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Abstract 
 
The increase of complexity on integrated circuits has also raised the demand for new testing 
methodologies capable to detect functional failures within circuits before they reach the market. 
Hence, this work proposes to explore the use of homotopy as a tool for testing a basic analog 
circuit. The homotopy path is influenced by nonlinearities from the equilibrium equation of the 
circuit; this situation can be used to infer faults by detecting changes on the homotopy path. The 
concept was explored using numerical simulation of a simple test circuit; then comparing results 
for the circuit with and without faults, obtaining modifications on the homotopy path like: the 
final point, number of iterations, and the number of turning points. 

Keywords: Homotopy continuation, circuit testing, analog circuits. 
 

1 Introduction 
 
The vertiginous increase in the number of transistors per integrated circuit and increase of 
nonlinearities, present in the circuit, due to the decrease in the physical dimensions of the 
transistors, makes the integrated circuit testing area a challenge for engineers and scientists. The 
cost of testing an integrated circuit can represent, in average, the 50% for the total production cost, 
or even in some cases (specific circuits) represents up to 70% [1,2,3,4]. The development of 
strategies for integrated circuits testing; especially analog circuits or mixed signal, still is an open 
problem. These kinds of tests must assure complete functionality, quality and performance 
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criterion, for each functional block, and the correct operation for the complete system, as well. 
Analog circuits are characterized by nonlinear characteristics, noise, bandwidth, and a wide 
variety of performance parameters. All of this becomes a constraint when developing fault 
simulators and reliable testing algorithms. 
 
The homotopy continuation methods have been applied to various branches of science and 
engineering [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]. In [23] was presented a 
verification method of diagnosis for analog piecewise linear circuits based on the homotopy 
approach; here, the circuit is tested by homotopy transforming it from the fault-less state into a 
fault state. Thus, by monitoring electric variables, it is possible to detect value changes between 
states. Nevertheless, this testing approach requires PWL modelling of the circuit and ignores the 
entire behaviour of the homotopy path; thus, only cares about the nominal operating points 
between states. 
 
Homotopy paths tend to be attracted by the traces formed by the intersection of equations of the 
equilibrium equation [24]. Hence, if faults directly affect the nonlinearities of the equilibrium 
equation, therefore, the homotopy path is influenced by nonlinearities from the equilibrium 
equation; this situation can be used to infer faults detecting behaviour changes on the homotopy 
path. Therefore, this work will present a study on how the homotopy path is affected by faults 
during DC analysis in parameters like: final point, number of iterations, and the number of turning 
points obtained for a basic multi stable [25,26,27] circuit in fault-less and fault state. 
 
This paper is organized as follows. In Section 3, we present the basic idea of proposed double 
bounded homotopy. Section 4 shows some numerical simulations to study the effects of faults 
over homotopy trajectories and discuss the results. Finally, a brief conclusion is given in Section 
5. 
 

2 Basis of Homotopy Continuation Methods 
 
The homotopy continuation methods (HCM) are a continuous transformation from one trivial 
problem (simple to solve) to the study problem (hard to solve). These kind of methods are applied 
to such diverse problems like: multi-stable electronic circuits 
[16,28,29,30,31,32,33,34,35,36,37,38], Toeplitz systems, nonlinear control synthesis [39], 
stochastic economies [40], load flow solutions of ill-conditioned power systems [41], 
discretization of ordinary differential equations [42], inverse kinematics problems 
[20,43,44,45,46,47,48,49], optimization [50,51], among many others. 
 
First, we define our problem to solve, the nonlinear algebraic equation 
 ���� = 0, �: ∈ ℜ� ⟶ ℜ�, (2.1) 
 
where � denotes the variables of the problem and 
 is the total number of those variables. 
 
