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Abstract 

This paper introduces the generalized sharpening technique to improve the magnitude characteristics of comb decimation 
filter in passband as well in the folding bands. To this end we design two-stage comb filter. The first stage can be operated 
at low sampling rate by using polyphase decomposition. A simple compensator is applied in the second stage to improve 
the passband characteristic of the comb in the second stage. Then the generalized sharpening technique is applied to 
decrease the passband droop induced by the comb filter placed in the first stage. As a result, a computationally efficient 
comb-based decimation filter is obtained which presents better magnitude characteristics than previous proposed 
sharpening methods.  
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1. Introduction 

The comb filter is the most popular decimation filter usually used in the first stage of the decimation 
process. The efficient implementation structure called Cascaded-Integrator-Comb (CIC) was proposed by 
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Hogenauer  (Hogenauer [1]). The popularity of the comb filter is due to its simplicity, its linear phase response 
and the fact that it does not require multiplications. Nevertheless, comb filters have a high passband droop and 
a poor attenuation in the so-called folding bands (bands around the zeros of comb filter). 

Different works have been proposed to improve the magnitude characteristics of comb filters either in the 
passband or in the stopband regions or both, passband and stopbands, trying to keep a resulting structure with 
a low complexity. To decrease the passband droop, compensation filters have been used (Kim et al., [2]), 
(Dolecek and Mitra, [3]), (Molnar and Vucic, [4]). To improve the stopband characteristic, Lo Presti 
introduced the comb zero rotation and proposed the Rotated Sinc filter (Lo Presti, [5]). This scheme was 
generalized by (Laddomada, [6]), where the GCF (Generalized Comb Filter) was introduced. Different 
approaches were also proposed to improve GCFs (Fernandez and Dolecek, [7]), (Dolecek and Laddomada, 
[8]). 

One of the most useful approaches to improve simultaneously the passband and stopband characteristics of 
comb filters, consists on using the sharpening technique, originally introduced in (Kaiser and Hamming, [9]) 
and then extended in (Hartnett and Boudreaux, [10]) and (Samadi, [11]). Kwentus et al. used the sharpening 
technique of Kaiser and Hamming to improve the magnitude response of the comb filter (Kwentus et al, [12]). 
Split of the comb filter in two or more stages with the application of the sharpening technique only in the last 
stage was proposed in (Stephen and Stuart, [13]), (Dolecek and Mitra, [14]). The use of the sharpening 
technique applied to compensated-comb filters was proposed in (Dolecek and Harris, [15]), (Zaimin He et al., 
[16]). However, using the sharpening introduced by Kaiser and Hamming can not avoid the passband droop 
introduced by the first-stage comb filter in a two-stage comb-based scheme. 

In this paper we propose a generalized sharpening technique to improve comb filter amplitude 
characteristics using two-stage comb filter. The simple compensator filter of (Dolecek and Mitra, [3]) is used 
in the second stage to improve the passband characteristic. Then, the generalized sharpening technique of 
(Samadi, [11]) is applied to the compensated filter of the second stage with the aim to decrease the droop 
induced by the first-stage comb filter. As a result, we obtain an efficient filter where both, passband and 
stopband, are improved. 

This paper is organized in the following way. The next section presents the generalized sharpening 
technique. The proposed method is described in Section III. Section IV shows the discussion of results. 
Finally, the conclusions are given in section V. 

2. Generalized Sharpening Technique 

The sharpening technique proposed in (Kaiser and Hamming, [9]) permits simultaneous improvements of 
both passband and stopband characteristics of linear-phase Finite Impulse Response (FIR) filters. The 
technique is based on an Amplitude Change Function (ACF) which is a polynomial Pm,n(x) that maps the 
amplitude x into an improved amplitude y = Pm,n(x). The improvement in the amplitude near to the passband 
depends on m, the order of tangency of the ACF at the point (x, y) = (1, 1) to a line with slope equal to zero. 
Similarly, the improvements in amplitudes near the stopband depend on the order of tangency of the ACF at 
the point (x, y) = (0, 0) to a line with slope equal to zero, which is denoted as n.  

