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a b s t r a c t

One of the first steps when approaching any machine learning task is to select, among all the available
procedures, which one is the most adequate to solve a particular problem; in automated problem solving
this is known as the algorithm selection problem. Of course, this problem is also present in the field of
time series forecasting, there, one needs to select the forecaster that makes the most accurate

time series, thus relying on the expertise that one has on the available forecasters. In this paper, we
propose an automatic procedure to choose a forecaster given a set of candidates, i.e., to solve the
algorithm selection problem on this domain. To do so, we follow two paths. Firstly, we propose to model
the performance of the forecasters using a linear combination of features that were previously used to
assess the problem difficulty of evolutionary algorithms, together with a set of features we propose in
this paper. Then, this model is used to predict the performance of the forecasters and based on these
predictions the forecaster is selected. Our second approach is to treat this algorithm selection process as
a classification task where the descriptors of each time series are the proposed features. To show
the capabilities of our approach, we test the forecasters on the time series of the M1 and M3 time series
competitions and used three different forecasters. In all the cases tested, our proposals outperform the
performance of the three forecasters indicating the viability of our approach.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The process of solving a problem often starts by looking at the
different procedures available to do the job. Then, after an analysis
of these procedures and the problem, one decides which one of
them to apply. As expected, this decision process is inferred by
prior knowledge. That is, an algorithm is selected based on
the experience one has in relation to the problem and/or the
algorithm. It is also common that the algorithm is chosen from
procedures that have shown some success in solving “similar”
problems. This practice is also common in the field of time series
forecasting, see for example [30,43] where a number of different
forecasting techniques are analyzed and their strengths and
weakness are highlighted in order to help in this selection.

In automated problem solving, this selection problem is known
as the algorithm selection problem [39], the idea is to choose among
a set of different algorithms the one which would perform the
best, given a particular problem. Closely related to the algorithm
selection problem are the algorithm portfolios [17,36,25–29,
46–48]. An algorithm portfolio is a collection of algorithms that
ll rights reserved.
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are run in parallel or sequentially in order to solve a particular
problem. The idea is that the portfolio outperforms the perfor-
mance of any of the algorithms composing it.

One of the first attempts to automate the process of selecting
and/or tuning a forecaster was presented in [9]. The authors
proposed a number of rules that were used to combine the forecasts
performed by four techniques: random walk, linear regression,
Holt's linear exponential smoothing [16], and Brown's linear expo-
nential smoothing [8]. This work was then extended and improved
in [1,2], where the authors reduced the number of rules and they
proposed an automatic process to identify the most prominent time
series features.

To the best of our knowledge, the first fully-automated selec-
tion procedure was presented in [5] (and later extended in [6]). In
these works an induction-based expert system was used to select
the most promising forecasting technique based on time series
features. Almost in the same period, a discriminant analysis was
used to select the most appropriate forecasting technique (see
[40]). It is interesting to note that neither of them used either
terms meta-learning or algorithm selection problem (a common
issue across different domains that is further discussed in [42]).

More recently, this problem has been addressed by different
researchers (see [35,38,44,24]) using a variety of machine learning
techniques—including linear combination of features, and decision
trees, among others—and proposing novel time series characteristics
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1 We used the BoxCox transformation implemented in [20]. λ is obtained using
the loglik method with �1 and 1 as its limits.
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that aim to enrich the set of features describing the time series. All
these works have in common that all the features used to tackle the
algorithm selection problem are based on time series characteristics.
That is, these features are tailored specifically to describe time series,
a few examples of these are: trend, seasonality, serial correlation, and
periodicity, among others.

The main contributions of this manuscript are the proposal of a
novel set of time series features, and the use of our previously
developed indicators [34,15] on a completely different domain. Our
previously developed indicators have successfully been applied in
modeling the performance of Genetic Programming (GP) on different
problem classes such as: symbolic regression of rational functions,
and Boolean induction problems, among others.

The features proposed in this contribution complement (and
are competitive with) previous works, being the main difference
between them that our features are not problem specific. That is,
our features can be easily applied to other domains being based on
the notion of finite difference and the distance between a set of
references. Nonetheless, this generality does not imply more com-
plexity, as estimating our features involve only basic arithmetic
operations.

Inspired by our previous experience in modeling the performance
of GP, we decided to generate models of the performance of the time
series forecasters using a linear combination of the proposed
features. Then, this model is used to predict the performance of
the forecasters and based on these predictions the best forecaster is
selected.

In order to show that the proposed features are competitive
with previous work, we also produce models of performance using
the time series characteristics described by Wang et al. [44] and
Lemke et al. [24]. These are the two most recent approaches that
are closely related to our proposal, besides the features used in
both works cover almost all of the time series features that have
been used in the literature to solve the problem.

Whereas the linear combination approach resulted very com-
petitive, a linear method might not be the best strategy to select
the most prominent forecaster, neither to compare the features
proposed here to the ones proposed by Wang et al. and Lemke
et al. Therefore, in order to present the complete picture, we
decided to test all these features using traditional classification
techniques such as: neural networks, support vector machines and
random forest, among others. Furthermore, we also tested these
features using a novel technique that automatically selects very
effective classification models, namely Particle SwarmModel Selection
[14] (PSMS).

In order to show the capabilities of our approach, we decided to
model three different forecasters implemented in the forecast
package of R [20]. These algorithms are: the Exponential smooth-
ing state space model (ETS) (see [21,18,19]), the Auto-Regressive
Integrate Moving Average model (ARIMA) (see [41,12]), and the
Exponential smoothing state space model with Box-Cox transfor-
mation, ARMA errors, Trend and Seasonal components (BATS) (see
[10]). These forecasters were tested on the time series of the M1
and M3 competitions [31,32].

