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In this paper, we present a class of low-complexity decimation filters for oversampled discrete-time
signals. The proposed class of filters improves the frequency response of classical comb filters in two
respects. First, it introduces extra-attenuation around the so-called folding bands, i.e., frequency intervals
whose spurious signals are folded down to baseband during the decimation process. Second, this class
reduces the passband distortion via an effective droop-compensator block, thus increasing the passband
of the decimation filters. Like comb filters, the proposed class can be realized through multiplierless
architectures, which are also discussed thoroughly in the paper. Unlike comb filters, the proposed filters
have superior spurious signal rejection and a greatly reduced droop in the signal passband. These features
make the proposed filters suitable for multistage decimation applications, such as reconfigurable software
radio receivers, as well as for decimating oversampled digital signals produced by Σ� A/D converters.
The paper discusses several useful techniques for designing the proposed filters in a variety of
architectures with emphasis on non-recursive architectures. Design examples are discussed to highlight
the key frequency features along with implementation issues aimed at reducing the computational
complexity of the filters.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Computationally efficient multistage decimation filters are key
components in wide-band, multi-standard, reconfigurable receivers
[1–5]. Multistage decimation filters [6,7] are also widely used to
decimate signals oversampled by Σ� Analog-to-Digital (A/D) con-
verters [8], and for digital down-converters as employed in digital
receivers [9,10].

An essential block in a multistage decimation architecture is
the comb filter, which can be effectively implemented with only
additions and subtractions [11]. However, the magnitude response
features poor attenuation around the folding bands and a consid-
erable passband distortion that deteriorates the sampled signal.
Several works in the literature have proposed a variety of solu-
tions to improve the frequency response of classical comb filters,
including a work addressing the use of comb filters in multirate
applications [12].

In [13] the authors proposed the design of decimation filters
based on the first 104 cyclotomic polynomials, which was later
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extended in [14] over the first 200 cyclotomic polynomials. A 3rd-
order modified decimation sinc filter was proposed in [15]. The
class of comb filters was then generalized in [16] whereby the au-
thors proposed an optimization framework for deriving the optimal
zero rotations of Generalized Comb Filters (GCFs) for any filter or-
der and decimation factor M . In [17] generalized comb filters are
implemented in non-recursive architecture by exploiting polyphase
decomposition. In [18] the authors proposed a multiplierless ar-
chitecture for the design of 3rd-order GCFs. In [19], the authors
proposed a novel two-stage non-recursive architecture for the de-
sign of generalized comb filters.

In [20] authors proposed computational efficient architectures
for classical comb filters used for multirate applications. Comb fil-
ters were used as constituent blocks in Kaiser and Hamming [21]
sharpened structures in [22], while in [23] the authors proposed
several architectures for comb filters including sharpened struc-
tures. In [24] the authors addressed the design of a novel two-
stage sharpened comb decimator. In [25] the authors proposed
novel decimation schemes for Σ� A/D converters based on Kaiser
and Hamming sharpened filters. A novel multistage comb ro-
tated sinc filter with sharpened response was proposed in [26].
In [27] the authors proposed a new decimation filter improving
the frequency response of Cascaded-Integrator-Comb (CIC) Deci-
mation Filters, while in [28] a simple method to compensate for
the passband distortion of CIC decimation filters was proposed.
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A new cascaded modified CIC-cosine decimation filter was pro-
posed in [29]. In [30] the authors addressed the synthesis of very
sharp decimators and interpolators using the frequency-response
masking technique. Finally, in [31] the authors recently proposed
sharpening of CIC filters with a Chebyshev polynomial resulting in
equi-ripple and wider controlled stopbands.

The main goal of this paper is to propose a reconfigurable, mul-
tiplierless, low-complexity decimation filter architecture that, com-
pared to recursive implementation of comb filters, i.e., CIC architec-
tures, features 1) improved passband magnitude response, 2) im-
proved stopband magnitude response around the folding bands of
CIC filters, 3) no integrator section operating at high input sample
rate, and 4) low-power consumption. Moreover, the paper provides
several hints to reduce the computational complexity of the pro-
posed filters by exploiting polyphase decomposition. Non-recursive
architectures are discussed by focusing on specific decimation fil-
ters.

The rest of the paper is organized as follows. We first introduce
the z-transfer function of the proposed class of filters in Section 2,
where we also highlight its key features. In this section we also
discuss the design of such filters by addressing the choice of key
design parameters. Section 3 presents several examples aimed at
contrasting the magnitude response of the proposed filters with
classical comb filters. Several effective architectures for implement-
ing the proposed decimation filters are discussed in Section 4,
while comparisons with state-of-the-art techniques are presented
in Section 5. Finally, Section 6 draws the conclusion.

2. The proposed decimation filters

The objective of this section is to introduce the notation used
throughout the paper along with the proposed class of decimation
filters and the criteria for the choice of the key filter parameters.

