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This paper describes a supervised learning approach to sow-activity classification from accelerometer
measurements. In the proposed methodology, pairs of accelerometer measurements and activity types
are considered as labeled instances of a usual supervised classification task. Under this scenario sow-
activity classification can be approached with standard machine learning methods for pattern classifica-
tion. Individual predictions for elements of times series of arbitrary length are combined to classify it as a
whole. An extensive comparison of representative learning algorithms, including neural networks, sup-
port vector machines, and ensemble methods, is presented. Experimental results are reported using a
Logitboost with trees data set for sow-activity classification collected in a real production herd. The data set, which has been
Pattern classification widely used in related works, includes measurements from active (Feeding, Rooting, Walking) and passive
CLOP (Lying Laterally, Lying Sternally) activities. When classifying 1-s length observations, the best method
Sow-activity classification achieved an average recognition rate of 74.64%, for the five activities. When classifying 2-min length time
series, the performance of the best model increased to 80%. This is an important improvement from the
64% average recognition rate for the same five activities obtained in previous work. The pattern classifi-
cation approach was also evaluated in alternative scenarios, including distinguishing between active and
passive categories, and a multiclass setting. In general, better results were obtained when using a tree-
based logitboost classifier. This method proved to be very robust to noise in observations. Besides its
higher performance, the suggested method is more flexible than previous approaches, since time series
of any length can be analyzed.
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1. Introduction

Automated monitoring of animal behavior enables oestrus,
health disorders, and animal-welfare in general to be supervised
on a large scale. It is therefore an important research area within
livestock production. Recent research and development have tar-
geted animal activity recognition, since the recognition of basic
animal activities can help to detect and monitor important events
such as oestrus, pregnancy or parturition. Data collected from sen-
sors physically-attached to animals have been successfully used to
classify the activities of individual animals when housed in groups
(Cornou and Lundbye-Christensen, 2010; Firk et al., 2002; Umstat-
ter et al., 2008). The main motivation behind physically-attached
sensors is to gather real-time (first hand) information of the ani-
mals’ behavior. In addition, sensors such as infrared and acceler-
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ometers are affordable and accurate, which make them suitable
tools for commercial research. The activities of dairy cows, sows
and other species have been monitored and classified using data
collected from these types of sensor.

The present work focused on the classification of individual
sows’ activity using accelerometers measurements. Previous stud-
ies (Cornou and Lundbye-Christensen, 2008; Cornou and Lundbye-
Christensen, 2010) used dynamic linear models to classify different
sow activities. In particular, Cornou and Lundbye-Christensen
(2010) used a Multi-Process Kalman Filter (MPKF) which achieved
excellent classification results for passive (lying laterally, LL, and
lying sternally, LS) and active (feeding, FE, rooting, RO, and walk-
ing, WA) activities. The authors reported a 64.4% average recogni-
tion rate. The current study aimed at improving the recognition
performance obtained by the MPKF for active (FE RO WA) and pas-
sive (LL and LS) sow activities by classifying accelerometer data
using a supervised machine learning process that neglects time
dependencies between sample-measurements. Specifically,
the classification of time series is approached as a standard
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(atemporal) pattern classification task that can be solved with a
variety of techniques (Duda et al., 2000; Hastie et al., 2009). In this
way, time series of arbitrary length (duration) can be analyzed by
combining the predictions provided by the model for the elements
(acceleration measurements) of the series. This formulation offers
a wide flexibility for the on-line monitoring of animals. Further-
more, it was hypothesized that four accelerometer measurements
(axes x,y,z, and the norm of the acceleration vector) recorded at an
instant (1 Hz in this study) are informative enough to discover and
recognize sow activities.

Using the data set from Cornou and Lundbye-Christensen
(2010), classification results are generated by applying six of the
most representative classifiers from the fields of machine learning
and pattern recognition (Duda et al., 2000; Hastie et al., 2009;
Saffari and Guyon, 2006): neural networks (neural), support vector
machines (svM), Naive Bayes (naive), a linear classifier (zarbi),
random forest (RF) and logitboost-with-trees (1ogitboost). The
performance of these classifiers is evaluated under different
scenarios.

The main contributions of the study presented in this paper are
as follows:

o A highly-effective supervised-learning approach to sow-activity
classification where time dependencies between measurements
are ignored.

e The proposed approach is able to classify measurements
recorded at an instance (a second) of time, facilitating the
real-time monitoring of animal-behavior in practice.

e In addition, a method combining predictions made at the obser-
vation (second) level for classifying time series of varying length
is proposed.

