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Abstract. Brain Computer Interfaces (BCI) is the generic denomination of 
systems aiming to establish communication between a human being and an 
automated system, based on the electric brain signals detected through a variety of 
modalities. Among these, electroencephalographic signals (EEG) have received 
considerable attention due to several factors arising on practical scenarios, such as 
noninvasiveness, portability, and relative cost, without lost on accuracy and 
generalization. In this chapter we discuss the characteristics of a typical 
phenomenon associated to motor imagery and mental tasks experiments, known as 
event related synchronization and desynchronization (ERD/ERS), as well as its 
energy distribution in the time-frequency space. The typical behavior of ERD/ERS 
phenomenon has led proposal of different approaches oriented to the solution of 
the identification problem. In this work, an architecture based on adaptive neuro-
fuzzy inference systems (ANFIS) assembled to a recurrent neural network, applied 
to the problem of mental tasks temporal classification, is presented. The 
electroencephalographic signals (EEG) are pre-processed through band-pass 
filtering in order to separate the set of energy signals in alpha and beta bands. The 
energy in each band is represented by fuzzy sets obtained through an ANFIS 
system, and the temporal sequence corresponding to the combination to be 
detected, associated to the specific mental task, is entered into a recurrent neural 
network. Experimentation using EEG signals corresponding to mental tasks 
exercises, obtained from a database available to the international community for 
research purposes, is reported. Two recurrent neural networks are used for 
comparison purposes: Elman network, and a fully connected recurrent neural 
network (FCRNN) trained by RTRL-EKF (real time recurrent learning – extended 
Kalman filter). A classification rate of 88.12 % in average was obtained through 
the FCRNN during the generalization stage. 
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1   Introduction 

Brain Computer Interfaces are systems aiming to translate the electrical brain 
signals generated by a human being as a results of some thoughts, in commands 
able to perform some control actions in computerized mechanisms. In other words 
BCIs measure brain activity, process it, and produce control signals that reflect the 
user’s intent.  Brain activity produces several physical phenomena which can be 
measured using a variety of sensing equipment. Among these phenomena, which 
can be of significant relevance for BCI development, are electrical potentials and 
hemodynamic measurements. Electrical potential measurements include action 
and field potentials which can be sensed through invasive methods, such as 
electro-corticography, and non-invasive, such as electroencephalography and 
magneto-encephalography techniques. Hemodynamic measurements include 
functional magnetic resonance imaging (fMRI), positron emission tomography 
(PET), and functional near-infrared brain monitoring (fNIRS). Among these, 
electroencephalographic signals (EEG) have received considerable attention due 
to several factors arising on practical scenarios, such as noninvasiveness, cost 
effectiveness, portability, ease of acquisition, and time resolution, which are ideal 
attributes for the development of practical brain computer interface applications. 
There are three main stages which can be distinguished in a BCI system: detection 
of the neural signals from the brain, an algorithm for decoding these signals, and a 
methodology for mapping decoded signals into some predefined activities. The 
general scheme of a BCI is shown in Fig. 1.  

In recent years, there has been a growing interest in the research community on 
signal processing techniques oriented to solve the multiple challenges involved in 
BCI applications [1-3]. An important motivation to develop BCI systems, among  
 

 

Fig. 1 General scheme of a Brain Computer Interface system 
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some others, would be to allow an individual with motor disabilities to have 
control over specialized devices such as computers, speech synthesizers, assistive 
appliances or neural prostheses. 

A dramatic relevance arises when thinking about patients with severe motor 
disabilities such as locked-in syndrome, which can be caused by amyotrophic 
lateral sclerosis, high-level spinal cord injury or brain stem stroke. BCIs would 
increase an individual’s independence, leading to an improved quality of life and 
reduced social costs. Electroencephalography (EEG) refers to recording electrical 
activity from the scalp with electrodes. A BCI based on EEG analyzes ongoing 
electric brain activity for brain patterns that originate from specific brain areas. To 
get consistent recordings from specific regions of the head, scientists rely on a 
standard system for accurately placing electrodes, which is called the International 
10–20 System [4], generally used in clinical EEG recording and EEG research as 
well as BCI field. The name 10–20 indicates that the most commonly used 
electrodes are positioned 10, 20, 20, 20, 20, and 10% of the total naison-inion 
distance. Fig. 2 shows the electrode positions and denominations used in the 
international 10-20 system.  

