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Abstract

In this work a symbolic study will be performed to establish the non-
linearity degree of nodal equations result of the MNA analysis performed
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in non-linear circuits. The goal is to provide a reordering criterion for
nodal equations that, eventually, accelerate the Homotopy simulation.
A criterion will be formulated to rate non-linearities, allowing to nu-
merically set a level of no-linearity to nodal equations so, afterwards,
equations will be reordered in several Homotopy simulations of a non-
linear circuit.

Mathematics Subject Classification: 34L30

Keywords: Homotopy Perturbation Method, Nonlinear Differential Equa-
tions

1 Introduction

Electronics is a highly competitive industry, where the consumer market pres-
sures produce a technological race that includes aspects like: portability, low
energy consumption, and increase in features and functionalities. An example
of this technological race are cellular phones. This devices, originally, were
bulky and heavy, useful just to make phone calls; nowadays, cellular phones
are light, small and includes functionalities like: radio and television tuner,
video games, sophisticated computer programs, among others. Besides, cell-
phones have absorbed products like: electronic agendas, alarms, beeper, to
name a few, that used be sold separately. All of this have been possible by
new manufacturing processes, which makes possible place more transistors in
the same silicon area. Therefore, the integration of so many transistors in an
integrated circuit (IC) has increased the circuit complexity. Thus, when the
IC is designed it is often to work with so many different design blocks (digital,
analog, high speed serial interfaces, RF, microwave circuits) according to the
new features to be included in the new product.

What has been mentioned above translates in an increase of dimensions
and complexity for the equilibrium equation resulting of the DC analysis of
the circuit, generating the need of new and better numerical tools that allows
to locate one or more operating points. In this context, Homotopy methods [1]
have been recently used in the task to find the operating point for non-linear
resistive circuits, when the equilibrium equation has a solution difficult to find,
or when the circuit has more than one solution. To analyze any circuit it is
necessary to establish, first, the equilibrium equation for the system.

The Newton-Raphson (NR) method is employed in most of the integrated
circuit simulators. The reason for the widely use of the NR method is because
the convergence rate is quadratic [2], minimizing computing times in simula-
tions. Nevertheless, the NR method is prone to certain convergence problems
[43] like: oscillation and divergence. Such convergence problem is specially
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noticeable in electronics where non-linear equations system from complex cir-
cuits are solved, these complex circuits combine blocks like: digital, analog,
high-speed digital interfaces, RF, microwave circuits, among others. There-
fore, it is necessary to develop backup methods or replacements for the NR
method. Besides, circuit designers have to deal with convergence failures on
the NR method and backup methods, so, as a last resort, they modify some pa-
rameters within the numerical engine expecting to achieve convergence. This
situation increase design times making it more expensive and slows down the
entire design process, affecting competitiveness in the end. This situation by
itself justifies the use of alternate methods to NR, like Homotopy to locate
the operating point. Nevertheless, there are more reasons to use Homotopy
methods, like the existence of multiple operating points. Unlike NR method,
Homotopy [3, 4, 5] is capable to locate multiple operating points. This is very
important since there is a chance that designer approves a DC operating point
(found by the NR method) but other operating point, it is possible for the
circuit to have more than one operating point, is physically present in the cir-
cuit. This translates in circuit malfunctioning and costly consequences for the
company.

Homotopy methods [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] have demonstrated
being useful to locate multiple operating points and converge to solutions when
the NR method is unable to. Nevertheless, the Homotopy methods have the
drawback of being slow, compared to the speed of the NR method.

On this work, the modified nodal analysis [17, 1] (MNA) is employed to
establish the equilibrium equation for the circuit.

In its general form, the equilibrium equation for non-linear resistive circuits
has the form:

f(x) = 0 (1)

where f is a system with n non-linear algebraic equations and x is the
unknowns vector of the system. When the MNA is employed, x is the vector
that contains nodal voltages and currents for the NA compatible elements [18].

Once obtained the equation (1), proceed to establish the Homotopy equa-
tion, which has the general form:

H(f (x), λ) = 0 (2)

where λ represents the Homotopy parameter.

