasets.

In Table 10 we present the accuracy (using k-NN, k¼3) obtained
by the different IS algorithms for the large datasets shown in Table 9.
The average was computed taking into account only those datasets
where all IS algorithms could be applied in less than 100 h per fold
(first seven datasets of Table 9). For those datasets where all the
algorithms finished their executions, DROP3 obtained the best
accuracy in average, but for the four largest datasets it did not
produce a result after 300 h. PSC obtained the third best accuracy but
Table 9
Runtimes (sec) for the large datasets for different IS algorithms using k-NN

Dataset #Instances Attr-Num Attr-Cat

Text 375 2550 0

Segmentation 2100 19 0

USPS 9298 256 0

Magic 19,020 10 0

Letter 20,000 16 0

Chess 28,056 0 6

Shuttle 58,000 9 0

Poker 90k 90,000 0 10

Covertype 250k 250,000 10 44

Census Income KDD 299,285 7 33

Poker 350k 350,000 0 10

Total
it is far from the best accuracy. PSC runtimes dramatically grows for
mixed datasets. The same occurs with CLU which was the algorithm
with the worst accuracy results. This behavior for CLU and PSC
on mixed datasets is explained due to the fact that computing
the centroid in a cluster for mixed data is much more complex.
(k¼3).

IRB CLU PSC DROP3

40.5 4.9 6.0 21.1

27.0 6.0 7.0 53.0

894.6 432.4 448.8 11,677.5

211.5 167.1 172.1 2555.6

500.8 217.2 226.2 4765.5

1651.4 3762.3 3862.8 7447.2

2470.7 277.4 288.4 123,000.1

20,301.4 58,813.1 60,519.5 68,834.1

150,139.8 – – –

230,375.7 – – –

313,667.1 – – –

26,097.9 63,680.4 65,530.8 218,354.1
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CLU and PSC compute the centroid as the instance most similar to
the remaining instances in a cluster. In contrast, the centroid for
numeric data is computed as the average of the instances in a
cluster. These two algorithms use a clustering algorithm that
needs to obtain centroids, therefore the runtimes increase very
fast. Finally, IRB obtained the second best results in accuracy and
it was the only algorithm able to be applied on all the tested
datasets.
5.2. Comparison using other classifiers

We also performed experiments using the selected instances
as training for other classifiers (LWLR, SVM and C4.5). In this
experiment we only use those datasets where all IS algorithms
could be applied (see Section 5.1). The results are presented in
Tables 11–13. For all the tested classifiers, in average, our
proposed algorithm, IRB, obtained the best accuracy results.
Table 13
Classification accuracy for the C4.5 classifier.

Dataset Orig IRB DROP3 CLU PSC

Text 90.87 89.01 86.89 86.86 85.11

Segmentation 96.14 90.90 83.57n 19.76n 89.10

Magic 84.93 83.42 82.97 61.08n 82.42n

Letter 88.12 76.91 74.26n 6.88n 72.51n

Chess 62.02 46.53 46.61 10.88n 48.49n

USPS 88.26 83.23 74.92n 16.47n 79.61n

Shuttle 99.97 99.89 99.86 61.11n 99.10

Average 87.19 81.41 78.44 37.58 79.48

Table 14
Runtimes for the different IS algorithms for the Covertype dataset.

# Instances IRB DROP3 PSC CLU

10,000 151.6 1336.0 853.4 833.2

20,000 626.0 7648.9 2709.7 2668.4

30,000 1421.9 27,600.4 6100.9 6132.3

40,000 2424.1 – 25,560.2 25,231.9

50,000 4448.6 – – –

60,000 6460.4 – – –

70,000 8804.3 – – –

80,000 11,170.6 – – –

90,000 13,710.0 – – –

100,000 15,650.1 – – –

Fig. 2. Runtimes spent by each algorithm over differe
DROP3 obtained lower accuracy than using k-NN as we expected
since DROP3 was designed for the k-NN classifier. CLU obtained
the worst accuracy in average for all the classifiers.

5.3. Scalability

In this section we used one large dataset to show the
scalability of the IS algorithms. The experiment was performed
with the Covertype dataset (54 features, seven classes, 250,000
instances, mixed data). This dataset was selected because it was
one of the largest datasets tested in Section 5.1. For this dataset,
in order to show the scalability of the algorithms, we constructed
10 training sets from 10,000 instances to 100,000 instances.

The runtimes results for the Covertype dataset are presented
in Table 14 and Fig. 2. The results show that DROP3 runtimes
grew very fast. For PSC and CLU their runtime growth tendency
was similar to DROP3. This happens because this dataset is not
numeric; therefore CLU and PSC increase their runtimes, because
clustering this kind of data is more expensive in time. The
proposed algorithm IRB was clearly the fastest IS algorithm.

The accuracy results for the Covertype dataset, using k-NN
(k¼3), are shown in Table 15. For the Covertype dataset PSC and
CLU obtained low accuracy. DROP3 obtained the best accuracy for
10,000, 20,000 and 30,000 but its runtimes grew very fast for
large datasets as it can be seen in Fig. 2. IRB was the fastest
algorithm with the second best accuracy.

5.4. Retention for large datasets

In all the previous experiments we used the parameter values
(35,3,3) for IRB since these values obtained the best results for
nt training sets size from the Covertype dataset.