2.1. Notation

Let us briefly describe the notation used throughout the work
by referring to the block diagram in Fig. 1. A baseband real in-
put signal x(t) with analog bandwidth [−Bx,+Bx] is oversampled
by an A/D converter and converted into the digital signal x(nTo)

with sample rate fo . The variable n identifies the integer dis-
crete time. The interval To is related to the sampling frequency
fo and the signal bandwidth Bx through fo = 1

To
= 2ρBx , where

ρ � 1 is the oversampling ratio. Notice that ρ > 1 for oversampled
signals, while ρ = 1 for A/D converters operating at the Nyquist
frequency. The maximum digital frequency in the input signal is
fc = Bx

fo
= 1

2ρ , meaning that the analog frequency Bx is mapped to
fc upon sampling. With this setup, the sampled signal x(nTo) at
the input of the first decimation filter H(z) shows frequency com-
ponents in the range [− fc, fc] as pictorially depicted in Fig. 1. The
oversampling factor ρ is usually distributed between two, or more,
decimation stages; therefore, it is ρ = M · ν where M and ν are,
respectively, the decimation factors of the first and second decima-
tion stages.

Upon considering the sample frequency response in Fig. 1, it is
worth noticing that, unlike classical filter design, the design of dec-
imation filters imposes stringent constraints in the folding bands
defined as[

p

M
− fc; p

M
+ fc

]
, p ∈

{
1, . . . ,

⌊
M

2

⌋}
. (1)

On the other hand, the remaining frequency intervals, called don’t
care bands, do not require stringent selectivity since any spurious
signal falling within these bands will be filtered out by the subse-
quent stages in the multistage decimation architecture.
Fig. 1. Conceptual block diagram of a 2-stage decimation architecture along with a
pictorial representation of the frequency response of the first decimation filter H(z)
and the key frequency intervals to carefully consider in the design.

2.2. The proposed decimation filters

The main goal of this paper is to introduce a new class of dec-
imation filters for improving the magnitude response of classical
comb filters while retaining their most important features, namely
simple structure, low-power and multiplierless implementation. In
order to meet this goal, we propose the following decimation fil-
ters with z-transfer function

H(z) = HC (z)Hs(z)G
(
zM)

. (2)

In the previous equation, G(zM) is the z-transfer function of a
passband droop-compensator filter, Hs(z) is the z-transfer function
of a filter used to increase folding band attenuation, and HC (z), the
z-transfer function of a K th-order comb filter decimating by M , is
defined as

HC (z) =
(

1

M

1 − z−M

1 − z−1

)K

. (3)

The definitions of the basic building blocks G(zM) and Hs(z) in (2)
are derived in the next sections.

2.3. Droop-compensation filter

The main goal of filter G(zM) is to achieve passband droop
compensation using an as simple as possible multiplierless filter
with one free parameter independent from the decimation fac-
tor M , while working at the lower rate after decimation by M .

An effective, yet simple, compensation filter has magnitude re-
sponse defined by [28]

∣∣G(
e jωM)∣∣ = ∣∣1 + 2−b sin2(ωM/2)

∣∣, (4)

where b is a suitable integer belonging to the set {−2, . . . ,2}, and
ω is related to the digital frequency f through the relation ω =
2π f . Upon using the well-known trigonometric relation sin2(α) =
[1 − cos(2α)]/2, the z-transfer function in (4) can be rewritten as

G
(
zM) = B

[
1 + A · z−M + z−2M]

. (5)

The constant B is a scaling factor ensuring unitary gain at the
digital frequency zero. It is defined in power-of-2 form as B =
−2−(b+2) , whereas A = −[2b+2 + 2]. The choice of the parameter
b is discussed in the following.
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2.4. Stopband improvement filter

The goal of this subfilter is to improve the attenuation of the
overall filter H(z) in (2) around the most critical folding band cen-
tered at the digital frequency 1/M , using an efficient multiplierless
architecture employing only two additions at lower rate.

In order to achieve this goal, we propose a cascade of two co-
sine filters:

Hs(z) = 1 + z−N1

2

1 + z−N2

2
, (6)

where N1 and N2 are two suitable integers whose choice is dis-
cussed later in the paper.