The sharpening technique proposed in (Kaiser and Hamming, [9]) has a limited control of the 
improvement in both passband and stopband characteristics of the filter. This is because the desired ACF is 
piecewise constant. In (Hartnett and Boudreaux, [10]) is proposed the generalized sharpening technique, 
where the desired ACF is piecewise linear. This offers more direct control to change amplitudes in the 
passband and/or stopband. Besides of the tangencies m and n, the polynomial approximation to the desired 
ACF is controlled by other two parameters, namely, σ, the slope of a line that passes over the point (x, y) = (1, 
1) and δ, the slope of another line that passes over the point (x, y) = (0, 0). The constrains on the 
approximating polynomial y = Pσ,δ,m,n(x) are: 
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1. The nth-order tangency at (x, y) = (0, 0) to the line of slope δ, i. e., Pσ,δ,m,n(x)  δx, for x  0. 
2. The mth-order tangency at (x, y) = (1, 1) to the line of slope σ, i. e., Pσ,δ,m,n(x)  σ(x – 1) +1, for x 1. 

The desired piecewise linear ACF is illustrated in Figure 1, where xpl and xpu are, respectively, the minimum 
and maximum amplitude in the passband of the original filter, and xsl and xsu are the minimum and maximum 
amplitude in the stopband of the same filter, respectively. In the same way, ypl, ypu, ysl, and ysu are the 
minimum and maximum amplitudes in the passband and the minimum and maximum amplitudes in the 
stopband of the sharpened filter, respectively. In (Samadi, [11]) a general formula was deduced to obtain 
directly the desired amplitude change function from the design parameters.  The formula is given by 
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Figure 1. Piecewise linear ACF and its polynomial approximation. 

3. Application of the generalized sharpening to the two-stage comb decimator filter 

The filter proposed in (Dolecek and Mitra, [14]) takes advantage of two-stage decomposition of the comb 
filter to apply the sharpening technique only in the second stage. The resulting transfer function is given by: 
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where M = M1M2  is the decimation factor, L and K are the number of cascaded filters H1(z) and H2(zM1), 
respectively, and Sh{H(z)} means that sharpening has been applied to H(z). The value K must be even 
(Dolecek and Mitra, [14]). The method of (Stephen and Stuart, [13]) is a special case for M1 = 2p with p 
integer and usually p ≤ 3.   
      The advantages of this approach are the following: 

∞ The down-sampling block M can be divided into two separated down-sampling blocks, M1 and 
M2. Since the first folding band, where the worst case attenuation occurs, is essentially determined 
by H2(zM1), it is only required to apply sharpening to this filter. As a result we get better passband 
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and stopband characteristics with lower complexity than applying sharpening to the original 
single stage comb filter. 

∞ The filter H2(zM1) can be moved after the down-sampling by M1, resulting in lower power 
consumption because H2(z) works at a lower rate. 

∞ The filter H1(z) can work at a lower rate after the down-sampling by M1 using polyphase 
decomposition (Aboushady et al., [17]). 

However, regardless of the passband improvement by the sharpened filter of the second stage, the resulting 
filter has always a passband droop that is a consequence of the first-stage comb filter. This can not be solved 
using the traditional sharpening proposed by Kaiser and Hamming. In this proposal we will apply the 
generalized sharpening technique to the compensated comb filter of the second stage. As a result, we can take 
advantage of taking into account the slope parameter σ, and thus correcting the aforementioned effect. The use 
of the generalized sharpening for this purpose is described in the next sub-sections. 

3.1. Sharpening of the second-stage comb filter 

Observe in the Figure 2(a) that, by setting a negative slope σ, the amplitude values over the axis x, that are 
slightly less than one, can be mapped into values greater than one. Since the comb filters have amplitude 
values slightly less than one in their passband region, they will have values greater than one after being 
sharpened. Thus, after cascading the sharpened second-stage comb filter with the first-stage comb filter a 
compensated droop in the passband region can be obtained. On the other hand, knowing that the desired 
stopband amplitude values are zero, the slope δ has to be equal to zero.  

 

  
(a)                                                                            (b) 

Figure 2. (a) The traditional sharpening polinomial P0,0, 1, 1(x) = 3x2 – 2x3 and the generalized sharpening polinomial P-1,0, 1, 1(x) = 4x2 – 3x3. 
(b) Magnitude responses of a comb filter, a sharpened-comb filter with the traditional polynomial 3x2 – 2x3 and a sharpened-comb filter 
with the polynomial 4x2 – 3x3, obtained from the generalized approach. 
 

