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Abstract—This work shows the usefulness of assigning
current-branches-bias levels, in order to improve and accelerate
the sizing optimization of MOSFET-based analog integrated
circuits (ICs). That way, the proposed procedure relies on the
search of current branches from the associated incidence
matrix by applying a recursive technique for exploring circuit
graphs. The goal is focused on determining the bounds of the
width/length (WI/L) search space for each MOSFET before
starting the sizing optimization process. As a case of study, the
proposed current-branches-bias assignment (CBBA) approach
is applied in the sizing optimization of the recycled folded
cascode operational transconductance amplifier by applying
evolutionary algorithms (EAs). From the feasible optimization
results, we conclude that our proposed CBBA approach
enhances and accelerates the biasing and sizing of analog ICs
by EAs.

Index Terms—MOSFET, operational transconductance
amplifier, incidence matrix, topological circuit analysis, biasing.

I. INTRODUCTION

The sizing optimization of analog integrated circuits (ICs)
by applying heuristic approaches has grown in the last
decade [1]-[8]. For instance, evolutionary algorithms (EAS)
are preferred because they provide a set of feasible solutions
[4]. For EAs to work, one needs to specify: design variables,
objectives, constraints, and search spaces. Besides, in IC
design the search spaces in EAs can be reduced when paying
attention on the specifications-design variables, e.g. the
width (W) and/or length (L) of some MOSFETSs can be the
same or multiplier values of other MOSFETs [9], this
usually happens in amplifiers composed of differential pairs
and current mirrors [10].

Before sizing, biasing is performed to establish DC
voltages/currents levels [11], [12], according to the available
supply voltage(s) and current(s). Henceforth, this
investigation introduces a DC current-branches-bias
assignment (CBBA) approach to reduce the search spaces
for Ws/Ls of MOSFET-based amplifiers to improve the
sizing optimization of analog ICs with heuristics. In the next
sections, we show the application of topological circuit

Manuscript received November 14, 2012; accepted November 14, 2013.
This work is partially supported by CONACyT-Mexico under project
131839-Y.

81

analysis to search for current-loops. Afterwards, our
proposed CBBA approach mirrors/distributes the DC current
bias reference among all MOSFETS to determine the limits
on the W/L search spaces.

The usefulness of our proposed CBBA approach is
demonstrated by sizing the recycled folded cascode (RFC)
operational transconductance amplifier (OTA) given in [9],
by applying three EAs, namely: non-dominated sorting
genetic algorithm (NSGA-II) [13], multi-objective EA with
decomposition (MOEA/D) [14], and multi-objective particle
swarm optimization (MOPSO) [15]. These EAs have been
applied to sizing analog ICs in [1], [2], [4], [6]. In those
references one can find their implementation details, and one
can infer that at this moment any EA considers CBBA
before starting the sizing optimization process.

For executing NSGA-Il and MOEA/D, we apply two
genetic operators: simulated binary crossover (SBX [16])
and differential evolution (DE [17]). The last section
discusses the results provided by the three EAs with both
genetic operators and with and without applying our
proposed CBBA approach. Those results demonstrate that
CBBA improves and accelerates the sizing optimization
process of analog integrated circuits.

To search for current-loops, we appeal to formulate the
incidence matrix A [11], [18], which is based on applying
Kirchhoff’s current law (KCL). That way, from a given
circuit, a directed graph G = (N,B), is generated, where N is
the set of nodes, and B the set of current branches. That way,
matrix Aw has rows representing the nodes N
{n1,ny,...,ni}, and columns representing the branches (circuit
elements) B = {by,b,,...,bi}. Each element a in A can be 0, 1
or -1, according to topological rules [11], [18]:

— ax = 1 means that branch | leaves from node k,

— ax = -1 means that branch | enters to node k,

— ax = 0 means that branch | does not enter or leave node

k.

