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In this article, we propose a new performance bound analysis of analog circuits considering process variations.
We model the variations of component values as intervals measured from tested chips and manufacture
processes. The new method first applies a graph-based analysis approach to generate the symbolic transfer
function of a linear(ized) analog circuit. Then the frequency response bounds (maximum and minimum) are
obtained by performing nonlinear constrained optimization in which magnitude or phase of the transfer
function is the objective function to be optimized subject to the ranges of process variational parameters.
The response bounds given by the optimization-based method are very accurate and do not have the over-
conservativeness issues of existing methods. Based on the frequency-domain bounds, we further develop
a method to calculate the time-domain response bounds for any arbitrary input stimulus. Experimental
results from several analog benchmark circuits show that the proposed method gives the correct bounds
verified by Monte Carlo analysis while it delivers one order of magnitude speedup over Monte Carlo for
both frequency-domain and time-domain bound analyses. We also show analog circuit yield analysis as an
application of the frequency-domain variational bound analysis.
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1. INTRODUCTION

It is well accepted that variations have huge impacts on circuit performance, yield,
and reliability in the nanometer regime. Analog and mixed-signal circuits are es-
pecially sensitive to process variations, as a lot of matching and regularities are
required. This situation becomes worse as technology continues to scale down to
45 nm and below, owing to the increasing process-induced variability [Rutenbar 2007;
Nassif 2007]. Transistor-level mismatch is the primary obstacle to reaching a high
yield rate for analog designs in deep submicron technologies. For example, due to an
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inverse-square-root-law dependence with the transistor area, the mismatch of CMOS
devices nearly doubles for each process generation less than 90 nm [Masuda et al.
2005; Kim et al. 2007]. Since the traditional worst-case- or corner-case-based analysis
is either so pessimistic that it sacrifices speed, power, and area, or too expensive for
practical full-chip design, statistical approaches thereby become imperative to estimate
the analog mismatch and performance variations [Pelgrom et al. 1989]. The variations
in the analog components can come from systematic (or global spatial variation) ones
and stochastic (or local random variation) ones. In this article, we model both variations
as parameter intervals on the components of analog circuits.

Analog circuit designers usually perform a Monte-Carlo (MC) analysis to analyze
the stochastic mismatch and predict the variational responses of their designs under
faults. As MC analysis requires a large number of repeated circuit simulations, its
computational cost is very expensive. Although some fast MC methods have been
applied for statistical and yield analysis recently [Singhee and Rutenbar 2010; Liu
et al. 2012], we remark that MC and its variants still remain the popular approaches
for statistical analysis and optimization for analog/mixed-signal methods at current
stage. But more efficient variational analysis techniques, especially non-MC methods,
are still highly desirable. Our work takes some initiative efforts toward this direction.
We do not aim to solve all the existing problems. Instead, we try to look at the basic
problem for statistical analysis—finding the performance bounds of linear or linearized
analog circuits for given variational parameters—which will lay the foundation for
future performance bound analysis for general nonlinear analog/mixed-signal circuits.

Bound analysis or worst-case analysis of analog circuits under parameter variations
has been studied in the past for fault-driven testing and tolerance analysis of analog
circuits [Kolev et al. 1988; Tian et al. 1996; Shi and Tian 1999]. Among them, sensitivity
analysis [Vlach and Singhal 1995], sampling method [Spence and Soin 1988], and inter-
val arithmetic-based approaches [Kolev et al. 1988; Tian et al. 1996; Shi and Tian 1999;
Qian et al. 2010] have their advantages in well-suited scenarios. However, sensitivity-
based methods cannot give the worst case in general; sampling-based methods are
limited to a few number variables; and interval arithmetic methods have the notoriety
of being overly pessimistic. Recently, worst-case analysis of linearized analog circuits
in frequency domain has been proposed [Qian et al. 2010], where Kharitonov’s func-
tions [Kharitonov 1978] were applied to obtain the performance bounds in frequency
domain, but no systematic method was proposed to obtain variational transfer func-
tions. This was later improved by Hao et al. [2011], where symbolic analysis approach
was applied to derive exact transfer functions, and affine interval method was used to
compute variational transfer functions. However, the affine interval method can lead to
over-conservative results. Recently, Saibua et al. [2011] applied an optimization-based
method to compute the bounds. Another recent work [Song et al. 2013], using reach-
ability analysis, can also efficiently generate variation-induced performance bounds.
But still, no systematic method has been proposed to obtain variational performance
objective functions from the circuit netlist.

In this article, we propose a new performance bound analysis of analog circuits con-
sidering process variations. The new method employs several techniques to compute
the response bounds of analog circuits in both frequency domain and time domain. The
overall algorithm consists of several steps. First, the new method models the varia-
tions of component values as intervals measured from tested chips and manufacture
processes. Then, determinant decision diagram (DDD) graph-based symbolic analy-
sis is applied to derive the exact symbolic transfer functions from linearized analog
circuits. After this, we formulate the bound problem into a nonlinear constrained op-
timization problem, where the objective functions are the magnitudes or phases of
the transfer functions, subject to linear constraints, which are the ranges of process
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Fig. 1. An RC filter circuit.

variational parameters. The nonlinear constrained optimization problems are then
solved by the active-set algorithm, a general nonlinear optimization method. The op-
timization is solved on each frequency point of interest. The maximum and minimum
value returned by the optimization solver will compose the lower and upper bounds of
the frequency-domain response. One important feature of the proposed method is that
the bounds computed in this way are very accurate and have no over-conservativeness,
which is suffered by some existing approache, such as interval arithmetic or affine
arithmetic-based methods. As an application of our frequency-domain bound analysis,
we also show results of analog circuit yield calculation in the experiment section.

