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Abstract This article proposes Laplace transform-homotopy perturbation method (LT-
HPM) to solve nonlinear differential equations with Dirichlet, mixed, and Neumann boundary
conditions. After comparing figures between approximate and exact solutions, we will see
that the proposed solutions are of high accuracy and, therefore, that LT-HPM is extremely
efficient.
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2 U. Filobello-Nino et al.

1 Introduction

Laplace transform (LT) (or operational calculus) has played an important role in mathemat-
ics, not only for its theoretical interest, but also because his methods let to solve, in a simpler
fashion, many problems in science and engineering, in comparison with other mathematical
techniques. In particular, the Laplace transform is useful not only for solving linear ordinary
differential equations with constant coefficients, with initial conditions, but also for solv-
ing some cases of differential equations with variable coefficients and partial differential
equations (Spiegel 1988). On the other hand, applications of LT for nonlinear ordinary dif-
ferential equations mainly aim to find approximate solutions; thus in reference (Aminikhan
and Hemmatnezhad 2012) was reported a combination of homotopy perturbation (HPM) and
LT methods (LT-HPM) to obtain highly accurate solutions for these equations. However, just
as with LT, LT-HPM method has been used mainly to find solutions to problems with initial
conditions (Aminikhan and Hemmatnezhad 2012; Aminikhah 2012), because it is directly
related to them. Therefore, this paper presents three application examples of LT-HPM, in the
search for approximate solutions for nonlinear problems with Dirichlet, mixed, and Neumann
boundary conditions defined on finite intervals.

The case of equations with boundary conditions on infinite intervals has been studied in
some articles and correspond often to problems defined on semi-infinite ranges (Hossein
2011; Khan et al. 2011). However the methods of solving these problems are different from
what will be presented in this paper.

The importance of research on nonlinear differential equations is that many phenomena,
practical or theoretical, are of nonlinear nature. In recent years, several methods focused to
find approximate solutions to nonlinear differential equations, as an alternative to classical
methods, have been reported, such those based on variational approaches (Assas 2007; He
2007; Kazemnia et al. 2008; Noorzad 2008), tanh method (Evans and Raslan 2005), exp-
function (Xu 2007; Mahmoudi et al. 2008), Adomian’s decomposition method (Adomian
1988; Babolian and Biazar 2002; Kooch and Abadyan 2012, 2011; Vanani et al. 2011; Chowd-
hury 2011), parameter expansion (Zhang and Xu 2007), homotopy perturbation method (He
2000, 1999, 2006, 2008; Belendez et al. 2009; El-Shaed 2005; He 2006; Ganji et al. 2009,
2008; Fereidon et al. 2010; Sharma and Methi 2011; Hossein 2011; Vazquez-Leal et al.
2012a, b; Filobello-Nino et al. 2012; Biazar and Aminikhan 2009; Biazar and Ghazvini 2009;
Filobello-Nino et al. 2012; Yasir Khan and Qingbiao Wu 2011; Madani et al. 2011; Aminikhan
and Hemmatnezhad 2012; Aminikhah 2012; Khan et al. 2011), homotopy analysis method
(Patel et al. 2012), and perturbation method (Filobello-Nino et al. 2013) among many others.
From all the above methods, the HPM method is one of the most employed because it has
been successfully used in many nonlinear problems, and its practical application is simpler
than other techniques.

This paper is organized as follows: in Sect. 2, we introduce the basic idea of standard
HPM method. Section 3 provides a basic idea of Laplace transform. For Sect. 4 we introduce
Laplace transform homotopy perturbation method. Additionally, Sect. 5 presents three case
studies. Besides, a discussion on the results is presented in Sect. 6. Finally, a brief conclusion
is given in Sect. 7.

2 Standard homotopy perturbation method (HPM)

The standard HPM was proposed by Ji Huan He as a powerful tool to approach various kinds
of nonlinear problems. The homotopy perturbation method is considered as a combination of
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Laplace transform-homotopy perturbation method 3

the classical perturbation technique and the homotopy (whose origin is in the topology), but
not restricted to small parameters as occur with traditional perturbation methods. For example,
HPM method requires neither small parameter nor linearization, but only few iterations to
obtain highly accurate solutions (He 2000, 1999).