The remainder of this paper is organized as follows: Section 2
describes the method used to obtain the accelerometer data of five
types of sow activities. Section 3 follows with background informa-
tion on pattern classification and leads into Section 4 where the
supervised learning approach is presented. Section 5 reports the
classification results obtained using the six classification methods
for the five activity types. The classifiers are tested on an individual
basis, per activity, and as a multiclass problem, across all activities.
The classifiers are also tested under different data-input scenarios,
using data samples at 1 Hz (an observation) and for time series of
accelerometer data of 2 min (a series of observations). Section 6
concludes with the findings of this study and outlines future work
directions.

2. Acceleration measurements
2.1. Time series recording

Time series of acceleration measurements were collected for 11
group-housed sows, in a Danish production herd. These experi-
mental sows were housed in a dynamic group of approximately
100 sows, where the pen was 22.45 m long by 12.45 m wide. Rest-
ing areas were straw-bedded and activity areas had solid or slatted
floors.

The accelerometers and a battery package was placed on a box
fitted on each experimental sow using a neck collar, so that the box
was placed on the lowest part, i.e. at the bottom of the neck, for
each of the 11 sows. Acceleration data were measured in three
dimensions using a digital accelerometer (LIS3L02DS from STMi-
croelectronics) four times per second, 24 h a day, during 20 days.
Furthermore, the sows were video recorded 24 h a day. Video
recordings were used to identify the types of activity that the
experimental sows (individually marked on their back) were
performing.

2.2. Data set construction

This study used the two data sets from Cornou and Lundbye-
Christensen (2008), Cornou and Lundbye-Christensen (2010). Five
types of activity were included: feeding (FE), rooting (RO), walking
(WA), lying sternally (LS) and lying laterally (LL).

The data sets contain extracts (observations) of time series cor-
responding to each of the five activities. Each extract is a 4D vector
of measurements, with values for the three-dimensional axes x, y
and z and the length of the acceleration vector a = /x2 + y2 + z2.
A learning (or training) data set was used to train discriminative
models and a test data set was used to evaluate the classification
methods.

o The learning data set includes 46 series of 10 min: 6, 7, 11, 11
and 11 series, respectively for FE, RO, WA, LS and LL.

e The test data set includes 490 series of 2 min: 84, 79, 107, 110
and 110, respectively for FE, RO, WA, LS and LL.

Video recordings were used to select the series’ extracts. The
procedure was carried out by a single person, who simultaneously
analyzed the video and noted the start and end of activities on the
printed time series. Since a change of activity can be visualized on
the series (for one or more axes), this ensured a good concordance
between the activity and the series’ extract. Any overlapping of
activity (especially between RO and FE) was reduced to a mini-
mum. Moreover, missing data and the fact that sows perform more
rarely RO and FE activities resulted in a smaller number of series
for these activities.

The two data sets differ in terms of time series’ length. For the
learning data set, a length of 10 min was chosen in order to have
sufficient training time for the development of the classification
method, and considered as a maximum length (especially with re-
spect to FE), since the extract should contain an activity performed
continuously. For the test data set, a length of 2 min was consid-
ered as sufficient to recognize a given activity, and short enough
to reduce overlapping of different activities. The data set used in
this study is described in more details in Cornou and Lundbye-
Christensen (2010).

3. Pattern classification

A wide range of pattern classification methods have been devel-
oped (Duda et al., 2000; Hastie et al., 2009), as pattern classifiers
are important core components within machine learning and pat-
tern recognition systems. The supervised pattern-classification
process involves finding a map between observations (inputs)
and labels (outputs), given a set of data for which the correspon-
dence between inputs (observations) and outputs (labeled data)
are known. In this study, during the process of classifying sow
activities, the four accelerometer measurements are considered
to be the observations and the labels correspond to the different
activities to be recognized. Classic pattern classification problems
include: handwritten digit recognition, spam filtering and face rec-
ognition. In this work, observations are 4D accelerometer measure-
ments and the labels correspond to the different activities to
recognize (Section 4).

Let us consider a data set D formed by N pairs in the form (x;,y;),
where x; € R? is an observation, d is the dimensionality of the
observations, and y; € C indicates the corresponding class label
for x;, where C={1, ..., K} for a problem of K classes or labels asso-
ciated to the problem at hand.
ing a function f of the form f:x; € R — y; € C, from the paired
samples in D. The learned function f must be able to classify
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Fig. 1. A linear classifier for a two class problem (red circles versus blue crosses). The green (dotted) line, given by (x) = wx + b = 0, separates examples from both classes.
Example generated with the CLOP toolbox (Saffari and Guyon, 2006). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

unseen observations x that are generated from the same distribu-
tion as X, ._n, with unknown associated labels.

For convenience, when performing binary classification (where
K=2) labels are usually represented by y;c{-1,1} instead of
yi€{1,2}. Under this setting the label associated to an unseen
example x can be obtained by y = sign(f{x)). Fig. 1 shows a synthetic
binary classification problem for observations in x; € R* and the
solution found using a linear classifier.

