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Abstract

Causal Bayesian networks (CBNs) are now widely used as causal models and they are the
starting point for much of the research on automated causal discovery and causal inference
in the artificial intelligence literature. The causal effect between a pair of variables (X,Y),
that belongs to a set of variables of a joint distribution, it is a measure of how much the vari-
able Y is modified when manipulating the variable X. The causal effect can be estimated
from the post-intervention distribution over a CBN when the causal structure that generated
the data is known a priori. Nevertheless, given only observational data, constraint-based
causal discovery methods are solely able to find a finite collection of possible causal struc-
tures, i.e., a Markov Equivalence Class (MEC), but they can not identify the causal structure
that best represents the data inside the MEC.

In this dissertation, we propose the LV-IDA+ algorithm to estimate bounds on causal
effects, between pairs of variables (X,Y) in a system, considering unmeasured common
direct causes. This algorithm is based on the IDA ([MKB09]) and the LV-IDA ([MS17])
algorithms. As in IDA and LV-IDA, we consider the case where we only know the MEC
of the causal structure and the system V = {X1, . . . , Xp} is jointly Gaussian, and as in
LV-IDA, we use Maximal Ancestral Graphs (MAGs) and Partial Ancestral Graphs (PAGs),
to represent the causal structure and the MEC of the system, respectively. The LV-IDA
algorithm cannot always identify the causal effect for some pairs of variables and then
returns missing values as output. This is due to the fact that in special instances there is
no adjustment set for some pairs of variables, in some, and occasionally all MAGs in the
PAG. Our main contribution proposes a way to approximate the causal effect when these
undetermined cases arise on the LV-IDA algorithm.

The LV-IDA+ algorithm uses the covariate adjustment method over the canonical Di-
rected Acyclic Graphs (DAGs) associated with the MAGs in the PAG to approximate the
causal effects in these unresolved cases. To our knowledge, no other way has been proposed
to give at least an approximate answer instead of an inconclusive one to calculate the causal
effect for such cases, and the proposed approximation closes this gap. In the experimental
evaluation that was carried out over synthetic canonical DAGs, higher accuracy is observed
in the estimation of the bounds on causal effects using this approximation approach. With
the bonus that instead of having missing values we have at least an approximation of the
bounds on causal effects for the mentioned special cases.



Resumen

Las Redes Bayesianas Causales (CBN) ahora se utilizan ampliamente como modelos causales
y son el punto de partida para gran parte de la investigación sobre el descubrimiento causal
automatizado y la inferencia causal en la literatura sobre inteligencia artificial. El efecto
causal entre un par de variables (X,Y), que pertenece a un conjunto de variables en una
distribución conjunta, es una medida de cuánto se modifica la variable Y al manipular la
variable X. El efecto causal se puede estimar a partir de la distribución posterior a la in-
tervención sobre una CBN cuando se conoce a priori la estructura causal que generó los
datos. Sin embargo, dados solo datos observacionales, los métodos de descubrimiento
causal basados en restricciones solo pueden encontrar una colección finita de posibles es-
tructuras causales, i.e., una Clase de Equivalencia de Markov (MEC), pero no pueden iden-
tificar la estructura causal que mejor representa los datos dentro de esta MEC.

En esta disertación, proponemos el algoritmo LV-IDA+ para estimar cotas de los efec-
tos causales, entre todos los pares de variables (X,Y) en un sistema, considerando causas
directas comunes no medidas. Este algoritmo se basa en los algoritmos IDA ([MKB09]) y
LV-IDA ([MS17]). Como en IDA y LV-IDA, consideramos el caso en el que conocemos
únicamente la MEC de la estructura causal y el sistema V = {X1, . . . , Xp} es conjuntamente
Gaussiano y como en LV-IDA, usamos Grafos Ancestrales Maximales (MAGs) y Grafos
Ancestrales Parciales (PAGs), para representar la estructura causal y el MEC del sistema,
respectivamente. El algoritmo LV-IDA no siempre puede identificar el efecto causal para
algunos pares de variables y devuelve valores faltantes como salida. Esto se debe al hecho
de que, en casos especiales, no hay un conjunto de ajustes para algunos pares de variables,
en algunos y ocasionalmente todos los MAG en el PAG. Nuestra principal contribución pro-
pone una forma de aproximar el efecto causal cuando estos casos indeterminados surgen
en el algoritmo LV-IDA.

El algoritmo LV-IDA+ utiliza el método de ajuste por covariantes sobre los Grafos
Dirigidos Acı́clicos (DAG) canónicos asociados con los MAG en el PAG para aproximar
los efectos causales en estos casos no resueltos. Hasta donde sabemos, no se ha prop-
uesto ninguna otra forma de dar al menos una respuesta aproximada en lugar de una no
concluyente para calcular el efecto causal para tales casos y la aproximación propuesta



cierra esta brecha. En la evaluación experimental que se llevó a cabo sobre DAG canónicos
sintéticos, se observa una mayor precisión en la estimación de las cotas de los efectos
causales utilizando este enfoque de aproximación. Con la ventaja extra de que en lugar
de tener valores faltantes tenemos al menos una aproximación de las cotas de los efectos
causales para los casos especiales mencionados.
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sadness and gave me the opportunity to walk by her side even during this challenging time
for me.



Contents

Abstract ii

Resumen iii

Acknowledgments vi

List of Figures and Tables ix

List of Algorithms x

1 Introduction 1
1.1 Causal Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Causal Effects Computations . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Background 11

2 Causal Bayesian Networks 11
2.1 Causal Bayesian Nets Basics . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Gaussian Directed Networks . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Interventions on DGNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Learning Causal Bayesian Networks . . . . . . . . . . . . . . . . . . . . . 21

3 Ancestral Graphs Markov Models 26
3.1 Maximal Ancestral Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



3.2 MAGs as Causal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Markov Equivalences Classes of MAGs . . . . . . . . . . . . . . . . . . . 30
3.4 The Fast Causal Inference Algorithm . . . . . . . . . . . . . . . . . . . . . 30

II Related Work 35

4 Estimating Bounds on Causal Effects 35
4.1 The IDA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 The LV-IDA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Determining the MAGs in a PAG . . . . . . . . . . . . . . . . . . . . . . . 39

III Contribution to the Field 43

5 The LV-IDA+ Framework 43
5.1 The LV-IDA+ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Differences between LV-IDA+ and LV-IDA . . . . . . . . . . . . . . . . . 48
5.3 Rationale and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 LV-IDA+ Experimental Evaluation 56
6.1 Evaluation Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Data Generation Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Experimentation Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Conclusions and Future Work 63
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Contribution and Relevance. . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 68



List of Figures

1.1 An example of a Causal Graphical Model. . . . . . . . . . . . . . . . . . 3
1.2 Different causal relationships within a DAG . . . . . . . . . . . . . . . . 4

2.1 A set of DAGs that forms a MEC and its correponding CPDAG. . . . . . 15
3.1 The construction of a MAG M from a DAG D and the canonical DAG

D(M) associated with the MAGM . . . . . . . . . . . . . . . . . . . . 29
3.2 The unfold of a PAG P . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 The LV-IDA+ framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Adjustment Sets in MAGs . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Case 1: Well-represented DAGs to MAGs transformations by canonical

DAGs for the LV-IDA+ algorithm. . . . . . . . . . . . . . . . . . . . . . 52
5.4 Case 2: Well-represented DAGs to MAGs transformations by canonical

DAGs for the LV-IDA+ algorithm. . . . . . . . . . . . . . . . . . . . . . 53
5.5 Anti-canonical DAGs and total anti-canonical DAGs . . . . . . . . . . . 54
6.1 The data generation process. . . . . . . . . . . . . . . . . . . . . . . . . 60

List of Tables

6.1 Performance comparisons between LV-IDA+ and LV-IDA . . . . . . . . . 61

ix



List of Algorithms

Algorithm 4.1 IDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Algorithm 4.2 LV-IDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Algorithm 4.3 ZML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Algorithm 5.4 LV-IDA+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Algorithm 5.5 LV-IDA+ Multiset version . . . . . . . . . . . . . . . . . . . . 50



CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The notion of causality has been studied extensively, in science and philosophy, for many
centuries. However, in this research, we focus solely on the probabilistic context of causal
inference, where data is used to inform decisions about actions. In particular, the problem
of causal inference in which we are interested is the one that concerns about the analysis
of observational data on the variables of a system, to infer and quantify the causal relation-
ships between the variables in the causal system. Though there are different formalism for
study this statistical causal inference problem, a framework based on the so-called Causal
Graphical Models is used here (see [Pea09; SGS00]). The formalism of Causal Graphical
Models is based on Probabilistic Graphical Models (see [KF09; Suc15]) but extended for
causal reasoning.

One of the main differences between a probabilistic model and a causal model is the
special capacity of the latter to intervene in the system being modeled. Intervening can
be understood as actively doing something to the system, instead of passively observing
it. In this sense, a causal model is interested in measuring how much the manipulation
of a certain set of variables X affects another set of variables Y in the system. As well
as representing these types of relationships in a compact way when they are present in
the system of study. Under the framework of Causal Graphical Models, the measure of
the effect on a set of variable on another after intervening other in a system is called the
total causal effect, and the representation of this type of relationship is employing different
types of graphs: Directed Acyclical Graph (DAGs), Maximal Ancestral Graphs (MAGs),
for example, as will be shown later.

The causal effect between a pair of variables (X,Y) it is a measure of how much the
variable Y is modified when manipulating the variable X. The prevailing mean for esti-
mating such effects is using randomized controlled experiments, in which the treatment
variable (the cause) is randomized while the outcome variable (the effect) is passively ob-
served. Fisher defines randomized controlled experiments as the procedure to physically
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CHAPTER 1. INTRODUCTION

manipulate reality such that an outcome variable can be evaluated under different conditions
([Fis74]). This method is indeed one of the most pervasive techniques used throughout the
sciences, and it is often deemed the gold standard for causal inference. For instance, the
process of drug’s approval is conducted following Fisher’s method, for example, to estimate
the effect of a drug (X) on a person (Y).

Nevertheless, experimental data are not always available given that randomized con-
trolled experiments can be unethical, infeasible, time consuming, or expensive. On the
other hand, observational data, i.e., data associated with processes that cannot be repro-
duced and are therefore not appropriate for conducting controlled experiments, are often
abundant. In this dissertation, we consider the problem of estimating the causal effects
between pairs of variables given only observational data and contribute to the state of the
art methods to solve this problem. Causal effect estimation is notoriously hard to calculate
from this kind of data, but recently there has been lot of interest in this problem (see for
instance [MOS18; Per+18; ZLT19; MS17; MKB09; Maa+10] and [JZB19]). Most works
consider the assumption of causal sufficiency. This assumption stipulates that no variables
which are common direct causes of at least two measured variables are unmeasured. In this
research we relax this assumption, which is often not realistic in applied contexts. Since it
assumes that all possible causes interacting in a causal system are known and measurable.

1.1 Causal Graphical Models
In general, the Causal Graphical Models (CGMs) are described as a pair (G,ΦG) where G
is a directed graph where the set of vertices represents a set V = {X1, . . . , Xp} of jointly
distributed random variables, named the causal structure of the CGM (see Figure 1.1 (b))
and ΦG is the set of parameters of the model. The set of parameters is given as a set of
functional relationships among the variables which are known as Structural Equations (SE)
(see Figure 1.1 (a)). That is, in the parameters set ΦG a function Xi = fi(pa(Xi),Ui) is
assigned to each Xi ∈ V and a probability distribution P(Ui) to each Ui, where pa(Xi) are
the parents of Xi in G and where Ui is a random disturbance (the CGMs will be explained in
more detail later in Chapter 2). In this research, we focus exclusively on a linear Gaussian
parameterization of the causal structure G, that is, the set of parameters θG are linear SE
with Gaussian errors (see Chapter 2 Section 2.2 for details).

The most widely used graphs as causal structure are directed acyclic graphs (DAGs).
Directed acyclic graphs are a great tool in statistical modelling in virtue of their probabilis-
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CHAPTER 1. INTRODUCTION

Figure 1.1 An example of a CGM. (a) The causal directed graph G of the CGM. (b)
The set ΦG of parameters of the model given as a linear Gaussian SE.

tic semantics: a DAG over a set of random variables encodes a set of conditional indepen-
dence constraints on the joint probability distribution by its local Markov property. The
local Markov property specifies that every variable in the DAG is independent of its non-
descendants conditional on its parents. These local conditional independence constraints
imply others that are called global conditional independence, which can be read in the DAG
by a graphical criterion known as d-separation, which will be discussed in the following
chapters.

More importantly for our purpose, DAGs have a natural causal semantics: vertices rep-
resent variables, and arrows represent direct causal relationship between pairs of variables.
By direct causal relationship we meant that there is no variable that mediates the relation-
ship, or intuitively, that there exists a manipulated change in the variable cause that will be
followed by a change in the variable effect, while holding all other variables fixed (see 1.2).

Even though most of the work in causal modeling with CGMs assumes causal suffi-
ciency, i.e., it is assumed that no variables which are common direct causes of at least two
measured variables are unmeasured. A major worry among statisticians towards inferring
causation from correlation between random variables, is that the existence of unobserved
or latent variables (variables of which we can not measure the values) that contribute to the
observed correlation pattern among observed variables (variables of which we can and do
measure the values) is very natural.

Maximum ancestral graphs (MAG) are an alternative representation for the causal struc-
ture of a CGM which allows modeling insufficient systems (see [Zha08a; RS02; Zha08b]).
This ancestral graphs that generalize DAGs can represent conditional independence infor-

3



CHAPTER 1. INTRODUCTION

Figure 1.2 Different causal relationships within a DAG. (a) The simplest relationship
between a pair of variables (X,Y), the direct causal relationship. (b) The variable Z is
a mediator in the existing causality between X and Y . (c) The variable Z is a common
cause between X and Y . (d) The variable L is an unmeasured (or latent) common cause
between X and Y .

mation and causal relationships that include unmeasured variables (also called hidden or
latent variables). Since in this work we are interested in the calculation of causal effects
considering the possibility of non-measurable common causes, we work mostly with this
type of causal structure for our modeling. We leave details of the semantics of ancestral
graphs for later chapters (see Chapter 3).

1.2 Causal Effects Computations
In the context of Causal Graphical Models three different techniques have been used to
calculate the causal effect between a pair of random variables (X,Y): Covariate Adjustment,
Inverse Probability Weighting (IPW), and Instrumental Variables. In all these methods, the
causal structure plays an important role, because it tells us which variables can be used
for covariate adjustment, which variables can be used as instruments variables, and which
weights should be used in inverse probability weighting.

In this dissertation, we deal with the causal effect computation between pairs of vari-
ables in a system using the general approach of the covariate adjustment method in the
context of causal graphical models. This method can be divided in three parts: (i) First,
a causal structure represented by a graph is estimated, where the vertices are the variables
in the system and the edges indicate direct causal relationships between them. (ii) Then,
the structure of the causal graph is used to find a set of variables, called the adjustment set,
which is a sufficient set, along with the treatment variable, to compute the needed inter-
vention. (iii) Lastly, using an adjustment set, the post-intervention distribution required to

4
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estimate total causal effect can be calculated (see Chapter 2, Section 2.3 and Chapter 4 for
details).

An adjustments set can be seen as the set of variables that influence the flow of causal-
ity over the causal structure among the variables of interest and these sets are regularly not
unique for a pair of variables sets, but may be several. For the case of a DAG causal struc-
ture, the set pa(X) of the parent of the variable X always satisfies the backdoor criteria
([MC15]), i.e, is a adjustment set, and may be use for the causal effect computation by co-
variate adjustment. Besides, it always exists an adjustment set for DAG causal model. The
search for adjustment sets when the causal structure is given by a MAG is more sophisti-
cated. Moreover, it may not exist one for some pairs of variables (see [ZLT19; Per+18;
MC15; JZB19]). This peculiarity about the insufficient causal systems represented by
MAGs is a central motivation for the contribution to the state of the art in this research,
so we will inquire into this in Chapters 4 and 5.

Our contribution deals with the second and third parts of the covariant adjustment
method. Concerning the first part, we consider that the causal structure is estimated by
a constraint-based algorithm. These algorithms consider conditional dependencies on the
observational distribution, to infer the causal directed acyclic graph (DAG) that generated
the data. Unfortunately, multiple DAGs can encode the same set of conditional indepen-
dence relationships so these methods can exclusively find an equivalence class, called the
Markov Equivalence Class (MEC), of the underlying causal structure given a set of obser-
vational data (see [GZS19]).