2 Reordering

One possible way to decrease computing time in Homotopy simulations is by
swapping equations order at the beginning of the Homotopy path. Therefore,
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Ka1 2

Kb

Kc

V1

3

Figure 1: Circuit with three solutions.

in order to illustrate the effect of the ordering has in the Homotopy formulation,
a very simple example of a circuit is analyzed next applying Chao’s Homotopy
scheme [7]. In this method, the Homotopy equation is given by:

dfi[x(p)]

dp
+ fi[x(p)] = 0 (3)

con fi(x(0)) = 0 para i = 1, 2, . . . , n− 1.
The n-th equation is:

dfn[x(p)]

dp
± fn[x(p)] = 0 (4)

where the sign change for the n-th equation, fn, should occur at points
where Jacobian sign changes (the goal is to avoid moving away from solutions
path) and at solutions (to continue the inspection for more solutions).

This method consists in finding one solutions path, which coincides with
the intersection of the (n−1) surfaces defined by f i = 0, i = 1, 2, . . . , n−1. In
such a way that Homotopy path is traced on the plane for the n-th equation.

The behavior for the above Homotopy strongly depends on equation (4),
due to sign change, i.e. the continuation procedure is linked exclusively to
the n-th equation. Nevertheless, when equilibrium equation is established by
MNA, the n-th equation will always corresponds to the branch relationship for
any non-NA compatible element present in the circuit.

To show how equations order affect the formulation for the equilibrium
equation, the circuit shown in figure (1) will be used; it has linear conductance
(Ka), a diode (Kb) with exponential branch function, and a non-linear con-
ductance (Kc) with polynomial branch function. Applying the MNA method
the obtained system is:




Ka −Ka 0 +1
−Ka Ka 0 0
0 0 0 0
+1 0 0 0







v1
v2
v3
iV1


+




0
iKb

−iKb
+ iKc

0


−




0
0
0
V1


 = 0 (5)
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where v1, v2, and v3 are nodal voltages, iV1
is the current for the independent

voltage source, and currents iKb
and iKc

are the ones flowing through non-
linear conductances Kb and Kc, respectively. The fourth equation corresponds
to branch relationship for the independent voltage source:

v1 − V1 = 0

This equation is linear, which can be solved in the first iteration, regardless
of the numerical method employed to trace the Homotopy path, such that
nodal voltage v1 is subject of the independent voltage source V1. Hence, is
not useful place at the end during the Homotopy simulation. So, it would
be inconvenient linking the continuation process to an n-th equation whose
branch relationship is non-linear.

Figure (2) shows the geometric solution of the non-linear algebraic equa-
tions system (5). Three planes can be note in the figure:

• Exponential plane S1 with the diode characteristics Kb.

• Polynomial plane S2 with characteristics of the non-linear conductance
Kc.

• ”Load” plane S3, which combines voltage source equation V1 with char-
acteristics of the linear conductance Ka.

Solutions for the equations system are noted by white points at intersection
of the planes and represent the DC operating points for the circuit in figure
(1).

For the previous circuit there are three Homotopy paths:

• Pa, this path lays on the oblique plane.

• Pb, this path lays on the exponential plane.

• Pc, this path lays on the polynomial plane.

Each path (Pa, Pb y Pc) match the election of a n-th different equation,
which represents different Homotopy paths. Thus, the n-th function (fn(x))
should be selected using the appropriate criterion to calculate the non-linearity
level for each fi(x).
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Figure 2: Homotopy paths linked to equilibrium equation for the circuit in
figure (1).

3 Branch functions classification

In order to classify the nodal equations by its non-linearity degree, it is neces-
sary, first, classify the branch functions for non-linear elements by their non-
linearity degree since these elements provide currents that flow to the nodes
and, therefore, determine the non-linearity degree for the nodal equation re-
lated to the node [19, 20, 21].

Given the modified nodal analysis applied to formulate the equilibrium
equation, based on the Kirchhoff current law, it is possible to establish:

Definición 1 The sum for all currents coming in and out of a given node

equals to zero.