Measuring brain activity effectively is a critical step for brain–computer 
communication. However, measuring activity is not enough, because a BCI can 
only detect and classify specific patterns of activity in the ongoing brain signals 
that are associated with specific events. What the BCI user makes to produce these 
patterns is determined by the neurological mechanisms or processes that BCI 
system employs.  

 

Fig. 2 EEG electrodes international 10-20 system 

Current research on BCI systems distinguishes seven main categories according 
to the neurological mechanisms or processes involved: sensorimotor activity [5,6], 
P300 [7,8], visual evoked potentials [9,10], slow cortical potentials [11], activity 
of neural cell and response to mental tasks [12], as well as multiple neuro-
mechanisms, which use a combination of two or more of the previous (see [2] for 
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a review). Each category constitutes a paradigm which can be used for developing 
BCI systems in practical scenarios. P300 evoked potentials occur with latency 
around 300 milliseconds in response to target stimuli that occur unexpectedly. In a 
P300 controlled experiment, subjects are usually instructed to respond in a specific 
way to some stimuli, which can be auditory, visual, or somatosensory. P300 
signals come from the central-parietal region of the brain and can be found more 
or less throughout the EEG on a number of channels. The P300 is an important 
signature of cognitive processes such as attention and working memory and an 
important clue in the field of neurology to study mental disorders and other 
psychological dysfunctions [8]. Another neurological mechanism widely studied 
for developing BCI systems is motor imagery (MI), which is obtained from the 
sensory motor  brain activity. In general, two types of patterns are usually present 
in this mechanism: event related potentials (ERP), detected as energy changes in α 
(8-13 Hz), and β (14-20 Hz) bands generated when a voluntary movement is 
performed, and movement related potentials (MRP), which are low frequency 
patterns that initially appear between 1–1.5 s before the corresponding movement. 
In the first case, the event related potentials consist, in general terms, in 
decrements or increments of the energy on the ongoing EEG signal at certain 
frequency bands, which are described in the literature as the ERD/ERS 
phenomenon (Event Related Desynchronization and Synchronization) [13,14]. A 
crucial issue is to successfully estimate and translate the ERD/ERS phenomenon 
into a meaningful feature vector which can be used as input to some pattern 
recognition scheme. The analysis should be able to capture the spectral dynamic 
of the signal contained in the temporal evolution of the involved spectral bands.   
Several feature extraction techniques have been used for that purposes, such as: 
amplitude values of EEG [15], band power [16], power spectral density [17,18], 
auto-regressive (AR) and adaptive auto-regressive models (AAR) [19], windowed 
Fourier analysis, cross correlation, and some others. As these ERPs are locked in 
time but not in phase and they are highly non-stationary [20], the detection of 
these patterns turns into a difficult task in which some approaches oriented to 
follow the time evolution of the signals, such as time series prediction, and 
recurrent neural networks, could provide adequate results.  