If the assumption of causal sufficiency is relaxed constraint-based algorithms, such as
the Fast Causal Inference algorithm (FCI), will estimate a Partial Ancestral Graph (PAG),
which encodes a MEC of MAGs (see [Zha08b; OSR16]).

Regarding the search for adjustment sets, in [MC15; Per+18; JZB19] and [ZLT19]
are defined graphical criterion over DAGs and MAGs for finding sets of variables that
can be used in order to estimate the causal effect using observational data by covariate
adjustment. In particular, in [Per+18] and [ZLT19], sound and complete algorithms are
shown for constructing sets that satisfy their criterion for MAGs. These results play a
fundamental role for the causal effects estimations in the algorithm we propose.

Since by mean of a constraint-based algorithm it is not possible to specify a single
causal structure G but a summary structure P that represents the MEC to which G belongs.
It is possible to unfold P to list all the structures represented by P and calculate the causal

5
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effect among a variables pair (X,Y) in each of the causal structures in P, performing the
second and third part of the covariante adjustment method.

Under this framework, we can bound the real causal effect between a pair of variables
(X,Y) as the minimum and maximum of the effects calculated in each of the models in P.
This framework to bound causal effects in causal sufficient system, i.e., considering that
G is given as a DAG and P as a Completed Partially Directed Acyclic Graph, was pro-
posed in [MKB09] as the IDA (“Intervention when the DAG is Absent”) algorithm. The
IDA algorithm was extended for insufficient system in [MS17], where the LV-IDA (Latent
Variables IDA) algorithm was proposed. This algorithm works with MAGs as the underly-
ing causal structures G and PAGs as their summary structure P, allowing the possibility of
latent confounders (equivalent to unmeasured common causes) in the modeling.

1.3 Problem Statement
The fundamental question that we focus to answer is this dissertation is the following.

Is there any plausible approximation for the value of the causal effect between a pair of
variables (X,Y) when it is not possible to find an adjustments set in an insufficient causal
system V = {X1, . . . Xp} modeled with a Maximal Ancestral Graph?

1.3.1 Motivation

In the covariate adjustment method for causal graphical models, an adjustment set repre-
sents a subset of variables on which the original probability distribution (before the inter-
vention) can be marginalized to identify the post-intervention probability distribution.

We refer to the original probability distribution also as the pre-intervention distribution.
It is this distribution the one that represents the purely observational data-set. On the other
hand, the post-intervention distribution is the one representing the data after performing an
intervention on some of the variables in the system, as its name indicates.

Identifying the post-intervention probability distribution means finding an expression
for its formulation in terms of conditional probabilities between the system variables. Thus,
the post-intervention distribution can be computed through marginalization and condition-
ing operations over the pre-intervention distribution, i.e., using purely observational data.
To refer to the post-intervention distribution for a pair of variables (X,Y) in a system, i.e.,
the marginal distribution of Y after the intervention of variable X, we use the notation
P(Y | do(X)). With the identification of P(Y | do(X)) for the pair of variables (X,Y), it

6
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is possible estimation of the causal effect of X on Y , i.e., to measure the variation of the
variable Y under the manipulation on the variable X.

Causal systems are modeled using MAGs when the assumption of causal sufficiency
is relaxed. On this type of models it is not always possible to find an adjustment set for
some pairs of variables (X,Y). Therefore, it is not possible to identify the post-intervention
distribution between some pairs of variables (X,Y). In principle, this does not allow the
calculation of the causal effect between some pairs of variables (X,Y) in the system by
mean of the covariate adjustment method.

1.3.2 Research Questions

The following questions guide this research work:

1. Given that the causal effect for any pair of variables (X,Y) is always identifiable on
a causal DAG, and knowing that a causal MAG is very general model that represents
an infinity of possible causal DAGs with different number of no measured variables:
Is there a representative candidate DAG∗ on the set of DAGs encoded by a MAG,
such that the estimation of the causal effect by covariate adjustment over the DAG∗

is a good approximation for the cases where the causal effect is not identifiable in the
MAG?

2. Considering a representative directed acyclic graph DAG∗, like the one mentioned
in the previous question, this will be a DAG with latent variables for which we will
not have data, nor will know to what extent this latent variables interact with the
observed variables of the system. In this sense, the following question arises: How
could a complete parameterization for this DAG∗ with latent variables be obtained?

3. As we can only get a MEC when trying to learn the causal MAG from observational
data using a constraint-based algorithm, i.e., the PAG that represents the MEC of the
MAG. Can we use this representative DAG∗ to compute at least bounds on the causal
effects given only such PAG?

4. How can we evaluate the accuracy of such bounds on causal effects given solely
a PAG that represents the MAG of the underlying causal MAG and given that for
some MAGs in a PAG, part of the causal effects are not identifiable by covariate
adjustment?

7
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1.3.3 Justification

There is substantial research on finding adjustment sets in the causal inference community
(see for example [MC15; Per+18; ZLT19; JZB19]). All these recent research works have
focused on characterizing under which circumstances there are adjustment sets on MAGs
and other graphs, establishing different graphical criteria. Furthermore, the most recent
ones have shown that their criteria are sound and complete (see [Per+18; ZLT19; JZB19]).

On the other hand, recently Malinsky and Spirtes (see [MS17]) proposed a way to
estimate upper and lower bounds on causal effect over pairs of variables in insufficient
systems. Their LV-IDA algorithm receives as input, in addition to the observational data or
the set of dependencies between them, a PAG that could have been learned by a constraint-
based causal discovery method. Its method returns missing values for the causal effect of
some pair of variables when it was not identifiable in some or all of the MAGs of the input
PAG. This implies that the computed bounds of the causal effects by their algorithm are
not trustworthy when these missing values values (NA values) are returned on some of the
MAG in the PAG. Moreover, when it is the case for all MAGs in the PAG and not just some,
their algorithm cannot return the bounds on causal effects.

As far as we know, no one has presented any related research work on how to give
an approximation of the causal effect for cases where we cannot find adjustment sets for
the pair of variables in question. All works are limited to answering that it is not possible
to identify the causal effect directly for such cases. In this sense, it seems important to
propose solutions to the question of how such a causal effect can be approximated when it
cannot be calculated directly, i.e., when it is not possible to identify the post-intervention
distribution P(Y | do(X)) for some pairs of variables (X,Y) over a MAG. In principle, this
could improve the results in the work of Malinsky and Spirtes ([MS17]) because these
approximations would help to get better bound on causal effects given a PAG.

1.3.4 Hypothesis

In consequence of the research questions we establish the general hypothesis of this re-
search as: Estimating the causal effect for a pair (X,Y) by covariant adjustment on the
canonical DAG D∗ associated with a MAG may be a good approximation for cases where
the causal effect over (X,Y) is not identifiable on a MAG. To obtain a complete parameteri-
zation of this canonical DAGD∗ with latent variables, we can use expectation-maximization
techniques.

8



CHAPTER 1. INTRODUCTION

1.3.5 Objectives

The following objectives are oriented to afford answers to the research questions presented
before for confirming or refuting the hypothesis.

The general objective of this research is to develop and validate a way to approximate
the causal effect between a pair of variables when it cannot be directly identified in a MAG
to estimate bounds on causal effects in a PAG. We have the following specific objectives:

1. To implement a way to compute a canonical DAG from a MAG and obtain a com-
plete parameterization of it using expectation-maximization techniques to be able to
estimate causal effects between pairs of variables in this canonical DAG.

2. To extend the LV-IDA algorithm ([MS17]) to estimate bounds on causal effects given
a PAG by calculating the causal effects over the canonical DAGs associated with the
MAGs in the PAG, as approximations for cases when they can not be calculated
directly on the MAGs.

3. To present a data generation process in which a random PAG is first constructed, then
a MAG within the MEC represented by this PAG is random selected, and finally the
canonical DAG associated with this MAG is computed to generate the data according
to this DAG.

4. To evaluate our proposal to approximate the causal effects for cases when they can
not be calculated directly on the MAGs by comparing the quality of the estimated
bounds on causal effects with our extension to the LV-IDA algorithm that implements
our hypothesis, with the original LV-IDA algorithm.

1.4 Research Contribution
In this dissertation, we propose an algorithm based on the IDA and LV-IDA algorithms to
calculate the bounds of the causal effects between any pair of variables (X,Y) in a insuf-
ficient system, i.e., considering non-measured direct causes. As in IDA and LV-IDA, we
consider the case that the system V = {X1, . . . , Xp} is jointly Gaussian, and as in LV-IDA,
we use MAGs and PAGs, to represent the causal structure and the MEC, respectively, of
the system.

9



CHAPTER 1. INTRODUCTION

The main difference of the LV-IDA algorithm with respect to the proposed algorithm
LV-IDA+, is that LV-IDA+ always guarantees the calculation of the causal effect between
any pair of variables in the system. Whereas LV-IDA cannot always calculate this effect
for some pairs of variables and then occasionally returns missing values as output. This is
due to the fact that in these cases there is no adjustment set for the pair of variables (X,Y)
in some, and occasionally all, MAGs in the PAG. Our main contribution proposes a way to
approximate the causal effect when these degenerate cases are presented.

The LV-IDA+ algorithm uses the adjustment sets of the canonical Directed Acyclic
Graphs (DAGs) associated with the MAGs in the PAG to approximate the causal effects in
these unresolved cases. To our knowledge, no other way has been proposed to give at least
an approximate answer instead of an inconclusive one to calculate the causal effect for such
cases, and the proposed approximation closes this gap.

In the experimental evaluation that was carried out over synthetic canonical DAGs, a
higher accuracy is observed in the estimation of the bounds on causal effects using this
approximation approach. With the bonus that instead of having missing values for the
mentioned especial cases we have at least an approximation of the bounds on causal effects
for every pair of variables in the system.

1.5 Structure of the Dissertation
This dissertation has been organized in three parts and seven chapters. In the first part, the
theoretical bases on which this work is based are set out. This part, which we called Back-
ground, is composed of Chapters 2 and 3. In chapter two, the foundations on the Causal
Bayesian Networks are exposed. Much of what is presented is for the particular case when
these have a linear Gaussian parameterization. In Chapter 3 the necessary definitions for
the Ancestral Graphs Markov Models are presented, which are a type of graphs special-
ized for modeling causal structures over insufficient causal systems. In Related Work,
the second part of this document, which consists only of Chapter 4, the ideas of the IDA
framework and its extension to insufficient systems, the LV-IDA algorithm, are presented.
In the third and last part of this document, which we named Contribution to the Field, we
present in Chapter 5 the LV-IDA+ algorithm, in Chapter 6 the experimental evaluation of
this algorithm, and in Chapter 7 we show the conclusions of the work.
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Part I

Background

Chapter 2

Causal Bayesian Networks

In this chapter we introduce the fundamental concepts about Causal Bayesian Networks
(CBNs) when the causal structure is given by a directed acyclic graph. In particular, we de-
veloped the theory regarding the case where the CBNs are parameterized with conditional
linear Gaussian distributions, and show how interventions are calculated for this kind of
CBNs. At the end of the chapter we talk about the use of Expectation Maximization tech-
niques for learning the parameters of these models when hidden variables are present.

2.1 Causal Bayesian Nets Basics

Throughout this dissertation we denote sets in bold (for exampleX), graphs in calligraphic
font (for example G) and vertices in a graph or variables in uppercase letters (for example
X).

11



CHAPTER 2. CAUSAL BAYESIAN NETWORKS

2.1.1 Directed Acyclic Graphs
. A graph G is an ordered pair of two sets (V ,E), where V is a set of objects called
vertices and E a set of two elements subsets {Vi,V j} of V , called edges. If the graph is
directed, i.e., a directed graph, then the set of edges E is a set of ordered pairs of distinct
vertices (Vi,V j). Two vertices are adjacent in a graph G = (V ,E) if there is an edge
associating them, i.e., for vertices Vi,V j ∈ V , {Vi,Vi} ∈ E denoted as Vi − V j for an
undirected graph, and (Vi,Vi) ∈ E denoted as Vi → V j for a directed graph. In this work
we consider simple directed graphs, meaning that there is at most one edge between any
pair of vertices, for which we refer as directed graphs for brevity. The undirected graph
resulting from substituting the directed edges for undirected ones in a directed graph D
is called the skeleton of D. Within a directed graph D, a walk is a sequence of vertices
(V1, . . . ,Vk), with initial vertex V1 and terminal vertex Vk, such that Vi and Vi+1 are adjacent
for all i with i = 1, . . . , k − 1. A walk in which no vertex is repeated is a (directed) path. A
walk in which only the initial and terminal vertices are the same is a (directed) cycle.

Definition 2.1.1. A directed graph D in which there are no directed cycles is called a
directed acyclic graph (DAG).

Definition 2.1.2. In a DAGD with X,Y ∈ V ,

If

 X → Y

X ← Y

 then X is a

 parent
child

 of Y and

 X ∈ pa(Y)

X ∈ ch(Y)


Definition 2.1.3. In a DAG D with X,Y ∈ V , a vertex X is said to be an ancestor of a
vertex Y , denoted as X ∈ an(Y), if there is a directed path X → · · · → Y from X to Y .
Symmetrically, a vertex X is said to be a descendant of a vertex Y , denoted as X ∈ de(Y),
if there is a directed path Y → · · · → X from Y to X.

A vertex X on a path in a DAG is said to be a collider if two directed edges meet at X

(i.e.,→ X ←). On the other hand, a vertex X is said to be a common cause if two directed
edges diverge at X (i.e.,← X →) on a path in a DAG.

2.1.2 Bayesian Networks
. A probabilistic graphical model (PGM) is a compact representation of a joint proba-
bility distribution, from which we can obtain marginal and conditional probabilities. There
are two major tasks when using and exploiting PGMs: learning and inference. Learning

12
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involves estimating the structure G and parameters φ of the model given an observational
dataset over a set of variables V . Inference deals with answering probabilistic queries by
obtaining the conditional or marginal probability distribution of a subset of variables in
V . Bayesian Networks are a especial type of PGMs in which their structure is formed by
DAGs (see [Suc15]), formally:

Definition 2.1.4. A PGM over a set of variables V = {X1, . . . , Xp} is a pair (G,φ), where
G is a graph that represents the structure of the model, and φ = { f (y)}, with Y ⊂ V , is a set
of local functions that defines the parameters of the model, such that, the joint probability
is obtained by the product of the local functions:

P(X1, . . . , Xp) =

p∏
i=1

f (y)

Definition 2.1.5. A Bayesian Network (BN) over a set of variables V = {X1, . . . , Xp} is
a PGM (G,φ) where G is a DAG D and φ is given as a set of conditional probability
distributions (CPDs) of the form P(xi | pa(xi)), i.e., the joint distribution for V can be
expressed as the product

P(X1, . . . , Xp) =

p∏
i=1

P(xi | pa(xi))

.

In this case, we say that the distribution P(X1, . . . , Xp) is factored according to the DAG
D. So the structure for a Bayesian Network is a DAG whose vertices represents random
variables {X1, . . . , Xp} and encodes the set of conditional independencies

(
Xi ⊥ nde(Xi) |

pa(Xi)
)
, for all Xi with i = 1 . . . p, where nde(Xi) denote the set of non descendants of Xi.

The expression
(
Xi ⊥ nde(Xi) | pa(Xi)

)
is read as: Xi is conditional independent of the

variables in nde(Xi) given the set of variables in pa(Xi). The conditional independencies
in this set are called local independencies and denoted by Il(D) (see [KF09]). All the
conditional independencies that hold for a structure given as a DAG, including the local
independencies, can be described in term of the d-separation graphical criteria, defined as
follows.

Definition 2.1.6. Let X, Y be two vertices and W a set of vertices with X,Y < W in a
DAG D. The vertices X and Y are d-separated given W in D if and only if, there exists
no undirected path π between X and Y in the skeleton ofD, such that:

13
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i Every collider on π has a descendent in W and,

ii no other vertex on π is inW .

Definition 2.1.7. IfX ,Y andW are three disjoint set of vertices in a DAGDwithX ,Y ,

∅ then X and Y are d-separated given W if an only if every pair (X,Y) ∈ X × Y is d-
separated givenW (see [SGS00]).

We use Id(D) to denote the set of independencies that correspond to d-separation.

2.1.3 Markov Equivalence Classes

.