Therefore, it is possible to infer the level of non-linearity for a nodal equa-
tion, measuring the non-linearity level of branch functions for each element
connected to the node under analysis.

To perform the analysis for the type of branch functions, these are classified
as:

• Linear function
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Those functions that comply with the homogeneity and superposition
principles. The static elements that comply with these principles are
resistors and linear conductances [22], their branch characteristics are
given by:

u = Ri y i = Gu

respectively, where R and G are values for resistance and conductance.

• Non-linear function

Those functions, contrary to linear functions, that do not comply with
the homogeneity and superposition principles. To classify non-linear
branch functions, this work resorts to the classification provided by [9].
In this work, non-linear branch functions are initially classified as:

➢ Weakly non-linear functions

➢ Strongly non-linear functions

3.1 Weakly non-linear functions

Weakly non-linear are classified as follows:

• Non-bounded

This classification is also subdivided into:

– Type U+

if f(x) → ∞ when x → ∞, and f(x) → −∞ when x → −∞

– Type U−

if f(x) → ∞ when x → −∞, and f(x) → −∞ when x → ∞

Figure (3) shows both kinds of non-bounded functions.

U +
U−

x

f(x) f(x)

x

Figure 3: Non-bounded functions.
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• Semi-bounded

This classification is subdivided as:

– Type H+

if f(x) → ∞ when x → ∞, and |f(x)| remains bounded according
to x → −∞

– Type H−

if f(x) → −∞ when x → −∞, and |f(x)| remains bounden accord-
ing to x → ∞

Figure (4) shows both kinds for semi-bounded functions.

��������������������
������������������M

+H

M

H −

f(x) f(x)

xx

Figure 4: Semi-bounded functions.

• Double-bounded functions

– Type B

si |f(x)| remains bounded according to |x| → ∞

Figure (5a) shows a double-bounded function.

��������������������

f(x)

x

M

B
��������������������

(a) Double bounded func-
tion.

x

f(x)

Z

(b) Non-linear strong
function.

Figure 5: Non-linear branch functions.
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3.2 Strongly non-linear functions

The number of local maximums and minimums weights strongly nonlinear
branch functions. Therefore, the greater number of maximums and minimums
will provide the level of non-linearity. Figure (5b) shows an example of strongly
non-linear function.

4 Weight assignment for non-linear branches

It has been shown a classification for non-linear branch functions, so it is
now possible to assign weights to every type of non-linear function. Table (1)
shows assigned weights to weak non-linear branch functions. Lesser weight
is assigned to branch functions of type non-bounded (U±) because these do
not have asymptotes and their behavior is reminiscent to a resistor or linear
conductance. For branch functions of type semi-bounded higher weight is
assigned because they have one asymptote. Finally, the highest branch weight
is for branch function of type B because it has two asymptotes. The weight
calculation for the strongly non-linear functions is achieved by the application
of the following simple formula:

β = Z + 3

where Z is the number of local maximums and minimums.

Types Weight W

U± 1
H± 2
B 3

Table 1: Weight for weakly non-linear functions

For case Z = 0, it has been determined that branch of type weak non-linear.
Then, the minimum value for Z is 1, so the weight for a strong non-linear
branch is 4, then it will always be heavier than the double-bounded non-linear
function (B).

5 Weigh criterion for Nodal Equations

In the previous section was explained how equations originated by the MNA
method for non-linear circuits affect Homotopy paths, because the non-linearity
level is different for each equation. Therefore, it is important to weigh equa-
tions based on their non-linearity level. Besides, the first step for weighing



6450 H. Vazquez-Leal et al.

nodal equations has been already taken by showing a classification of non-linear
branch functions. Starting from this classification it is possible to establish a
weigh criterion for nodal equations.

Two basic criteria have been elaborated ([23, 24]) for weigh nodal equations,
these are: non-linear incidence level criterion and non-linear incident type
criterion.

