
Neurocomputing 121 (2013) 234–247
Contents lists available at ScienceDirect
Neurocomputing
0925-23
http://d

n Corr
Luis Enr
Tel.: +5

E-m
airel26@
fmartin
ariel@in
jmedina
journal homepage: www.elsevier.com/locate/neucom
OClustR: A new graph-based algorithm for overlapping clustering

Airel Pérez-Suárez a,b,n , José F. Martínez-Trinidad a, Jesús A. Carrasco-Ochoa a,
José E. Medina-Pagola b

a Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro ♯1, Sta. María Tonantzintla, Puebla, CP: 72840, Mexico
b Centro de Aplicaciones de Tecnologías de Avanzada, 7ma A ♯21406, Playa, CP: 12200, Havana, Cuba
a r t i c l e i n f o

Article history:
Received 17 August 2012
Received in revised form
30 November 2012
Accepted 25 April 2013

Communicated by M. Sato-llic

new graph-based clustering algorithm for building overlapping clusters. The proposed algorithm
Available online 11 June 2013

Keywords:
Data mining
Overlapping clustering
Graph-based algorithms
12/$ - see front matter & 2013 Elsevier B.V. A
x.doi.org/10.1016/j.neucom.2013.04.025

esponding author at: Instituto Nacional de As
ique Erro ♯1, Sta. María Tonantzintla, Puebla,
37 272 1676; fax: +537 273 0045.
ail addresses: airel@ccc.inaoep.mx,
gmail.com, asuarez@cenatav.co.cu (A. Pérez-S

e@inaoep.mx (J.F. Martínez-Trinidad),
aoep.mx (J.A. Carrasco-Ochoa),
@cenatav.co.cu (J.E. Medina-Pagola).
a b s t r a c t

Clustering is a Data Mining technique, which has been widely used in many practical applications. From
these applications, there are some, like social network analysis, topic detection and tracking, information
retrieval, categorization of digital libraries, among others, where objects may belong to more than one
cluster; however, most clustering algorithms build disjoint clusters. In this work, we introduce OClustR, a

introduces a new graph-covering strategy and a new filtering strategy, which together allow to build
overlapping clusterings more accurately than those built by previous algorithms. The experimental
evaluation, conducted over several standard collections, showed that our proposed algorithm builds less
clusters than those built by the previous related algorithms. Additionally, OClustR builds clusters with
overlapping closer to the real overlapping in the collections than the overlapping generated by other
clustering algorithms.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Clustering is one of the most important techniques in Pattern
Recognition and Data Mining. This technique aims at grouping a
set of objects into a set of classes called clusters, such that objects
belonging to the same cluster are more similar than objects
belonging to different clusters [1].

There are several research areas where clustering has been
applied successfully, for example: image segmentation [2], finger-
print classification [3], large scale data analysis [4] and social network
analysis [5], among others. Although several clustering algorithms
have been proposed in recent years, most of them build disjoint
clusters; i.e., they do not allow objects to belong to more than one
cluster. However, there are some applications like social network
analysis [6,7], information retrieval [8], text segmentation [9] and
news stream analysis [10], among others, where it is common that
objects belong to more than one cluster. For these kinds of applica-
tions, overlapping clustering is useful and important.
ll rights reserved.

trofísica, Óptica y Electrónica,
CP: 72840, Mexico.

uárez),
Although several clustering algorithms have been reported
in the literature addressing the problem of overlapping clustering
[5–7,10–27], all of them have some limitations which could reduce
their application scope or their usefulness in practical problems.
For this reason, in this work, the problem of overlapping clustering
is addressed.

The main contribution of this paper is a new overlapping clustering
algorithm, which is based on graph theory. The proposed algorithm,
called OClustR (Overlapping Clustering based on Relevance), intro-
duces a new graph-covering strategy and a new filtering strategy,
which together allow obtaining a small set of overlapping clusters and
reducing the limitations of the previous algorithms. These character-
istics make the OClustR algorithm suitable for handling overlapping
clustering in real applications like information organization [8], web
document clustering [15] and text segmentation [9], among others.

We conducted several experiments, over several standard data
collections, in order to compare OClustR against other algorithms
of the state-of-the-art. These experiments show that our proposed
algorithm builds more accurate clusters, according to the FBcubed
evaluation measure [28], than those built by the previous over-
lapping clustering algorithms.

The remainder of this paper is organized as follows: in Section 2,
the related work is outlined. In Section 3, we introduce the OClustR
algorithm. The experimental evaluation, showing the performance
of our proposed algorithm on several data collections, is presented
in Section 4. Finally, the conclusions and some ideas about future
work are presented in Section 5.

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.04.025
http://dx.doi.org/10.1016/j.neucom.2013.04.025
http://dx.doi.org/10.1016/j.neucom.2013.04.025
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neucom.2013.04.025&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neucom.2013.04.025&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neucom.2013.04.025&domain=pdf
mailto:airel@ccc.inaoep.mx
mailto:airel26@gmail.com
mailto:asuarez@cenatav.co.cu
mailto:fmartine@inaoep.mx
mailto:ariel@inaoep.mx
mailto:jmedina@cenatav.co.cu
http://dx.doi.org/10.1016/j.neucom.2013.04.025


A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247 235
2. Related work

In recent years, several algorithms for overlapping clustering
have been reported in the literature [5–7,10–27]. These algorithms
are different wrt. the model they use to represent a data collection
and the criteria they use to build clusters. The DHS algorithm,
reported in [29], was not included as related work because it
addresses the problem of overlapping hierarchical clustering,
which is out of the scope of this paper.

Star [12], Estar [13,14], Gstar [19], ACONS [20], ICSD [24],
SimClus [26] and DCS [27] are graph-based clustering algorithms,
which are able to build overlapping clusterings. All these algo-
rithms represent the collection of objects as a thresholded similar-
ity graph Gβ ¼ 〈V ; Eβ〉, and they build clusterings through a cover of
Gβ [12]; i.e., a vertex cover. For covering Gβ , Star, Estar, ACONS,
ICSD, DCS and SimClus use a special kind of sub-graph, called star-
shaped sub-graph (s-graph) [12]. On the other hand, for covering
Gβ , Gstar defines a new kind of sub-graph, called generalized star-
shaped sub-graph (g-graph) [19]. In this context, each s-graph or g-
graph selected is interpreted as a cluster.

All these graph-based algorithms follow a greedy heuristic for
covering the similarity graph; however, each one of them employs
a different criterion for ordering and selecting the sub-graphs used
for covering Gβ . The ICSD and DCS algorithms use the same
strategy for building the clustering but ICSD is an incremental
algorithm and DCS is a dynamic algorithm. Besides, the SimClus
algorithm uses the same strategy and criterion for building the
clustering as the one used in Estar algorithm proposed by Gil-
García et al. in [14]. After performing the covering process, there
are algorithms like Gstar, ACONS, ICSD and DCS that process the
selected sub-graphs in order to remove those having all their
vertices covered by other sub-graphs; for these algorithms, the
remaining sub-graphs constitute the final clustering. The compu-
tational complexity of Star, ICSD and DCS is Oðn2Þ; the computa-
tional complexity of Estar, Gstar, and ACONS is Oðn3Þ.

These algorithms have several limitations. First of all, as we will
demonstrate in our experiments, they produce a large number of
clusters. It is known that, in real problems, the correct number of
clusters is unknown. However, whenwe use a clustering algorithm
in order to discover hidden relations among objects in a collection,
the number of clusters obtained should be small wrt. the number
of objects in the collection. Note that, if the number of clusters
grows, then analyzing those clusters could be as difficult as
analyzing the whole collection.

Another limitation of these algorithms, as we will show in our
experiments, is that they build clusterings with high overlapping.
As it was mentioned in the introduction, to obtain overlapping
clusters is very useful for several applications; however, when the
overlapping is high, it could be difficult to obtain something useful
about the structure of the data. Besides, there are applications like
document segmentation by topic, where a high overlapping could
be a signal of a bad segmentation [9]. A similar example can be
found also in the context of social networks analysis [21,23].

Finally, the Gstar algorithm has an additional limitation; it
needs to store a high amount of information for each vertex in Gβ;
therefore, it could be inefficient for large collections. Besides, as it
was showed in [19], Estar could leave uncovered objects; i.e.,
objects that do not belong to any cluster.

Another algorithm able to build overlapping clusters is STC [11],
which was developed for clustering snippets. The Snippets are small
texts used by systems like Google to describe the results of a web
search. For building a clustering, STC builds a suffix tree [30] containing
the suffixes of all the snippets in the collection. All nodes of this tree,
containing two or more snippets, are used as seeds for building the
clusters. Finally, STC builds the clusters by iteratively merging some of
the previously detected seeds, following a strategy similar to that used
by the Single-link algorithm [31]. Even when the authors of STC claim
that the computational complexity of STC is Oðn � log nÞ, as it was
mentioned in [15], the complexity of STC could get to be exponential,
depending on the number of suffixes contained in all the snippets.

The main limitation of STC is related to the construction of the
suffix tree. Although the construction of this tree depends on the
amount of snippets to cluster, generally, it could be very expensive
when the number of snippets grows. Besides, STC was specifically
designed to work with text strings which limits its applicability.

Another example of an overlapping clustering algorithm is the
Incremental Strong Compact algorithm (ISC) [10]. ISC is a graph-
based algorithm that represents a collection of objects as a maximal
thresholded similarity graph Gmax�β ¼ 〈V ; Emax�β〉; unlike graphs used
by the previous overlapping graph-based algorithms, Gmax�β is a
directed graph. For building a clustering, first of all, ISC builds the set
of all connected components of Gmax�β , disregarding the orientation
of the edges. Afterwards, it extracts the strong compact sets (sc-set)
covering each connected component; in this context, each sc-set
constitutes a cluster. The computational complexity of ISC is Oðn2Þ.

ISC has the same limitations of the previous graph-based
algorithms; this means, ISC builds a large number of clusters with
high overlapping.

Another algorithm addressing the problem of overlapping cluster-
ing is SHC [15]. SHC is an incremental clustering algorithm based on
the concept of Histogram Ratio of a cluster. The histogram ratio of a
cluster is a measure of cluster cohesiveness. For clustering an object
collection, SHC processes the objects in an incremental way. For each
object o, SHC computes the most suitable clusters in which o should
be added to; for this purpose, SHC analyzes how much the histogram
ratio of each cluster varies if o is added to it. Finally, after checking all
clusters, if o was not added to any cluster then o constitutes a new
cluster. The computational complexity of SHC is Oðn2Þ.

SHC has several limitations. First, it needs to tune the values of
several parameters (β, ϵ and HRmin), whose values depend on the
collection to process. In general, the users do not have any a priori
knowledge about the collection they want to cluster; therefore, to
tune up several parameters could be a difficult task. Second, as we
will show in our experiments, SHC builds clusterings with high
overlapping.