Definition 2.1.8. Let P be a joint distribution over a set of random variables {X1, . . . , Xp}

and let I(P) be the set of conditional dependencies of the form (X ,Y | Z) that hold in P.
We say that a structure G is an independence map (I-map) for a set of independencies
I(P) if I(G) ⊆ I(P).

Definition 2.1.9. A structure G is a minimal I-map for a set of independencies I(P) if it
is an I-map, and the removal of even a single edge from G made it not an I-map, and it is
a perfect I-map if we have that I(G) = I(P).

Several DAGs can encode the same conditional independencies via d-separation. Such
DAGs form a Markov Equivalence Class (MEC) which can be described uniquely by
a Completed Partially Directed Acyclic Graph (CPDAG). A CPDAG C has the same
adjacencies as any DAG in the MEC encoded by C. A directed edge X → Y in a CPDAG
C corresponds to a directed edge X → Y in every DAG in the MEC described by C. For
any non-directed edge X − Y in a CPDAG C, the Markov equivalence class described by C
contains a DAG with X → Y and a DAG with X ← Y . Thus, CPDAGs contain directed and
non-directed edges (see Figure 2.1).

2.1.4 Causal Graphical Models

.

A causal graphical model (CGM) is a pair (G,ΦG) where G is a graph that is called
the causal structure and ΦG is the set of parameters of the model. It is common to represent
the causal structure of the system, i.e. the set of random variables {X1, . . . , Xp}, by a DAGD
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Figure 2.1 A set of DAGs that forms a MEC and its correponding CPDAG. (a) The set
of four DAG in the MEG. (b) The CPDAG that represents this MEC of DAGs

where the vertices in V corresponds to the set of variables V = {X1, . . . , Xp} and each edge
in E represents a direct functional relationship among the corresponding variables, which
is expressed by saying that Xi is the direct cause of X j for an edge (Xi, X j) ∈ E. The set of
parameter Φ is given as set of functional relationship among the variables which are known
as Structural Equations (SE). This set of SEs ΦG assigns a function Xi = fi(pa(Xi), ui) to
each Xi ∈ V and a probability distribution P(ui) to each ui, where ui is a random disturbance
distributed according to P(ui), independently of all other u j with i , j (see [Pea09]). A
special case, important for this work, is when the fi functions are linear and the errors ui

are Gaussian distributed random variables.

Definition 2.1.10. A causal graphical model over a set of variables V = {X1, . . . , Xp} can
be represented as a Causal Bayesian Network (CBN), i.e., as a pair (G, f ), where the
causal structure G is given as a DAGD and f is the joint distribution for V that factorizes
as

f (V ) =

p∏
i=1

f (Xi | pa(Xi)),

where these factors act as the set of parameters ΦG of the causal model.
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Definition 2.1.11. A distribution f is consistent with a DAG D if the pair (D, f ) forms a
CBN.

CGM are capable of modeling changes in a system, expressing manipulations in the
variables by external factors regardless of their previous probability distributions. The most
common operation on CGM to represent these manipulations is the intervention operation,
which we will discuss in later sections. The causal structure of a CGM and a CBN can be
different than a DAG as we explore in the next chapters. On the other hand, in this research
we are interested in the case when the joint probability distribution f for the CBN is a joint
Gaussian probability distribution over a set of continuous random variables {X1, . . . , Xp}.
So we go deeper into this type of parameterization in the following section.

2.2 Gaussian Directed Networks
In many situations, some variables are best modeled as taking values in some continuous
space. Fortunately, nothing in our formulation of a Causal Bayesian network requires that
we restrict attention to discrete variables. Our only requirement is that the CPDs P(Xi |

pa(Xi)) represent a distribution on a continuum of values over {X1, . . . , Xp}. However, as
we show next, we can provide implicit representations for this type of CPDs. We focus on
multivariate Gaussian distributions, which make strong assumptions but are surprisingly
good approximation for many real-world distributions (see [KF09]).

2.2.1 Jointly Gaussian distributions

The most common characterization of a multivariate Gaussian distribution over a set of
p random continuous random variables X = {X1, . . . , Xp} is by an p-dimensional mean
vector µ, and a symmetric p × p covariance matrix Σ = (σi j). This parameterization of
the multivariate Gaussian distribution is call the covariance form, in which the multivariate
Gaussian density function is defined as:

P(x) =
1

(2π)p/2|Σ|1/2
exp

[
−

1
2

(x − µ)T Σ−1(x − µ)
]
. (2.1)

The expression (2π)p/2|Σ|1/2 acts as a normalization constant, ensuring that the density
integrates to 1, where |Σ| is the determinant of the covariance matrix Σ. The matrix Σ most
be positive definite, i.e., for any x ∈ Rp such that x , 0, we have that xT Σx > 0. Positive
definite matrices are non-singular, and hence have determinant different from zero.
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2.2.2 Marginalization and Conditioning

The operation of marginalization is it is easy to perform in the covariance form. If we
have a joint normal distribution over {X ,Y }, where X ∈ Rp and Y ∈ Rq. The mean and
covariance matrix of the Gaussian joint distribution can decompose as:

P(X ,Y ) = N

( µX

µY

 ;

ΣXX ΣXY

ΣYX ΣYY

 ), (2.2)

where µX ∈ R
p and µY ∈ R

q, ΣXX, ΣXY, ΣYX, and ΣYY, are matrices of sizes n × n,
n ×m, m × n and m ×m, respectably. Then the marginal distribution over Y is given as the
normal distribution

P(Y ) = N(µy; ΣYY). (2.3)

The other main operation that we wish to perform in joint Gaussian distribution over
the set of variables X is conditioning the distribution given some evidence, i.e. on the
observation Z = z, with Z ⊂ X . For the case of a joint normal distribution over X the
conditional P(X | Z = z) is given as the normal distribution

P(X | Z = z) =N(µX|Z; ΣX|Z), where

µX|Z =µX + ΣXZΣ−1
ZZ(z − µZ) and

ΣX|Z =ΣXX −ΣXZΣ−1
ZZΣZX

(2.4)

An alternative parameterization is the so called information form, where a Gaussian
distribution is defined in terms of its inverse covariance matrix Λ = Σ−1, called informa-
tion matrix. Sometimes is useful and less computationally expensive to handled condi-
tional operations in the information form in which µX|Z and ΣX|Z are expressed as follows:

µX|Z =µX −Λ−1
XXΛXZ(z − µZ)

ΣX|Z =Λ−1
XX

(2.5)
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2.2.3 Independencies in Multivariate Gaussians
For multivariate Gaussians, independence is easy to determine directly from the parame-
ters of the distribution. In concrete, if X = {X1, . . . , Xp} have a joint normal distribution
N(µ; Σ). Then Xi and X j are independent if and only if σi, j = 0. On the other hand, the
independence structure in the distribution is apparently not in the covariance matrix, but in
the information matrix, as we state next.

Proposition 2.2.1. If P(X1, . . . , Xp) ∼ N(µ; Σ), and Λ = (λi j) = Σ−1, the information
matrix. Then λi j = 0 if and only if P |= (Xi ⊥ X j|X − {Xi, X j})

2.2.4 Linear Gaussian CPDs
Definition 2.2.1. Let Y be a continuous variable with continuous parents pa(Y) =

{X1, . . . Xq}. We say that Y has a linear Gaussian CPD if there are parameters β0, β1, . . . , βq

and σ2 such that

P(Y | x1, . . . , xq) =N(β0 + β1x1 + . . . ,+βqxq;σ2), equivalently

P(Y | pa(y)) =N(β0 + βTpa(y);σ2), in vector notation
(2.6)

This formulation can be interpreted as Y being a function of the variables X1, . . . Xq with
the addition of a Gaussian noise ε with mean 0 and variance σ2. This is,

Y = β0 + β1x1 + . . . ,+βqxq + ε

,
where ε is a Gaussian random variable with mean 0 and variance ε2, representing the

noise in the system. Note also that this is identical to a parameterization with linear struc-
tural equation systems of a CGM. Using the next proposition and induction, it follows that
a Gaussian directed network defines a joint Gaussian distribution.

Proposition 2.2.2. If Y has a linear Gaussian CPD P(Y | pa(y)) = N(β0 + βTpa(y));σ2)
with parents pa(Y) = {X1, . . . , Xq}, and X1, . . . , Xq are jointly Gaussian with distribution
N(µ; Σ). Then the distribution of Y is a normal distribution P(Y) = N(µY ;σ2

Y) where:

µY =β0 + βTµ

σ2
Y =σ2 + βT Σβ,
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and the joint distribution over {X ,Y} is a normal distribution where:

Cov(Xi,Y) =

q∑
j=1

β jσi j

From proposition 2.2.2, follows that if a BN has linear Gaussian CPDs then it defines
a joint distribution that is jointly Gaussian. The converse of proposition 2.2.2 also holds,
i.e., the result of conditioning is a normal distribution, where there is a linear relation on
the conditioning variables. Using this, we have the following result.

Theorem 2.2.1. Let X = {X1, . . . Xp} be a set of variables and let P be a joint Gaussian
distribution overX . We can always construct a structure DAGD and a Gaussian Bayesian
Network (GBN) overD such that:

i pa(Xi) ⊆ {X1, . . . Xi−1};

ii The CPD of Xi is a linear Gaussian CPD of its parents.

iii D is an I-map for P.

As for the case of discrete networks, the minimal I-map is not unique: different choices
of orderings over the variables will lead to different network structures. From 2.2.1 theorem
we have stated an equivalence between joint Gaussian distributions and Directed Gaussian
Networks (DGN) as the Gaussian Bayesian Networks are also called. Even though we
already mention the parametrization for DGNs as a system of linear structural equation in
this section, in the next section we complete the theory and we reason about interventions
over DGNs for use it as causal Gaussian Bayesian networks.

2.3 Interventions on DGNs
Given a CBN, it is possible to derive post-intervention densities. In particular, we are
interested in interventions that set X to x uniformly in the population, which are denoted
using the do-calculus as do(X = x) or shorthand do(x), with X ⊂ V (see [Pea09]).
For this kind of interventions the post-intervention densities are given by the so called
truncated factorization formula:

f (v | do(x)) =


∏
{i|Xi∈V \X} f (xi | pa(xi)) if v is consistent with x,

0 otherwise,
(2.7)
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where v consistent with x means that v and x assign the same values to the variables
in V ∩X .

Theorem 2.3.1. Sea pa(X) the set of parents (or direct causes) of variable X and let Y
be any set of variables disjoint to {X ∪ pa(X)}. The causal effect of the intervention
f (y | do(x)) is given by

f (y | do(x)) =

∫
pa(X)

f (y | x,pa(x)) f (pa(x)), (2.8)

where f (y | x,pa(x)) and f (pa(x)) are pre-intervention densities.

The causal effect f (y | do(x)) is said to be identifiable if it can be calculated using only
pre-intervention distributions, as in Equation 2.8.

Theorem 2.3.2. Given a CBN, in which a subset V of variables are measured, the causal
effect P(y | do(x)) is identifiable whenever {X ∪Y ∪pa(x)} ⊆ V , that is whenever X,Y , and
all parents of variables in X are measured. The expression for computing f (y | do(x)) is
then obtained by adjusting for pa(x), as in Equation 2.8.

Corollary 2.3.1. Given a CBN, in which all variables are measured, the causal effect P(y |
do(x)) is identifiable for every two subsets of variables X and Y and is obtained from the
truncated factorization (see Equation 2.7).

The previous corollary guarantees that we can always calculate the causal effect be-
tween any pairs of variables when all the variables in the system are measured. The proofs
of Theorems 2.3.1 and 2.3.2 can be understood by consulting Chapter 3 in [Pea09]. The
following definition implies that it is possible adjusting for different sets of variables, as
will be seen in later chapters, and not just for the set of parents, as in Theorem 2.3.2.

Definition 2.3.1. LetD be a DAG, and letX ,Y and Z be pairwise disjoint subsets of the
set of variables V = {X1, . . . , Xp}, with X , ∅ and Y , ∅, where X and Y represent the
manipulated and outcome variables, respectively. The set of variables Z is an adjustment
set relative to (X ,Y ) inD if for any density f consistent with D we have that:

f (y | do(x)) =

 f (y | x), if Z = ∅∫
Z

f (y | xz) f (z)dz, otherwise.
(2.9)
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Observe that adjustment sets allow post-intervention densities involving the do-operator
to be identified, i.e., expressed only as specific functions of conditional densities which can
be estimated from observational data, so the search for adjustment sets is fundamental for
the computation of causal effects. Note that Equation 2.8 is the particular case of Equation
2.9 whenZ is given by the set pa(X). The use of Equation 2.9 for computing causal effects
over a CBN is what is called the covariate adjustment method. For the particular case of
computing the covariate adjustment of pairs of single variables X and Y over multivariate
Gaussian densities, (case in which we are interested in this research) we can use the fact
that this kind of densities are fully defined by expectations, and for expressing conditional
independencies P(Y | x, z) = P(Y | z) we can use equivalently conditional expectations
E(Y | x, z) = E(Y | z). Furthermore, since conditional expectations are linear in a mul-
tivariate Gaussian distribution, the substitution of probabilities by expectations, allows to
use regression for estimate E(Y | x, z) as E(Y | x, z) = α+ βx + γTz, for some α, β ∈ R and
γ ∈ R|z|.

Definition 2.3.2. The total causal effect of X on Y for continuous random variables setting
is defined as ∂

∂x E(Y | do(x)) (see [MKB09]).

So the total causal effect of X on Y in this setting is β, that is, the coefficient of X in the
regression of Y on X and the adjustment set Z, since by the adjustment set definition, we
have that

E(Y | do(x)) =

∫
z

E(Y | x, z) f (z)dz = α + βx + γT E(Z).

2.4 Learning Causal Bayesian Networks
Learning causal Bayesian network includes two aspects: learning the structure and learning
the parameters. The input of the learning procedure is: (i) Some knowledge or constraints
about the structure D or the parameters φ of the model. (ii) A set D of data instances
{ξ[1], . . . ξ[n]}, which are independent and identically distributed (IID) samples from a dis-
tribution P.

Since we can place various constraints on the structure or on the parameters of the
model, the class of models that we are allowed to consider as possible outputs of our
learning algorithm, i.e., the hypothesis space extension, variate according to these input
constraints. The less prior knowledge we are given, the larger the hypothesis space, and
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the more possibilities we need to consider when selecting a model. We may not know the
structure, and we have to learn both parameters and structure from the data. Even worse,
we may not even know the complete set of variables over which the distribution P is de-
fined. In other words, we may only observe some subset of the variables in the domain
and possibly be unaware of others. The main contribution in this research uses parameter
learning in the presence of unobserved sets of variables.

A central concept in learning a model from data is the likelihood function that measures
the probability of the data induced by different choices of models and parameters. The
likelihood function is determined by the probabilistic model we are learning. Given a
choice of parameters, the model defined the probability of each instance. In the case of
fully observed data, we assumed that each instance in a training data set D is simply a
random sample from the model.

2.4.1 Parameter Learning
When the structure is known, parameter learning consists in estimating the CPDs from data.
If the data are complete, the learning problem reduces to a set of local learning problems,
one for each variable. That is, to learn the parameters for a Bayesian network with structure
D and parameters Φ given a data setD consisting of ξ[1], . . . , ξ[n], we use the conditional
likelihood of the variables {X1, . . . , Xp} given it parents in the structure.

Definition 2.4.1. Let ΦXi |pa(Xi) denote the subset of parameters in Φ that determines P(Xi |

pa(Xi)) with structureD of the BN as a parametric model. The conditional likelihood for
these CPDs is given as the so called local likelihood function for Xi

Li(ΦXi |pa(Xi) : D) =

n∏
j=1

P(xi[ j] | pa(xi[ j]) : ΦXi |pa(Xi)),

Then the likelihood function for a BN as a parametric model is given as:

L(Φ : D) =

p∏
i=1

Li(ΦXi |pa(Xi) : D)

This shows that the likelihood of a BN decomposes as a product of independent terms,
one for each CPD in the network.

Proposition 2.4.1. Let D be a complete data set for X1, . . . , Xp, and let D be a network
structure over these variables. Let Φ̂Xi |pa(Xi) be the parameters that maximize Li(ΦXi |pa(Xi) :
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D). Then, Φ̂ =
(
Φ̂X1 |pa(X1), . . . , Φ̂Xp |pa(Xp)

)
maximizes L(Φ : D).