Figure 2(a) shows a comparison of the traditional 3rd-order polynomial of Kaiser and Hamming with 
parameters σ = 0, δ = 0, m = 1 and n = 1, P0,0, 1, 1(x) = 3x2 – 2x3, and a polynomial with parameters σ = –1, δ = 
0, m = 1 and n = 1, P-1,0, 1, 1(x) = 4x2 – 3x3, obtained from the generalized sharpening approach. Note that the 
value 0.88 is mapped to a new value greater than one, 1.05. Figure 2(b) shows a comparison between the 
magnitude responses of a comb filter, a comb filter sharpened with the polynomial 3x2 – 2x3 and a comb filter 
sharpened with the polynomial 4x2 – 3x3. Observe that the attenuations around the zeros are very similar for 
both sharpened comb filters. However, the sharpened comb which uses the generalized approach, has a 
resulting passband with increased amplitudes over the frequencies ω = 0 to ω ≈  0.05π. This characteristic can 
be used to compensate the droop introduced by the first-stage comb filter.  
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3.2. Sharpening of the compensated second-stage comb filter 

It has been shown recently that applying the Kaiser and Hamming sharpening to a previously compensated 
comb filter results in a better amplitude characteristic with a less complexity, in comparison with the method 
where the sharpening is applied to comb filter (Dolecek and Harris, [15]). This also holds for the generalized 
sharpening technique.  

In Figure 3 we have, on the right side, the amplitudes of three filters: a comb filter and two different 
compensated comb filters. One of them has been compensated with a wideband compensator and the other 
with a narrowband compensator. On the left side we have the mapping from the original values to new values 
through the polynomial 4x2 – 3x3. Observe that, at the frequency point ωp, which represents the upper edge of 
the passband of interest, the amplitude of the comb filter is mapped to a value that is away from the desired 
line with slope σ. Moreover, since this line only approximates the necessary values to compensate the droop 
of the first-stage comb filter, it is not convenient to map values of the original amplitude that are too far from 
1. Additionally, it can be seen that the original amplitude values of the comb filter compensated with a 
wideband compensator (which are greater than one), are mapped to new amplitude values less than one. For 
this reason it is not convenient to use a wideband compensator. On the other hand, the original amplitude 
values of the comb compensated with a narrowband compensator are mapped to values greater than one that 
closely follow the values of the desired line.  

  A simple multiplierless compensator with only one parameter b, which depends on the number of K 
stages, was proposed in (Dolecek and Mitra, [3]). This filter has a low complexity and provides a good 
compensation in a narrow passband. Therefore, we adopt this compensation filter in this proposal. The 
transfer function of this compensator is 

( 2) 2 2( ) 2 1 (2 2)− + + − −⎡ ⎤= − − + +⎣ ⎦
M b b M MG z z z .                                                (5) 

The compensated second-stage filter becomes, 
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Applying the generalized sharpening technique to the compensated filter H2C(z) we obtain the proposed 
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Figure 3.  Amplitude changes of a comb filter and two compensated comb filters through the sharpening polynomial 4x2 – 3x3. 
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where τ is equal to M1(M2 – 1)K/2 + M1M2. The coefficients αj,0 and αj,1 in (8) are calculated from (2). Thus, 
the design parameters are the tangencies m and n, the slope σ, and the compensator parameter b, along with 
the number of cascaded filters L for H1(z) and K for H2(z). An efficient structure for decimation is presented in 
Figure 4, straightforwardly derived from (Saramaki and Ritoniemi, [18]). Note that the filter preceding the 
down-sampler by M1 can be decomposed into polyphase components to avoid operations at high rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Efficient structure for decimation. 