The form of f is defined by a learning algorithm. For example, f
can take the form f{x) = wx + b, as in Fig. 1, where w is a vector of
parameters of the model learned from D. Classifiers using a func-
tion of this form are called linear classifiers (Duda et al., 2000).
There are many other classification methods which use alternative
function forms and learning algorithms, as for instance, neural net-
works, probabilistic classifiers (e.g., Naive Bayes) and similarity
based methods (e.g., 1 — NN). In this study, we consider the set
of classification methods available in a machine learning toolbox
called CLOP! (Section 5.1). A detailed description of each of these
methods being out of the scope of this paper, we refer the reader
to Duda et al. (2000) and Hastie et al. (2009) for a comprehensive
review.

4. Supervised learning of sow activities

This section describes the supervised learning approach to sow-
activity classification. It presents the process by which time series
are preprocessed in order to obtain the training examples for build-
ing a pattern classification model. Then, the proposed approach to
sow-activity classification is described, providing details on how
time series of arbitrary length can be classified.

4.1. Representation of observations
The data considered in this study consist of 4D time series la-
beled with one out of the five activity types (introduced in Sec-

tion 2). In order to develop a supervised learning method for
sow-activity classification, data must be preprocessed, transform-

1 http://clopinet.com/CLOP/.

ing labeled time series into fixed length patterns. A time series j
of length M; can be seen as matrix of dimensions 4 x M;:

Xip Xy o Xy

XJZ,] XIZ,Z e X}

2.M;
Si=1] . . o (1)
Xyp Xy oo X’a,Mj

Xim Xl;l,z X’4,Mj

where X, is the bth measurement in dimension a for time series j.
Each column of S; is the 4D measurement at a given time. For each
activity type k, all corresponding time series are combined, result-
ing in a large series of the form Sy = [Sy,...,Sy,], where N is the
number of series associated to activity k. Since each S; is a matrix,
Sy becomes:

TR PR IR A

Sk = (2)

X Xig o Xy, XX XZkMNk
with 4 rows and "M%, M,, columns. Fig. 2 shows the combined time
series (Si) for the five activities considered in this work, corre-
sponding to the training set. As expected, passive activities (lying
laterally and sternally) show small variations in the four dimen-
sions. However, noisy measurements are noticeable for both activ-
ities. Most of this noise reflects where a new series starts,
approximately each 10 min. This is due to the position of the sensor
on the neck collar, which can slightly differ from sow to sow, or to
the angle of the lying position. These noisy measurements compli-
cate the construction of classification models at the observation le-
vel. It should be noticed, however, that some of the classification
methods considered in this study (1ogitboost, RF, neural) are
specifically designed to work with noisy and/or mislabeled data.
The sows’ active activities such as walking, feeding and rooting,
show larger acceleration variations in the four dimensions, which
makes the differences from series to series less noticeable.

Since all of the measurements in S belong to activity k, a data
(x; € R*) and activity—type labels y; € {FE,RO,LL,WA,LS} is gener-
ated as follows. For each activity type k, each column of S, is an


http://clopinet.com/CLOP/

20

Lying laterally

2 T T T T
y —X
1.5F 1: | -=-Yq
] ” Z
c T =" — -2
.(% 0.5F ! ! i ] Lodea J
‘i) 0k s ) ] : s
8 i ]
o ! 1 Lo e -
< -05F ! : =
_1V
_15 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Time
Feeding
2 T T
' . A !
‘ E 1 g I| 1 bi 0, | ——X 1
Tlﬁ‘mui*% 'Mu' f[’ﬂﬂl"* Lok
1 W
[
Y AY
[0 ]
3
<

2000 2500 3000 3500

Time

1000 1500

0 500

H,J. Escalante et al. / Computers and Electronics in Agriculture 93 (2013) 17-26

Lying sternally

2 T T T
' l _X
15 : —VYL
it ' iz
1 rf-,ra‘- W nnd = = '
s :
® 0.5r il
o
& oFf
Q
<
-0.5F g
] O 2 % N .,J,'WM;‘;E‘ pl
_15 1 1 1 1 1 i
0 1000 2000 3000 4000 5000 6000
Time
Rooting
c
9
©
Q@
©
Q
Q
<
15 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Time
Walking

Acceleration

0 1000 2000

3000

6000

5000

4000
Time

Fig. 2. Combined (training) time series (Si) of each of the five activities, k = {FE,RO,LL, WA, LS}, considered in this study. An observation is the vector values of acceleration

measurements from the four considered axes measured at a given time t.

observation x;, with the corresponding label y; set manually by
observing the activity of which S, belongs to. Hence,
N = Z',leMsk, where Mg, is the number of columns in the matrix
Sk. In machine learning, it is a convention that input data are rep-
resented by a matrix where each row is an observation and the col-
umns are the different attributes associated with the instances. We
obtain this standard representation by taking the transpose of each
Sy and using its rows as the observations.