To compute the time-domain bound, we propose a generalized time-domain bound
analysis technique, or TIDBA, in which time-domain response bounds of circuits with
general input signals can be computed based on the given frequency-domain responses.
This represents a major improvement over the existing method [Pritchard and Wig-
dorowitz 1997]. Experimental results from several analog benchmark circuits show
that TIDBA gives the correct time-domain bounds verified by MC analysis, while it
delivers one order of magnitude speedup over MC.

The rest of this article is organized as follows. Section 2 gives a review on determinant
decision diagram-based symbolic generation of transfer functions. We present our pro-
posed frequency domain performance-bound analysis using nonlinear constrained op-
timization in Section 3. Then Section 4 introduces time-domain bound analysis TIDBA.
Section 5 shows the experimental results. Finally, Section 6 concludes.

2. DETERMINANT DECISION DIAGRAMS AND VARIATIONAL TRANSFER FUNCTIONS

In this section, we first provide a brief overview of the determinant decision diagram
(DDD) [Shi and Tan 2000] and its application to symbolic analysis. Then we show the
concept of variational transfer functions.

2.1. Symbolic Transfer Functions by DDD-Based Approaches

To efficiently store and calculate determinants of circuit matrices and transfer func-
tions, Shi and Tan [2000] introduced determinant decision diagrams as compact and
canonical graph-based representation of determinants. The concept is best illustrated
using the simple RC filter circuit shown in Figure 1. Its MNA formulation can be
written as Y · v = i, where Y is the MNA matrix⎡

⎢⎣
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R1
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R2

− 1
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− 1
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− 1
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+ sC3

⎤
⎥⎦ ,

vector i = [I(s), 0, 0]T is the right-hand side vector of current stimulus, and the vector
of nodal voltages to be solved is v = [v1(s), v2(s), v3(s)]T.

We view each entry in the circuit matrix as a distinct symbol and rewrite its system
determinant in the left part of Figure 2. Then its DDD representation is shown in the
right part.
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Fig. 2. A matrix determinant and its DDD representation.

A DDD is a signed, rooted, directed acyclic graph with two terminal vertices, namely,
0-terminal vertex and 1-terminal vertex. Each nonterminal DDD vertex is labeled by a
symbol in the determinant denoted by ai (A to G in Figure 2), and a positive or negative
sign denoted by s(ai). It originates two outgoing edges, called 1-edge and 0-edge. Each
vertex ai represents a symbolic expression D(ai) defined recursively as follows:

D(ai) = ai · s(ai) · Dai + Dai , (1)

where Dai and Dai represent, respectively, the symbolic expressions of the vertices
pointed by the 1-edge and 0-edge of ai. The 1-terminal vertex represents expression
1, whereas the 0-terminal vertex represents expression 0. For example, vertex E in
Figure 2 represents expression E, vertex F represents expression −EF, and vertex
D represents expression DG − FE. We also say that a DDD vertex represents an
expression defined by the DDD subgraph rooted at this vertex.

A 1-path in a DDD corresponds with a product term in the original DDD, which is
defined as a path from the root vertex (A in our example) to the 1-terminal, including
all symbolic symbols and signs of the vertices that originate all the 1-edges along the
1-path. In our example, there exist three 1-paths representing three product terms:
ADG, −AFE, and −CBG. The root vertex represents the sum of these product terms.
The size of a DDD is the number of DDD vertices, denoted by |DDD|.

Once a DDD has been constructed, the numerical values of the determinant it rep-
resents can be computed by performing the depth-first type search of the graph and
evaluating Eq. (1) at each node, whose time complexity is a linear function of the size
of the graphs, that is, |DDD|. With proper node ordering and hierarchical approaches,
DDD can be very efficient in computing transfer functions of large analog circuits
[Shi and Tan 2000; Tan et al. 2005].

2.2. Variational Transfer Functions Due to Process Variations

In order to compute the symbolic coefficients of the transfer function in different powers
of frequency s, the original DDD can be expanded to the s-expanded DDD [Shi and Tan
2001]. Specifically, to obtain the transfer function H(s), we can build the s-expanded
DDD [Shi and Tan 2001] as follows.

H(s, p1, . . . , pm) =
∑m

i=0 ai(p1, . . . , pm)si∑n
j=0 bj(p1, . . . , pm)s j , (2)
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Fig. 3. The small-signal model for MOS transistors (left) and a simple circuit example (right).

where coefficients ai(p1, . . . , pm) and bj(p1, . . . , pm) are presented by each root
in s-expanded DDD graphs, and p1, . . . , pm are m circuit variables. Notice that
H(s, p1, . . . , pm) is a nonlinear function of pi, i = 1, . . . , m.

In this article, we assume that each circuit parameter pi is a random variable with
a variational range. We assume that the device-level variations in terms of electrical
parameters, such as transconductances gm and gds (shown in Figure 3), will be first
obtained by device characterization using data from the foundry. Let s = jω. The
evaluation of the transfer function gives a complex valued result, H( jω) = H0(ω)e jθ(ω),
where the magnitude H0(ω) = |H( jω)| and the phase angle θ (ω) = ∠H( jω) are real
values. In variation analysis, instead of getting a nominal transfer function, we will
obtain a variational transfer function with bounded magnitude and phase regions, that
is,

H0
l (ω) ≤ H0(ω) ≤ H0

u (ω), (3)
θl(ω) ≤ θ (ω) ≤ θu(ω), (4)

where H0
l (ω) and H0

u (ω) are the lower and upper bounds of magnitude, and θl(ω) and
θu(ω) are the lower and upper bounds of phase.

