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The feasible solutions provided by a multi-objective evolutionary algorithm (MOEA) in the
optimal sizing of analog integrated circuits (ICs) can be very sensitive to process variations.
Therefore, to select the optimal sizes of metal–oxide–semiconductor field-effect-transis-
tors (MOSFETs) but with low sensitivities, we propose to perform multi-parameter sensi-
tivity analysis. However, since MOEAs generate feasible solutions without an explicit
equation, then we show the application of Richardson extrapolation to approximate the
partial derivatives associated to the sensitivities of the performances of an amplifier with
respect to the sizes of every MOSFET. The proposed multi-parameter sensitivity analysis is
verified through the optimization of a recycled folded cascode (RFC) operational transcon-
ductance amplifier (OTA). We show the behavior of the multi-parameter sensitivity
approach versus generations. The final results show that the optimal sizes, selected after
executing the sensitivity approach, guarantee the lowest sensitivities values while improv-
ing the performances of the RFC OTA.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

To have a general idea on analog integrated circuit (IC) sizing strategies developed by researchers and companies during
the last 20 years, an overview on the classification and a brief description of the majority of them can be found in [1].
Although these works and other recently published strategies [2–4] provide good sizing solutions, still the analog design
community deals with the hard open problem related to process variations [5,6]. In this manner, we propose to perform mul-
ti-parameter sensitivity analysis to the feasible solutions provided by a multi-objective evolutionary algorithm (MOEA), with
the goal to select the optimal sizes of an analog IC but with low sensitivities. Because very often, the best feasible solutions
meeting extreme performance requirements are located at some peripherals of the feasible solution space, but some vari-
ability in the design parameters can transform a best solution to a worst one [7,6,8,5].

Since our proposed multi-parameter sensitivity analysis is performed from numerical data instead of using explicit equa-
tions, we propose to apply numerical finite differences and Richardson extrapolation [9–12], to approximate the partial
derivatives associated to the sensitivities of the sizing relationships W/L (width/large) of the MOSFETs. These processes
are performed in two domains: variables W/L (design parameters) and objectives, where both are evaluated by linking
HSPICE�.

The first step of our proposed approach consists on conventional optimization by applying the MOEA called non-domi-
nated sorting genetic algorithm (NSGA-II) [13]. The second step is devoted to perform multi-parameter sensitivity analysis
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for all feasible solutions in the Pareto front. The goal is to discriminate those feasible solutions located in a delicate point that
does not support the natural variations of the fabrication processes, i.e. those having large sensitivities.

2. Multi-objective optimization

The optimization stage is performed by applying the MOEA NSGA-II, to minimize a problem of the form [14]:
minimize fðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fmðxÞ�T

subject to hkðxÞP 0; k ¼ 1 . . . p;
ð1Þ
where function f : Rn ! Rm, x ¼ ½x1; . . . ; xn�T is the decision vector and n is the number of variables; x 2 X, where X � Rn is the
decision space for the variables. Every objective function fjðxÞ : Rn ! R; j ¼ 1 . . . m ðm P 2Þ and hkðxÞ; k ¼ 1 . . . p are perfor-
mance constraints.

Very often, since the objectives in (1) contradict each other, no point x 2 X minimizes all the objectives simultaneously.
The best tradeoffs among the objectives can be defined in terms of Pareto optimality [15–17].

The NSGA-II Algorithm is based on Pareto ranking. First, two populations (Po and Q o) are generated, each one of size N. The
NSGA-II procedure in each generation consists of rebuilding the current (t) population (Rt) from the two original populations
(Pt and Qt). Next, through a nondominated sorting procedure all solutions in Rt are ranked and classified in a family of sub-
fronts [13]. In the next step, a new offspring (Ptþ1) is created from the current population Rt (previously ranked and ordered
by sub-front number), with the goal to choose from a population of size 2N;N solutions belonging to the first sub-fronts.
Besides, the last sub-front could be greater than necessary, and then a measure (idistance) is used to preserve diversity by
selecting the solutions that are far from the rest [18]. To build new generations we use differential evolution (DE) [19], as
genetic operator.