Another neurological mechanism in which ERD/ERS phenomenon is also 
present is the neural activity obtained in response to mental tasks. Mental task-
based BCI systems have captured the attention of the research community, in part 
due to their independence of additional interfaces such as the screen of 
alphanumeric characters used in VEP, or the arrows and symbols used in motor 
imagery experiments, as well as the relative flexibility of the user to carry out 
some mental tasks at his /her own will. Several feature extraction methods for 
mental task-based BCI design have been reported, most of them based on 
parametric, such as autoregressive or adaptive models [21], non-parametric 
models based on several schemes of spectral analysis such as Wavelet transform 
or Stockwell transform [22,23], or fuzzy sets [24]. In this sense, it has been shown 
that information contained in spectral bands α (8-13 Hz), β (14-20 Hz), γ (24-37 
Hz), or even in higher frequencies [25], can be used to detect neural activity 
directly related to specific mental tasks. Time-frequency analysis can be carried 
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out using different approaches such as Wavelet analysis [22], filter bank [26], 
empirical mode decomposition [27], and others. Those approaches reflect only the 
estimated power across a range of frequencies. In a number of reported works, 
non-linear classifiers such as neural network and support vector machine 
algorithms are used [28]. Recently, there have been several studies oriented to 
capture temporal behavior through predictive schemes and recurrent neural 
networks with good results, which encourage further research in that direction  
[29-30].  

To achieve the goal of translating brain activity into commands for computers 
there are two main approximations: regression and classification algorithms. 
Using classification algorithms is the most popular approach to identify patterns of 
brain activity.  Most brain patterns used to control BCI are related to time 
variations of EEG in specific frequency bands. The time course of EEG signals 
has to be taken into account during feature extraction and one alternative is using a 
dynamical classifier. To obtain temporal information it is necessary to extract 
features from several time segments in order to build a temporal sequence. In this 
work we present a temporal classification approach on a two-state mental task 
experiment applying, for comparison purposes, two recurrent neural networks: 
Elman and Fully Connected Recurrent Neural Network (FCRNN). The proposed 
scheme performs the feature extraction based on an Adaptive Neuro-fuzzy 
Inference System (ANFIS), previous to the temporal classification stage.  

The rest of the chapter is organized as follows: Section 2 describes theory 
related to ANFIS. Section 3 presents mathematical background associated to 
recurrent neural networks. Section 4 describes the proposed methodology on 
temporal classification of the mental task experiment. Section 5 presents and 
analyzes the obtained results. Section 6 presents some concluding remarks, 
perspectives, and future direction of this research oriented to the implementation 
of a BCI system.  

2   Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Adaptive Neuro Fuzzy Inference Systems (ANFIS) combine the learning 
capabilities of neural networks with the approximate reasoning of fuzzy inference 
algorithms. Embedding a fuzzy inference system in the structure of a neural 
network has the benefit of using known training methods to find the parameters of 
a fuzzy system. Specifically, ANFIS uses a hybrid learning algorithm to identify 
the membership function parameters of Takagi-Sugeno type fuzzy inference 
systems. The task of the learning algorithm for this architecture is to tune all the 
modifiable parameters defining the fuzzy partitions and making the ANFIS output 
match the training data. In this work, the ANFIS model included in the MATLAB 
toolbox has been used for experimentation purposes. A combination of least-
squares and backpropagation gradient descent methods is used for training the FIS 
membership function parameters to model a given set of input/output data through 
a multilayer neural network. ANFIS systems have been recently used for 
optimization, modeling, prediction, and signal detection, among others [31,32]. 
The ANFIS architecture (type-3 ANFIS) is shown in Fig. 3. 
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Fig. 3 ANFIS architecture 

In this figure  x  and y  are inputs to the node i in layer 1. iA  and iB  are 

linguistic labels e.g. (small, medium, large, etc.). In other words, the output of 

each node is the membership function of iA
 
and iB , and specifies the degree to 

which the given x or y satisfies the quantifier  iA and iB respectively. The output 

of each node in this layer is described as follows: 

1 ( )
ii AO xμ=

 

Every node in layer 2 is a circle node labeled which multiplies the incoming 
signals and sends the product out.  

( ) ( )
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In layer 3 each node is a circle node labeled N. The ith node calculates the ratio of 
the ith rule’s firing strength to the sum of all rules’ firing strengths: 
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Every node in layer 4 is a square node that performs the following function: 
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where { , , }i i ip q r  is the parameter set.  