3. COMPUTATION OF FREQUENCY DOMAIN BOUNDS

In this section, we first describe the performance bounds in frequency domain for a cir-
cuit under process variation. Then, to compute the bounds, we propose the optimization-
based method, which is very general and accurate.

We start with a specific example to look at the frequency-domain bound problem.
The example is a simplified MOS device model, as shown in the left part of Figure 3, in
which the singular network elements, like nullator and norators, are used to model the
ideal voltage-controlled current sources (VCCS). Suppose we apply a Norton current
source, that is, an ideal current source is with a parallel resistor gcur, shown in the right
part of Figure 3, onto the gate node G of the MOS model, the exact symbolic transfer
function from is to the observed voltage on drain node D can be obtained as

H( jω) = vD( jω)
is( jω)

= gm − jωCgd

( jω)2CgsCgd + jω(Cgsgds + Cgd(gds + gm + gcur)) + gdsgcur
. (5)

Once the exact transfer function and variations of the parameters, such as gm, gds, Cgd,
and Cgs, are known, one can find the bounds of H( jω). The variational bounds of the
transfer function are plotted in Figure 4, where we have two variational parameters gds
and gm. The variation spaces for the two variables at three different frequencies are also
shown on the top of the figure, which show the searching spaces at those frequencies
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Fig. 4. Frequency response of the simplified MOS model driven by Norton current source. The solid curve is
the magnitude response with nominal parameters, while the two dashed curves are lower and upper bounds
due to process variation. The three surfaces on top, with gds and gm as the x-axis and y-axis accordingly, and
magnitude as z-axis, illustrate the variations of magnitude at three sampling frequencies.

for the two variables. Here, we adopt the term searching spaces from mathematical
programming and optimization, which is used in our proposed method and will be
talked about later.

To obtain the performance bounds of analog circuits in the frequency domain, the
first step is to obtain the exact symbolic transfer functions, like Eq. (5), in terms of all
the variational circuit parameters. This will be done by the DDD-based exact symbolic
analysis, as mentioned in Section 2. We remark that one can also use a circuit simulator,
like SPICE, to evaluate the performances for a given set of parameter values and
frequency points. But the DDD method is relevant here because it can give closed-form
expressions for a given circuit performance, which can lead to much faster evaluations
compared to numerical methods [Shi and Tan 2000].

Second, after the exact symbolic transfer functions are available, we need to find
a systematic way to obtain the performance bounds given the bounds of variational
parameters. In this work, we formulate the bound computing problem into a nonlinear
constrained optimization problem. To obtain the performance bounds for magnitude
and phase at one frequency point, four evaluation processes, or optimization runs, of
the transfer function are needed: min/max optimizations for H0(ω) and min/max opti-
mizations for θ (ω). The range of frequency sweep and number of frequency points are
determined freely by the designer. We use the lower bound of the magnitude response
H0(ω) for an example. The magnitude of the transfer function, which can be evalu-
ated from the available symbolic transfer function, is used as the nonlinear objective
function to be minimized:

minimize H0(ω, x)
subject to xlower ≤ x ≤ xupper,

(6)

where x = [p1, . . . , pm] represents the circuit parameter variable vector, which is subject
to the optimization constraints xlower ≤ x ≤ xupper. In circuit design, these constraints
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Fig. 5. The flowchart of frequency domain performance bound calculation.

are supplied by foundries and cell library vendors. Hence, after Eq. (6) is solved by an
optimization engine, the lower bound of the magnitude response at ω, that is, H0

l (ω), is
returned, and a parameter set x∗ at which the minimum is attained will also be saved
as a by-product.

We remark that the worst cases of magnitude may not be the worst cases of phase,
and the two worst-case performance metrics do not have specific correlations. After we
calculate the worst case for the performances of interests, such as magnitude or phase,
at every frequency point, we can obtain the worst-case curves (upper or lower bounds)
in the frequency domain, as shown in Figure 4.

The nonlinear optimization problem with simple upper and lower bounds given in
Eq. (6) can be efficiently solved by several methods, such as active-set, interior point,
and trust region algorithms [Byrd et al. 1987; Gill et al. 1997; Floudas 1995]. All
these methods are iterative approaches starting with an initial feasible solution. In
this work, we use the active-set method [Floudas 1995], as it turns out to be the most
robust nonlinear optimization method for our application. Active-set methods are two-
phase iterative methods that provide an estimate of the active set (active set is the
set of constraints that are satisfied with equality) at the solution. In the first phase,
the objective is ignored, while a feasible point x0 is found for the constraints. In the
second phase, the objective is minimized while feasibility is maintained. Starting from
the feasible x0, the second phase computes a sequence of feasible solutions {xk} such
that xk+1 = xk + αkpk, where pk is a nonzero search direction and αk is a nonnegative
step length. Hence, the new solution xk+1 makes the cost function or objective function
smaller than its precedent xk does. Methods like quadratic programming can be used
in this phase.

To further speed up the optimization, the initial point selection can be further im-
proved. Since the responses at two neighboring frequency points are usually close to
each other, the starting point x for frequency point ωi+1 can be set using the solution
at the previous frequency point ωi. Therefore, the initial guess point does not always
have to be the nominal value set, and the previous frequency’s optimal point is heuris-
tically the best shortcut of initial guess at current frequency. This strategy tends to
reduce the time required by the optimization to search its minimal or maximal point in
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ALGORITHM 1: Calculation of Frequency Response Bounds via Symbolic Analysis and Non-
linear Constrained Optimization
1: Read circuit netlist.
2: Set bounds on process variation affected parameters.
3: Generate symbolic expression of transfer functions.
4: for each frequency ωi do
5: Nonlinear constrained optimization (6) which uses transfer function as objective to find

magnitude and phase bounds on ωi.
6: end for
7: Save bound information for future statistical and yield analysis.

the whole variation space, and thus speed up the calculation time of the bound analysis.
Figure 5 summarizes the flow of the performance bound calculation.