To figure out how HPM method works, consider a general nonlinear equation in the form

A(u) − f (r) = 0, r ∈ �, (1)

with the following boundary conditions:

B(u, ∂u/∂n) = 0, r ∈ �, (2)

where A is a general differential operator, B is a boundary operator, f (r) a known analytical
function, and � is the domain boundary for �. A can be divided into two operators L and N ,
where L is linear and N nonlinear so that (1) can be rewritten as

L(u) + N (u) − f (r) = 0, (3)

Generally, a homotopy can be constructed as (He 2000, 1999)

H(U, p)=(1− p) [L(U )−L(u0)]+ p [L(U )+N (U )− f (r)]=0, p ∈ [0, 1] , r ∈�. (4)

or

H(U, p) = L(U ) − L(u0) + p [L(u0) + N (U ) − f (r)] = 0, p ∈ [0, 1] , r ∈ � (5)

where p is a homotopy parameter, whose values are within range of 0 and 1, and u0 is the
first approximation for the solution of (3) that satisfies the boundary conditions.

Assuming that solution for (4) or (5) can be written as a power series of p

U = v0 + v1 p + v2 p2 + . . . (6)

Substituting (6) into (5) and equating identical powers of p terms, there can be found values
for the sequence ν0, ν1, ν2, . . .

When p → 1, it yields in the approximate solution for (1) in the form

U = v0 + v1 + v2 + v3 . . . (7)

3 Basic idea of laplace transform

Laplace transform of F(t) is denoted by � {F(t)} and is defined by the integral

� {F(t)} = f (s) =
∞∫

0

e−st F(t)dt (8)

Among its most important properties is linearity, that is,

� {c1 F1(t) + c2 F2(T )} = c1 f1(s) + c2 f2(s), (9)

where c1 and c2 are constants and � {F1(t)} = f1(s), � {F2(t)} = f2(s).
Some known properties of LT, employed in this study are

i)

� {1} = 1

s
(s > 0) (10)
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4 U. Filobello-Nino et al.

ii)

� {
tn} = n!

sn+1 (s > 0) (11)

iii)

�
{

F (n)(t)
}

= sn f (s) − sn−1 F(0) − sn−2 F ′(0) − · · · − F (n−1)(0), (12)

where F (n)(t) denotes the n-th derivative of F(t) and � {F(t)} = f (s).
If Laplace transform of F(t) is f (s), then F(t) is called the inverse Laplace transform

of f (s) and is expressed by F(t) = �−1 { f (s)}, where �−1 is called the inverse Laplace
transform operator.

From equations (10) and (11) it is clear that

1 = �−1
(

1

s

)
, (13)

tn = �−1
(

n!
sn+1

)
, (14)

The following result is obtained from (9) and denotes the linearity property of �−1:

�−1 {c1 f1(s) + c2 f2(s)} = c1 F1(t) + c2 F2(T ). (15)

4 Basic idea of Laplace transform homotopy perturbation method (LT-HPM)

The objective of this section is employ LT-HPM to find analytical approximate solutions of
ODEs, as (3).

For this purpose LTHPM follows the same steps of standard HPM until (5); next we apply
Laplace transform on both sides of homotopy equation (5) to obtain

� {L(U ) − L(u0) + p [L(u0) + N (U ) − f (r)} = 0, (16)

using the differential property of LT, we have

sn� {U } − sn−1U (0) − sn−2U ′(0) − · · · − U (n−1)(0) = � {L(u0) − pL(u0)

+p [−N (U ) + f (r)]} , (17)

or

�(U ) =
(

1

sn

) {
sn−1U (0) + sn−2U ′(0) + · · · + U (n−1)(0)

}
+ �{L(u0) − pL(u0)

+p [−N (U ) + f (r)]} (18)

Applying inverse Laplace transform to both sides of (18), we obtain

U = �−1
{ (

1

sn

){
sn−1U (0) + sn−2U ′(0) + · · · + U (n−1)(0)

}

+�
{

L(u0) − pL(u0) + p [−N (U ) + f (r)]

}}
(19)
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Laplace transform-homotopy perturbation method 5

