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a b s t r a c t

Most clustering algorithms organize a collection of objects into a set of disjoint clusters. Although this approach
has been successfully applied in unsupervised learning, there are several applications where objects could
belong to more than one cluster. Overlapping clustering is an alternative in those contexts like social network
analysis, information retrieval and bioinformatics, among other problems where non-disjoint clusters appear.
In addition, there are environments where the collection changes frequently and the clustering must be
updated; however, most of the existing overlapping clustering algorithms are not able to efficiently update the
clustering. In this paper, we introduce a new overlapping clustering algorithm, called DClustR, which is based
on the graph theory approach and it introduces a new strategy for building more accurate overlapping clusters
than those built by state-of-the-art algorithms. Moreover, our algorithm introduces a new strategy for
efficiently updating the clustering when the collection changes. The experimentation conducted over several
standard collections shows the good performance of the proposed algorithm, wrt. accuracy and efficiency.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is a fundamental machine learning and data mining
task. It aims at grouping a set of objects into a set of classes called
clusters, such that objects belonging to the same cluster are similar
enough to infer they are of the same type and, objects belonging to
different clusters are different enough to infer they are of different
types [1]. There are several examples of the application of cluster-
ing algorithms in different areas: medicine [2,3], topic detection
and tracking [4], image segmentation [5], social network analysis
[6], biology [7] and image classification [8], among others.

Most of the clustering algorithms that have been proposed do not
allow objects to belong to more than one cluster, i.e., they build
disjoint clusters. Although this approach has been successfully applied
in unsupervised learning, there are several situations in which a richer
model is needed for representing the data. For example, a patient at a
health care facility could have more than one disease. Therefore, if we
cluster the set of patients according to their symptoms, it could be
expected that some patients belong to more than one cluster. There
are other applications like text segmentation [9], information retrieval
[10] and news stream analysis [11], among others, where objects could
ll rights reserved.
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belong to more than one cluster. For this kind of applications, over-
lapping clustering is useful and important.

Several clustering algorithms, addressing the problem of over-
lapping clustering, have been reported in the literature; nevertheless,
there are environments like the World Wide Web, news streams and
others, which impose an additional requirement for these algorithms.
In these environments the collection changes frequently; thus, the
algorithms should be able to efficiently update the clustering after
changes. The capability of processing changes over an already clus-
tered collection is commonly used as a criterion for classifying the
clustering algorithms. According to this criterion a clustering algorithm
can be classified as static, incremental or dynamic.

Static algorithms suppose that the entire collection is available
before clustering; therefore, when objects are added to or deleted
from the collection, these algorithms rebuild the clusters starting
from scratch by reprocessing the whole collection, i.e., they do not
take advantage of the previously built clusters for updating the
clustering after changes. On the other hand, incremental algorithms
are able to process new objects added to the collection and,
consequently, they can update the clustering using the previous
clusters. Finally, dynamic algorithms are able to update the cluster-
ing when some objects are added, removed or modified. A
modification is usually seen as a deletion followed by an addition
and it will be considered as such in this work.

From the overlapping clustering algorithms reported in the
literature, only a few are able to process changes in the data
collection. For this reason, the problem of dynamic overlapping
clustering is addressed in this work.
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The main contribution of this paper is a new dynamic over-
lapping clustering algorithm based on graph theory. The proposed
algorithm, called DClustR (Dynamic Overlapping Clustering based
on Relevance), introduces a new graph-covering strategy and a
new filtering strategy, which together allow to obtain a small set of
overlapping clusters. Additionally, DClustR introduces a new
strategy for efficiently updating the clustering after multiple object
additions and/or deletions. The above characteristics make
DClustR suitable for handling overlapping clustering in applica-
tions where the object collection changes frequently, specially for
those applications handling multiple changes at the same time.

Our experimental evaluation, conducted over several standard
data collections, shows that the proposed algorithm outperforms
in terms of quality, according to the FBcubed evaluation measure
[12], the overlapping clustering algorithms of the state-of-the-art
that are able to process changes in a collection. Moreover, the
experimental results show that DClustR offers a better trade off
between quality and efficiency than the previous incremental and
dynamic overlapping clustering algorithms.

The rest of this paper is structured as follows: Section 2
describes related work. In Section 3, we introduce the DClustR
algorithm. An experimental evaluation, showing the performance
of our proposed algorithm on several data collections, is presented
in Section 4. Finally, conclusions and future work are discussed in
Section 5.
2. Related work

The algorithm proposed in this work is related with two
research areas. The first one is incremental or dynamic clustering,
and the second one is overlapping clustering. Although algorithms
proposed for incremental fuzzy clustering, like those introduced in
[13], are related with our work, there is an important aspect we
would like to highlight. Unlike the algorithms in [13] where fuzzy
memberships to clusters are used to represent the fact that an
object can belong to more than one cluster, in the proposed
algorithm crisp memberships to clusters are computed; therefore,
a direct comparison of the proposed algorithm against this kind of
algorithms is not possible. Extending our algorithm to produce
fuzzy clusterings and a comparison against incremental fuzzy
clustering algorithms are out of the scope of this paper. Therefore,
this type of algorithms will not be analyzed in this section.

There have been several works addressing incremental or
dynamic clustering [14–17]; however, most of them build disjoint
clusters. On the other hand, there are several clustering algorithms
proposed for overlapping clustering, however, most of these
algorithms are static; therefore, they cannot efficiently process
additions and/or deletions of objects.

Although our work seems to be close to algorithms developed
for clustering data streams [18–20], there are some differences that
must be highlighted. First, since a data stream consists of a set of
multi-dimensional records X1;X2;…;Xk;… arriving at different
time stamps, those algorithms proposed for clustering data
streams, for example [18–20], are just able to process additions.
On the other hand, dynamic algorithms, like the one we introduce
in this work, are able to process additions, deletions and modifica-
tions. Second, to the best of our knowledge, none of the algorithms
developed for clustering data stream addresses the problem of
overlapping clustering, which is the problem we are analyzing in
this work. Based on these differences, we decided not to include as
related work algorithms addressing the data stream clustering
problem.

Algorithms developed for evolutionary clustering [21–23], also
seem to be close to our work; however, there are some important
differences. First of all, dynamic clustering algorithms focus on
how to modify a current clustering to take into account additions,
deletions and modifications in the collection, in order to provide
an approximation to the clustering that we would get if the whole
collection were clustered starting from scratch. On the other hand,
evolutionary clustering algorithms focus on how to mine the
collection for finding interpretable cluster evolutions. Moreover,
to the best of our knowledge, none of the algorithms developed for
evolutionary clustering addresses the problem of overlapping
clustering, which is the problem we are analyzing in this work.
Therefore, algorithms facing the evolutionary clustering problem
were not included as related work.

Based on all the above, we briefly review the algorithms which
are able to both produce overlapping clusterings and to update the
current clustering when the collection changes.

The overlapping clustering algorithms that can deal with
changes in the collection are: Star [10], ISC (Incremental Strong
Component) [11], STC (Suffix Tree Clustering) [24], SHC (Similarity
Histogram Clustering) [25], ICSD (Incremental Clustering based on
Strength Decision) [26], DCS (Dynamic Clustering based on
Strength) [27], DHS (Dynamic Hierarchical Star) [28] and the
algorithm of Duan et al. [29]. The algorithm of Duan et al., DCS,
Star and DHS are dynamic algorithms while the others are
incremental algorithms, i.e., they can deal only with additions.
On the other hand, DHS is a hierarchical algorithm while the
others are non-hierarchical. It is important to mention that DCS
and ICSD use the same strategy for clustering but ICSD can deal
only with additions while DCS can process both additions and
deletions.

Star [10], ISC [11], ICSD [26] and DCS [27] are graph-based
clustering algorithms which represent the collection of objects as a
similarity graph. A similarity graph, denoted as G, is an undirected
graph in which vertices represent objects of the collection and
edges represent similarity relations among objects.

Star, ICSD and DCS represent the collection as a thresholded
similarity graph, while ISC represents the collection as a maximal
thresholded similarity graph. A thresholded similarity graph, denoted as
Gβ , is a similarity graph such that there is an edge between two
objects iff their similarity is greater than or equal to a predefined
threshold β. On the other hand, amaximal thresholded similarity graph,
denoted as Gmax�β , is a directed similarity graph whose vertices
represent objects of the collection and there is a directed edge from
object v to object u iff the similarity of v wrt. u is the highest among
all the objects. These three algorithms build a clustering through a
covering of the graph they use for representing the collection, i.e., a
vertex covering. For covering Gβ , Star, ICSD and DCS use a special kind
of sub-graph, called star-shaped sub-graph (s-graph); for covering
Gmax�β , the ISC algorithm uses strong compact sets (sc-set).

A star-shaped subgraph (s-graph) in Gβ is a subgraph of Gβ such
that there is a vertex which has an edge with any other vertex in
the subgraph. On the other hand, a strong compact sets (sc-set) is a
minimal subset of objects such that any object, belonging to the
set, also has in the set all its more similar objects. Once the
covering is built, each s-graph or sc-set is interpreted as a cluster.
The computational complexity of Star is Oðn2 � log2 nÞ. On the other
hand, the computational complexity of ISC, ICSD and DCS is Oðn2Þ.