Finally, the novel features proposed in this contribution and the
time series features used in [44,24] are compared using the
algorithms and the time series aforementioned. The results show
that our novel set of features are competitive, obtaining the best
performance on two of the cases tested; the characteristics used
by Wang et al. obtained the best performance in one case; and a
combination of all the features described herein obtained the best
performance in the remaining case.

The rest of the paper is organized as follows. In Section 2 the
time series characteristics are described. Section 3 presents our
modeling technique and the process to apply it. Section 4 presents
the time series used to test our approach and the forecasters
analyzed. The experimental results are shown in Section 5. The
conclusions and some possible directions for future work are given
in Section 6.
2. Characterizing univariate time series

In this section, we describe the different features used to
characterize univariate time series. We start describing the time
series characteristics proposed by Wang et al. and Lemke et al. in
Sections 2.1 and 2.2, respectively. This is followed by a description
of our previous models of performance (see Sections 2.3 and 2.4).
Finally, Section 2.5 presents the novel time series features.

2.1. Wang et al.'s time series characteristics

Wang et al. [44] proposed a number of metrics to characterize
univariate time series. These metrics were then used with self-
organizing maps and decision trees to infer the relationship of
these characteristics and the performance of the forecasters under
study. The result of this work is a set of rules that can be used to
decide which algorithm to use given the time series characteristics.

The first step in order to compute these characteristics is to
perform a Box-Cox transformation [7] to the original time series.
Let y be the time series and yp be the time series after the Box-Cox
transformation.1 yp is decomposed into its trend, seasonal, and
remainder components (see [33]), i.e., yp ¼ yt þ ys þ ye where yt
correspond to the trend component, ys is the seasonal component,
and ye is the remainder. Finally, one can remove from yp the trend
and seasonal components, i.e., yf ¼ yp�yt�ys.

The original and decomposed series, i.e., y, yf, yt, and ys, are used
to compute thirteen characteristics, which are used to describe the
time series byWang et al. The first two are related with the seasonal
and trend components. These are defined as: w1 ¼ 1�s2ðyf Þ=
s2ðyp�ysÞ and w2 ¼ 1�s2ðyf Þ=s2ðyp�ytÞ, where s2ð � Þ is the var-
iance. w3 is the periodicity of yp�yt which is computed using the
autocorrelation. The next two features, w4 and w5, correspond to
the serial correlation of y and yf, respectively. w6 and w7 are the
nonlinear autoregressive structure measured from y and yf, respec-
tively. w8 and w9 are the skew of y and yf, respectively; and w10 and
w11 are the kurtosis of y and yf, respectively. The self-similarity or
long-range dependence corresponds tow12 and it is measured using
yf. The last characteristic, i.e., w13, is chaos which is computed using
the Lyapunov exponent on y.

2.2. Lemke et al.'s time series characteristics

Lemke et al. [24] used different machine learning techniques
such as: neural networks, decision trees, support vector machines,
and zoomed ranking; to tackle the algorithm selection problem.
These machine learning techniques were trained with 27 time
series features. These features were categorized by Lemke et al. in
four blocks.
1.
 The first block contains ten features based on traditional
statistics. These are: standard deviation of detrended series,
skewness of y, kurtosis of y, the length, ratio of the standard
deviation of y and detrended series, Durbin–Watson statistic,
turning points, step changes, non-linearity, and largest Lyapu-
nov exponent.
2.
 The second block contains five features obtained on the frequency
domain. These features correspond to the three biggest values of
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the power spectrum frequencies, the biggest value of the power
spectrum, and the number of peaks not lower than 60% of the
maximum.
3.
 The third block has perhaps one of the most traditional analysis
perform on the time series that is the auto-correlation coeffi-
cients, namely acf and pacf. Here, four features are obtained of
the first two coefficients of acf and the pacf.
4.
 The last block is different from the previous ones in the sense
that it does not include time series characteristics, instead, the
features presented measure the diversity of the algorithms
being analyzed on the time series under study. That is, this block
somehow measures the diversity with respect to the perfor-
mance of the forecasters. The first feature measures the differ-
ence between the error of each forecaster and the error of a
forecast composed by the average forecast of all the algorithms.
The second is the ratio between the previous values. In total,
there are two features for each algorithm being modeled. The
third and fourth features are the mean and standard deviation of
the correlation coefficients of the forecast made by the algo-
rithms. Finally, the fifth and sixth coefficients are the number of
methods in the top performing cluster and the distance between
the top performing cluster and the second best. These two latter
values were not computed given that in our experiments there is
only one cluster, that is, all the algorithms are in the same cluster
and only one of them is used to forecast a given time series. In
total this block contains eight different features, given that we
are analyzing three algorithms.

2.3. Performance models of genetic programming

In [34], we proposed a model to estimate the performance of
Genetic Programming (GP) [22,37]) and related techniques. GP is
an evolutionary technique commonly used to evolve programs.
That is, let f be a problem and Ω be a search space composed by
candidate programs that solved f. Then, GP search into Ω trying to
find the program that solves the best problem f. The quality of the
solution delivered by a program is measured using a fitness
function and the fitness of a program is the value assigned by the
fitness function to that particular program.

The model uses the fact that GP searches in the space of
programs and that each program has a fitness given f. The idea is
that the performance of a GP system on problem f, i.e., P(f) can be
estimated using a set of reference programs (elements of Ω) and
the fitness of these elements. In formulae, the model is defined as

Pðf Þ≈a0 þ ∑
s∈S

as � dsðf Þ ð1Þ

where S is the set of reference programs, ds(f) is the fitness of program
s on problem f, and as are coefficients that need to be identified.

Eq. (1) can be computed given set S and ds. In fact these two
components can be seen as the characteristics of the time series.
That is, given a particular problem f, one can compute the values of
ds for every algorithm in S. In order to show how to create S, let us
remember that S is formed by the programs of the search space. In
the case of time series forecasting, Ω is composed by forecasters.
Under this circumstance, S is also composed by forecasters, then
we decided to form S using the forecasters being modeled which
are: BATS, ARIMA, and ETS. The last ingredient is to define ds, that
is, the fitness of the forecaster s on a particular problem. Here, ds is
just the error of the forecaster in its training phase, i.e., the error in
the in-sample data.