Assuming that the solutions of (3) can be expressed as a power series of p

U =
∞∑

n=0

pnvn, (20)

Then substituting (20) into (19), we get

∞∑
n=0

pnνn = �−1
{(

1

sn

) {
sn−1U (0) + sn−2U ′(0) + . . . + U (n−1)(0)

}

+�
{

L(u0) − pL(u0) + p

[
−N

( ∞∑
n=0

pnvn

)
+ f (r)

]}}
, (21)

Comparing coefficients of p with the same power leads to

p0 : ν0 = �−1
{(

1

sn

)
(sn−1U (0) + sn−2U ′(0) + . . . + U (n−1)(0)) + � {L(u0)}

}
,

p1 : ν1 = �−1
{(

1

sn

)
(�{N (v0) − L(u0) + f (r)})

}
,

p2 : ν2 = �−1
{(

1

sn

)
� {N (v0, v1)}

}
,

p3 : ν3 = �−1
{(

1

sn

)
� {N (v0, v1, v2)}

}
,

. . .

p j : ν j = �−1
{(

1

sn

)
� {

N (v0, v1, v2, . . . , v j )
}}

,

. . . (22)

Assuming that the initial approximation has the form U (0) = u0 = α0, U ′(0) =
α1, . . . , U n−1(0) =αn−1; therefore, the exact solution may be obtained as follows:

u = lim
p→1

U = ν0 + ν1 + ν2 + . . . (23)

5 Case studies

5.1 Dirichlet boundary conditions

The equation to solve is Gelfand’s differential equation which governs combustible gas
dynamics (He 2006).

d2 y(x)

dx2 + εey(x) = 0, 0 ≤ x ≤ 1, y(0) = 0, y(1) = 0, (24)

where ε is a positive parameter.
It is possible to find a handy solution by applying the LT-HPM method.
Identifying terms:

L(y) = y′′(x), (25)

N (y) = εey(x), (26)

where prime denotes differentiation with respect to x.
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6 U. Filobello-Nino et al.

To solve approximately (24), first we expand the exponential term of Gelfand’s problem,
resulting in

y′′ + ε

(
1 + y + 1

2
y2 + 1

6
y3 + · · ·

)
= 0, 0 ≤ x ≤ 1, y(0) = 1, y(1) = 0 (27)

In order to obtain an approximate analytical solution we construct a homotopy in accordance
with (4)

(1 − p)(y′′ − y′′
0 ) + p

[
y′′ + ε

(
1 + y + 1

2
y2 + 1

6
y3

)]
= 0, (28)

or

y′′ = y′′
0 + p

[
−y′′

0 − ε

(
1 + y + 1

2
y2 + 1

6
y3

)]
. (29)

Applying Laplace transform algorithm, we get

� (
y′′) = �

(
y′′

0 + p

(
−y′′

0 − ε

(
1 + y + 1

2
y2 + 1

6
y3

)))
, (30)

and after substituting (12) for n = 2, we obtain

s2Y (s) − sy(0) − y′(0) = �
(

y′′
0 + p

(
y′′

0 − ε

(
1 + y + 1

2
y2 + 1

6
y3

)))
. (31)

Solving for Y (s) and applying Laplace inverse transform �−1

y(x) = �−1
{

1

s2

(
A + �

(
y′′

0 + p

(
−y′′

0 − ε

(
1 + y + 1

2
y2 + 1

6
y3

))))}
, (32)

where we defined A = y′(0) and employed the condition y(0) = 0.

Next, we assume a series solution for y(x), in the form

y(x) =
∞∑

n=0

pnνn, (33)

and choosing

ν0(x) = Ax, (34)

as the first approximation for the solution of (24) that satisfies the condition y(0) = 0.

Substituting (33) and (34) into (32), we get

∞∑
n=0

pnνn =�−1
{

1

s2

(
A−ε�

(
p(1+v0+ pv1+ p2v2+· · · 1

2

(
v0+ pv1 + p2v2 + · · ·)2

+1

6
(v0 + pv1 + p2v2 + · · ·)3)

))}
(35)
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On comparing the coefficients of like powers of p we have

p0 : ν0(x) = �−1
{

A

s2

}
, (36)

p1 : ν1(x) = �−1

{(
− ε

s2 )�(1 + v0 + v2
0

2
+ v3

0

6

)}
, (37)

p2 : ν2(x) = �−1
{(

− ε
s2 )�(v1 + v0v1 + v2

0v1
2

)}
,

. . .

