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The design of compensation filters for comb decimators using ampli-
tude transformation is introduced. It is shown that the transformation
of cosine-squared filters provides good compensation characteristics.
For a first-degree polynomial, the slope of the transformation line is
explicitly set as the unique compensator’s multiplierless coefficient.
This coefficient changes proportionally with the increase of the
comb passband droop. Thus, the proposed approach provides an intu-
itive and easy way of designing compensation filters.
Introduction: The decimation process is often realised in several stages.
Let us consider that M is the decimation factor of the first stage and R is
the residual factor. The comb filter, with transfer function H(z) and fre-
quency response H(ejω) =H(ω)e–jω(M–1)/2, where

H(z) = 1
M 1− z−M
( )

/ 1− z−1
( ) = 1

M

∑M−1

i=0

z−i (1)

H(v) = 1
M sin (vM/2)/ sin (v/2) (2)

is commonly used in the first stage of the decimation chain because of its
simplicity [1]. However, the magnitude response of the comb filter exhi-
bits a passband droop and poor attenuation in the stopbands. The attenu-
ation can be improved by cascading K comb filters. Nevertheless, this
results in an increase in the passband droop. The improvement of the
passband magnitude characteristic of comb filters is a subject of active
research [2–8]. In these methods, the approach consists of designing a
low-complexity linear-phase compensation filter, with the transfer func-
tion given in general form by C(zM). By cascading C(zM) with H(z), the
passband droop of the comb filter is decreased, and by applying multi-
rate identities the filter C(zM) is moved after the downsampling by M.
The filters of [5, 6, 8] are multiplierless, hence they have a low complex-
ity. In addition, the filters of [5, 6] can be easily designed because they
have only one design parameter that changes with K.

In this Letter, we introduce the design of compensation filters from
the perspective of polynomial amplitude transformation. We apply a
first-degree amplitude change function (ACF) to a cosine-squared
filter. The slope of the transformation line, explicitly presented as the
unique multiplierless compensator’s coefficient, is expressed in terms
of K and R. This provides a simple and intuitive method of design.

Amplitude change of cosine-squared filters for compensation: The
amplitude response of an Lth-order linear-phase finite impulse response
filter can be changed by using this filter repeatedly. The repetition is dic-
tated by an ACF; this approach was first introduced in [9]. Let us denote
the transfer function and frequency response of the filter to be repeated,
hereafter referred to as the subfilter, as, respectively, F(z) and F(ejω) = F
(ω)ejωL/2. The resulting transfer function is FS(z) and the resulting fre-
quency response is FS(e

jω) = FS(ω, p)e
–jωNL/2, where

FS(z) =
∑N
i=0

z−(N−i)L/2piF
i(z) (3)

FS(v, p) =
∑N
i=0

piF
i(v) = p 1 F(v) . . . FN (v)

[ ]T
(4)

Note that p = [p0 p1 … pN] represents the vector of coefficients of the
polynomial given as

P(x) =
∑N
i=0

pix
i (5)

where P(x) is the ACF of degree N.
The amplitude response of the transformed filter, FS(ω, p), should

ideally be equal to 1/HK(ωM–1) for 0≤ ω≤ π/R in order to compensate
for the passband droop of K cascaded comb filters. Moreover, FS(ω, p)
must be monotonically increasing because HK(ωM–1) is monotonically
decreasing in that frequency range. Hence, F(ω) must be monotonic.
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For a cosine-squared filter, we have

F(z) = 2−2 1+ 2z−1 + z−2
[ ]

(6)

F(v) = cos2 (v/2) (7)

F(ω) is a monotonic function in 0≤ ω≤ π/R and the cosine-squared filter
is a good candidate as the subfilter because of its simplicity. The pro-
posed compensator is C(zM), with C(z) = FS(z). The general form to
design the compensation filter is finding the vector p* of optimal coeffi-
cients as

p∗ = arg min
0≤v≤p/R

1(v, p)
∥∥ ∥∥

Lp

{ }

= arg min
0≤v≤p/R

1− FS(v, p)HK vM−1
( )∥∥ ∥∥

Lp

{ } (8)

where ||ɛ(ω, p)||Lp is the Lp-norm of the error ɛ(ω, p).