2.4. Difficulty indicators models

Following with models developed to estimate the performance
of GP, in [15], we proposed an improvement over our previous
modeling technique. This improvement is based on a novel set of
features for assessing problem difficulty for GP, these features
are very general, essentially being based on the notion of finite
difference. These models outperformed our previous models in
two ways: firstly, they predict more accurately, and, secondly, the
models obtained with these features are simpler having a less
number of degrees of freedom than our previous approach.

Our difficulty indicators described in [15] are inspired by the
discrete derivative of a function. The discrete derivative of a function
f w.r.t. a variable x is defined as

Δhf ðxÞ ¼
f ðxþ hÞ�f ðxÞ

h
; ð2Þ

where h is the step size. Normally, one tries to set h to the smallest
possible value; however, counterintuitively, the difficulty indicators
used are computed varying the value of h. These are defined as

ϱiðf Þ ¼
1
jIj ∑x∈I

Δif ðxÞ j;
�� ð3Þ

where I contains all the input patters, and i is the value of derivative
step h.

The features described in Eq. (3) can be easily computed with
the help of an example. Firstly, let us represent a time series as a
function f where f ð1Þ is the first measurement of the series, f ð2Þ is
the second, and so on. Based on this notation, I is 1;2;…;nwhere n
is the length of the series; and i, which correspond to the step in
Eq. (2), can take the values from 1 to n�1. Now, let f be defined as:
f ð1Þ ¼ 12, f ð2Þ ¼ 2, and f ð3Þ ¼ �1 then ϱ1ðf Þ ¼ jΔ1f ð1Þj þ jΔ1f ð2Þj,
Δ1f ð1Þ ¼ f ð2Þ�f ð1Þ ¼ �10, Δ1f ð2Þ ¼ f ð3Þ�f ð2Þ ¼ �3, and this yields
to ϱ1ðf Þ ¼ 13

3 .
The second difficulty indicator proposed in [15] is more related

to the discrete derivative (Eq. (2)) of function f with the only
difference that it was decided to use the absolute value. In
formulae, these indicators are defined as follows:

ςiðf Þ ¼
1
jIj∑x∈I

Δhf
ðiÞðxÞ ;j

��� ð4Þ

where f ðiÞðxÞ is the ith order derivative of function f w.r.t. a variable
x, I ¼ 1;2;…;n, and h which was set to 1 in [15] is the step size.

The performance model described in [15] was a linear combi-
nation of the difficulty indicators presented in Eqs. (3) and (4).

It is important to note that although Eq. (1) and the difficulty
indicators shown in Eqs. (3) and (4) have been tested previously to
model the performance of GP, this is the first time these features
are tested to model the performance of a forecaster. The difference
is that previously, on GP, one is measuring the capabilities of the
algorithms to learn a particular function, on other words, the
performance of the algorithms is computed using the in-sample
data. On the other hand, in this contribution, the performance of
the forecasters is measured with the out-sample data, that is, we
are modeling the generality of the forecasters.

2.5. Novel time series characteristics

We start proposing new time series features by extending the
difficulty indicators previously introduced. Looking at Eq. (4), one
can realize that the only reason to set h¼1 is to follow closely the
concept of discrete derivative; however, the use of absolute value is
not used at all in the computation of discrete derivative. Conse-
quently, it is reasonable to investigate whether different values of h
would produce feasible indicators. That is, our new set of features
is obtained when h is varied from 2 to n�1 in Eq. (4). In order to
make this explicit and to combine this extension with the original
formulae, we decide to introduce in ς a superindex h to indicate the



2 A recent approach of the use of AIC on radial basic function network on the
problem of chaotic time series is described in [49].
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size of the step, i.e., ςhi ¼ 1=jIj∑x∈IjΔhf
ðiÞðxÞj, where i is the ith order

derivative and h is the step used to compute it. It can be observed
that when i¼1 and h is varied from 1 to n�1 in ςhi one is effectively
computing all the indicators computed in Eq. (3), i.e., ςj1≡ϱj. Given
this equivalence, we substitute all ϱ terms with ς.

Our second set of new time series features follows a completely
different approach. Firstly, these are not extensions of previous
works, and secondly they are in close relation with the forecasting
problem. In order to explain them, let us remember that the problem
of time series forecasting is to predict a number of points that are
unknown in the process of training the forecaster. In the cases
analyzed here, the minimum number of points to forecast is six.

Ideally, the method used to forecast is the one that is more
related with the generating model of the particular time series.
That is, one desires that the model used to forecast is the one that
generates the particular time series. Clearly, this is not possible;
however, the expectation is that the forecaster used performs the
most accurate predictions.

Under this assumption, it is reasonable to imagine that if one
forecasts n points with this ideal forecaster, these points would
have similar characteristics that the points used to train the
forecaster, namely in-sample points. That is, the values of any
of the time series characteristics mentioned previously would be
equivalent whether these values are computed using the in-
sample or the predicted values of the series.

Our last set of features is inspired by this observation. Firstly,
we compute all the time series characteristics proposed by [44,24]
and the difficulty indicators (i.e., ς) using the in-sample data.
Secondly, we used the forecaster to predict as many points as
required by the competition being tested. With these predictions,
we compute the time series features previously computed with
the in-sample data. The final step is to measure the similarity
between the features computed with in and out-sample data.
We divided the features based on the study that proposed them,
and, then, we measure the similarity between them. That is, one
similarity measurement is obtained of the features proposed by
Wang et al., another from the characteristics proposed by Lemke
et al., and another from ς. In all the cases the symmetric mean
absolute percentage error is used to measure the similarity
between the features.