These four algorithms have several limitations. First of all, as
we will demonstrate in our experiments, they build clusterings
having a large number of clusters. Usually, the number of clusters
is unknown a priori in real problems. However, when we use a
clustering algorithm in order to discover hidden relations among
objects in a collection, the number of clusters should be small wrt.
the number of objects in the collection. Note that, if the number of
clusters grows, analyzing those clusters could be as difficult as
analyzing the entire collection.

Another limitation of Star, ICSD and DCS, as we will show in our
experiments, is that they build clusterings with high overlapping.
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As it was mentioned in the Introduction, to obtain overlapping
clusters is very useful for several applications; however, when the
overlapping among the clusters is too high, it could be difficult to
obtain useful findings about the structure of the data. Besides,
there are applications like document segmentation by topic,
where a high overlapping could be a signal of a bad segmentation
[9]. A similar example can be also found in the context of social
networks analysis [30,31].

Finally, although Star can process both additions and deletions
of objects, it cannot process more than one change at the same
time, i.e., Star must process those changes one by one in order to
update the clustering.

It is important to clarify what we understand as multiple
additions/deletions and why it is important to deal with them.
Let us suppose that a set of objects O will be added to an already
clustered collection. For processing these changes, Star adds the
objects of O one by one, updating the clustering after each
addition. Notice that, if more than one object in O affects the
same cluster, then this strategy could be very expensive because
the same cluster would be updated several times. A better choice
is to allow the algorithm adding all the objects to the collection
and, after that, updating the clusters affected by those additions.
This situation also happens with deletions or with a combination
of additions and deletions.

Another overlapping clustering algorithm able to update the
clustering when the collection changes is STC [24]. This algorithm
is incremental and it was developed for clustering collections of
snippets. Snippets are small texts used by systems like Google to
describe the results of a web search. For building the clustering,
STC builds a suffix tree [32] containing all the suffixes of all the
snippets in the collection. A suffix tree is an acyclic connected
graph in which each vertex is labeled with a string that is common
to the collection of snippets the vertex contains. Then, STC
determines which nodes will be used as seeds for building the
clusters. Finally, STC builds the clusters by merging some of the
previously detected seeds, following a strategy similar to that one
used by single-link algorithm [33]. Even though, the authors of STC
claim that the computational complexity of STC is Oðn � log nÞ, as it
was mentioned in [25], the complexity of STC could get to be
exponential, depending on the number of suffixes contained in all
the snippets.

The main limitation of STC is related to the construction of the
suffix tree. Although the construction of this tree depends on the
snippets to cluster, generally, it could be very expensive when the
number of snippets grows. Finally, it is important to mention that,
although STC can add multiple suffixes to the suffix tree at the
same time, STC would consume a long time for updating a
clustering because it must rebuild all the clusters starting from
scratch, every time a change is processed.

Another overlapping clustering algorithm, able to update the
clustering when the collection changes, is SHC [25]. SHC is an
incremental clustering algorithm based on the concept of Histo-
gram Ratio of a cluster. The histogram ratio of a cluster is a
measure of cluster cohesiveness. For clustering an object collec-
tion, SHC processes the objects in an incremental way. For each
object o, SHC computes the most suitable clusters in which o
should be added; for this purpose, SHC analyzes how much the
histogram ratio of each cluster would vary if o was added to it.
Finally, after checking all clusters, if o was not added to any cluster
then o constitutes a new cluster. The computational complexity of
SHC is Oðn2Þ.

SHC has several limitations. First, it needs to tune values for
several parameters (β, ϵ and HRmin), and these values depend on
the collection to process. In general, users do not have any a priory
knowledge about the collection they want to cluster; therefore, to
tune up several parameters could be a difficult task. Second, as we
will show in our experiments, SHC builds clusterings with high
overlapping. Additionally, as the Star algorithm, SHC is not able to
process multiple additions.

Another algorithm able to build an overlapping clustering and
to update it when the collection changes is DHS [28]. This
algorithm is hierarchical and it is derived from the dynamic
hierarchical agglomerative framework proposed in [28]. In the
first level of the hierarchy, DHS considers each object of the
collection as a cluster and, starting from this point, each level is
built using as objects the clusters of the previous level. For
building the clustering on each level, DHS uses a strategy com-
prised of four steps. In the first step, DHS builds a thresholded
similarity graph Gβ , for representing the collection of objects of the
level. After that, if Gβ has no edge, the building process stops and
all the levels previously built constitute the resulting hierarchy.
Otherwise, if Gβ has at least one edge, in the third step DHS builds
from Gβ a maximal thresholded similarity graph Gmax�β . After-
wards, in the fourth step DHS builds the clustering through a
covering of Gmax�β , using a variation of the Star algorithm [10].
There are two main differences between the variation used by DHS
and the original Star. First, unlike Star, DHS allows the centers of
the s-graphs to be adjacent to each other center. Second, Star
builds a covering of a thresholded similarity graph, while DHS
builds a cover of an undirected maximum β-similarity graph. The
computational complexity of DHS is Oðn3Þ.

DHS has several limitations. First of all, with the aim of speeding
up the calculation of the similarity among clusters, useful to build
the graph Gβ in each level, DHS imposes the following constraints:
(i) the objects of the collection must be represented using the
vector space model (VSM) [34], (ii) a cluster must be represented
using the composite vector of the cluster; i.e., the sum of the vectors
of all objects in the cluster, and (iii) the cosine measure [35] must
be used as similarity measure. These constraints, mainly (i) and
(iii), reduce the application scope of DHS. Besides, since over-
lapping among clusters is allowed, the composite vector of a cluster
cannot be built from the composite vectors of the sub-clusters it
contains. Thus, this composite vector must be built from the
vectors of all the objects contained in the cluster; which increases
the processing time of DHS. Another limitation of DHS is that it
could leave uncovered objects in any level of the hierarchy.

Another algorithm able to build overlapping clusters and to
process changes in the collection is the algorithm proposed by
Duan et al. [29], developed for social network analysis; in the
following we will refer to this algorithm as Duan's algorithm. This
algorithm represents the collection of objects as a graph GðV ; EÞ,
where V denotes entities in a social network and the edge set E
denotes relationships between entities. For building an overlap-
ping set of clusters, this algorithm employs the same idea
proposed by Palla et al. in CPM (Clique Percolation Method) [36].
However, the Duan's algorithm has two main limitations. First of
all, its computational complexity could get to be exponential in the
worst scenario. Second, as the Star algorithm, this algorithm is not
able to process multiple changes.

As it was pointed out above, the overlapping clustering algo-
rithms reported in the literature that can deal with changes in the
collection have several limitations. In this work, we propose a new
overlapping clustering algorithm, called DClustR, which solves the
limitations of previous algorithms. Unlike previous works, DClustR
is able to efficiently update the clustering when the collection
changes due to multiple additions and/or deletions. The strategy
that DClustR follows for building the clustering allows to obtain
less clusters than those built by state-of-the-art algorithms.
Besides, the clusters built by DClustR have less overlapping than
those produced by previous algorithms. Moreover, as we will show
in our experiments, the clusterings built by DClustR have better
quality than those clusterings built by state-of-the-art algorithms.
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3. The DClustR clustering algorithm

In this section, a new dynamic clustering algorithm for building
overlapping clusters is introduced. The presentation of our algo-
rithm, called DClustR (Dynamic Overlapping Clustering based on
Relevance), is divided in three parts. First, in Section 3.1, we give
some basic concepts needed for introducing DClustR. In Section
3.2, we explain the ideas used by DClustR for building overlapping
clusterings. After that, in Section 3.3, we present the strategy that
DClustR follows for updating an overlapping clustering when
multiple additions and/or deletions are done over an already
clustered collection.

3.1. Basic concepts

Let O¼ fo1; o2;…; ong be a collection of objects, β∈½0;1� a
similarity threshold and Sðoi; ojÞ a symmetric similarity function.

A weighted thresholded similarity graph is an undirected and
weighted graph ~Gβ ¼ 〈V ; ~Eβ; S〉 such that V¼O, each edge
ðv;uÞ∈ ~Eβ; v≠u is labeled with the value of Sðv;uÞ and, there is an
edge ðv;uÞ∈ ~Eβ iff Sðv;uÞ≥β.

We will say that two vertices v;u∈V are adjacent iff there is an
edge ðv;uÞ∈ ~Eβ . The set of adjacent vertices of a vertex v will be
denoted by v:Adj. Besides, the size of the set of adjacent vertices of
any vertex v will be known as the degree of v; any vertex v having
jv:Adjj ¼ 0 is called isolated.

Let ~Gβ ¼ 〈V ; ~Eβ; S〉 be a weighted thresholded similarity graph. A
weighted star-shaped sub-graph (ws-graph) in ~Gβ , denoted by
G⋆ ¼ 〈V⋆; E⋆; S〉, is a sub-graph of ~Gβ having a vertex c∈V⋆ such that
there is an edge between c and all other vertices in V⋆. The vertex c
is called the center of the ws-graph and the remaining vertices are
called satellites. Isolated vertices are considered degenerated
ws-graphs.