Regarding to circuit sizing, each variable x represents the width (W) or length (L) of the MOSFETs. Usually, those values
are integer-multiples of the minimum value allowed by the fabrication processes. In this manner, if the W/L relationship is
expressed in multiples of the minimum L, then the DE operator is performed by rounding W/L to the closer multiple of the
minimum L.

3. Multi-parameter sensitivity analysis

The relative or normalized sensitivity (S) can be defined as the cause and effect relationship between the circuit elements
variations, and the resulting changes in the performances response [20,21]. Furthermore, in the design of analog ICs the low-
est sensitivity is very desired.

Let fiðxÞ be an objective function (performance response), where x ¼ ½x1; . . . ; xn�T are the design variables. It is possible to
relate small changes in the response of the performance (@fi, i 2 ½1;m�) to variations in the design variables (@xj; j 2 ½1;n�). It
leads us to the single parameter sensitivity definition given by,
Sfi
xj
’ xj

fi

@fi

@xj
: ð2Þ
According to (2), there is one sensitivity for each objective function in f (see (1)) and for each variable in x. Then, it is
possible to define the multi-parameter sensitivity which sums the different single sensitivities regarding the different vari-
ables for each objective as follows [21]:
Sfj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

S
fj
xi

��� ���2 � r2
xi

vuut ; ð3Þ
where S
fj
xi

is calculated by (2), rxi
is a variability parameter of xi and the square root is used to preserve the same units.

The performances of an analog IC are evaluated using HSPICE�, and they are considered as the objective functions. As one
can infer, using a numerical circuit simulator, there is not possibility to derive an explicit equation for each performance or
objective function. Therefore, in order to calculate the partial derivative required by (2), the Richardson extrapolation de-
scribed by (4), is used herein:
@fi

@xj
� giðx; j;dÞ � giðx; j;�dÞ

2d
; with d! 0; ð4Þ
where function gi is defined as:
gi : Rn ! R;

giðx; j; dÞ ¼ fiðyÞ jyk ¼ xk for k – j and yj ¼ xj þ d:
ð5Þ
In (4), d is a step parameter that is updated in each iteration [22], for this case d ¼ 2�udu�1; d0 is assigned to an initial value
and u is the current iteration. The recursive calculation continues until a tolerance error, as stopping criterion (d), is reached.
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Our proposed multi-parameter sensitivity analysis approach is based on the Richardson extrapolation sketched in Algo-
rithm 1. This algorithm is performed until the stopping criterion (d) is reached, and according to Fig. 5, only the feasible solu-
tions provided by the MOEA NSGA-II (accomplishing target specifications) are introduced to the multi-parameter sensitivity
analysis.

Due to the iterative processes in Algorithm 1, it is possible to have stagnation in the f 0u;v evaluation (line 9 of Algorithm 1),
when the very small value of d does not produce difference between f 0u;v�1 and f 0u�1;v�1. If that happens, the algorithm saves
the last value before the stagnation to avoid a wrong derivative value.

Algorithm 1. Richardson Extrapolation

1: h ¼ h0

2: for u ¼ 0; u < MaxLoops ; uþþ do
3: for v ¼ 0; v < MaxLoops ; v þþ do
4: if v ¼¼ 0 then
5: gþ = Function evaluation with the parameter +d
6: g� = Function evaluation with the parameter �d
7: f 0u;v ¼ ðgþ � g�Þ=ð2 � dÞ
8: else
9: f 0u;v ¼ f 0u;v�1 þ ðf 0u;v�1 � f 0u�1;v�1Þ=ð2 � �ð2 � vÞ � 1Þ
10: if jf 0u;v � f 0u;v�1j < d then
11: break
12: d d=2;
13: return f 0u;v
For instance, let x ¼ ½x1; x2; x3�T be any solution from the feasible solutions set and fðxÞ ¼ ½f1ðxÞ; f2ðxÞ; f3ðxÞ�T its objective
vector. For the objective function f1, and for a given initial value of d, the first estimations for the partial derivatives
@f1

@x1
� g1ðx;1;dÞ � g1ðx;1;�dÞ

2d
;

@f1

@x2
� g1ðx;2;dÞ � g1ðx;2;�dÞ

2d
;