Then, in order to solve (2.1), we propose the following homotopy map 
[19,21,22,28,29,31,32,46,50,51,52,53,54,55,56,57,58,59,60,61] as 
 ������, �� = 0, �: ∈ ℜ��� ⟶ ℜ�, (2.2) 
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where � is the homotopy parameter. 
Equation (2.2) represents any homotopy formulation that fulfils the following conditions: 
 

• For � = 0, solution for ����0� is known or easily found using numerical methods. 
• For � = 1, ������, 1� = ����. It means that at � = 1 the solution, or solutions, for���� 

can be found. 
• The path for ����0� is a continuous function of � with 0 ≤ � ≤ 1. 

 
The homotopy path is the solution set for ����0�, which represents a continuous curve that can be 
traced by numerical continuation techniques or path following methods 
[5,16,21,33,47,48,62,63,64]. 
 
A possible homotopy map is 
 ������, �� = ����� + �1 − ������ = 0, (2.3) 
 
where ���� is a problem simple to solve. 
If � = 0, the homotopy path is reduced to the trivial problem 
 ���, 0� = ���� = 0. (2.4) 
 
When � = 1, the sought solution is achieved 
 ���, 1� = ���� = 0. (2.5) 
 
This process is a continuous deformation from � = 0 to � = 1, transforming the trivial problem ���� = 0 into the original problem ���� = 0. 
 
The success of finding the sought solution depends on several factors: 
 

• Find the methodology to establish the right NAEs which best describe the physical 
behaviour of the problem under study. The proper formulation of those NAEs can help to 
guarantee, or increase the probability, of success of the homotopy simulation [cite]. 

• The behaviour of different homotopy maps change for specific problems. 
• Constructing an adequate numerical continuation algorithm. Even if the homotopy path 

and NAEs are properly established with the guarantee of global convergence [31,65], a 
poorly chosen numerical continuation scheme can lead to a failure [5,16,21,33,62,64]. 

 
Homotopy is capable to find multiple solutions; nevertheless, the ability to find all or even one of 
the solutions depends on the kind of homotopy, the selected continuation technique [16,33], and 
on the type of nonlinear circuit. To be able to find multiple solutions, all the steps for the 
numerical continuation method [5,16,33] must be applied until the root at � = 1  is located. 
Nonetheless, the tracing technique continues its route for values � > 1 up to a turning point and 
then returns back to � = 1 finding the next solution (when another solution exist). In Fig. 1 a 
homotopy path is shown; here, the path locates solutions at ��∗, ��∗, ��∗, and ��∗ . However, after 
crossing the root ��∗ the path continues indefinitely as apparently there are no more solutions that 
produce more crossings at � = 1.  
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3 Proposed DBPH Method for Analog Circuit Testing 
 
In [28,29] was introduced the idea to create a double bounded homotopy; a way to cope with the 
stop criterion is by bending the open solution path to convert it into a closed path as depicted in 
Fig. 2. This is achieved by setting four solution lines in terms of a fixed separation � as shown in 
Fig. 2. Further properties of this scheme are given as follows: 
 

• At �� = � 2⁄  the symmetry axis is defined (starting point "). 
• For ��the solution for ����0�is known or computationally simple to obtain. This point is 

known as the initial point for the homotopy ��� , ���.  
• At � = 0, the homotopy formulation becomes  

 ������,0� =  ���� = 0. 
 

This means that at � =  0 all solutionsfor ���� arelocated. 
 

• Similarly, at � =  �, thehomotopy fulfils  
 ������, �� =  ���� = 0, 
 
which means that at � =  � all solutionsfor ���� arelocated. 
 

• The expressions above define two symmetric branches; the left branch for 0 ≤  � ≤  ��  
and the right branch for �� ≤  � ≤  �. 

• When a given branch reaches again the value ��  (final point $), the homotopy procedure 
stops, achieving a simple stop criterion. In Fig. 2, the path starts at point " and stops at 
point $. 

• The path for the inverse function����0� is a continuous function for� inthe range of 0 ≤  � ≤  �. 
 