Let ~Gβ ¼ 〈V ; ~Eβ; S〉 be a weighted thresholded similarity graph
and W ¼ fG⋆

1;G
⋆
2;…;G⋆

kg be a set of graphs, such that each
G⋆
i ¼ 〈V⋆

i ; E
⋆
i ; S〉 is a ws-graph in ~Gβ . The set W is a covering of ~Gβ

iff it meets that V ¼ ⋃ki ¼ 1V
⋆
i . Additionally, we will say that a

ws-graph G⋆
i ∈W covers a vertex v iff v∈V⋆

i .
Let G⋆

v ¼ 〈V⋆
v ; E

⋆
v ; S〉 be a ws-graph, having v as its center. The

intra-cluster similarity of G⋆
v , denoted as Intra_SimðG⋆

vÞ, is the
average similarity between all pair of vertices belonging to V⋆

[37], that is

Intra_SimðG⋆
v Þ ¼

∑z;u∈V⋆
v ;z≠u

Sðz;uÞ
jV⋆

v j � ðjV⋆
v j−1Þ

2

ð1Þ

Computing Intra_SimðG⋆
vÞ using (1) is Oðn2Þ. Thus, using this

equation for computing the intra-cluster similarity of the ws-
graph determined by all vertices in ~Gβ becomes Oðn3Þ. In order to
use (1) in our algorithm, we should find an efficient
approximation of it.

From the definition of weighted thresholded similarity graph,
we have that all edges (x,y) such that Sðx; yÞoβ do not belong to
~Gβ . Since any ws-graph G⋆

v is a sub-graph of ~Gβ , these edges do not
belong either to G⋆

v . Therefore, if these edges are not taken into
account in the computation of Intra_SimðG⋆

vÞ, we could rewrite (1)
as follows:

Aprox_Intra_SimðG⋆
v Þ ¼

∑ðz;uÞ∈E⋆v Sðz;uÞ
jV⋆

v j � ðjV⋆
v j−1Þ

2

ð2Þ

Although when we save some calculations, Eq. (2) is still Oðn2Þ.
However, it can be noticed from (2) that, for a given ws-graph G⋆

v ,
the value of the numerator of Aprox_Intra_SimðG⋆

vÞ only depends
on the number of edges of G⋆

v , as well as on their weights.
Therefore, based on the definition of ws-graph, we know that
the lowest value of Aprox_Intra_SimðG⋆
vÞ is reached when the edges

in E⋆v are only those between the center v and the satellites of G⋆
v .

Assuming this worst scenario, we could simplify (2) as follows:

Aprox_Intra_SimðG⋆
v Þ ¼

∑u∈V⋆
v ;u≠v

Sðv;uÞ
jV⋆

v j � ðjV⋆
v j−1Þ

2

ð3Þ

Computing Aprox_Intra_SimðG⋆
vÞ using (3) is O(n). Thus, we can

use (3) for computing Aprox_Intra_SimðG⋆
vÞ for each ws-graph G⋆

v in
~Gβ , this way we save computational time. However, the denomi-
nator of (3) grows faster than its numerator. Therefore, a minor
increase in the cardinality of V⋆ could represent a big decrease in
the value of Aprox_Intra_SimðG⋆

vÞ. Moreover, the above mentioned
characteristic of (3) makes the value of Aprox_Intra_SimðG⋆

vÞ to be
near 0, for larger values of jV⋆

vj. This could represent a bias for ws-
graphs with many satellites (i.e., big ws-graphs) and also, it makes
difficult the comparison between values of the Aprox_Intra_sim for
two big ws-graphs. Based on this, we substitute the denominator
of (3) by ðjV⋆

vj−1Þ; that is, we approximate the value of
Aprox_Intra_SimðG⋆

vÞ as the average weight of the edges existing
in G⋆

v between v and the satellites. Then, we could simplify (3) as
follows:

Aprox_Intra_SimðG⋆
v Þ ¼

∑u∈V⋆
v ;u≠v

Sðv;uÞ
jV⋆

v j−1
ð4Þ
3.2. Building overlapping clusters based on relevance

In this section, we explain the strategy used by DClustR for
building a set of overlapping clusters. The main idea of this
strategy is to generate an initial set of clusters by covering ~Gβ

using ws-graphs and, after that, to improve these initial clusters in
order to obtain the final clustering. In this context, “to improve a
set of clusters” means to reduce both the number of clusters and
the overlapping among them.

As it can be seen from the previous section, a ws-graph is
determined by its center; thus, the problem of building a set
W ¼ fG⋆

c1 ;G
⋆
c2 ;…;G⋆

ck
g of ws-graphs, such that W is a covering of ~Gβ ,

can be seen as the problem of building a set X ¼ fc1; c2;…; ckg such
that ci∈X is the center of G⋆

ci
∈W ; ∀i¼ 1‥k.

Since each vertex in ~Gβ can form a ws-graph, we should analyze
all vertices in V⋆ for building X. In order to prune the search space
and to establish a criterion for selecting the vertices that should be
included in X, DClustR introduces the concept of relevance of a
vertex. For defining the relevance of a vertex v, first we will define
the relative density and the relative compactness of a vertex v.

A simple idea for reducing the number of ws-graphs needed for
covering ~Gβ would be to iteratively select the vertices with highest
degree. In this way, we try to maximize the number of vertices
that are added to the covering of ~Gβ on each iteration. The Star
algorithm [10] for building the clustering follows a similar idea for
selecting the s-graphs. However, suppose that the vertices
v1; v2;…; vk were selected in the first k iterations. Let u be the
vertex, among those non-selected vertices, having the highest
degree in the iteration kþ 1. If there are d vertices of the k
previously selected vertices that are adjacent to u and u is added to
X, then only ju:Adjj−d vertices would be added to the covering of
~Gβ . But, if in the iteration kþ 1 exists another vertex z such that: (i)
jz:Adjjo ju:Adjj, (ii) there are d1 of the previously selected vertices
that are adjacent to z, and (iii) ju:Adjj−do jz:Adjj−d1, then selecting
vertex z in the iteration kþ 1 would be a better choice than
selecting u.

Based on the aforementioned analysis, we can affirm that for
any vertex v, the number of adjacent vertices having a degree non-
greater than the degree of v, is a good estimation about how many
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adjacent vertices (potentially uncovered) v could add to the
covering of ~Gβ .

Now, suppose that in the iteration kþ 1, there are two vertices
v and u, such that v can add six vertices to the covering and u can
add four vertices to the covering. Also suppose that jv:Adjj ¼ 10
and ju:Adjj ¼ 5. If we make our decision based on the number of
vertices that each vertex can add to the covering, the choice would
be the vertex v. Nevertheless, vertex u can cover a greater percent
of its adjacent vertices than vertex v (4/5 versus 6/10). Motivated
by the aforementioned ideas, we introduce the concept of relative
density of a vertex.

The relative density of a vertex v∈V , denoted as v:densityR, is
computed as follows:

v:densityR¼ v:density
jv:Adjj

where v:density denotes the number of adjacent vertices of v

having a degree non-greater than the degree of v. The density of v
expresses how many adjacent vertices (potentially uncovered)
could be included by v in the covering of ~Gβ . The relative density
takes values in [0,1] and it determines how relevant is the density
of v wrt. the number of adjacent vertices of v. The higher the value
of v:densityR, the greater the number of adjacent vertices (poten-
tially uncovered) that v could include in the covering of ~Gβ and
therefore, the better v is for covering ~Gβ .

It is important to highlight that the vertices that were not
counted in v:density are those selected in previous iterations;
therefore, a high value of v:densityR also means that the ws-
graph determined by v has low overlapping with the previous
selected ws-graphs. In this way, we also reduce the overlapping
among the selected ws-graphs.

Relative density can be used for reducing the number of ws-
graphs needed for covering ~Gβ and for selecting ws-graphs with
low overlapping. However, since this property is mainly based on
the vertex degree, using only the relative density could lead to
select ws-graphs with a high number of satellites but with low
average similarity among them. For solving this issue, we define
the concept of relative compactness of a vertex v. This new concept
will help us to identify the best vertices for covering ~Gβ , taking into
account the Aprox_Intra_Sim of the ws-graph determined by each
vertex, instead of its degree as the relative density does.

The relative compactness of a vertex v∈V , denoted as
v:compactnessR, is computed as follows:

v:compactnessR¼ v:compactness
jv:Adjj

where v:compactness denotes the number of vertices u∈v:Adj such
that Aprox_Intra_SimðG⋆

vÞ≥Aprox_Intra_SimðG⋆
uÞ, being G⋆

v and G⋆
u the

ws-graphs determined by v and u, respectively. The compactness
of v expresses, taking into account the Aprox_Intra_Sim of the
0.15

0.20
0.30

0.20

0.40

0.30
0.10

0.10

0.10

0.10

0.10

0.20

0.20

0.20 0.20

0.50

0.40

0.20

0.16

0.30
0.50

0.70
0.32

0.40

0.20
0.25

0.20

Fig. 1. Illustrating the use of the relevance concept in the process of covering a graph
labeling the vertices.
ws-graph determined by each vertex instead of its degree, how
many adjacent vertices (potentially uncovered) could be included
by v in the covering of ~Gβ . The relative compactness takes values in
[0,1] and it determines how relevant is the compactness of v wrt.
the number of adjacent vertices of v. Similar to v:densityR, the
higher the value of v:compactnessR, the greater the number of
adjacent vertices (potentially uncovered) that v could include in
the covering of ~Gβ; therefore, the better v is for covering the graph.