In a circuit topology, some leaving branches can share just
one entering current. For instance, by assuming that i, is
distributed into iy, ic and ig, then i,=0ia, ic=Pia and ig=Yia;
where o, B and vy, are real positive humbers and their sum

TOPOLOGICAL CIRCUIT ANALYSIS



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

equals one. By exploring matrix A, all current-loops can be
found by executing the depth first search (dfs) algorithm
shown in Algorithm 1 [19]. There is a vector named
Visited_flag associating each branch to avoid visiting it
twice.

Algorithm 1. Depth First Search (dfs) Algorithm
Require: branch b

1: Visited_flag[b] ~ visited

2: for each branch b adjacent to b do

3:  dfs(by) if Visited_flag[bi] # visited

4: end for

The dfs algorithm explores all the adjacent branches for a
given branch b. However, Algorithm 1 is modified to find
the different current-distributions (Levels) in each branch.
That way, we propose the top-down dfsTD algorithm shown
in Algorithm 2, which requires: branch b, the upper node of
b, namely n, and the bias level CurlLevel. Vector
Visited_flag associates a flag to each branch b, and vector
Bias_level associates the bias level also to each b.

The dfsTD algorithm traverses the circuit in a top-down
fashion, e.g. from the positive voltage bias (Va4) to the
reference node or negative voltage bias (Vss). The first step
is to mark branch b as visited one. The second line stores, in
Bn, the outgoing branches from n (different of b). Line 3
evaluates whether Bn is different from empty to subtract one
to CurLevel for each by in Bn. If Bn is an empty set, there are
not adjacent branches to b, and therefore it has the same
level than its upper branch. In line 8, the level (CurLevel) is
assigned to b. Line 9 sets the lower node of b to n. Line 10
finds the branches entering n and adds one to CurLevel. Line
11 repeats the procedure of line 2 (with the new node n).
Finally, in line 12 there is a recurrence of the dfsTD to itself,
if by has not been visited. Processes in lines 2, 6, 9, 10 and
11, are performed by using matrix A, because it contains all
the information about the circuit nodes, circuit branches,
their connections and directions.

Algorithm 2. Top-Down dfs Algorithm (dfsTD)
Require: b, n, CurLevel

1: Visited_flag[b] — visited
: Bn < set of outgoing branches from n (different of b)
:if Bn# & then
for each branch by € Bn do CurLevel-=1
selse

CurLevel ~ level of the upper branch of b

end if

: Bias_Level[b] — CurLevel

:n ~ lower node of b

10: for each entering branch to n do CurLevel+ =1

11: Bn  setof outgoing branches from n

12: for each branch by € Bn do

13: dfsTD(by, n, CurLevel) if Visited_flag[bi] = visited
14: end for

©oO~NOU R WN

I1l. PROPOSED CURRENT-BRANCHES-BIAS ASSIGNMENT

(CBBA) APPROACH

The goal of our proposed CBBA approach is focused on
the distribution of the current bias reference(s) over all the

leaving trajectories from the node assigned to the more
positive supply voltage, e.g. Vg, to the node assigned to the
reference or more negative supply voltage, e.g. Vss.

Algorithm 3 describes the distribution of currents: from a
SPICE netlist, in line 1 matrix A is generated. From lines 2
to 5, the vector Visited_flag is initialized to control the
recursive calls and vector Bias_level. The distributed or
partitioned level is stored as a result of the auto-biasing
process. In line 6 the outgoing branches from Vyq, are stored
in BVy. Next, for each branch by in BV the CurlLevel is
initialized with zero, the method sets the zero level to by and
labels it as a visited branch. In line 11, the lower node of b,
is stored in n, with the aim to build vector Bn formed by all
outgoing branches from node n in line 12. In lines 13 to 15
there is a recursive call to dfsTD for each branch by, if it has
not been already visited. At the end, each branch has an
assigned level.