Both criteria is described next:

Non-linear incidence level criterion

This criterion is based on determining the number of incident non-linear
components, to each node, considering this number as the weight for the
nodal equation related to the node. By applying this criterion, turns out
that in figure (6) the node with higher non-linearity is node (b) because
it has the higher number of incident non-linear branches.

a

b

Figure 6: Non-linearities connected to nodes.

This weigh criterion can be summarized by the following formula:

δ̃i = # incident non-linear elements (6)

where δ̃i is the incidence non-linear level for the i-th node.

Incident non-linear type criterion

The prior criterion could lead to wrong considerations, because it does
not take into account the types of non-linearities of the incident branches
into nodes. In fact, it is possible that the node with the highest level
of non-linear incidence, turns not to be the node associated with the
highest level of non-linearity nodal function. In the opposite case, a
node could have the lowest number of incident non-linear elements and
still have associated the highest non-linear nodal function. Therefore, a
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second criterion has been created, which is based on the assignment an
specific weight for every node (nodal equation) depending on the type
of non-linearities incident to it. So, the wight of a node is equal to the
sum of weights of branch functions for all non-linear elements incidents
to the node. This weigh criterion can be summarized by the following
formula:

ζ̃i = Σ(weight of incident non-linearities) (7)

where ζ̃i is the sum of weights of incident non-linearities to the i-th node.
An example can be seen in figure (6) node “a”.

6 Transactor treatment

Branch constitutive functions have been considered so far, these involve vari-
ables (voltage and current) for the same branch, i.e. elements that depend
in variables from another branch have not been considered, like branch func-
tions for linear transactors or controlled sources. Linear transactors are part
of models for several devices among which are bipolar transistors, field effect
transistors, operational amplifiers, etc., so they have practical importance.
Even though transactors are linear, there might be the case that the control-
ling variable comes from a non-linear element, which cause that non-linearity
be inherited [20] by the transactor and the output branch of it is handling
a non-linear variable. Such is the case for the large-signal Ebers-Moll model
for the bipolar transistor [25], where the linear transactor is controlled by the
current flowing through a non-linear conductance, such that the transactor
handles a non-linear current at the output. As a result of this situation, the
effects of linear transactors should be taken into account in the weigh criterion
when the controlling variable comes from a non-linear element, as shown in
the scheme in figure (7).

Depending in whether the output variable of the transactor is current or
voltage, the equilibrium equation will be affected; either in the corresponding
nodal equation or the non-NA branch relationship, as shown in figure (8). In
transactors with current as output variable, this is seen as a non-linear current
flowing to the node, while for transactors with voltage as output variable, these
involve a non-NA compatible equation.

According to the weight assignment criterion, the weight for non-linear
elements ρ is inherited to the transactors multiplied by coupling factor α,
which is expressed in the following equation:

w = αρ
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EV1 = f̃(EV2)

ı̃

ũ

EVout = α̃ı

EVout = αũ

Figure 7: Linear transactors involving non-linear variables.

(b)(a)

io = αẼV uo = αẼV
ĩo ũo

Figure 8: Output variables for transactors affecting equilibrium equation.

7 Study of non-NA compatible elements

When the MNA method is employed to establish the equilibrium equation,
given in equation 1, it has the general form:

f (x) =




f1(x)
...

fj(x)
...

fn(x)
r1(x)
...

rk(x)
...

rm(x)




= 0

where fj(x) = 0 is nodal equation for the j-th node and rk(x) = 0 is branch
equation for the k-th non-NA compatible element. There are n nodes and m

branch functions from the non-NA compatible elements. Therefore, the task



Symbolic analysis and reordering 6453

to assign weights to the equations from the MNA method still is not finished
because, at this moment, there have been weighed n nodal equations, remain-
ing to assign wights for m equations introduced by the non-NA compatible
elements. Since non-NA elements contribute with additional functions, it is
only necessary to assign the weight of the branch function for the m-th element
according to the classification for the non-linear functions u-i.