Finally, we define the relevance of a vertex v, denoted as
v:relevance, as

v:relevance¼ v:densityRþ v:compactnessR
2

ð5Þ

where v:densityR and v:compactnessR are the relative density and
relative compactness of v, respectively. Since both v:densityR and
v:compactnessR take values in [0,1], the relevance of a vertex also
takes values in [0,1]. From (5) it can be inferred that a high value of
relevance will correspond with vertices having high values of
v:densityR and/or v:compactnessR; that is, the higher the value of
v:relevance the better v is for covering ~Gβ . Therefore, in order to
build the covering of ~Gβ , we must analyze the vertices in
descending order according to their relevance. Finally, since
vertices having v:relevance¼ 0 are those vertices having
v:densityR¼ 0 and v:compactnessR¼ 0, we do not have to analyze
vertices having zero relevance. In Fig. 1, we show an example of a
weighted thresholded similarity graph ~Gβ (see Fig. 1(a)) and the
same graph but with its vertices labeled using their corresponding
value of relevance (see Fig. 1(b)). As we can see from this example,
the relevance values allow us to reduce the number of vertices to
be analyzed, and it also helps us to define an order in which the
vertices will be analyzed, for building the covering of ~Gβ .

The strategy proposed for building a covering of ~Gβ is com-
prised of three steps. First, all vertices are marked as satellite and
those vertices having relevance greater than zero are added to a
list of candidates L; isolated vertices are directly included in X since
they are degenerated ws-graphs. After, the list L is sorted in
descending order according to the relevance of the vertices.
Finally, the vertices of L are iteratively visited and each vertex
v∈L, satisfying at least one of the following conditions, is added to
X:
(a)
0

0

~Gβ: (
v is not covered yet.

(b)
 v is already covered but it has at least one adjacent vertex u

which is not covered yet. This condition avoids the selection of
ws-graphs having all their satellites covered by previously
selected ws-graphs.
After all the vertices in L were visited, each selected ws-graph
constitutes an initial cluster. In Fig. 2, we show how the above
strategy works on the graph of Fig. 1(b). In Fig. 2(a), the vertices
0.9

0.5

0.25

0.3

0.92

0.84

0

0 0

0.84
0

0.17

0.6

0

0.50.5

0.5

0

0

0.67 0.5

a) a weighted thresholded similarity graph ~Gβ and (b) ~Gβ using relevance for
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Fig. 2. Illustrating how the strategy proposed for covering ~Gβ works: (a) vertices belonging to set X and (b) set of initial clusters.
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that were selected and included in the set X are showed filled with
black. Finally, in Fig. 2(b) we show the resulting set of initial
clusters (ws-graphs).

Once the set X has been built, we analyze it in order to remove
those less useful ws-graphs. In this context, the usefulness of a ws-
graph G⋆ will be determined using the number of satellites of G⋆

and the number of satellites that G⋆ shares with other ws-graphs.
Since for building the initial set of clusters we follow a greedy

strategy, it could happen that some of the vertices selected for
covering ~Gβ are no longer useful for that issue, i.e., they could be
removed from X and ~Gβ will remain completely covered. For
example, if there is a vertex v∈X such that: (i) the ws-graph G⋆

v
determined by v shares all their satellites with other selected
ws-graphs, and (ii) v itself belongs to at least another selected
ws-graph, then we can remove (v from X and the remaining
ws-graphs in X would still be a covering of ~Gβ . Nevertheless, if
there is a vertex u∈X such that u meets condition (ii) but it does
not meet condition (i), then u cannot be removed from X. Noticed
that, even though most of the satellites of G⋆

u would be covered by
other ws-graphs, removing u from X will leave uncovered the non-
shared satellites of G⋆

u. For solving this situation, we will define the
usefulness of a ws-graph based on how many satellites it shares.

Let v∈X be a vertex that determines the ws-graph G⋆
v in the

covering of ~Gβ . Additionally, let v:Shared be the set of satellites that
G⋆
v shares with other selected ws-graphs and v:Non_shared be the set

of satellites belonging only to G⋆
v . In this work, we will understand

that G⋆
v is not useful for covering ~Gβ iff the following two conditions

are met: (1) there is at least another selected ws-graph containing v

as a satellite and (2) jv:Sharedj4 jv:Non_sharedj. Otherwise, G⋆
v is

useful and it should not be removed from the covering.
Non-useful ws-graphs increase the overlapping of the initial set

of clusters; therefore, removing those ws-graphs would help to
reduce the number of clusters as well as their overlapping.
However, for removing a non-useful ws-graphs we need to add
all its non-shared satellites to other clusters. Since a non-useful
ws-graph G⋆

v meets that its center v belongs to at least another ws-
graph G⋆, the non-shared satellites of G⋆

v could be added to the
cluster defined by G⋆. If there are more than one ws-graph
covering the vertex v, then the non-shared satellites will be added
to the ws-graph having the greatest number of satellites among
the candidates; thus, we allow the creation of clusters with many
objects. If there is a tie, then any of the ws-graphs having the
greatest number of satellites can be selected. In this work, for
simplicity, we select the first of these ws-graphs. When the non-
shared satellites of a non-useful ws-graph must be added
to another ws-graph G⋆

v , we will add those satellites to a list
named v:Linked; thus, the cluster determined by the ws-graph
G⋆
v now will include also the vertices in v:Linked. Hereinafter,

the vertices added to v:Linked will be known as the linked satellites
of G⋆

v .
The strategy proposed for removing non-useful ws-graphs and
building the final clustering consists of two steps. First, the set X is
sorted in descending order according to the degree of the vertices and
each vertex v∈X is marked as not-analyzed. In the second step, each
vertex v∈X is visited for removing from v:Adj all the vertices forming
non-useful ws-graphs. For this purpose, each vertex u∈v:Adj is
analyzed as follows: If u belongs to X and it is marked as not-
analyzed (even if it is also marked as seed; see below), we check if G⋆

u is
a non-useful ws-graph. For doing this, we only need to check if G⋆

u
meets the above mentioned condition (2). Noticed that, since u
belongs to the ws-graph formed by v, G⋆

u already meets condition
(1). After, if G⋆

u is non-useful, then u is removed from X and its non-
shared satellites are added to v:Linked; otherwise, u is marked as
analyzed. Once all the vertices of v:Adj have been visited, the vertex v

is marked as seed. Each vertex vmarked as seed (even those that were
removed from X), together with the vertices in v:Adj and v:Linked,
constitutes a cluster in the final clustering.

In Fig. 3, we show how the above filtering strategy works on
the set of initial clusters showed in Fig. 2(b). In Fig. 3(a), we show,
filled with gray, the vertices determining non-useful ws-graphs
and, filled with black, the remaining vertices that form the cover-
ing of ~Gβ . In Fig. 3(b), we show the resulting set of overlapping
clusters, obtained after removing the non-useful ws-graphs.

3.3. Updating the clustering when the collection changes

In this section, we explain the strategy that DClustR follows for
updating a clustering that has been built using the strategy
presented in the previous section. For updating the clustering,
DClustR first builds the connected components containing the
clusters affected by the changes. Then, DClustR only updates the
covering of those components using some previously selected
ws-graphs and some new ws-graphs. Following, we will explain
which connected components should be analyzed when the
collection changes, and also, how to update the covering of those
components.

Let ~Gβ ¼ 〈V ; ~Eβ; S〉 be the weighted thresholded similarity graph,
representing a collection O already clustered. Let X be the set of
vertices, marked as seed, which form the current clustering of O.
Since the current clustering was built from the covering of ~Gβ , for
updating the clustering after the changes, first of all, it is important
to know how these changes affect the cover of ~Gβ .

When some vertices are added to and/or removed from Gβ ,
there could happen the following two situations:
(1)
 Some vertices become uncovered. This situation happens
when at least one added vertex is uncovered or when all the
vertices v∈X that cover a specific vertex were deleted.
(2)
 The relevance of some vertices changes and, as a consequence,
there appears at least one vertex u∉X having relevance greater
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than at least one vertex z∈ðX∩u:AdjÞ or greater than at least one
vertex v∈X, such that v covers at least one vertex in u:Adj.
Vertices like u could determine ws-graphs with better char-
acteristics (i.e, more satellites and less overlapping with other
ws-graphs) than those ws-graphs currently belonging to the
covering of ~Gβ .
In Fig 4, we show an example of how the changes in the
collection could affect the current covering of the graph ~Gβ of Fig. 1
(a). In Fig. 4(a), we show the graph ~Gβ before the changes; in this
figure, the vertices to be removed are marked with an “x”. In Fig. 4
(b), we show the graph ~Gβ after the changes; in this figure, the
vertex filled with light gray is a vertex that was added to the graph.
Finally, in Fig. 4(c) and (d), we show the updated graph ~Gβ with its
vertices labeled with letters and with their updated value of
relevance, respectively. In Fig. 4(c) and (d), the vertices filled with
black correspond with the vertices that belong to set X before the
changes.
As it can be seen from Fig. 4(c) and (d), vertices S; F;G; I;H and J
are examples of vertices that became uncovered after the changes;
that is, these vertices meet the above mentioned situation (1). On
the other hand, vertex B is an example of a vertex that meets the
above mentioned situation (2); that is, vertex B does not belong to
set X and it has, after the changes, a relevance greater than at least
one vertex in ðX∩B:AdjÞ (vertex D).