The single node in the 5 layer is a circle node labeled   that computes the 
overall output as the summation of all incoming signals 
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The architecture presented is functionally equivalent to a type-3 fuzzy inference 
system. For detailed information see reference [33]. 

3   Neural Network Classifiers 

Nowadays, artificial neural networks are a popular tool to tackle complex 
classification problems. Specifically, the ability of recurrent neural networks 
(RNN) to model nonlinear dynamical systems has been widely proved [34]. 
Therefore, it is fairly common to use RNN for several kinds of temporal 
information processing, as in prediction, control systems and temporal 
classification systems [35]. 

Next, we present a brief description of the problem of temporal classification 
and the solution applied in this research using two architectures of RNN to build 
the temporal classifier required for mental task-based BCI systems. 

3.1   Temporal Classification 

Temporal classification refers to the assignation of a class, based on features 
obtained in different time periods. Such features are represented as vectors 
forming a temporal sequence of components. Temporal classification is a difficult 
task because, in order to obtain the correct class, it is mandatory to consider not 
only the values of the features but also the order in which they appear in a specific 
time period.  The definition of the size of time that must be considered in order to 
get the right classification is also a challenge.  Fig. 4 illustrates a simple temporal 
classification problem. Suppose that we want to identify if the sequence {1,2} is 
sensed in input A when the sequence {2,1} is sensed in input B. If so, the expected 
classification outcome is "yes", otherwise it is "No". The table therein Fig. 4 
illustrates the desired outputs of such classifier in the first 10 time periods.  

 
 
 
 
 
 
 

time 1 2 3 4 5 6 7 8 9 10 
Input A 1 1 2 2 1 2 1 1 2 1 
Input B 1 2 1 2 2 2 1 2 1 2 
Output No No Yes No No No No No Yes No 

Fig. 4 A simple temporal classification problem 

In this example, the classifier must be able to "remember" the last two inputs, in 
order to identify the sequences correctly. Looking this table, it is fairly easy to 
figure out that the sequences defining the involved classes have a size of two. 

Temporal 
Classifier 

A 
 
B 

Output 
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However, this is not the case for more complicated problems as the one presented 
in this research, in which a human mental state has to be identified by a sequence 
of features occurring in a EEG. For such cases the classifier would have to 
automatically model a dynamics memorizing the feature sequences using the right 
size of past events. In other words, time has to be implicitly represented in  
the model. In this research a temporal classifier is used as the last component of 
the system classifying mental tasks (see Fig. 6). The classifier has to find out if the 
involved mental task occurs or it does not, that is, it works as a binary classifier. 

3.2   Adaptive Temporal Classifiers 

The building of a classifier able to label sequences requires several steps. The 
most important decisions to resolve during its design are: the definition of  
the structure of a feature vector representing the information of the sequence, the 
mathematical model used for the classifier and the training strategy used in such 
model. Section 4 describes how the structure of the feature vector for the classifier 
of mental tasks was built in this research. With respect to the mathematical model 
of the classifier, we chose to use RNN for two reasons: first, RNN are able to 
build internal representations involving time and second, most recurrent neural 
architectures are able to model chaos [36]. This last reason refers to the fact that 
the dynamics in an EEG is chaotic, according to several authors (for example  
see [37]). 

Regarding to the selection of a right RNN and training algorithm, there are 
many choices when they are used for building temporal classifiers. The most 
versatile models are the ones proposed by Jordan [38], Elman [39], Werbos [40] 
and Williams and Zipser [41]. Other works have used more sophisticated 
structures, for example [42].  

For the results presented here, we built and tested the performance of two 
classifiers using two types of recurrent neural networks: a Simple Recurrent 
Network (SRN), also known as “Elman network” [39] and a fully connected 
recurrent neural network (FCRNN) with external inputs, similar to the one 
described in [40,47]. SRN was trained using the algorithm “Back Propagation 
through time” (BPTT) [40] and FCRNN was trained with the algorithm “Real 
Time Recurrent Learning – Extended Kalman filter” (RTRL-EKF) [43,44] using 
the implementation proposed in [48]. These architectures and algorithms are 
briefly described next.  