To sum up, in this section, we have presented different features
that can be used to characterize univariate time series. We started
describing the thirteen time series characteristics proposed by Wang
et al.. Then, we described the twenty seven features proposed by
Lemke et al.. Next, we presented our previous modeling techniques,
namely the performance models and the difficulty indicators models.
In the last section, we describe our novel features, being the first of
them an extension of our difficulty indicators and the second set of
features is based on the measuring of the difference between the
time series characteristics computed using the in-sample and the
out-sample data.

It is interesting to note that all of the features described here
can be organized using the categories described by Lemke et al.':
The features proposed by Wang et al. can be classified in the first
block. That is, these features are computed using traditional
statistics. The features used in the performance models can be
set in the fourth block. That is, these features somehow are
measuring the difference with respect to performance that the
algorithms involved in the study have. The difficulty indicators
correspond to the first block. Also in this block we can find our
extension of the difficulty indicators. Our latest features are harder
to categorize under this scheme. This features measure somehow
the behavior of the algorithms but not exactly the performance.
Furthermore, they use traditional statistics to compute them, so
we would set them in the middle of the first and fourth block
defined by Lemke et al.
3. Modeling forecasters using time series features

So far, we have described different the time series character-
istics, proposed in previous research studies, our previous model-
ing techniques, and proposed novel time series features. At this
point, we are in the position to start describing how these features
are used to tackle the algorithm selection problem. As we have
described previously, we decide to create models of performance
using a linear combination of the time series features. The reason
behind using a linear combination is the success of our previous
models and the number of algorithms portfolios that follow this
approach (see [25–29]).

Our first model is shown in Eq. (1), where S ¼ fBATS;
ARIMA;ETSg and ds is a normalized version of the mean absolute
error (NMAE) (see Section 5).

Our second model of performance is based on the difficulty
indicators, i.e., ς. As before, we decided to linearly combine these
indicators. In formulae, the model of performance is defined as

Pðf Þ≈a0 þ∑
n

h
∑
n=h

i
ahi � ςhi ðf Þ: ð5Þ

The maximum values of h and i are specified in Eq. (5) where n
is the length of the time series; however, in this contribution we
decided to set the maximum value of h and i to eight. This leaves
us with a total of twenty difficulty indicators.

Based on aforementioned motivation, we decided to combine
the thirteen time series characteristics proposed by Wang et al.
using a linear equation. In formulae, the model is defined as

Pðf Þ≈a0 þ∑
13

i
ai �wiðf Þ: ð6Þ

Similarly, the time series characteristics used by Lemke et al.
are linearly combined. That is

Pðf Þ≈a0 þ∑
i
ai � liðf Þ: ð7Þ

The next models of performance correspond to the three last
indicators proposed in Section 2.5. We decided to create one
model per indicator. All these models have the form

Pðf Þ≈a0 þ ∑
c∈S

as � SMAPEðxin; xoutðsÞÞ; ð8Þ

where x stands for Wang's features, Lemke's features, and ς; “in”
and “out” refer to the data used to compute these features. S
are the set of forecasters being modeled, that is, BATS, ARIMA,
and ETS.

In order to have a complete picture of different methodologies
to model the performance of time series forecasters, we decided to
include a model based on perhaps the oldest criteria used in model
selection, this is, the Akaike information criterion (AIC) [3].2 In
formulae, this model is defined as

Pðf Þ≈a0 þ ∑
c∈S

acAICðf ; cÞ; ð9Þ

where S is the different forecasters, and AICðf ; cÞ computes the AIC
of forecaster c on the time series f.

We have mentioned previously that one of the contributions of
this manuscript is the proposal of novel models based on features
that have not been used before to characterize time series. There-
fore, our next model uses as components all those features that
have not been used to characterize time series. These are the
components of Eqs. (1), (5), (9), and (8) (using only ς). In formulae,
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this model is defined as

Pðf Þ≈a0 þ ∑
s∈S

as � dsðf Þ þ∑
n

h
∑
n=h

i
ahi � ςhi ðf Þ þ ∑

c∈S
acAICðf ; cÞ

þ∑
s∈S

as � SMAPEðςin; ςoutðsÞÞ ð10Þ

We have introduced a number of models; however, one may
wonder what would be the quality of a model composed by all the
features and characteristics described so far. In fact, this our last
model, a model that is a mixture of all other models and is
composed by all the features describe here in. In formulae, the
model is defined as

Pðf Þ≈a0 þ ∑
s∈S

as � dsðf Þ þ∑
n

h
∑
n=h

i
ahi � ςhi ðf Þ

þ∑
13

i
ai �wiðf Þ þ∑

i
ai � liðf Þ

þ∑
c∈S

acAICðf ; cÞ þ ∑
s∈S

as � SMAPEðςin; ςoutðsÞÞ

þ∑
s∈S

as � SMAPEðwin;woutðsÞÞ þ ∑
s∈S

as � SMAPEðlin; loutðsÞÞ:

ð11Þ
In summary, in this section we have described the models of

performance of time series forecasters (see Eqs. (1), (5), (6), (8),
(9), (10), and (11)). In order to instantiate these models one needs
to identify the coefficients ai, below we describe the procedure
used to instantiate the models.

3.1. Model identification

In order to identify the coefficients ai, we need a training set T
of pairs ðf ; Pðf ÞÞ, where f is the time series under study and P(f) is
the performance of the forecaster being modeled on f. Note
that measuring the performance of an algorithm (i.e., P(f)) is a
time consuming task that sometimes limits the methodologies –

including this contribution – used to solve the algorithm selection
problem; however, for the algorithms being tested this is not a
concern. In addition to this, as specified by other researchers (see
[42]), the collection of problem instances must have variable
complexity. In the cases tested here, these differences in complex-
ity were identified by the organizers of the competitions.