For updating the current covering when situation (1) happens,
we must include in X one vertex u from the set v:Adj∪fvg, for each
uncovered vertex v; this way, the ws-graph G⋆

u covers the vertex v.
On the other hand, for updating the covering when situation
(2) happens, a depth analysis is required.

In order to change the relevance of a vertex v, it must change its
v:densityR or its v:compactnessR. A vertex v could change its relative
density if the value of v:density or jv:Adjj changes. Analogously, a
vertex v could change its relative compactness if the value of
v:compactness or jv:Adjj changes. The value of jv:Adjj changes only
if one or more vertices are deleted from/added to v:Adj. The value of
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v:density or v:compactness could change if v:Adj changes or if there is
at least one vertex u∈v:Adj, such that u:Adj changes.

From the previous analysis, we can affirm that a vertex could
change its relevance if one or more vertices were added to/
removed from its neighborhood. The neighborhood of a vertex v

consists of the vertices in v:Adj plus the adjacent vertices of each
vertex in v:Adj. Since we are dealing with multiple additions/
deletions there could be a lot of overlapping in the neighborhood
of the vertices to be analyzed. Therefore, we can say that a vertex
could change its relevance if it belongs to a connected component
which contains vertices added to ~Gβ or vertices that were adjacent
to some vertices removed from ~Gβ . Thus, we can update the
covering of ~Gβ by updating the covering of the above mentioned
connected components. Noticed that, these connected compo-
nents can be built through a depth first search, starting from the
vertices added or from the vertices that were adjacent to those
vertices removed from ~Gβ .

In Fig 5, we show an example of how to build the connected
components of ~Gβ that were affected by the changes. In Fig. 5(a),
the vertices added to ~Gβ and the vertices that were adjacent to
some vertices removed from ~Gβ , appear filled with light gray. As it
was mentioned above, starting from these vertices, we can build
the connected components containing the clusters affected by
these changes. In Fig. 5(b), we show how to build each connected
component, through a depth first search, starting from vertices
E;K; F;G and I, respectively; in Fig. 5(b), the arrows drawn in each
component represent the depth first search carried out to build
each component. Since vertices F and G are isolated, each one
constitutes a connected component by itself.

Let G′¼ 〈V ′; E′; S〉 be a connected component whose covering
must be updated. Let X′DX be the set of vertices determining the
ws-graphs that cover G′. It is important to mention that, after the
changes, some non-useful ws-graphs could be no longer so.
Therefore, before updating the covering of G′, we will empty the
list v:Linked for each vertex v∈X′; in this way, we will allow the
creation of some new ws-graphs. The strategy for updating the
covering of G′ is comprised of four steps. First of all, we recompute
the relevance of all the vertices in V ′. After, we build the list L′ of
candidate vertices (see below). This list contains the vertices that
will help us to update the covering of G′; during the construction
of L′ some vertices would be removed from X′. In the third step, we
iteratively select from L′ those vertices that, together with the
current vertices of X′, complete the covering of G′. The strategy
used for selecting these new vertices is the same proposed in
Section 3.2. After that, in the fourth step, we remove the non-
useful ws-graphs from the updated set X′; for this purpose, we use
the strategy proposed in Section 3.2. Finally, we only need to
explain how to build the list L′ from G′.
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Fig. 5. Illustrating how to build the connected components of ~Gβ which were affected by
connected components affected by the changes.
Let VsD ðV ′\X′Þ be the set of vertices of G′with relevance greater
than zero, which do not belong to X′. For computing the candidate
list L′, both X′ and Vs are analyzed. In the processing of Vs, each
vertex v∈Vs is visited and the following conditions are verified:
�

A

C

add
v is uncovered.

�
 v has at least one uncovered adjacent vertex.

�
 There is at least one vertex u∈v:Adj, such that all the vertices

z∈X′, whose ws-graphs G⋆
z cover u, have less relevance than v.

If v meets at least one of the aforementioned conditions, then it is
added to L′. Additionally, in cases where the last condition is meet,
all vertices u are marked as active; this kind of vertices are used
during the analysis of X′.

In the processing of X′, all the adjacent vertices of each vertex
v∈X′ are visited. When a vertex u∈v:Adj is visited, if
u:relevance4v:relevance then u is added to L′ and v is marked as
weak. Once all the vertices in v:Adj have been visited, if v is
marked as weak or v has at least one adjacent vertex marked as
active, then v is removed from X′ since it could be replaced by at
least another more relevant vertex. Afterwards, if v was removed
from X′ but its relevance is greater than zero, then v is added to L′.

Once the covering of all the connected components have been
updated, each vertex v marked as seed, together with the vertices
in v:Adj and v:Linked, constitutes a cluster in the updated cluster-
ing. In Fig 6, we show the updated set of overlapping clusters
obtained following the above introduced strategy. In this figure,
the vertices filled with black represent the vertices that cover each
connected component of ~Gβ .
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itions and/or deletions of vertices: (a) ~Gβ after the changes and (b) building the



A. Pérez-Suárez et al. / Pattern Recognition 46 (2013) 3040–30553048
The pseudocode of DClustR is shown in Algorithm 1. For
updating a graph after changes in the collection, we use the
procedure UpdGraph. One of the outputs of this procedure is the
set M. This set contains the vertices that were added to ~Gβ and/or
the vertices that were adjacent to the vertices removed from ~Gβ .
By using these vertices, in the step 5 of Algorithm 1, DClustR builds
the connected components affected by the changes. For updating
the covering of a connected component G′, we use the procedure
UpdCovCompt. The pseudocodes of UpdGraph and UpdCovCompt
are shown in Algorithms 2 and 3, respectively. In the pseudocode
of the procedure UpdCovCompt, the conditions (a) and (b) used in
step 3, refer to the conditions listed in Section 3.2 for adding
vertices to the set X.
Algorithm 1. DClustR algorithm

Input: O¼ fo1; o2;…; ong – collection of objects,
~Gβ ¼ 〈V ; ~Eβ; S〉 – similarity graph,
β – similarity threshold,
A – objects to be added,
R – objects to be removed

Output: O – updated collection of objects,
~Gβ – updated similarity graph,
SC – up-dated set of clusters

== Updating ~Gβ due to additions/deletions

1 UpdGraph ðO; ~Gβ; β;A;R;MÞ;

2 “Mark vertices in ~Gβ as not-processed”;
== Updating the covering of each connected component affected by the changes

3 foreach vertex v∈M do
4
5
6
7
8
9
10
11
12
13

if v is not marked as processed then
“Build the connected component G′¼ 〈V ′; E′; S〉 containing v”;

if jV ′j ¼ 1 then “Mark v as seed”;
else
“Recompute relevance of vertices in G′”;
“Build Vs and X′”;

“Emptying u:Linked for each vertex u∈X′”;
“Build candidate list L′”;
UpdCovCompt ðG′; L′;X′Þ;

“Mark vertices in G′ as processed”;

6666666664

66666666666666664

66666666666666666664

== Returning the updated clustering

14 SC≔∅;
15 foreach vertex v∈V do
16 if v is marked as seed then SC≔SC∪ffvg∪v:Adj∪v:Linkedg�

;

Algorithm 2. UpdGraph procedure
Input: O¼ fo1; o2;…; ong – collection of objects,

~Gβ ¼ 〈V ; ~Eβ; S〉 – similarity graph,

β – similarity threshold,

A – objects to be added,

R – objects to be removed
Output: O – updated collection of objects,

~Gβ – updated similarity graph,

M – Set of vertices used for building the connected

components affected by the changes
1
 M≔∅;
== deletions
2
 foreach object o∈R do

3
4

“Remove from ~Gβ the vertex v representing object o”;
M≔M∪fxjx∈v:Adj∧x does not represent any object in Rg;

$

5
 O≔O\R;

== additions
6
 foreach object o∈A do

7
8

“Create vertex v for representing object o and add v to ~Gβ”;

M≔M∪fvg;

$

9
 O≔O∪A;
Algorithm 3. UpdCovCompt procedure
Input: G′¼ 〈V ′; E′; S〉 – a connected component,

L′ – candidate list,

X′ – vertices that currently cover G′
Output: G′ – updated connected component
// Selecting new vertices for completing the

covering of G′

1
 “Sort L′ in descending order according to the relevance”;

2
 foreach vertex v∈L′ do�

3
 if v meets conditions (a) or (b) then X′≔X′∪fvg;
== Removing non�useful ws�graphs
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4
 “Sort X′ in descending order according to the degree”;

5
 “Mark vertices in X′ as not-analyzed”;

6
 T≔∅;

7
 foreach vertex c∈X′ do

8
9
10
11
12
13
14
foreach vertex v∈c:Adj do
if v∈X′ and v is marked as not� analyzed then
if the ws�graph determined by v is not useful then

c:Linked≔c:Linked∪v:Non_shared;
X′≔X′\fvg;
else “Mark v as analyzed”;

T≔T∪fcg;

666664
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66666666664

6666666666664
15
 “Mark vertices in T as seed”;

16
 “Mark vertices in V ′\T as satellite”;
As it can be noticed from Algorithm 1, DClustR assumes that
there exists a weighted thresholded similarity graph ~Gβ represent-
ing the current collection. If there is no previous collection and it is
the first time that the collection will be clustered, then ~Gβ is an
empty graph; in this way, DClustR is also able to process a
collection starting from scratch. The computational complexity of
DClustR algorithm is Oðn2Þ.