The magnitude response corresponding to (6) can be found
with the substitution z = e jω:

∣∣Hs
(
e jω)∣∣ =

∣∣∣∣1 + e− jωN1

2

1 + e− jωN2

2

∣∣∣∣. (7)

Upon recalling the Euler’s relation

cosα = (
e+ jα + e− jα)

/2,

and rewriting (7) as

∣∣∣∣e− j
ωN1

2
e+ j

ωN1
2 + e− j

ωN1
2

2
e− j

ωN2
2

e+ j
ωN2

2 + e− j
ωN2

2

2

∣∣∣∣, (8)

the magnitude response of Hs(z) easily follows

∣∣Hs
(
e jω)∣∣ = ∣∣cos(ωN1/2) cos(ωN2/2)

∣∣. (9)

2.5. Transfer function of the overall filter

The transfer function of the proposed filter can be derived upon
replacing (5), (6) and (3) in (2):

H(z) = C

(
1 − z−M

1 − z−1

)K (
1 + z−N1

)

· (1 + z−N2
)[

1 + A · z−M + z−2M]
, (10)

where C , a scaling factor ensuring unitary gain at zero frequency,
is defined as

C = −2−(b+4)

M K
.

The magnitude response corresponding to (2) can be found upon
substituting z = e jω:

∣∣H
(
e jω)∣∣ =

∣∣∣∣ 1

M K

sinK (ωM/2)

sinK (ω/2)
cos(ωN1/2) cos(ωN2/2)

· [1 + 2−b sin2(ωM/2)
]∣∣∣∣. (11)

From the previous equation, we can notice the presence of three
independent design parameters, namely b, N1 and N2. These pa-
rameters can be chosen given the main design parameters M
and K , i.e., the decimation factor and the order of the comb fil-
ter, respectively. The choice of b, N1 and N2 is addressed in the
next section.
Fig. 2. Passband droop as a function of the decimation factor M for three different
values of the comb order K , as noted in the legend. As far as the proposed filter is
concerned, the droop is the maximum deviation from unity of (11) across the pass-
band [0, fc = 1/2ρ]. For comb filters, the droop is the frequency response evaluated
at the frequency fc . Circle-marked curves refer to the droop of the proposed filters
H(e jω) in (11), while the cross-marked curves refer to the droop of classical comb
filters HC (e jω) in (3).

2.6. Selection of the design parameters

Choice of N1 and N2. Parameters N1 and N2 depend on the
value of the decimation factor M . The main objective of the pro-
posed filter in (6) is to increase the attenuation of a classical
K th-order comb filter across the first folding band, which is lo-
cated around the frequency 1/M as shown in Fig. 1. Therefore, we
choose N1 and N2 such that two additional zeros are placed in
proximity of the first K th-order zero of the comb filter in (3). We
recall that the comb filter in (3) has frequency response

1

M K

sinK (ωM/2)

sinK (ω/2)
,

with zeros located at the digital frequencies where the numerator
is zero, namely f p = p

M ,∀p ∈ {1, . . . , � M
2 �}, where �·� is the floor

of the underlined number. Given this setup, we choose N1 and N2
to get zeroes on the left and right side of the first comb zero at
1/M , respectively. Depending on M , we can distinguish between
the following two cases:

M even : N1 = M

2
− 1; N2 = M

2
+ 1;

M odd : N1 =
⌊

M

2

⌋
; N2 = N1 + 1. (12)

Choice of b. The design parameter b depends on both K and
the decimation factor ν of the stage that follows the first deci-
mator by M , while it is very weakly dependent on M . To clarify
the latter statement, Fig. 2 shows the droop of the proposed fil-
ters H(e jω) in (11) as a function of the decimation factor M for
three sample values of K . As far as the proposed filter is con-
cerned, the droop is the maximum deviation from unity of (11)
across the passband [0, fc = 1/2ρ]. For comb filters, the droop is
the frequency response evaluated at the frequency fc .

Fig. 2 clearly shows the weak dependence of the droop
against M , and the improvement guaranteed by the proposed fil-
ters compared to classical comb filters.
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Table 1
Values of b for M = 16 and ν as noted in each column.

K ν = 2 ν = 3 ν > 3

1 b = 1 b = 1 b = 1
2 b = 0 b = 1 b = 1
3 b = 0 b = 0 b = 0
4 b = −1 b = 0 b = 0
5 b = −1 b = 0 b = 0
6 b = −1 b = −1 b = 0

The decimation factor ν determines the passband width and
the folding bands. We used a MATLAB program to exhaustively
search for the best values of b minimizing the passband distor-
tion of the overall filter (11) for any given M , K and ν . The values
of b for M = 16 and various values of ν are shown in Table 1.

Before concluding this section, we would like to point out that
the stopband response of the proposed filter (11) can be improved
by cascading more cosine filters in the z-transfer function (6) and
upon choosing the corresponding parameters N1 and N2 in order
to have zeros in the first folding band centered on 1/M . However,
this extension comes with an increased computational complexity
of the overall structure.

3. Magnitude response of the proposed filters

In this section we show several filter frequency responses for
the sake of contrasting the magnitude response of the proposed
class of decimation filters in (11) to the magnitude response of
classical comb filters in (3).