In other words, we can maximize each local likelihood function independently of the
rest of the network, and then combine the solutions to get a Maximum Likelihood Esti-
mation (MLE) solution.

2.4.2 Learning with Hidden Variables
For the methodology proposed in this dissertation it is important the case where there is
a set of variables in the model for which there is no data at all. This common situation
is known as the problem of parameter estimation with hidden nodes of latent variables.
For these hidden nodes, the approach to estimate their parameters is based on the Expecta-
tion–Maximization (EM) technique (see [Suc15]). The EM algorithm takes the perspec-
tive that, when learning with missing data, we are actually trying to solve two problems
at once: learning the parameters, and hypothesizing values for the unobserved variables in
each of the data cases. Each of these tasks is fairly easy when we have the solution to the
other. It consists of two steps which are repeated iteratively: (i) In the E step, the missing
data values are estimated based on the current parameters, using probabilistic inference.
(ii) In the M step, we then treat the completed data as if it were observed and learn a new
set of parameters.

Given a dataset for variables V = {X1, . . . Xp} and a structure D for V ∪ L where L

is the set of hidden nodes L = {L1, . . . Ll}, to estimate the CPDs of the model, the EM
algorithm does the following:

1. Obtain the CPDs for all the not hidden variables based on an ML estimator.

2. Initialize the unknown parameters with random values.

3. Considering the actual parameters, estimate the values of the hidden nodes based on
the known variables via probabilistic inference.

4. Use the estimated values for the hidden nodes to complete/update the dataset.

5. Re-estimate the parameters for the hidden nodes with the updated data.

6. Repeat 3–5 until converge, i.e., no significant changes are observed in the parameters.

7. The EM algorithm optimizes the unknown parameters and gives a local maximum,
the final estimates depend on the initialization.
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2.4.3 Causal Structure Discovery

The type of datasets used in the learning of the causal structure may be: (i) Observational
data corresponding to measurements made under natural conditions of a causal system.
(ii) Experimental data correspond to measurements made under different disturbances of
the system caused by external interventions. Ideally, experimental data should be used
in the structure learning of causal BNs. Nevertheless, experimental data are not always
available or can be unethical, infeasible, time consuming, or expensive. On the other hand,
observational data, i.e., data associated with processes that cannot be reproduced are often
abundant.

There are two classes of algorithms to learn causal structures, known as causal discov-
ery algorithms (see [GZS19]). The functional based algorithms estimates the dependen-
cies and conditional independencies of each variable over independent noises, and uses
these relations to establish the direction between pairs of variables in the causal structure.
This procedure is based on the idea that the independence between the noise and cause
variable Y , holds for only one direction, such that it implies the causal asymmetry between
X and Y . It has been shown that without some assumptions this causal direction is not iden-
tifiable because for both directions one can find an independent noise term. Nevertheless,
assuming linearity and non-Gaussian noises this methods have been shown to be able to
produce unique causal directions and have received practical applications (see [Shi+06]).

The constraint-based algorithms consider conditional dependencies on the observa-
tional distribution, to infer the causal directed acyclic graph (DAG) that generated the data.
These algorithms, relies on the following assumptions:

1. Causal Markov Condition. Each variable in the causal structure is independent of
its non-descendants given its directed causes.

2. Causal Faithfulness. Each true conditional independence between variables is en-
tailed by the causal structure.

3. Causal sufficiency. Every common cause of two or more variables in a set of mea-
sured variables V = {X1, . . . Xp}, also is a measured variable in V .

4. Acyclic structure. There are no reflexive causal relations for all variables.
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The disadvantages of this approach to causal discovery is that the solution is usually
non-unique, but multiple causal structures can encode the same set of conditional indepen-
dence relationships. So these algorithms try to efficiently search for a representation of the
MEC of the causal structure that most closely entails the set of conditional independence
relations under the Causal Markov and Faithfulness Assumptions. Despite this, constraint-
based algorithms are generally applicable, i.e., can be used without restricting the type of
functional relationship that exists between the variables and for any type of distributions
(see [GZS19]).

Concluding Remarks
In this chapter, the necessary foundations on Causal Bayesian Networks were established.
The theory for calculating of post-intervention densities for Gaussian Directed Networks
and the concept of adjustment sets are of great relevance for the estimation of causal effects,
the central theme of this research. Although structure learning was discussed, greater em-
phasis was placed on parameters learning because the main contribution of this dissertation
uses the technique of expectations maximization to learn the parameters of a structure with
hidden variables.

In the next chapter we will describe Ancestral Graphs. These type of graphs are DAGs
generalizations for the modeling of insufficient causal systems, i.e., systems where the ex-
istence of unmeasured common causes are considered, a central theme in this dissertation.
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Chapter 3

Ancestral Graphs Markov Models

It is common to assume that the set of variables V is causally sufficient i.e., it is assumed
that no variables which are common direct causes of at least two measured variables are
unmeasured. Under this assumption the causal structure of the system V is represented
by a DAG D. However, the assumption of no latent confounding is seldom appropriate,
and it is desirable and even necessary in many situations to relax it. Unfortunately, the
problem of causal reasoning and discovery becomes much more difficult when we drop the
assumption, due to the fact that the causal structure may not be properly representable by
a DAG unless latent variables are explicitly invoked. Not only are DAG models with latent
variables hard to handle statistically, they make an infinite search space unless we seriously
constrain the number of latent variables or the topology of the unknown causal network.
Maximum ancestral graphs (MAG) are an alternative representation for the causal structure
of a Causal Bayesian Network which allows modeling insufficient systems. In this chapter
we introduce this type of graph and explain its semantics. Next, we introduce the necessary
concepts that allow us to use the results of the previous chapter on insufficient systems
modeled with MAG. In addition, canonical DAGs generated from a MAG are defined, the
Partical Ancestral Graphs (PAGs) that are used to represent MEC of MAG, and the causal
discovery Fast Causal Inferences algorithm is presented.

3.1 Maximal Ancestral Graphs

A directed mixed graph is a graph where there is at most one edge between any two ver-
tices and that may contain two kinds of edges: directed edges (→) and bi-directed edges
(↔). The two ends of an edge are called marks, and there are two kinds of marks: ar-
rowhead (>) and tail (−). We say an edge is into or out of a vertex if the mark of the
edge at the vertex is an arrowhead or tail, respectively. We use the following terminology
to describe the relations between vertices on a directed mixed graph G:
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If


X ↔ Y

X → Y

X ← Y

 inM then X is a


spouse
parent
child

 of Y and


X ∈ sp(Y)
X ∈ pa(Y)
X ∈ ch(Y)


In addition, we say that a vertex X is an ancestor of a vertex Y , denoted as X ∈ an(Y),

if either there is a directed path X → · · · → Y from X to Y , or X = Y . Conversely, we say
that Y is a descendant of X if X is an ancestor of Y .

Definition 3.1.1. A mixed (directed) graph is an ancestral graph if there are no directed
cycles, and whenever there is an edge X ↔ Y , then there is no directed path from X to Y ,
or from Y to X.

In an ancestral graph, a non-endpoint vertex X on a path is said to be a collider if two
arrowheads meet at X, i.e., with adjacency of the form: → X ←, ↔ X ↔, ↔ X ←.
→ X ↔. All other non-endpoint vertices on a path are noncolliders, i.e., vertices with
adjacency of the form: → X →,← X ←,← X →,↔ X →,← X ↔. A path along which
every non-endpoint is a collider is called a collider path.

Definition 3.1.2. In an ancestral graph, a path π between vertices X and Y is active or
m-connecting relative to a (possibly empty) set of vertices Z, with X,Y < Z if

(i) every noncollider on π is not a member of Z;

(ii) every collider on π is an ancestor of some member of Z.

(iii) otherwise, Z blocks π.

Example: For the ancestral graph A → B ↔ C ← D. The path π1 = (A, B,C,D) is
active relative to Z = {B,C}. The path π1 is not m-connecting relative to Z = ∅, Z = {B}

or Z = {C}, i.e., Z = ∅, Z = {B} and Z = {C} blocks π1.

Definition 3.1.3. X and Y are said to be m-separated by Z if there is no active path
between X and Y relative to Z, i.e., if Z blocks all paths between X and Y . Two disjoint
sets of variablesX and Y are m-separated byZ if every variable inX is m-separated from
every variable in Y by Z.

Definition 3.1.4. An ancestral graph G is said to be maximal if, for every pair of nonad-
jacent vertices (X,Y), there exists a set Z (X,Y < Z) such that X and Y are m-separated
conditional on Z.
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Definition 3.1.5. An inducing path π relative to a set L, between vertices X and Y in an
ancestral graph G, is a path on which every nonendpoint vertex not in L is both a collider
on π and an ancestor of at least one of the endpoints, X and Y .

Any single-edge path is trivially an inducing path relative to any set of vertices. To
simplify terminology, we will henceforth refer to inducing paths relative to the empty set
simply as inducing paths.

Definition 3.1.6. A mixed graph is called a maximal ancestral graph (MAG) if

i the graph does not contain any directed or almost directed cycles (ancestral); and

ii there is no inducing path between any two non-adjacent vertices (maximal).

Maximal ancestral graphs (MAGs) are maximal in the sense that no additional edge
may be added to the graph without changing the independence model.

3.2 MAGs as Causal Models
The system V is said to be causally sufficient if there are no variables in V which are
common direct causes of at least two measured variables that are unmeasured. If some of
the variables in the set V are unmeasured, V can be partitioned as V = O ∪ L, where
O is the set of observed (measured) variables and L is the set of latent variables (unmea-
sured). MAGs can represent conditional independence information and causal relationships
in DAGs that include unmeasured (hidden or latent) variables. A MAG represents a DAG
after all latent variables have been marginalized out, and it preserves all entailed conditional
independence relations among the measured variables (see [Zha08a]).

Proposition 3.2.1. Given any DAGD over V = O ∪ L there is a MAGM over O alone,
such that for any disjoint sets X ,Y ,Z ⊆ O, X and Y are d-separated by Z in D if and
only if they are m-separated by Z in the MAGM.

The following construction gives us such a MAG (see Figure 3.1a for an example of
this construction):

i For each pair of variables X,Y ∈ O, X and Y are adjacent inM if and only if there is
an inducing path between them relative to L inD.

ii For each pair of adjacent variables X,Y inM:

28



CHAPTER 3. ANCESTRAL GRAPHS MARKOV MODELS

(a) orient the edge as X → Y inM if X is an ancestor of Y inD;

(b) orient it as X ← Y inM if Y is an ancestor of X inD;

(c) orient it as X ↔ Y inM, otherwise.

Figure 3.1 (a) The construction of a MAG M (green) over O = {X,Y,Z,W}, from
a DAG D (blue) over the set of variables O ∪ L, with L = {L}. (b) The canonical
DAG D(M) (blue) associated with the MAG M (green), with V = {1, 2, 3, 4, 5} and
LD(M) = {λ12 = 6, λ13 = 7, λ35 = 8}.

On the other hand, if M is a MAG with vertex set V , then we define the canonical
DAGD(M) associated withM as follows (see [RS02] and Figure 3.1b):

Definition 3.2.1. LetM be a MAG with vertex set V and letLD(M) = {λXY | X ↔ Y inM}.
The canonical DAGD(M) has vertex set V ∪LD(M) and edge set defined as:

If

 X → Y

X ↔ Y

 in G then

 X → Y

X ← λXY → Y

 inD(M).

Definition 3.2.2. A probability distribution f is consistent with a DAGD if the pair (D, f )
forms a CBN and f is consistent with a MAGM if there exists a CBN (D, g) such thatM
represents D and f is the observed marginal distribution of g, i.e., the distribution without
taking into account latent variables.

Given the transformations established between DAGs and MAGs, the semantic inter-
pretation of the latter type of graphs, and this last definitions, we can use the machinery of
CBNs to calculate interventions on MAGs, such as those in the previous chapter.
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3.3 Markov Equivalences Classes of MAGs
Several MAGs can also encode the same conditional independencies via m-separation.
Such MAGs form a Markov Equivalence Class (MEC) which can be described uniquely
by a Partial Ancestral Graph (PAG).

Definition 3.3.1. Let [M] be the MEC of an arbitrary MAG M. The Partial Ancestral
Graph (PAG) for [M], P[M], is a partial mixed graph with possibly three kinds of mark:
arrowhead (>), tail (−) or a circle (◦), such that

i P[M] has the same adjacencies asM (and any member of [M]) does;

ii Every non-circle mark in P is an invariant mark in [M].

This is, a mark of arrowhead is in P[M] if and only if it is shared by all MAGs in [M];
a mark of tail is in P[M] if and only if it is shared by all MAGs in [M]; and a mark of circle
is in P[M], otherwise. In Figure 3.2 we show a PAG and the MEC of MAGs it encodes.

Figure 3.2 (a) A PAG P (orange) of five variables with three circle marks representing
the MEC [M] = {M1,M2,M3,M4,M5}. (b) The five MAGM1,M2,M3,M4,M5 ∈

[M].

3.4 The Fast Causal Inference Algorithm
Causal discovery becomes especially challenging when the possibility of unmeasured com-
mon causes exist. Using the machinery of MAGs, there is a sound and complete causal
discovery algorithm, known as the Fast Causal Inference (FCI) algorithm. The FCI
algorithm can, under the standard assumptions of causal Markov condition, causal Faith-
fulness, acyclic structure and relaxing the sufficiency assumption, discover all aspects of
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the causal structure that are uniquely determined by facts of probabilistic dependence and
independence, i.e., a MEC for the causal MAG given observational data. The following are
additional definitions needed to present the FCI algorithm.

In an ancestral graph, a path consisting of a triple of vertices (X,Y,Z) is an unshielded
triple if and only if X is adjacent to Y but not Z, and Y and Z are adjacent. This triple is
called as unshielded collider it both the edge between X and Y and the edge between Y

and Z are into Y .

Definition 3.4.1. In a MAG, a path between X and Y , π = (X, . . . ,W,V,Y). is a discrimi-
nating path for V if:

i π includes at least three edges;

ii V is a non-endpoint vertex on π, and is adjacent to Y on π; and

iii X is not adjacent to Y , and every vertex between X and V is a collider on π and is a
parent of Y .

Definition 3.4.2. In a PAG, a path p = (V0, . . . ,Vk) is said to be uncovered if for every
1 ≤ i ≤ n − 1, Vi−1 and Vi+1 are not adjacent, i.e., if every consecutive triple on the path is
unshielded.

Definition 3.4.3. In a PAG, a path p = (V0, . . . ,Vk) is said to be potentially directed from
V0 to Vn if for every 1 ≤ i ≤ n − 1, the edge between Vi and Vi+1 is not into Vi or out to of
Vi+1.

Intuitively, a potentially directed path is one that could be oriented into a directed path
by changing the circles on the path into appropriate tails or arrowheads. As we shall see,
uncovered potentially directed paths play an important role in locating invariant tails. A
special case of a potentially directed path is where every edge on the path is of the form
◦−◦; we call such a path a circle path.

We now describe the FCI algorithm according to Zhang in [Zha08b]. The algorithm
consists mainly of two stages. In the first stage, the algorithm determines the adjacencies
in the causal MAG. The inference of adjacencies is based on the fact that two variables are
adjacent in a MAG if and only if they are not m-separated by any set of other variables in
the MAG. So the basic idea is to search, for every pair of variables, a set of other variables
that renders them conditionally independent. They are not adjacent if and only if such a set
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is found. The second stage of the algorithm is to apply a set of seven orientation rules. A
meta-symbol, asterisk (∗), is used in the orientation rules as a wildcard that denotes any of
the three marks: tail, arrowhead and circle. By this we mean the rule in question applies no
matter which of the three marks actually appears in the position of ∗. It does not imply that
all three marks can appear in that position.

The FCI algorithm receives a dataset D with the possibility of unmeasured common
causes as input, and returns a PAG P representing the MEC of the MAG that we are inter-
ested in. The first stage of the FCI algorithm is the following: The algorithm first form a
complete graphU on the set of variables, in which there is an edge ◦−◦ between every pair
of variables. Later, for every pair of variables X and Y , search for a set of other variables
that render the two independent. If such as set S is found, remove the edge between X and
Y in U , and record S as sepset(X,Y). Let P be the graph resulting from the previous
step. With this graph the algorithm execute the orientation Rule Cero:

Rule 0: For each unshielded triple X,Z,Y in P, orient it as a collider X ∗→ Z ←∗ Y if and
only if Z is not in sepset(X,Y).