Now that, T has been defined, the coefficients ai can be
identified using ordinary least squares (OLS). Let us illustrate
this procedure by identifying the coefficients of Eq. (6). Let b¼
ðPðf 1Þ;…; Pðf mÞÞ be a vector containing the performance of the
forecaster under study on all the series included in T, a¼
ða1;…; anÞ be a vector composed by the coefficients needed to
identify, and m is cardinality of T. Under these circumstances, in
order to identify a, one needs to solve the equation Wa¼ p, where
W is

W¼
1 w1ðf 1Þ … w13ðf 1Þ
⋮ ⋮ … ⋮
1 w1ðf mÞ … w13ðf mÞ

0
B@

1
CA:

This equation can be solved using OLS, i.e., a¼ ðW′WÞ�1W′p.
However, there are cases where the inclusion of all the covariates
(i.e., columns of W) have a detrimental impact on the generality of
the model. That is, it may be the case where the inclusion of, for
example, instance of w3 is detrimental to the accuracy of the
model, so in this case it would be more convenient not to include
that factor. In order to automate this decision, we decided to solve
Wa¼ p using the Least Angle Regression (LARS) [13] and a cross-
validation technique to decide how many covariates to include in
the final model.

LARS works as follows. It starts by setting all of the coefficients
a to zero and finds the covariate most correlated with the response
p. Then, it takes the largest possible step in the direction of this
covariate until another covariate has as much correlation with the
residual. At this point, LARS proceeds in the equiangular direction
between the two predictors until a third variable has as much
correlation with the residual as these two. The process continues
until the last covariate is incorporated into the model. At this
point, all a coefficients have been identified and these are equal to
the ones obtained with OLS.

As it can be seen, LARS incorporates one variable at a time into
the model. Therefore, one is free to stop this process when only k
covariates have been selected. The idea is to select k of them
in order to obtain the simpler and more general model. In this
contribution, we decided to use a cross-validation technique to
determine the value of k, i.e., the number of covariates included in
the model.

The cross-validation is applied as follows. W and p are split
row-wise into five matrices and vectors of equal size. Four of them
are joined together and are used to produce a model (i.e., these are
used to identified a using LARS), while the remaining pair is used
to assess its generalization. Specifically, the remaining W and the a
obtained in the previous step are used to estimate the response,
namely p̂. This process is repeated 5 times, each time leaving out a
different fifth ofW and p. At the end of this process, we have five p̂
that together can be compared against p to assess the generality of
the model.

This cross-validation procedure is iteratively applied to the
models produced by LARS for k¼ 1;2… with the aim of identifying
the value of k which provides the best generalization. We decided
to measure the overall generalization via the Relative Squared
Error (RSE) [4], which compares the performance of an algorithm
as predicted by the model with the actual performance for all
the problems in T. This is defined as follows: RSE¼∑iðPi� ~PiÞ2=
∑iðPi�P Þ2, where i ranges over a set of test problems used to
evaluate the accuracy of a model, Pi is the average performance
recorded for problem i, ~Pi is the performance predicted by
the model, and P is the average performance over all problems.
The objective is to obtain values of RSE as close as possible to zero.3
4. Test problems and forecasters

In order to test our approach, we decided to use three different
forecasters implemented in the forecast package of R [20]. These
three algorithms are: the Exponential smoothing state space
model (ETS) (see [21,18,19]); the Auto-Regressive Integrate Mov-
ing Average model (ARIMA) (see [41,12]); and the Exponential
smoothing state space model with Box-Cox transformation, ARMA
errors, Trend, and Seasonal components (BATS) (see [10]).

These algorithms were tested on 1001 time series correspond-
ing to the M1 time series competition [31] and 3003 time series
that correspond to the M3 time series competition [32]. In our
experiments, we used M1 to train the models and then test them
on M3 time series. For completion we also present the results
when the forecasters are trained on M3 and then tested on M1.
Furthermore, we decided to test these forecasters as if they were
entering each competition. That is, these algorithms performed a
multi-step forecasting as required by each competition. In addition
to this, we also tested each algorithm in one-step forecasting. That
is, after each forecast, we provide the algorithm with the true
value of that measurement.



Table 1
Average performance of forecaster on the different configuration tested.

M1 M3

BATS ARIMA ETS BATS ARIMA ETS

One-step forecasting
0.1120 0.1446 0.1254 0.1362 0.1760 0.1535

Multi-step forecasting
0.3721 0.3680 0.3551 0.4302 0.4121 0.4126
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We measure the performance of these algorithms using a
normalized version of the mean absolute error (NMAE) in these
two time horizons, i.e., multi-step and one-step forecasting. NMAE
is computed by first transforming the time series in the interval [0,
1], and then, on this domain, we applied the mean absolute error,
and, finally, all the NMAE values above one are set to one.

Table 1 shows the average performance of the three forecasters
tested. It can be seen from the table, that BATS has the best
performance in one-step forecasting in both competitions. For
the case of multi-step forecasting, ETS and ARIMA have the best
performance for competition M1 and M3, respectively.
5. Results

In this section, we analyze the accuracy of the models described
in Section 3. In Section 5.2 our experimental study is complemented
with the use of traditional classification algorithms and the features
described in Section 2 to tackle the algorithm selection problem.

5.1. Models of performance

Let us start describing the process to select a forecaster using
models of performance. The first step is to instantiate a model for
each of the forecasters, that is, we instantiate three models that
correspond to BATS, ARIMA, and ETS. Then these models are used
to predict the performance of each forecaster on each time series.
These predictions are then used to select the forecaster with the
best estimated performance.