Learning and test data sets are represented as described above,
with D denoting the generated learning/training and 7 the test
data sets. Data sets D and 7 can be used with any learning algo-
rithm in a standard supervised classification setting (Section 3).
Data set D is used to train the classification model, that is, learning
the parameters of the pattern classification function (e.g., w and b
for the linear classifier from Fig. 1). The trained model is then used
to make predictions for observations in 7 into each of the sow-
activity classes. The performance of the classification model is
evaluated by comparing the predictions made by the model with
the true labels for observations in 7.

This representation can be used to develop classification meth-
ods at the observation level. A function f can be learned to map
instantaneous measurements (i.e., of duration 1 s) into the consid-
ered sow-activity types. Since each observation can be labeled, ser-
ies of arbitrary length can also be labeled by combining the
predictions made for the series’ observations (see Section 4.2).

For learning and evaluating the proposed approach a methodol-
ogy similar to previous works on sow-activity classification (Cor-
nou and Lundbye-Christensen, 2008; Cornou and Lundbye-
Christensen, 2010) was adopted. For each activity type a function
fir is learned, where f is able to discriminate between observations
of activity type k and the other activities j:j # k. Thus, there are k
binary classification problems, one for each activity. In this setting,
for each activity type and given an observation X, the goal is to
determine whether x corresponds to activity k or not. The perfor-
mance of each classifier is therefore evaluated independently.

Additionally, the multiclass performance of the proposed ap-
proach, that is, the performance obtained when all of the k classi-
fiers are run simultaneously is evaluated. Under this scenario,
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Fig. 3. The considered one-vs-all multiclass classification approach.

given an observation X, the goal is to assign it to one of the k activ-
ity types, by using the learned classifiers fi_ . k. There are several
ways to build multiclass classifiers. Here, one of the most success-
ful and most used technique, the one-vs-all approach (Rifkin and
Klautau, 2004), was considered. Under this approach, the outputs
of the k binary models are combined to generate multiclass predic-
tions, as illustrated in Fig. 3.

Let X" € R* denote an observation whose class is unknown. The
vector is passed through the K classifiers and each binary classifier
provides a confidence value fi(x") € [-1,1] that indicates how con-
fident classifier f; is in recognizing the activity associated to obser-
vation x" as the kth. The label assigned to X' corresponds to the
classifier that obtains the highest confidence: y’ = argmax(fi(x")),
see Rifkin and Klautau (2004) for more details.

4.2. Labeling time series

Trained classifiers fi can make activity predictions for observa-
tions with duration of 1 s. This is advantageous as time series of arbi-
trary length can then be classified, whereas in previous works,
methods were only evaluated at the series-level using series of fixed
length (Cornou and Lundbye-Christensen, 2008; Cornou and Lundbye-
Christensen, 2010). Besides this important advantage, the proposed
approach can still make predictions for time series of any length
greater than one observation, by combining the predictions made
for the individual acceleration measurements of a given series.

When time series of arbitrary length (i.e., composed of more than
a single observation) need to be classified, the outputs of the learned
model have to be postprocessed. The following approach, based on
ideas from set classification (Ning and Karypis, 2008), was adopted.
Let T={Xq,...,Xy,} be a time series of length My and let
{fe(x1), ..., fk(Xm;)} be the confidence values for class k as returned
by classifier f for each observation of T. For each activity type k:

1 M
pi(T) = M > fi(xi) 3)
i=1

is calculated. To discriminate between series of type k and any other
series, YT = sign(py(T)) is used. In that case, series T belongs to activ-

ity k if and only if YT > 0. For the multiclass setting, (Section 4.1),
series T is associated with the label that achieves the highest value
of pi(T), i.e.:

4)

The activity corresponding to the maximum py(T) across the
time series is determined and the corresponding label is used to la-
bel the time series.

arg mgX(pk(T))'

5. Experimental results and discussion

This section describes the experiments designed to evaluate the
performance of the proposed approach and their results. After
describing the experimental setup, the performance of different
classifiers for making predictions at observation level is reported.
Then, the performance of the proposed approach for classifying
time series of varying time length is presented.

5.1. Experimental setup

Some additional characteristics of the data set used in the study
(from Cornou and Lundbye-Christensen (2010); see also Section 2)
are summarized in Table 1. The data set is almost balanced in
terms of observation numbers available for each activity type.
However, the challenge is the low dimensionality of data (4D)
and the noise in the data (Fig. 2).

The following classifiers available in the CLOP toolbox (Saffari
and Guyon, 2006) were considered in the experimental study: neu-
ral network (neural), support vector machine classifier (svu),
Naive Bayes classifier (naive), linear classifier (zarbi), random
forest (RF) and logitboost with trees (1ogitboost).