(38)

Solving the above equations for ν0(x), ν1(x), ν2(x), . . ., we obtain

ν0(x) = Ax, (39)

ν1(x) = − ε

2
x2 − εA

6
x3 − εA2

24
x4 − εA3

120
x5, (40)

ν2(x) = ε2

24
x4 + ε2 A

30
x5 + 11ε2 A2

720
x6 + ε2 A3

315
x7 + ε2 A4

1920
x8 + ε2 A5

17280
x9,

. . . (41)

and so on.
By substituting solutions (39), (40) and (41) into (23) and calculating the limit when

p → 1 results in a second-order approximation

y(x) = Ax − ε

2
x2 − εA

6
x3 +

(
ε2

24
− εA2

24

)
x4 +

(
ε2 A

30
− εA3

120

)
x5

+11ε2 A2

720
x6 + ε2 A3

315
x7 + ε2 A4

1920
x8 + ε2 A5

17280
x9 (42)

In order to calculate the value of A, we require that (42) satisfies the boundary condition
y(1) = 0, resulting an equation for A. After considering the value of ε = 1/2 as a case study,
we obtain the following result:

A = 0.2603191187. (43)

Substituting (43) into (42), we obtain

y(x)= 0.2603191187x−0.25x2−0.02169326x3+0.0090048741x4+0.002095822669x5

+0.0002588286386x6+0.00001400063x7+5.979474818x10−7x8

+1.729524016x10−8x9 (44)

5.2 Mixed boundary conditions

Now we will consider the following nonlinear differential equation:

d2 y(x)

dx2 − εy4(x) = 0, 0 ≤ x ≤ 1, y′(0) = 0, y(1) = 1 (45)

which describes the temperature distribution in a uniformly thick rectangular fin radiation to
free space with nonlinearity of high order (Marinca and Herisanu 2011).

123



8 U. Filobello-Nino et al.

We will find a handy solution for (45) by applying the LTHPM method.

Identifying terms:

L(y) = y′′(x), (46)

N (y) = −εy4(x), (47)

where prime denotes differentiation with respect to x.
In order to obtain an approximate analytical solution we construct a homotopy in accor-

dance with (4)

(1 − p)(y′′ − y′′
0 ) + p

[
y′′ − εy4] = 0, (48)

or

y′′ = y′′
0 + p

[−y′′
0 + εy4] . (49)

Applying Laplace transform algorithm we get

�(y′′) = � (
y′′

0 + p
(−y′′

0 + εy4)) , (50)

and after substituting (12) for n = 2

s2Y (s) − sy(0) − y′(0) = �(y′′
0 + p(−y′′

0 + εy4)). (51)

Solving for Y (s)and applying Laplace inverse transform �−1

y(x) = �−1
{

1

s2

(
A + � (

y′′
0 + p

(−y′′
0 + εy4)))} , (52)

where we defined A = y(0), and employed the condition y′(0) = 0.

Next, we assume a series solution for y(x), in the form

y(x) =
∞∑

n=0

pnνn, (53)

and we choose

ν0(x) = A, (54)

as the first approximation for the solution of (45) that satisfies the condition y′(0) = 0.

Substituting (53) and (54) into (52), we get

∞∑
n=0

pnνn = �−1
{

1

s2

(
As + pε�

((
ν0 + pν1 + p2ν2 + · · ·)4

))}
(55)
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On comparing the coefficients of like powers of p we have

p0 : ν0(x) = �−1
{

A

s

}
, (56)

p1 : ν1(x) = ε�−1
{(

1

s2

)
�{ν4

0 }
}

, (57)

p2 : ν2(x) = ε�−1
{(

1

s2

)
�(4ν3

0ν1)

}
, (58)

p3 : ν3(x) = ε�−1
{(

1

s2

)
�(6ν2

0ν2
1 + 4ν3

0ν2)

}
(59)

p4 : ν4(x) = ε�−1
{(

1
s2

)
�(4ν3

1ν0 + 12ν2
0ν1ν2 + 4ν3

0ν3)
}

,

. . .
(60)