Other overlapping clustering algorithms have been reported in
the context of overlapping community detection in complex net-
works [5–7,16–18,21–23,25]. In this research area, a network is
represented as a graph (undirected or directed, depending the
specific problem), where vertices are the objects of study and
edges are links between the objects.

One of the first algorithms proposed in this area was intro-
duced by Palla et al. in 2005, for studying social and biological
networks [16]. This algorithm works on binary networks (i.e., with
undirected and unweighted edges) and it defines a community or
cluster as the union of all the k-cliques (i.e., complete sub-graphs of
size k), that can be reached from each other, through a series of
adjacent k-cliques (where adjacency means sharing k−1 vertices).
Thus, this method first locates all the cliques (i.e., maximal
complete sub-graphs) of the network and then, it identifies the
communities by carrying out a standard component analysis of the
clique–clique overlap matrix [32]. The computational complexity
of this method is exponential [16]. The main limitation of this
method is its computational complexity, which makes it inapplic-
able for real problems involving large networks.

Other algorithms for overlapping community detection are
RaRe-IS [18] and LA-IS2 [17]. These algorithms represent a network
as an undirected and unweighted graph, whose vertices represent
individuals, web pages, etc.; and edges represent communications
or links between the vertices.

RaRe-IS [18] consists of two steps: initialization and improve-
ment. In the initialization step, this algorithm applies a method,



A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247236
named RaRe, which builds a set of seed clusters. For building these
seed clusters, RaRe begins by ranking the vertices in the graph,
according to a predefined criterion (e.g., vertex degree or Page
Rank [33]). Afterwards, some vertices with high rank are itera-
tively removed until the graph became decomposed in connected
components with size between an upper and a lower predefined
bounds. After that, each one of the removed vertices is added to a
component only if its density (or any other metric) is improved.
Once the seed clusters have been built, in the improvement step,
the algorithm applies a method named IS, over each seed cluster.
The IS method updates each seed cluster by adding or removing
one vertex at a time, as long as a metric, over the seed cluster,
strictly improves its value (e.g., the cluster density). The computa-
tional complexity of RaRe-IS is Oðn2Þ. The main limitation of this
algorithm is that it needs to tune the values of several parameters:
t, min and max for RaRe method; and max_fail for IS method.
Besides, as it was pointed out in [7], RaRe-IS may produce
clusterings with high overlapping.

The algorithm LA-IS2 follows the same idea of RaRe-IS, but it
introduces new methods for the initialization and improvement
steps. For building the seed clusters, in the initialization step, LA-
IS2 applies a method named LA (from Link Aggregate). This method
starts by ordering the vertices by decreasing Page Rank [33]. Then,
LA uses a strategy in which the ordered vertices are processed
sequentially and added to a cluster only if this addition improves
the cluster density. If a vertex was not added to any cluster, it
constitutes a new cluster. Once the seed clusters have been built,
LA-IS2 sequentially processes each seed by applying a method
named IS2. This method updates a seed by adding or removing one
vertex at a time, as long as the cluster density strictly improves its
value. Unlike IS used by the RaRe-IS algorithm [18], IS2 adds to a
seed cluster only those vertices adjacent to vertices in the seed.
The computational complexity of LA-IS2 is Oðn2Þ.

The main limitation of LA-IS2 is that it makes irrevocable
assignment of vertices to clusters; that is, once a vertex has been
assigned to a cluster it cannot be removed and added to another
cluster even if doing it improves the clustering quality.

Another overlapping clustering algorithm is LA-CIS, proposed
by Goldberg et al. in [7]. This algorithm follows the same idea of
LA-IS2 [17], but instead of applying IS2 in the improvement step, it
applies a variation of the IS method (see above), called CIS. There
are two main differences between IS and CIS. First, before updating
a seed cluster, CIS sorts the vertices according to their degree.
Second, in CIS the connectivity of a cluster is examined every time
a whole scan finishes. If the cluster consists of multiple connected
components, then it is replaced by the connected component
having the highest density. The computational complexity of LA-
CIS is Oðn2Þ. Like LA-IS2, the main limitation of this algorithm is
that it makes irrevocable assignment of vertices to clusters.
Besides, it may produce clusterings with high overlapping.

Other overlapping clustering algorithms, used for complex
networks analysis, are CONGA [21] and CONGO [23]. These algo-
rithms represent a network as an undirected and unweighted
graph, and they are variations of the GN algorithm [34]. The GN
algorithm builds a set of disjoint clusters using a strategy of four
steps: (1) calculate edge betweenness (EB, for short) for each edge
in the network, (2) find the edge having the highest EB and
remove it, (3) recalculate the EB for all remaining edges, and
(4) repeat steps 2 and 3 until no edges remain.

The CONGA [21] algorithm extends the GN algorithm, allowing
overlapping clusterings, by introducing the concept of split between-
ness (SB, for short) of vertices; this concept provides a way to decide
when to split a vertex andwhich vertex to split. Thus, CONGAmodifies
the GN algorithm so that, in step 1, CONGA calculates the EB of each
edge as well as the SB of each vertex. Afterwards, in step 2, CONGA
removes the edge with the highest EB or the vertex with the highest
SB. In the third step, the EB of each edge and the SB of each vertex are
recalculated; the fourth step remains equal. The computational com-
plexity of CONGA is Oðn6Þ for standard networks and it could get to be
Oðn3Þ for sparse networks.

The main limitation of this method is its computational com-
plexity, which makes it unapplicable for real problems involving
networks with high number of vertices and edges. Besides, CONGA
needs to know in advance the number of clusters to build;
however, this number is commonly unknown in real problems.

The CONGO [23] algorithm extends CONGA by introducing the
concept of local betweenness. This concept helps, at step 3 of
CONGA, neither recomputing EB for all the edges nor recomputing
the SB for all the vertices. Instead, only a small region around the
removed edge or the split vertex is recomputed. Steps 1, 2 and 4 in
CONGO algorithm are the same as in CONGA algorithm. The
computational complexity of this algorithm is Oðn4Þ for standard
networks and it could get to be Oðn2 � log n2Þ for sparse networks,
but making some hard assumptions as it is shown in [23]. The
main limitation of the CONGO algorithm is its high computational
complexity. Besides, as in CONGA, CONGO needs to know in
advance the number of clusters to build.

Another algorithm able to produce overlapping clustering is H-
FOG [6]. This algorithm transforms the problem of clustering the
set of vertices in a network into the problem of clustering the set
of links in a network; in this way, it allows overlapping among
clusters. H-FOG is based on probability and it uses a strategy
similar to the Single-link algorithm [35]. The computational
complexity of H-FOG is Oðn6Þ. The main limitation of this method
is its computational complexity. Besides, it needs to know in
advance the number of clusters to build.

Another overlapping clustering algorithm is RRW [25], developed
for discovering complexes and pathways within large-scale protein
networks. This algorithm starts by building for each vertex in the
network an affinity vector, through the randomwalk technique. After
that, it uses the vector representing each vertex in order to build the
strong connected component of the graph; in this context, each
component constitutes a cluster. Afterwards, it sorts the clusters
according to their statistical significance and it post-processes the
resulting set of clusters by removing those clusters that do not satisfy
a predefined overlap threshold. The computational complexity of this
algorithm is Oðn2Þ. The main limitation of RRW is that it needs to
tune the values of at least four parameters.

Another algorithmwhich builds overlapping clustering is SSDE-
Cluster [5]. This algorithm was developed for social networks
analysis and it represents the network as an undirected and
weighted graph. For building a clustering this algorithm follows
three steps. In the first step, SSDE-Cluster uses Sampled Spectral
Distance Embedding (SSDE) to approximately embed the graph in
doon dimensions [36]; where n is the number of vertices of the
graph representing the network. In the second step, the vertices
are clustered through a Gaussian Mixture Model (GMM), trained
using the E-M algorithm. The GMM posterior probabilities are
then used, in the third step, to compute overlapping clusters. The
computational complexity of this algorithm is Oðn � k � dÞ; k being
the predefined number of clusters. The main limitation of SSDE-
Cluster is that it needs to tune the values of at least four
parameters, including the number of clusters to build.

Another clustering algorithm for detecting overlapping commu-
nities in complex networks was proposed by Zhang et al. in [22]. This
algorithm uses spectral mapping over the adjacency matrix of the
network, in order to compute K eigenvectors representing the
information of the network. Then, the Fuzzy C-Means algorithm is
used for clustering these eigenvectors in k clusters, where 2≤k≤K; all
these fuzzy partitions are converted into overlapping clusterings using
a parameter λ. Finally, the overlapping clustering which maximizes a
variation of the modular function proposed in [34] is selected as the



A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247 237
final clustering. A key limitation of this algorithm is its computational
complexity which, in the best scenario, is Oðn2 � K � hÞ, h being the
iterations of the Fuzzy C-Means algorithm. Another limitation of this
algorithm is that it needs to tune the values of several parameters.

As it can be seen from the related work, there are many algorithms
addressing the problem of overlapping clustering. However, as we
pointed out in this section, they have several limitations. These
limitations are mainly related to: (a) the production of a large number
of clusters, (b) the necessity of tuning several parameters whose values
depend on the collection to be processed, and (c) the production of
clusterings with high overlapping. Besides, there are several algo-
rithms having a high computational complexity; this makes these
algorithms worthless for many real problems.

The algorithm proposed in this work solves the aforemen-
tioned limitations while it has an acceptable computational com-
plexity. Moreover, as we will show in our experiments, our
algorithm builds more accurate clusterings than those built by
the previous algorithms.
3. Overlapping clustering based on relevance

In this section, a new clustering algorithm for building overlapping
clustering is introduced. This algorithm, called OClustR (Overlapping
Clustering based on Relevance), represents a collection of objects as a
weighted thresholded similarity graph ~Gβ and it builds an overlapping
clustering in two steps. In the first step, an initial set of clusters is
generated through a cover of ~Gβ , using a special kind of sub-graphs
named weighted star-shaped sub-graphs (ws-graphs). For building this
cover, OClustR introduces a new criterion that allows selecting the ws-
graphs needed for covering ~Gβ . Afterwards, in order to build the final
clustering, the initial clusters are improved in a second step. For
improving the clusters, OClustR introduces a strategy, which aims at
reducing both the number of clusters and the overlapping.

The presentation of OClustR is divided in four parts. First of all,
in Section 3.1, we give some basic concepts needed for introducing
our algorithm. After, in Section 3.2, we explain how OClustR
obtains the initial set of clusters and, in Section 3.3, we explain
how OClustR improves the initial clusters in order to build the
final clustering. Finally, in Section 3.4 the complexity of the
proposed algorithm is analyzed.

3.1. Basic concepts

Let O¼ fo1; o2;…; ong be a collection of objects, β∈½0;1� a given
parameter and Sðoi; ojÞ a similarity function, such that
∀oi; oj∈O; oi≠oj, Sðoi; ojÞ ¼ Sðoj; oiÞ.