5.2. Sow-activity classification of observations

This section presents the results obtained in the classification of
acceleration measurements at the observation level (1 Hz). Table 2
shows the percentage of correct classifications at the observation
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Table 1

Characteristics of the learning and test data sets. For each activity, the number of time series, their duration (in min) and the number of observations are indicated.
Activity Learning Test

# Series Duration (min) # Observ. # Series Duration (min) # Observ.

Feeding (FE) 6 10 3600 84 2 10,080
Rooting (RO) 7 10 4200 79 2 9480
Walking (WA) 11 10 6600 110 2 13,200
Lying Laterally (LL) 11 10 6600 107 2 12,840
Lying Sternally (LS) 11 10 6600 110 2 13,200
Totals 46 460 27,600 490 980 58,800

level for each of the considered activities and for each of the con-
sidered methods. The results are obtained from the test data set.

The classification performance obtained from the different clas-
sifiers unveils the difficulty of the problem: most results shown in
Table 2 are below 70% of correct classifications in the test data set.
Although the performance of the considered classifiers is low, it
should be noted that the classification methods were evaluated
on an observation basis (~60,000 observations). Moreover, the re-
sults obtained with methods zarbi and logitboost are compa-
rable with those obtained (at the series-level) in previous work
(Cornou and Lundbye-Christensen, 2010) (see also Table 4), even
though the reported methods exploited time dependencies.

From Table 2, it can be seen that the best performing method is
the logitboost classifier, followed by a linear method (zarbi).
On average, the difference in performance between logitboost
and the best alternative, zarbi, is of more than 9%, and the aver-
age difference in performance of logitboost over the other
methods is significantly larger. The naive method outperformed
logitboost in the LL activity, although it is clear from its perfor-
mance in the other activities (close to zero) that this classifier al-
ways predicted the LL activity regardless of the observation. The
zarbi classifier outperformed logitboost in WA and LS activi-
ties, making it a regular classification method. The performances
of the widely used classifiers SVM and neural are rather poor
regardless of the activity type.

Results indicate furthermore that, in general, the passive activ-
ities (LL and LS) are more difficult to classify for the considered
methods, as compared to the active ones (FE, RO, and WA). This
was also reported in previous works (Cornou and Lundbye-
Christensen, 2008; Cornou and Lundbye-Christensen, 2010) and
may be due to the fact that time series for passive activities contain
noisy measurements due to the eventual movements of sows. Be-
sides, as previously mentioned, the concatenation of time series of
different sows (and time) may be the main source of noise into the
combined series, due to slightly different angles of lying positions
and slightly different positions of the sensors around the neck
collars (Fig. 2).

The area under the ROC curve (AUC) obtained by the considered
classifiers on test set observations was also calculated. The ROC
curve is a plot of the true positives rate versus the true negative
rate, by varying the values of the classification threshold (Fawcett,

Table 2

Percentage of correct classifications at the observation level obtained with the
considered classifiers in the test data set. The best result for each activity is shown in
bold.

Activity Neural SVM  Naive RF Zarbi Logitboost
Feeding 32.49 0.33 0.00 4470 62.27 90.79
Rooting 27.62 0.92 006 31.96 6097 66.54
Walking 26.92 0.07 000 70.62 90.24 8463
Lying laterally ~ 46.29 8.67  99.96 849 3644  64.50
Lying sternally =~ 34.52 0.01 0.00 2878 7830 66.75
Average 33.57 2.00 20.00 3691 65.64 74.64

2006) (Fig. 4). The AUC summarizes with a real number in [0, 1] the
performance of a classifier: the closer to 1, the better is the perfor-
mance of the method. AUC is one of the most used evaluation mea-
sures in machine learning and pattern recognition and its main
advantage is that it is independent of the classification thresholds
of classifiers (Fawcett, 2006). Therefore, the integrity of the confi-
dence values provided by the binary classifiers f; . for each activ-
ity type can be evaluated. This is particularly important for the
current study as the outputs of classifiers are combined to make
predictions at the series-level.

Table 3 shows the AUC performance obtained by the considered
classifiers on the observations from the test data set. It can be seen
that 1logitboost outperforms the other methods in all of the
activities. Here, zarbi obtains the worst average performance,
while both RF and neural obtained competitive performances.
Fig. 4 shows the ROC curves for the two best performing models:
logitboost and RF. ROC curves for 1ogitboost largely outper-
form those from RF across the five considered activities.

Results from Tables 2 and 3, and from Fig. 4 suggest that the
best option for building a series-level sow-activity predictor is
the logitboost classifier.

5.3. Sow-activity classification of time series

This section reports the performance of the considered methods
in the classification of sow activity in time series. The 490 time ser-
ies of the test set (average duration of 2 min, i.e. 120 observations)
were used. For classifying a time series, the predictions made by
classifiers for the individual observations of a given time series
are combined (Section 4.2).