In the second stage the algorithm executes the following seven mark inference rules
until none of them applies:

Rule 1: If X ∗→ Y ◦−∗ Z, and X and Z are not adjacent, then orient the triple as X∗→ Y → Z.

Rule 2: If X → Y ∗→ Z or X ∗→ Y → Z, and X ∗−◦ Z , then orient X ∗−◦ Z as X ∗→ Z.

Rule 3: If X ∗→ Y ←∗ Z , X ∗−◦W ◦−∗ Z, X and Z are not adjacent, and W ∗−◦ Y , then orient
W ∗−◦ Y as W ∗→ Y .

Rule 4: If u = (W, . . . , X,Y,Z) is a discriminating path between W and Z for Y , and Y ◦−∗ Z;
then if Y ∈ sepset(W,Z), orient Y ◦−∗Z as Y → Z; otherwise orient the triple (X,Y,Z)
as X ↔ Y ↔ Z.

Rule 5: If X → Y → Z or X −◦Y → Z , and X◦→ Z , orient X◦→ Z as X → Z.

Rule 6: If X◦→ Z , and p = (X,Y,W, . . . ,Z) is an uncovered potentially directed path from X

to Z such that Z and Y are not adjacent, then orient X◦→ Z as X → Z.
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Rule 7: Suppose X◦→ Z, Y → Z ← W , π1 is an uncovered potentially directed path from
X to Y , and π2 is an uncovered potentially directed path from X to W. Let U be the
vertex adjacent to X on π1 (U could be Y), and T be the vertex adjacent to X on π2

(T could be W). If U and T are distinct, and are not adjacent, then orient X◦→ Z as
X → Z.

As we describe before, a major virtue of ancestral graphs is that for any DAG with la-
tent confounding, there is a unique MAG over the observed variables alone that represents
the conditional independence relations and causal relations entailed by the original DAG.
Instead of directly targeting the causal DAG, which for all we know might involve any
number of latent variables, a more tractable goal for causal discovery is to learn as many
features of the causal MAG as possible. Maximal ancestral graphs provide a neat represen-
tation of such causal systems without explicitly introducing unobserved variables, which
facilitates automated search over (classes of) causal structures based on correlational infor-
mation. There are several variants for the FCI algorithm such as the Greedy FCI (GFCI)
(see [OSR16]), but the FCI is the standard method to learn a Markov equivalence class in
causal insufficient systems.

Concluding Remarks
An important definition in this chapter is the one that establishes when a probability density
is consistent with a MAG, since it allows us to directly use the theory on the calculation of
interventions and the method of adjustment for covariates described in the previous chapter.

On the other hand, the transformation from DAGs to MAGs and vice versa is a recurring
theme on which the main ideas of this research are based. In particular, the construction of
the canonical DAG associated with a MAG is an operation that we will use in the proposed
algorithm for estimating causal effects that is presented in subsequent chapters. It is im-
portant to emphasize that a MAG represents an infinity of DAGs with latent variables and
the canonical DAG is just one DAG within this infinite collection, which can be built in a
simple way.

Until now, it has been assumed that the causal structure is known, either as a DAG
or a MAG, to calculate interventions by means of the covariate adjustment method. The
next chapter describes a methodology in the area of causal inference to estimate bounds on
causal effects when only the Markov equivalence class of the causal structure is known.
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Part II

Related Work

Chapter 4

Estimating Bounds on Causal Effects

In this chapter, we first discuss the intervention-calculus when the DAG is absent (IDA)
method for causal sufficiency systems and then its extension to insufficiency systems: the
Latent Variable IDA algorithms (LV-IDA). We also discuss a procedure to determine all the
MAG represented by a PAG, known as the Zhang MAG Listing or ZML algorithm.

4.1 The IDA algorithm
If we want to estimate the total causal effect of Xi ∈ V = {X1, . . . , Xp} on a response variable
Y = X j ∈ V , when only a representation of the MEC of the causal structure is known, as is
the case after a constraint-based causal structure learning methods are powered with only
observational data, Maathuis et al. ([MKB09]) proposed the “Intervention-calculus when
the DAG is Absent” (IDA) algorithm. The general idea of the IDA algorithm is as follows:
After estimating a representation of the MEC given as a Completed Partial DAG (CPDAG),
list all DAGs in the MEC and then apply covariate adjustment for each DAG, yielding
an estimated total causal effect of Xi on Y for each possible DAG. All these total causal
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effects, one for each DAG in the MEC, are collected in a multiset Θ̂i, and the minimum
and maximum value in Θ̂i are returned as bounds estimators for the true causal effect.

In other words, assuming that the MEC, given as a CPDAG, contains k different DAGs.
For each DAG Dw in this MEC, we apply intervention calculus to obtain the causal effect
θiw of Xi on Y . This can be represented as the estimation of a multiset Θi = {θiw} for
w = 1, . . . , k and i = 1, . . . , p. Recalling that a multiset is a generalization of a set where the
elements can have different multiplicities. So a set is the especial case of a multiset where
all elements in it has multiplicity equal to one. If for instance all values θiw, w = 1, . . . , k
in the multiset Θi are identical, i.e., the multiset Θi has one element of multiplicity k, we
can establish that the causal effect of Xi on Y is uniquely determined. But, even if the
multiset Θi contains distinct values, it still contains useful causal information to explore.
For example, if θiw , 0 for all w = 1, . . . , k, then Xi must have a causal effect on Y (positive
or negative). Similarly, if θiw > 0 for all w = 1, . . . , k, then Xi must have a positive causal
effect on Y . More importantly, the minimum and the maximum value in Θi is a lower and
upper bound, respectively, on the size of the causal effect of Xi on Y .

The IDA algorithm, shown in Algorithm 4.1, uses the fact that for the case of causal
structures given as DAGs, the set of parents pa(X) is always an adjustment set for the
post-intervention density f (y | do(x)), thus f (y | do(x)) is given by: (see Equation 2.9)

f (y | do(x)) =

 f (y) if Y ∈ pa(X)∫
pa(X)

f (y | x,pa(x)) f (pa(x)) dpa(x), otherwise.
(4.1)

As the IDA algorithm considers the case where V = {X1, . . . , Xp} are jointly Gaussian,
we can express the later equation using expectations:

E(Y | do(x)) =

E(Y) if Y ∈ pa(X)∫
pa(X)

E(Y | x,pa(X)) f (pa(X)) dpa(X), otherwise.
(4.2)

Moreover, Gaussianity implies that E(Y | x,pa(X)) is linear in x and pa(x) so

E(Y | x,pa(X)) = α + βx + γTpa(x), (4.3)

for some α, β ∈ R and γ ∈ R|pa(X)|. Combining this with Definition 2.3.2 it follows that
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the causal effect of Xi on Y is given by β, the regression coefficient of Xi in the regression
of Y on Xi and pa(Xi).

Algorithm 4.1 IDA
Input: A CPDAG C, conditional dependencies for X1, ..., Xp, and a pair (Xi,Y = X j)
Output: A multiset Θi of causal effects
Determine all DAGsD1, ...,Dk in the equivalence class of C
for w = 1 to k do

θiw ← β, where β is the coefficient of Xi in the regression Y = α + βxi + γTpa(xi)
end

4.2 The LV-IDA algorithm
The framework of the IDA algorithm was extended to insufficient causal systems by Ma-
linsky and Spirtes in [MS17]. They named their algorithm LV-IDA (Latent Variables IDA),
where they worked with PAGs as representations of MECs, and used the results in [MC15]
to found adjustment set in MAGs for the covariate adjustment computations.

In order to construct an adjustment set for a pair of variables (Xi,Y) in each MAG rep-
resented by the PAG, the LV-IDA algorithm, shown in Algorithm 4.2, uses the generalized
backdoor criteria given in [MC15]. This is a graphical criterion, i.e., it uses only the infor-
mation given by the causal structure graph, to select a set of variables (adjustment set) on
which the covariate adjustment method can be applied (See Chapter 2 Section 2.3). The
following definitions are for the purpose of stating this criterion.

As seen in the previous section, the IDA algorithm uses the set of parents pa(X) of
the variable X as the adjustment set. This set of parents of X always satisfies the backdoor
criterion (see [Pea09]), i.e., it can be used as an adjustment set for a DAG. In the generalized
backdoor criteria applied to MAGs, we have a similar result, but we need to use the set D-
SEP(X,Y,M), defined below, instead of the parent set. It is worth mentioning that this set
represents a different concept from the set of variables that d-separate a pair of variables
X,Y in a DAG.

Definition 4.2.1. Let X and Y be two distinct vertices in a directed mixed graph M. We
say that V ∈ D-SEP (X,Y,M) if V , X and there is a collider path between X and V inM,
such that every vertex on this path is an ancestor of X or Y inM.
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Definition 4.2.2. Given a MAGM/ PAG P, a directed edge X → Y inM/P is visible if
there is a vertex Z not adjacent to Y , such that there is an edge between Z and X that is into
X , or there is a collider path between Z and X that is into X and every non-endpoint vertex
on the path is a parent of Y . Otherwise X → Y is said to be invisible.

Let X be a vertex in G, where G represents a causal MAG, or PAG. Let adj(X,G) the
the adjacency set of X in G. Let R be a MAG represented by G, in the following sense.
If G is a MAG, we simply let R = G . If G is a PAG, we let R be a MAG in the Markov
equivalence class described by G with the same number of edges into X as G. Let RX be
the graph obtained from R by removing all directed edges out of X that are visible in P.
The set of possible descendents of X in G is denoted as pDe(X,G), where Xi is a possible
descendents of X j if there is a path from X j to Xi with no arrowhead pointing towards X j.
Note that pDe(X,G) is equal to the set of descendents de(X,G) if G is a MAG.

Theorem 4.2.1. [MC15] Let X and Y be two distinct vertices in a MAG or PAG G. If Y ∈

adj(X,RX) or D-SEP(X,Y,RX) ∩ pDe(X,G) , ∅, then f (y | do(x)) is not identifiable via
the generalized back-door criterion. Otherwise D-SEP(X,Y,RX) satisfies the generalized
back-door criterion relative to (X,Y) and G, i.e., D-SEP(X,Y,RX) is an adjustments set for
the pair (X,Y) in G.

Then the set D-SEP(Xi,Y,MXi), when the condition Y ∈ adj(Xi,MXi) or D-
SEP(Xi,Y,MXi)∩pDe(Xi,M) , ∅ is not met, is an adjustment set called a black-door set
(see [MC15]) for the pair (Xi,Y) in the MAGM.

Algorithm 4.2 LV-IDA
Input: A PDAG P, conditional dependencies for X1, ..., Xp, and a pair (Xi,Y = X j)
Output: A multiset Θi of causal effects
Determine all MAGsM1, . . . ,Mk in the equivalence class of P
for w = 1 to k do

if Y ∈ adj(Xi,Mw,Xi) or D-SEP(Xi,Y,Mw,Xi) ∩ pDe(Xi,Mw) , ∅ then
θiw ← NA

else
bds(Xi,Y)← D-SEP(Xi,Y,Mw,Xi)
θiw ← β, where β is the coefficient of Xi in the regression Y = α+βxi +γ

Tbds(Xi,Y)
end
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4.3 Determining the MAGs in a PAG
Listing all the MAGs represented by a PAG is more complicated than listing all the DAGs
represented by a CPDAG. Such procedure would need to transform circle marks on ◦→ and
◦−◦ edges into tails and arrowheads, and deciding which further orientations in the graph are
implied by these new tails and arrowheads, while preserving Markov equivalence. As some
combinations of transformations could introduce new independence relationships among
the variables.

A naive approach would be a brute force method that exhaustively tries every combi-
nation of circle mark transformations, and then checks if the resulting graph is Markov
equivalent to the starting graph. For large graphs with many circle marks, there are just too
many possible combinations of transformed marks and checking Markov equivalence for
every resultant graph would require a lot of computation time.

Malisky and Spirtes proposed a procedure to determine all the MAGs represented by
a PAG (see [MS17]). The algorithm is based on a transformational characterization of
equivalence between MAGs proposed by Jiji Zhang (see [ZS05]) so they called it the ZML
(Zhang MAG Listing) algorithm. Before this, there was no algorithm to enumerate all
MAGs in a MEC given as a PAG. The ZML algorithm is shown in Algorithm 4.3.

Definition 4.3.1. The circle component of a PAG P denoted as C(P) is the subgraph of P
consisting of the vertices on ◦−◦ edges.

Lemma 1. (see [ZS05]) Let M be an arbitrary MAG, and A → B an arbitrary directed
edge inM . LetM′ be the graph identical toM except that the edge between A and B is
A ↔ B. (In other words,M′ is the result of simply changing A → B into A ↔ B inM .)
M′ is a MAG and Markov equivalent toM if and only if:

(i) there is no directed path from A to B other than A→ B inM;

(ii) for any C → A inM , C → B is also inM ; and for any D↔ A inM , either D→ B

or D↔ B is inM ;

(iii) there is no discriminating path for A on which B is the endpoint adjacent to A inM.
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Algorithm 4.3 ZML
Input: PAG P
Output: A list of the MAGs represented by P, called [P]
LetM← P
Transform all ◦→ inM, into→
The remaining circle marks inM are on ◦−◦ edges. For each possible orientation of C(M)
as a DAG with no new v-structures, add the resulting graph to [P]

Let L be a list of circle mark location in P
foreachMk ∈ [P] do

for l = 1 to the length of L do
foreach sequence of circle marks in L of length l do

foreach circle mark location in the sequence which is a tail inMk do
(i.e., Xi → X j inM but Xi◦→ X j or Xi ◦−◦ X j in P)
Transform Xi → X j in Mk to Xi ↔ X j if the conditions in Lemma 1 are
satisfied

end
Add the resulting graph in [P] (Unless it is a duplicate)

end
end

end
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Concluding Remarks

The IDA algorithm offers a solution to the problem of how to estimate bounds on the
causal effect between pairs of variables in a system when only the Markov equivalence
class (MEC) of the causal structure of the system is known. The IDA algorithm lists all
the causal structures within the MEC and estimates the causal effect between the pair of
variables on each of these structures. It is known that the real causal structure is one within
the equivalence class, so the causal effect is bounded by the minimum and maximum value
of the estimated effects for each of the structures within the MEC. The IDA algorithm
assumes that all relevant variables in the system have been measured, i.e., that there are
no latent confounders. Malinsky and Spirtes ([MS17]) generalized the ideas of the IDA
algorithm by relaxing this assumption and proposed the LV-IDA algorithm, that we also
discussed in this chapter.

The extension of IDA algorithm to insufficient systems modeled with MAG is very im-
portant, since the assumption of causal sufficiency, i.e., the assumption of the absence of
latent direct common causes, is regularly violated in more realistic causal models. How-
ever, this refinement in the LV-IDA algorithm comes with an associated cost and with some
limitations. In the first place, the unfolding of a PAG to list all the MAGs that belong to
the MEC in the LV-IDA algorithm, is much more complicated and computationally more
expensive than the unfolding of a CPDAG to list all the DAGs in the IDA algorithm. The
LV-IDA algorithm uses the ZML algorithm (described above) to enumerate the MAGs in
the MEC represented by a PAG. Although this algorithm is considerably more efficient
than a brute force method for this enumeration, in practice is too slow even for graphs of
moderate size (e.g. more than 10 variables), which is also reported in [MS17].

A considerable limitation in the extension of the IDA algorithm for insufficient causal
systems is that unlike the case of causal sufficient systems, it is not always possible to
estimate the causal effects using the covariant adjustment method on the members of the
MEC. The reason for this is that it is not always possible to find an adjustment set for
some pairs of variables in some MAGs. This is why, the LV-IDA algorithm returns missing
values, i.e., NA values, in the causal effect estimation for some pairs of variables on some
MAGs in the PAG.

It is not a minor limitation that the LV-IDA algorithm returns these missing values.
Having at least one missing value within the multiset of causal effects estimated for a
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pair of variables in the PAG, does not allow us to ensure that we know the maximum and
minimum value of the causal effects in the MEC and so, not able to establish an accurate
bounds of the causal effect between that pair of variables. In the next chapter we describe
the LV-IDA+ algorithm, which is an extension to the LV-IDA algorithm proposed by us.
The LV-IDA+ algorithm suggests a way to approximate the estimation on the causal effects
when it is not possible to calculate them by the method of covariate adjustment directly
over the MAGs in the Markov equivalence class.
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Part III

Contribution to the Field

Chapter 5

The LV-IDA+ Framework

In this chapter we present the contribution of this dissertation: an algorithm to compute
the bounds of the causal effects between any pair of variables (X,Y) in a insufficient sys-
tem, i.e., considering non-measured direct causes. The proposed algorithm builds on the
covariate adjustment method, so it uses causal structures represented by graphs to find an
adjustment set, which is a sufficient set together with the treatment variable X, to compute
the post-intervention density and estimate total causal effect between the pair of variables
(X,Y).