We remark that the active-set method is still a local optimization method, which
finds the local optimum. It will be desirable to find the global optimum, which can give
true “confident” bounds of performance. But this goal may come with more or much
higher computing costs by performing many tries. The effort boils down to a trade-off
between accuracy and costs in this problem. In our approach, we still perform one
optimization. Our experimental results show that by using reasonable initial guesses,
as mentioned before, the proposed method gives very close bounds compared with MC
methods for the examples being used.

4. TIME-DOMAIN BOUND ANALYSIS METHOD

In the previous section, we have shown our frequency-domain performance bound
method using symbolic analysis and constrained optimization. Based on the calculated
frequency-domain bounds, we next develop our time-domain bound analysis, or TIDBA,
which converts the frequency-domain bounds to time-domain bounds for general input
signals. TIDBA is inspired by Pritchard and Wigdorowitz [1997], which determines
time-domain performance bounds of an uncertain system for impulse or step input sig-
nals. However, this method does not give transient performance bounds in response to
general input signals, which are required by analog circuit analysis. Note that the
bounds of magnitude and phase of the transfer function required by TIDBA can be
generated by any existing bound analysis methods and not limited to the one we pro-
posed in the previous section.

We first present the whole TIDBA flow in Algorithm 2. As can be seen from the flow,
the time-domain bound analysis requires the results, such as transfer function bounds
from the procedures we studied in previous sections. After the first two steps, the
bounds of magnitude and phase (angle) shown in Inequalities (3) and (4) are available.
Then TIDBA converts frequency-domain performance bounds into time-domain per-
formance bounds by impulse-signal-based time-domain bound analysis and FFT/IFFT,
which will be the focus of this section.

4.1. Review of Transient Bound Analysis Driven by Impulse Signals

For the completeness of our presentation, we briefly review the work in Pritchard
and Wigdorowitz [1997], which provides transient bound analysis with impulse input
signals.

For a purely real signal x(t) in the time domain, its Fourier transform X( jω) =
X0(ω) · e jφ(ω) in the frequency domain holds the property of conjugate symmetry, that
is,

X(− jω) = X( jω)∗. (7)
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ALGORITHM 2: The Algorithm Flow of the New Time-Domain Performance Bound Analysis—
TIDBA
Input: Circuit netlist with variational parameters; stimulus signal of the circuit.
Output: Lower and upper bounds of the output signal in time domain.
1: Generate symbolic expression of circuit transfer function by graph-based symbolic method.

Variational parameters are represented as symbols.
2: Compute the performance bounds of the variational transfer function by nonlinear

constrained optimization.
3: Compute time domain performance bounds by our new general-signal transient bound

analysis presented in Section 4.2.

It can be equivalently expressed by the even property of magnitude and the odd prop-
erty of phase: X0(−ω) = X0(ω), and φ(−ω) = −φ(ω). It is not difficult to show that the
transfer function of a physically-realizable system also holds the conjugate symmetry
property [Lathi 1998].

Since the spectrum of an impulse signal δ(t) is X( jω) = 1 everywhere on all frequen-
cies, the spectrum of the system’s output signal is Y ( jω) = X( jω)H( jω) = H( jω), and
hence the impulse response of the system in time domain is simply the inverse Fourier
transform of H( jω),

y(t) = 1
2π

∫ ∞

−∞
H( jω)e jωt dω

= 1
2π

∫ ∞

−∞
H0(ω)e j(ωt+θ(ω)) dω, t > 0. (8)

Employing the even and odd properties of H( jω), Eq. (8) can be equivalently integrated
from ω = 0 to ∞,

y(t) = 1
π

∫ ∞

0
H0(ω)Re

(
e j(ωt+θ(ω))) dω

= 1
π

∫ ∞

0
H0(ω) cos(ωt + θ (ω)) dω, t > 0. (9)

A modification of this integral to discrete sum on sampled frequency points allows one
to calculate the approximate result of y(t) at each time point as

y(t) = 1
π

N−1∑
n=0

H0(ωn) cos(ωnt + θ (ωn))︸ ︷︷ ︸
I(ωn)

�ωn, t > 0. (10)

In the presence of process variation, the transfer function will be given in the bounded
form in Inequalities (3) and (4). Therefore, to compute the lower and upper transient
bounds yl(t) and yu(t) for each time point t, the integrand body I(ωn) in Eq. (10) is
calculated using the following rules.

First, find the minimum and maximum values of cos(ωnt + θ (ωn)), where the phase
angle θ (ωn) can vary in the interval [θl(ωn), θu(ωn)]. Let Cmin(ωn) and Cmax(ωn) denote the
two extreme values of the cosine function. Then, for yl(t), all I(ωn) shall be calculated
as

I(ωn) =
{

H0
u (ωn)Cmin(ωn), Cmin(ωn) ≤ 0

H0
l (ωn)Cmin(ωn), Cmin(ωn) > 0,

(11)
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and, for yu(t), the situation is simply reversed,

I(ωn) =
{

H0
l (ωn)Cmax(ωn), Cmax(ωn) ≤ 0

H0
u (ωn)Cmax(ωn), Cmax(ωn) > 0.

(12)

4.2. Proposed General Signal Transient Bound Analysis Method

For a general time-domain signal x(t) in circuit analysis application, its frequency-
domain transform X( jω) can be calculated by fast Fourier transform, FFT. This requires
sampling points of the signal on a set of discretized time points. For example, with a
uniform sampling period Ts = 1/Fs, x(t) is sampled and stored as x(0), x(Ts), x(2Ts), . . . ,
x(NTs). For the sake of simplicity, we will omit the term Ts and denote the time point
indices by subscripts in the remainder of this paper. Thus the notation xn will stand for
the sampled value of signal x(t) at time t = nTs.