The classification was done using sign(p,(T)) (Eq. (3)). Table 4
shows the percentage of correct classifications at the series-level
for each activity type obtained by each of the six classification
methods. For comparison, the results obtained by Cornou and
Lundbye-Christensen (2010) are provided under the column head-
ing reference in Table 4.

From Table 4, it can be seen that 1ogitboost obtains the best
average classification performance at the series-level, along with
zarbi which is also highly effective. Both classifiers, Logitboost
and zarbi, outperform significantly the average performance ob-
tained by the multi-process Kalman filter (MPKF) used in Cornou
and Lundbye-Christensen (2010). The MPKF method obtained bet-
ter classification performance than both logitboost and zarbi
for the LL activity. However, for activities RO and WA, the classifi-
ers zarbi and logitboost significantly outperform the perfor-
mance of the MPKF approach. These results suggest that the
supervised learning approach to sow-activity classification is an
effective solution for this task, even though this approach does
no consider time dependencies between observations.

Results obtained at the observational level (see Table 2) and ser-
ies level (see Table 4) indicate that the 1ogitboost method is the
preferable approach to adopt in a sow-activity classification sys-
tem. logitboost clearly outperforms the MPKF approach and
most of the other classification methods. zarbi may also be
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Fig. 4. ROC curves for the RF (top) and logitboost (bottom) classifiers for the five considered activities.

Table 3
AUC performance at the observation level (every second) obtained with the
considered classifiers in the test set. The best result for each activity is shown in bold.

Table 4
Percentage of correct classifications at the series-level (2 min) obtained with the
considered classifiers in the test set. The best result for each activity is shown in bold.

Activity Neural SVM Naive  RF Zarbi Logitboost Activity Neural SVM Naive RF Zarbi Logitboost Reference
Feeding 0.8469 0.6156 0.6096 0.8457 0.6010 0.8719 Feeding 42 0 0 47 65 100 79
Rooting 0.7655 0.6978 0.6728 0.7589 0.6633 0.7986 Rooting 22 0 0 22 65 78 56
Walking 0.7494 0.7339 0.7342 0.7480 0.7278 0.7693 Walking 17 0 0 93 97 91 74
Lying laterally  0.7136 0.7131 0.5324 0.7311 04773 0.8261 Lying 45 9 100 7 36 65 83
Lying sternally 0.7271 0.6518 0.6712 0.7845 0.6547 0.7866 laterally
Average 0.7605 0.6824 0.6440 0.7737 0.6248 0.8105 Lying 35 0 0 25 81 65 30
Sternally
Average 32 2 20 39 69 80 64

considered another option as it performed well at both the
observational and series level. However, 1ogitboost showed a
more regular performance across activities than zarbi at both

observation and series-level; besides logitboost outperforms
significantly zarbi in terms of AUC performance (see Table 3).
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5.4. Classifying between passive and active categories

In Cornou and Lundbye-Christensen (2010), classification re-
sults for the five activity types were combined into passive (LL,
LS) and active (FE, RO, WA) categories. This approach was further
elaborated in this study, using all of the considered classification
methods. In the supervised learning context, this is a standard bin-
ary classification task. Hence, observations labeled with activities
LS and LL were assigned the passive label (i.e., 1, the positive class)
and activities FE, RO and WA, were labeled as active (i.e.,, —1, the
negative class). Then the considered classifiers were used for build-
ing f. The predictions made for the observations were combined to
label the times series as described in Section 4.2. Table 5 shows the
results obtained with the considered methods for active versus
passive activity classification at the series-level.

Results indicate that, on average, 1ogitboost outperforms the
other methods, although the difference between 1ogitboost and
the neural method is small. The majority of the classifiers had dif-
ficulty in correctly labeling the passive category at a times series
level, as compared to the active category. This is likely due to the
fact that, in general, little variation was observed in time series
from passive activities in the four dimensional measurements
(Fig. 2), which is an expected pattern since the sow is almost not
moving. However, the collected data for passive activities contains
few observations with high variations as well, mainly for the LS
activity. It is hypothesized that such variations are incorrectly clas-
sified as active behaviors at the observation level, and that these
errors are reflected when classifying the series.

Fig. 5 shows the predictions made by the 1ogitboost classifier
for each of the 490 test-set time series in the active versus passive
activity classification problem. The outputs were normalized to the
interval [0,1]. Hence, the classification threshold is set as y = 0.5.
Errors made by the model are shown as red squares. It can be seen
that most errors are made for observations belonging to activities
LS, LL and WA. The errors obtained for WA activity can be a result
of the small variation observed both for the length of the vector
and for the z-axis for this activity. This pattern may be confused
by the classifiers with the corresponding small variations of all
axes for activities LL and LS. Nevertheless, most FE and RO time
series were correctly classified.