@f1

@x3
� g1ðx;3;dÞ � g1ðx;3;�dÞ

2d
are calculated. Next, the Richardson extrapolation is executed. That way, the multi-parameter sensitivity for function f1 is
calculated as
Sf1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sf1
x1

� �2
r2

x1
þ Sf1

x2

� �2
r2

x2
þ Sf1

x3

� �2
r2

x3

r
:

The other multi-parameter sensitivities Sf2 and Sf3 are calculated with the same procedure. In our implementation of the
Richardson extrapolation, the three partial derivatives for all the functions f1; f 2 and f3, with respect to a variable xi (say
x1), are calculated in a single HSPICE simulation, because those values correspond to the variation of x1 � d. The Richardson
extrapolation is executed until the stop criteria is reached for all the three partial derivatives.

With the aim to highlight the behavior of the Richardson extrapolation, an example on the calculation of the
multi-parameter sensitivity of the SRN function described by (6) [13], is exposed herein. It consists to evaluate two objective
functions ½f1ðxÞ; f2ðxÞ�T , with two variables x ¼ ½x1; x2�T , and taking into account two constraints h1 and h2. This optimization
problem is minimized by using the NSGA-II algorithm with a population size of 100, leading to the result shown in Fig. 1,
where are depicted the non-dominated solutions after 250 generations. From these numerical feasible solutions we apply
the Richardson extrapolation to evaluate the sensitivity of every solution, with d0 ¼ 5% for the current variable and d < 1%.
SRN ¼

f1ðxÞ ¼ ðx1 � 2Þ2 þ ðx2 � 1Þ2 þ 2;

f2ðxÞ ¼ 9x1 � ðx2 � 1Þ2;
h1ðxÞ ¼ x2

1 þ x2
2 6 225;

h2ðxÞ ¼ x2
1 � 3x2

2 6 �10:

8>>>><
>>>>:

ð6Þ
Left side of Fig. 2 shows the analytical and numerical solution by applying Richardson extrapolation of the partial deriv-
atives for f1 and f2 for the variable x1 : @f1=@x1 ¼ 2ðx1 � 2Þ and @f2=@x1 ¼ 9. The solid line represents the analytical derivative
and markers show the Richardson extrapolation derivative. These results demonstrate that the Richardson extrapolation cal-
culated numerically agrees with the analytical evaluation of the derivative of f1 and f2 in (6).
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Fig. 1. Optimization of SRN by applying NSGA-II.
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Fig. 2. Sensitivity of SRN with respect to x1.
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The middle and right side of Fig. 2 show the behavior of the single-parameter sensitivity of variable x1 (calculated as in
(2)), and the objective functions f1 and f2. On the middle of Fig. 2 are depicted the single-sensitivity results as function of x1

for f1 (represented by Sf1
x1

) and f2 (represented by Sf2
x1

). On the right side of Fig. 2, there are depicted again the single-sensitivity
results as function of x1 for f1 and f2, but this time versus the objective functions f1 and f2.

If we focus on the sensitivity analysis, Fig. 2 shows that for f1 the closer to zero values of x1 exhibit low sensitivity, and for
f2 the closer to zero values exhibit the lowest sensitivity too.

Fig. 3 depicts the multi-parameter sensitivity evaluated by (3), with r ¼ 1% (as variables represent sizes in circuit opti-
mization, we consider the same variability value for them). Upper side of Fig. 3 shows the multi-parameter sensitivity for f1

(represented by Sf1 ) and the lower side for f2 (represented by Sf2 ). For both cases, the lower values of f1 and f2 exhibit low
multi-parameter sensitivity.

Finally, from the feasible solution set shown in Fig. 1, it is possible to chose the multi-parameter sensitivities lower than
0.015, considering both objective functions. As a result, the feasible solutions with low sensitivities are shown in Fig. 4. This
example demonstrates the usefulness of the Richardson extrapolation to perform multi-parameter sensitivity analysis from
numerical data.

