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Hash function algorithms are widely used to provide security services of integrity and authentication,
being SHA-2 the latest set of hash algorithms standardized by the US Federal Government. The main com-
putation block in SHA-2 algorithms is governed by a loop with high data dependence for which several
implementation strategies are explored in this work as well as designs efficiently mapped to hardware
architectures. Four new different hardware architectures are proposed to improve the performance of
SHA-256 algorithms, reducing the critical path by reordering some operations required at each iteration
of the algorithm and computing some values in advance, as possible as data dependence allows. The pro-
posed designs were implemented and validated in the FPGA Virtex-2 XC2VP-7. The achieved results show
a significant improvement on the performance of the SHA-256 algorithm compared to similar previously
proposed approaches, obtaining a throughput of 909 Mbps and an improved efficiency of 0.713 Mbps/
slice.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction algorithms [2,3]. Several algorithms for performing hash functions
Digital communication systems are widely used for executing a
wide variety of electronic operations such as: electronic transfers,
mobile communications, multimedia, electronic commerce, docu-
ment transfers, and videoconferences, among others. The informa-
tion being transmitted by these systems can potentially be at risk if
no security measures are taken. The most common risks found in
these systems include: non-authorized accesses, denial of service,
data corruption, leakage, monitoring attacks, authentication, and
trashing [1]. Several measures can be taken to reduce such risks;
among the most common are the use of firewalls, traffic filtering,
and detection systems. Additionally, security can also be provided
by using cryptographic algorithms [1].

Hash functions are cryptographic primitives widely used to pro-
vide services of data integrity and authentication issues. These
functions allow to maintain a high level of security by performing
complex operations, usually in an iterative fashion, which require a
significant amount of computing resources. A hash function maps
binary strings of arbitrary length to binary strings of some fixed
length, called hash-value or digest. Hash functions are widely
spread and mainly used for the implementation of digital signature
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[1] have been proposed: MD5, SHA-1, SHA-2, Whirlpool, Haval, and
RipeMD-160, being the SHA family the most widely used, in partic-
ular SHA-2 that offers higher security and solved the insecurity
problems of SHA-1 [4] and other popular algorithms as MD5 and
SHA-0 [5,6] (already broken). Currently, several hash function algo-
rithms are being evaluated to select SHA-3 [7,8].

The efficient implementation of hash functions has been an ac-
tive research topic in industry and academia in recent years. There
are several research papers and commercial products that offer
hardware or software implementations of one or more algorithms
from the SHA-2 family. The hardware architectures previously re-
ported aim to achieve better performance by customizing hard-
ware elements that efficiently compute specific functions. Main
techniques previously used include the use of well balanced Carry
Save Adders (CSA) [9], unrolling techniques [10,11], the usage of
embedded memories [12], the use of pipelining techniques [13]
among others. In general, these techniques resulted in more area
requirements or more complex control logic that affect the critical
path and decrease the performance. This work describes two strat-
egies to improve the performance of hardware implementation of
the main operations in the SHA-2 algorithms. The critical path is
reduced by predicting the result of some computations in the inner
loop of SHA-2 algorithms up to two operations in advance. The
critical path is also decreased by reducing latency of the calcula-
tions by re-arranging operations in the core of SHA-2 algorithms.
The architectures proposed in this work are optimized to execute
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the entire algorithm of hashing, not only for processing a single
block as in [13]. The four proposed architectures use carry save ad-
ders (CSAs), balancing of datapaths, and a 256-bit state buffer to
store the eight registers A � H to compute the hashing. This state
buffer is considered as a single signal that is feed backed to process
each new data block. In [13], feed backing process is based on the
use of multiplexers and single 32-bit registers but that approach
may result in larger data paths and more complex control logic
that could increase the delay of the critical path and decrease the
performance. The proposed hardware designs were evaluated for
the SHA-256 algorithm implemented on the Virtex-2 XC2VP-7
FPGA device. However, these designs can be easily extended for
other hash algorithms in the SHA-2 family, which present a com-
mon structure. Compared to similar approaches such as [13], the
throughput per slice efficiency achieved in this work is the highest,
reaching around 909 Mbps with an area usage of 1150 FPGA slices.
The work presented here is an extended version of [14], where two
hardware architectures for computing the inner loop of SHA-2
algorithms were reported. The main idea in [14] is the computation
of some additions in the inner loop one iteration in advance to re-
duce the critical path delay in the next iteration. While the first
architecture is based in the use of a subtraction, the second one
is only based on precomputed additions. In the present work, Carry
Save Adders are used to perform the additions demanded in the in-
ner loop of SHA-2 algorithms instead of traditional adders, which
allows to reduce the critical path delay. In addition, a new evalua-
tion platform is designed to execute the entire SHA-2 algorithm,
where the datapath is shortened by adding 2 new registers without
increasing the latency. This platform allows to evaluate the two
hardware proposals for the inner loop, executing the entire SHA-
2 algorithm and achieving improved results compared to the ones
reported in [14].