A weighted thresholded similarity graph is an undirected and
weighted graph ~Gβ ¼ 〈V ; ~Eβ; S〉, such that V ¼ O and there is an edge
ðv;uÞ∈ ~Eβ iff Sðv;uÞ≥β; each edge ðv;uÞ∈ ~Eβ; v≠u is labeled with the
value of Sðv;uÞ.

The set of adjacent vertices of a vertex v∈V , denoted as v:Adj, is
the set of vertices u∈V , such that there is an edge ðv;uÞ∈ ~Eβ . Any
vertex v having v:Adj¼∅ will be known as isolated. In addition,
the cardinality of v:Adj is known as the degree of v.

Let ~Gβ ¼ 〈V ; ~Eβ; S〉 be a weighted thresholded similarity graph. A
weighted star-shaped sub-graph (ws-graph) in ~Gβ , denoted by G⋆ ¼
〈V⋆; E⋆; S〉, is a sub-graph of ~Gβ , having a vertex c∈V⋆, such that there is
an edge between c and all the other vertices in V⋆\fcg. The vertex c is
called the center of the ws-graph and the remaining vertices are called
satellites. Isolated vertices are considered degenerated ws-graphs.

Let ~Gβ ¼ 〈V ; ~Eβ; S〉 be a weighted thresholded similarity graph
and W ¼ fG⋆

1;G
⋆
2;…;G⋆

kg be a set, such that each G⋆
i ¼ 〈V⋆

i ; E
⋆
i ; S〉,

∀i¼ 1…k, is a ws-graph of ~Gβ . The set W is a cover of ~Gβ iff it meets
that V ¼ ⋃ki ¼ 1V

⋆
i . In addition, we will say that a ws-graph G⋆

i covers
a vertex v iff v∈V⋆

i .
Let G⋆
v ¼ 〈V⋆

v ; E
⋆
v ; S〉 be a non-degenerated ws-graph, having v as

its center. The intra-cluster similarity of G⋆
v , denoted as

Intra_simðG⋆
vÞ, is the average similarity between all pair of vertices

belonging to V⋆ [37], that is

Intra_simðG⋆
v Þ ¼

∑z;u∈V⋆
v ;z≠u

Sðz;uÞ
jV⋆

v j � ðjV⋆
v j−1Þ

2

ð1Þ

Computing Intra_simðG⋆
vÞ using (1) is Oðn2Þ. Thus, using this

equation for computing the intra-cluster similarity of the ws-
graph determined by all vertices in ~Gβ becomes Oðn3Þ. Since we
want to reduce the computational complexity of OClustR, we
should find an efficient approximation of (1) in order to use it in
our algorithm.

From the definition of weighted thresholded similarity graph,
we have that all edges ðv;uÞ such that Sðv;uÞoβ, do not belong to
~Gβ . Since any ws-graph G⋆

v is a sub-graph of ~Gβ , these edges do not
belong to G⋆

v either. Therefore, if these edges are not taken into
account in the computation of Intra_simðG⋆

vÞ, we could rewrite (1)
as follows:

Aprox_Intra_simðG⋆
v Þ ¼

∑ðz;uÞ∈E⋆v Sðz;uÞ
jV⋆

v j � ðjV⋆
v j−1Þ

2

ð2Þ

Even when we save some calculations, Eq. (2) is still Oðn2Þ.
However, it can be noticed from (2) that, for a given ws-graph G⋆

v ,
the value of the numerator of Aprox_Intra_simðG⋆

vÞ only depends on
the number of edges of G⋆

v , as well as on their weights. Therefore,
based on the definition of ws-graph, we know that the lowest
value of Aprox_Intra_simðG⋆

vÞ is reached when the edges in E⋆v are
only those between the center v and the satellites of G⋆

v . Assuming
this worst scenario, we could rewrite (2) as follows:

Aprox_Intra_simðG⋆
v Þ ¼

∑u∈V⋆
v ;u≠v

Sðv;uÞ
jV⋆

v j � ðjV⋆
v j−1Þ

2

ð3Þ

Computing Aprox_Intra_simðG⋆
vÞ using (3) is OðnÞ. Thus, we can

use (3) for computing Aprox_Intra_simðG⋆
vÞ for each ws-graph G⋆

v in
~Gβ , for saving computational time. However, the denominator of
(3) grows faster than its numerator. Therefore, a minor increase in
the cardinality of V⋆ could represent a big decrease in the value of
Aprox_Intra_simðG⋆

vÞ. Moreover, the above mentioned characteristic
of (3) makes the value of Aprox_Intra_simðG⋆

vÞ to be near to 0, for
larger values of jV⋆

vj. This could represent a bias for ws-graphs with
many satellites (i.e., big ws-graphs) and also, it makes difficult the
comparison between values of the Aprox_Intra_sim for two big ws-
graphs. Based on this, we substitute the denominator of (3) by
ðjV⋆

vj−1Þ; that is, to approximate the value of Aprox_Intra_simðG⋆
vÞ

as the average weight of the edges existing in G⋆
v between v and

the satellites. Then, we could rewrite (3) as follows:

Aprox_Intra_simðG⋆
v Þ ¼

∑u∈V⋆
v ;u≠v

Sðv;uÞ
jV⋆

v j−1
ð4Þ

3.2. Building the initial clusters

We can build a covering of ~Gβ by finding the minimum vertex
cover of ~Gβ . The minimum vertex cover of ~Gβ ¼ 〈V ; ~Eβ; S〉 is the
minimum set of vertices MDV , such that any vertex in ~Gβ belongs
to M or it has an adjacent vertex belonging to M. However, finding
the minimum vertex cover of ~Gβ is a NP complete problem [13];
therefore, we propose to approximate the minimum vertex cover
of ~Gβ by covering ~Gβ using ws-graphs.

As it can be seen from the previous subsection, a ws-graph is
determined by its center; thus, the problem of building a set
W ¼ fG⋆

c1 ;G
⋆
c2 ;…;G⋆

ck
g of ws-graphs, such that W is a cover of ~Gβ ,



A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247238
can be seen as the problem of building a set C ¼ fc1; c2;…; ckg such
that ci∈C is the center of G⋆

ci
∈W , ∀i¼ 1;…; k. Since each vertex in ~Gβ

can form a ws-graph, all vertices in V⋆ should be analyzed to build
the set C. For pruning the search space and to establish a criterion
for selecting the vertices that should be included in C, OClustR
introduces the concept of relevance of a vertex. For defining the
relevance of a vertex v, first we will define the relative density and
the relative compactness of a vertex v.

An idea for reducing the number of ws-graphs needed for
covering ~Gβ would be to iteratively select the vertices with higher
degree. In this way, we try maximizing the number of vertices that is
added to the cover of ~Gβ on each iteration. However, suppose that the
vertices v1; v2;…; vk were selected in the first k iterations. Let u be
the vertex, among those non-selected vertices, having the highest
degree in the iteration kþ 1. If u is adjacent to d vertices of the k
previously selected vertices and u is added to C, only ju:Adjj−d
vertices would be added to the cover of ~Gβ; the other vertices
adjacent to uwere added to the cover of ~Gβ in the previous iterations.
But, if in the iteration kþ 1 would exist another vertex z such that: (i)
jz:Adjjo ju:Adjj, (ii) z is adjacent to d1 of the previously selected
vertices, and (iii) ju:Adjj−do jz:Adjj−d1, then selecting vertex z in the
iteration kþ 1 would be a better choice than selecting u.

Now, suppose that in the iteration kþ 1, there are two vertices v

and u, such that v can add six vertices to the covering and u can add
four vertices to the covering. Also suppose that jv:Adjj ¼ 10 and
ju:Adjj ¼ 5. If we make our decision based on the number of vertices
that each vertex can add to the covering, the choice would be the
vertex v. Nevertheless, vertex u can cover a greater percent of its
adjacent vertices than vertex v (4/5 versus 6/10). Motivated by the
aforementioned ideas, we introduce the concept of relative density of a
vertex.

The relative density of a vertex v∈V , denoted as v:densityR, is
computed as follows:

v:densityR¼ v:density
jv:Adjj

where v:density denotes the number of adjacent vertices of v

having a degree not greater than the degree of v. The density of v
expresses how many adjacent vertices could include v in the cover
of ~Gβ . The relative density determines the ratio between the
density of v and the number of adjacent vertices of v; this measure
takes values in the interval [0,1]. The higher the value of v:densityR,
the greater the number of adjacent vertices that v could include in
the cover of ~Gβ and therefore, the better v is for covering ~Gβ .

It is important to highlight that the vertices that were not
counted in v:density are those selected in the previous iterations;
therefore, a high value of v:densityR also means that the ws-graph
determined by v has a low overlapping with the previous selected
ws-graphs. In this way, we also check the overlapping among the
selected ws-graphs.

Relative density can be used for reducing the number of ws-
graphs needed for covering ~Gβ and for selecting ws-graphs with low
overlapping. However, since this property is mainly based on the
degree of vertices, using the relative density could lead to select ws-
graphs with a high number of satellites but with a low average
similarity among them. For solving this issue we define the concept
of relative compactness of a vertex, which also takes into account the
Aprox_Intra_sim of a ws-graph (computed using Eq. (4)).

The relative compactness of a vertex v∈V , denoted as
v:compactnessR, is computed as follows:

v:compactnessR¼ v:compactness
jv:Adjj

where v:compactness denotes the number of vertices u∈v:Adj such
that Aprox_Intra_simðG⋆

vÞ≥Aprox_Intra_simðG⋆
uÞ, being G⋆

v and G⋆
u the

ws-graphs determined by v and u, respectively. The compactness
of v expresses, from a different point of view, how many adjacent
vertices could include v in the cover of ~Gβ . Similar to v:densityR,
the relative compactness takes values in [0,1] and the higher the
value of v:compactnessR, the greater the number of adjacent
vertices that v could include in the cover of ~Gβ and therefore,
the better v for covering the graph.

The relevance of a vertex v, denoted as v:relevance, combines the
relative density and relative compactness as the average of v:densityR
and v:compactnessR. Since both v:densityR and v:compactnessR take
values in [0,1], the relevance of a vertex also takes values in [0,1].
Besides, from this definition it can be inferred that a high value of
relevance will correspond with vertices having high values of
v:densityR and/or v:compactnessR; therefore, the higher the value of
v:relevance the better v is for covering ~Gβ . From the above comment,
we can conclude that we must select the vertices in descending
order according to their relevance. Besides, since vertices having
v:relevance¼ 0 are those vertices having v:densityR¼ 0 and
v:compactnessR¼ 0, we do not have to verify these vertices in order
to build the covering of ~Gβ . Thus, we reduce the number of vertices
that should be revised for building the cover of ~Gβ .