4. Proposed optimization system including multi-parameter sensitivity analysis

Our proposed approach to select optimal sizes with low sensitivities has been programmed using MATLAB�, and the cir-
cuit under optimization is simulated with HSPICE� through successive simulations [18]. The optimization of the circuit per-
formances is done by modifying the width (W) and length (L) of the MOSFETs.
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In Fig. 5, it can be appreciated that our proposed optimization approach is divided into two general stages: initialization
and optimization. In the initialization stage the parameters as maximum number of generations, population size and sensi-
tivity parameters (d0 and d), are declared. In the second stage, the NSGA-II algorithm is applied to generate feasible solution
sets. In this stage HSPICE� is linked to evaluate the objective functions and constraints. Only the solutions that meet the
specifications are introduced to the multi-parameter sensitivity analysis based on the Richardson extrapolation. Afterwards,
the non-dominated sort is performed giving priority to the solutions with a measure of multi-parameter sensitivity because
are the solutions that accomplish with the target specifications and the constraints. The final solution set contains solutions
with low multi-parameter sensitivities.

The efficiency of the procedure depends on the efficiency of both, the NSGA-II and the multi-parameter sensitivity calcu-
lation. Regarding to NSGA-II, its efficiency is OðNMÞ, where N is the number of individuals and M is the number of objectives.
The multi-parameter sensitivity calculation efficiency is OðKnMÞ � OðnMÞ, where K is the number of iterations in the Rich-
ardson extrapolation, n is the number of variables and M is the number of objectives. The worst case for K is the MaxLoop
constant (Algorithm 1) then in asymptotic notation the effect of such constant is negligible. These efficiencies indirectly de-
pend on the simulator efficiency due that both, the optimization and the multi-parameter sensitivity evaluation are per-
formed from a circuit simulation.

5. Example

The proposed optimization approach including multi-parameter sensitivity analysis is tested on the recycled folded cas-
code (RFC) operational transconductance amplifier (OTA) shown in Fig. 6. It was taken from [23], but now we include the
design of the biasing circuitry shown in the left part. The biasing circuitry consists of {MP1, . . . ,MP4} and {MN1, . . . ,MN4},
to provide two voltages: Vbp and Vbn.

The optimization is executed to accomplish the eight objectives already provided in [23]: DC gain, gain bandwidth prod-
uct (GBW), phase margin (PM), input referred noise, input offset, settling time (ST), slew rate (SR) and power consumption
(PW). This circuit is encoded with ten variables (design parameters) for the MOSFETs, as shown in Table 1:
fðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; f8ðxÞ�T ¼
1

Gain
;

1
GBW

;
1

PM
;Noise;Offset; ST;

1
SR

;PW
� �T

: ð7Þ
The optimization problem for this circuit is expressed as in (1), with m ¼ 8; n ¼ 10 and p ¼ 33, where fðxÞ is the vector
formed by the eight objectives, accommodated as shown in (7), to deal with a minimization optimization problem. There-
fore, the objectives Gain, GBW, PM and SR have been inverted. X is the search space for the variables listed in Table 1, and the
decision space for x ¼ ½x1; . . . ; x10�T . However, the variables x1 and x2 have the domain ½0:18 . . . 0:72� (in lm). The rest of the
variables have the domain ½0:18 . . . 140� (in lm). Finally, in a first experiment hkðxÞ; k ¼ 1; . . . ;33 are performance con-
straints. In this case, 25 constraints are the saturation conditions in all MOSFETs and 8 target specifications. In a second
experiment that includes multi-parameter sensitivity, hkðxÞ; k ¼ 1; . . . ;41 are the 33 constraints from the first experiment
plus eight multi-parameter sensitivities.

The optimization for the first experiment was performed along 250 generations over 10 runs with a population size of
250. For the second experiment, the optimization is stopped after several generations providing the same multi-parameter
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sensitivity because the optimization takes more time than the first experiment. For DE there were arbitrarily selected c = 1
and g = 0.4 for both experiments.