The rest of this paper is organized as follows: Section 2 de-
scribes the SHA-2 family, Section 3 shows the details of data
dependence in SHA-256 algorithm, Section 4 presents the pro-
posed architectures for computing the main operations of SHA-2,
Section 5 describes the implementation details and discusses the
results, and finally Section 6 concludes.
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2. Secure Hash Algorithms

Hash functions are mainly used to provide the security service
of integrity. They also provide the security service of authentica-
tion when they are used in combination with digital signature
and message authentication code (MAC) algorithms. Among the
most important hash functions is the SHA-2 family, which share
the same functional structure with some variation in the internal
operations, message size, message block size, word size, number
of security bits and message hash size, see Table 1 [15].

These algorithms are iterative and one-way functions that input
a message and output a message digest. They process the input
data in two stages: preprocessing and digest computing. The pre-
processing warranties that the message has a size that is multiple
of a particular value, allowing to divide the message into prede-
fined block sizes and to provide an initial hash value. In the second
Table 1
Secure Hash Algorithms (sizes and security are specified in bits).

Algorithm SHA-1 SHA-256 SHA-384 SHA-512

Message size <264 <264 <2128 <2128

Block size 512 512 1024 1024
Word size 32 32 64 64
Message digest size 160 256 384 512
Security 80 128 192 256
stage, each message block is utilized during a fixed number of iter-
ations, where at each iteration the algorithm defines functions,
constants and word operations to generate a series of hash values.
After all blocks are processed, the value of the final hash is used as
the message digest. In particular, the second stage of the SHA-256
algorithm performs 64 iterations over blocks of 512-bit messages
and hash values of 256 bits described as eight 32-bit words
(A,B, . . . ,H). The hash message is 256-bit long, see Fig. 1.
3. Related works

Implementations of hash functions require great amounts of
spatial and temporal resources that may result in low performance
and efficiency. This has motivated the research on several ap-
proaches for speeding up the computation or for improving the
efficiency in terms of throughput/area ratio.

The pseudocode shown in Fig. 2 describes the SHA-256 algo-
rithm; more details are given in [15]. The general structure of
the pseudocode is very similar to the other algorithms of the
SHA-2 family. The need to efficiently implement the computations
of the inner loop, that represents the iterations performed by the
algorithm, has resulted in a number of implementation ap-
proaches. In general, depending on the system organization, hard-
ware implementations report better performance than software
only implementations [16].

An important factor that limits the performance in both hard-
ware and software implementations is the high data dependence
of the computations within the inner loop. Because of this, fully
parallel implementations are not possible, however partial loop
unrolling has been explored by several authors [10,11]. When par-
tial unrolling is used, data dependence is present when the itera-
tion k + 1 requires the results obtained for the 8 variables A, B,
. . ., H by iteration k, see Fig. 3.

In order to take advantage of specialized cores or embedded
systems, several architectures have been reported to iteratively
operate without using parallelization or unrolling of the inner loop
[17]. Other approaches consist on introducing a pre-computing
stage in order to reduce the critical path. By adding some opera-
tions to the initialization process, pre-computing allows to reduce
the number of adders on the critical path (reducing the data depen-
dence), and increases the performance [9,13]. These architectures
will be analyzed in Section 6.
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Fig. 1. Block diagram of the SHA-256 algorithm.



Fig. 2. Pseudocode for the SHA-256 algorithm.

Fig. 3. Data dependence in the iterative process of the SHA-256 algorithm.
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4. Proposed architectures

In a straightforward hardware implementation of the SHA-256
algorithm, there are several ways for designing the inner part of
the loop because of the number of additions required. It is possible
to rearrange the order of the computation with the aim of increas-
ing the performance taking into account the data dependencies.

The operations in the inner loop of the algorithm compute new
values for the variables A and E taking into account six from the
eight previous values of the same variables, see Eqs. (1) and (2).
Additional processes are used for computing the remaining vari-
ables (B, C, D, F, G, H), which are updated by setting values of the
previous value, more details in [15].