In the first design example we consider a decimation factor
M = 16 and an oversampling factor ρ = 32. This example is typi-
cal of moderately oversampled signals. The normalized bandwidth
of the sampled signal is fc = 1

2ρ = 0.0156. This means that the
analog bandwidth Bx of the analog signal x(t) is mapped to the
digital frequency interval [−0.0156,+0.0156] after A/D conversion
with sample rate fo . The first folding band (from (1) using p = 1)
is[

1

M
− fc = 0.0469,

1

M
+ fc = 0.0781

]
.

Let us discuss the design steps of the proposed decimation fil-
ter.

1. Given M = 16, from (12) it is N1 = 7 and N2 = 9.
2. Considering K = 5 and ν = 2, from Table 1 we find b = −1.

Fig. 3 compares the magnitude responses of the proposed filter
H(e j2π f ) with that of a 5th-order comb filter (K = 5 and M = 16
in (3)) across the digital frequency interval [0,0.5]. A key obser-
vation here is that the magnitude response of the proposed filters
lies beneath the magnitude response of comb filters in the fold-
ing bands, especially in the first one. This behavior can be clearly
seen in the rightmost plot of Fig. 4 around the first folding band:
the continuous curve, which is the magnitude response of the pro-
posed filter, falls below the magnitude response of the comb filter
thus yielding a much greater spurious signal rejection around the
considered folding band.

The passband behavior of the proposed filter H(e j2π f ) is com-
pared to the one of a classical 5th-order comb filter in the leftmost
plot of Fig. 4. Notice that the proposed filter introduces a maxi-
mum droop of 0.9 dB, while the 5th-order comb filter presents a
signal distortion as high as 4.5 dB at fc = 0.0156. The latter value
must be compensated by the FIR filter following the comb filter
in the multistage decimation chain, thus increasing the computa-
tional complexity of the overall decimation architecture.
Fig. 3. Magnitude responses (in dB) of the proposed filter H(e j2π f ) (solid curve) and
of a classical comb filter (dashed curve) for the following set of design parameters:
M = 16, K = 5, b = −1, N1 = 7, N2 = 9, ν = 2.

Fig. 4. Magnitude responses (in dB) of the proposed filter H(e j2π f ) (solid curve)
and of a classical comb filter (dashed curve). The leftmost plot shows the magnitude
response behavior at baseband, whereas the rightmost plot highlights the response
around the first folding band. In all subplots, the set of design parameters is as
follows: M = 16, K = 5, b = −1, N1 = 7, N2 = 9, ν = 2.

In the second design example we consider a decimation factor
M = 32 and an oversampling factor ρ = 64. This example is typ-
ical of highly oversampled signals. The normalized bandwidth of
the sampled signal is fc = 1

2ρ = 0.0078125, while the first folding
band (from (1) with p = 1) is[

1

M
− fc = 0.0234375,

1

M
+ fc = 0.0390625

]
.

Let us discuss the design steps of the proposed decimation fil-
ter.

1. Given M = 32, from (12) it is N1 = 15 and N2 = 17.
2. Considering K = 5 and ν = 2, from Table 1 we find b = −1.

As pointed put in a previous section, the values of b can be
considered as independent of the values of the decimation fac-
tor M .



G. Jovanovic Dolecek, M. Laddomada / Digital Signal Processing 23 (2013) 1773–1782 1777
Fig. 5. Magnitude responses (in dB) of the proposed filter H(e j2π f ) (solid curve) and
of a classical comb filter (dashed curve) for the following set of design parameters:
M = 32, K = 5, b = −1, N1 = 15, N2 = 17, ν = 2.

Fig. 6. Magnitude responses (in dB) of the proposed filter H(e j2π f ) (solid curve)
and of a classical comb filter (dashed curve). The leftmost plot shows the magnitude
response behavior at baseband, whereas the rightmost plot highlights the response
around the first folding band. In all subplots, the set of design parameters is as
follows: M = 32, K = 5, b = −1, N1 = 15, N2 = 17, ν = 2.

Fig. 5 compares the magnitude responses of the proposed filter
H(e j2π f ) with that of a 5th-order comb filter (K = 5 and M = 32
in (3)) across the digital frequency interval [0,0.5]. As already no-
ticed in the previous design case, the magnitude response of the
proposed filters lies beneath the magnitude response of comb fil-
ters in the folding bands. This behavior is confirmed by the right-
most plot of Fig. 6 that shows the frequency responses around the
first folding band.

The passband behavior of the proposed filter H(e j2π f ) is com-
pared to the one of a classical 5th-order comb filter in the leftmost
plot of Fig. 6. Notice that the proposed filter introduces a maxi-
mum droop of 0.9 dB, while the 5th-order comb filter presents a
signal distortion of about 5 dB at fc = 0.0078125.

In the next example we consider odd values of the decimation
factor M .