Like the IDA and LV-IDA algorithms (see Chapter 4), the proposed algorithm that we
called LV-IDA+ considers that it only has access to the Markov equivalence class of the
estimable causal structure with observational data. Furthermore, it considers the case in
which the system V = {X1, . . . , Xp} is jointly Gaussian, and as in the LV-IDA algorithm,
the LV-IDA+ algorithm uses MAGs and PAGs, to represent the causal structure and the
MEC, respectively, of the system.

Whereas in the LV-IDA algorithm is contemplated that in occasions there is no adjust-

43



CHAPTER 5. THE LV-IDA+ FRAMEWORK

ment set for the pair of variables (X,Y) in some, and occasionally all, MAGs in the PAG.
The LV-IDA+ algorithm extends the LV-IDA algorithm using the adjustment sets of the
canonical DAGs associated with the MAGs in the PAG to compute the bounds on the causal
effects in these special cases. So our main contribution proposes a way to approximate the
causal effect when these degenerate cases are presented.

5.1 The LV-IDA+ Algorithm
A schematic representation of the operation of the LV-IDA+ algorithm is shown in Figure
5.1. The LV-IDA+ algorithm (shown in Algorithm 5.4) computes a matrix of estimated
causal effect intervals:

CE∗ =
(
[θ̂min, θ̂max]i j

)
p×p

where the interval [θ̂min, θ̂max] is calculated for each pair (i, j) of the p variables in the
system, i.e., i, j = 1 . . . p, and θ̂min, θ̂max are the lower, upper bounds, respectively, for the
estimated causal effect. Note that unlike the previous chapters and in particular Chapter 4,
in this section, to describe the LV-IDA+ algorithm, we will use i and j to describe the pair
of variables (i, j) on which we want to calculate the causal effect of the variable i over the
variable j. Previously we were using Xi and Y = X j to denote this pair of variables, since
the system was defined as V = {X1, . . . Xp}. However, we will make this simplification to
not overload the notation in this section for describing the matrix version of the LV-IDA+.

After listing all MAGs in the MEC encoded as a PAG by the ZML algorithm (see Al-
gorithm 4.3), the LV-IDA+ algorithm computes a matrix CEMw = (θ̂Mw

i j )p×p for each of the
k MAGs in the MEC, where each total casual effect θ̂Mw

i j is estimated using adjustment sets
found by the sound and complete algorithms in [ZLT19] and [Per+18]. These algorithms
guarantee finding adjustment sets for the variables of interest on MAGs when they exist.
However, when this is not the case, the matrices CEMw = (θ̂Mw

i j )p×p obtain NA values.

To approximate the missing values in the CEMw = (θ̂Mw
i j )p×p matrices, LV-IDA+ gen-

erates the k canonical DAGs associated with each of the k MAGs in the MEC (See Figure
5.1 (c)). Then, it learns the parameters for each of these canonical DAGs and calculate
the matrix of causal effects CEDw = (θ̂Dw

i j )(p+lw)×(p+lw) for each of them, where lw stands for
the number of latent variables in the canonical DAG Dw, for w = 1, . . . , k. It is always
possible to find an adjustment set in a DAG, i.e., calculate a value for the estimation of the
causal effect between a pair of variables using covariate adjustment (see Corollary 2.3.1).
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Data Set

Figure 5.1 The LV-IDA+ framework. (a) A PAG P (orange) learned from data. (b)
The set of MAGs (green) in the Markov equivalences class [M] encoded by P. (c)
The set of associated canonical DAGs (blue) from each of the MAGs in [M]. (d)
CEMw = (θ̂i j)

Mw
p×p and CEDw = (θ̂i j)

Dw
(p+lw)×(p+lw) are the square matrices of causal effects

estimated from the MAG Mw, and from the canonical DAG Dw, respectively, where
w = 1 . . . k, p is the number of variables and lw is the number of latent variables in
the Dw DAG. Note that the CEMw matrices may have missing values but the CEDw

matrices not. We denote by ⊕, the operation of substitute all the NA values in a CEMw

matrix by the corresponding values in the CEDw matrix. (e) CE∗ = ([θ̂min, θ̂max]i j)p×p

denote the square matrix of interval of causal effect, where the extremes in the intervals
[θ̂min, θ̂max]i j are obtained by getting the minimum θ̂min and maximum θ̂max, from the θ̂i j

estimations in the CE+
Mw

= (θ̂i j)p×p matrices.

However it is important to note that even though some of the parameters can be learned
from the original data, in the construction of the canonical DAG Dw for each MAGMw,
hidden variables are introduced for which there are no data. This issue is solved by Expec-
tation Maximization (EM) techniques to learn the parameters in Gaussians DAGs given the
structure of the model in the presence of hidden variables (see Section 2.4.2 in Chapter 2).

With the matrices CEMw and CEDw computed, the LV-IDA+ algorithm obtains a matrix
CE+

Mw
of size p × p (the same dimension as matrix CEMw) for each of the k MAGs in the

PAG by combining the matrices CEMw and CEDw . This combination of the matrices CEMw

and CEDw is such that if θ̂Mw
i j is NA in CEMw it is replaced by the value of θ̂Dw

i j in CEDw , and
the θ̂Mw

i j values of the matrix CEMw are kept in CE+
Mw

in any other case. We use the symbol
⊕ to denote this operation of combining these matrices by substituting all the NA values in
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a CEMw matrix by the corresponding values in the CEDw matrix.

Finally, the matrix of estimated causal effect intervals CE∗ = ([θ̂min, θ̂max]i j)p×p, i.e.,
the output of the LV-IDA+ algoritm, is computed by recording the minimum (θ̂min)i j and
maximum (θ̂max)i j values for each of the k MAGs in the matrices CE+

Mw
.

Algorithm 5.4 LV-IDA+
Input : A PAG P, and a set of observational data D, for p variables
Output: A matrix of interval of causal effects CE∗ =

(
[θ̂min, θ̂max]i j

)
p×p

Determine all MAGsM1, . . .Mk in the MEC [M] encoded as P
for w = 1, . . . , k do

Compute de canonical DAGDw fromMw

Learn the parameters ofDw from data D using EM for the lw hidden variables inDw

for i = 1, . . . , p do
for j = 1, . . . , p do

Compute an adjustment set ZMw
(i, j) for the pair of variables (i, j) inMw

if an adjustment set ZMw
(i, j) exists then

θ̂Mw
i j ← β, where β is the coefficient of i in the regression j = α + βi +

γT E(ZMw
(i, j) ) else θ̂Mw

i j ← NA ;
end
Compute an adjustment set ZDw

(i, j) for the pair of variables (i, j) inDw

θ̂Dw
i j ← β, where β is the coefficient of i in the regression j = α+βi+γT E(ZDw

(i, j))
end

end
CE+

Mw
← CEMw ⊕CEDw

end
return CE∗ =

(
[θ̂min, θ̂max]i j

)
p×p

Recalling that for the case in which the system V = {X1, . . . , Xp} is jointly Gaussian
E(Y | do(x)) can be calculated as the linear regression Y = α + βx + γT E(Z), were Z is an
adjustments set. So the causal effect ∂

∂x E(Y | do(x)) is given by β, the coefficient of x in the
regression of Y on x and the adjustment set z (see Section 2.3 in Chapter 2).

We denote as ZMw
(i, j) the adjustment set for the pair of variables (i, j) over the MAG

Mw and by ZDw
(i, j) the adjustment set for the pair of variables (i, j) in the DAG Dw. So the

estimated values of causal effects of the matrix CEMw = (θ̂Mw
i j )p×p and the matrix CEDw =

(θ̂Dw
i j )(p+lw)×(p+lw) are computed in the LV-IDA algorithm (see Algorithm 5.4) as:

46



CHAPTER 5. THE LV-IDA+ FRAMEWORK

θ̂Mw
i j = β, where β is the coefficient of i in the regression j = α + βi + γT E(ZMw

(i, j) )

θ̂Dw
i j = β, where β is the coefficient of i in the regression j = α + βi + γT E(ZDw

(i, j))

To finish this section, an example of the calculation of matrix CE+
Mw

using the matrices
CEMw and CEDw is shown below. Equation 5.1 shows a matrix CEMw calculated for the
MAGMw within a MEC represented by a PAG P of p = 5 variables.

CEMw =



1.00 NA NA 0.01 NA
NA 1.00 NA 0.55 NA
NA NA 1.00 0.00 NA
0.05 NA 0.01 1.00 NA
NA NA NA NA 1.00


(5.1)

Equation 5.2 shows the matrix CEDw calculated from the canonical DAG Dw, of eight
variables associated with the MAG Mw, with five variables. To estimate the causal ef-
fects of the CEDw matrix, the parameters for this canonical DAG structure are estimated
along with the data of the three aggregated latent variables. This is precisely the prob-
lem of learning parameters with hidden variables given a structure and it is solved using
expectation-maximization as seen in Chapter 2 section 2.4.2. Note that in the matrix CEDw

the causal effects between the ordered pairs of the eight variables are estimated so it is an
square eight dimensional matrix.

CEDw =



1.00 0.00 0.00 0.01 0.67 0.03 0.15 0.00
0.00 1.00 0.80 0.55 1.69 0.06 0.00 0.00
0.00 0.48 1.00 0.00 0.00 0.00 0.03 0.00
0.05 0.42 0.01 1.00 0.61 0.00 0.00 0.00
0.14 0.35 0.00 0.32 1.00 0.00 0.00 0.01
0.04 0.06 0.05 0.03 0.14 1.00 0.00 0.00
0.15 0.00 0.05 0.00 0.01 0.00 0.01 0.00
0.00 0.00 0.00 0.00 0.05 0.00 0.00 1.00



(5.2)

Equation 5.3 shows the matrix CE+
Mw

calculated from the matrices CEMw y CEDw . The
idea is to return estimates of the causal effect between all ordered pairs of the original
variables in the matrix CE+

Mw
, i.e., the matrix CE+

Mw
is of the same dimension as the matrix
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CEMw . To obtain estimates of the causal effect between all the ordered pairs of the original
variables, all the estimates achieved in the matrix CEMw are kept on the matrix CE+

Mw
.

Those estimates not achieved in the CEMw matrix, i.e., those with a NA value, are replaced
by the estimates in the respective row and column of the matrix CEDw on the matrix CE+

Mw
.

For example, the element (5, 1) (row 5 and column 1, from top to bottom and from left
to right) of the matrix CEMw is a NA value so in the matrix CE+

Mw
this value is replaced

by element (5, 1) of the matrix CEDw . On the other hand, the element (2, 4) in the matrix
CEMw is not a NA value and therefore, this value is kept in the matrix CE+

Mw
.

CE+
Mw

= CEMw ⊕CEDw =



1.00 0.00 0.00 0.01 0.67
0.00 1.00 0.80 0.55 1.69
0.00 0.48 1.00 0.00 0.00
0.05 0.42 0.01 1.00 0.61
0.14 0.35 0.00 0.32 1.00


(5.3)

5.2 Differences between LV-IDA+ and LV-IDA
The main difference between the LV-IDA algorithm with respect to the proposed LV-IDA+

algorithm is that LV-IDA+ always guarantees the calculation of the causal effect between
any pair of variables in the system. Whereas LV-IDA cannot always calculate this effect for
some pairs of variables and then occasionally returns missing values as output. A mayor
drawback of the LV-IDA algorithm is that it is not always possible to find an adjustment set
for some pairs of nodes in some MAGs to perform covariate adjustment. In such cases, the
estimated multisets of total causal effects Θ̂ contains missing values and the fundamental
idea of using the minimum and maximum value in Θ̂ to bound the true causal effect is not
longer valid. We refer to this kind of missing values as simple NAs. Moreover, in some
cases there are only missing values in Θ̂ for some pairs of variables. We call these more
problematic types of missing values, extreme NAs.

Suppose that the LV-IDA+ and LV-IDA algorithms receive as input a PAG P, which
represents a MEC made up of five MAGs: M1,M2,M3,M4,M5. Suppose LV-IDA esti-
mates the following causal effects for the pair of variables (X,Y): θM1 = NA over the MAG
M1, θM2 = 0.44 over theM2, θM3 = NA over the MAGM3, θM4 = .38 over the MAGM4 y
θM5 = .44 over the MAGM5, i.e., the estimated multiset Θ = {θM1 , θM2 , θM3 , θM4 , θM5} for
the pair (X,Y) is Θ = {NA , 0.44,NA , 0.38, 0.44} and the interval of causal effect estimated

48



CHAPTER 5. THE LV-IDA+ FRAMEWORK

by LV-IDA is [0.38, 0.44]. When at least one of the values in the multiset estimated by LV-
IDA is different from NA, LV-IDA can return an interval of causal effects for some pair of
variables. We call the NA values on the estimated multiset simple NAs. On the other hand,
suppose that for the pair of variables (X,Z), with Z , Y , LV-IDA estimates the multi-set
of causal effects Θ = {θM1 , θM2 , θM3 , θM4 , θM5}, given by Θ = {NA ,NA ,NA ,NA ,NA }.
In this case, LV-IDA does not return a causal effect interval for the pair (X,Z), but rather
a value of NA on the returned interval matrix. We call these types of NAs, extreme NAs.
That is, only when the estimated multiset of causal effects is completely made up with sim-
ple NAs, then we have an extreme NA. Which translates to a value of NA in the matrix of
intervals returned by LV-IDA.

The LV-IDA+ algorithm (Algorithm 5.4) is proposed to calculate the causal effect be-
tween all pairs of variables (Xi,Y = X j) in a system V = {X1, . . . , Xp} and returns an
interval matrix, while LV-IDA (as described in Algorithm 5.5) returns the multiset Θ of
causal effects between a single pair of variables (Xi,Y = X j). However, LVIDA+ can be
rewritten to return such multiset of causal effects without missing values, i.e., a multiset
version of LV-IDA+ as shown in Algorithm 5.5.

In this version of the LV-IDA+ algorithm, it is shown that only when there is no adjust-
ment set for one of the k MAGs in the PAG then the canonical DAG associated with this
MAG is constructed and an adjustment set for this DAG is used to approximate the causal
effect of the (i, j) pair in this MAG.

Another difference between these algorithms is that LV-IDA uses the generalized back-
door criterion to find adjustments sets in the MAGs of the Markov equivalence class as-
sociated with the input PAG (see Section 4.2). The generalized backdoor criterion is a
sound but not a complete criterion. On the other hand, the LV-IDA+ algorithm uses the
sound and completeness criterion given by Perkovic and van der Zander in [Per+18] and
[ZLT19]. This graphical criterion proposed by Perkovic and van der Zander is based on
the generalized backdoor criterion (See Section 4.2 Theorem 4.2.1), but unlike this, this
criteria guarantees to find an adjustment set for a given pair of variables and a given MAG
when it exists.

Next we describe the graphic criteria of Perkovic et al. given in [Per+18] that is equiv-
alent to the one given in [ZLT19]. To this end, we introduce some additional terminology.
Remember that a direct path from X to Y is a path from X to Y in which all edges are
directed towards Y . We also refer to this as a causal path. A possibly directed path or
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Algorithm 5.5 LV-IDA+ Multiset version
Input : A PAG P, a set of observational data D, and a pair of variables (i, j) i, j = 1, . . . , p
Output: A multiset Θi of causal effects
Determine all MAGsM1, . . .Mk in the MEC [M] encoded as P
for w = 1, . . . , k do

Compute an adjustment set ZMw
(i, j) for the pair of variables (i, j) inMw

if an adjustment set ZMw
(i, j) exists then

θ̂iw ← β, where β is the coefficient of i in the regression j = α + βi + γT E(ZMw
(i, j) )

else
Compute de canonical DAGDw fromMw

Learn the parameters of Dw from data D using EM for the lw hidden variables
inDw

Compute an adjustment set ZDw
(i, j) for the pair of variables (i, j) inDw

θ̂iw ← β, where β is the coefficient of i in the regression j = α+ βi + γT E(ZDw
(i, j))

end
end

possibly causal path from X to Y is a path from X to Y that does not contains an arrow-
head pointing in the direction of X. For example X → · · · ←−◦ · · · → Y is not a possibly
causal path, but X → · · · ◦−→ · · · → Y it is. If there is a directed (possibly directed) path
from X to Y , then X is a ancestor (possible ancestor) of Y , and Y is a descendant (possible
descendant) of X. We also use the convention that every node is a descendant, possible
descendant, ancestor and possible ancestor of itself.