The strategy OClustR proposes for covering ~Gβ has three steps.
In the first step, all vertices having relevance greater than zero are
added to a list of candidates L; isolated vertices are included
directly in C since they are degenerated ws-graphs. Afterwards,
in the second step, the list L is sorted in decreasing order,
according to the relevance of the vertices. Finally, in the third step
the vertices of L are iteratively visited in this order. Each vertex v∈L
is added to C if it satisfies at least one of the following conditions:
(a)
 v is not covered yet.

(b)
 v is already covered but it has at least one adjacent vertex u

which is not covered yet. This condition avoids the selection of
ws-graphs having all their satellites covered by previously
selected ws-graphs.
After this process, the ws-graph formed by each vertex
included in C constitutes an initial cluster.

3.3. Improving the initial clusters

Once the set C is built, we analyze C in order to remove the
vertices forming less useful ws-graphs. In this context, the useful-
ness of a ws-graph G⋆ will be assessed based on how many of its
satellites it shares with other selected ws-graphs.

The strategy used for covering ~Gβ is greedy; thereby, it could
happen that some vertices initially added to C are no longer necessary
for covering ~Gβ; i.e., they could be removed from C and the remaining
vertices still cover ~Gβ completely. For instance, if there is one vertex
v∈C such that all the satellites of G⋆

v , as well as v belong to at least
another previously selected ws-graph, then v could be removed from
C and the remaining vertices in C still cover ~Gβ completely. On the
contrary, if v belongs to at least another previously selected ws-graph
but its satellites do not belong, v cannot be removed from C. Notice
that, removing v from C in this last situation will leave the non-shared
satellites of G⋆

v uncovered. Let v∈C be a vertex which determines the
ws-graph G⋆

v in the covering of ~Gβ . Additionally, let v:Shared be the set
of satellites that G⋆

v shares with other selected ws-graphs and let
v:Non_shared be the set of satellites belonging only to G⋆

v . In this work,
we will understand that G⋆

v is not useful for covering ~Gβ iff the
following conditions are met: (1) there is at least another selected ws-
graph containing v as a satellite, and (2) jv:Sharedj4 jv:Non_sharedj.

Non-useful ws-graphs increase the overlapping of the initial set
of clusters; therefore, removing these ws-graphs would help to
reduce the number of clusters as well as their overlapping.
However, for removing these ws-graphs we need to add all their
non-shared satellites to other clusters.



A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247 239
Since a non-useful ws-graph G⋆
v meets that its center v belongs to

at least another ws-graph G⋆, the non-shared satellites of G⋆
v could be

added to the cluster defined by G⋆. If there are more than one ws-
graph covering vertex v, then the non-shared satellites will be added
to the ws-graph having the greatest number of satellites among the
candidates; thus, we allow the creation of clusters with many objects.
If there is a tie then any of the ws-graphs having the greatest number
of satellites can be selected. In this work, for simplicity, we select the
first of these ws-graphs. When the non-shared satellites of a non-
useful ws-graph must be added to another ws-graph G⋆

u, we add those
satellites to a list named u:Linked; thus, the cluster determined by the
ws-graph G⋆

u nowwill include also the vertices in u:Linked. Hereinafter,
the vertices added to u:Linked will be known as the linked satellites of
G⋆
u. It is important to understand that we use the term linked in an

illustrative way and that we already do not create any edge between u
and any of the vertices in u:Linked.

The strategy proposed for removing the non-useful ws-graphs
is composed of two steps. In the first step, we mark all the vertices
in C as not-analyzed and sort C in decreasing order, according to
the degree of the vertices. After, in the second step each vertex v∈C
is visited for removing from v:Adj all the vertices forming non-
useful ws-graphs. For doing this, each vertex u∈v:Adj is processed
as follows: if u already belongs to C and it is yet marked as not-
analyzed, then we check if G⋆

u is not useful for covering ~Gβ ,
according to the above definition. The vertices belonging to C
and marked as analyzed are those which were determined as
useful in a previous iteration and therefore, they do not need to be
verified again. It is important to notice that, since u belongs to G⋆

v ,
it already meets condition (1). Thus, we only need to verify
condition (2) on G⋆

u and this is OðnÞ. Besides, we would like to
highlight that, since vertices in C were ordered in descending
order of their degree, G⋆

v is the ws-graph having the greatest
number of satellites that covers u. Finally, if G⋆

u is not useful, u is
removed from C and the vertices in u:Shared are added to v:Linked;
otherwise, if G⋆

u is useful, vertex u is marked as analyzed. Once all
vertices in v:Adj were visited, the set formed by vertex v, together
with vertices in v:Adj and v:Linked, constitutes a cluster in the final
clustering.

The pseudocode of OClustR algorithm is showed in Algorithm 1.

Algorithm 1. OClustR algorithm.
3.4. Complexity analysis

For determining the computational complexity of Algorithm 1, we
will analyze each one of its steps. Let n be the size of the collection
O¼ fo1; o2;…; ong; i.e., jOj ¼ n. For building ~Gβ in step 1, we should
compute the similarity between all pairs of objects in O. Therefore,
the total number of operations done in this step is T1ðnÞ ¼ n2; thus,
T1ðnÞ is Oðn2Þ. It is important to mention that, during this step, we
can compute the value of Aprox_Intra_simðG⋆Þ for each ws-graph G⋆

in ~Gβ , using expression (4), without affecting T1ðnÞ.
For computing the relevance of each vertex v∈V in step 2, both

v:densityR and v:compactnessR must be computed first. Analo-
gously, for computing v:densityR and v:compactnessR, we must
compute v:density and v:compactness, respectively. Both v:density
and v:compactness can be computed in the same loop. For
computing v:density we need to compare the degree of v against
the degree of each vertex in v:Adj. On the other hand, for
computing v:compactness we need to compare the value of
Aprox_Intra_simðG⋆

vÞ against the value of Aprox_Intra_simðG⋆
uÞ, for

each vertex u∈v:Adj. In the worst scenario, jv:Adjj ¼ n. Therefore,
the total number of operations done in step 2 is T2ðnÞ ¼ n2; thus,
T2ðnÞ is Oðn2Þ.

Both steps 3 and 4 can be done in the same loop, by checking
the degree and the relevance of each vertex in V; hence, the total
number of operations for these steps is T3−4ðnÞ ¼ n. Thereby,
T3−4ðnÞ is OðnÞ. Step 5 can be done in Oðn � log nÞ using the merge
sort algorithm [38].

In steps 6–8 where the candidates of L are analyzed, for
verifying if a vertex v∈L meets condition (a) or condition (b), it is
necessary to visit all vertices in v:Adj; thus, the total number of
operations done in this process is T6−8ðnÞ ¼ jLj � n. In the worst
scenario, jLj ¼ n. Thus, the total number of operations done in steps
6–8 is T6−8ðnÞ ¼ n2; therefore, T6−8ðnÞ is Oðn2Þ. Since the degree of a
vertex v is an integer in [0, n−1], following the pigeonhole principle,
the sorting process of step 10 can be done using a number of
operations T10ðnÞ ¼ n; hence, T10ðnÞ is OðnÞ. The total number of
operations done in step 11 is T11ðnÞ ¼ jCj. In the worst scenario,
jCj ¼ n. Thus, T11ðnÞ ¼ n; hence, T11ðnÞ is OðnÞ.

For estimating the total number of operations done in steps 12–
24, hereinafter referred to as loop-A, a deeper analysis is required.
Let jCj ¼ q0 be the number of vertices selected in steps 6–8. In the
first iteration of loop-A, during steps 14–22, hereinafter referred to
as loop-B, each vertex u∈fv:Adj∪Cg marked as not-analyzed is
deleted from C or marked as analyzed, when u is processed in
steps 15–21. Thus, we could divide the set of vertices u∈fv:Adj∪Cg
that are processed in loop-B, during the first iteration of loop-A,
into two sets: M1 and R1. The set M1 contains the vertices marked
as analyzed. The set R1 contains the vertices that formed non-
useful ws-graphs and, consequently, were removed from C. In
addition, after the execution of loop-B in the first iteration of loop-
A, there remains in C a set Z1 of vertices marked as not-analyzed.

From the aforementioned analysis, we can conclude that after
the execution of loop-B in the first iteration of loop-A, jM1j vertices
of C were marked as analyzed, jR1j vertices of C were removed
from C, and there remain jZ1j vertices in C marked as not-analyzed;
where jM1j þ jR1j þ jZ1j ¼ q0. Since there are only jZ1j vertices in C
marked as not-analyzed, any vertex that could be processed during
the execution of loop-B, in the second iteration of loop-A, belongs
to Z1; that is, we have that jM2j þ jR2j þ jZ2j ¼ jZ1j. Following
a similar reasoning, in the third iteration we have that
jM3j þ jR3j þ jZ3j ¼ jZ2j. Generalizing, for i41, we have that
jMij þ jRij þ jZij ¼ jZi−1j.

The number of operations done in an iteration i of loop-A is
FiðnÞ ¼ P1 þ P2 þ P3, where P1 is the total number of opera-
tions done in loop-B for all the vertices in u∈fv:Adj∪Cg marked as



1 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger

A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247240
not-analyzed; P2 is the remaining number of operations done in
loop-B; and P3 is the number of operations done in step 23. For
knowing if the ws-graph determined by u (G⋆

u) is not useful, we
need to visit each vertex in u:Adj. As it was mentioned before, in
the worst scenario ju:Adjj ¼ n. From the above analysis, we know
that the number of vertices marked as not-analyzed during loop-B
was jMij þ jRij; thus, P1 ¼ n � ðjMij þ jRijÞ. Besides, since for vertices
in v:Adj that do not meet the conditions of step 15 no more
operations are done, P2 ¼ n−ðjMij þ jRijÞ. Additionally, since sets
v:Adj and v:Linked do not have any vertex in common, we should
visit at most n vertices for building the cluster associated to vertex
v in step 23; therefore, P3 ¼ n.