The RFC OTA is biased with Iref ¼ 400lA and VDD ¼ 1:8 V. The electrical measurements were executed with a load capac-
itor of 5.6pF and the HSPICE� simulations were performed with a LEVEL 49 standard CMOS Technology of 0.18 lm. The
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parameters for the sensitivity analysis are d0 ¼ 3% for the design values, and d ¼ 3%. The aim to use percentage values for d0

and d, is the possibility to manage different design values with different magnitudes. In this example, ri is proposed to be 3%.
The size of the final solution set is around 60, in average for all the runs in this experiment. Table 2 shows the target spec-

ifications (Specs.), minimum, maximum, average and standard deviation for all the objective functions among the final solu-
tion set, however those results do not take into account the sensitivities of every feasible solution. The target specifications to
be improved are the values of the objective functions or performances evaluated with the sizes already published in [23]. The
application of our optimization stage provides better performances compared to [23], for every objective function. These re-
sults are highlighted with bold font in Tables 2 to 5. From Table 2 one can gain an insight on what to expect for this RFC OTA
circuit topology working under these design conditions. Later on, this table is an important base line to compare the results
that the multi-parameter sensitivity analysis will generate.

The optimization works with a multi-objective problem, then the best performances for the eight objective functions are
listed in Table 3, where x1 is the best solution for gain, x2 is the best solution for GBW and so on with PM, Noise, Offset, ST, SR
and PW. For instance, the maximum gain (solution x1) is 68 dB; this best point, has GBW = 107.97 MHz, PM = 76.86 deg,
Noise = 52.62 lVrms, Offset = 20.04 lV, ST = 17.10 ns, SR = 88.04 V/ls and PW = 3.25 mW. This optimum gain is achieved
Table 1
Encoding for the RFC OTA shown in Fig. 6.

gene Design variable Encoding transistors

x1 L1 M0,M3a,M3b,M4a,M4b,M9,M10
MN1, . . . ,MN4,MP1, . . . , MP4

x2 L2 M5, . . ., M8
2 � L2 M1a,M1b,M2a,M2b

x3 W1 M0, MP1
x4 W2 M1a,M1b,M2a,M2b
x5 W3 M3a,M4a
x6 W4 M3b,M4b
x7 W5 M5, M6,MN3,MN4

2 �W5 MN1,MN2,MP4
4 �W5 MP2,MP3

x8 W6 M7, M8
x9 W7 M9, M10
x10 W8 M11, M12

Table 2
Best points for the RFC OTA without sensitivity analysis.

Objective Specs. MAX MIN AVG STD

Gain [dB] >65.35 68.00 66.03 67.44 0.37
GBW [MHz] >89.57 123.14 96.80 105.15 5.19
PM [deg] >75.47 79.45 75.47 76.76 0.74
Noise [lVrms] <68.41 69.42 42.98 58.63 5.51
Offset [lV] <206.79 99.90 0.00 50.33 27.11
ST [ns] <20.14 18.50 15.29 17.33 0.70
SR [V/ls] >76.99 121.11 77.00 81.38 4.92
PW [mW] <3.09 3.30 3.04 3.22 0.06



Table 3
Best sizing solutions without sensitivity analysis for the RFC OTA.

Specs. x1 x2 x3 x4 x5 x6 x7 x8

L1 [lm] 0.5 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
L2 [lm] 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
W1 [lm] 64 132.48 85.32 85.86 130.14 78.3 85.32 178.56 57.78
W2 [lm] 32 58.5 72 41.94 68.04 49.68 72 49.5 58.14
W3 [lm] 12 18.9 14.94 17.64 3.96 9.9 14.94 21.24 17.28
W4 [lm] 4 9.9 7.02 8.1 1.98 4.86 7.02 12.42 6.66
W5 [lm] 8 16.2 10.62 10.8 16.02 10.08 10.62 21.6 7.2
W6 [lm] 32 32.76 18 17.1 26.64 69.66 18 34.2 52.92
W7 [lm] 32 5.22 7.74 8.28 5.94 5.22 7.74 4.5 5.58
W8 [lm] 32 24.3 10.62 18 9 31.14 10.62 1.8 3.96
Gain [dB] >65.35 68.00 67.57 66.13 66.86 67.79 67.57 67.97 67.69
GBW [MHz] >89.57 107.97 123.14 102.47 116.12 102.79 123.14 102.04 100.04
PM [deg] >75.47 76.86 75.57 79.45 75.47 77.14 75.57 76.99 75.50
Noise [lVrms] <68.41 52.62 49.23 58.60 42.98 51.92 49.23 54.96 61.54
Offset [lV] <206.79 20.04 60.14 75.42 37.17 0.00 60.14 9.75 5.76
ST [ns] <20.14 17.10 15.29 18.08 16.22 17.51 15.29 17.78 18.08
SR [V/ls] >76.99 88.04 77.96 78.93 78.31 79.66 77.96 121.11 79.27
PW [mW] <3.09 3.25 3.29 3.30 3.28 3.25 3.29 3.25 3.04

