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We introduce the application of the differential evolution algorithm (DE) to optimize the
positive Lyapunov exponent in a multi-scroll chaotic oscillator based on saturated nonlin-
ear function series. The positive Lyapunov exponent is optimized from two to nine scrolls
by sweeping the coefficients of the chaotic oscillator. In this article, the case of study has
four coefficients, so that the feasible solutions for a; b; c, and d1, are used to generate the
bifurcation diagrams for the cases from two to nine scrolls taking c as the bifurcation
parameter to demonstrate that high values of the positive Lyapunov exponent can be guar-
anteed when a; b;d1 take values higher than 0.7, while c takes values lower than 0.3.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

During the last decade, chaotic oscillators have been investigated to generate multi-scroll attractors [1–5]. The majority of
them have been realized with electronic devices [6], and some have been used to design secure communication systems [7–
9]. Besides, we appeal that those designs can be enhanced if the chaotic oscillator possesses higher positive Lyapunov expo-
nents, because it determines the unpredictability grade of the chaotic oscillator.

Computing a higher value of the positive Lyapunov exponent requieres varying the coefficients of the chaotic oscillator,
leading to a huge number of combinations. For example: the chaotic oscillator described by (1) has four coefficients a; b; c; d1,
so that the search space is calculated from the size of the variables [10], i.e. each coefficient has one significant digit that can
be 0 or 1 and if four decimal places are considered, they can have values in f0; 9g leading to 2� 10� 10� 10� 10 = 2� 104

combinations. For the whole problem having four coefficients, the search space will be ð2� 104Þ4 ¼ 16� 1016. This huge
search space justifies the use of evolutionary algorithms. That way, we show the application of the differential evolution
(DE) algorithm to optimize the positive Lyapunov exponent of the multi-scroll chaotic oscillator described in the following
section. In the last section, we show the bifurcation diagrams for the optimized positive Lyapunov exponents from two to
nine scrolls. Finally, from those diagrams it is highlighted that higher values of the positive Lyapunov exponent can be guar-
anteed when a; b; d1 take values higher than 0.7, while c takes values lower than 0.3.
_x ¼ y; ð1Þ
_y ¼ z;
_z ¼ �ax� by� czþ d1f ðx; k;h;p; qÞ:
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2. Multi-scroll chaotic oscillator

Among different kinds of multi-scroll chaotic oscillators [1,11], this investigation is focused on the one described by (1) that is
based on a piecewise-linear (PWL) function approached by (2) [1–3]. It is a series of a saturated function, where: k P 2 is the
slope of the saturated function and a multiplier factor to saturated plateaus; plateau ¼ �nk, with n = odd integer to generate even
number of scrolls and n = even integer to generate odd-scrolls; h = saturated delay of the center of the slopes, which must agree
with hi ¼ �mk, where i ¼ 1; . . . ; ½ðscrolls� 2Þ=2� and m ¼ 2;4; . . . ; ðscrolls� 2Þ to generate even-scrolls, and
i ¼ 1; . . . ; ½ðscrolls� 1Þ=2� and m ¼ 1;3; . . . ; ðscrolls� 2Þ to odd-scrolls; p and q are positive integers. Eq. (3) defines f ðx1; k;h; p; qÞ.
f ðx; k;h;p; qÞ ¼
Xq

i¼�p

fiðx; h; kÞ; ð2Þ

f ðx; k; h; p; qÞ ¼

ð2qþ 1Þk; x > qhþ 1;
kðx� ihÞ þ 2ik; jx� ihj 6 1; �p 6 i 6 q;

ð2iþ 1Þk; ihþ 1 < x < ðiþ 1Þh� 1; �p 6 i 6 q� 1;
�ð2pþ 1Þk; x < �ph� 1:

8>>><
>>>:

ð3Þ
3. Lyapunov exponent

Lyapunov exponents are asymptotic measures characterizing the average rate of growth (or shrinking) of small pertur-
bations to the solutions of a dynamical system, e.g. chaotic oscillators. They provide quantitative measures of response sen-
sitivity of a dynamical system to small changes in initial conditions [12]. Therefore, the presence of positive Lyapunov
exponents is taken as a signature of chaotic motion [12,13].