3.3   Simple Recurrent Network (SRN or Elman Network) 

Time can be represented in several ways in recurrent neural networks. In a SRN, 
time is implicitly represented using a context layer. This model was introduced by 
Elman [39], which in spite of being rather simple, is able to memorize previous 
states of a sequence. SRN architecture has 4 layers: an input layer, a hidden layer, 
an output layer and a context layer. (see Fig. 5). The representation of past events 
is achieved because nodes in the context layer memorize the outputs of nodes in 
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hidden layer coming from a previous time. This context layer is able to create a 
map of some temporal properties of the system.  

In general, the state-space model of a RNN can be described by the following 
equations [44]: 

),( nn1n uxax =+                                                (1) 

nBxy =n                                                         (2) 

where: 

ny               represents the output of the system (all neurons 

  in the network),  

  }...,{ 11 +−−= qnnnn uuuu  is a vector of the exogenous inputs 

  in different steps, 

nx    is the output of a bank of q unit-time delays, q being the 

  number of nodes in the input layer.  
 ) , ( ⋅⋅a   is a nonlinear function characterizing the hidden layer. 

  B   is the matrix of synaptic weights characterizing the output 
   layer.   
 

 

Fig. 5 The Simple Recurrent Network [39] 

Notice that in this model, the hidden layer is non-linear (equation 1) and the 
output layer is linear (equation 2).  A SRN is a special case of this model, where 
the connection weights and the output layer may also be non-linear. In the results 
reported here, a hyperbolic tangent sigmoid transfer function was used for the 
nodes in hidden layer (‘tansig’ Matlab function) and a logarithmic sigmoid 
transfer function (‘logsig’ Matlab function) was used for the output layers.  

SRN may be trained in different ways. For the experiments reported in this 
chapter, we used a gradient descent back propagation algorithm with adaptive 
learning rate.  Function ‘calcgbtt’, provided by the neural network toolbox of 
Matlab V6.0. was used as the gradient function, which calculates the bias and 
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weight performance gradients using the back-propagation through time algorithm 
(BPTT) [40]. BPTT is a supervised learning algorithm originally proposed by 
Werbos [46] and independently discover by Rumelhart and collaborators [47], that 
attempts to minimize the output error of the network obtained over a period of 
time. This error is calculated as:  

 
1

,,
=

−=
T

t
tt

2
nn )y(DE

                                            (3) 

where nD ,t  is the desired output of the neurons in the network where an output is 

required at time t, and T is the size of the sequence being used to train the 
network. The core of back-propagation is a efficient method for the calculation of 
derivatives that allow to minimize the error described in equation 3. BPTT 
constructs a feed-forward network with identical behavior over a particular time 
interval that the involved RNN.  The main drawback of BPTT is that it requires to 
use the complete training sequence for each training epoch in order to calculate 
the gradient.  For a detailed explanation of BPTT see [44]. 

3.4   Fully-Connected Recurrent Neural Network 

A fully-connected recurrent neural network with one input layer, one hidden layer 
and one output layer was also used in this work to build a temporal classifier. The 
term "fully connected" means that all neurons in the network are connected each 
other. The input layer is formed by neurons receiving an external input; the output 
layer is formed by nodes whose outputs are considered the output of the system; 
the training sequence contains the desired values for such outputs (corresponding 
class). As occurring with other layered neural network architectures, the number 
of neurons in the hidden layer depends upon the complexity of the problem and 
the appropriate number of them requires to be defined by experimentation.   