To get started, let us consider the case M = 15 and oversam-
pling factor ρ = 30. The normalized bandwidth of the sampled
Fig. 7. Magnitude responses (in dB) of the proposed filter H(e j2π f ) (solid curve) and
of a classical comb filter (dashed curve) for the following set of design parameters:
M = 15, K = 5, b = −1, N1 = 7, N2 = 8, ν = 2.

Fig. 8. Magnitude responses (in dB) of the proposed filter H(e j2π f ) (solid curve)
and of a classical comb filter (dashed curve). The leftmost plot shows the magnitude
response behavior at baseband, whereas the rightmost plot highlights the response
around the first folding band. In all subplots, the set of design parameters is as
follows: M = 15, K = 5, b = −1, N1 = 7, N2 = 8, ν = 2.

signal is fc = 1
2ρ = 0.0166, while the first folding band (from (1)

with p = 1) is

[
1

M
− fc = 0.05,

1

M
+ fc = 0.0833

]
.

Let us discuss the design steps of the proposed decimation fil-
ter.

1. Given M = 15, from (12) it is N1 = 7 and N2 = 8.
2. Considering K = 5 and ν = 2, from Table 1 we find b = −1.

Fig. 7 compares the magnitude responses of the proposed filter
H(e j2π f ) with that of a 5th-order comb filter (K = 5 and M = 15
in (3)) over the frequency interval [0,0.5]. Similarly to the previous
examples, the magnitude response of the proposed filters lies be-
low the magnitude response of comb filters in the folding bands.



1778 G. Jovanovic Dolecek, M. Laddomada / Digital Signal Processing 23 (2013) 1773–1782
Fig. 9. Architecture of a non-recursive implementation of decimation filter H(z) in (10) for M = 2r . The first stage implements the z-transfer function derived in (18) while
the other r − 1 stages represent the remaining products in the decomposition (13). The last stage implements the droop compensator with z-transfer function G(z).
This behavior can be clearly seen in the rightmost plot of Fig. 8
around the first folding band.

The passband behavior of the proposed filter H(e j2π f ) is com-
pared to the one of a classical 5th-order comb filter in the leftmost
plot of Fig. 8. Notice that the proposed filter introduces a maxi-
mum droop of 0.9 dB, while the 5th-order comb filter presents a
signal distortion of about 4 dB at fc = 0.0166. A common obser-
vation from all these design examples is that the passband distor-
tions of the proposed filters do not exceed 0.9 dB regardless of the
chosen set of parameters, and it compares favorably to the distor-
tion of comb filters, which is always greater than 4 dB across all
the possible choices of the design parameters.

To summarize the main observations derived from these design
examples, we can say that 1) the proposed filters show improved
magnitude response behavior in both passband and folding bands;
2) better passband distortion compensation (for ν = 2) is obtained
for higher values of K ; 3) good droop compensation is obtained
for all K when narrow signal bandwidths are considered, i.e., for
higher oversampling factors ρ .

4. Efficient architectures and implementations issues

In this section we present efficient architectures for implement-
ing the proposed filters depending on the expression of the deci-
mation factor M .

4.1. Efficient structure for M = 2p

When M can be represented as a suitable power-of-2 integer,
say M = 2r , with r a positive integer, the z-transfer function in (10)
can be implemented by exploiting the following formula

(
1 − z−M

1 − z−1

)K

=
log2(M)−1∏

i=0

(
1 + z−2i )K

. (13)

By applying the commutative property of multirate theory [12],
this architecture presents r = log2 M stages of filtering with
z-transfer function (1 + z−1)K whereby the ith stage operates
at the reduced sample rate fo/2i−1 with fo being the sampling
data rate at the input. The first stage of the decimation chain has
z-transfer function

H1(z) = (
1 + z−1)K · (1 + z−N1

) · (1 + z−N2
)
, (14)

while the last stage is the droop-compensation filter G(z) = B[1 +
A · z−1 + z−2]. We briefly notice that G(z) is obtained from mul-
tirate identities by moving G(zM) in (10) through the decimator
by M .

Considering the expressions of N1 and N2 in (12) for M even,
the z-transfer function in (14) can be rewritten as

H1(z) = (
1 + z−1)K · (1 + z− M

2 +1) · (1 + z− M
2 −1). (15)

In order to reduce power consumption, which depends on the
sampling data rate, we apply polyphase decomposition at each
stage so as to move filtering at lower rate. First, we polyphase de-
compose (1 + z−1)K as follows
(
1 + z−1)K = H0

(
z2) + z−1 H1

(
z2), (16)

where H0(z) and H1(z) are the polyphase components. Then, we

rewrite (1 + z− M
2 +1) · (1 + z− M

2 −1) in (15) as:

(
1 + z− M

2 +1) · (1 + z− M
2 −1) = (

1 + z−M) + z−1(z− M
2 +2 + z− M

2
)

= H S0
(
z2) + z−1 H S1

(
z2), (17)

where H S0(z2) = 1 + z−M and H S1(z2) = z− M
2 +2 + z− M

2 .
Upon combining (16) and (17), (15) can be rewritten as

H1(z) = (
H0

(
z2) + z−1 H1

(
z2))(H S0

(
z2) + z−1 H S1

(
z2))

= H1
0

(
z2) + z−1 H1

1

(
z2), (18)

with

H1
0

(
z2) = H S0

(
z2)H0

(
z2) + z−2 H S1

(
z2)H1

(
z2),

H1
1

(
z2) = H S1

(
z2)H0

(
z2) + H S0

(
z2)H1

(
z2). (19)

Using multirate identities [7], the decimation filter H(z) in (10)
can be realized using the architecture in Fig. 9.