The first analysis performed is to show which one of the
models performs the most accurate predictions. Fig. 1 shows in
percentage the number of times a model makes the most accurate
prediction in each of the four cases tested. The models in the figure
are arranged as follows: performance models (P) (Eq. (1)), diffi-
culty indicators (DI) (Eq. (5)), Wang et al.'s model (W) (Eq. (6)),
Lemke et al.'s model (L) (Eq. (7)), AIC model (AIC) (Eq. (9)),
similarity model using DI (DDI) (Eq. (8)), similarity model using
W (DW) (Eq. (8)), similarity model using L (DL) (Eq. (8)), mixture
of models that do not use time series characteristics (NTSC)
(Eq. (10)), and the mixture of all the models (All) (Eq. (11)).

From the figure, it can be observed that for the case of one-step
forecasting the combination of all features (11) obtains the highest
percentage, the second place is Wang et al.'s model and the third
place is for NTSC model and the performance model (P), on the
competition M1 and M3, respectively. In the case of multi-step
forecasting, the best model is Wang et al.'s model, the second place
is the model with all the features, and Lemke et al. in the M1 and
M3 competitions, respectively. The third place is for NTSC and all
the features in M1 and M3, respectively. Taking only in considera-
tion the task performed, i.e., one-step or multi-step forecasting, it
can be observed that the model that has the highest percentage
in one-step forecasting is the combination of all of the features
(Eq. (11)), followed by Wang et al.'s model (Eq. (6)), and in third
place is the NTSC model (Eq. (10)). In the other case, the best and
second best changed with respect to the previous case, that is, the
best model is Wang et al.'s model and the second is the model
with all the features.

At this point, we can conclude that our indicators alone are not
performing well with respect to performing the most accurate
prediction. However, the combination of our features obtains the
third place on either the one-step or multi-step forecasting. This
new features are only behind Wang et al.'s model.

Although Fig. 1 shows the quality of the models, it does not
indicate whether these models are appropriate to solve the
algorithm selection problem. That is, the realm of this problem is
that the average performance obtained by selecting the forecaster
(i.e., algorithm portfolio) must be better that the average perfor-
mance of each of the forecasters (see Table 1 for the average
performance of the forecasters). Of course, this has a limit and the
limit is obtained when one has a perfect model. The performance
of a perfect model can be seen in Table 4.

Table 2 shows the average performance of the portfolio for the
different models described previously. Here, we also present
the results on the cross-validation to indicate how the model
would be selected based on this measurement. Let us remember
that we have performed a cross-validation in the training set to
optimize the number of covariates, then, we can use this informa-
tion to solve the algorithm selection problem in the training set.
This data is in the column label with CV. The column label VS
corresponds to the data of the validation set, i.e., data no seen in
the identification of the model. In the table, it is also shown the p
value of the Kruskal Wallis one-way analysis of variance [23] to
indicate whether the differences in performance are statistically
significant.

Table 2 is divided horizontally into two blocks, the first block
corresponds to the one-step forecasting and the second one is
associated to the multi-step forecasting. From the table, it can be
seen that the best average performance in the one-step forecasting
is the model composed by all of the features, the exception is
when the M3 competition is used as validation set; however, in
this case is the second best. In this task, we can see that the p
values are all below 0.05 indicating that there are statistically-
significant differences in the performance among groups of
characteristics. In order to identify whether the best algorithm is
the one presenting this difference in performance, we compare
the best algorithm against all others using a Wilcoxon signed-rank
test [45]. In almost all of the cases the algorithm with all the
features has a p value below 0.1, indicating, with a confidence of
90% that this algorithm has a better performance and it is
statistically significant. The cases where the p values are high are
when M1 is used as CV and the algorithm being compared is
the model using Wang et al.'s features (p¼0.4814) and the NTSC
model (p¼0.4809). Based on this, it is not surprising that the best
model in the set M3 used as validation set is the model with Wang
et al.'s features and the second best is the NTSC model. In this later
case, the model with Wang et al.'s features is statistical better than
the other model with a confidence interval of 95% as indicated by
the p values of the Wilcoxon signed-rank test.

In the case of multi-step forecasting, the NTSC model (see
Eq. (10)) is the one that obtained the lowest average performance
in M1 used as cross-validation and M3 used as validation set. This
model obtained the second best in the remaining cases. When M3
is used as cross-validation the best model is the combination of all
features, and the best model on M1 used as validation set is the
difference indicators model. It this task the p value of the Kruskal
Wallis test indicates that there is not a statistically-significant
difference in performance.

The average performance of algorithm portfolios shown in
Table 2 complements the information presented in Fig. 1. Based
on this information, it can be seen that the combination of all of



Fig. 1. Percentage of the number of times a model obtain the best prediction. (a) M1, one-step forecasting. (b) M3, one-step forecasting. (c) M1, multi-step forecasting (d) M3,
multi-step forecasting.
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our features (Eq. (10)) is very competitive with respect to the
average performance of the portfolio and also by performing
accurate predictions with respect to the other models. Wang
et al.'s features are the best single features; however, they do not
perform as well when the portfolio is tested on the multi-step
case. It is not surprising that the model created with the combina-
tion of all features is the most consistent of all the models, this is
an indication that LARS is selecting properly the most prominent
features.

As mentioned before, the goal of an algorithm portfolio is to
perform better that any of the algorithms composing the
portfolio. The average performance presented in Table 1 and in
column label VS in Table 2, can be used to test whether the
models perform better that the single forecasters. On the case of
one-step forecasting we can see that in the M1 competition
almost all the models obtained better performance than the best
forecaster. The two exceptions were the portfolios created with
the difference indicators and the distance of Lemke et al.'s
features. In the case of M3 competition, only half of the models
obtained better average performance, these are Wang et al.'s
features, distance of Lemke et al.'s features, AIC, NTSC, and the
model with all the features.

In the case of multi-step forecasting, the number of models that
obtained better performance is considerably lower, In the M1
competition none of the models obtained better average perfor-
mance than the performance of the best forecaster. On the M3
case, only four modes have better average performance. These
models are: the performance models, the difficulty indicators
models, NTSC, and the model composed by all the features.