Algorithm 3. Distribution of Currents

Require: circuit netlist, specifying Vas and Vg nodes
1: Build matrix A and graph G = (N,B)

2: for each branch b; € B do

3:  Visited_flag[bi] — not visited

4: Bias_level[b] - 0

5: end for

6: BVaa « set of branches outgoing from node Vgq
7: for each branch b; € BVyq do

8: CurLevel - 0

9: Bias_level[b] — 0

10
11

: Visited_flag[b] ~ visited

:n < the lower node of by

12: Bn « set of outgoing branches from n

13: for each branch b, € Bn do

14: dfsTD(bn, n, CurLevel) if Visited_flag[bn] = visited
15: CurLevel =0

16: end for

17: end for
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When each branch has a DC current bias level, another
procedure sets the limits of the search spaces. It is done by a
heuristic procedure. Let X, be the lower and X, the upper
limits of the whole search space, L the low limit and L, the
upper limits in the search space for the k-th level. Algorithm
4 describes the assignment procedure. It consists of dividing
the search space into sub-spaces according to the total
number of levels (TL). The first step divides the entire
search space into two parts corresponding to the two first
levels (level 0 and level 1) that share an intersection region
to relax the partitioning, and allowing exploring beyond the

bound limits. The intersection between two levels (ng)
depends on the total number of levels and is controlled by
using an integer scaling factor (c), as shown by (1). Since

TL >0 and ¢ > 0, then n¢ < 0.5. In our experiments we
usedc =1

NG =(TL+x)™ )

The first loop in Algorithm 4 (lines 5 to 10) generates a
result as the one shown Fig. 1(a). For the second loop, the
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process is repeated but this time the upper limit is bounded
by Xu as shown in Fig. 1(b). The algorithm continues until
splitting the search space for all the levels. For an odd
number of levels, Algorithm 4 assigns to the last level X, its
lower limit, and the last value of X to its upper limit.

IV. APPLICATION EXAMPLE

Among the many available active devices [1], [5], [10],
[20], [21], our CBBA approach is tested by optimizing the
recycled folded cascode (RFC) operational transconductance
amplifier (OTA) shown in Fig. 2. This RFC OTA has been
already designed in [9], where key guidelines for manual
design are provided there. It is worth mentioning that the
authors clearly discuss on the difficulty of biasing and sizing
that RFC OTA. Is for that reason that we apply heuristics
herein for optimizing its performances, but the main goal is
focused on showing that by applying our proposed CBBA
approach, the execution of the three evolutionary algorithms
(EAs): NSGA-II [13], MOEA/D [14] and MOPSO [15], is
being improved and accelerated. The implementation details
of those three EAs when applied to the optimal sizing of
analog ICs can be found in [1], [2], [4], [6]. The inclusion of
our proposed CBBA approach is straightforward but quite
useful. In addition for the experiments, two genetic operators
were used with NSGA-1I and MOEA/D: simulated binary
crossover (SBX [16]) and differential evolution (DE [17]).

Level 1 Level 0

¥
X v X Search space (L=vn)- X Xy
(®
Level 1 Level 0
Xl vn - Xy (1 —vn) - X Xu
Search space
(b)

Fig. 1. (a) First, and (b) second loops by executing Algorithm 4.

Table | shows the encoding of the RFC OTA that is
biased with a DC current lef = 400 A and Vpp = 1.8 V. The
target specifications, to be improved by performing optimal
sizing using EAs and by applying our proposed CBBA
approach, were taken from [9], which were obtained with a
load capacitor of 5.6 pF. In our experiments, HSPICE
simulations were performed in the optimization loops of the
three EAs with a LEVEL 54 standard CMOS Technology of
90 nm.

Algorithm 4. Limit search space assignment procedure
Require: X;, Xy, TL
1:k=0
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2: Xy =Xy
3:ng =(TL+c)?
4: while k < TL do

5. X=Xy NG
= Xy

x|k+1 - Xl

Xy = Laux * (1 -
Xuk+1 - Xu'

10: k+=2

11: end while

12:if TL is odd then
13: X|TL = X|

14: X ™ =Xy

15: end if

n¢)

©® N

The sizing of the RFC OTA is performed to optimize the
eight target specifications, already provided in [9]: gain,
gain-bandwidth product (GBW), phase margin (PM), input
referred noise, input voltage offset, settling time (ST), slew
rate (SR) and power consumption (PW). Equation (2) is
used for this multi-objective sizing optimization problem as
minimizing a vector function f(x). In this manner, f(x) is the
vector formed by eight objectives: fi(x) = -1*Gain, fo(x) = -
1*GBW, f3(x) = -1*PM, f4(X) = Input referred noise, f5(x) =
Input voltage offset, fs(X) = ST, f2(x) = -1*SR, and fs(x) =
PW.

minimize f(x) = [f1(X),f2(X),....fs(X)]"
subjectto hi(x)=0 ,1=1...p,
where
X € X. 2
Vg
’ Mo
WON—H‘_J‘ M9 k—{ M10

Mlb

'wi

Vbn2

by bl

Fig. 2. RFC OTA.