 
 

Fig. 1. Stop criterion problem 
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Not only the properties shown above yield a simple and reliable stop criterion, but they also 
establish two solution lines that, infact, limit the swing of the homotopy parameter variation. Fig. 
2 shows how the homotopy path starts at " =  ��/2, ��� on the symmetry axis, finds two roots(in 
solutionline � =  � ) and finishes when a new crossing through the symmetry axis at $ = ��/2, �&� is detected; it means that tracing the symmetrical branch has been completed and the 
stop criterionhasbeen fulfilled. 
 

 
 

Fig. 2. Double bounded homotopy with four solution lines 
 

The DBPH homotopy method [29] is a kind of double bounded homotopy, which is proposed to 
infer the existence of faults  
 

���� = �� +  ����� −  ���� −  2���� −  ����� −  �&  �  −  ' (� − �
2)� ����� 

(3.1) 

 
Where � is the homotopy parameter,���� is the equilibrium equation for the circuit,�is a constant 
that represents separation between solution lines (� = −�, � = 0, � =  �, and � = 2�)[29],�� 
represents theinitialpoint, �&  represents the final point of the path at � =  �/2 (symmetryaxis), 
and ' is another constant. 
 
This method is characterized by creating an arbitrary closed path around the symmetry axis; this 
situation allows for an arbitrary set of starting points for the path. 
  
A fault or fabrication defect can be ideally modelled as the unexpected existence of spurious 
resistors between nodes in the circuit. It may happen, as an example, the appearance of a spurious 
resistor between the i-th node and ground. This will affect, directly, the equilibrium equation, in 
particular the nodal equation��. As smooth as this change may appear, it could unchain a series of 
changesin the shape of the homotopy path. This way, it is possible to correlate an alteration in the 
homotopy path with the presence of faults. 
 
In this work we use the Euler-predictor and Newton-corrector scheme described in [16], which is 
based on other reports from [5,64], to obtain the numerical simulations. 
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4 Numerical Simulation and Discussion 
 
The benchmark circuit with bipolar transistors in Fig. 3 was reported and solved using HCM 
methods [29,30]. The Ebers-Moll [31] model isused for all the transistors; and the equation for the 
model is given as 
 

*+,+-. = / 1 −0.01−0.99 1 1 210�345��6789� − 1:
10�345��678;� − 1:<, 

 
where +, represents the emitter current, +- represents the collector current, =>? is the voltage drop 
betweenbase and emitter, and =>@ is the voltage drop between base and collector. 
 

 
 

Fig. 3. Circuit under test (contains three operating points). AB = CCDE models a possible 
fault between node FG and ground 

 
Table 1. Initial point (HIand HJ) and final points (HBCH  and HBKH) for the paths. b) Solutions 

for the circuit with (LHM) and without fault (LH) 
 
(a)               H FC FK FN FO FP FQ FR FG FS FCT FCC�CN UVWW T.P. Iter. 

�X + - + - - - - - - + - +   �&YZ + + + + + + + + + + + - 5 15522 
�&[Z + + + + - + + + + + + - 5 12753 
�\ - - + - - - - - - + - +   �&Y] + - + - - - + - + + - - 11 28532 

�&[] + + + + - + - - - + - - 15 26726 
 
 
 
 
 
 
 
 

Q Q
Q

Q

f



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 3(3), 226-240, 2013 

232 
 

(b)        
R.P. FC FK FN FO FP FQ FR 

�̂ 12 0.405 0.366 0.685 0.349 6.796 0.070 

�̂_ 12 0.40237 0.36085 0.68080 0.34736 6.40881 0.06886 ^� 12 0.883 0.278 0.590 0.631 0.812 0.315 ^�_ 12 0.86554 0.27808 0.59147 0.62122 0.81387 0.30548 ^� 12 5.995 0.085 0.368 0.712 0.436 0.390 ^�_ 12 6.06730 0.08213 0.36504 0.70724 0.43067 0.38564 
R.P. FG FS FCT FCC FCK FCN U` 