Solving the above Laplace transforms for ν0(x), ν1(x), ν2(x), . . . we obtain

p0 : ν0(x) = A, (61)

p1 : ν1(x) = εA4

2
x2, (62)

p2 : ν2(x) = ε2 A7

6
x4, (63)

p3 : ν3(x) = 13ε3 A10

180
x6, (64)

p4 : ν4(x) = 161ε4 A13

5040
x8,

. . . (65)

and so on.
By substituting solutions (61)–(65) into (23) and calculating the limit when p → 1 results

in a fourth-order approximation

y(x) = A + εA4

2
x2 + ε2 A7

6
x4 + 13ε3 A10

180
x6 + 161ε4 A13

5040
x8 + · · · (66)

In order to calculate the value of A, we require that (66) satisfies the boundary condition
y(1) = 1; this gives rise to an equation for A. Considering as case study ε = 1, we obtain
the value

A = 0.7792914176 (67)

Substituting (67) into (66), we obtain

y(x) = 0.7792914176 + 0.1844036774x2 + 0.02909028680x4

+0.005965814985x6 + 0.001248803057x8. (68)

5.3 Neumann boundary conditions

Finally, we will find an approximate solution for

d2 y(x)

dx2 + y(x) − y2(x) = 0, 0 ≤ x ≤ 1, y′(0) = 0, y′(1) = π/4, (69)
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10 U. Filobello-Nino et al.

To obtain a precise solution for (69) by applying the LTHPM method, we identify

L(y) = y′′(x), (70)

N (y) = y(x) − y2(x), (71)

where prime denotes differentiation with respect to x.
We construct the following homotopy in accordance with (4):

(1 − p)(y′′ − y′′
0 ) + p

[
y′′ + y − y2] = 0, (72)

or

y′′ = y′′
0 + p

[−y′′
0 − y + y2] . (73)

Applying Laplace transform to (73) we get

�(y′′) = �(y′′
0 + p(−y′′

0 − y + y2)), (74)

and after substituting (12), for n = 2

s2Y (s) − sy(0) − y′(0) = � (
y′′

0 + p
(−y′′

0 − y + y2)) . (75)

Solving for Y (s)and applying Laplace inverse transform �−1

y(x) = �−1
{

A

s

}
+ �−1

{
1

s2

(�(
y′′

0 + p
(−y′′

0 − y + y2)))} , (76)

where we defined A = y(0), and employed the condition y′(0) = 0.

Next, suppose that the solution for (69) has the form

y(x) =
∞∑

n=0

pnνn, (77)

and choosing

ν0(x) = A, (78)

as the first approximation for the solution of (69) that satisfies the condition y′(0) = 0.

Substituting (77) and (78) into (76), we get

∞∑
n=0

pnνn = �−1
{

A

s
+ p

{(
1

s2

)
� {−(ν0 + pν1 + p2ν2 + · · · )

+(ν0 + pν1 + p2ν2 + · · ·)2} }}
(79)
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Equating terms with identical powers of p, we obtain

p0 : ν0(x) = �−1
{

A

s

}
, (80)

p1 : ν1(x) = �−1
{(

1

s2

)
�(−ν0 + ν2

0 )

}
, (81)

p2 : ν2(x) = �−1
{(

1

s2

)
�(−ν1 + 2ν0ν1)

}
, (82)

p3 : ν2(x) = �−1
{(

1

s2

)
�(−ν2 + ν2

1 2ν0ν2)

}
, (83)

p4 : ν2(x) = �−1
{(

1
s2

)
�(−ν3 + 2ν0ν3 + 2ν1ν2)

}
,

. . .
(84)

Solving the above equations for ν0(x), ν1(x), ν2(x), . . . we obtain

p0 : ν0(x) = A, (85)

p1 : ν1(x) = (A2 − A)x2

2
, (86)

p2 : ν2(x) = (A2 − A)(2A − 1)x2

4! , (87)

p3 : ν3(x) =
[
(A2 − A)(2A − 1)2 + 6(A2 − A)2

]
x6

6! , (88)

p4 : ν4(x) = (2A − 1)(A2 − A)
[
(2A − 1)2 + 36(A2 − A)