M2b

M5 M6

Vbn2

In(2), X:R"|0.18 ym < Li< 0.9 pm, 0.9 pm < W; £ 130
pm, is the decision space for the n variables, and hi(x), with |
= 1..p, are the performance constraints. Additionally, we
included the saturation condition in all transistors and the
eight target specifications as constraints.

The three EAs: NSGA-1I, MOEA/D and MOPSO, were
executed with a population of 210 individuals along 250
generations. After performing our CBBA approach
(Algorithm 4), the computed current-bias limits are shown in
Fig. 3. Table Il to Table IV show the sizing results provided
by NSGA-II, MOEAD and MOPSO, by using the two
genetic operators SBX and DE, and with and without
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applying our CBBA approach. In Fig. 4 to Fig. 6 are Specs. SBX SBX DE DE
depicted the feasible solutions vs generations. - CBBA - CBBA
W4 pm 4 16.21 35.14 33.37 7242
TABLE |. RFC OTA ENCODING. W5 um 8 13.36 13.65 9.41 9.34
Gene Variable Transistors W6 um 32 78.99 75.58 76.47 66.84
X1 [ M0,M3a,M3b,M4a,M4b,M9,M10 W7 um 32 28.42 6.65 8.52 15.6
, Lo M5...M8 W8 um 4 40.25 6.73 19.31 46.91
2L, M1a,M1b,M23a,M2b Generation 155 47 164 134
X3 Wi MO
Z‘ wi Mla'mt;’m:"w% The sizing optimization process was performed along 5
X6 Wa M3b:M4b runs for each EA with their corresponding genetic operators.
X7 Ws M5,M6 As for any EA, all feasible solutions can be summarized in a
Xg We M7,M8 Table showing statistics. That way, Table V shows the
;‘190 m n'>|/|191"\|<|/|1102 behavior of the three EAs with and without applying our
: proposed CBBA approach. It lists the average number of
Level1 Leyel 0 generations required to obtain biased feasible solutions, as
well as the maximum and minimum number of generations
for each EA with both genetic operators SBX and DE.
Finally, Table VI shows the statistics for the non-dominated
solutions in average for the 5 runs with and without CBBA
/ after the sizing optimization process.
100 ‘ - ‘ :
---NSGAgpx without CBBA
0 20 40 60 80 100 120 140 —NSGASBX Wlth CBBA
Space Search (um) ot