Definition 5.2.1. Let X and Y a pair of vertices in a MAG M. Then M is said to be
amenable relative to (X,Y) if every proper possible directed path from X to Y inM starts
with a visible edge out of X (see Definition 4.2.2 for the definition of visible edge).

Definition 5.2.2. Let X y Y be two different vertices in a MAGM. The proper back-door
graphMpbd

XY is obtained fromM by removing all visible edges out of X that are possibly
directed paths from X to Y inM.

Definition 5.2.3. Let X and Y be two different vertices in the set of vertices V in a MAG
M. Then the forbidden set relative to the pair (X,Y) is defied as:

Forb(X,Y,M) ={W ′ ∈ V : W ′ ∈ PossDe(W,G), for some W , X

which lies on a possibly directed path from X to Y inM}.
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Definition 5.2.4. Let X y Y be two different vertices and Z a set of vertices such as X,Y <

Z in a MAGM. Then Z satisfied the generalized adjustment criterion relative to (X,Y) in
M if the following three conditions hold:

i (Amenability)M is amenable relative to (X,Y), and

ii (Forbidden set) Z ∩ Forb(X,Y,M) = ∅, and

iii (Separation) Z m-separates X y Y inMpbd
XY .

Theorem 5.2.1. Let X y Y be two different vertices andZ a set of vertices such as X,Y < Z

in a causal MAGM. Then Z is an adjustment set relative to (X,Y) inM if and only if Z
satisfies the generalized adjustment criteria relative to (X,Y) inM. (See [Per+18].)

In Figure 5.2 four MAGs are exemplified for which an adjustment set relative to the
pair of variables (X,Y) is sought.

Figure 5.2 (a)-(b) The MAGs M1 and M2 are not amenable relative to (X,Y) since
the edge X → Y is not visible, so no adjustment sets exists for pair (X,Y) in this two
MAGs. (c) The only valid adjustment set inM3 is {Z}. (d) The empty set is the only
valid adjustment setM4.

5.3 Rationale and Limitations
The rationale behind our method is that it is reasonable to calculate the causal effect on one
of the DAGs that belongs to the set of DAGs represented by the MAG as an approximation
to the causal effect on a pair of variables when this cannot be calculated directly on the
MAG in question. With this idea we have answer the question about what would be a basic
approximation to estimate the effect on a pair of variables when there are no adjustment
sets on a MAG, and avoid to answer that such effect cannot be calculated.
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Figure 5.3 (a) A DAGDwith a complex substructure of several unmeasured variables,
L = {L1, L2, L3, L4, L5} and L∗ = L4. (b) The MAGM obtained fromD by marginaliz-
ing the latent variables L1, L2, L3, L4 and L5. (c) The canonical DAG D∗ associated to
MAGM.

If we assume that we know the DAG D with latent variables that generated the data
and we marginalize the latent variables in it, we find the MAG that represents this DAG
D. In practice, from the observed variables data in the system we can generate a MAG and
avoid worrying about specifying the DAG D with latent variables that generates the data.
Since trying to find directly this DAG with latent variables from the observed variables
data is a much more difficult problem, and in fact an open problem [SGS00]. An important
disadvantage on the simplification of using MAGs to represent DAGs with latent variables
is that the transformation of this type of DAGs to MAGs is not injective, i.e. several DAGs
with latent variables are transformed into the same MAG. Furthermore, an infinite number
of DAGs with latent variables are transformed into the same MAG. In this sense, there
is no inverse transformation with which we could recover the DAG with latent variables
directly. However, we can at least rebuild some of the DAGs represented by a MAG. For
the proposed LV-IDA+ algorithm, we chose a very particular DAG within this infinite set of
DAGs represented by a MAG: the canonical DAG associated with the MAG. This canonical
DAG has the advantage that it can be efficiently built from a MAG (as shown in Chapter
3). In addition, this type of DAGs encompasses the most significant aspects of the causal
structure of an infinity subset of DAGs represented by a MAG.

From the exercise of marginalizing the latent variables of a DAG D to construct a
MAG M and then construct the canonical DAG D∗ associated with this MAG M, we
were able to identify two types of substructure patterns in which although a canonical
DAG D∗ is not an exact portrayal of the original DAG D, a canonical DAG offers a good
representation for estimating causal effects (see Figures 5.3 and 5.4). The first type of
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substructure pattern is one in which the original D DAG contains a complex substructure
of a set L of several unmeasured variables and one of the latent variables L∗ is a common
cause of a pair of observed variables, say O1 and O2. When the latent variables in this
substructure are marginalized, a MAGM is created where none of the latent variables of
the substructure appear and the MAGD contains a bidirectional edge between O1 and O2.
Then, when constructing the canonical DAG D∗ for this MAG M, a single variable L is
added as a common cause for the observed variables O1 and O2 (see Figure 5.3 for an
instance of this substructure pattern). For this first substructure pattern, it can be seen that
the weight of all latent variables in the substructure can be absorbed by a single variable
L, just as in the reconstruction of the original DAG D by mean of a canonical DAG D∗.
Therefore, a canonical DAG is a good representation for estimating the causal effect on the
class of DAGs that present this type of substructure pattern.

The second type of structural pattern occurs when there is a latent variable L that is a
common cause of not only a couple of measured variables but several more, this translates
into several bi-directed edges in the MAGM when this variable is marginalized. When the
canonical DAG associated to this MAG is built, a new variable is added for each bi-directed
edge, although in reality it is a single unmeasured variable which is the common cause for
several variables on the bi-directed edges (see Figure 5.4 for an instance of this substructure
pattern). This structural pattern is not problematic for the calculation of the causal effect
with LV-IDA+ as it seems, since what happens is that this unmeasured common cause is
simply repeated for each pair of variables measured in the canonical DAG. For the LV-
IDA+ algorithm, the essential is that an unmeasured common cause has been identified at
each bidirectional edge, which is then solved by expectation maximization.

Figure 5.4 (a) A DAG D with a latent variable L that is a common cause for sev-
eral observed variables {O1,O2,O3,O4,O5}. (b) The MAG M obtained from D by
marginalizing the latent variable L. (c) The canonical DAGD∗ associated to MAGM.
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On the other hand, a class of DAGs that we identify are not well represented by a
canonical DAG are those we call anti-canonical DAGs. We call anti-canonical DAG to a
DAG that is built from a MAGM in which at least one directed edge from a variable O1

to a variable O2 in the MAG M is transformed into the directed edge from O1 to O2 and
augmenting a latent variable L as the common cause of O1 and O2 in the DAG (see Figure
5.5 (c)). We call to this transformation from a directed edge in a MAG to a directed edge
with a latent common cause in the DAG an anti-canonical pattern. If all the directed edges
in the MAG are transformed as anti-canonical patterns we call the resulting DAG, a total
anti-canonical DAG (see Figure 5.5 (d)).

Anti-canonical DAGs are problematic because, if in the original DAGD that generates
the data there is an unmeasured common cause L for two variables O1 and O2, and in
addition, O1 is the direct cause of O2. When forming a MAGM by marginalizing L from
the DAG D, the MAG M has the directed edge from O1 to O2 (not a bi-directed edge
indicating the latent variable L) and then the canonical DAGD∗ associated withM would
have simply the same directed edge from O1 to O2. This means that if we construct the
canonical DAG D∗ associated to M we are ruling out the existence of the unmeasured
common cause L. When a direct common cause is not contemplated in a system, this
causes greater values than what they actually are on the estimations of some causal effects
among the variables in the system. So we identify this case as a possible limitation on the
proposal to approximate the calculation of the causal effect using the canonical DAG when
it is not possible to calculate it for a couple of variables directly on the MAG.

Figure 5.5 (a) A MAG M with two directed edges and one bi-directed edge.(b) The
canonical DAG associated to the MAGM. (c) An anti-canonical DAGD∗a associated
to the MAG M with an anti-canonical pattern over the directed edge from O1 to O2.
(d) The total anti-canonical DAGD∗t associated to the MAGM.
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Concluding Remarks
The main contribution of the LV-IDA+ algorithm is to provide a way to approximate the
estimation of the causal effects when these cannot be calculated by means of covariate
adjustment directly on some of the MAGs in the Markov equivalence class. The idea to
approximate these values is to estimate the causal effect on a representative DAG on the
collection of DAGs represented by a MAG when this estimation cannot be made directly
on the MAG in question, as it is always possible to estimate the causal effect on a DAG.
In particular, we use the canonical DAG associated with a MAG for this purpose. When
the canonical DAG is built for a MAG, variables are added for which their data is not
known. In the LV-IDA + algorithm, we solved this problem by reducing it to a parameter
learning problem with hidden variables and we use expectation-maximization to obtain the
parametrization of this structure, with which we have all the ingredients to apply covariate
adjustment over the canonical DAG.

As we explained in this chapter, we chose the canonical DAG as representative of the
infinite collection of DAGs associated with a MAG to make this approximation in the first
place because it is easy to build but also because it is a good representation for a large
collection of DAGs associated with a MAG. After understanding in detail the implications
of approximating the causal effect using canonical DAGs, we identified that the main limi-
tation of the LV-IDA algorithm is when what we call the anti-canonical patterns are present
in the construction of the MAG. For these cases, the information of the existence of latent
cofactors is lost and this cause an overestimation in the causal effects for some pairs of
variables in the system.

We recognize that more sophisticated approximations can be formulated but they would
imply a higher computational cost. For example, one could average the causal effects cal-
culated on: the canonical DAG, a set of anti-canonical DAGs and the total anti-canonical
DAG. Another interesting line of research would be to design heuristics that based on the
data, could recognize anti-canonical patterns and add these substructures to the canonical
DAG, to get better approximations in these cases. However, the proposed form of approx-
imation is in principle an efficient baseline that can motivate the search for better approxi-
mations. Since, to our knowledge, no other way of approximating causal effects has been
proposed when they cannot be calculated by covariate adjustments directly in a MAG.
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Chapter 6

LV-IDA+ Experimental Evaluation

In this chapter we experimentally evaluate the proposed LV-IDA+ algorithm. We restrict
the evaluation of the LV-IDA+ algorithm to synthetic models given by canonical DAGs and
compare the accuracy of the intervals of causal effect found with those build by the LV-IDA
algorithm.

6.1 Evaluation Metrics.
To evaluate the accuracy of the causal effect interval matrix returned by LV-IDA+ and
compare this against the calculated by LV-IDA, we use the Average Interval Mean Square
Error, based on the Interval Mean Square Error metric (see [MS17]).

Let CEReal = (θi j) be the real total causal effects matrix, where θi j is the true total
causal effect from the pair of variables (i, j) for i, j = 1, . . . , p. The Interval Mean Square
Error metric (IntMSE) between the true total effect θi j from CEReal, and the estimate
interval of causal effect [θ̂min, θ̂max]i j from the CE∗ matrix, returned by the LV-IDA+ or the
LV-IDA algorithms, is defined as:

IntMSE =

0 if θi j ∈ [θ̂min, θ̂max]i j

min{|θi j − (θ̂min)i j|, |θi j − (θ̂max)i j|} otherwise,
(6.1)

Let IEM = (εi j) be the Interval Error Matrix where the εi j are defined as the IntMSE
between the true total effect θi j in CEReal, and the estimate interval of causal effect
[θ̂min, θ̂max]i j in CE∗. Let Σ be the sum of all the elements εi j of the Interval Error Matrix
IEM = (εi j). The Average Interval Mean Square Error (AIntMSE), is defined as:

AIntMSE =
Σ

p2 − (p + eNA)
,

where p is the number of variables and eNA is the number of extreme NAs. Note that the
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denominator corresponds to the total number of elements of the matrices CE∗, minus the
elements of the diagonal (which always has value [1, 1]), and the number of extreme NAs,
which are the returned NA values on the matrices CE∗ when it is not possible to estimated
interval of causal effect by the algorithms. This corresponds to the number of estimated
interval actually calculated by the LV-IDA+ or LV-IDA algorithms, so this evaluation gives
us an average of the error in the calculation of the estimated intervals of causal effect in the
CE∗ matrices.

The AIntMSE measure does not advantage the LV-IDA+ algorithm in any way over
the LV-IDA algorithm. The LV-IDA+ algorithm does not return intervals matrices with
NA values unlike LV-IDA. This implies that the denominator in the fraction of AIntMSE
when evaluating the interval matrix returned by LV-IDA+ for a model G and data set D
is always greater than or equal to the denominator of AIntMSE for the interval matrix
returned by LV-IDA for the same model G and the setD. However, when it is the case that
this denominator is greater, say by r units of difference, it means that r more estimates were
also added in the numerator Σ for LV-IDA+. So as we said before, AIntMSE is the average
of the IntMSE error over the estimates actually computed by the LV-IDA+ and LV-IDA
algorithms, without penalizing the extreme NA values.

To clarify how the AIntMSE measure is calculated, below is an example of its calcu-
lation for a real case during experimentation. Below we show the real total causal effect
matrix CEReal = (θi j) calculated from a synthetic model G with p = 5 variables, and
present the interval matrices CE∗ returned by the LV-IDA+ and LV-IDA algorithms form
the synthetic model G. Then, the Interval Error Matrices IEM = (εi j) matrices for each of
the LV-IDA+ and LV-IDA CE∗ matrices are shown. Finally, we show the calculation of the
AIntMSE for each of the CE∗ matrices, to show the way the AIntMSE metric is computed.

Equation 6.2 shows the CEReal matrix that is calculated from a synthetic model G of
p = 5 variables.

CEReal = (θi j) =



1.00 0.00 0.00 0.00 0.67
0.00 1.00 0.79 0.58 1.74
0.00 0.30 1.00 0.00 0.00
0.00 0.53 0.00 1.00 0.62
0.40 0.31 0.00 0.25 1.00


(6.2)

Equation 6.3 shows the CE∗ matrix returned by the LV-IDA+ algorithm for the G
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model.

CE∗ =



[1.00, 1.00] [0.00, 0.00] [0.00, 0.16] [0.01, 0.01] [0.00, 0.67]
[0.00, 0.00] [1.00, 1.00] [0.68, 0.80] [0.55, 0.55] [1.69, 2.18]
[0.00, 0.00] [0.43, 0.48] [1.00, 1.00] [−0.04, 0.00] [0.00, 1.02]
[0.05, 0.05] [0.42, 0.42] [0.02, 0.15] [1.00, 1.00] [0.61, 0.64]
[0.00, 0.14] [0.34, 0.36] [0.00, 0.32] [0.29, 0.33] [1.00, 1.00]


(6.3)

Equation 6.4 shows the CE∗ matrix returned by the LV-IDA algorithm for the G model.

CE∗ =



[1.00, 1.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]
[0.00, 0.00] [1.00, 1.00] NA [0.55, 0.55] NA
[0.00, 0.00] [0.00, 0.00] [1.00, 1.00] [0.00, 0.00] [0.00, 0.00]
[0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [1.00, 1.00] NA
[0.00, 0.00] [0.00, 0.00] [0.00, 0.27] [0.00, 0.00] [1.00, 1.00]


(6.4)

Equation 6.5 shows the IEM matrix calculated using the CEReal matrix and the CE∗

matrix returned by the LV-IDA+ algorithm for the G model. Based on this, the AIntMSE
measure is calculated below.