Ekþ1 ¼ Dk þ R1ðEkÞ þ CHðEk; Fk;GkÞ þ Hk þ Kk þWk ð1Þ

Akþ1 ¼ R0ðAkÞ þMAJðAk;Bk;CkÞ þ R1ðEkÞ þ CHðEk; Fk;GkÞ þ Hk

þ Kk þWk ð2Þ

In [13], authors propose the pre-computing of dk to save the
calculation of a sum during the run time of the iteration, that is,
to calculate dk in a previous iteration k-1 by using Gk�1 as described
by Eq. (3).

dk ¼ Hk þ Kk þWk

¼ Gk�1 þ Kk þWk
ð3Þ

In Eq. (3), the values Hk, Kk and Wk must be pre-computed or
must be present to obtain dk at time k and to perform the calcula-
tion of iteration k + 1. In this last iteration, the computing of the
new values A and E is based on Eqs. (4) and (5).

Ekþ1 ¼ Dk þ R1ðEkÞ þ CHðEk; Fk;GkÞ þ dk ð4Þ

Akþ1 ¼ R0ðAkÞ þMAJðAk;Bk;CkÞ þ R1ðEkÞ þ CHðEk; Fk;GkÞ þ dk ð5Þ

Additionally, two new forms of reordering the operations of the
inner loop are proposed: one based on the subtraction of Dk and
the other one employs two previous calculations. In the first pro-
posal of this work, the data flow is rearranged to obtain the oper-
ations of the sum described by Eqs. (1) and (2). It calculates a
variable sk, according to Eq. (6).

sk ¼ Hk þ Kk þWk þ Dk ð6Þ

The calculation at run time k is based on Eqs. (7) and (8), where
no pre-computing is executed.

Ekþ1 ¼ R1ðEkÞ þ CHðEk; Fk;GkÞ þ sk ð7Þ

Akþ1 ¼ R0ðAkÞ þMAJðAk;Bk;CkÞ þ R1ðEkÞ þ CHðEk; Fk;GkÞ þ sk � Dk

ð8Þ

The second proposal of this work is based on the pre-computing
of Eqs. (3) and (9) at time k using a previous value at time k-1. This
last one thing is the difference between sk and dk, Eqs. (3) and (9),
respectively. The main idea is to calculate other additions in a pre-
vious time k in order to reduce the critical path of the inner loop
operations at the time k + 1. It is important to mention that sk can-
not be defined in terms of d0k because sk uses values computed at
iteration k while d0k uses values obtained at iterations k � 1 and k.

d0k ¼ dk þ Dk ð9Þ

The calculation at run time k + 1 is based on the Eqs. (10) and
(11).

Ekþ1 ¼ R1ðEkÞ þ CHðEk; Fk;GkÞ þ d0k ð10Þ

Akþ1 ¼ R0ðAkÞ þMAJðAk;Bk;CkÞ þ R1ðEkÞ þ CHðEk; Fk;GkÞ þ dk ð11Þ

Based on the four previous equations to compute Ek + 1 and
Ak + 1, four corresponding hardware architectures are proposed
to perform the operation of the inner loop in the SHA-2 algorithms,
see Fig. 4. Fig. 4a shows the architecture in forward form derived
from Eqs. (1) and (2). The implementation shown in Fig. 4b saves
the calculation of two adders because they are pre-computed in
a previous time k. This implementation calculates the inner loop
operation according to Eqs. (3)–(5).

The architectures for the new algorithmic proposals of this
work are shown in Fig. 4c and 4d. Fig. 4c shows the first proposed
architecture that is based on rearranging the dataflow as described
by Eqs. (6)–(8), whereas the second proposed architecture based



(a) (b)

(c) (d)
Fig. 4. Block diagrams for computing the inner loop operations of the algorithm SHA-256: (a) straightforward architecture, (b) architecture with basic pre-computing, (c)
proposed architecture with reordering of the data flow and (d) proposed architecture with two pre-computations.
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on Eqs. (9)–(11) is shown in Fig. 4d. The calculations of the hard-
ware architectures shown in the Fig. 4b and 4d require an addi-
tional clock cycle to initialize the system, with the advantage of
decreasing the data dependence.

The datapaths in the two proposals exhibit distinct levels of
combinational logic. For the first proposal, its critical path is re-
duced by including CSAs and distributing the combinational ele-
ments along the X axis, see Fig. 5. The process is iterative, storing
Fig. 5. Structure for the first p
the new variables Ak+1 and Ek+1 in two registers which are feed
backed to compute the next 64 rounds.

In the second proposal there are two independent sets of com-
binational logic, see Fig. 6. Set 1 involves the pre-computation of dk

and d0k at time k � 1. Set 2 involves all computations at time k to
update the registers for variables Ak+1 and Ek+1. The proposed par-
tition allows to simplify the operations in the main process and re-
duce the critical path. Each set and datapath is divided by
roposal of the inner loop.