Columns 7 and 8 of Table 5 shows that the performance ob-
tained with 1ogitboost (94.46% and 85.00% for active and pas-
sive activities, respectively) is lower than what was reported in
previous work (96.00% and 94.00%, correspondingly). However, it
should be noticed that in the previous study (Cornou and Lund-
bye-Christensen, 2010), one model (MPKF) was trained and applied
for each of the five activities, of which results were later on com-
bined, and not for each category (active versus passive). In this
study, a single binary classifier was trained for each category, with
each of the considered methods. Hence, the results are not directly
comparable.

5.5. Multiclass performance of the classifiers

Previous tables reported results of per-activity classification
performance. The reported evaluation measures indicated the per-
formance of each model in discriminating between each activity

Table 5
Percentage of correct classifications for the active versus passive activity classification
task at the series-level (2 min).

Activity Neural SVM Naive RF Zarbi Logitboost Reference
Active  90.03 7491 0.00 100.00 68.26 94.46 96.00
Passive 8045 63.18 100.00 3500 61.36 85.00 94.00
Average 85.24 69.05 50.00 67.50 64.81 89.73 95.00

and the rest. These evaluation measures assess the performance
of the per-activity models and not the performance when all mod-
els are evaluated simultaneously. The latter scenario being more
realistic, the multiclass performance of the proposed approach
was evaluated. Eq. (4) was used to obtain the multiclass predic-
tions from the output of the binary classifiers.

Table 6 shows the percentage of correct classifications in a mul-
ticlass setting (i.e., the percentage of series that were labeled cor-
rectly by the whole multiclass classifier) for the considered
methods. The best classifier (1ogitboost) classified around 51%
of the ~60,000 observations and above 60% of the times series. This
indicates that one out of two observations was correctly labeled
and associated with one of the five activity classes. While this re-
sult may seem low, this should be set in perspective with random
predictions, which would result in an accuracy of 20%. Since the
results reported herein are, for the considered data set, the best
reported so far, results from Table 6 indicate that the sow-activity
classification is an open problem with large room for
improvement.

Table 7 shows the confusion matrix for the 1ogitboost classi-
fier for the time series experiment. It can be seen that WA is the
less misclassified activity, whereas LS is the most confused. FE
and RO are frequently confused. As expected, both passive activity
types (LS and LL) are frequently confused with each other.

5.6. Classifying series of variable lengths

In a final experiment the series-level performance of the super-
vised learning approach to sow-activity classification was assessed
using time series of variable lengths, applying the logitboost
classifier only. Fig. 6 shows the performances of both the passive
versus active categories and the multiclass classification for times
series of different observation numbers. For the passive versus ac-
tive task, the accuracy is reported as the percentage of time series
correctly labeled, for both passive and active categories.

This figure shows the flexility and robustness of the suggested
method. 1ogitboost achieves a similar performance for any given
series’ length. This indicates stable predictions regardless of the
number of observations in the series. Therefore, the proposed ap-
proach can be used in a non-specific time setting to make predic-
tions for the activities performed by each sow. This is an
advantage when the goal is to analyze individual sow’s behavior
in (near) real time.

5.7. Logitboost for sow-activity classification

Experimental results indicate a good performance of the pro-
posed approach for sow-activity classification. This approach ap-
peared more effective than previous works and is flexible in
terms of the length of time series. It can be argued that the 1ogit-
boost classifier is the best of the considered methods for a sow-
activity classification system, although some of the other methods
showed acceptable performance as well.

The 1logitboost classification technique combines outputs
from multiple individual methods, called weak learners (i.e. an
ensemble method) - the usual weak learners being decision trees
(Lutz, 2006). These methods have proved to reduce overfitting
and are very robust to noisy training data (Hastie et al., 2009)
and logitboost is a method from the boosting family. These
methods build many individual classifiers iteratively and each of
the classifiers is associated to a weight proportional to its ability
to classify training instances. In each iteration I, a single classifier
hy(x) is built, taking into account the weights associated with the
instances. The weights are assigned to classifiers, and instances
are updated in each iteration of the algorithm. When an observa-
tion X needs to be classified, it is passed through all of the



H,J. Escalante et al./ Computers and Electronics in Agriculture 93 (2013) 17-26 25

Feeding  Rooting

Lying laterally

Walking Lying sternally

1F T =T T
0.9 - Model predictions

= = = True activity
08 F B Mistakes

07
06 | :
0.5 [ ======

(B E X o o o T T

04 -
03
02
0.1

Normalized prediction

!