8 Weight assignment procedure

In this section the concepts exposed in previous sections will be summarized
and the procedure to automate the process of weight assignment to nodal
equations will be carried out. The weigh procedure can be resumed in the
following steps:

1. Identify the non-linear elements in the circuit.

2. Weigh all branch functions of non-linear elements.

3. Identify all controlled transactors as non-linear elements and assign them
the weight for that branch calculated in the previous step and multiply
it by coupling factor (α) of the transactor.

4. Sum weights of all non-linear branch functions for all incident nodes.

The weigh procedure for a node (n) can be summarized in the following
expression [24, 23]:

wn =
M∑

j=1

|αj |ρj

︸ ︷︷ ︸
Transactors

+
N∑

k=1

βk +

Q∑

i=1

Wi

︸ ︷︷ ︸
Types

(8)

where Wi is the weight for weak non-linear elements, βn is the weight of
strong non-linear elements, ρj is the weight for controlled non-linear branches,
M is the number of transactors that depend on non-linear elements, α is
the coupling factor of the transactors, N is the number of strong non-linear
elements, and Q is the number of weak non-linear elements.

8.1 Tie-break criterion

The application of weigh criteria could produce some equations having the
same weight. In those cases it is necessary to use some kind of tie-break
criterion, which takes into account behavior effects that, at this moment, have
been considered linear. Voltage sources (V ) and current sources (I) do not
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fulfill the linearity principle, therefore, they can be taken in the weigh criteria
as non-linear elements, and, by that, try to clarify cases where nodes with same
level of non-linearity (weight) are present. Branch functions for such elements
can be classified as weak non-linear and falls into the double-bounded category.
Thus, just in the case where some equations have the same non-linear level,
the weight of voltage and current sources will be 3.

8.2 Weight assignment variations

Three possible reordering criteria is presented as follows:

1. Reordering for n+m equations in ascending order with respect of their
weight.

2. Reordering for n+m equations in descending order with respect of their
weight.

3. Place the most non-linear equation in the last position n+m.

Implementing of the weight assignment procedure and its variants have
been done using Maple software [26] because several necessary operations to
classify branches and weight assignments can be performed efficiently using
symbolic analysis techniques. Some of these operations are [23, 20]:

➲ Symbolic differentiation.

➲ Calculate the number of maximums and minimums.

➲ Simple numerical substitution for controlling variables (voltage or cur-
rent) in the branch function within a given range.

➲ Compute variation range for controlling variables.

➲ Calculate limit value when the independent variable tends to ±∞.

9 Chao’s method application

In this section the weight procedure for equations is applied to the Chao’s
Homotopy method. Here, the Homotopy equation is repeated to ease the
lecture:

dfi[x(p)]

dp
+ fi[x(p)] = 0 (9)

where fi(x(0)) = 0 for i = 1, 2, . . . , n− 1. Functions fi represent equations
generated by the MNA method. The n-th equation is given by:
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dfn[x(p)]

dp
± fn[x(p)] = 0 (10)

Because this Homotopy strongly depends on the n-th equation, changing
the last equation for one more non-linear affects the Homotopy paths. In prac-
tice, it just takes to interchange last equation for another one, since the order
for the first (n− 1) equations is not relevant because do not affect Homotopy
paths. Therefore, the third reordering criterion is selected node [19, 20, 21].

10 Study cases

10.1 ERD Circuit

The first circuit (ERD) consists in a series connection of an independent voltage
source (V1), a linear resistor (R1), and a non-linear conductance (K1). The
non-linear conductance has branch function of a tunnel diode given by a third
degree polynomial function:

i =
(
0.8u3 − 5.25u2 + 9u

)
× 10−3 A

Figure 9 shows the circuit and the values for the elements.

1 2

1

1=1kR

V1 =5V K

Ω

Figure 9: ERD Circuit.

10.1.1 Applying the weigh criterion

Table 2 shows the result of applying the weigh criterion for strongly non-linear
functions. Based in the former Table, the level of non-linearity for each node
was calculated as shown in table 3, which shows that non-linearity level for
node ② is the highest. Because voltage source V1 is a non-NA compatible
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element, an extra equilibrium equation is added. Therefore, it is necessary to
weigh the new equation, giving as result zero.

