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Abstract. This paper considers the analysis and design of OQPSK digital modulation.
We first establish the discrete time formulation, which allows us to find the equivalent
redundant filter banks. It is well known that redundant filter banks are related with
redundant transformation of the Frame theory. According to the Frame theory, the redundant
transformations and corresponding representations are not unique. In this way, we show that
the solution to the pulse shaping problem is not unique. Then we use this property to minimize
the effect of the channel noise in the reconstructed symbol stream. We evaluate the performance
of the digital communication using numerical examples.

1. Introduction

Digital communication has been one of the successful technologies during the last decades. The
main goal of digital communication is to send binary information from one point to another
point. Digital modulation plays a key role in digital communication. Different modulations
techniques have been proposed in the literature. In particular, offset quadriphase shift keying
(OQPSK) provides better performance that QPSK in presence of jitter at the receiver [1].

Multirate signal processing plays an important role in the analysis and design of digital
communications. Particularly, filter banks have been used in both Single Input Single Output
(SISO) and Multiple Input Multiple Output (MIMO) channels [2, 3]. As an example, Discrete
Multitone Modulation (DMT) used in high speed data communication over the twisted pair
telephone line is analyzed by using a filter bank. Generally, filter bank transceivers are important
tools in channel equalization applications [2, 3].

The analysis and design of Orthogonal Frequency Division Multiplexing with Offset
Quadrature Amplitude Modulation (OFDM/OQAM) systems based on filter banks is proposed
in [4]. Thus, the authors proposed a filter bank OFDM/OQAM with an even number of
subbands. The conditions of discrete orthogonality are also established. OFDM/OAQM is
reduced to OQPSK when a single frequency is used and the number of symbols in OQAM is
four with equal energy. Unfortunately, this case is not considered in [4]. Therefore, in this
paper, we propose the use of filter banks in the analysis and design of OQPSK. We show
that the discrete time formulation of OQPSK involves the use of redundant filter banks, which
are particular cases of redundant transformation in the frame theory. The main advantage of
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using redundant transformation is that its representation is not unique. We use this interesting
property to minimize the effect of the channel noise in the reconstructed symbol stream.

This paper is organized as follows. Section 2 gives the analysis of offset QPSK modulation
using multirate systems. Section 3 deals with the design of the pulse shaping filters for OQPSK
systems.

2. Analysis of Offset QPSK using Redundant Filter Banks

This section introduces the discrete time equivalent of OQPSK signals. We assume that the
transmitter OQPSK signal can be written as [1]

y(t) = ℜ

{
∞∑

k=−∞

(
a(k)p(t− kT ) + jb(k)p(t − T/2− kT )

)
ej2πf0t

}
, (1)

where a(n) and b(n) are the real and imaginary parts of QPSK code words, respectively, f0 is
the carrier frequency, T is the symbol duration, and ℜ{·} stands for the real part of {·}. The
basedband equivalent signal of y(t) is given by

s(t) =

∞∑

k=−∞

(
a(k)p(t− kT ) + jb(k)p(t− T/2− kT )

)
. (2)

In order to obtain a maximum spectral efficiency, we critically sample s(t), i.e., Ts = T , where
Ts is the sample period. Consequently, we have

s(n) =

∞∑

k=−∞

c(k)pd(2n − kT ), c(n) =

{
a(n/2), n even,

jb((n − 1)/2), n odd.
(3)

Similarly, pd(n) denotes the oversampled version of the the pulse p(t), that is, pd(n) =
p(nT/2). Using multirate signal processing, we observe that equation (3) represents a decimation
filter operating on the input c(n) [5]. The decimation factor in this case is 2.

We now turn our attention to recover the symbol c(n) from s(n). To do that, we recall that
the right inverse of a decimation filter is an interpolation filter [6]. Therefore, the symbol stream
s(n) can be recovered using the following equation:

c(n) =

∞∑

k=−∞

s(k)g(n − 2k), (4)

where g(n) depends on pd(n).
Therefore, the problem to recover c(n) from s(n) involves the design of g(n). As we shall see,

g(n) is not unique. To do this, consider the Type 1 polyphase components of the z-transform
of pd(n), i.e., Pd(z) = E0(z

2) + z−1E1(z
2), where E0(z) and E1(z) are the Type I polyphase

components of Pd(z). Additionally, using the Type 2 polyphase components R0(z) and R1(z)
of G(z), we have G(z) = R0(z

2) + zR1(z
2), where G(z) is the z-transform of g(n).