Fig. 3. Search space limits for the RFC OTA. 2
Q
TABLE Il. OPTIMAL FEASIBLE SOLUTIONS WITH NSGA-IL. £ 6o
Specs. SBX SBX DE DE El
- CBBA - CBBA )
Gain dB >55 65 61 61 64 g 9
GBW MHz >70 111 113 139 120 M _
PM deg >65 62 68 65 75 20t .
Offset mV <11 15 30 51 28 I
ST ns <20 16.9 16.5 15.36 16 ot ‘ ‘
SR V/us >48 80 120 97 87 % 50 100 150 200 250
Noise pVrms <69 70 69 68 68 Generation
PW mW <35 32 34 35 33 . | @
Variables ---NSGApp without CBBA
L1 um 0.5 0.23 0.18 0.18 0.21 30| —NSGApE with CBBA
L2 um 0.18 0.24 0.18 0.19 0.18
W1 pm 64 129.98 129 87.19 75.66 2 951
W2 pm 32 126 8215 | 127.12 | 78.39 2
W3 pm 12 98.66 100.46 | 53.02 20.8 ;5’20—
W4 um 4 41.49 4777 17.45 72.42 @
W5 um 8 14.05 1364 | 1017 9.34 B9
W6 pm 32 65.3 82.06 | 12853 | 66.84 Sl R
W7 um 32 6.42 6.04 65.56 15.6 M L -
W8 um 4 7.03 2.96 29.58 46.91 5 -
Generation 238 233 166 126 P b o '
0 ‘ ‘ ‘ ‘
TABLE IIl. OPTIMAL FEASIBLE SOLUTIONS WITH MOEA/D. 0 0 A iy 20 280
Specs. SBX SBX DE DE (b)
- CBBA - CBBA Fig. 4. Solutions with/without CBBA by NSGA-II.
Gain dB >55 62 63 63 66
GBW MHz >70 117 115 130 109 TABLE IV. OPTIMAL FEASIBLE SOLUTIONS WITH MOPSO.
PM deg >65 50 69 58 69 Specs. Without CBBA With CBBA
Offset mV <11 12 19 19 2 Gain dB >55 62 67
ST ns <20 8.3 15.27 13.17 15.55 GBW MHz >70 132 134
SR Vlus >48 81 92 80 88 PM deg >65 52 68
Noise (1Vrms <69 84 72 73 70 Offset mV <11 36 25
PW mW <3.5 3.4 33 35 3.1 ST ns <20 11.9 13.1
Variables SR V/us >48 87 90
L1 um 0.5 0.58 0.21 0.18 0.21 Noise 1Vrms <69 70 70
L2 pm 0.18 0.24 0.18 0.26 0.18 PW mW <3.5 3.43 3.39
W1 pm 64 1116 | 120.95 | 80.51 75.66 Variables
W2 um 32 65.77 83.12 | 128.22 78.39 L1 um 0.5 0.18 0.27
W3 um 12 77.47 88.59 | 111.68 20.8 L2 um 0.18 0.23 0.2
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Specs. Without CBBA With CBBA
W1 um 64 70.08 130
W2 um 32 130 81.73
W3 um 12 130 20.08
W4 um 4 47.47 5.94
W5 um 8 7.74 15.72
W6 um 32 130 83.2
W7 um 32 17.34 61.21
W8 um 4 18 22.09
Generation 122 39
25 : —_— :
-- 'MOEADSBX without CBBA
—MOEADgpy with CBBA
20
1}
g
2
£15
é
B10
2
m
5