Some observations are in order. Concerning the decimation ar-
chitecture in Fig. 9, we notice that 1) it does not present any
overflow problem since it is intrinsically non-recursive; 2) it does
not accomplish filtering at the high input data rate; 3) it does
not contain any multiplier thus representing a very effective im-
plementation for applications where low-power consumption and
reduced VLSI area are foremost; 4) it is reconfigurable: for given K
and decimation factor M the architecture in Fig. 9 presents log2 M
identical stages of decimation (each stage requires K additions),
while the first stage H1(z)1 and the last one G(z) are the same
regardless of log2 M as long as log2 M � 1. We note that G(z) re-
quires two additions at the lowest rate in the decimation chain.

To clarify the derivations above, we discuss some design exam-
ples using specific parameters.

Example 1. Let us consider the non-recursive architecture in Fig. 9
for the following set of parameters: M = 32, K = 4, and b = 0.

When M = 32, from (12) it is N1 = 15, N2 = 17 and r =
log2 32 = 5. Therefore, the architecture contains 5 stages of deci-
mation by 2.

From (17), we have

H S0
(
z2) = 1 + z−32 ⇒ H S0(z) = 1 + z−16,

H S1
(
z2) = z−16 + z−18 ⇒ H S1(z) = z−8 + z−9. (20)

From (16), we have the following polyphase decomposition

(
1 + z−1)4 = 1 + 4z−1 + 6z−2 + 4z−3 + z−4

= (
1 + 6z−2 + z−4) + z−1(4 + 4z−2). (21)

Therefore, it is

1 We notice that, depending on M , there may be different delays in H S0(z) and
H S1(z).
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Fig. 10. (a) Architecture of the first filter cell H1(z) considered in Example 1, and (b) polyphase implementation in (18) obtained upon replacing the subfilters (20) and (22)
in (19). (c) Basic decimation stage by 2 implementing the z-transfer function in (21) of Example 1 for K = 4 and M = 32, and (d) polyphase implementation as detailed
in (21).

Fig. 11. (a) z-transfer function considered in (23), and (b) two-stage architecture resulting from the use of multirate identities. (c) Two-stage architecture for implementing
the proposed decimation filter for the case M = M1 · M2 = 2M2.
H0
(
z2) = 1 + 6z−2 + z−4 ⇒ H0(z) = 1 + 6z−1 + z−2,

H1
(
z2) = 4 + 4z−2 ⇒ H1(z) = 4 + 4z−1. (22)

With this setup, the first stage H1(z) of the decimation architec-
ture in Fig. 10(a) can be polyphase decomposed as in Fig. 10(b).
The other four stages of decimation by 2 in Fig. 10(c) can be imple-
mented using polyphase decomposition as depicted in Fig. 10(d).

4.2. Efficient structure for M = M1M2

In this section we address the design of efficient structures
when the decimation factor M can be decomposed into the prod-
uct of two integers M1 and M2. Moreover, we distinguish between
the two cases M even where we consider M1 = 2, and M odd
where we assume M1 � M2.

First of all, notice that for M = M1M2, the comb section in (10),
which is depicted in Fig. 11(a), can be decomposed as

(
1 − z−M

1 − z−1

)K

=
(

1 − z−M1 M2

1 − z−M1

)K (
1 − z−M1

1 − z−1

)K

. (23)

Then, it can be implemented as depicted in Fig. 11(b) upon using
multirate identities [12].

For M1 = 2, the first stage H1(z) has the same z-transfer func-
tion and practical implementation as detailed in (18). In this case,
we can use the following relation to reduce the number of addi-
tion to one:

1 − z−2

1 − z−1
= 1 + z−1. (24)

Therefore, the two-stage architecture in Fig. 11(b) particularizes to
the one shown in Fig. 11(c). From Fig. 11(c) we notice that the first
filter before the decimation by M1 requires K + 2 additions, while
the second filter after the decimation by M1 requires 2K additions.
For M odd, the filter in the first stage can be realized using the
following polyphase decomposition:

H1(z) =
(

1 − z−M1

1 − z−1

)K (
1 + z−N1

) · (1 + z−N2
)

=
M1−1∑
λ=0

z−λH1
λ

(
zM1

)
. (25)

Concerning the second stage, regardless of M (even or odd) we can
resort to the following polyphase decomposition

(
1 − z−M2

1 − z−1

)K

=
M2−1∑
λ=0

z−λH2
λ

(
zM2

)
. (26)

To understand the use of these derivations, we discuss two exam-
ples.