It is important to mention that, although DClustR is related to
Star [10], ICSD [26] and DCS [27], there are some differences that
we would like to highlight. Unlike Star, ICSD and DCS, DClustR
defines the concept of relevance in function of the relative density
and the relative compactness and it builds the clustering based on
this property. As we will show in the experiments, the use of the
relevance allows DClustR to build clusterings having greater
quality than those built by state-of-the-art algorithms, including
Star, ICSD and DCS. Additionally, the procedure used by DClustR
for improving the initial clustering is totally different from the
filtering procedure used by ICSD and DCS; as we will show in our
experiments, this procedure allows DClustR to build clusterings
with less clusters and less overlapping than those clusterings built
by state-of-the-art algorithms. Moreover, unlike Star, the strategy
introduced by DClustR for updating the clustering allows to
process multiple additions/deletions efficiently.

Finally, we would like to point out that DClustR depends on the
data order; that is, DClustR could build different clusterings from
the same set of objects, depending the order in which the objects
are analyzed. However, as we will show in Section 4, the
differences among the quality of those different clusterings are
very small.
4. Experimental results

In this section, the results of several experiments testing the
performance of the DClustR algorithm are presented.

The experiments were conducted over several overlapping
collections and were focused on comparing the algorithms accord-
ing to: (1) the quality of the clustering, (2) the number of clusters
obtained, (3) the overlapping of the clustering, and (4) the time
each algorithm spends for processing multiple additions/deletions.
In the first three experiments, we contrast the results of DClustR
with the results obtained by the algorithms of the state-of-the-art:
Star, ISC, SHC, ICSD, DCS and DHS. Additionally, we include in these
three experiments a comparison of DClustR against three static
overlapping clustering algorithms, which have reported good
results: Estar [38], Gstar [39] and ACONS [40]. We would like to
highlight that for any of the test collections used in these
experiments, the algorithm of Duan et al. [29] was not able to
produce a clustering solution after eight hours. This is due to its
very high computational complexity, which could get to be
exponential, therefore, we did not include Duan's algorithm in
these experiments.

In the fourth experiment, for multiple additions, we contrast
our results against those of ISC, Star, SHC, ICDS and DCS. For
multiple deletions and modifications, we contrast our results
against those obtained by Star and DCS, which are the only
dynamic overlapping clustering algorithms reported in the litera-
ture. Since DHS is Oðn3Þ and it must build a hierarchy of clustering
instead of a single clustering, the comparison between DHS and
DClustR (which is Oðn2Þ and it builds a single clustering) wrt.
efficiency would not be fair; therefore, we do not include the DHS
algorithm in the fourth experiment.

It is important to mention that, in this section, we compare our
proposed algorithm against those algorithms of the state-of-the-
art which are more related to our work; that is, we compare
DClustR against those algorithms proposed for overlapping clus-
tering which are also able to process changes in the collection.
Notice that, a comparison against incremental or dynamic non-
overlapping algorithms would not be fair for any algorithm, since
they are addressing different problems. Besides, as it was men-
tioned in Section 2, a direct comparison of our proposed algorithm
against fuzzy algorithms is not possible. Thus, we have left as
future work the extension of our algorithm to produce fuzzy
clusterings as well as the comparison against incremental fuzzy
clustering algorithms.

All the algorithms used in the experiments were implemented
in C++ and compiled using the g++ compiler. The experiments
were performed on a PC with an Intel Core 2 Duo at 1.86 GHz CPU
with 2 GB DDR2 RAM, running RedHat Enterprise Linux 5.3.
4.1. Collections used in the experiments

Since we are facing the problem of overlapping clustering, the
algorithms should be evaluated over collections with overlapping
classes. Therefore, we decided to evaluate the algorithms in the
task of document clustering, where it is common that some
documents belong to more than one topic.

The document collections used in our experiments were built
from five benchmark text collections commonly used in document
clustering: AFP, Reuters-21578, TDT2, CISI and CACM. Each one of
these benchmarks has a ground-truth that is distributed together
with the benchmark and which has been manually tagged by
experts. The AFP, Reuters-21578 and TDT2 benchmarks can be
obtained from http://trec.nist.gov, http://kdd.ics.uci.edu and
http://www.nist.gov/speech/tests/tdt.html, respectively. On the
other hand, both CISI and CACM can be obtained from ftp://ftp.
cs.cornell.edu/pub/smart.

From these benchmarks, 12 document collections were built.
The collections AFP, CISI, CACM and TDT were built from the
benchmarks AFP, CISI, CACM and TDT2, respectively, using all the
news that have been associated with at least one topic in the
ground-truth. The collections Reu-Te and Reu-Tr were built from
the benchmark Reuters-21578, using the news that have been
associated with at least one topic in the ground-truth and have
been tagged as “Test” (Reu-Te) and “Train” (Reu-Tr). The collection
Reuter is the union of Reu-Te and Reu-Tr. Finally, five sub-
collections of TDT called TDT-1, TDT-2, TDT-3, TDT-4 and TDT-5
were built from TDT. For constructing these last five sub-collec-
tions, the news of TDT were randomly arranged into five-folds and,
for each sub-collection, three of these five-folds were randomly
selected. The characteristics of the document collections used in
our experiments are shown in Table 1. In this table, the column
“’Overlapping’ represents the overlapping of a collection and it is
computed as the average number of clusters in which an object is
included [28].

http://trec.nist.gov
http://kdd.ics.uci.edu
http://www.nist.gov/speech/tests/tdt.html
ftp://ftp.cs.cornell.edu/pub/smart
ftp://ftp.cs.cornell.edu/pub/smart


Table 1
Overview of collections.

Name #Documents #Terms #Classes Overlapping

AFP 695 11,785 25 1.023
Reu-Te 3587 15,113 100 1.295
Reu-Tr 7780 21,901 115 1.241
Reuter 11,367 27,083 120 1.258
TDT 16,006 68,019 193 1.188
TDT-1 8602 51,764 176 1.202
TDT-2 7404 44,610 178 1.173
TDT-3 10,258 53,706 174 1.189
TDT-4 10,074 53,036 172 1.182
TDT-5 11,328 55,923 182 1.180
CACM 433 3038 52 1.499
CISI 1162 6976 76 2.680
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In our experiments, documents were represented using the
vector space model (VSM) [34]. The index terms of the documents
represent the lemmas of the words occurring at least once in the
collection; these lemmas were extracted from the documents
using Tree-tagger.1 Stop words such as: articles, prepositions and
adverbs were removed. The index terms of each document were
statistically weighted using term frequency (tf) normalized by the
maximum term frequency. The maximum term frequency is the
highest frequency of a term in a given document [41]. It is
important to mention, that we also tested other weighting
schemes like tf, tf/idf and tf normalized by the logarithm, among
others reported in [41]. However, the best results were obtained
by the term frequency normalized by the maximum term frequency
and these are the results that we report in this paper. Finally, the
cosine measure was used to compute the similarity between two
documents [35].

4.2. Evaluation measures

There are three types of clustering evaluation measures:
external, relative and internal measures [1]. From these three kind
of measures, the most widely used are the external measures. The
external measures evaluate a clustering solution based on how
much this clustering resembles a set of classes, commonly known
as ground-truth, which has been manually tagged by human
experts; the more similar the clustering solution is to the
ground-truth, the better the clustering algorithm is.

Many external evaluation measures have been proposed in the
literature, for instance: Purity and Inverse Purity [42], F1-measure
[43], Jaccard coefficient [44], Entropy [45], Class Entropy [46] and
V-measure [47], among others. These measures are different
according to their mathematical foundations, their biases and
their limitations. However, none of the external measures reported
so far have been developed, at least explicitly, for evaluating
overlapping clustering algorithms, i.e., these measures fail at
reflecting the fact that, in a perfect overlapping clustering, objects
sharing n classes should share n clusters.

In [12], it was proposed a new external measure for evaluating
overlapping clusterings. This measure is called FBcubed and it is
computed using variations of the Bcubed precision and recall
measures [48]. The FBcubed measure meets four constraints which
evaluate several desirable characteristics in an overlapping clus-
tering solution. These constraints are intuitive and they express
important characteristics that an external evaluation measure
should evaluate. Moreover, in [12], the authors showed that none
of the most used external evaluation measures satisfies all these
four constraints.
1 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
Based on the aforementioned analysis, and in order to conduct
a fair comparison among the algorithms, we will use the FBcubed
measure for evaluating the quality of the clusterings built by each
algorithm. Moreover, to the best of our knowledge, the existing
internal an relative evaluation measures are defined for evaluating
disjoint clusters; therefore, before applying one of these measures
for evaluating overlapping clustering, a deep study is required in
order to adapt them for evaluating this type of clusterings. A more
detailed explanation about the FBcubed measure, together with a
case of study, can be found in [12].

4.3. Quality

In this experiment, we compare the quality of the clusters built by
the clustering algorithms for each document collection; for computing
the quality of the clusters we use the FBcubed measure [12].