�̂ 7.038 11.839 0.4E-5 0.039 0.039 0.321 -0.0085 

�̂_ 3.14292 11.7142 0.3E-5 0.03884 0.03874 0.32149 -0.00874 ^� 1.074 11.647 0.4E-5 0.039 0.039 0.321 -0.0100 ^�_ 1.06759 11.6472 0.3E-5 0.03884 0.03874 0.32149 -0.01009 ^� 0.699 11.635 0.4E-5 0.039 0.039 0.321 -0.0089 ^�_ 0.68858 11.6350 0.3E-5 0.03884 0.03874 0.32149 -0.00889 
 
As for the diode, the model is given by 
 +a = 10�3�5�6b − 1�, 

 
where u is the voltage drop between diode terminals and id is the current through the diode. 
 
First, the equilibrium equation for the fault-free circuit is formulated using the modified nodal 
analysis [32]; the result is a system having 14 equations and 14 variables 
 ��) �1.85E − 3�=� − �2.5E − 4�=� − �2.5E − 4�=g − �1E − 3�=3 − �2.5E − 4�=�� −�1E − 4�=�� + +, = 0, 

(4.1) 

��) −�2.5E − 4�=� + �3.75E − 4�=� − �1.25E − 4�=i + �9.9E − 9�exp�40=� −40=�� + �1E − 10� − �1E − 8�exp�40=� − 40=�� = 0, ��) �1E − 2�=� − �1E − 8�exp�40=� − 40=�� + �9.9E − 9� + �1E − 10�exp�40=� −40=�� = 0, ��) �1.25E − 4�=� − �1.25�=g + �1E − 10�exp�40=� − 40=�� − �1E − 8� +�9.9E − 9�exp�40=� − 40=�� = 0, �i) −�1.25E − 4�=� + �1.25E − 4�=i + �1E − 10�exp�40=i − 40=j� − �1E − 8� +�9E − 9�exp�40=i − 40=g� = 0, �g) −�2.5E − 4�=� − �1.25E − 4�=� + �3.75E − 4�=g + �9.9E − 9�exp�40=i −40=j� + �1.01E − 8� − �1E − 8�exp�40=i − 40=g� − �1E − 8�exp�40=k −40=g� = 0, �j) �1E − 2�=j − �1E − 8�exp�40=i − 40=j� + �9.9E − 9� + �1E − 10�exp�40=i −40=g� = 0, �k) �30E3���=k − �30E3���=3 + �1E − 8�exp�40=k − 40=g� − �1E − 8� = 0, �3) −�1E − 3�=� − �30E3���=k + �31��30E3���=3 + �9.9E − 9�exp�40=�� −40=�6� + �1E − 10� − �1E − 8�exp�40=�� − 40=3� = 0, ��6) �1E − 2�=�6 − �1E − 8�exp�40=�� − 40=�6� + �9.9E − 9� +�1E − 10�exp�40=�� − 40=3� = 0, ���) �1E − 4�=�� − �1E − 4�=�� + �1E − 10�exp�40=�� − 40=�6� − �1E − 8� +�9.9E − 9�exp�40=�� − 40=3� = 0, ���) −�2.5E − 4�=� − �1E − 4�=�� + �3.5E − 4�=�� + �9.9E − 9�exp�40=��� +
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�1E − 10� − �1E − 8�exp�40=�� − 40=��� = 0, ���) −�1E − 4�=� + �1.1E − 3�=�� + �1E − 10�exp�40=��� − �1E − 8� +�9.9E − 9�exp�40=�� − 40=��� = 0, ���) =� − 12 = 0. 
 
Fig. 3 shows a hypothetical resistor �l& = 11mΩ�  representing a fault between node 8 and 
ground; acting as a currentleak to the ground. The existence of the fault implies that, for the circuit 
in a fault state, this term willbe added 
 

+ 1
l&

=k 

 
to nodal equation �k within equilibrium equation (4.1). 
 