3.3. Choice of design parameters 

The parameter K is closely related to the parameter n. By increasing either K or n, the stopband attenuation 
is enhanced. Nevertheless, it is preferable keeping K constant and as small as possible, whereas n is variable. 
Considering that K must be an even value, we set K = 2. As a consequence, the compensator parameter 
becomes b = 2 (Dolecek and Mitra, [3]). Furthermore, the slope σ controls the values of the ideal ACF that 
approximate the desired values necessary to compensate the passband droop introduced by the first-stage 
comb filter, H1(z). A simple way to assure multiplierless sharpening coefficients is by expressing the slope σ 
as σ = 2–c. The constant c must be decreased as the droop introduced by H1(z) increases. Additionally, the 
tangency of the sharpening polynomial to the line with slope σ at the point (1, 1) is enhanced by increasing the 
parameter m. This results in a better passband characteristic but also in a higher complexity of the overall 
filter. Finally, the parameter L does not have implication in the improvement of the attenuation in the first 
folding band (where the worst-case attenuation occurs). However, L increases the droop of H1(z). For this 
reason, even though it is often considered arbitrary in most two-stage comb-based decimation filters, L should 
be kept as small as possible. 

A simple design procedure for a given stopband specification is presented as follows: 
1. Consider the decimation factor as M = M1M2, and that L and a residual decimation factor v are given. 

Set K = 2, b = 2, δ = 0, n = 0, c = 0 and m = 1. 
2. Increase n until the stopband requirement is satisfied. 
3. Decrease c until an acceptable passband is obtained. 
4. Increase m until the passband characteristic in step 2 can not be improved further.  

4. Discussion of results 

In this section we present design examples to show the effectiveness of the proposal in comparison to other 
two-stage sharpening-based methods.  

Example 1. Consider a decimation process with overall decimation factor D = M1 M2 v = 272, with M1 = 
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The polynomial used in this filter is Pσ,δ,m,n(x) = 5.125x4  – 4.125x5, obtained with m = 1, n = 3, and  σ = – 
2–3. On the other hand, Stuart and Stephen use the traditional Kaiser and Hamming polynomial Pm,n(x) = 3x2 – 
2x3, obtained with m = 1, n = 1, and their filter accomplishes the 100 dB attenuation with K = 4. Figure 5 
shows the magnitude characteristics for both designs. Note that the proposed method achieves a much better 
passband characteristic.  

For both designs, the first-stage comb filter can be decomposed in polyphase components, resulting in the 
same complexity. The second-stage comb filter of the proposed filter is implemented with the decimation 
architecture of Figure 5, whereas the one of (Stephen and Stuart, [13]) uses the structure of (Kwentus et al., 
[12]). Note that the proposed filter has a lower computational complexity, as shown in Table 1.   

 

 
Figure 5. Gain in dB of the Example 1 applying the proposed method and the method of (Stephen and Stuart, [12]). 

 
Example 2. Consider an overall decimation factor D = 176, with M1 = 8, M2 = 11 and v = 2. Assume the 

passband edge frequency ωp = 0.9π/D and the desired stopband attenuation of 60 dB.  
The resulting polynomial for this filter is Pσ,δ,m,n(x) = 15.625x4  – 25.125x5 + 10.5x6, where m = 2, n = 3, 

and  σ = –2–3. Figure 6 shows the magnitude characteristics of the proposed design along with the solution of 
(Dolecek and Harris, [15]), where Pm,n(x) = 2x – x2 is used with K = 8, and the solution of (Zaimin He et al., 
[16]), where Pm,n(x) = 3x2 – 2x3 is used with K = 4. Note that the proposed method achieves a much better 
passband characteristic, with only a slight increase of the computational complexity, as shown in Table 1.  

 

 
Figure 6. Gain in dB of the Example 2 applying the proposed method, the method of (Dolecek and Harris, [15]) and the method of 
(Zaimin He, [16]). 
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Table 1. Comparison of computational complexity of the sharpened filters in Examples 1 and 2 

Method Additions Per Output Sample (APOS) in Example 1 APOS in Example 2 
(Stephen and Stuart, [13]) 3KM2+3K+3 = 219 –– 
(Dolecek and Harris, [15]) –– 2KM2+(3+K)2+1 = 199 
(Zaimin He et al., [16]) __ 3KM2+3K+12 = 156 
Proposed 2RM2+6R–1+coefficient adders = 202  175 

 
increase of the computational complexity. The amplitude in the passband region after sharpening consists on 
values that approximate the values of a line with slope σ that passes through the point (1, 1). However, these 
values are not exactly equal to the ones required to compensate for the passband droop introduced by H1(z), 
even if the ACF becomes ideal. Thus, arbitrary specification in passband can not be met. Additionally, a 
better improvement in comparison with the traditional Kaiser and Hamming is obtained. 
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