Table 4
Best points for the RFC OTA including sensitivity analysis.

Objective Specs. MAX MIN AVG STD

Gain [dB] >65.35 67.83 66.46 67.01 0.42
GBW [MHz] >89.57 106.52 94.63 96.72 2.97
PM [deg] >75.47 77.30 75.48 75.96 0.45
Noise [lVrms] <68.41 66.40 55.27 63.51 3.27
Offset [lV] <206.79 96.97 0.03 34.84 31.96
ST [ns] <20.14 18.49 16.90 18.25 0.36
SR [V/ls] >76.99 79.64 77.09 77.63 0.56
PW [mW] <3.09 3.30 3.24 3.28 0.02

Table 5
Best sizing solutions including sensitivity analysis for the RFC OTA.

Specs. x1 x2 x3 x4 x5 x6 x7 x8

L1 [lm] 0.5 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
L2 [lm] 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
W1 [lm] 64 125.46 120.06 132.12 132.12 152.82 120.06 125.46 132.12
W2 [lm] 32 45.18 52.2 54.18 54.18 45.72 52.2 45.18 54.18
W3 [lm] 12 38.52 42.3 25.56 25.56 30.96 42.3 38.52 25.56
W4 [lm] 4 19.62 22.14 14.22 14.22 16.92 22.14 19.62 14.22
W5 [lm] 8 15.66 14.76 16.2 16.2 18.72 14.76 15.66 16.2
W6 [lm] 32 61.92 25.92 18.72 18.72 59.58 25.92 61.92 18.72
W7 [lm] 32 8.82 6.84 5.22 5.22 4.5 6.84 8.82 5.22
W8 [lm] 32 8.28 2.88 3.06 3.06 12.96 2.88 8.28 3.06
Gain [dB] >65.35 67.83 67.40 67.63 67.63 67.45 67.40 67.83 67.63
GBW [MHz] >89.57 100.06 106.52 104.52 104.52 96.01 106.52 100.06 104.52
PM [deg] >75.47 76.37 75.55 77.30 77.30 76.55 75.55 76.37 77.30
Noise [lVrms] <68.41 61.86 59.07 55.27 55.27 59.64 59.07 61.86 55.27
Offset [lV] <206.79 96.97 60.25 30.83 30.83 0.03 60.25 96.97 30.83
ST [ns] <20.14 18.13 16.90 17.52 17.52 18.40 16.90 18.13 17.52
SR [V/ls] >76.99 79.64 78.32 77.37 77.37 77.87 78.32 79.64 77.37
PW [mW] <3.09 3.29 3.27 3.24 3.24 3.25 3.27 3.29 3.24
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with L1 = 0.36 lm, L2 = 0.18 lm, W1 = 32.48 lm, W2 = 58.5 lm, W3 = 18.9 lm, W4 = 9.9 lm, W5 = 16.2 lm, W6 = 32.76 lm,
W7 = 5.22 lm and W8 = 24.3 lm.