Fig. 6. Structure for the second proposal of the inner loop.
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sequential elements (registers), enabling the pre-computing to be
calculated at time k � 1 and use it in the computations at time k
which produces new values for the variables A and E at time
k + 1. It is important to highlight that the values at time k are nec-
essary for the pre-computation at time k � 1, such as round word
Wk and round constant Kk. Also, an initial digest message is neces-
sary when the first round is computed. For this reason the values Fk

y Dk must be present from the beginning. For the other 63 rounds,
the values Gk�1 and Ck�1 are used. These last four values allow the
precomputation from an intermediate state buffer, considering
that Ht = Gt�1 and Dt = Ct�1, see Fig. 3.

The proposed structures shown in Figs. 5 and 6 for the inner
loops are implemented and evaluated on two different platforms
that incorporate processes to compute the round word, round con-
stant, state buffer and to control the dataflow of the entire SHA-2
algorithm.
5. Implementation results and discussion

In order to evaluate the different inner loops under fair condi-
tions, four relative architectures are proposed from the structures
described in Section 4 and they are initially implemented on a
common platform. Later, two optimizations are included leading
to a second platform. The first platform, see Fig. 7, allows to com-
pare the proposed architectures in terms of hardware resources,
throughput and efficiency. This common platform is a straightfor-
ward implementation of the SHA-256 algorithm that can be easily
modified to accommodate the four architectures to perform the in-
ner loop operations. The white blocks of each architecture in Fig. 4
were implemented in the white block named Main_Function of the
basic platform, see Fig. 7.

The first platform shown in Fig. 7 [14] explores parallelization
of necessary resources within an iterative module, which focuses
on computing 64 rounds by using 64 clock cycles. Two important
paths of this platform appears when a register is placed after the
main function block: (a) one path is generated by the 6-bit bus
used to produce the round constant Kt and (b) one path generated
by the selection bit SEL_H0 of the multiplexer. The first path ap-
pears when the ROM Memory64 � 32 is controlled by a 6-bit coun-
ter. This counter generates addresses to select the constants Kt for
each round, which are inputs to the adders and/or multiplexers
when sk, dk and d0k are computed, see Figs. 5 and 6. This routine
has combinational elements that generate a large path. The delay
associated to this path is decreased by inserting a register after
the ROM. This new register does not require any new clock cycle,
because the control logic for that ROM is synchronized in a such
way that the control signals in the current state are computed in
a previous one. The values of the counter are properly displaced
to have the correct values when they leave the register. For the sec-
ond path a similar solution is applied. In the same way, the control
signal of the multiplexer is displaced without increasing the clock
cycles. The second platform incorporates two optimizations based
on dividing large path that generate critical paths at different
times, adding two registers, see Fig. 8.

The four architectures proposed in this work use the four differ-
ent inner blocks previously revised, placed and routed on the sec-
ond platform; they are implemented in VHDL language and
synthesized for a Virtex-2 XC2VP-7 FPGA device using Xilinx’s
ISE 10.1 tool. The implementation results are shown in Table 2. In-
stead of using simple adders and designing an iterative architec-
ture [14], these new architectures are balanced, considering
combinational paths and sequential elements. Additionally, CSAs
(carry save adder) are used to implement the integer additions re-
quired in the computation of Ak+1 and Ek+1. The four architectures
process a 512-bit input block.

The throughput was calculated using Eq. (12), whereas the effi-
ciency with Eq. (13).

Throughput ¼ Data block size
Clock time� Clock cycles

ð12Þ

Efficiency ¼ Throughput
Number of Slices

ð13Þ

The forward architecture (Fig. 4a) requires less area and reports
the best efficiency, although it achieved the worst throughput. The
first proposed architecture named SHA-256c (Fig. 4c) reports an
improved throughput, requiring more hardware resources, which
in turn decreases the efficiency. The two architectures that execute
pre-computations report poorer efficiencies, but with the highest
throughput. The second proposed architecture, named SHA-256d
(Fig. 4d), requires more hardware resources because of the pre-



Fig. 7. Architecture of the SHA-256 algorithm used to evaluate the proposed approaches.

Fig. 8. Optimized platform of the SHA-256 algorithm, which balances large paths.

Table 2
Implementation results of the proposed architectures.

Architecture Hardware
resources
(Slices)

Clock
frequency
(MHz)

Throughput
(Mbps)

Efficiency
(Mbps/Slice)

SHA-256a 1125 S, 1333
LUTs, 64 cycles

104.02 819.20 0.728

SHA-256b 1149 S, 1403
LUTs, 65 cycles

114.55 902.23 0.785

SHA-256c 1187 S, 1411
LUTs, 64 cycles

110.10 867.72 0.731

SHA-256d 1274 S, 1478
LUTs, 65 cycles

115.46 909.48 0.713

Table 3
Relevant hardware architectures for the algorithm SHA-256.