IEM = (εi j) =



0.00 0.00 0.00 0.01 0.00
0.00 0.00 0.00 0.03 0.00
0.00 0.13 0.00 0.00 0.00
0.05 0.11 0.02 0.00 0.00
0.26 0.03 0.00 0.04 0.00


(6.5)

AIntMSE =
Σ

p2 − (p + eNA)
=

0.68
25 − (5 + 0)

=
.68
20

= 0.034

Equation 6.6 shows the IEM matrix calculated using the CEReal matrix and the CE∗

matrix returned by the LV-IDA algorithm for the G model. Note that since the matrix CE∗

contains NAs, the matrix IEM also contains NAs. Based on this IEM matrix, the AIntMSE
measure is calculated below.
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IEM = (εi j) =



0.00 0.00 0.00 0.00 0.67
0.00 0.00 NA 0.03 NA
0.00 0.30 0.00 0.00 0.00
0.00 0.53 0.00 0.00 NA
0.40 0.31 0 0.25 0.00


(6.6)

AIntMSE =
Σ

p2 − (p + eNA)
=

2.49
25 − (5 + 3)

=
2.49
17

= 0.146

6.2 Data Generation Process.
We evaluate the LV-IDA+ and LV-IDA algorithms using data simulated from synthetic
models. We describe next the data generation process for insufficient systems, (see Figure
6.1). First, a random PAG P is generated. Later, by unfolding the P the set of MAGs in
the MEC [M] are listed, and we selected randomly one MAG M∗ from [M]. Then, the
canonical DAG D∗ is obtained from M∗. Finally, a data set D′ is generated simulating
the DAG D∗. We parameterized the DAG D∗ with linear Gaussian structural equations,
where the coefficients are distributed as ±Uniform([0.5, 1.5]), and the random disturbances
according to a normal distribution with mean zero and standard deviations taken from a
Uniform([1, 3])). These values in the parameterization of a Gaussian linear DAG are stan-
dard in the literature on causal inference and are those used for the experimental evaluation
of the LV-IDA algorithm in the work of Malinsky and Spirtes [MS17]. So, to generate each
data set D′, every vertex Xi in the DAG D∗ is visited in topological order and its value is
given by function Xi = fi(pa(Xi); ei) where pa(Xi) is the set of parents of the Xi vertex and
ei is an error term that distributes according to a Gaussian distribution with mean zero and
standard deviations taken from a Uniform([1, 3])). Every function fi function is defined as
fi = w1X1 + . . . + whXh + ei, where h indicates the number of parents of Xi, and the weights
w1 . . .wh are sampled from a uniform distribution ±Uniform([0.5, 1.5]). Observations in
D′ are sampled by evaluating each fi as many time as needed.

6.3 Experimentation Protocol.
From the data generation process we keep the PAG P, and remove the columns of the
variables that were added in the construction of the canonical DAG D∗ over the data set
D′, to form the data set D. This PAG P and the data set D are used as the input for
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Data Set

Figure 6.1 The data generation process. (a) A random generated PAG P (orange).
(b) The set of MAGs in the Markov equivalences class [M]. (c) The random selected
MAGM∗ (green) from [M]. (d) The canonical DAGD∗ obtained fromM∗ (blue). (e)
The data set is generated simulating the DAGD∗.

the LV-IDA+ and LV-IDA algorithms. Besides that, we preserve the parameterized DAG
D∗ and the complete data set D′ to calculate the true causal effects in the CEReal matrix.
We generate 80 synthetic causal models by varying the number of variables p using p ∈

{5, 8, 11, 14}, 20 different synthetic models for each value of p and their respective data sets,
generated with samples of size 1000. For a total of 7,360 causal effect estimations, with
each of the two algorithms: LV-IDA+ and LV-IDA. We use the LV-IDA implementation on
the R programming language, given in [MS17], and we implement the LV-IDA+ algorithm
also in the R language. Both implementations of the algorithms were used to calculate the
causal effect on all pairs of variables in each of the synthetic models. All experiments were
run on a computer with an Intel Core i5 processor running at 2.0 GHz and 8 GB of RAM.

6.4 Results
Table 6.1 summarizes the estimation results (mean ± standard deviation) for the 80 dif-
ferent synthetic data sets, over the evaluation metric AIntMSE. The mean and standard
deviation of the number of simple and extreme NA values generated by the algorithms
are also exhibited, as the running times per experiment in seconds for the LV-IDA+ and
LV-IDA algorithms. The first thing to notice is that the LV-IDA+ algorithm outperforms
LV-IDA according to the AIntM evaluation metric for each of the synthetic data sets we
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have tested. Which tells us that LV-IDA+ can get higher accuracy in estimating bounds on
causal effects in causal insufficient systems.

Since we only consider the non-missing estimated bounds of both algorithms over the
AIntM evaluation, we can say that the accuracy on the estimations is the result of the
effectiveness in the proposed scheme for the approximation of the missing values. On the
other hand, ignoring missing values in the multisets of causal effects (simple NA values)
in the LV-IDA algorithm leads to misleading bounds in causal effects. We detected that
this was the main reason why LV-IDA sometimes generates intervals of causal effects with
greater error than those calculated by LV-IDA+.

Furthermore, with LV-IDA+ is possible to calculate more bounds of causal effects than
with LV-IDA. The count for extremes NA values in the results gives us an idea of how
many more estimation bounds on causal effects we can calculate for pairs of variables in a
model with LV-IDA+.

As we expected, the execution times of the LV-IDA+ algorithm exceed those of LV-
IDA, although the increment is relatively low. This is basically because for each MAG in
the MEC we add the calculation for the construction of the associated canonical DAG, the
search for adjustment sets for this DAG given a par of variables, and the parameter learning
process using expectation maximization for the hidden variables.

AIntMSE SimpleNAs ExtremeNAs Time (sec)
p = 5

LV-IDA+ 0.0223 ± 0.0182 0 0 6.6 ± 2.4
LV-IDA 0.0357 ± 0.0413 28.88 ± 16.04 3.50 ± 2.27 1.4 ± 0.7
p = 8

LV-IDA+ 0.0441 ± 0.0333 0 0 14.4 ± 7.5
LV-IDA 0.0710 ± 0.0611 107.8 ± 28.32 20.3 ± 4.44 4.6 ± 1.6
p = 11

LV-IDA+ 0.1040 ± 0.1130 0 0 17.0 ± 11.1
LV-IDA 0.1797 ± 0.2133 177.3 ± 78.2 49.4 ± 26.6 16.4 ± 7.1
p = 14

LV-IDA+ 0.2353 ± 0.2028 0 0 18.4 ± 18.2
LV-IDA 0.4101 ± 0.3605 340.3 ± 98.69 74.1 ± 8.37 12.2 ± 21.6

Table 6.1 Performance comparisons between LV-IDA+ and LV-IDA (mean ± standard
deviation) over AIntMSE, for p = 5, 8, 11 and 14 where p is the number of variables.
The best results for each evaluation are highlighted in bold type. The mean and stan-
dard deviation of simple and extreme NAs, and the running time in seconds for each
algorithm are shown too.
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Concluding Remarks
In this chapter we validate our algorithm with simulated data from synthetic models in
the same way as it was done for the validation of the LV-IDA algorithm in [MS17]. For
this purpose we use practically the same metric as the one used in Malinsky and Spirtes
([MS17]), i.e., the IntMSE metric. The only difference between this and the AIntMSE
metric, chosen to evaluate the algorithms, is that AIntMSE considers the average of the
IntMSE over all the calculated intervals of causal effect (without taking into account the
NAs and the elements on the diagonal of the matrix) in the matrix of intervals returned by
the algorithms. In this sense, we are not penalizing the returned NA values in any way but
simply do not consider them to calculate this average. The calculation of the real causal
effects in made according to Malinsky and Spirtes ([MS17]), i.e., we used the covariate
adjustment method over the synthetic DAG that generated the data.

The approach of generating the data from a random PAG is very important to us. This
allowed us to evaluate the algorithms LV-IDA+ y LV-IDA without adding noise from the
PAGs learning algorithms using the data, such as the FCI (See Chapter 3) or GFCI (See
[OSR16]) algorithms. We chose to simulate canonical DAGs to generate the synthetic
data, as we decided to test our algorithm where we think it might actually work. However,
from the analysis carried out in Chapter 5 we are aware that there are other types of DAGs,
such as anti-canonical DAGs, which could be problematic for our algorithm. Therefore, to
explore the generality of our algorithm, it is necessary to extend the spectrum of synthetic
models in the experimentation, i.e., perform tests with simulated data from, for example,
anti-canonical DAGs.

The experiments show a result of great interest to us, which is that with the proposed
approximation, the accuracy of the intervals returned by LV-IDA+ was better than the
obtained with the ones estimated using LV-IDA. With these experimental results, we are
verifying the effectiveness of the parameter learning with hidden variables by mean of
expectation-maximization and, on the other hand, we confirm the assumption that the non-
estimated effects that cause the missing values, make the bounds returned by LV-IDA to be
misleading.
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Chapter 7

Conclusions and Future Work

7.1 Summary
In this dissertation we have addressed the problem of computing the causal effect between
pairs of variables in the domain of causally insufficient systems, i.e., systems with possi-
ble unmeasured common direct causes. For this problem we use the covariate adjustment
method over Causal Bayesian Networks where the causal structure is a Maximal Ancestral
Graph, considering only the equivalence class of the causal structure of the system, rep-
resented as a Partial Ancestral Graph, and assuming that the variables in the system are
jointly Gaussian.

While in previous solutions for this problem, the impossibility of estimating bounds on
the causal effects between some pairs of variables was contemplated, in this research we
contributed with a new algorithm, that we called the LV-IDA+ algorithm, capable of esti-
mating bounds on the causal effects for all pairs of the measured variables in the system, by
approximating the causal effect for these special cases in which other algorithms are limited
to returning missing values. Knowing that the causal effects between each ordered pair of
variables in a system can always be estimated in a DAG, if all the data of the variables are
known together with the parameterization of the DAG, our proposal to approximate these
causal effects is to calculate them in a DAG that belongs to the set of DAGs represented by
the MAG in question.

7.2 Conclusions
The aforementioned proposal to approximate the estimation of causal effects for special
cases in which other algorithms are limited to returning missing values, presented the fol-
lowing two major challenges:

1. The first is the fact that the DAGs that belong to the set of DAGs represented by a
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MAG are DAGs with latent variables. In this sense, if we want to approximate the
estimation of some causal effects of a MAG using a DAG with l latent variables, first
we must have a complete parameterization of this DAG and the data for the l latent
variables. So, an important question to be answered was whether this problem could
be solved by reducing it to the problem of parameter learning with hidden variables.
As a first conclusion of this research, we have identified that this part can be solved
using parameter learning techniques with hidden variables for directed probabilistic
graphical models. In particular, we found that expectation-maximization techniques
solves this problem effectively.

2. Having solved the previous challenge, opens the possibility of doing research on the
most suitable type of structures to approximate the causal effects in this way. The
second challenge with this proposed approximation was to select a DAG with latent
variables that could be constructed efficiently, with a small number of latent variables
with respect to the number of observed variables and also, being representative for
the purpose of estimate causal effects for the entire set of DAGs, represented by the
MAG. This last requirement is too ambitious and we do not believe that we have
fully resolved it in this dissertation. However we proposed to use the canonical DAG
associated to the MAG for this purpose. This type of DAGs has the advantage that it
are easy to build from a MAG and generates few latent variables with respect to the
number of observed variables, which facilitates the process of parameters learning
mentioned in the previous point.

In this research work, we have evaluated the aforementioned approach on the case in
which the data were generated by a canonical DAG, which is a particular case over the
entire possible spectrum. For this case, we were able to evaluate the quality of the pro-
posed approach by comparing the intervals of causal effect returned by the LV-IDA+ al-
gorithm, which uses the proposed approximation, with those of LV-IDA, using synthetic
models. The experiments show a result of great interest to us, which is that with the pro-
posed approximation, the accuracy of the intervals returned by LV-IDA+ was better than
the obtained with the ones estimated using LV-IDA. With these experimental results, we
are verifying the effectiveness of the parameter learning with hidden variables by mean
of expectation-maximization and, on the other hand, we confirm the assumption that the
non-estimated effects that cause the missing values, make the bounds returned by LV-IDA
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to be misleading. Based on the results of this experimental evaluation, we can conclude
that our proposal is useful to establish better bounds in the estimates of the causal effect for
insufficient systems modeled with MAGs for the case in which the data are generated from
canonical DAGs.

In terms of efficiency, the execution times of the LV-IDA+ algorithm exceed those of
LV-IDA although the increment is relatively low. This is basically because for each MAG
in the MEC we add the calculation for the construction of the associated canonical DAG,
the search for adjustment sets for this DAG given a par of variables, and the parameter
learning process using expectation maximization for the hidden variables. Furthermore,
we have identified that the true bottleneck in the running time of both LV-IDA and LV-
IDA+ is in the PAG unfolding, i.e., the process of listing all MAGs in the MEC, using the
ZML algorithm.

7.3 Contribution and Relevance.
The main contribution in this dissertation is the proposal of a method for approximating the
causal effect in cases where other works limit themselves to answering that it is not possible
to find the causal effect among the pair of variables on the causal system, represented by a
MAG. Our proposal is founded on the idea that the causal effects calculated using the ad-
justment sets on the canonical DAGs associated with the MAGs, in the Markov equivalence
class, are good approximations for the causal effects when there are no adjustment sets for
some pairs of variables over these MAGs. With this approximation, the proposed LV-IDA+

algorithm can estimate the causal effects among all pairs of variables (or at least approxi-
mate the estimate in some cases) in each of the MAGs in the Markov equivalence class and
thus can obtain approximate lower and upper bounds of the real value of the causal effect
for each pair of system variables.

Estimating the causal effects that variables have on each other, given the causal structure
of a system using only observational data, is one of the two main problems in the area of
causal inference. The importance of this kind of estimations is that with it we can measure
how much a variable Y changes after manipulating another variable X, without the need
to carry out controlled experiments. It is well known that the case in which unmeasured
common causes are considered in the causal structure, the estimation of causal effects is
especially challenging. In this work we contribute to solve this important problem in the
area, assuming that the causal structure of the system is only partially known.
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The second main problem of causal inference is finding the causal structure given ob-
servational data about the system. The most general and widely used algorithms to solve
this problem are the constraint-based algorithms. However, these algorithms are only ca-
pable of finding the Markov equivalence class of the causal structure given observational
data. In the work of Montero-Hernandez et al. in [MOS18] it is shown how to use bounds
on the causal effects between the variables of a system, such as those estimated by the LV-
IDA+ algorithm, to find the causal structure within a Markov equivalence class returned by
a constraint-based algorithm. The result in Montero’s et al. works is in the context of sys-
tems that assume causal sufficiency. The missing values returned by the LV-IDA algorithm
in the estimated bounds on causal effects between the variables of a system do not allow
to extend the Montero’s et al. algorithm in systems with causal insufficiency. On the other
hand, the approximation approach proposed in the LVIDA+ algorithm opens the door to
extend the ideas of the Montero’s et al. algorithm to systems where the causal sufficiency
is relaxed, i.e., more applicable in realistic contexts, which adds relevance to this research.

7.4 Future Work
The experimental results for the LV-IDA+ algorithm are promising but in the future it
would be important to extend the experimentation. In section 5.3 it was justified why it is
thought that canonical DAGs are a good representation for a large sub-collection of DAGs
with latent variables represented by a MAG, for the purpose of estimating causal effects.
However, it is necessary to carry out more experimentation with these structures, to see if
indeed a canonical DAG is a good representation for them. In the same section, a collec-
tion of DAGs with latent variables for which we conjecture they are not well represented
by canonical DAGs for the same purpose, which we call anti-canonical DAGs, was also
described, but also it is necessary to evaluate with more experiments how much a repre-
sentation through a canonical DAG fits models with anti-canonical patterns. Therefore, to
explore the generality of our algorithm, it is necessary to extend the spectrum of synthetic
models in the experimentation, i.e., perform tests with simulated data from, for example,
anti-canonical DAGs. Furthermore, in practice, the performance of the LV-IDA+ algo-
rithm will be affected by the precision of the underlying PAG search method and more
experiments in which the input PAG is learned from data are needed. For this purpose, it
would be interesting to test the LV-IDA+ algorithm using the PAGs returned by the FCI (see
Zhang2008) and the GFCI [OSR16]) algorithms. On the other hand, we consider important
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to test the algorithm on real world Bayesian Gaussian networks as well.
As future work, we would like to analyze the performance of LV-IDA+ using different

optimization techniques, such as the Gradient Descent algorithm, to find maximum values
in the likelihood functions, as alternative to expectation maximization in the process of
learning the parameters with hidden variables on the canonical DAGs. Extending the work
in [MOS18] to insufficient systems, is another direction that we are interested in explor-
ing. In the latter, intervals of causal effects are used to singled out a unique model from
the Markov equivalence class on sufficient causal systems. For the aforementioned, it is
essential to be able to compute intervals of causal effects for any pairs of variables in the
causal system. Therefore, the proposed LV-IDA+ algorithm is fundamental to continue the
ideas of this work and bring them to the domain of insufficient causal systems.
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