Example 2. Let us consider the following set of parameters:
M = 10, M1 = 2, M2 = 5, N1 = 4, N2 = 6, K = 3, and b = 0. With
this setup and recalling (24), the first stage H1(z) can be written
as:

H1(z) =
(

1 − z−M1

1 − z−1

)K (
1 + z−N1

) · (1 + z−N2
)

=
(

1 − z−2

1 − z−1

)3(
1 + z−4) · (1 + z−6)

= (
1 + z−1)3(

1 + z−4) · (1 + z−6). (27)

The z-transfer function (1 + z−1)3 can be polyphase decomposed
as:(
1 + z−1)3 = (

1 + 3z−1 + 3z−2 + z−3)
= H0

(
z2) + z−1 H1

(
z2),
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H0
(
z2) = 1 + 3z−2 → H0(z) = 1 + 3z−1,

H1
(
z2) = 3 + z−2 → H1(z) = 3 + z−1. (28)

The z-transfer function (1+ z−4) · (1+ z−6) can be decomposed as:
(
1 + z−4) · (1 + z−6) = (

1 + z−4 + z−6 + z−10)
= H S0

(
z2) + z−1 H S1

(
z2), (29)

where H S0(z2) = (1 + z−4 + z−6 + z−10) and H S1(z2) = 0.
The polyphase components of the second stage can be found

upon using (26):

H2
0

(
z5) = 1 + 18z−5 + z−10, H2

1

(
z5) = 3 + 15z−5,

H2
2

(
z5) = 6 + 10z−5, H2

3

(
z5) = 10 + 6z−5,

H2
4

(
z5) = 15 + 3z−5,

H2
0(z) = 1 + 18z−1 + z−2, H2

1(z) = 3 + 15z−1,

H2
2(z) = 6 + 10z−1, H2

3(z) = 10 + 6z−1,

H2
4(z) = 15 + 3z−1. (30)

A very efficient implementation of the second stage with z-transfer
function H2(z) given by

H2(z) = H2
0

(
z5) + z−1 H2

1

(
z5) + z−2 H2

2

(
z5)

+ z−3 H2
3

(
z5) + z−4 H2

4

(
z5) (31)

is shown in Fig. 12. In this architecture, each polyphase component
H2

λ(z) has been optimized by first decomposing each integer coef-
ficient as the summation of power-of-two coefficients, and then by
employing coefficient sharing arguments. As an example, the first
two polyphase components can be rewritten as

H2
0(z) = 1 + 18z−1 + z−2 = 1 + z−1[z−1 + (

24 + 21)],
H2

1(z) = 3 + 15z−1 = (
21 + 20)[1 + (

22 + 20)z−1], (32)

and implemented as in Fig. 12. We notice in passing that these
implementations feature minimum number of shift registers.

The droop compensator at the end of the decimation chain has
z-transfer function G(z) = 1 − 6z−1 + z−2.

Example 3. Let us consider the following set of parameters: M = 9,
M1 = 3, M2 = 3, N1 = 4, N2 = 5, K = 3, and b = 0. With this setup,
the polyphase components of the first stage H1(z) can be written
as:

H1
0

(
z3) = 1 + 7z−3 + 10z−6 + 10z−9 + 7z−12 + z−15,

H1
1

(
z3) = 3 + 7z−3 + 13z−6 + 7z−9 + 6z−12,

H1
2

(
z3) = 6 + 7z−3 + 13z−6 + 7z−9 + 3z−12,

H1
0(z) = 1 + 7z−1 + 10z−2 + 10z−3 + 7z−4 + z−5,

H1
1(z) = 3 + 7z−1 + 13z−2 + 7z−3 + 6z−4,

H1
2(z) = 6 + 7z−1 + 13z−2 + 7z−3 + 3z−4, (33)

whereas the polyphase components of the second stage H2(z) can
be written as:

H2
0

(
z3) = 1 + 7z−3 + z−6,

H2
1

(
z3) = 3 + 6z−3,

H2
2

(
z3) = 6 + 3z−3,

H2
0(z) = 1 + 7z−1 + z−2,

H2
1(z) = 3 + 6z−1,

H2(z) = 6 + 3z−1. (34)
2
Fig. 12. Efficient implementation of the 2nd decimation stage in Example 2 using
the polyphase decomposition in (26) along with the polyphase components H2

λ(z),
with λ ∈ {0, . . . ,4}.

The droop compensator at the end of the decimation chain has
z-transfer function G(z) = 1 − 6z−1 + z−2.