Work Device Hardware Eesources and
clock frequency

Throughput
(Mbps)

Efficiency
(Mbps/Slice)

[13] XC2VP30 100 MHz, 65 cycles 785 –
[17] V200/

400XCV
1306 Slices, 77 MHz, 66
cycles

308 0.236

[9] XCV-
1000

1038 LUTs, 39.5 MHz 316 –

[12] XV200-6 2384 CLBs, 1 BRAM,
74 MHz

291 –

[21] Stratix II
EP2S60

1380 Slices 772 0.516

[22] Virtex-5 80 MHz, 65 cycles 630 –
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computations that it performs, however it achieves the highest
throughput. The proposed architectures can be seen as single un-
rolled designs, thus they can be used as basis to explore architec-
tures with several unrolled rounds.

There are several commercial and academic implementations of
the SHA-256 algorithm reported in the literature [17,18]. For the
commercial implementations reported in [19] and [20], internal
details of the architectures are not reported, thus they will not
be included in the discussion.

Academic implementations are based on several approaches
such as straightforward design, unrolled/pipelined designs, hard-
ware/software implementations and designs using pre-computa-
tions. The SHA-256 algorithm is defined for an indeterminate
number of blocks from a message. To process a data block it is nec-
essary the processing result of the previous data block. Because of
this, works previously reported implementing the main core of
SHA algorithms and processing just a single block are not consid-
ered, neither segmented architectures processing more than one
block at the same time. For comparison, works reporting pipelined
or iterative architectures to process a single block at a time are only
considered [17,13,9,12,21,22] (see Table 3). However, a fair com-
parison is still not feasible because of variations in the device used
as well as the software tools. Thus the information in Table 3 is
provided only as a reference.
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Considering implementation results from Table 3, the hardware
architectures proposed in this work report the highest throughput
and efficiency, using fewer area resources.

In [12,23], forward architectures that calculate three hash func-
tions, including the SHA-256, are reported; the implementation in
[12] only computes the first stage of the algorithm. The works
[17,9,21,22] report architectures with basic iterative architectures,
where optimizations are done to decrease the critical path. In [9],
authors propose to use three operands adders. It is important to
highlight that [13] proposes several optimizations for the inner
loop using the function dk. The throughput reported in that work
is 1.4 Gbps but this corresponds only to the architecture for com-
puting the inner loop of SHA-2, not for the entire SHA-2 algorithm,
for which the reached throughput is only 785 Mbps. The authors
use circular buffer and save six adders to compute the final mes-
sage digest. In this work, the results reported are for the complete
algorithm with message schedule, 256-bit state buffer and control
unit, parallelizing different modules, large buses and eight final ad-
ders. In [21], the reported architecture calculates three different
hash functions: MD5, SHA-1 and SHA 224/256, whereas [22] re-
ports an architecture to perform the ciphering algorithm AES with
different key sizes and the hash functions SHA-1 and SHA-256.
Some other works are implemented using different approaches
such as hardware/software co-design [24–26], or use of paralleliza-
tion techniques, pipelining and loop unrolling [13,10,11,18].
6. Conclusion

Four new different schemes to improve the performance of the
hardware implementation of the SHA-2 family were proposed.
These architectures exhibit high performance, throughput and effi-
ciency. The hardware designs are based on the rearrangement of
computation in the inner loop of SHA-2 algorithms, computing
some values in advance, balancing of paths, adding registers to re-
duce paths by modifying control module without to increase clock
cycles, and taking advantage of hardware architecture (paralleliza-
tion, large buses and replicated components).

The proposed architectures use carry save adders, balancing of
data paths and a state buffer to feedback the eight 32-bit registers
that keep the partial hashing needed to process each next data
block. The use of the state buffer helps to simplify the data paths
in the hardware architectures reducing the maximum delay in
the synthesized circuit. As a result, higher frequencies are
achieved, minor area resources are used, and throughput is in-
creased. The proposed architectures are improved by exploring
the algorithmic proposals for computing Ak+1 and Ek+1 and taking
advantage of hardware architectures. These modifications result
in hardware implementations with an improved efficiency and
higher throughput, while they slightly maintain a smaller use of
hardware resources.

Although the results were focused on the SHA-256 algorithm,
these approaches can be extended to the other algorithms of the
SHA-2 family due to their common structure, as well as to explore
other hardware techniques like the unrolling and pipelining.
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