As we explained before, there are several algorithms to train recurrent neural 
networks. BPTT has been very popular during many years, but currently it is 
known that very useful algorithms for training recurrent neural networks are based 
on Kalman Filtering (KF) [48].  KF is a common method to estimate unknown 
variables of a system based on the observations of measurements across time. KF 
is based on the idea that the involved dynamical system of the problem is hidden 
and can only be observed or measured through some time series (sequences). In 
KF the dependency among two consecutive states, measurements and the state 
process is assumed linear [49]. Therefore, an Extended Kalman Filtering (EKF) is 
required when nonlinear systems are involved, as in the case of recurrent neural 
networks. In EKF, a linearization around the current working point is applied 
before that standard KF is performed. EKF has been widely studied and applied 
using different strategies to train RNN, for example in [49-51]. It also has been 
combined with other algorithms, for example with “back-truncated propagation 
through time” [51] and with RTRL [43]. 
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For the experiments presented in this research, we used a combination of the 
RTRL and KF proposed by [43]. The training algorithm RTRL contains two main 
steps (see [44,52]): gradient calculation and weights adjustments. RTRL is used to 
calculate the derivatives of the gradients and EKF is used for modifying the 
weights. According to [44], the state-space model of this network, when training, 
is defined by two models: 

 
1) The system model, described by: 

nnn ω+=+ ww 1     ,                                             (4) 

where: 

 nw  is the weight (state) vector  

 nω  is a white Gaussian noise. 

2) The measurement model, described by: 

   nnnnn νuvwbd += ),,(     ,                                    (5) 

where:  

 nd  is the desirable response o the system, playing the role  

  of the “observable”, 

 nν  represents the recurrent node activities inside the  

  network,  

 nu  denotes the input signal to the network and  

 nν  is a vector denoting measurement noise corrupting nd . 

 
EKF allows the estimation of the value of the correction in the state space model, 
updating weights as follows:  

nnnn αGww += −1ˆˆ                        (6) 

),,ˆ( 1 nnnnn uvwbdα −−=   ,                              (7) 

where: 

 nG  is the Kalman gain, calculated using: 

 1
,11 ][ −

−− += n
T
nnn

T
nnn νQBPBBPG            (7) 

 nnnnnn ,11 ωQPBGPP +−= −−           (8) 

 nB   is the Jacobian of the partial derivatives  

  with respect to the state, that is, the weights, which is  
  calculated using RTRL algorithm.  
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 n,ωQ  is the covariance matrix of the dynamic noise nω ,  

 nP  is the prediction error covariance matrix, and  

 n,νQ  is the covariance matrix of the measurement noise nν .  

 

The calculation of partial derivatives nB  is defined as: 
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where q is the total number of neurons in the networks and m is the total number 

of weights. Using RTRL, derivatives in nB are calculated as [53]: 
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)(⋅′σ is the derivative of the neuron transfer function )(⋅σ ; 


=
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m

j
jiji nzwnx

1

)()( is the input to each neuron, ikδ is the Kronocker delta. For 

further details, see [44,52,53].  
For the experiments showed here we used an implementation of RTRL-EKF 

created by [52], which is itself based on the Matlab functions created by [45]. A 
very good description of the data structures used in such software is given by [48]. 
In that reference, the interested lector can find a very good algorithm to implement 
RTRL-EKF using GPA architecture. 

4   Proposed Methodology 

A block diagram of the proposed scheme is represented in Fig. 6. The algorithm is 
described as follows: preprocessing of the EEG signals obtained from P4 electrode 
includes a blind source separation through Independent Component Analysis 
(ICA) in order to remove eye blink and other artifacts. The signal is then filtered 
in order to obtain the alpha and beta bands, and the power signal for each band is 
computed. The power signal in each band is partitioned into 5 windows with a 50 
% overlapping as a feature reduction process. The signal is passed through an  
 
 



Brain Computer Interface Development Based on Recurrent Neural Networks  227
 

ANFIS system in order to obtain a representation in fuzzy sets corresponding to 
the evolution in time of the estimated power across both spectral bands alpha and 
beta. Temporal sequences corresponding to the combination of energy bands for 
each mental task are input into a recurrent neural network, which is trained to 
deliver a classification decision on the corresponding mental task. 