Table 15
Classification accuracy for different IS algorithms for the Covertype dataset.

Instances IRB DROP3 PSC CLU

10,000 65.68 71.71 50.75 35.88

20,000 68.13 73.14 49.63 38.94

30,000 69.34 74.32 61.42 49.82

40,000 70.09 – 62.50 53.40

50,000 71.32 – – –

60,000 71.78 – – –

70,000 73.06 – – –

80,000 73.51 – – –

90,000 74.20 – – –

100,000 74.27 – – –



Fig. 3. Accuracies obtained with three different sets of parameters using IRB for the Covertype dataset.

Fig. 4. Accuracies obtained with three different sets of parameters using IRB for two datasets. (a) Census, (b) Poker 350k.
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small and medium size datasets as it was explained in Section 4.1.
For these values of parameters the retention of the algorithm was
approximately 40%. However, for some domains, specially for
large datasets, it would be needed to obtain a reduced number of
instances, for this reason we present three experiments to show
how reducing the parameter values of IRB affects the accuracy of
our algorithm for large datasets where other algorithms cannot be
applied. It is important to note that the change in the parameters
will not increase the runtimes because the ranking is obtained in
the same way, only the number of selected instances will change.

In Figs. 3 and 4(a) and (b) we present the accuracy results
using three fold cross validation using the k-NN classifier for the
three largest datasets presented in Table 9. For each dataset we
constructed different training sets starting in 50,000 instances
and increasing them in the same size. For each training set
we applied IRB with four different sets of parameters (35,3,3),
(20,3,3), (15,3,3) and (10,3,3).

We can observe that for large datasets IRB obtains the best
results with (35,3,3), but the difference with the other parameter
values is not too big, therefore since our algorithm does not have
competitor for large datasets we could reduce the values of IRB’s
parameters in order to select a set of instances around 15% of the
training set size.
6. Conclusions

In this work we introduced the InstanceRank based on Borders
(IRB) algorithm. Our algorithm constructs a ranking per class and
selects some instances according to this ranking. We evaluated
the proposed algorithm with small and large datasets. For small
datasets its accuracy was comparable to DROP3, one of the most
successful IS algorithms.

For large mixed datasets IRB is the fastest IS algorithm. For
numeric datasets IRB is not the fastest algorithm but it obtains the
best accuracy in a reasonable time. We also tested our algorithm
with other classifiers (SVM, LWLR and C4.5) from quite different
approaches. In all cases our algorithm obtained the best accura-
cies in average. Finally we present experiments showing that for
large datasets IRB can select about the 15% of instances, changing
the values of its parameters, with a small effect in the accuracy.

As future work, we propose to study other strategies for
ranking instances and other methods for selecting instances after
ranking them.
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[31] J. Olvera-López, J. Carrasco-Ochoa, J. Martı́nez-Trinidad, A new fast prototype
selection method based on clustering, Pattern Analysis & Applications 13
(2010) 131–141.

[32] E. Marchiori, Class conditional nearest neighbor for large margin instance
selection, IEEE Transactions on Pattern Analysis and Machine Intelligence 32
(2010) 364–370.

[33] J. Lin, Divergence measures based on the Shannon entropy, IEEE Transactions
on Information Theory 37 (2002) 145–151.

[34] C. Vallejo, J. Troyano, F. Ortega, InstanceRank: bringing order to datasets,
Pattern Recognition Letters 31 (2010) 133–142.

[35] L. Page, S. Brin, R. Motwani, T. Winograd, The Pagerank Citation Ranking:
Bringing Order to the Web, Technical Report, Stanford Digital Library
Technologies Project, 1998.

[36] O. Hamsici, A. Martinez, Sparse kernels for Bayes optimal discriminant
analysis, in: IEEE Conference on Computer Vision and Pattern Recognition,
2007. CVPR’07, IEEE, pp. 1–7.

[37] M. Tipping, C. Nh, Sparse kernel principal component analysis, in: Advances
in Neural Information Processing Systems, vol. 13, 2001.

[38] M. Wu, B. Schölkopf, G. Bakır, A direct method for building sparse kernel
learning algorithms, Journal of Machine Learning Research 7 (2006) 603–624.

[39] A. De Haro-Garcı́a, N. Garcı́a-Pedrajas, A divide-and-conquer recursive
approach for scaling up instance selection algorithms, Data Mining and
Knowledge Discovery 18 (2009) 392–418.

[40] C. Garcı́a-Osorio, A. de Haro-Garcı́a, N. Garcı́a-Pedrajas, Democratic instance
selection: a linear complexity instance selection algorithm based on classifier
ensemble concepts, Artificial Intelligence 174 (5–6) (2010) 410–441.

dx.doi.org/10.1007/s10994-009-5161-3
dx.doi.org/10.1007/s10994-009-5161-3
dx.doi.org/10.1007/s10994-009-5161-3
dx.doi.org/10.1007/s10994-009-5161-3


P. Hernandez-Leal et al. / Pattern Recognition 46 (2013) 365–375 375
[41] A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010.
[42] D. Wilson, T. Martinez, Improved heterogeneous distance functions, Journal

of Artificial Intelligence Research 6 (1997) 1–34.
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