To achieve accurate results from FFT and IFFT, the Nyquist sampling theorem
requires the sampling frequency Fs = 1/Ts to be at least twice that of the bandwidth
of the signal [Oppenheim and Schafer 1999]. Meanwhile, the total sampling duration
T0 = Ts N determines the resolution of the FFT spectrum, that is, the sampling interval
of frequency domain is F0 = 1/T0. The longer T0 is, the higher spectral resolution we
can get, and thus the more sampling points are needed.

Given N sampling points, the FFT transform pair is

Xk =
N−1∑
n=0

xne− j 2π
N nk, k = 0, 1, . . . , N − 1, and (13)

xn = 1
N

N−1∑
k=0

Xke j 2π
N nk, n = 0, 1, . . . , N − 1. (14)

In transient circuit analysis, the input data xn are purely real, and the symmetry
property in Eq. 7 still holds, though in a different form, XN−k = X∗

k. This means that
the right half of spectrum Xk is a conjugate swap of its left half, except for X0, which
is the zero-frequency or “DC” component of the spectrum. The points in the left half,
that is, Xk for k = 0, . . . , N/2, are the spectral points of frequencies f = kF0. Figure 6
illustrates the FFT series and its conjugate symmetry property.

Based on this property of a real signal’s spectrum, the inverse discrete Fourier trans-
form can be calculated with the spectrum’s left half. Consequently, the equivalent form
of Eq. (14) becomes

xn = 1
N

⎡
⎣X0 + 2

N/2∑
k=1

Re
(
Xke j 2π

N nk)
⎤
⎦ , n = 0, 1, . . . , N − 1. (15)

We remark that using only the left half of the complex-valued frequency-domain
samplings is not just for the sake of simplifying the text. In implementation, this
also saves processing time and storage memory. The popular FFT library FFTW now
provides a function interface for this so-called halfcomplex application. Further details
about its usage in our program can be found at in Frigo and Johnson [2013].

Now it is the time to derive the time response bounds from the FFT series of signal
x(t) given the frequency response bounds of the system H( jω). First we consider the
system without variation. After FFT is applied to xn, as represented in Eq. (13), its
spectrum Xk = |Xk|e jφk is multiplied with Hk = H( jωk), ωk = 2πkF0, to obtain the
spectrum of output signal. Then, we make a domain translation from the frequency
domain to time domain, which is similar to Eq. (15). In this way, the output signal yn
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Fig. 6. Conjugate symmetry between left half and right half of the FFT series Xk, k = 0, . . . , N − 1.

is obtained for the nominal designed system.

yn= 1
N

⎡
⎣Y0 + 2

N/2∑
k=1

Re
[
Yke j 2π

N nk]
⎤
⎦

= 1
N

⎡
⎣X0 H0(0) + 2

N/2∑
k=1

Re
[
H0(ωk)e jθ(ωk) Xke j 2π

N nk]
⎤
⎦

= 1
N

⎡
⎣X0 H0(0) + 2

N/2∑
k=1

|Xk|H0(ωk)Re
[
e j(φk+θ(ωk)+ 2π

N nk)
]⎤⎦ . (16)

Now we consider the process variations. In this case, the minimum and maximum
values, similar to Eqs. (11) and (12) for impulse signals, have to be derived from
Eq. (16) in the bounded region of the system transfer function at every frequency
point. Specifically, the selection and combinations of H0(ω) and θ (ω) will depend on
the sign of the real part of the output spectrum, that is, Re{e j(φk+θ(ωk)+ 2π

N nk)}. Detailed
analysis shows that there are many combinations of extreme values of H0(ω) and
θ (ω), depending on the locations of φk + θ (ωk) + 2π

N nk in the complex plane, which are
summarized in Table I. Let’s walk through one example illustrated in Figure 7, where
all possible values of θ (ωk) make the phase φk + θ (ωk) + 2π

N nk fall in the first quadrant,
and thus their real parts are all positive. Therefore, the selection of H0

l (ωk) and θu(ωk)
will lead to the minimum of output value, while H0

u (ωk) and θl(ωk) lead to the maximum
one. In Figure 7, these two combinations are marked by black dots.

We remark that the range of allowed phase values [θl(ωk), θu(ωk)] affects the rules for
bound determination, as shown in Table I. In this article, we restrict the maximum
phase range to be less than 90 degrees, that is, θu(ωk)−θl(ωk) < π/2 rads. There are two
reasons for this restriction: (1) the restriction of 90 degrees accommodates most circuit
transfer function’s variation very well; (2) if much larger phase variation is detected
at the frequency domain, the variation will likely cause faults in the circuit. We stress
that there is no difficulty in generating new bound determination rules to handle phase
ranges larger than 90 degrees.

With this assumption, the rules for time-domain bound determination are summa-
rized in Table I. For brevity, let 	l(ωk) = φk + θl(ωk) + 2π

N nk, and 	u(ωk) = φk + θu(ωk) +
2π
N nk. If the range of 	 is not covered by the enumerated regions, a phase shift of 2π

could be applied to relocate its value into the listed ranges. In addition, the “either

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 1, Article 6, Pub. date: December 2013.



6:12 X.-X. Liu et al.

Fig. 7. The magnification and rotation of input spectrum by the transfer function bounds.