In Table 2, we show the best performances, according to the
FBcubed measure, attained by each algorithm over each collection. For
obtaining these best performances, we find the parameter values for
which each algorithm obtained its highest FBcubed value over each
collection. For this purpose, we proved different values of β in [0.05;
0.50], with an increment of 0.01; that is, we used β¼ 0:05, 0.06, 0.07
and so on. For those algorithms that depend on data order: DClustR,
Star, Gstar, ACONS, ICSD, DCS and SHC, we repeated the experiment 20
times, for each parameter value, varying the order of the documents
and, after that, we computed for each parameter value, the average
FBcubed obtained by each algorithm; for these algorithms, the best
performance corresponds to the highest average FBcubed. For the DHS
algorithm, we computed the FBcubed of the clustering at each level of
the hierarchies built for each parameter value; for this algorithm, the
best performance corresponds with the FBcubed value of the level
having the highest FBcubed value.

During this experiment, we realized that even when Star, SHC,
GStar, ACONS, ICSD, DCS and DClustR depend on data order, the
standard deviation of their FBcubed values was less than 0.01.
Besides, in this experiment we realized that, for all the collections,
the top level of the hierarchies, built by DHS, obtained the highest
FBcubed value. In this experiment, we also realized that for values
of β greater than 0.50 or smaller than 0.10, the quality of the
algorithms Star, ISC, Estar, Gstar, ACONS, ICSD, SHC, DCS and
DClustR decreases; besides, we observed that for values of β
greater than 0.35 or smaller than 0.05, the quality of the DHS
algorithm decreases. For the above reasons, we do not use values
of β out of [0.05; 0.50], for any of the tested algorithms.

As it can be seen from Table 2, DClustR builds in almost all
collections, higher quality clusterings than all the other algo-
rithms, according to the FBcubed measure. For summarizing the
above results, we employed an experimental methodology similar
to that used in [49,28]. Table 3 shows the statistical significance
matrix for the FBcubed values obtained by each algorithm. In this
matrix, the symbols “44” (“oo”) indicates that the FBcubed
value obtained by the algorithm of the row are significantly better
(worse) than the value obtained by the algorithm of the column;
the symbol “4 ” (“o ”) indicates that the relation is not significant.
For testing the statistical significance we used the Mann–Whitney
test, with a 95% of confidence. A detailed explanation about this
test, as well as an implementation, can be found at http://faculty.
vassar.edu/lowry/webtext.html.

As it can be seen from Table 3, excepting the DHS algorithm,
DClustR significantly wins to the other algorithms used in the
comparison, in terms of the quality of the clusters. Even when in
almost all collections (10 from 12 collections) DClustR attains
higher FBcubed values than those attained by DHS, the differences
are not significant according to the Mann–Whitney test. However,
it is important to remember that our proposed algorithm has a
lower computational complexity than DHS; thus, DClustR will be

http://faculty.vassar.edu/lowry/webtext.html
http://faculty.vassar.edu/lowry/webtext.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger


Table 2
Best performances of each algorithm over each document collection. The highest values per collection appear bold-faced.

Collection Star ISC Estar Gstar ACONS ICSD SHC DCS DHS DClustR

AFP 0.69 0.20 0.63 0.63 0.62 0.61 0.27 0.61 0.80 0.77
Reu-Te 0.45 0.05 0.39 0.40 0.40 0.39 0.20 0.39 0.49 0.51
Reu-Tr 0.42 0.03 0.36 0.36 0.36 0.36 0.19 0.36 0.44 0.43
Reuter 0.42 0.02 0.34 0.35 0.36 0.35 0.19 0.35 0.42 0.43
TDT 0.43 0.06 0.37 0.35 0.34 0.35 0.15 0.35 0.45 0.48
TDT-1 0.45 0.09 0.39 0.38 0.38 0.38 0.16 0.38 0.45 0.48
TDT-2 0.47 0.10 0.40 0.40 0.39 0.40 0.17 0.40 0.47 0.52
TDT-3 0.46 0.07 0.40 0.40 0.39 0.39 0.17 0.39 0.48 0.51
TDT-4 0.46 0.07 0.40 0.39 0.39 0.39 0.17 0.39 0.48 0.50
TDT-5 0.46 0.07 0.39 0.37 0.37 0.37 0.16 0.37 0.48 0.50
CACM 0.31 0.18 0.32 0.31 0.32 0.32 0.15 0.32 0.29 0.33
CISI 0.30 0.05 0.29 0.29 0.29 0.29 0.21 0.29 0.29 0.32

Table 3
Statistical significance matrix for FBcubed values.

Algorithm Star ISC Estar Gstar ACONS ICSD SHC DCS DHS DClustR

Star – 44 44 44 44 44 44 44 44 oo
ISC oo – oo oo oo oo oo oo oo oo
Estar oo 44 – 4 4 4 44 4 4 oo
Gstar oo 44 o – 4 4 44 4 4 oo
ACONS oo 44 o o – 4 44 4 4 oo
ICSD oo 44 o o o – 44 4 4 oo
SHC oo 44 oo oo oo oo – oo oo oo
DCS oo 44 o o o o 44 – oo oo
DHS 4 44 44 44 44 44 44 44 – o
DClustR 44 44 44 44 44 44 44 44 4 –

Table 4
Number of clusters built by each algorithm for each collection. The smallest values per collection appear bold-faced.

Collection Star ISC Estar Gstar ACONS ICSD SHC DCS DHS DClustR

AFP 123 334 98 90 129 104 85 104 36 52
Reu-Te 507 1785 600 711 798 621 273 621 43 102
Reu-Tr 471 3936 904 849 857 853 561 853 16 166
Reuter 583 5726 659 1532 1420 1183 815 1183 23 211
TDT 2019 8250 1854 1653 1663 1657 1203 1657 84 769
TDT-1 1184 4425 1207 1075 1077 1078 643 1078 62 377
TDT-2 970 3743 1074 948 954 950 579 950 84 388
TDT-3 1338 5253 1355 1187 1196 1190 758 1190 67 594
TDT-4 1104 5154 1303 1158 1163 1160 731 1160 58 434
TDT-5 1425 5816 1451 1291 1295 1293 837 1293 63 614
CACM 124 228 122 129 129 152 29 152 29 102
CISI 134 654 195 159 213 209 100 209 7 52
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able to process a collection in less time than DHS. Moreover, unlike
the DHS algorithm, DClustR does not impose any constraints over
the objects of the collection neither it leaves uncovered objects, i.
e., objects that do not belong to any cluster.

4.4. Number of clusters

In this experiment, we compare the algorithms according to the
number of clusters they build for each document collection, when
they attain their best performance according to clustering quality
(see Table 2). Table 4 shows the number of clusters built by each
algorithm for each document collection.

As it can be noticed from Table 4, DHS builds less clusters than
the other tested algorithms. This behavior is expected taking into
account that, as it was mentioned in the previous experiment, the
highest FBcubed values of the hierarchies built by DHS are
attained at the top level. It is important to remember that DHS
is an agglomerative hierarchical algorithm and these kind of
algorithms build a hierarchy of clusterings by iteratively merging
the most similar clusters; therefore, it is usual that the top level of
these hierarchies has few clusters. However, it is important to
remember that DHS attains lower quality values than our pro-
posed algorithm. Besides, DHS has a higher computational com-
plexity than DClustR and it has several limitations that our
proposed algorithm does not have.

We considered important to highlight that, excluding the DHS
which addresses a different problem to the rest of the tested
algorithms, our proposed algorithm builds, in almost all collec-
tions, less clusters than the other algorithms. Although for collec-
tion CACM SHC builds less clusters that DClustR, the clusterings
built by SHC have poor quality wrt. the quality of the clusterings
built by DClustR (see Table 2). These results mean that, in almost
all collections, the best clustering built by DClustR has less clusters
than the best clustering built by the other non-hierarchical
algorithms; in other words, the other non-hierarchical algorithms
attain their best quality results at the expense of increasing the
number of clusters. Besides, another possible reason for this
behavior is that all other non-hierarchical algorithms do not detect



Table 5
Overlapping of the clustering built by each algorithm for each document collection. The lowest values per collection appear bold-faced.

Collection Star ISC Estar Gstar ACONS ICSD SHC DCS DHS DClustR

AFP 1.71 1.65 2.52 2.31 2.48 2.53 2.43 2.53 1.01 1.18
Reu-Te 3.41 1.79 7.40 6.73 6.66 7.64 13.13 7.64 1.01 1.40
Reu-Tr 5.54 1.84 12.14 13.08 12.65 13.32 29.33 13.32 1.01 1.56
Reuter 5.46 1.82 15.92 15.47 15.47 19.25 47.55 19.25 1.01 1.53
TDT 4.81 1.88 59.41 69.43 66.38 70.97 80.74 70.97 1.07 1.50
TDT-1 3.38 1.84 44.22 49.08 46.40 49.63 47.91 49.63 1.06 1.43
TDT-2 3.38 1.80 35.11 37.85 37.46 37.85 39.82 37.85 1.15 1.39
TDT-3 3.81 1.84 42.40 46.08 44.83 46.22 53.79 46.22 1.09 1.53
TDT-4 4.08 1.83 43.34 47.59 46.24 48.72 56.04 48.72 1.04 1.45
TDT-5 3.98 1.88 44.03 51.46 48.44 52.23 59.79 52.23 1.12 1.45
CACM 2.31 1.82 3.46 3.20 3.19 2.72 1.99 2.72 1.04 1.26
CISI 4.12 2.12 7.85 7.49 7.77 7.54 6.98 7.54 1.01 1.58
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big clusters; instead, these algorithms divide those big clusters
into many small clusters. Thus, we can affirm that DClustR builds
clusterings that could be easier to analyze than those clusterings
built by the other non-hierarchical algorithms of the state-of-the-
art.