100
Generation

@)

150 200 250

12

---MOEADpj; without CBBA|
—MOEADp with CBBA

10

Biased solutions
(2]

100 150 200

0 50 250
Generation
(b)
Fig. 5. Solutions with/without CBBA by MOEA/D.
60 ‘ - ‘
-=--MOPSO without CBBA
—MOPSO with CBBA

50
=
o40r
=
=
230
o)
9]
17}
F20f
m

10 T

...... [
"-
0 L IF- - L L
0 50 100 150 200 250
Generation

Fig. 6. Solutions with/without CBBA by MOPSO.

TABLE V. REQUIRED GENERATIONS TO BIAS ALL THE

POPULATION.
Without CBBA With CBBA

Method avg max min avg max min
NSGA-I1_SBX 107 150 40 100 150 24
NSGA-11_DE 130 150 69 109 150 52
MOEAD_SBX 147 150 143 110 120 103
MOEAD_DE 150 150 150 141 150 116
MOPSO 57 69 50 54 66 47
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TABLE VI. NON-DOMINATED SOLUTIONS STATISTICS.

Method Without CBBA With CBBA
NSGA-II_SBX 92.6 % 97.4 %
NSGA-II_DE 89.6 % 94.9 %
MOEAD_SBX 85.5% 94.7 %
MOEAD_DE 84.7 % 95.9 %

MOPSO 85.7 % 98.2 %

V. DISCUSSION OF RESULTS

Applying heuristics like EAs in the sizing optimization of
analog ICs, one cannot conclude on the superiority of one
EA with respect to another one [4], [7], [22]. Besides, the
genetic operators can improve their performance. But, one
can improve and/or accelerate the optimization process by
introducing better ways to set the search spaces, for instance.
In this manner, we proposed a CBBA approach to reduce the
search spaces in the optimal sizing of analog ICs, which
provided good results. For instance, from the experimental
results, NSGA-Il with SBX (NSGAsgx) improves all
objectives with CBBA. However, the offset and PW exhibit
slightly higher values, but all solutions accomplish the
required target specifications from [9], as shown in the
middle of Table II. For this case, an optimal solution without
CBBA is found at generation 238, and with CBBA it is
found five generations faster. However, an important thing is
that by applying our CBBA approach the number of feasible
solutions after 250 generations is higher (almost 4x), as
shown in Fig. 4(a).

The right side of Table 11 shows the solutions provided by
NSGApe. With CBBA the optimal solution exhibits
improvement for gain, PM, offset and PW. GBW has a
lower value due to the gain increase; the noise values and ST
are similar, only there is a slight decreasing in SR. With
CBBA, the optimal solution is found 40 generations faster
and the solutions increase (almost 3x) as shown in Fig. 4(b).
The middle of Table Il shows the solutions provided by
MOEA/Dsgx. With CBBA there is an improvement in gain,
PM, SR, noise, PW, and the optimal solution is found more
than 100 generations faster, and there are almost 5x
solutions more than MOEA/Dsgx without CBBA, as shown
in Fig. 5(a). MOEA/Dpe exhibits similar behavior, where the
optimal solution is found 30 generations faster and the
number of solutions is 2x when applying CBBA, as shown
in Fig. 5(b).

Table IV lists the objective values for the feasible
solutions provided by MOPSQO. This time, applying CBBA
achieves a general improvement for all the objectives, except
for ST, that exhibits a slight increment. The optimal solution
is found more than 80 generations faster. Figure VI shows an
increase on the number of solutions after 250 generations
(almost 5x).

In summary, the behavior of the three EAs by applying
CBBA shows that they require in average less number of
generations for biasing all the population, as shown by
Table V. Notice that for NSGA-II_DE and MOEAD_DE the
number of required generations in average is 15 % and
25 %, respectively, pretty less when CBBA is used.
Regarding to the non-dominated feasible solutions, Table VI
shows that the non-dominated solutions are greater when
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CBBA is applied for all the EAs. On the other hand, the
minimum improvement is around 5 % (for NSGA-II_SBX)
and the best is more than 10 % (for MOEAD_DE and PSO).

VI.

A current-branches-bias assignment (CBBA) approach
has been introduced in order to improve and accelerate the
sizing optimization process of analog integrated circuits
(ICs) composed of MOSFETSs. The sizing was performed
using three multi-objective evolutionary algorithms (EASs):
NSGA-Il, MOEAD and MOPSO, and they were executed by
using SBX and DE as genetic operators.

The proposed CBBA approach executes a recursive depth
first search in the associated incidence graph of the analog
IC in order to find current-loops. Afterwards, the CBBA
approach determines DC current bias levels with the aim to
establish the bounds/limits of the W/L search spaces for each
encoded design variable.

The proposed CBBA approach was tested by sizing an
already designed RFC OTA. The results demonstrated the
usefulness of the CBBA to accelerate the sizing optimization
process through a reduction in the number of generations
needed to guarantee convergence and to generate feasible
solutions while improving/preserving the performances.

Quantitatively, the sizing optimization experiments by
applying EAs showed a reduction up to 100 generations to
find an optimal solution and an increase up to 5x in the
number of generated feasible solutions when our proposed
CBBA is executed. From different runs of the sizing
optimization example, we found that when CBBA is used, it
is expected to get all the population biased in fewer
generations and also we showed that CBAA improves the
number of non-dominated solutions. As a conclusion, our
proposed CBBA approach is suitable to limit the search
spaces for the design variables W/L, in order to enhance the
sizing optimization of analog ICs. The gains are reflected in
a reduction on the number of generations required to find an
optimal solution and guaranteeing an increase in the number
of non-dominated solutions, as shown by Tables V and VI.

CONCLUSIONS
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