Up to here, we know that the number of operations done in the
first iteration of loop-A is FiðnÞ ¼ n � ðjMij þ jRijÞ þ n−ðjMijþ jRijÞ þ n.
If the number of iterations done for loop-A is qrq0 , then the total
number of operations done in steps 12–24 is

T12−24ðnÞ ¼ ∑
q

i ¼ 1
FiðnÞ ¼ ∑

q

i ¼ 1
n � ðjMið Þ þ jRijÞ þ n−ðjMij þ jRijÞ þ nj

T12−24ðnÞ ¼ ∑
q

i ¼ 1
ðn � ðjMij þ jRijÞÞ þ ∑

q

i ¼ 1
2 � n−∑q

i ¼ 1ðjMij þ jRijÞ

Thus,

T12−24ðnÞ ¼ n �∑q
i ¼ 1ðjMij þ jRijÞ þ 2 � n � q−∑q

i ¼ 1ðjMij þ jRijÞ ð5Þ
As it is known from the previous analysis, the following equations
are true:

jM1j þ jR1j þ jZ1j ¼ q0
jM2j þ jR2j þ jZ2j ¼ jZ1j
⋮
jMqj þ jRqj þ jZqj ¼ jZq−1j ð6Þ

adding all equations in (6), we obtain

∑
q

i ¼ 1
ðjMij þ jRijÞ þ ∑

q

i ¼ 1
jZij ¼ q0 þ ∑

q−1

i ¼ 1
jZij

∑
q

i ¼ 1
ðjMij þ jRijÞ þ jZqj ¼ q0

thus,

∑
q

i ¼ 1
ðjMij þ jRijÞ ¼ q0−jZqj ð7Þ

If we substitute (7) in (5), we have that

T12−24ðnÞ ¼ n � ðq0−jZqjÞ þ 2 � n � q−ðq0−jZqjÞ
T12−24ðnÞ ¼ n � q0−n � jZqj þ 2 � n � q−q0 þ jZqj

grouping terms having equal sign

T12−24ðnÞ ¼ n � q0 þ 2 � n � qþ jZqj−ðn � jZqj þ q0Þ
Since ðn � jZqj þ q0ÞZ0 and q0; q and jZqj are integers in [0,n],

we have that

T12−24ðnÞ2n � q0 þ 2 � n � qþ jZqj2n2 þ 2 � n2 þ n

hence,

T12−24ðnÞr3 � n2 þ n ð8Þ
From (8), we can conclude that T12−24 is Oðn2Þ. Finally, based on

the aforementioned analysis, the total number of operations done
in Algorithm 1 is TðnÞ ¼ T1ðnÞ þ T2ðnÞ þ T3−4ðnÞ þ T5ðnÞ þ T6−8ðnÞ þ
T10ðnÞ þ T11ðnÞ þT12−24ðnÞ. By the rule of the sum, TðnÞ is
OðmaxðT1ðnÞ; T2ðnÞ; T3−4ðnÞ; T5ðnÞ; T6−8ðnÞ; T10ðnÞ; T11ðnÞ; T12−24ðnÞÞÞ.
Therefore, TðnÞ is Oðn2Þ and, consequently, the computational
complexity of OClustR is Oðn2Þ.
4. Experimental results

In this section, the results of some experiments testing the
performance of OClustR algorithm are presented.

The experiments were conducted over several overlapping
collections. In these experiments, we contrasted our results
against those obtained by Star [12], ISC [10], SHC [15], Estar [13],
Gstar [19], ACONS [20], ICSD [24] and DCS [27] algorithms. The
experiments were focused on comparing the algorithms according
to: (a) the quality of the clustering, (b) the number of clusters
obtained, (c) the overlapping of the clustering, and (d) the time
spent for clustering the collections.

All the algorithms used in the experiments were implemented
in C++ and compiled using the g++ compiler. The experiments
were performed on a PC with an Intel Core 2 Duo at 1.86 GHz CPU
with 2 GB DDR2 RAM, running RedHat Enterprise Linux 5.3.
4.1. Collections used in the experiments

Since we are addressing the problem of overlapping clustering,
we decided to evaluate the algorithms in the task of document
clustering, where it is common that some documents belong to
more than one topic.

The document collections used in the experiments were built
from three benchmark text collections: AFP, Reuters-21578 and
TDT2. The AFP benchmark was downloaded from http://trec.nist.
gov and it contains news published by the AFP agency in 1994 and
used in the TREC-5 conference. Reuters-21578 was downloaded
from http://kdd.ics.uci.edu and it contains news published by
Reuters during 1987. TDT2 was downloaded from http://www.
nist.gov/speech/tests/tdt.html and it contains news collected from
different sources from January 1998 to June 1998. AFP contains
news in Spanish while the other two benchmarks contain news in
English.

Ten document collections were built from the aforementioned
benchmarks. The collection AFP was built from the AFP bench-
mark, using all its news. The collection Reu-Te was built from
Reuters benchmark, using the news tagged as “Test” that have been
associated with at least one topic. The collection Reu-Tr was built
from Reuters benchmark, using the news tagged as “Train” that
have been associated with at least one topic. The collection Reuters
is the union of Reu-Te and Reu-Tr. The collection TDT was built
from TDT2 benchmark, using the news that have been associated
with at least one topic. Finally, five sub-collections called as TDT-1,
TDT-2, TDT-3, TDT-4 and TDT-5 were built from the TDT collection.
In order to build these five sub-collections, the news of TDT were
randomly arranged into five folds. Afterwards, each sub-collection
was built by randomly selecting three of these five folds.

The characteristics of the ten document collections used in our
experiments are shown in Table 1. The columns labeled as
“#Documents” and “#Terms” represent the number of documents
and terms contained in each collection. The column labeled as
“#Classes” represents the number of topics identified by human
annotators for each collection. The column labeled as “Overlap-
ping” represents the average number of classes in which a
document is included [29].

In our experiments, documents were represented using the
Vector Space Model (VSM) [39]. The index terms of the documents
represent the lemmas of the words occurring at least once in the
whole collection; these lemmas were extracted from the docu-
ments using the Tree-tagger.1 Stop words such as: articles,
prepositions and adverbs were removed.

http://trec.nist.gov
http://trec.nist.gov
http://kdd.ics.uci.edu
http://www.nist.gov/speech/tests/tdt.html
http://www.nist.gov/speech/tests/tdt.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger


Table 1
Characteristics of the document collections.

Name #Documents #Terms #Classes Overlapping

AFP 695 11,785 25 1.023
Reu-Te 3587 15,113 100 1.295
Reu-Tr 7780 21,901 115 1.241
Reuter 11,367 27,083 120 1.258
TDT 16,007 68,019 193 1.188
TDT-1 8602 51,764 176 1.202
TDT-2 7404 44,610 178 1.173
TDT-3 10,258 53,706 174 1.189
TDT-4 10,074 53,036 172 1.182
TDT-5 11,328 55,923 182 1.180

A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247 241
The index terms of each document were statistically weighted
using term frequency normalized by the maximum term frequency.
The maximum term frequency is the highest frequency of a term in
a given document [40]. The cosine measure was used to compute
the similarity between two documents [41].
4.2. Evaluation measures

Several measures have been proposed to evaluate the clusters
obtained by a clustering algorithm [35,42,43]. There are three
types of evaluation measures: external measures, relative measures
and internal measures [44]. From these three kinds of measures,
the most widely used are the external measures. The external
measures evaluate a clustering solution based on how much this
clustering solution resembles a set of classes, commonly known as
ground-truth, which has been manually tagged by human experts.
The more similar the clustering solution is to the ground-truth, the
better the clustering algorithm is.

Many external evaluation measures have been proposed in the
literature, such as Purity and Inverse Purity [35], Jaccard coefficient
[42], F1-measure [45], FM index [46], Entropy [47], Class Entropy
[48] and V-measure [49], among others. These measures are
different according to their mathematical foundations, their biases
and their limitations. There are several works that have used
measures based on counting pairs, like Fmeasure and Jaccard
coefficient, for evaluating overlapping clusterings [19,20,24,50].
Other works have used measures based on set matching, such as
F1-measure, for evaluating their results [13,29]. However, none of
the external measures reported so far have been developed, at
least explicitly, for evaluating overlapping clustering; that is, these
measures fail at reflecting the fact that, in a perfect overlapping
clustering, objects sharing n classes should share n clusters.

To the best of our knowledge, there are only two works which
propose and discuss measures for evaluating overlapping cluster-
ings [28,51]. In [28], Amigo et al. proposed a new external measure
for evaluating overlapping clusterings, called FBcubed, which is
computed using variations of the Bcubed precision and recall
measures [52].

Let Dðo′Þ be the set of objects, including o′, which shares at least
one cluster with an object o′. The new Bcubed precision of an
object o′ is defined as follows:

Bcubedpreðo′Þ ¼
∑e∈Dðo′Þ MBcubedpreðo′; eÞ

jDðo′Þj

where MBcubedpreðo′; eÞ is the multiplicity Bcubed precision of o′
wrt. e and it is computed as follows:

MBcubedpreðo′; eÞ ¼
MINðjCðo′Þ∩CðeÞj; jLðo′Þ∩LðeÞjÞ

jCðo′Þ∩CðeÞj

where Cðo′Þ and Lðo′Þ are the clusters and classes to which object o′
belongs; CðeÞ and LðeÞ are defined in the same way as Cðo′Þ and
Lðo′Þ.

Let Hðo′Þ be the set of objects, including o′, which shares at least
one class with an object o′. The new Bcubed recall of an object o′ is
defined as follows:

Bcubedrecðo′Þ ¼
∑e∈Hðo′ÞMBcubedrecðo′; eÞ

jHðo′Þj
where MBcubedrecðo′; eÞ is the multiplicity Bcubed recall of o′ wrt. e
and it is computed as follows:

MBcubedrecðo′; eÞ ¼
MINðjCðo′Þ∩CðeÞj; jLðo′Þ∩LðeÞjÞ

jLðo′Þ∩LðeÞj
The overall Bcubed precision, denoted as Bcubedpre, is com-

puted as the average of the Bcubed precision of all objects in the
collection; the overall Bcubed recall, denoted as Bcubedrec, is
defined analogously but using the Bcubed recall of all objects.
Finally, the FBcubed measure is computed as the harmonic mean
of Bcubedpre and Bcubedrec , that is

FBcubed¼ 2 � Bcubedpre � Bcubedrec
Bcubedpre þ Bcubedrec

ð9Þ

It is important to notice that the way in which the Bcubed
precision and recall of an object are defined allows the FBcubed
measure to detect situations in which:
(a)
 The clustering algorithm does not capture completely the
relationship between two items. This situation happens when
there are two objects sharing more classes than clusters. In
this case, the overall Bcubed recall will decrease and conse-
quently, the FBcubed measure will decrease too.
(b)
 The clustering algorithm is introducing more information than
necessary. This situation happens when there are two objects
sharing more clusters than classes. In this case, the overall
Bcubed precision will decrease and consequently, the FBcubed
measure will decrease too.
Additionally, the FBcubed measure meets four formal con-
straints which allow it to evaluate several desirable characteristics
in a clustering [28]. These four formal constraints are:
(a)
 Cluster homogeneity, this constraint states that clusters should
not mix objects from different classes (see Fig. 1a).
(b)
 Cluster completeness, this constraint is the counterpart of the
previous one and it states that items belonging to the same
class should be grouped together in the same cluster (see
Fig. 1b).
(c)
 Rag bag, this constraint states that it is preferable to have clean
clusters plus a noisy cluster than having clusters with a
dominant class plus additional noise (see Fig. 1c).
(d)
 Cluster size versus quantity, this constraint states that to
separate one object from its class of n42 members is less
harmful than to fragment n binary classes (see Fig. 1d).
As we can see from Fig. 1, these constraints are intuitive and
they express important characteristics that should be evaluated by
an external evaluation measure. Moreover, in [28] the authors
showed that none of the most used external evaluation measures
satisfy all the four formal constraints.