4.5. Overlapping

In this experiment, we compare the algorithms according to the
overlapping they produce for each document collection, when
they attain their best performance according to clustering quality
(see Table 2). The overlapping of a clustering is computed as the
average number of clusters in which an object is included [28]. In
Table 5, we show the overlapping of the clusterings built by each
algorithm for each document collection.

From Table 5, it can be seen that DHS builds clusterings with
less overlapping than the clusterings built by the other algorithms
and that DClustR is the second best according to this aspect.
Nevertheless, as it was mentioned in the previous two sections, it
is important to remember that our proposed algorithm has lower
computational complexity than DHS. Besides, DClustR does not
impose any constraint over the objects neither it leaves uncovered
objects, as DHS does. Notice that, since the overlapping point of
view, DClustR is the one that performs the best among the non-
hierarchical clustering algorithms; this way, DClustR allows over-
lapping among the clusters but it controls the overlapping in order
to avoid building clusters with a so high overlapping that they
could be interpreted as the same cluster.

4.6. Behavior for multiple additions/deletions

In these experiments we compare the time spent by each
algorithm for processing multiple additions and/or deletions over
the largest collection used in the previous experiments, i.e., TDT. In
the experiments with multiple additions, we compare the time
spent by Star, ICSD, ISC, SHC, DCS and DClustR. In the experiments
with multiple deletions and modifications, we compare the time
spent by Star, DCS and DClustR, because only these three algo-
rithms are able to process deletions and modifications. As it was
mentioned before, since DHS is Oðn3Þ and it must build a hierarchy
of clustering instead of a single clustering, the comparison
between DHS and the other non-hierarchical algorithms (which
also have a lower computational complexity than DHS) would not
be fair; therefore, we do not include DHS in this experiment.

Fig. 7 shows the behavior of the different algorithms for
multiple additions. In this figure, each curve represents the
average time spent by each algorithm for clustering sub-
collections of size 2000, 4000, 6000 and so on; this average time
was computed over 20 executions of the algorithms over the TDT
collection, randomly varying the order of the documents.
Fig. 8 shows the behavior of the different algorithms for
multiple deletions. In this figure, each curve represents the
average time spent by each algorithm for updating the clustering
every time 2000 documents were randomly removed from the
collection; this average time was computed over 20 executions of
the algorithms over the TDT collection.

Fig. 9 shows the behavior of the different algorithms for
multiple modifications. As it was mentioned before, Star, DCS
and DClustR algorithms process a modification as a deletion
followed by an addition. In this figure, each curve represents the
average time spent by each algorithm for updating the clustering
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every time 2000 documents were randomly deleted and added
but randomly increasing or decreasing the weight of some terms
belonging to the documents by a factor of 0.05 (i.e., modified); this
average time was computed over twenty executions of the algo-
rithms over the TDT collection.

As it can be seen from Fig. 7, DClustR has a better performance
than Star, SHC, ICSD and DCS, for processing multiple additions
over the TDT collection. Although ISC has a slightly better
performance than our proposed algorithm, it is important to
mention that DClustR builds clusters with higher quality than
those built by ISC (see Section 4.3) and that ISC cannot process
deletions. Additionally, as it can be seen from Figs. 8 and 9, our
proposed algorithm clearly overcomes Star and DCS in the proces-
sing of multiple deletions and modifications over TDT. We con-
ducted other experiments varying the number of objects that are
added, removed or modified and we observed the same behavior.

As it was mentioned in Section 4, the algorithm proposed by
Duan et al. [29] was not able to produce a clustering solution for
any of the test collections; therefore, it was not included in the
previous experiments with TDT collection. However, we will
compare it against our algorithm, using the datasets that Duan
et al. employed in [29] for evaluating their algorithm: ENRON and
DBLP. The ENRON dataset contains the e-mail communication
data2 of ENRON company from 27 September 1999 to 5 March
2000. We took from this dataset a sample comprised of 6097
different e-mail addresses (nodes) and 11,741 messages (edges),
distributed over 23 time-slices. The DBLP dataset consists of
papers published in five proceedings (KDD, ICDM, CIKM, WWW
and SIGIR) from 2006 to 2009 extracted form DBLP.3 We took from
this dataset a sample comprised of 1174 authors (nodes) and 3560
co-authorships (edges), distributed over four time-slices.

In Fig. 10(a) and (b), we show the behavior of our proposed
algorithm and the algorithm of Duan et al. over the DBLP and
ENRON datasets, respectively. In these figures, the curves labeled
with INC-2, INC-3 and INC-4 correspond with the behavior of the
algorithm of Duan et al. for k¼2, 3 and 4, respectively; these are
the parameters used in the experiments presented in [29].

As it can be noticed from Fig. 10, the proposed algorithm clearly
outperforms the algorithm of Duan et al. in both ENRON and DBLP
datasets. Additionally, we would like to mention that since both
ENRON and DBLP datasets do not have a ground-truth, we were not
able to compare DClustR and Duan's algorithm, according to the
quality of the clusterings produced over these two datasets.
2 http://www.cs.cmu.edu/enron/
3 http://dblpvis.uni-trier.de/
However, in order to compare in some way the quality of the
clusterings obtained by DClustR and the Duan's algorithm, we built
one sub-collection for each collection that appears in Table 1, by
randomly selecting only 100 of its documents. For values greater
than 100, the Duan's algorithm did not get results after 6 h. In fact,
in this experiment we only show the results over the AFP, CACM
and CISI sub-collections because for the other sub-collections the
Duan's algorithm did not get a result after six hours. In Table 6, we
show the best performances, according to the FBcubed measure,
attained by both algorithms over the AFP, CACM and CISI sub-
collections. In this table, the columns labeled INC-2, INC-3 and
INC-4 correspond with the performance of the Duan's algorithm
for k¼2, 3 and 4, respectively.

As it can be seen from Table 6, our proposed algorithm builds
better quality clusterings than the Duan's algorithm in terms of the
FBcubed measure, in all the tested sub-collections.
5. Conclusions

In this paper, we introduced DClustR, a new dynamic clustering
algorithm for building overlapping clusters. DClustR introduces a
new strategy for building an overlapping clustering and a new
strategy for efficiently updating the clustering when the collection
changes due to multiple additions and/or deletions. Additionally,
like the other algorithms analyzed in this work, our algorithm
does not depend on a specific similarity measure.

The proposed algorithm was compared against several over-
lapping clustering algorithms reported in the literature, using
several standard overlapping collections. The experimental eva-
luation was focused on comparing the algorithms according to the
quality of the clusters, the number of clusters, the overlapping of
the clusters and the time spent for processing multiple additions
and/or deletions. From these experiments, we can conclude that
among all the overlapping clustering algorithms used in the
experiments, our proposed algorithm is the best, according to
the FBcubed evaluation measure. Additionally, excepting the DHS
algorithm, DClustR builds clusterings with less clusters and less
overlapping than those clusterings built by the other tested
algorithms. It is important to highlight that, even though DHS
builds clusterings with less clusters and less overlapping than
DClustR, our proposed algorithm neither impose any constraint
over the objects of the collection nor it leaves uncovered objects (i.
e., objects that do not belong to any cluster), as DHS does.
Moreover, DClustR has lower computational complexity than
DHS; thus, DClustR will be able to process a collection in less time
than DHS.

The experiments also showed that the strategy proposed in
DClustR, for processing multiple additions, deletions as well as
modifications of objects, is clearly faster than the one used by the
Star algorithm which updates the clusters processing the changes
one by one. Additionally, DClustR outperforms the incremental
algorithms SHC and ICSD in the processing of multiple additions.
Finally, although ISC is faster than DClustR for processing multiple
additions, our proposed algorithm outperforms ISC regarding
quality, number of clusters and overlapping of the obtained
clusters. Besides, ISC cannot process deletions of objects. Thus,
DClustR has a better trade off between quality and efficiency than
the ISC algorithm. Besides, from the efficiency experiments, we
observed that DClustR outperforms the algorithm proposed by
Duan et al.

Based on all the above, we can conclude that DClustR is a better
option for overlapping clustering in a dynamic context, than the
algorithms previously reported in the literature.

As future work, we will explore the use of DClustR on
hierarchical clustering problems in order to increase its

http://www.cs.cmu.edu/enron/
http://dblpvis.uni-trier.de/
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Fig. 10. Behavior of DClustR and the algorithm of Duan et al. for k¼2, 3 and 4, over DBLP and ENRON datasets. (a) DBLP and (b) ENRON.

Table 6
Best performances of DClustR and Duan's algorithms over the AFP, CACM and CISI
sub-collections. The highest values per sub-collection appear bold-faced.

Sub-collection INC-2 INC-3 INC-4 DClustR

AFP 0.73 0.71 0.70 0.78
CACM 0.44 0.42 0.39 0.47
CISI 0.41 0.43 0.40 0.46
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application scope. Besides, we will study other alternatives for
combining the relative density and the relative compactness.
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