 

 

Fig. 6 Block diagram of the proposed architecture for mental tasks classification 

Preprocessing EEG data in order to eliminate the artifacts added during the 
recording sessions is an essential task to facilitate accurate classification. The most 
corruptive of the artifacts is due to eye blinks because it produces a high amplitude 
signal called electrooculogram (EOG) that can be many times greater than the 
EEG signals of interest. 

The use of ICA for blind source separation of EEG data is based on an 
assumption that EEG data recorded from multiple scalp sensors are linear sums of 
temporally independent components arising from spatially fixed, distinct or 
overlapping brain networks [54]. The goal of ICA is to recover statistically 
independent sources given only sensor observations that are unknown linear 
mixtures of the unobserved independent source signals. ICA reduces the statistical 
dependencies of the signals, attempting to make the signals as independent as 
possible which make ICA capable of separating artifact components from EEG 
data since they are usually independent of each other [55].  

As mentioned before, )(txi  are assumed to be the result of linear combinations 

of the independent sources, as expressed in: 
 

1 2 2( ) ( ) ( ) ( )i i i i in nx t a s t a s t a s t= + + +  
 

Or in matrix form: 

x = As  
where: 

 A is a matrix containing mixing parameters and  
 s  is the source signals.  
 

The goal of ICA is to calculate the original source signals from the mixture by 
estimating a de-mixing matrix U that gives: 
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ˆ =s Ux  

Both the mixing matrix A and the matrix containing the sources S are unknown. 
The non mixing matrix U is found by optimizing a cost function. Several different 
cost functions can be used for performing ICA, e.g. kurtosis, negentropy, etc., 
therefore, different methods exist to estimate U. For that purpose the source 
signals are assumed to be non-Gaussian and statistically independent. The 
requirement of non-Gaussianity stems from the fact that ICA relies on higher 
order statistics to separate the variables, and higher order statistics of Gaussian 
signals are zero. In this way, ICA is applied to EEG signal from P4 electrode in 
order to remove eye blink artifacts. For additional information see [54]. The result 
of preprocessing EEG data is shown in Fig. 7. 
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Fig. 7 EEG data before and after preprocessing 

Elliptic filters of five order were used in order to obtain the alpha and beta 
bands. After filtering EEG data, the power for each band is computed squaring the 
amplitude of samples; then, the power signal in each band is partitioned into 5 
windows with a 50 % overlapping as a feature reduction process. The signal is 
passed through an ANFIS system in order to obtain a representation in fuzzy sets 
corresponding to the evolution in time of the estimated power across both spectral 
bands alpha and beta. Temporal sequences corresponding to the combination of 
energy bands for each mental task are input into a recurrent neural network, which 
is trained to deliver a classification decision on the corresponding mental task. 
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5   Experimental Results 

EEG data were obtained previously by Keirn and Aunon [56] and are available on 
line for research purposes. Ten trials for each mental task resulted in a total of 20 
patterns. Details of the procedure followed to detect the signals can be consulted 
in the cited reference. A brief description is as follows: an Electro-Cap elastic 
electrode cap was used to record data from positions C3, C4, P3, P4, O1, and O2  
defined by the 10-20 system of electrode placement. In the original data set, there 
were seven subjects performing five different mental tasks and one subject 
performing two different mental tasks. Signals were recorded for ten seconds 
during the task at a sampling frequency of 250 Hertz, and each task was repeated 
five times per session. Subjects attended two sessions recorded on different weeks, 
resulting in a total of ten trials for each task. The two mental tasks are described as 
follows. In the task described as mental letter composing, the subjects were 
instructed to mentally compose a letter to a friend or relative without vocalizing. 
The second mental task described as visual counting, was constructed by asking 
the subjects to imagine numbers being written sequentially on a blackboard,  
with the previous number erased before the next number was written. Experiments 
were executed using MATLAB version 7.6 in a personal computer with a 2.0 GHz 
AMD Turion processor and 3GB RAM. Figure 8 shows an example of the 
normalized power signal corresponding to alpha and beta bands for each mental 
task. 