In [51], Ramírez et al. proposed three external measures for
evaluating overlapping clusterings: GFM, PCMP, and Clustering
Recall (RU). The first, GFM, is a generalization of the known
Fowlkes–Mallows index (FM index) [46], which is a measure based
on counting pairs. On the other hand, PCMP (from Partial Class
Match Precision) is also a measure based on counting pairs but,
different from GFM, it measures the probability of randomly



>QQ

C1 C2

>QQ

C1 C2

Q

C1 C2

>Q Q

C1 C2

>Q

Fig. 1. Illustrating the four formal constraints [28]. (a) Cluster homogeneity.
(b) Cluster completeness. (c) Rag bag (d) Cluster size versus quantity.

A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247242
selecting two objects from the same class taken from a randomly
sampled cluster. As was stated in [51], both previous measures
work under the assumption that the overlapping is restricted to
pairs of classes; this restriction does not necessarily hold in real
problems. Besides, as was showed in [28], the measures based on
counting pairs do not meet constraints c and d. The RU measure is
based on the concept of “recall”, it was taken from the Information
Retrieval area, and measures the average number of objects of
each class that was included in any cluster. This is a measure based
on set matching which, like purity [35], does not meet constraints
b and c. Moreover, none of the three measures proposed in [51] are
able to evaluate the fact that, in a perfect overlapping clustering,
objects sharing n classes should share n clusters.

Based on the aforementioned analysis and in order to conduct a
fair comparison among the algorithms, we will use the FBcubed
measure for evaluating the quality of the clusterings built by each
algorithm. A more detailed explanation about the FBcubed mea-
sure, together with a case of study and a deeper analysis, can be
found in [28].

4.3. Quality

In this experiment, we compared the clustering algorithms
according to the quality of the clusters they built for each
collection. For evaluating the clusters we used the FBcubed
measure [28], described in Section 4.2. For a better understanding
of how we conducted this experiment, we will explain in detail the
procedure we followed with the AFP collection.

First, all algorithms were executed over the AFP collection, using
values of β in [0.10, 0.50], with an increment of 0:01; that is, we used
β¼ 0:10;0:11;0:12 and so on. In the case of the SHC algorithm, we
tested different values for the parameters ϵ and HRmin; finally, the
values that produced the best results were chosen. Afterwards, we
computed the FBcubed of the clusterings built by each algorithm for
each value of β. Since the algorithms ISC and Estar do not depend on
the data order, we selected their highest FBcubed values, over all β
values, as their best performance over AFP. For Star, SHC, Gstar,
ACONS, ICSD, DCS and OClustR, which depend on the data order, we
repeat the experiment 20 times, for each value of β, varying the order
of the documents. For these algorithms, their highest average
FBcubed value, over all β values, was selected as their best perfor-
mance over AFP.

The same above described procedure was used for computing
the best performance of the clustering algorithms over the
remaining collections. From all this evaluation process, we
observed the following:
�
 For values of β greater than 0.50 or smaller than 0.10, the
quality value of the clusterings built by all algorithms
decreases. For this reason, we do not use values of β out of
the above mentioned interval.
�
 Even when the results of Star, SHC, Gstar, ACONS, ICSD, DCS and
OClustR depend on data order, the standard deviation of the
FBcubed values of the clusterings built for each different order
of the documents was less than 0.01 for each value of β.
Therefore, we can rely in the average FBcubed value, for each
value of β used, as the best performance for each of these β
values.

In Table 2, we show the best performances, according to the
FBcubed measure, attained by each algorithm over each collection.

As it can be noticed from Table 2, OClustR outperforms all tested
algorithms, according to the FBcubed measure, in all the collections
used in this experiment. Additionally, in Table 3 we show, for
each collection, the percentage of improvement in the value of the
FBcubed measure that our proposed algorithm attained, considering
the FBcubed values obtained by the other algorithms. The ISC and
SHC algorithms were excluded from this analysis since their perfor-
mance was poor wrt. the other algorithms.

As it can be seen from Table 3, our proposed algorithm attained
improvements, in the value of the FBcubed measure, up to 41.14%.
Moreover, if we consider the average value of the improvements,
OClustR outperforms the results of Star, Estar, GStar, ICSD, ACONS
and DCS algorithms in 8.19%, 26.48%, 27.66%, 29.10%, 28.93% and
29.10% respectively.

4.4. Number of clusters

This experiment was focused on comparing the algorithms
regarding the number of clusters they built for each document
collection, when they attained their best performance according to
the FBcubed measure. Table 4 shows the number of clusters built
by each algorithm for each collection.

As it can be seen from Table 4, our proposed algorithm builds,
in all collections, less clusters than the other clustering algorithms
used in the comparison. It is important to highlight that these
results of OClustR are obtained without affecting the quality of the
clusterings (see Table 2); in this way, OClustR builds clusterings
that could be easier to analyze than those built by the other
algorithms used for comparison.

4.5. Overlapping

In this experiment, we compared the algorithms according to
the overlapping they produce for each document collection, when
they attained their best performance according to the FBcubed
measure. The overlapping of a clustering is computed as the
average number of clusters in which an object is included [29].
In Table 5, we show the overlapping of the clusterings built by
each algorithm for each collection.

As it can be seen from Table 5, OClustR builds clusterings which
have less overlapping than the clusterings built by the other
algorithms. This way, OClustR allows overlapping among the
clusters but it controls the overlapping in order to avoid building
clusters with high overlapping that could be interpreted as the
same cluster. This characteristic could be useful for applications
like document segmentation by topic [9] or web document
organization [11,15], where low overlapping is desirable.

Additionally, we carried out another experiment for knowing how
far the overlapping produced by each clustering algorithm is from the
overlapping existing in the ground-truth of each collection.

For doing this, for each collection D, we divide the overlapping
of the clustering built by each algorithm (showed above in Table 5)
and the overlapping existing in the ground-truth (see the column
labeled as “Overlapping” in Table 1); hereinafter, we will refer to
this division as relative overlap (RO). A relative overlap value of
1 means that both the algorithm and the ground-truth have the



Table 2
Best performance of each algorithm, according to the FBcubed value, for each collection. The highest value per collection appears bold-faced.

Coll. Algorithms

Star ISC Estar Gstar ICSD ACONS SHC DCS OClustR

AFP 0.69 0.20 0.63 0.63 0.61 0.62 0.27 0.61 0.77
Reu-Te 0.45 0.05 0.39 0.40 0.39 0.40 0.20 0.39 0.51
Reu-Tr 0.42 0.03 0.36 0.36 0.36 0.36 0.19 0.36 0.43
Reuter 0.42 0.02 0.34 0.35 0.35 0.36 0.19 0.35 0.43
TDT 0.43 0.06 0.37 0.35 0.35 0.34 0.15 0.35 0.48
TDT-1 0.45 0.09 0.39 0.38 0.38 0.38 0.16 0.38 0.48
TDT-2 0.47 0.10 0.40 0.40 0.40 0.39 0.17 0.40 0.52
TDT-3 0.46 0.07 0.40 0.40 0.39 0.39 0.17 0.39 0.51
TDT-4 0.46 0.07 0.40 0.39 0.39 0.39 0.17 0.39 0.50
TDT-5 0.46 0.07 0.39 0.37 0.37 0.37 0.16 0.37 0.50

Table 3
Improvement percentage obtained by OClustR algorithm.

Collections Algorithms

Star Estar Gstar ICSD ACONS DCS

AFP 11.14 22.99 21.83 26.49 24.70 26.49
Reu-Te 13.70 30.75 29.24 30.27 27.73 30.27
Reu-Tr 4.24 22.01 20.90 21.82 20.71 21.82
Reuter 2.24 27.69 23.22 25.04 22.07 25.04
TDT 10.71 31.63 37.86 39.24 41.14 39.24
TDT-1 5.66 22.09 25.68 26.13 26.61 26.13
TDT-2 8.77 28.59 29.01 29.37 31.81 29.37
TDT-3 8.76 27.07 27.77 29.81 30.16 29.81
TDT-4 7.68 23.87 26.33 27.46 28.04 27.46
TDT-5 9.02 28.12 34.80 35.35 36.28 35.35

Ave. 8.19 26.48 27.66 29.10 28.93 29.10

Table 4
Number of clusters built by each algorithm for each collection. The best performance per collection appears bold-faced.

Coll. Algorithms

Star ISC Estar Gstar ICSD ACONS SHC DCS OClustR

AFP 123 334 98 90 104 129 85 104 52
Reu-Te 507 1785 600 711 621 798 273 621 102
Reu-Tr 471 3936 904 849 853 857 561 853 166
Reuter 583 5726 659 1532 1183 1420 815 1183 211
TDT 2019 8250 1854 1653 1657 1663 1203 1657 769
TDT-1 1184 4425 1207 1075 1078 1077 643 1078 377
TDT-2 970 3743 1074 948 950 954 579 950 388
TDT-3 1338 5253 1355 1187 1190 1196 758 1190 594
TDT-4 1104 5154 1303 1158 1160 1163 731 1160 434
TDT-5 1425 5816 1451 1291 1293 1295 837 1293 614

Table 5
Overlapping of the clustering built by each algorithm for each collection. The lowest value per collection appears bold-faced.

Coll. Algorithms

Star ISC Estar Gstar ACONS ICSD SHC DCS OClustR

AFP 1.71 1.65 2.52 2.31 2.48 2.53 2.43 2.53 1.18
Reu-Te 3.41 1.79 7.40 6.73 6.66 7.64 13.13 7.64 1.40
Reu-Tr 5.54 1.84 12.14 13.08 12.65 13.32 29.33 13.32 1.56
Reuter 5.46 1.82 15.92 15.47 15.47 19.25 47.55 19.25 1.53
TDT 4.81 1.88 59.41 69.43 66.38 70.97 80.74 70.97 1.50
TDT-1 3.38 1.84 44.22 49.08 46.40 49.63 47.91 49.63 1.43
TDT-2 3.38 1.80 35.11 37.85 37.46 37.85 39.82 37.85 1.39
TDT-3 3.81 1.84 42.40 46.08 44.83 46.22 53.79 46.22 1.53
TDT-4 4.08 1.83 43.34 47.59 46.24 48.72 56.04 48.72 1.45
TDT-5 3.98 1.88 44.03 51.46 48.44 52.23 59.79 52.23 1.45

A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247 243



A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247244
same overlapping. On the other hand, if the relative overlap is
greater than 1, then the algorithm produces more overlapping
than the real overlapping of the collection. Otherwise, if the
relative overlap is lower than 1, then the algorithm produces less
overlapping than the real overlapping of the collection. Thus, in
order to know how many times far is the overlapping produced by
an algorithm A for each collection D, from its real overlapping, we
compute the absolute value of the difference between 1 and the
RO produced by the algorithm A; that is, we compute the absolute
value of ðRO−1Þ. The closer to zero this absolute value, the better
the algorithm A performs. We will refer to this absolute value
Table 6
Absolute relative overlap (ARO) produced by each algorithm for each collection. The be

Coll. Algorithms

Star ISC Estar Gstar

AFP 0.67 0.61 1.47 1.26
Reu-Te 1.63 0.38 4.71 4.20
Reu-Tr 3.46 0.48 8.78 9.54
Reuter 3.34 0.44 11.65 11.29
TDT 3.05 0.58 49.01 57.45
TDT-1 1.81 0.53 35.79 39.83
TDT-2 1.88 0.53 28.93 31.27
TDT-3 2.21 0.55 34.66 37.75
TDT-4 2.45 0.55 35.67 39.26
TDT-5 2.38 0.59 36.31 42.61

Ave. 2.29 0.53 24.70 27.45

86

88

90

92

94

Ti
m

e 
(s

ec
s.