In continuous-time chaotic oscillators, the number of Lyapunov exponents equals the number of state variables. Further,
if at least one is positive, it is an indication of chaos. Lets us consider an n-dimensional dynamical system:
_x ¼ f ðxÞ; t > 0; xð0Þ ¼ x0 2 Rn; ð4Þ

where x and f are n-dimensional vector fields. To determine the n-Lyapunov exponents, one should find the long term evo-
lution of small perturbations to a trajectory, which are determined by the variational equation of (4),
_y ¼ @f
@x

xðtÞð Þy ¼ J xðtÞð Þy; ð5Þ

where J is the n� n Jacobian matrix of f. A solution of (1) with a given initial perturbation yð0Þ can be written as
yðtÞ ¼ YðtÞyð0Þ; ð6Þ

with YðtÞ as the fundamental solution satisfying
_Y ¼ J xðtÞð ÞY ; Yð0Þ ¼ In: ð7Þ

In (7), In is the n� n identity matrix. By considering the evolution of an infinitesimal n-parallelepiped ½p1ðtÞ; . . . ; pnðtÞ� with
the axis piðtÞ ¼ YðtÞpið0Þ for i ¼ 1; . . . ;n, where pið0Þ denotes an orthogonal basis of Rn, then the ith Lyapunov exponent, which
measures the long-time sensitivity of the flow xðtÞ with respect to the initial data xð0Þ at the direction piðtÞ, is defined by the
expansion rate of the length of the ith axis piðtÞ and is given by
ki ¼ lim
t!1

1
t

ln piðtÞk k: ð8Þ
Table 1
Positive Lyapunov exponent (LE) and coefficients values applying DE.

Scrolls LE with (a; b; c; d1 ¼ 0:7) LE and (a; b; c;d1) coef. values for DE

2 0.1257 0.3743
(0.279, 0.852, 0.072, 0.492)

3 0.1565 0.4088
(0.839,0.954,0.192,0.914)

4 0.1763 0.4338
(1,1,0.143,0.991)

5 0.1773 0.4416
(1,0.991,0.105,1)

6 0.1795 0.4418
(0.991,0.912,0.105,0.971)

7 0.1763 0.4455
(0.987,0.732,0.111,0.994)

8 0.1972 0.4503
(1,0.755,0.109,1)

9 0.1950 0.4469
(1,0.844,0.074,1)
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The Lyapunov exponents can be computed by applying the methods given in [10–14], where a variational system is used
to measure the changes in the original dynamical system with respect to the different directions. The method can be sum-
marized as follows:

1. Initial conditions and the variational system are set to X0 and Inxn, respectively.
2. The systems are integrated until an orthonormalization period (TO), is reached. The integration of the variational system

Y ¼ ½y1; y2; y3� depends on the specific Jacobian that the original system X is using in the current time-step.
3. The variational system is orthonormalized by using the standard Gram–Schmidt method [15], the logarithm of the norm

of each Lyapunov vector contained in Y is obtained and accumulated in time.
4. The next integration is carried out by using the new orthonormalized vectors as initial conditions. This process is repeated

until the full integration period T is reached.
5. The Lyapunov exponents are obtained by evaluating:
ki �
1
T

XT

j¼TO

ln yik k;
where TO is greater than the time-step used to solve (1).

4. Differential evolution algorithm

DE is an evolutionary algorithm working with a population of tentative solutions to the problem. New solutions are gen-
erated by combining the old ones and by surviving the ones with better fitness.

This section describes DE using the version rand/1/bin. It has the ability of a child competing one to one with his father,
resulting in a faster rate of convergence. The new vectors of parameters are generated by adding the weighted difference
between two vectors of the population to a third vector. If the resultant vector allocates an objective function value lower
than a member of the population, the newly generated vector replaces the vector with which it was compared, otherwise the
previous vector survives. The pseudocode is shown in Algorithm 1, where the population is represented by PO ¼ ½x1; . . . ;xn�
and each individual is represented by a vector x = [x1; . . . ; xD] x 2 RD.