Components Weight

R1 0
V 1 0
K1 5

Table 2: Weights for branch functions in the ERD circuit.

Node Weight
① 0
② 5

Table 3: Weights for nodes in the ERD circuit.

The weigh for equations in the ERD circuit produced by the MNA method,
allows the reordering of equations under the non-linearity level criteria and the
simulation to observe the effects on the Homotopy. Next, results for Chao’s
Homotopy are shown.

10.1.2 Homotopy simulation

Chao’s method contains a starting algorithm that calculates the initial point
for the Homotopy path using an optimization method that consists in calculate
a point x0 in the planes intersection for the first (n+m− 1) equations of the
circuit, where n is the number of nodes of the circuit and m is the number of
non-NA compatible elements. Therefore, there are just (n+m) combinations
that will provide different starting points, thus different Homotopy paths.

Once the final equation is chosen, results of simulations for the Chao’s
method have shown that the order for the first (n + m − 1) equations of the
circuit do not affect Homotopy paths, so only the last equation determines the
behavior for this Homotopy, in such a way that only (n + m) combinations
exist that will provide different Homotopy paths.

Simulation results are presented in table 4. In the first column the last
equation n +m of the system is placed, in the second column are placed the
n+m− 1 reordered and in the last column the computing time. From second
column can be concluded that is not relevant to reorder the n+m−1 equations
since they do not affect the Homotopy path. For one side, the first simulation
from table 4 corresponds to the reordering case where the voltage source branch
function is placed at the end of the optimization and Homotopy, and just one
root is found, this reordering case is usually found when no reordering criteria
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are applied. On the other side, the best case for reordering is the last, which
is one of three re orderings that achieved global convergence, having at the
end of the equation system the node equation ①; although computation time
increases about 33%, it was able to locate three solutions instead of one, which
greatly compensates the extra computing time.

Values of the resulting roots from simulation using node equation ① at the
end of the equation system, for the optimization and Homotopy are shown
here:




v1
v2
iV1


 =




5.00000
0.82520

−0.00417




︸ ︷︷ ︸
Solution #1

,




5.00000
2.32209

−0.00267




︸ ︷︷ ︸
Solution #2

,




5.00000
3.74245

−0.00125




︸ ︷︷ ︸
Solution #3

(n+m)-th (n+m− 1) # of Total
in Chao’s in Optimizing Roots Time
Equation Equations

V1 ①,② 1 3.000
V1 ①,V1 1 3.550
V1 ②,V1 1 3.569
② ①,② 1 3.120
② ①,V1 1 3.089
② ②,V1 1 3.130
① ①,② 3 4.369
① ①,V1 3 4.139
① ②,V1 3 3.999

Table 4: Chao’s method simulations for ERD circuit.

10.2 ERDD Circuit

The following example circuit has two non-linear conductances with polyno-
mial branch functions:

iK3
= (2.5u3 − 10.5u2 + 11.8u)× 10−3 A

iK4
= (0.43u3 − 2.69u2 + 4.56u)× 10−3 A

Such conductances are placed in series with one linear resistor (R2) and an
independent voltage source (V1). The diagram of the circuit is shown in figure
(10) and the values for the linear elements are also shown there.
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1 2

3

2

1V

R

K

K

4

3

=13.3k

=30V

Ω

Figure 10: ERDD circuit.

10.2.1 Application of weigh procedure

The weights of branches and circuit equations are displayed in tables (5) and
(6), respectively. Table 6 shows that the most non-linear node is node ③

because two non-linear conductances (K3 and K4) converge into that node.

Components Weight

V1 0
R2 0
K3 5
K4 5

Table 5: Weights of branch functions for the ERDD circuit.

Node Weight
① 0
② 5
③ 10

Table 6: Weights of nodes for the ERDD circuit.

The weight for the last equation generated by nodal analysis is for the
voltage source V1 so its designated weight will be 0 applying the criteria from
section 3. Next, the results of simulations for this circuit using different equa-
tions orderings are shown.