]
x8

8! ,

. . . (89)

and so on.
By substituting solutions (85)–(89) into (23) results in a fourth-order approximation

y(x)= A+
(

A2− A

2

)
x2+ (A2− A)(2A−1)

4! x4+ ((A2 − A)(2A − 1)2+6(A2 − A)2)

6! x6

+ (A2 − A)(2A − 1)((2A − 1)2 + 36(A2 − A))

8! x8. (90)

In order to calculate the value of A, we require that (90) satisfies the boundary condition
y′(1) = π/4 so that we obtain

A = −0.6793160999. (91)

Substituting (91) into (90), we obtain

y(x) = −0.6793160999 + 0.5703932320x2 − 0.1121123203x4

+0.01965933892x6 − 0.003111881558x8. (92)

6 Discussion

In this work, LT-HPM was used in the search for handy accurate analytical approximate
solutions for nonlinear ordinary differential equations with boundary conditions defined on
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12 U. Filobello-Nino et al.

finite intervals. In order to show the versatility of this method, we chose equations subject to
Dirichlet, mixed and Neumann boundary conditions; as a matter of fact, Figs. 1, 2, 3, 4, 5, 6,
which compare our approximations with the numerical solution, showed good confirmation
for all cases. Since LT-HPM is expressed in terms of initial conditions for a given differential
equation [see (22)], our procedure was aimed to express the approximate solutions in terms
of an unknown quantity A, related to y(0) or y′(0). We noted that the value of A can be
determined requiring that approximate solution satisfies a given second boundary condition,
from which one obtain an algebraic equation in terms of A, whose solution concludes the
procedure. The above was systematically shown with our examples and proved to be very
efficient.

In the first case study, we found an approximate solution for Gelfand’s equation (24),
which is subject to Dirichlet boundary conditions. Figure 1 shows the comparison between
numerical solution and (44) solutions for ε = 1/2. It can be noticed that curves are in good
agreement, from which is clear the accuracy of our approximation, as a matter of fact Fig.
2, shows that the biggest absolute error (AE) of (44) is scarcely between 0.0005 and 0.0006,
which is remarkably precise, above all taking into account that (44) is just a second order
approximate solution for (24).

Fig. 1 Comparison numerical solution of (24) and LT-HPM approximation (44)

Fig. 2 Absolute error (AE) between numerical solution of (24) and LT-HPM approximation (44)
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Fig. 3 Comparison numerical solution of (45) and LT-HPM approximation (68)

Fig. 4 Absolute error (AE) between numerical solution of (45) and LT-HPM approximation (68)

Fig. 5 Comparison numerical solution of (69) and LT-HPM approximation (92)
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Fig. 6 Absolute error (AE) between numerical solution of (69) and LTPHM approximation (92)

Next, we found an approximate solution for temperature distribution equation (45), which
is subject to mixed boundary conditions. Figure 3 shows that (68) is an accurate analytical
approximate solution for (45); from Fig. 4 we deduce that the biggest absolute error is only
0.000225, whereby the reliability of LT-HPM method in the search for approximate solutions
of equations like (45)is clear .

In the last case study, we employed LT-HPM method to find an approximate solution for
(69), subject to Neumann boundary conditions. In the same way, we obtained a very precise
result, as shown in Figs. (5) and (6), from where it is clear that our fourth-order approximation
(92) has an absolute error whose value is between 0.0005 and 0.0030, which is also accurate.
From the examples studied, we conclude that the approximate solutions, obtained by using
LTHPM are of high accuracy.

7 Conclusions

In this paper LT-HPM was employed to provide approximate analytical solutions for nonlinear
differential equations with Dirichlet, mixed and Neumann boundary conditions. The proposed
procedure is to express the problem of solving a nonlinear ordinary differential equation, in
terms of solving an algebraic equation for an unknown condition A [see (43), (67), and (91)].
Figs. 1,2,3,4,5,6 show the efficiency of this method for solving boundary value nonlinear
problems.

The above is an additional advantage for the method, considering that LT-HPM does not
need to solve several recurrence differential equations, by which is a tool extremely efficient,
useful and precise in practical applications.
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