Algorithm 1 Differential evolution algorithm

Population size=NP

Generations = G
Procedure DE (NP ;G)
for i ¼ 1 : NP do

for d ¼ 1 : D do
xi½d� ¼ LimitInf þ ðLimitSup � LimitInf Þ � randðÞ . initialize the population

end for
xi:fit ¼ evaluateðxiÞ . evaluate population

end for
minfit ¼ minðxi:fitÞ . best individual fitness
for i ¼ 1 : G do

Let j1; j2 and j3 be three random numbers in f1;NPg
without replacement and also different to i
jrand  ½randðÞ � D� þ 1
for d ¼ 1 : D do

if randðÞ < R OR d ¼ jrand then
y½d� ¼ xi2½d� þ Fðxi0½d� � xi1½d�Þ
if y½d� < LimitInf OR y½d� > LimitSup then

y½d� ¼ LimitInf þ ðLimitSup � LimitInf Þ � randðÞ
end if

else
y½d� ¼ xi½d�

end if
end for
y:fit ¼ evaluateðyÞ . evaluate new individual
if y:fit < minfit then

minfit ¼ y:fit . best fitness
xi ¼ y

end if
end for



8166 V.H. Carbajal-Gómez et al. / Applied Mathematics and Computation 219 (2013) 8163–8168
5. Optimizing the positive Lyapunov exponent
A global optimization problem can be formulated as
f : RD ! R;

f ðxÞ; s:t: xj 2 ½lj;uj�; j ¼ 1; . . . ;D;
where f is the objective function, and x is a continuous variable vector of D dimensions. The feasible domain of variable x is
defined by specifying upper (uj) and lower (lj) limits of each component j.

The computation of the Lyapunov exponents for the chaotic oscillator described by (1), is performed by setting:
a ¼ b ¼ c ¼ d1 ¼ 0:7; k ¼ 10;h ¼ 2; and by varying the four coefficients using three decimals within the DE given in Algo-
rithm 1. p and q are adjusted to generate from two to nine scrolls. The results are summarized in Table 1, where one can
Fig. 1. Bifurcation diagrams from Table 1.



Fig. 2. Bifurcation diagrams from Table 1 (continuation).
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see that the positive Lyapunov exponent with all coefficients = 0.7 is relatively small compared with the optimized one
applying DE.
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DE was implemented using MATLAB and the ODE45 integration package. It was executed with an initial population of 40
individuals and 80 generations. The time-step was selected by using the minimum absolute value among the eigenvalues of
the system kmin [16], w was chosen well above the sample theorem as 50, and TO was chosen as 50tstep, where tstep ¼ 1

kminw.
The integration was carried with a full period T of 4,000. Initial conditions X0 were chosen in the basin of attraction of the

chaotic oscillator from a previous simulation with T = 800 and initial conditions IC=[0.1,0,0].
Figs. 1 and 2 show the phase and bifurcation diagrams for the cases listed in Table 1. The bifurcation diagrams were gen-

erated by setting a; b; d1 from (1) according to the values from Table 1 when applying DE, and c was varied being the bifur-
cation parameter.

The bifurcation diagrams are shown as a projection of the orbit onto the X � Y plane, where the orbits intersect the pro-
jection onto the plane of the line passing through the equilibrium points. An algorithm calculates the intersection of two
lines projected onto the X � Y plane: the line between the equilibrium points and the line between the two consecutive
points in the orbit that crossed the equilibrium-point line. It calculates the intersection of the plane with the line between
the two orbit points (on either sides of the plane).

6. Conclusion

We have shown the usefulness of DE, version rand/1/bin, to optimize the positive Lyapunov exponent of a multi-scroll
chaotic oscillator based on saturated function series. It has been implemented using MATLAB. From the optimized results,
computed from two to nine scrolls, we generated their respective bifurcation diagrams, where parameter c was chosen as
the bifurcation parameter because it resulted to be the most sensitive coefficient.

The optimized Lyapunov exponents computed by DE and listed in Table 1, and their respective bifurcation diagrams help
to provide the following insights: selecting small values for c, e.g. 0.1–0.3; and large for a; b; d1, e.g. 0.7–0.9, allows guaran-
teeing higher positive Lyapunov exponent values.
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