Table I. Rules for Time-Domain Bound Determination

range of phase quad- sign of magnitude and phase combinations for
	l(ωk) 	u(ωk) rants Re[e j	] lower bound upper bound

(−π/2, 0) (0, π/2) IV, I + H0
l (ωk)

either 	l(ωk)
H0

u (ωk) 	(ωk) = 0
or 	u(ωk)

(0, π/2) (0, π/2) I + H0
l (ωk) 	u(ωk) H0

u (ωk) 	l(ωk)
(0, π/2) (π/2, π ) I, II +, − H0

u (ωk) 	u(ωk) H0
u (ωk) 	l(ωk)

(π/2, π ) (π/2, π ) II − H0
u (ωk) 	u(ωk) H0

l (ωk) 	l(ωk)

(π/2, π ) (π, 3π/2) II, III − H0
u (ωk) 	(ωk) = π H0

l (ωk)
either 	l(ωk)

or 	u(ωk)
(π, 3π/2) (π, 3π/2) III − H0

u (ωk) 	l(ωk) H0
l (ωk) 	u(ωk)

(π, 3π/2) (3π/2, 2π ) III, IV +, − H0
u (ωk) 	l(ωk) H0

u (ωk) 	u(ωk)
(3π/2, 2π )(3π/2, 2π ) IV + H0

l (ωk) 	l(ωk) H0
u (ωk) 	u(ωk)

	l(ωk) or 	u(ωk)” in the first row and the fifth row in the table means one of them will
be selected: in the first row, the lower bound will happen at one of them, which makes
cos(	) smaller; and in the fifth row, the upper bound will take place at the phase angle
making cos(	) larger. Similarly, the uncertainty region described in the third row cov-
ers the first and the second quadrants, and this results in a evaluation of Re[e j	] with
positive or negative sign. Therefore, the lower bound of y is reached with the upper
bound of magnitude and upper bound of phase angle, which makes the value of cos(	u)
the largest negative number. The upper bound of y is obtained in a converse way.

Figure 8 shows the implementation flow of the proposed general-signal transient
bound determination method. It starts from a time-domain sampling of input signal
x(t) and given system transfer function bounds in frequency domain. The FFT
operation transforms the input signal to its spectrum, and then the proposed rules in
Table I are applied to determine the magnitude and phase combinations for lower and
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Fig. 8. The proposed general-signal transient bound determination method.

upper time-domain bounds at every frequency point in the left half of the spectrum.
This process is marked by the dashed line box, labeled “1” in Figure 8. Next, frequency
domain results, that is, Y0, Y1, . . . , YN/2, either lower ones or upper ones, are used to
construct a full N-length series based on conjugate symmetry property. Last, IFFT
is used to calculate the final result of time-domain bounds. This procedure is also
marked by dashed line box, labeled “2” in the figure.

5. NUMERICAL RESULTS

In this section, we show experimental results of the proposed method on some bench-
mark analog circuit netlists. Both frequency-domain bounds and time-domain bounds
are calculated by our new method. As an application, frequency-domain analog yield
analysis is also performed for two circuits based on the magnitude and phase bounds.
This section is divided into two sections: the first shows the frequency-domain re-
sponse bound results, while the second one demonstrates those results of time-domain
response bounds.

For running time comparisons, we also measure the time cost by the commercial
HSPICE, which runs all the Monte Carlo (MC) simulations. All running times are
obtained from a Linux server with a 2.4GHz Intel Xeon Quad-Core CPU and 36GB
memory.
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Fig. 9. CMOS operational amplifier and its test circuit.

Table II. Variational Parameters Used in the CMOS Opamp

Affected transistor Model parameter Nominal value Variation

M1, M2

gm 1.48 × 10−5 
−1

5%
gds 2.33 × 10−8 
−1

Cgs 5.16 fF
Cgd 0.31 fF

M9
gm 1.23 × 10−4 
−1

10%
gds 3.94 × 10−7 
−1

5.1. Frequency-Domain Response Bounds

The exact transfer function expressions are generated by the DDD symbolic analysis
tool [Shi and Tan 2000], and all the follow-up optimization-based bound calculations are
done in MATLAB. The nonlinear constrained optimizations are solved by the fmincon
function in MATLAB’s Optimization Toolbox [Mathworks 2012]. The active-set algo-
rithm is chosen as the optimization algorithm in fmincon. (We have also tried other
methods and found that the active-set method is the most robust and reliable.)

We first investigate the accuracy and efficiency of our frequency-domain method
with typical circuit examples. Figure 9(a) shows the schematic of a CMOS operational
amplifier, which contains nine transistors. Its differential inputs are provided at the
gate terminals of the differential pair of M1 and M2, while the output is observed
at the output node of the source follower stage. For the purpose of testing and simu-
lation, a feedback loop is added between its output and negative input, and the two
resistors Rf and Rs have the same value. Therefore, the circuit shown in Figure 9(b)
is configured as a unit-gain buffer, Vout = −(Rf /Rs)Vin = −Vin. DC analysis is first
performed by HSPICE to obtain the operating point, and then small-signal models of
nonlinear devices, such as MOS transistors, are used for DDD symbolic analysis and
transfer function evaluation. For example, the original NMOS device is replaced by the
equivalent circuit model consisting of voltage-controlled current source (VCCS), gate-
source capacitance (Cgs), gate-drain capacitance (Cgd), terminal resistance, and so on.
We actually use the MOS small-signal model shown in Figure 3, with singular network
elements, like nullator and norators. The combination of these elements in the MOS
model behaves as an ideal VCCS. However, the properties of the nullator (which does
not allow current flowing through it and provides zero voltage difference between its
two terminals, i.e., the voltage values on nodes G and N are the same) and the norator
(which allows any voltage across its two terminals and any current flowing through it)
allow us to formulate more compact equations than MNA [Sánchez-López et al. 2011].
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Fig. 10. Magnitude bounds of CMOS opamp using the proposed method and MC simulations. The thick
solid curve is nominal magnitude response, the two thin solid curves are bounds from the proposed method,
and dashed curves are 3-sigma bounds of 5,000 times MC analysis. It is obvious that our bounds are tight
and accurate if compared with MC bounds.