5.2. Classification algorithms

Results obtained in the previous section motivated us to look for
alternative procedures (other than a linear combination) to select
time series forecasters. This is in order to determine whether
alternative methodologies can obtain similar or better results. Hence
we performed experiments with other type of predictive models:
classifiers. Opposed to regression models (like OLS and LARS), which
perform predictions regarding a continuous variable, classification
models aim to make predictions regarding a categorical variable [11].
The algorithm selection problem for time series forecasting can be
naturally posed as a classification task: the problem of associating
a time series with the forecaster that will result in the best
performance.

Hence we face the classification problem of associating a time
series with the algorithm that potentially will result in the best
performance. In this case, there are three categories or classes that
correspond to the three algorithms composing the portfolio. Each
time series has a label indicating the algorithm that got the
best performance (i.e., lowest NMAE) in that particular time series.
Now that we have a label for each of the time series of our
collection, we need a set of features describing a time series. Here
is where the components used to create the models come in
handy. These components can be used as the set of features, given



Table 2
Average performance of the algorithm portfolio when the selection is performed using the performance models. The last
row in each group contains the p values of the Kruskal Wallis one-way analysis of variance to indicate whether the
difference in performance is statistical significant.

Models One-step forecasting

M1 (CV) M3 (VS) M3 (CV) M1 (VS)

Performance (P) 0.1108 0.1417 0.1362 0.1116
Difficulty indicators (DI) 0.1106 0.1387 0.1344 0.1124
Wang et al. 0.1071 0.1330 0.1324 0.1064
Lemke et al. 0.1121 0.1420 0.1349 0.1115
Distance DI (DDI) 0.1115 0.1365 0.1361 0.1119
Distance Wang 0.1120 0.1363 0.1362 0.1118
Distance Lemke 0.1120 0.1362 0.1357 0.1121
AIC 0.1065 0.1342 0.1338 0.1053
NTSC 0.1064 0.1357 0.1327 0.1079
All 0.1060 0.1334 0.1289 0.1039

Kruskal Wallis' p values 0.0491 0.0004 0.0013 0.0197

Models Multi-step forecasting

M1 (CV) M3 (VS) M3 (CV) M1 (VS)

Performance (P) 0.3589 0.4106 0.4088 0.3593
Difficulty indicators (DI) 0.3648 0.4108 0.4091 0.3576
Wang et al. 0.3641 0.4144 0.4061 0.3615
Lemke et al. 0.3611 0.4136 0.4069 0.3616
Distance DI (DDI) 0.3571 0.4135 0.4120 0.3626
Distance Wang 0.3555 0.4125 0.4160 0.3681
Distance Lemke 0.3548 0.4123 0.4160 0.3669
AIC 0.3549 0.4142 0.4092 0.3642
NTSC 0.3540 0.4081 0.4056 0.3579
All 0.3541 0.4104 0.4027 0.3599

Kruskal Wallis' p values 0.9862 0.9910 0.5987 0.9970
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that we already now that are related with the performance of
the algorithm and as consequence with the hardness of the time
series. So, each time series f is represented by a vector composed
by the values of the components of Eq. (10) or (11), depending on
whether the classifications are trained with the features that are
no used to characterize time series or with all the features
described, respectively.

As with the linear models, we use a training set of labeled time
series to build the classification models. Next the classifier is used
to make predictions for the test time series. For our experiments
we considered 8 of the most representative classifiers within
pattern recognition and machine learning (see column 1 in
Table 3) [11]. These methods are implemented in the CLOP tool-
box.4 Besides considering standard classification techniques we
also considered a method that automatically generates classifica-
tion models, called, Particle Swarm Model Selection (PSMS) [14].
PSMS explores the search space of all of the classification models
that can be obtained by the combination of methods for data
preprocessing, feature selection and classifiers using the imple-
mentations available in a machine learning toolbox (CLOP).
Besides, PSMS optimizes the parameters of all of the models being
considered. Hence PSMS automatically obtains models that can
include methods for data preprocessing (e.g., normalization of
features), feature selection (e.g., using correlation to select the
most discriminative features) and classification.

Table 3 shows the average performance obtained with the
different classification techniques we considered. We report the
forecasting performance obtained in competitions M1 (using as
training data the features extracted from time series from the M3
4 http://clopinet.com/CLOP/.
competition) and M3 (using as training data the features extracted
from time series from the M1 competition), using the forecaster
selected with the corresponding classifier. The table is divided
row-wise into two blocks, the first block corresponds to the one-
step forecasting and the second block presents the results of the
multi-step forecasting. The table shows the results obtained in the
two sets used to describe the time series. That is, the first block
column (labeled as: NTSC) presents the results when the classifi-
cation algorithms were trained with our features (see components
of Eq. (10)), and the second block column (labeled as: All features)
shows the results when the classification algorithms are trained
with all the features describe in this contribution (i.e., components
of Eq. (11)). The table also presents the p value of the Kruskal
Wallis one-way analysis of variance [23].

From Table 3, it can be observed in bold the classification
algorithm that obtained the best performance in each set of
features. It can be observed that the classifiers that performed
the best were those obtained with PSMS in almost all the cases,
the only exception is on the one-step forecasting with the M3
competition and using the all the features, in this case the
classification having the best performance is Kridge.

Comparing the performance of the classification algorithm on the
different set of features, we can see that the Kruskal Wallis'
p values are all below 0.05. In order to test whether the best classifier
is the one that makes this difference in performance, we compare
with all the other classifiers using the Wilcoxon signed-rank test. In
almost all the cases, the p values of this test are well below 0.05,
there are only two exceptions. These two are on the NTSC cases. On
the set M1 the comparison RF vs PSMS has a p¼0.1303, and on the
competition M3 the comparison Klogistic vs Kridge has a p¼0.9952.