4.3. Efficient structure for M a prime number

When the decimation factor M is a prime number, the most
efficient architecture consists in the polyphase decomposition of
the filter H(z):

H(z) =
(

1 − z−M

1 − z−1

)K (
1 + z−N1

) · (1 + z−N2
)

=
M−1∑
λ=0

z−λH1
λ

(
zM)

. (35)

The polyphase components can be found and implemented using
the same approach of the previous examples.

5. Comparisons

In this section we compare the class of filters addressed in this
work with three techniques proposed in the literature. The goal
is to highlight the improved performance in terms of spurious sig-
nal rejection around the folding bands compared to state-of-the-art
techniques.

The first comparison is with the sharpening method proposed
in [22] for which we choose a decimation factor M = 20 and resid-
ual decimation factor ν = 8 so as to have ρ = 160. The sharpening
polynomial proposed in [22] is 3H2(z)− 2H3(z) where H(z) is the
z-transfer function of the basic comb filter used for sharpening.

In the method proposed in this work, the comb filter is cas-
caded twice and the design parameters are as follows: N1 = 9,
N2 = 11 and b = 1. The magnitude responses of the two filters are
compared in Fig. 13 versus the frequency axis. From this figure we
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Fig. 13. Magnitude responses (in dB) of the sharpened filter proposed in [22] (dotted
curve labeled sharpening) and of the proposed filter (continuous curve labeled pro-
posed) for the following set of design parameters: M = 20, ν = 8, N1 = 9, N2 = 11
and b = 1.

Fig. 14. Magnitude responses (in dB) of the filter proposed in [31] (dotted curve
labeled coleman) and of the proposed filter (continuous curve labeled proposed) for
the following set of design parameters: M = 16, ν = 4, N1 = 7, N2 = 9 and b = 0.

observe that the proposed method presents better alias rejection
across the folding bands, while the sharpening method has better
passband characteristic over a wider frequency range. From a com-
putational point of view, however, the proposed structure does not
have filtering at high input rate thus resulting in more computa-
tionally efficient architecture.

The second comparison is with the recent proposal in [31]
where a 5th degree Chebyshev polynomial T5(x) = 5x − 20x2 +
16x5 is used. For comparison, we consider M = 16 and residual
decimation factor ν = 4. Upon using the proposed method, the
number of the cascaded comb filters is 5, while other parame-
ters are as follows: N1 = 7, N2 = 9, and b = 0. The magnitude
responses of these two filters are contrasted in Fig. 14. From this
figure we notice the improved passband behavior of the proposed
class of filters. Moreover, the proposed method provides more at-
tenuation in the folding bands thus resulting in better spurious
signal rejection around the folding bands. However, the advantage
of the Coleman’s method is that all folding bands have controlled
width and the same controlled attenuations.

The last comparison is with the results of a companion work
recently published in this journal [19]. For simplicity, we will use
the acronim TSNGCF short for Two-Stage Non-recursive General-
ized Comb Filter, to refer to the method [19].

The proposed method here is compared to the filter in design
Example 1 [19] where the parameters are as follows: decima-
tion factor M = 16, oversampling factor ρ = 64, M1 = 8, N = 3,
b = 0, I = 15, and k = 4. In the proposed method, we have N1 = 7,
N2 = 9, b = 0, and the comb filter is cascaded five times. The mag-
nitude responses are shown in Fig. 15. We notice in passing that
Fig. 15. Magnitude responses (in dB) of the filter proposed in [19] (dotted curve
labeled Method TSNGCF) and of the proposed filter (continuous curve labeled pro-
posed) for the following set of design parameters: M = 16, ν = 4, N1 = 7, N2 = 9
and b = 0.

the attenuation in the first folding band is better in the filter de-
signed with the proposed method, while in other folding bands are
similar. However, method TSNGCF presents wider passband range.

6. Conclusion

This paper proposed a class of low-complexity, reconfigurable
decimation filters suitable for decimating oversampled discrete-
time signals. The proposed filters improve greatly the frequency
response of classical comb filters by introducing extra-attenuation
around the so-called folding bands and by reducing the passband
distortion via an effective droop-compensator block.

Like comb filters, the proposed class can be realized through
multiplierless architectures, which are also discussed thoroughly
in the paper. Unlike comb filters, the proposed filters have supe-
rior spurious signal rejection and a greatly reduced droop in the
signal passband. These features make the proposed filters suit-
able for multistage decimation applications, such as digital down-
converters, as well as for decimating oversampled digital signals as
produced by Σ� A/D converters.

Design examples, design hints, and several implementation ar-
chitectures were also discussed to point out the main features of
the proposed class of decimation filters. Moreover, comparisons
with other works in the very recent literature point out the im-
proved performance guaranteed by the proposed class of filters in
terms of spurious signal rejection around the folding bands.
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