According to the proposed procedure previously described, feature extraction is 
performed on the power signals by a window-averaging with a 50% window 
overlap. Fig. 9 shows an example of the feature vectors obtained through the 
 

0 2 4 6 8 10
0

0.5

1

t [sec]

P
x

Letter composition

 

 

0 2 4 6 8 10
0

0.5

1

t [sec]

P
x

Counting

 

 

Alpha band

Beta band

Alpha band

Beta band

 

Fig. 8 Alpha and beta band power for letter composition and counting task 
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described procedure, corresponding to the referred mental tasks. As Fig. 9 
illustrates, the power representation of alpha and beta bands presents variations 
associated to temporal evolution of power bands following each mental task. Since 
the power in bands shows variations for each subject and trial, we propose the use 
of an adaptive system allowing the assignment of membership functions in an 
automatic way in order to represent the configuration of bands through fuzzy sets, 
translating each experiment into a simple sequence that preserve the temporal 
evolution of the performed mental task. Fig. 10 shows an example of the state 
assignment corresponding to the case of letter composition task. 
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Fig. 9 Result of feature extraction process for two different mental tasks 

The feature extraction process is then applied to each trial in the mental tasks 
database, obtaining some sequences representing the state transitions of power 
band configurations and corresponding to each mental task. The ANFIS system 
was trained with the features extracted over all trials, considering an input 
representation with eight membership functions. Fig. 11 shows an example of the 
results obtained from the ANFIS training for the two mental tasks. Temporal 
classification of the obtained feature vectors representing each mental task was 
performed using a recurrent neural network. In this paper we compare the 
performance of two models previously described: a simple recurrent neural 
network or Elman network and a Full Connected Recurrent Neural Network 
FCRNN. In both cases, the architecture of the recurrent neural networks was: 1 
node in the input layer, 10 nodes in the hidden layer and 1 node in the output 
layer. The architecture was determined by experimentation, with the best results 
obtained using the described configuration.  
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Fig. 11 Result of ANFIS training 

Temporal classification results are reported based on a leave-one-out (LOO-
CV) cross-validation. LOO-CV is typically used in the analysis of small datasets, 
where the relatively high variance of the estimator is offset by the stability 
resulting from the greater size of the training partition than is possible using 
conventional k-fold cross-validation [57]. 
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Ten trials for each mental task result in a total of 20 patterns. The dataset was 
partitioned in 5 folds with 4 trials each one.  LOO-CV was performed using four 
folds for training and the remaining one for testing. Table 1 summarizes the 
temporal classification results obtained in average from both, training and testing 
cases, with the two recurrent neural networks previously described. 

Table 1 Results on temporal classification; training and testing  

RNN Training  500 epochs Testing 

 MSE Performance time MSE Performance 

Elman 0.0328 91.75% 3’49’’ 0.0401 90.16% 

FCRNN 0.0121 94.61% 1’ 12’’ 0.0528 88.12%. 

6   Conclusions 

In this chapter, an architecture based on adaptive neuro-fuzzy inference systems 
(ANFIS) assembled to recurrent neural networks, applied to the problem of mental 
tasks temporal classification, has been presented. Information on power signal 
obtained from Alpha and Beta bands constituted a good descriptor with an 
adequate separability, providing a good balance between complexity and 
classification rate. The feature vectors representing each mental task following a 
fuzzy-set paradigm, provided a good description about the temporal evolution of 
the power signal. A classification rate in training of 94.61 % in average was 
obtained through the FCRNN, with an 88.12 % of classification using leave-on-
out cross validation in the testing stage. A comparison with the Elman Network 
indicates a better performance of the FCRNN during the training stage, with a 
slightly better performance of the Elman network on generalization. In both cases, 
an architecture of the neural network with 10 nodes in the hidden layer provided 
the better results. Further experimentation oriented to the construction of a 
database for BCI applications is currently in progress.  
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