)

820

860

900

940

980

Ti
m

e 
(s

ec
s.

)

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR

Fig. 2. Runtime for each algorithm over (a) Reu-Te, (b) Reu
as the absolute relative overlap (ARO). Table 6 shows the ARO
produced by each algorithm for each collection.

As it can be seen from Table 6, OClustR was the best for all tested
collections. Moreover, OClustR performs, on an average, at least twice
times better than the ISC algorithm, which was the second best.

4.6. Runtime

In this experiment, we compare the algorithms according to
their runtime. For doing this, we execute each algorithm over Reu-
Te, Reu-Tr, Reuter and TDT-1 collections, using different values of β.
st performance per collection appears bold-faced.

ACONS ICSD SHC DCS OClustR

1.43 1.47 1.38 1.47 0.15
4.14 4.90 9.14 4.90 0.08
9.20 9.73 22.63 9.73 0.26
11.30 14.31 36.80 14.31 0.22
54.88 58.74 66.97 58.74 0.26
37.60 40.29 38.86 40.29 0.19
30.94 31.27 32.95 31.27 0.19
36.70 37.87 44.24 37.87 0.28
38.12 40.22 46.41 40.22 0.23
40.05 43.26 49.67 43.26 0.23

26.44 28.21 34.90 28.21 0.21

340

380

420

460

500

Ti
m

e 
(s

ec
s.

)

3000

3500

4000

4500

5000

5500

6000

6500

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR

Ti
m

e 
(s

ec
s.

)

-Tr, (c) Reuter and (d) TDT-1 collections, for β¼ 0:25.



A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247 245
For algorithms like Star, Gstar, ACONS, ICSD, SHC, DCS and OClustR,
which depend on data order analysis, we repeated this experiment
20 times, randomly varying the order of the documents. In Figs. 2–4
we show the average runtime of each algorithm over Reu-Te,
Reu-Tr, Reuter and TDT-1 collections, for β¼ 0:25, 0.30 and 0.25,
respectively.

As it can be seen from Figs. 2–4, our proposed algorithm has
better performance than Estar, Gstar, ACONS, ICSD, DCS and Star
algorithms. Although ISC and SHC algorithms have slightly better
performance than OClustR, it is important to remember that our
proposed algorithm builds clusterings with higher quality than
those clusterings built by ISC and SHC algorithms. Moreover,
OClustR also outperforms these two algorithms according to the
number of clusters and their overlapping. We conducted other
experiments over the remaining collections, using different values
for β, and we observed the same behavior.
5. Conclusions

In this paper, we introduce OClustR, a new clustering algorithm
for building overlapping clusters. OClustR represents a collection
of objects as a weighted thresholded similarity graph ~Gβ , where β is
a predefined parameter. OClustR builds an overlapping clustering
in two steps. In the first step, OClustR builds an initial set of
clusters through a covering of ~Gβ , using weighted star-shaped
sub-graphs (ws-graphs). For building this covering, OClustR intro-
duces a new criterion for ordering the ws-graphs and a new
85

87

89

91

93

Ti
m

e 
(s

ec
s.

)

800

860

920

980

Ti
m

e 
(s

ec
s.

)

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR

Fig. 3. Runtime for each algorithm over (a) Reu-Te, (b) Reu
graph-covering strategy for selecting those ws-graphs needed for
covering ~Gβ . In the second step, OClustR improves the set of initial
clusters, in order to build the final clustering. For improving the
clusters, OClustR introduces a strategy, which aims at reducing
both the number of clusters and their overlapping.

The proposed algorithm was compared against other over-
lapping clustering algorithms reported in the literature, using
several standard overlapping collections. The experiments were
focused on comparing the algorithms according to the quality of
the clusterings they build, the number of clusters produced, the
overlapping of the obtained clusterings and the time they spent
for clustering some experimental collections. From these experi-
ments, we can conclude OClustR builds clusterings more accu-
rately, according to the FBcubed evaluation measure, than those
built by all the other overlapping clustering algorithms. Addition-
ally, unlike all the tested algorithms, OClustR builds less clusters
with less overlapping than those built by the other tested algo-
rithms. Moreover, from these experiments we can conclude that
our proposed algorithms have better trade off between quality and
efficiency than the other tested algorithms.

Additionally, our proposed algorithm solves the limitations
presented in the state-of-the-art algorithms (see Section 2) and
it has an acceptable Oðn2Þ computational complexity. From the
above comments, we can conclude that OClustR is a better option
for overlapping clustering than previously reported algorithms.

As future work, we will develop a version of OClustR algorithm
able to process additions, deletions as well as modifications of
objects in an already clustered collection, without rebuilding the
380

400

420

440

460

480

500

Ti
m

e 
(s

ec
s.

)

3000

3500

4000

4500

5000

5500

6000

6500

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR

Ti
m

e 
(s

ec
s.

)

-Tr, (c) Reuter and (d) TDT-1 collections, for β¼ 0:30.



83

87

91

95

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR Star IS

C
Esta

r
Gsta

r

ACONS
IC

SD
SHC

DCS

OClus
tR

Star IS
C

Esta
r

Gsta
r

ACONS
IC

SD
SHC

DCS

OClus
tR Star IS

C
Esta

r
Gsta

r

ACONS
IC

SD
SHC

DCS

OClus
tR

Ti
m

e 
(s

ec
s.

)

360

400

440

480

520

Ti
m

e 
(s

ec
s.

)

780

830

880

930

980

Ti
m

e 
(s

ec
s.

)

3000

4000

5000

6000

7000

Ti
m

e 
(s

ec
s.

)

Fig. 4. Runtime for each algorithm over (a) Reu-Te, (b) Reu-Tr, (c) Reuter and (d) TDT-1 for β¼ 0:35.

A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247246
clustering starting from scratch. It will become OClustR in a
Dynamic clustering algorithm, thus increasing its application scope.
Acknowledgment

We thank the National Council on Science and Technology of
Mexico (CONACyT) for its support to this research through the
project Grants CB2008-106443 and CB2008-106366.

References

[1] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Comput. Surv.
31 (3) (1999) 264–323.

[2] Y. Li, H. Shi, L. Jiao, R. Liu, Quantum evolutionary clustering algorithm based on
watershed applied to SAR image segmentation, Neurocomputing 87 (2012)
90–98 http://dx.doi.org.10.1016/j.neucom.2012.02.008..

[3] M.U. Munir, M.Y. Javed, S.A. Khan, A hierarchical k-means clustering based
fingerprint quality classification, Neurocomputing 85 (2012) 62–67, http://dx.
doi.org/10.1016/j.neucom.2012.01.002.

[4] C. Alzate, J.A.K. Suykens, Sparse kernel spectral clustering models for large-
scale data analysis, Neurocomputing 74 (2011) 1382–1390, http://dx.doi.org/
10.1016/j.neucom.2011.01.001.

[5] M. Magdon-Ismail, J. Purnell, SSDE-cluster:fast overlapping clustering of
networks using sampled spectral distance embedding and GMMs, in: Pro-
ceedings of SocialCom2011, 2011, pp. 756–759.

[6] G. Davis, K. Carley, Clearing the FOG: fuzzy, overlapping groups for social
networks, Soc. Netw. 30 (3) (2008) 201–212.

[7] M. Goldberg, S. Kelley, M. Magdon-Ismail, K. Mertsalov, A. Wallace, Finding
overlapping communities in social networks, in: Proceedings of Social-
Com2010, 2010, pp. 104–113.
[8] J. Aslam, E. Pelekhov, D. Rus, The star clustering algorithm for static and
dynamic information organization, J. Gr. Algorithms Appl. 8 (1) (2004) 95–129.

[9] R. Abella-Pérez, J.E. Medina-Pagola, An incremental text segmentation by
clustering cohesion, in: Proceedings of HaCDAIS 2010, 2010, pp. 65–72.

[10] A. Pons-Porrata, J. Ruiz-Shulcloper, R. Berlanga-Llavorí, Y. Santiesteban-
Alganza, Un algoritmo incremental para la obtención de cubrimientos con
datos mezclados, in: Proceedings of CIARP2002, 2002, pp. 405–416.

[11] O. Zamir, O. Etziony, Web document clustering: a feasibility demonstration, in:
Proceedings of the 21st Annual International ACM SIGIR Conference, 1998,
pp. 46–54.

[12] J. Aslam, K. Pelekhov, D. Rus, Static and dynamic information organization
with star clusters, in: Proceedings of the Seventh International Conference on
Information and Knowledge Management, 1998, pp. 208–217.

[13] R.J. Gil-García, J.M. Badía-Contelles, A. Pons-Porrata, Extended star clustering
algorithm, in: Proceedings of CIARP2003, 2003, pp. 480–487.

[14] R.J. Gil-García, J.M. Badía-Contelles, A. Pons-Porrata, Parallel algorithm for
extended star clustering, in: Proceedings of CIARP2004, 2004, pp. 402–409.

[15] K.M. Hammouda, M.S. Kamel, Efficient phrase-based document indexing for
web document clustering, IEEE Trans. Knowl. Data Eng. 16 (10) (2004)
1279–1296.

[16] G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community
structure of complex networks in nature and society, Nature 435 (7043)
(2005) 814–824.

[17] J. Baumes, M. Goldberg, M. Magdon-Ismail, Efficient identification of over-
lapping communities, in: Proceedings of ISI 2005, 2005, pp. 27–36.

[18] J. Baumes, M. Goldberg, M. Krishnamoorty, M. Magdon-Ismail, N. Preston,
Finding communities by clustering a graph into overlapping subgraphs, in:
Proceedings of IADIS Applied Computing, 2005, pp. 97–104.

[19] A. Pérez-Suárez, J. E. Medina-Pagola, A clustering algorithm based on general-
ized stars, in: Proceedings of MLDM 2007, 2007, pp. 248–262.