The next step consisted of performing an optimization including a multi-parameter sensitivity analysis. In such a way
that the sensitivity adds eight constraints more: the multi-parameter sensitivities for each one of the eight objectives. Then
we have in total 49 constraints for this second experiment, the firsts 33 constraints accomplish with the specifications and
the next eight accomplish with the less multi-parameter sensitivity.
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Fig. 7. Behavior of multi-parameter sensitivity vs generations.
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In this experiment the size of the final solution set is around the population size, although that within such set, all the
solutions accomplish the target specifications, each one has a different value of multi-parameter sensitivity, then it is pos-
sible to chose the solutions with the lowest one. By selecting the lowest five solutions in each run, Table 4 shows the target
specifications (Specs.), minimum, maximum, average and standard deviation for all the objective functions including multi-
parameter sensitivity in the optimization for every feasible solution. As before, the target specifications to be improved are
the values of the objective functions or performances evaluated with the sizes already published in [23]. In this second
experiment, it is proposed selecting the feasible solutions with the lowest multi-parameter sensitivity, in this case it is nec-
essary to sacrifice some of the objectives with the aim to preserve the best values of the remaining ones. Then it was decided
to allow slightly higher values of power consumption.

The application of our optimization stage provides better performances compared to [23], for every objective function
except for power consumption that is slightly above the target specification. As before, the best results are highlighted with
bold font. By comparing Tables 2 and 4, it is possible to see how the best results from the first experiment were lost, but
nevertheless the best results for the second experiment still improve the targets except for the power consumption. Gain,
PM and PW are almost in the same value than the first experiment. GBW, Noise and ST are closer to the first experiment
values and finally, SR and Offset were decreased significantly compared with the first experiment, but still they are better
than targets specs.

The best performances for the eight objective functions in the second experiment are listed in Table 5, where x1 is the best
solution for gain, x2 is the best solution for GBW and so on with PM, Noise, Offset, ST, SR and PW. In this case, the solution for
gain, GBW, PM, Noise, ST and PW is the same (x1 ¼ x2 ¼ x3 ¼ x4 ¼ x6 ¼ x8).

At the beginning of the optimization including multi-parameter sensitivity, our system takes into account only the con-
straints corresponding to the saturation condition of transistors and targets specifications. As soon as a solution accom-
plishes those constraints, the multi-parameter sensitivity constraints, are included. It allows to categorize those solutions
with the less multi-parameter sensitivity among the best ones, to guide the optimization engine. During this processes, it
is possible to see how the multi-parameter sensitivity is reduced from the moment when the system found solutions accom-
plishing the first constraints. Fig. 7 shows how the multi-parameter sensitivities go diminishing over the generations, until
the lowest sensitivities values are reached over several generations. For instance, in the four runs, it is possible to see that
after the generation 40 several solutions with low multi-parameter sensitivities began to appear, and before the generation
100 the system reaches the lowest sensitivities values.

6. Conclusion

We introduced a multi-parameter sensitivity analysis that selects into the optimization loop, the best feasible solutions
generated by the MOEA NSGA-II having the lowest multi-parameter sensitivity. This evolutive algorithm allows us to handle
many variables and multiple objectives, both with different magnitudes and only by defining limit values for each one of
them. Furthermore, it handles constraints also with different magnitudes. DE was used into the MOEA as a genetic operator
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but with a discrete approach with the aim to handle multiples of the minimum W/L relationship allowed by the integrated
circuit technology.

The use of finite differences and Richardson extrapolation allows us to calculate the partial derivatives for multi-param-
eter sensitivity analysis, without an explicit mathematical expression. Our proposed approach was tested on the RFC OTA, for
which the target specifications were included as constraints in the optimization process, resulting a final solution set that
accomplishes simultaneously each objective. In Table 5 are listed the best solutions that accomplish the entire target spec-
ifications for each objective and they improve the performances already published in [23] with the lowest multi-parameter
sensitivity.

We can point out that the application of our proposed multi-parameter sensitivity analysis shows an important decision
point, because before this analysis, all the target specifications are accomplished but if we select those solutions without tak-
ing into account their sensitivities, in the fabrication process there is a strong possibility that the designed circuits do not
guarantee optimal performances. In summary, we are able to discriminate those solutions that are not really feasible, making
easier to select the best solutions having low sensitivities among the final solution sets.

As a conclusion, we believe that our proposed approach is a powerful tool to enhance analog circuit design through gen-
erating feasible solutions with low sensitivities to process variations. Also, it is possible to choose among different variables
encodings, to explore the best performances of an analog IC, and including multi-parameter sensitivity so that the optimal
performance of a circuit design can be guaranteed.
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