Cascading the decimation and interpolation filters, and using the polyphase components of
Pd(z) and G(z), we arrive at the structure shown in Figure 1(a), which can be redrawn as shown
in Figure 1(b). In order to perfectly recover c(n), the following equation should be held (see
Figure 1(b)): R0(z)E0(z) +R1(z)E1(z) = z−ℓ, where ℓ is the system delay.

The structure shown in Figure 1(b) is a redundant filter banks. As it is well known the design
of redundant filter banks is not unique [7]. From the Frame theory, the polyphase components
Rk(z), k = 0, 1, can be written as [7, 8, 9];

[
R0(z) R1(z)

]
=

[
R̂0(z) R̂1(z)

]
+A(z)

[
E1(z) −E0(z)

]
, (5)
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Figure 1. a) cascade of decimation and interpolation b) polyphase form of a), and c)
Simplification of part a).

where A(z) is any system function, and R̂0(z) and R̂1(z) are a particular solution of R̂0(z)E0(z)+

R̂1(z)E1(z) = z−ℓ. Next section illustrates the design of the filters pd(n) and g(n).

3. Design of pulse shaping filters

Figure 2(a) shows the communication model used to find A(z). The signal w(n) stands for the
noise at the communication channel. Using multirate operation, the structure in Figure 2(a) is
reduced to the structure shown in Figure 2(b).

g(n)2pd(n) 2 b

w(n)

(a)

E0(z)
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R0(z)
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bb
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w0(n)
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Figure 2. Communication model.

We select the filter A(z), such that it minimizes the noise component at the output of the
communication system. Consequently, we find that the optimal A(z) is the Wiener filter given
by A(z) = −Suv(z)/Svv(z), where Suv(z) and Svv(z) are respectively the z-transforms of the
correlations Ruv(m) = E(u(n)v∗(n − m)) and Rvv(m) = E(v(n)v∗(n − m)), where E(·) is the
expected value operator. Finally, assuming uncorrelated white noises w0(n) and w1(n), we have

A(z) =
R1(z)Ẽ1(z) −R0(z)Ẽ0(z)

E0(z)Ẽ0(z) +E1(z)Ẽ1(z)
. (6)

We illustrate the design using the following examples.
Example 1. We assume that pd(n) is the wavelet filter db4, i.e., the number of filter tabs

is 6. Since pd(n) is orthogonal, we select g(n) = pd(6 − n) [10]. In this way, we evaluate the
performance of the proposed communication system by using the bit error rate (BER), which
have a closed form equation given by BER = 1

2
erfc (

√
Eb/N0), where Eb/N0 is the signal to

noise ratio (SNR). Figure 3(a) illustrates the comparison between the simulation results and
theoretical value.

Example 2. Now we consider that pd(n) comes from the root Nyquist filter. Additionally,

we applied the Euclidean algorithm to find the corresponding polyphase components R̂0(z) and

R̂1(z) [2]. Figure 3(b) shows the performance of the communication systems. Observe that the
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Figure 3. BER performances of OQPSK transmission a) using Daubechies wavelet filter db4
in Example 1 and b) using multirate filter banks in Example 2.

BER is better using an optimal A(z) than the case where A(z) = 0, i.e., R0(z) = R̂0(z) and

R1(z) = R̂1(z).

4. Conclusions

This paper addresses the analysis and design of offset QPSK modulation systems using multirate
systems. The discrete analysis of offset QPSK modulation involves redundant filter banks,
which are special cases of redundant transformation from Frame theory. The main advantage
of redundant transformation is that its representation is not unique. Using this interesting
property and Wiener theory, we proposed the design of pulse shaping filter of offset QPSK,
which minimize the noise component at the output of the communication system. As a future
work, we will extend our result to OFDM/OQAM.
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