[20] A. Gago-Alonso, A. Pérez-Suárez, J.E. Medina-Pagola, ACONS: a new algorithm
for clustering documents, in: Proceedings of CIARP2007, 2007, pp. 664–673.

[21] S. Gregory, An algorithm to find overlapping community structure in net-
works, in: Proceedings of the PKDD 2007, 2007, pp. 91–102.

http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref1
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref1
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref2
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref2
http://dx.doi.org.10.1016/j.neucom.2012.02.008
http://dx.doi.org/10.1016/j.neucom.2012.01.002
http://dx.doi.org/10.1016/j.neucom.2012.01.002
http://dx.doi.org/10.1016/j.neucom.2012.01.002
http://dx.doi.org/10.1016/j.neucom.2012.01.002
http://dx.doi.org/10.1016/j.neucom.2011.01.001
http://dx.doi.org/10.1016/j.neucom.2011.01.001
http://dx.doi.org/10.1016/j.neucom.2011.01.001
http://dx.doi.org/10.1016/j.neucom.2011.01.001
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0005
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0005
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0005
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref6
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref6
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0010
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0010
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0010
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref8
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref8
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0015
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0015
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0020
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0020
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0020
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0025
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0025
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0025
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0030
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0030
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0030
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0035
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0035
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0040
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0040
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref15
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref15
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref15
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref16
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref16
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref16
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0045
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0045
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0050
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0050
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0050
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0055
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0055
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0060
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0060
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0065
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0065


A. Pérez-Suárez et al. / Neurocomputing 121 (2013) 234–247 247
[22] S. Zhang, R.S. Wang, X.S. Zhang, Identification of overlapping community
structure in complex networks using fuzzy c-means clustering, Physica A: Stat.
Mech. Appl. 374 (1) (2007) 483–490.

[23] S. Gregory, A fast algorithm to find overlapping communities in networks, in:
Proceedings of the 12th ECML KDD, 2008, pp. 408–423.

[24] A. Pérez-Suárez, J.F. Martínez-Trinidad, J.A. Carrasco-Ochoa, J.E. Medina-
Pagola, A new incremental algorithm for overlapped clustering, in: Proceed-
ings of CIARP2009, 2009, pp. 497–504.

[25] K. Macropol, T. Can, A.K. Singh, RRW: repeated randomwalks on genome-scale
protein networks for local cluster discovery, BMC Bioinformatics 10(1):283,
2009. http://dx.doi.org/10.1186/1471-2105-10-283.

[26] M. Al-Hasan, S. Salem, M.J. Zaki, SimClus: an effective algorithm for clustering
with a lower bound on similarity, Knowl. Inf. Syst. 28 (3) (2011) 665–685
http://dx.doi.org.10.1007/s10115-010-0360-6..

[27] A. Pérez-Suárez, J.F. Martínez-Trinidad, J.A. Carrasco-Ochoa, J.E. Medina-
Pagola, A dynamic clustering algorithm for building overlapping clusters,
Intell. Data Anal. 16 (2) (2012) 211–232.

[28] E. Amigó, J. Gonzalo, J. Artiles, F. Verdejo, A comparison of extrinsic clustering
evaluation metrics based on formal constraints, Inf. Retr. 12 (2009) 461–486.

[29] R.J. Gil-García, A. Pons-Porrata, Dynamic hierarchical algorithms for document
clustering, Pattern Recognit. Lett. 31 (6) (2010) 469–477.

[30] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology, Cambridge University Press, 1997. (Ch. 6).

[31] R. Sibson, An optimally efficient algorithm for the single link cluster method,
Comput. J. 16 (1973) 30–34.

[32] M.G. Everett, S.P. Borgatti, Analyzing clique overlap, Connections 21 (1998)
49–61.

[33] L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking:
bringing order to the web, Working Paper, Stanford Digital Libraries.

[34] M.E.J. Newman, M. Girvan, Finding and evaluating community structure in
networks. Phys. Rev. E, 69(2), 2004. http://dx.doi.org/10.1103/PhysRevE.69.
026113.

[35] Y. Zhao, G. Karypis, Criterion Functions for Document Clustering: Experiments
and Analysis, Technical Report 01-40, Department of Computer Science,
University of Minnesota, Minneapolis, MN, 2001.

[36] A. Civril, M. Magdon-Ismail, E. Bocek-Rivele, SSDE: Fast graph drawing using
sampled spectral distance embedding, in: Graph Drawing, 2007, pp. 30–41.

[37] T. Jo, M. Lee, The evaluation measure of text clustering for the variable number
of clusters, in: Proceedings of the 4th International Symposium on Neural
Networks: Part II—Advances in Neural Networks, 2007, pp. 871–879.

[38] D.E. Knuth, The Art of Computer Programming, vol. 3, Addison-Wesley, 1973.
[39] G. Salton, A. Wong, C.S. Yang, A vector space model for automatic indexing,

Commun. ACM 18 (11) (1975) 613–620 http://dx.doi.org.10.1145/361219.
361220..

[40] E. Greengrass, Information Retrieval: A Survey, Technical Report TR-R52-008-
001, 2001.

[41] M. Berry, Survey of Text Mining, Clustering, Classification and Retrieval,
Springer-Verlag, 2004.

[42] M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation techniques,
J. Intell. Inf. Syst. 17 (2-3) (2001) 107–145.

[43] V. Roth, M.L. Braun, T. Lange, J.M. Buhmann, Stability-based model order
selection in clustering with applications to gene expression data, in: Proceed-
ings of the International Conference on Artificial Neural Networks, 2002,
pp. 607–612.

[44] D. Pfitzner, R. Leibbrandt, D. Powers, Characterization and evaluation of
similarity measures for pairs of clusterings, Knowl. Inf. Syst. 19 (3) (2009)
361–394.

[45] B. Larsen, C. Aone, Fast and effective text mining using linear-time document
clustering, Knowl. Discovery Data Min. (1999) 16–22.

[46] M. Meila, Comparing clusterings by the variation of information, in: Proceed-
ings of COLT/Kernel 2003, 2003, pp. 173–187.

[47] M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering
techniques, Knowl. Discovery Data Min. (2000) 109–110.

[48] J. Bakus, M.F. Hussin, M. Kamel, A SOM-based document clustering using
phrases, in: Proceedings of ICONIP'02, 2002, pp. 2212–2216.

[49] A. Rosenberg, J. Hirschberg, V-measure: A conditional entropy-based external
cluster evaluation measure, in: Proceedings of EMNLP-CoNLL 2007, 2007,
pp. 410–420.

[50] A. Banerjee, C. Krumpelman, S. Basu, R. Mooney, J. Ghosh, Model-based
overlapping clustering, in: Proceedings of KDD2005, 2005, pp. 532–537.

[51] E.H. Ramírez, R. Brena, D. Magatti, F. Stella, Topic model validation, Neuro-
computing 76 (2012) 125–133 http://dx.doi.org.10.1016/j.neucom.2011.04.032..
[52] A. Bagga, B. Baldwin, Entity-based cross-document coreferencing using the
vector space model, in: Proceedings of COLING-ACL'98, 1998, pp. 79–85.
Airel Pérez-Suárez was born in 1979. He received his
B.S. in Computer Science from the Havana University,
Cuba, in 2002. He received his M.Sc. and Ph.D. degrees
in Computational Sciences from the National Institute
of Astrophysics, Optics and Electronics (INAOE), Mexico,
in 2008 and 2011, respectively. He is currently an
Aggregate Researcher of the Data Mining department
at the Advanced Technologies Application Centre
(CENATAV), Cuba.
José Fco. Martínez-Trinidad received his B.S. degree in
Computer Science from Physics and Mathematics
School of the Autonomous University of Puebla (BUAP),
Mexico in 1995, his M.Sc. degree in Computer Science
from the faculty of Computers Science of the Autono-
mous University of Puebla, Mexico in 1997 and his Ph.
D. degree from the Center for Computing Research of
the National Polytechnic Institute (CIC, IPN), Mexico in
2000. Professor Martinez-Trinidad edited/authored
seven books and over one hundred and twenty journal
and conference papers on subjects related to Pattern
Recognition.
Jesús A. Carrasco-Ochoa received his Ph.D. degree in
Computer Science from the Center for Computing
Research of the National Polytechnic Institute (CIC-
IPN), Mexico, in 2001. He works as a full time
researcher at the National Institute for Astrophysics,
Optics and Electronics of Mexico. He has published
more than 100 papers on topics related to Pattern
Recognition and Data Mining, and co-edited 7 books.
His current research interests include Logical Combi-
natorial Pattern Recognition, Data Mining, Testor
Theory, Feature and Prototype Selection, Text Analysis,
Fast Nearest Neighbor Classifiers and Clustering.
José E. Medina-Pagola received a B.Sc. in Cybernetic
Mathematics from the Havana University in 1977 and
his Ph.D. from the Higher Polytechnic Institute “José A.
Echeverría” (ISPJAE) in 1996. His research interests
include but are not restricted to knowledge discovery
and data mining, association rules, clustering, compu-
tational linguistic, information retrieval and text
mining. He is currently a Senior Researcher and
Research Deputy Director of the Advanced Technolo-
gies Application Centre (CENATAV), Cuba.

http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref22
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref22
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref22
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0070
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0070
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0075
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0075
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0075
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0080
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0080
http://dx.doi.org/10.1186/1471-2105-10-283
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref26
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref26
http://dx.doi.org.10.1007/s10115-010-0360-6
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref27
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref27
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref27
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref28
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref28
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref29
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref29
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref30
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref30
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref31
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref31
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref32
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref32
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0085
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0085
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0090
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0095
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0095
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0095
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0100
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0100
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0105
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0105
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0105
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0110
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref39
http://dx.doi.org.10.1145/361219.361220
http://dx.doi.org.10.1145/361219.361220
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0115
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0115
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref41
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref41
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref42
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref42
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0120
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0120
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0120
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0120
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref44
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref44
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref44
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref45
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref45
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0125
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0125
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref47
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref47
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0130
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0130
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0135
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0135
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0135
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0140
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0140
http://refhub.elsevier.com/S0925-2312(13)00543-2/sbref51
http://dx.doi.org.10.1016/j.neucom.2011.04.032
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0145
http://refhub.elsevier.com/S0925-2312(13)00543-2/othref0145

	OClustR: A new graph-based algorithm for overlapping clustering
	Introduction
	Related work
	Overlapping clustering based on relevance
	Basic concepts
	Building the initial clusters
	Improving the initial clusters
	Complexity analysis

	Experimental results
	Collections used in the experiments
	Evaluation measures
	Quality
	Number of clusters
	Overlapping
	Runtime

	Conclusions
	Acknowledgment
	References