On the other hand, for the case of multi-step forecasting, we
see that the Kruskal Wallis' p values are only significant (with 90%

http://clopinet.com/CLOP/


Table 3
Average performance of the algorithm portfolio when the selection is performed by different classifications techniques. The
last row in each group contains the p values of the Kruskal Wallis one-way analysis of variance to indicate whether the
difference in performance is statistical significant.

Selection method One-step forecasting

NTSC All features

M1 M3 M1 M3

Klogistic 0.1066 0.1403 0.1024 0.1327
Neural 0.1124 0.1449 0.1143 0.1367
Kridge 0.1063 0.1374 0.1031 0.1324
RF 0.1053 0.1390 0.0999 0.1364
Logitboost 0.1090 0.1466 0.1056 0.1382
Naive 0.1131 0.1730 0.1105 0.1532
GKRidge 0.1107 0.1366 0.1120 0.1362
KNN 0.1177 0.1501 0.1152 0.1562
PSMS 0.1029 0.1356 0.0990 0.1342

Kruskal Wallis' p values 0.0032 0.0000 0.0000 0.0000

Selection method Multi-step forecasting

NTSC All features

M1 M3 M1 M3

Klogistic 0.3668 0.4179 0.3655 0.4201
Neural 0.3670 0.4136 0.3651 0.4125
Kridge 0.3670 0.4187 0.3657 0.4192
RF 0.3609 0.4103 0.3587 0.4096
Logitboost 0.3608 0.4159 0.3607 0.4174
Naive 0.3687 0.4287 0.3683 0.4246
GKRidge 0.3701 0.4118 0.3721 0.4126
KNN 0.3581 0.4150 0.3639 0.4165
PSMS 0.3508 0.4057 0.3504 0.4069

Kruskal Wallis' p values 0.6007 0.0762 0.6170 0.3439

Table 4
Performance of the portfolio when the selection is done perfectly, using AIC, and
the best algorithm in the portfolio.

Selection method One-step
forecasting

Multi-step
forecasting

M1 M3 M1 M3

Perfect model 0.0859 0.1130 0.2894 0.3284
Best classification algorithm 0.0990 0.1324 0.3504 0.4057
Forecaster with best performance 0.1120 0.1362 0.3551 0.4121
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confidence) on the NTSC with the competition M3. In this case the
Wilcox signed-rank test perform to test statistical significance
difference of the best classifier gives p values below 0.05.

The results present in Table 3 can be compared against the
average performance of the forecasters, Table 1, to see whether
these algorithm portfolios have a better performance than the
forecasters. It can be seen that the only portfolio that outperforms
the forecasters in all the cases tested is PSMS. This result evidences
the importance that preprocessing and feature selection methods
as well as the fine tuning of parameters (as performed by PSMS)
may have into the resultant performance of classifiers.

Table 4 presents a comparison of the performance of the portfolio
when different techniques are used. In the first case, the table
presents the performance when one has a perfect model, this is
the best possible performance with these algorithms. It
also contains the performance of the best models found using the
classification algorithms and the models of performance. From left to
right these algorithms are PSMS, Kridge, PSMS, and PSMS. Note that
in the case of multi-step forecasting on set M3, the best performance
was obtained using the features proposed here, that is, the
components of Eq. (10). Finally, the last row presents the perfor-
mance of a selection algorithm that always choose
the algorithm with best average performance over all series of that
particular competition. In order to know whether the difference in
performance are statistical significant, we perform the Kruskal Wallis
one-way analysis of variance [23] on each of the four cases tested (i.e.
one-step forecasting with M1 and M3 and multi-step forecasting
with M1 andM3). In all the cases, the test reports p values o0:01. To
investigate which algorithms make these differences in performance,
a pairwise Wilcoxon signed-rank test [45] was performed. All the p
values of this test are below 0.05, indicating that these differences in
performance are statistical significant.

The information shown in this table allows us to infer the
improvement of the portfolio over selecting the forecaster with best
average performance. Comparing the last rowwith the second row of
the table, we can realize that in all the cases our selection mechanism
is improving the performance of the best algorithm in the portfolio.
In fact, we can use also the information of the first column to give a
more precise idea of this improvement. Let us define an improve-
ment of 100% to the model that gets the performance of the perfect
model and assign a 0% to the selection algorithm that gets the same
performance as the algorithm with best average performance. Under
this circumstance, we can see that for set M1 and M3 in the case of
one-step forecasting, our methodology gets an improvement of 49%
and 16%, respectively. In the case of multi-step forecasting this
improvement is of 7% and 7%, respectively.
6. Conclusions

In this contribution, we have modeled the performance of time
series forecasters using features that have not been previously
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used to characterize time series. In fact, we considered different
features that have shown success on modeling the performance of
GP systems. Furthermore, in Section 2.5, we have extended these
features, namely the difficulty indicators (i.e., ς); and, we have
proposed novel indicators such as the indicators based on the
similarity between the in and out-sample data.

The features proposed here complement previous approaches
where the algorithm selection problem is solved using time series
characteristics. In fact, as the results shown, our features proposed
are very competitive obtaining the best performance on one of
the four cases tested. In addition to this, our features can be easily
implemented being based on the notion of finite differences,
the performance of the forecasters on the in-sample data, and
the similarity between indicators computed with the in-sample
and forecast data.

In all the cases presented here the performance of the algo-
rithm portfolio outperforms the performance of all the algorithms
composing the portfolio, in the best case there is an improvement
of 49%. This result was obtained with a classification model obtained
with PSMS. Although, the performance of most of the linear models
tested was highly competitive as well.

There are several future work directions we would like to
explore. A first idea is that of generating individual classifiers for
each type of characteristics and then build ensemble classification
models that combine the outputs of the former classifiers. A
second direction is to combine the information generated with
both linear regression and classification models to test whether
this approach would outperform the procedures presented here.
Finally, we would like to perform an exploratory study on the
importance of each feature for the classification and regression
problems.
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