Initial point for DBPH homotopy is chosen at ±13V, for nodal values, and ±13A for the 
currentnoppof voltage source  q-- . Initial points �X and �\ are shown in Table 1(a), just marking 
the corresponding sign (plus sign means +13, while minus sign means -13; the units would be 
Volts or Amperes depending whether is voltage or current, respectively). 
 
Now, DBPH homotopy is applied to solve the circuit; the proposed homotopy formulation is 
expressed as follows 
 r��� ��� + 1������ − 1���� − 2��=� − 13��=� + 13� + ��� − 0.5����� = 0, 

(4.2) 

r��� ��� + 1������ − 1���� − 2��=� − 13��=� + 13� + ��� − 0.5����� = 0, ⋮ r���� ��� + 1������ − 1���� − 2��=�� − 13��=�� + 13� + ��� − 0.5������ = 0, r���� ��� + 1������ − 1���� − 2��n, − 13��n, + 13� + ��� − 0.5������ = 0, 
 
where, by simplification, parameters � and t are both set to 1. 
 
After numerical simulation there are some aspects of the results to be noticed: 
 
1. Two sets of simulations (" and $) were performed, using two different initial points (�X and �\) for the circuits with and without fault (Table 1(a) and Figs. 4 and 5). For both cases, 

differences on the final point of the path were detected. For instance, between final points �&YZ(non-fault circuit) and �&[Z(fault circuit) there is a difference on the final point for nodal 
voltage=i. Also, for final points �&Y](non-fault circuit) and �&[] (fault circuit) a noticeable 
differenceis detected because sign changes for the final nodal voltages =�, =�, =g, =j, and =3. 
Therefore, a fault can modify the final point of the homotopy path; this situation can be used 
as criteria to detect faults. 

2. For all cases (circuits with and without fault) three operating points were located (Table 1(b)). 
Therefore, the number of located roots may not necessarily be used as an indicator or criterion 
of the existence of faults. Nevertheless, between solutions �̂and ̂ �_a noticeablechange on 
nodal voltage =k is perceived because the fault is located, precisely, between =k and ground. 

3. The shape of the homotopy path for the circuit without fault (Fig. 4(a), (b) and Fig. 5(a), (b)), 
differs with respect to the homotopy path for a fault circuit (Fig. 4(c), (d) and Fig. 5(c), (d)). 
The change with respect to the homotopy may be quantified by monitoring the number of 
iteration steps for the numerical continuation method [28,33] and the number of turning 
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points as a reference or indicator for fault detection. In Table 1(a) can be seen that the number 
of iterations and the number of turning points vary for the homotopy simulation between the 
circuits with and without fault. This situation confirms the existence of differences in the 
nonlinearities of the equilibrium equation for circuits with and without fault; differences that 
produce, in the end, changes on the homotopy paths. 
 

 

 
 

Fig. 4. Homotopy paths u − FK for initial point at HI: (a), (b) the fault-free circuit and (c), (d) 
fault circuit 
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(a) 
 

 
(b) Zoom to path (a) 

 

(c) 
 

(d) Zoom to path (c) 
 

Fig. 5. Homotopy paths u − FK for initial point at HJ: (a), (b) the fault-free circuit and (c), (d) 
fault circuit 

 
This work exhibited that aspects like final point for the homotopy path; number of turning points, 
and number of iterations can reflect the existence of circuit faults. Also, the present study can be 
extended to use other homotopies like Newton homotopy [33], fixed point [30], among others, in 
order to determine which homotopy is the most sensitive to faults. In addition, future research may 
extend the application of the proposed study to practical switching circuits and, in particular, fault 
models [66,67]. 
 

5 Conclusion 
 
This work deals with the application of homotopy to the analog circuit testing area, proposing the 
feasibility to detect the presence of faults using the homotopy path analysis, involving turning 
points, number of iterations, and final point of the path. Results indicate that the aforementioned 
aspects undergo notorious changes comparing circuit simulations with and without fault. 
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Therefore, it is important to continue the research in order to implement a systematic criterion to 
locate faults. 
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