! ! ! ! |

0 50 100 150 200 .
Time series

250 300 350 400 450

Fig. 5. Predictions made by the 1ogitboost classifier for the active versus passive classification problem. The predictions of the model are scaled to the interval [0,1]. The
horizontal line at y = 0.5 is the classification threshold (i.e., time series with a confidence value above 0.5 were labeled as passive and active otherwise). Mistakes made by the
model are shown as red squares. The labels above the plot show the particular activity (FE, RO, LL, WA or LS) activity being performed. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Percentage of correct classifications for sow-activity classification under the multi-
class setting.

Level Neural SVM Naive RF Zarbi  Logitboost

Observations  45.14 3738 2238 4044 3515 51.86

Series 52.14 1935 2240 4888 37.27 61.10
Table 7

Confusion matrix for the predictions made with the 1ogitboost classifier. Diagonal
(bold) values indicate the percentage of correctly recognized time series for each
activity type.

True predicted Feeding Rooting Walking L. laterally L. sternally
Feeding 75.29 24.71 0.00 0.00 0.00
Rooting 24.05 46.84 29.11 0.00 0.00
Walking 0.93 0.00 92.52 0.93 5.62
L. laterally 6.36 3.64 9.09 60.00 20.91
L. sternally 6.36 0.00 46.36 16.36 30.92
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Fig. 6. Performance of the logitboost classifier when varying the number of
observations used for labeling time series.

individual methods and a weighted voting strategy is used to as-
sign a label to the unseen instance. Hence, f(x) = 3,z x h(x),
where z; is the weight associated with classifier [, and y = sign(f(x)).
The particularity of 1ogitboost lies in that each individual model
is a (regression) decision tree and the logit transform is used inter-
nally by the algorithm to transform the outputs of individual

models into probabilities. Details of the particular implementation
of the logitboost considered in this work are found in Lutz
(2006) and Saffari and Guyon (2006).

The nature of 1ogitboost and the characteristics of the con-
sidered data set have clear synergetic properties. On the one hand,
the data set contains potentially mislabeled data due to the fact
that observations were generated by labeling time series of consid-
erable duration (see Figs. 2 and 5). It is here suggested that
logitboost is able to ignore, to some extent, the contribution
of such mislabeled instances when building the decision function
f. This is achieved automatically by assigning low weights to
classifiers that misclassify noisy instances. Besides, models that
are unable to classify, accurately enough (i.e. better than random
guessing), a subset of training instances are disregarded for the
model. Hence, only regular classification models are considered
by 1ogitboost. On the other hand, even when noisy observations
are used to build individual classifiers, the fact that the
logitboost classifier is built by many individual models (approx-
imately 10,000 in the considered setting) reduces the probability
that bad performing models dominate the predictions of the
ensemble method. Thus, noisy instances and the impact of bad
classifiers into 1ogitboost are diminished automatically by the
model. Training a logitboost binary classifier using ~60,000
observations takes approximately 1 h on a Pentium Core i3 proces-
sor and 4 GB in RAM. While this time is not negligible, once the
model is trained it is able to make predictions efficiently.

6. Conclusions

A supervised learning approach to the problem of sow-activity
classification was suggested. Under the proposed formulation,
pairs of accelerometer measurements and activity types are con-
sidered as labeled instances of a usual supervised classification
task. In this setting, sow-activity classification can be approached
with standard machine learning methods for pattern classification.
Individual predictions for elements of a series are combined to
classify it as a whole, on time series that can have arbitrary length.
An extensive comparison of different learning algorithms for facing
the classification task was performed.

Experimental results are reported for a sow-activity classifica-
tion data set used in previous studies. The results show that some
classifiers can achieve competitive performance, even when no
temporal information is incorporated in the classification methods.
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When classifying observations (1 s) the best method obtained per-
formance as high as 75% on average for the five types of activities
considered. When classifying time series of 2 min length, the clas-
sification performance increased to 80% (on average) for the five
activities. This was a marked improvement from the 64% classifica-
tion performance for the five activities reported in Cornou and
Lundbye-Christensen (2010). A very good performance was also
obtained when distinguishing between active (FE, RO, WA) and
passive (LS, LL) categories. The highest average performance under
this setting approached 90%, which is lower than the best previous-
work’s results (95%). However, the proposed approach builds a sin-
gle classification model, whereas the reference method required
five models (one per activity type). The multiclass performance ob-
tained by the suggested approach was also evaluated and the best
result in this configuration was 61%. Besides being very effective,
the proposed formulation is highly flexible, as time series of arbi-
trary length can be classified. The 1ogitboost classifier obtained
the best results across the different settings. This can be due to the
fact that this method can overcome the influence of noisy observa-
tions which are present in the considered data set.

Future work includes the incorporation of time dependencies
between observations into a boosting classifier in order to further
improve the performance of the proposed formulation. Finally, a
hierarchical classification approach where, for example, observa-
tions are first labeled as active or passive, and then a second level

classifier can determine the particular class for an observation, is
also a promising research direction.
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