Fig. 11. The histogram of the magnitude distribution of the CMOS opamp at frequency f = 1 MHz using
5,000 times MC simulation. The two vertical lines are the bounds from the proposed method, and the dashed
curve is the estimated Gaussian pdf using our bound information.

For the CMOS opamp, we enumerate the variational parameters used in the experi-
ments in Table II. The variational parameters are introduced to transconductance (gm),
resistors, and capacitors inside the transistor model. Since transistors in the differen-
tial pair are subjected to symmetry requirements, we apply a relatively small variation
(5%) on them. As a result, there are a total of ten variational parameters in this ex-
ample. The active filter example has seven variational parameters, which are modeled
in a similar way. Note that we assume that information of the variational parameters
listed in Table II have been characterized during device-level variation modeling pro-
cess based on the data from foundry. The parameters will take Gaussian distributions
with their 3-sigma bounds ([μ−3σ,μ+3σ ], where μ is the mean and σ is the standard
deviation of the Gaussian variable) matching the bounds listed in Table II.

After the symbolic expressions, that is, numerator and denominator, of the opamp’s
transfer function are obtained, the nominal frequency response can be evaluated
straightforwardly using the specified parameter values. The lower and upper bounds
of the magnitude and phase are then obtained by the aforementioned constrained op-
timization. Figure 10 plots the nominal magnitude curve along with its lower and
upper bounds. On the same figure, we also plot the 3-sigma bounds calculated from
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Table III. Statistical Information of the CMOS
Opamp Circuit

CMOS opamp
Runtime (seconds) MC 85.2

proposed 3.8
Mean value (μ) MC −0.29

Unit: dB proposed −0.29
Std. value (σ ) MC 0.0365

Unit: dB proposed 0.0367
Yield rate MC 93.9%

proposed 94.5%

Note: Comparison with 5,000 times MC.

Table IV. Statistical Information of the CMOS
Filter

CMOS Filter
Runtime (seconds) MC 100.4

proposed 8.2
Mean value (μ) MC 26.83

Unit: dB proposed 26.81
Std. value (σ ) MC 0.389

Unit: dB proposed 0.384
Yield rate MC 82.7%

proposed 84.2%

Note: Comparison with 5,000 times MC.

5,000 MC samples of the same circuits. It is obvious that our bounds include all possible
variations and do not show much over-conservativeness. The result demonstrates the
effectiveness of the optimization-based method to find accurate bounds.

We also remark that for a fair comparison, both the MC method and the proposed
performance bound analysis method are applied to the same circuits with the same
device models and statistical distributions of parameters.

As an application of the proposed method, we apply the proposed method for analog
yield estimation. We illustrate this using the same opamp. The yield estimation is
calculated using preset specifications. For the CMOS opamp in Figure 9, we set a
requirement that the accepted circuit should have its gain larger than −0.35 dB at
frequency f = 1 MHz. HSPICE MC analysis with 5,000 samples gives the yield as
93.9%, and the histogram of all samples is drawn in Figure 11. Meanwhile, the predicted
yield using the proposed method is 94.5%, which is fairly close to that of the MC
analysis. The detailed statistics of the comparison are shown in Table III. With the
accurate calculation of performance bounds and the yield, the presented method only
takes 3.8 seconds. This is a 22× speedup over the 5,000 MC simulations.

The proposed algorithm is also applied to a CMOS active filter [Palma-Rodriguez
et al. 2012] (circuit diagram not shown in our article). Figure 12 shows the magnitude
bounds together with HSPICE MC results. In this figure, we show the curves of the
proposed method, the 3-sigma curves, and 6-sigma curves from MC results. As we can
see, the proposed method matches the 3-sigma curves very well. We remark that our
parameter variations are mainly bounded by their 3-sigma ranges, which lead to a
better match with 3-sigma responses of the MC analysis. The statistical data is listed
in Table IV. A speedup of 13× is observed on this example.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 1, Article 6, Pub. date: December 2013.



Performance Bound Analysis of Analog Circuits 6:17

Fig. 12. Comparison of bounds from MC and the proposed method of magnitude response of active filter.
The MC bounds are calculated as 3-sigma and 6-sigma bounds of 5,000 samples. It is noticeable that our
bounds capture MC’s 3-sigma bounds accurately.

Table V. Performance Comparison of TIDBA
against MC Method (10,000 Times)

Circuit CPU time speed
name MC (10,000) TIDBA up

Opamp 362.9 s 11.2 s 32×
Filter 459.7 s 12.1 s 38×
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Fig. 13. Time-domain response of CMOS opamp with pulse input. Thick solid curve represent the nominal
response. Thin solid curves are bounds from the proposed TIDBA method, while dash curves are bounds of
10,000 MC results.

5.2. Time-Domain Response Bounds

Using the frequency-domain bounds we calculated in the previous experiments, the
time-domain bounds of the CMOS opamp are obtained by the TIDBA method. Figure 13
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Fig. 14. Time-domain response of the active filter with pulse wave input. The two solid curves are the
lower and upper bounds from the proposed TIDBA method, and the dashed curves are bounds of 10,000 MC
simulations. The dot-dashed curve in the middle is the nominal transient response.

shows bounds of 10,000 MC pulse responses at the output node of the opamp as dashed
curves, and the bounds generated from TIDBA are overlaid onto the same figure as
solid curves.