Linearly transformed cosine-squared filter: Instead of directly solving
the problem (8), let us look for a practical viewpoint of our
transformation-based approach by exploring the first-degree poly-
nomial, i.e. N = 1 in (5). Fig. 1 shows the amplitude transformation
from F(ω) to FS(ω, p) through the line P(x) = p0 + p1x. This line (upper-
left plot in Fig. 1) has an arbitrary value y0 for x = 1, thus p0 = y0–p1. By
substituting (6) in (3) using p0 = y0–p1 and developing the sum we
obtain

FS(z) = 2−2 p1 + 2 2y0 − p1
( )

z−1 + p1z
−2

[ ]
(9)
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Fig. 1 Linear transformation of cosine-squared filter

To see how compensation characteristic arises, proceed counter-clockwise
starting from upper right. Follow dashed arrows as a reference

Consider the following characteristics of this second-order filter:

1. To transform the droop of the cosine-squared filter [F(ω) in the
upper-right plot of Fig. 1] into a compensating characteristic [FS(ω, p)
in the lower-right plot of Fig. 1] the slope p1 of the line P(x) with
respect to x must be negative, i.e. p1 = –|p1| [see P(x) in the upper-left
plot of Fig. 1, being aware that the values x are presented in the vertical
axis]. The higher the droop of the comb filter (i.e. the greater K ), the
greater |p1|. We can implement the filter from (9) with the structure of
Fig. 2.
2. The value y0 is the amplitude response of the compensator at ω = 0.
For an L∞-minimised error, y0 is less than 1 [8]. However, by setting
y0 = 1, the filter becomes simpler and the maximum peak error deviation
is just slightly increased. In this way, the compensation characteristic
only depends on |p1|.
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Fig. 2 Second-order transformation-based compensator

Usually, y0 = 1

Invariably, any compensator must change its magnitude characteristic
as a function of K and R to provide proper compensation in the band of
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interest. In the proposed scheme, this change is controlled by the coeffi-
cient |p1|. To obtain a simple compensator, |p1| is made multiplierless by
simple rounding as follows:

p1
∣∣ ∣∣ = 2−r round q2K

2 + q1K + q0
( )

/2−r
{ }∣∣ ∣∣ (10)

where r is an arbitrary word-length for the fractional part of the coeffi-
cient; in this proposal chosen as 2≤ r≤ 6. Coefficients q0, q1 and q2 in
(10) are given as

q2 = 0.0736R−2.578 (11)

q1 = 0.1717 (12)

q0 = 0.5438R−3.3 − 0.001845 (13)

Comparison: In the following two examples, we compare the proposed
method with methods [5, 6, 8].

Example 1 (wideband case): ConsiderM = 25, R = 2 and K = 5, which
ensures an attenuation of at least 45 dB in the stopbands.

From (10), we have |p1| = 1 + 2–2 using r = 2. The proposed compen-
sator requires four adders because the coefficient |p1| in Fig. 2 is replaced
with the value 1 + 2–2. From the method in [6], we have the compensator
C1(z) = {–2–4 × [1–(24 + 2)z–1 + z–2]}4. The compensator proposed in [8]
is C2(z) = [(– 2 – 2 – 2 – 4 – 2 – 6)(1 + z – 2) + (1 + 2 – 1–2 – 3 + 2 – 7)z – 1].
Fig. 3 shows the magnitude responses over the band of interest. The
magnitude response of the filter [6] is slightly better. However, this
filter requires the implementation of four basic three-addition subfilters,
which results in 12 additions; three times the number of additions
required in the proposed filter. On the other hand, the deviation of the
proposed filter in comparison to that in [8] is slightly higher, but that
filter requires three more additions and approximately twice the
word-length with respect to the proposed filter. Besides, despite the
number of additions, the proposed method has the advantage of an
easy design procedure with near-optimal solution, whereas method [8]
requires a specialised optimisation.
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Fig. 3 Magnitude responses in passband of filters in example 1

Example 2 (narrowband case): Consider M = 16, R = 4 and K = 4,
which ensures an attenuation of at least 65 dB in the stopbands.

From (10), we obtain |p1| = 2–1 + 2–2 using r = 2. The proposed com-
pensator requires four adders. From method [5], we have the following
compensator, C1(z) = – 2 – (b + 2) × [1− (2(b + 2) + 2)z – 1 + z – 2], with b
= 1. The compensator proposed in [8] is C2(z) = [(– 2 – 3–2 – 4 + 2 – 13)
(1 + z – 2) + (1 + 2 – 1–2 – 3–2 – 9)z–1]. Fig. 4 shows the magnitude
responses over the band of interest. The filter from [5] is the simplest
compensator, and along with the proposed filter it also can be designed
with a straightforward method. However, its magnitude characteristic is
not near optimal. By using only one extra addition, the proposed method
achieves a much better magnitude characteristic.
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Fig. 4 Magnitude responses in passband of filters in example 2

Conclusion: The design of compensation filters has been introduced
from the perspective of amplitude transformation, in which the simple
cosine-squared filter has been chosen as the subfilter to be transformed.
The linear transformation [i.e. N = 1 in (5)] results in a second-order
compensator. In this case, by ensuring that the magnitude response of
the compensator is 1 for ω = 0, the magnitude of the slope of the trans-
formation line becomes the unique coefficient of the compensator. Since
this value grows proportionally to K for a given R, we obtain an intuitive
and efficient method of design. A formula to obtain the compensator’s
coefficient in terms of K and R has been presented. The proposed
filters have good compensation characteristics, a low complexity, and
they can be used for narrowband as well as wideband comb
compensation.
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