10.2.2 Homotopy simulation

Results of simulations are shown in Table (7). In this case the Homotopy was
improved by placing at the end of the equations system the equation ② instead
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of equation ①, by doing this, the non-linearity level of the (n+m)-th equation
was increased. In any reordering case for equations in the optimization method
there was no difference for the convergence method, which was not global since
the circuit has 9 solutions.

(n+m)-th (n+m− 1) # of Total
Chao’s Optimization Roots Time

Equation Equations

① V1,③,② 1 2.754
① V1,③,① 1 2.789
① V1,②,① 1 2.849
① ①,②,③ 1 2.920
② V1,③,② 2 2.685
② V1,③,① 2 2.807
② V1,②,① 2 3.027
② ①,②,③ 2 3.175
③ V1,③,② 1 2.781
③ V1,③,① 1 2.780
③ V1,②,① 1 2.865
③ ①,②,③ 1 2.900
V1 V1,③,② 1 2.980
V1 V1,③,① 1 3.043
V1 V1,②,① 1 3.159
V1 ①,②,③ 1 3.090

Table 7: Simulations using Chao’s method for the ERDD circuit.

10.3 Schmitt-trigger circuit

This section will analyze the Schmitt-trigger circuit, it has three operating
points and the values for its components are shown in figure (11). This example
use the Ebers-Moll model for the bipolar transistors, it is displayed in figure
(12). The values for αF and αR in both bipolar transistors (Q1, Q2) are 0.99 y
0.01, respectively; the constitutive branch functions for the Ebers-Moll model
are:

iDC
= 1× 10−9(e40vBC − 1) A

iDE
= 1× 10−9(e40vBE − 1) A

10.3.1 Application of weigh criterion

The weight for nodal equations in the circuit are shown in Table (8). As it can
be seen, nodes ② and ⑥ are the heaviest in the circuit each having a weight of
6. Then, the tie-breaker method, described previously, can be applied so node
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Figure 11: Schmitt-trigger circuit.
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Figure 12: Ebers-Moll bipolar transistor model.

② now has total weight of 9 and, therefore, this node is considered to have the
most non-linear associated nodal equation in the circuit.

10.3.2 Homotopy simulation

Due to a convergence failure of the optimization method, the initial point was
chosen arbitrarily, which is:



Symbolic analysis and reordering 6461




v1
v2
v3
v4
v5
v6
iV1

iV2




=




8.33
1.20
4.87
0.90
0.98
1.24

0
−0.01




Results of simulations under different orderings can be seen in Table 9.
It is interesting to notice in Table 9 that the lowest computing time was

obtained placing at the (n + m)-th position the equation (node6) which had
the highest non-linear level. Last, the root found using this method is:




v1
v2
v3
v4
v5
v6
iV1

iV2




=




9.999999
1.449999
5.764902
1.091165
1.223019
1.541015

−0.000017
−0.010894




11 Conclusions

The development of Homotopy methods in recent years have been important
for the numerical simulation of resistive non-linear circuits. This work was
focused in the improvement of Homotopy by reordering the non-linear equa-
tions system generated by the MNA method. The criterion to perform the
reordering is by means of assign weights to the non-linear algebraic equations.
Various schemes for weight assignment were established. It was demonstrated

Node Weight
① 0
② 6
③ 3.98
④ 4.04
⑤ 3.98
⑥ 6

Table 8: Node weights for the Schmitt-trigger circuit.
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(n+m)-th # of Total
Chao’s Roots Time

Equation

① 1 44.630
② 1 38.290
③ 1 45.310
④ 1 44.759
⑤ 1 44.630
⑥ 1 38.620
V1 1 39.680
V2 1 38.969

Table 9: Simulations using Chao’s method for the Schmitt-trigger circuit.

that using reordering it is possible to affect the path of solutions in Chao’s
Homotopy method. This is because the continuation mechanism in Chao’s
method is based in performing sign changes in Homotopy equations, affecting
the Homotopy path.
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