We also simulated the active filter with a pulse waveform as input. Bounds of MC
waveforms observed at the output node are plotted as dashed curves in Figure 14.
Due to the process variation of the filter, it can be observed that the output waveforms
deviated from its nominal benchmark. Detailed plots of the up ramp and down ramp
are shown in Figures 14(b) and 14(c). The time-domain performance bounds, computed
by TIDBA, are plotted as solid curves. An input signal comprised of several sinusoidal
waves are also used to test this filter. Its possible minimum and maximum values in
time domain and the TIDBA bounds are plotted in Figure 15.

We notice that the bounds given by TIDBA may not be able to converge to the steady
state of the response, for example, after 0.06 seconds in Figure 14(a), which should
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Fig. 15. Time-domain response of the active filter with sinusoidal wave input. The two solid curves are
the lower and upper bounds from the proposed method, while the dashed curves are bounds of 10,000 MC
simulations. The dot-dashed curve in the middle is the nominal response.

be zero. This is due to the loss of dependence between magnitude and phase when we
apply the frequency response bounds of inequalities (3) and (4). However, for many
steady states, which are known to be zero, even with variations in parameters, we can
ignore the bounds given by the proposed method. Another way to mitigate this problem
is to directly compute time-domain bounds using the optimization-based approaches,
which will be investigated in our future works.

We remark that TIDBA seemingly overestimates the performance bounds, as shown
in Figures 13 to 15. But the results at least are conservative. The overestimation is
due to the nature of the proposed algorithm, as we formulate the problem into two
phases. In the first phase, performance bounds are computed in frequency domain for
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magnitudes and phases independently. The second phase computes the time-domain
bounds based on the frequency-domain bounds. Such a two-phase approach relaxes
some properties of the signals going through analog systems in the time domain. For
instance, we lose the dependence between magnitudes and phases as we optimize them
separately. As a result, the two-phase method leads to a relaxed optimization problem
and thus overestimated results.

Table V summarizes the experiment parameters and running time comparisons. The
two examples still use the same variational parameter setup as in the frequency domain
experiments, and the MC transient simulation generates 10,000 samples. TIDBA takes
a total number of 6,400 time-domain samplings on input stimulus and feeds them to
FFT. The running time measurements of MC and TIDBA are also listed in the table.
The maximum speedup of TIDBA over MC could be 38×.

6. CONCLUSIONS AND FUTURE WORKS

We have proposed a new performance bound analysis flow of analog circuits consider-
ing process variations in both time and frequency domains. The new method applies a
graph-based analysis technique to derive the symbolic transfer functions of linear(ized)
analog circuits. Then the problem of finding frequency response bounds is formulated
into a nonlinear constrained optimization problem, where the cost functions are mag-
nitude and phase of the transfer function subject to the linear constraints, which are
the upper and lower bounds of process variational parameters. The frequency-domain
bounds calculated in this way are accurate and show no over-conservativeness suf-
fered by the previous approaches. Based on the frequency response bounds, we further
propose an algorithm to compute time-domain response bounds of circuits with any
arbitrary input signals. Experimental results from several analog benchmark circuits
show that the proposed method gives the correct bounds verified by Monte Carlo (MC)
analysis while it delivers one order of magnitude speedup over MC in both frequency
and time domain. We have also shown analog circuit yield analysis as an application
of the frequency-domain variational bound analysis.

Currently, the proposed method can only work on linear or linearized analog circuits.
We are working on the performance bound analysis for general nonlinear circuits. For
many circuits where time domain analysis is mainly performed, direct time-domain-
based bound analysis using optimization method will be more desirable and will be
investigated in the future.
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SÁNCHEZ-LÓPEZ, C., FERNÁNDEZ, F. V., TLELO-CUAUTLE, E., AND TAN, S. X.-D. 2011. Pathological element-based
active device models and their application to symbolic analysis. IEEE Trans. Circ. Syst. 58, 6, 1382–1395.

SHI, C.-J. AND TAN, X.-D. 2000. Canonical symbolic analysis of large analog circuits with determinant decision
diagrams. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 19, 1, 1–18.

SHI, C.-J. AND TAN, X.-D. 2001. Compact representation and efficient generation of s-expanded symbolic
network functions for computer-aided analog circuit design. IEEE Trans. Comput.-Aid. Des. Integr. Circ.
Syst. 20, 7, 813–827.

SHI, C.-J. R. AND TIAN, M. W. 1999. Simulation and sensitivity of linear analog circuits under parameter
variations by robust interval analysis. ACM Trans. Des. Autom. Electron. Syst. 4, 280–312.

SINGHEE, A. AND RUTENBAR, R. A. 2010. Why quasi-Monte Carlo is better than Monte Carlo or latin hypercube
sampling for statistical circuit analysis. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 29, 11, 1763–
1776.

SONG, Y., YU, H., DINAKARRAO, S. M. P., AND SHI, G. 2013. SRAM dynamic stability verification by reacha-
bility analysis with consideration of threshold voltage variation. In Proceedings of the International
Symposium on Physical Design (ISPD). 43–49.

SPENCE, R. AND SOIN, R. 1988. Tolerance Design of Electronic Circuits. Addison-Wesley, Reading, MA.
TAN, S. X.-D., GUO, W., AND QI, Z. 2005. Hierarchical approach to exact symbolic analysis of large analog

circuits. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 24, 8, 1241–1250.
TIAN, W., LING, X.-T., AND LIU, R.-W. 1996. Novel methods for circuit worst-case tolerance analysis. IEEE

Trans. Circ. Sys. I: Fund. Theory Appl. 43, 4, 272–278.
VLACH, J. AND SINGHAL, K. 1995. Computer Methods for Circuit Analysis and Design. Van Nostrand Reinhold,

New York, NY.

Received January 2013; revised June, July 2013; accepted July 2013

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 1, Article 6, Pub. date: December 2013.


