
886
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

PAPER

A Scalable Communication-Induced Checkpointing Algorithm for
Distributed Systems

Alberto CALIXTO SIMON†, Student Member, Saul E. POMARES HERNANDEZ††a), Member,
Jose Roberto PEREZ CRUZ†, Pilar GOMEZ-GIL†, and Khalil DRIRA††, Nonmembers

SUMMARY Communication-induced checkpointing (CIC) has two
main advantages: first, it allows processes in a distributed computation to
take asynchronous checkpoints, and secondly, it avoids the domino effect.
To achieve these, CIC algorithms piggyback information on the application
messages and take forced local checkpoints when they recognize poten-
tially dangerous patterns. The main disadvantages of CIC algorithms are
the amount of overhead per message and the induced storage overhead. In
this paper we present a communication-induced checkpointing algorithm
called Scalable Fully-Informed (S-FI) that attacks the problem of message
overhead. For this, our algorithm modifies the Fully-Informed algorithm
by integrating it with the immediate dependency principle. The S-FI al-
gorithm was simulated and the result shows that the algorithm is scalable
since the message overhead presents an under-linear growth as the number
of processes and/or the message density increase.
key words: distributed systems, communication-induced checkpointing,
immediate dependency relation

1. Introduction

Communication-induced checkpointing (CIC) algorithms
are useful for a wide range of problems that arise in dis-
tributed systems, such as: rollback recovery and software
debugging. In CIC algorithms a process asynchronously
cooperates by exchanging information about distinguished
states of its execution called local checkpoints. CIC al-
gorithms are oriented to form global consistent snapshots
(GCS) by grouping local checkpoints (one by each process)
in a non-coordinated way.

CIC algorithms have several advantages over other
styles of checkpointing, namely coordinated checkpointing
(CC) and uncoordinated checkpointing (UCC) [1]. The CC
algorithms need to exchange extra control messages to coor-
dinate a GCS while it is possible that some process remains
blocked along the construction of the GCS. The UCC al-
gorithms can asynchronously take local checkpoints at any
time during the execution; nevertheless, they are susceptible
to the domino effect [2]. CIC algorithms avoid the domino
effect and allow an asynchronous execution. To achieve this,
CIC algorithms piggyback information on the application
messages to identify potentially dangerous checkpointing

Manuscript received September 27, 2012.
Manuscript revised November 20, 2012.
†The authors are with the Computer Science Department, Insti-

tuto Nacional de Astrofı́sica, Óptica y Electrónica in Tonantzintla,
Puebla, Mexico.
††The authors are with LAAS-CNRS and Univ. de Toulouse,

France.
a) E-mail: spomares@inaoep.mx

DOI: 10.1587/transinf.E96.D.886

patterns. A dangerous pattern is broken before it occurs by
locally triggering a forced checkpoint. The dangerous pat-
terns are the Z-cycles identified by Netzer [3].

The main disadvantages of CIC algorithms are the
amount of overhead per message and the induced storage
overhead [4]. In the present paper we introduce a CIC algo-
rithm called Scalable Fully-Informed (S-FI) that attacks the
problem of message overhead. For this, our algorithm modi-
fies the Fully-Informed (FI) algorithm of Helary et al. [5] by
integrating the immediate dependency relation (IDR). The
FI algorithm was chosen because it is one of the most im-
portant approaches, since it establishes relevant fundamen-
tals for the CIC algorithms [6]. The IDR was used because
it identifies the necessary and sufficient causal dependency
constraints among events in a distributed system [7]. In
summary, the aim of the S-FI is to take the same number
of forced checkpoints as the work of Hélary et al. [5] but
significantly reducing the overhead sent per message.

The S-FI algorithm was simulated, and the results show
that the algorithm is scalable since the overhead per message
presents an under-linear growth as the number of processes
and the message density increase, which is defined as the
number of messages sent per process in a period of time.

This paper proceeds as follows. In Sect. 2, we present
the system model and background. In Sect. 3, the S-FI algo-
rithm is presented. Next, in Sect. 4, we give the simulation
results. Finally, in Sect. 5, some conclusions are presented.

2. Preliminaries

2.1 System Model

The system under consideration is composed of a finite set
of processes P = {p1, p2, . . . , pn}. The processes present an
asynchronous execution and communicate only by message
passing. Moreover, processes fail according to the fail-stop
model [1]. Let ex

i be the x-th event produced by process pi.
The sequence hi = e0

i e1
i . . . e

x
i . . . constitutes the history of

pi, denoted by Hi. We consider two types of events: inter-
nal and external events. An internal event is a unique action
that occurs at a process p and changes only its local state.
The finite set of internal events is denoted by R. In this pa-
per, we consider only the checkpoints as internal events, and
we use Cx

i to denote the xth checkpoint of process pi. For
the checkpointing problem, the set R represents the set of
relevant events† to be considered. We assume that each pro-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

CALIXTO SIMON et al.: A SCALABLE COMMUNICATION-INDUCED CHECKPOINTING ALGORITHM FOR DISTRIBUTED SYSTEMS
887

Fig. 1 A communication and checkpoint pattern.

cess takes a checkpoint after execution begins (initial check-
point) and before an execution ends (final checkpoint). On
the other hand, an external event is also a unique action that
occurs at a process, but it is seen by other processes and af-
fects the global state of the system. The external events con-
sidered in this paper are the send and delivery events. We
consider a finite set M of messages, where each message
m ∈ M is sent through an asynchronous reliable network
that is characterized by transmissions with no time bounda-
ries, no ordered delivery, and no lost messages. Let m be a
message; we denote by send(m) the emission of m and by
delivery(p,m) the delivery event of m to participant p ∈ P.
The set of events associated to M is the set Em = {send(m) :
m ∈ M} ∪ {delivery(p,m) : m ∈ M ∧ p ∈ P}. The whole
set of events in the system is the finite set E = R ∪ Em. The
distributed computation is modeled by the partially ordered
set Ê = (E,→), where → denotes Lamport’s well-known
happened-before relation [8] (see Definition 2).

2.2 Background and Definitions

Definition 1. A communication and checkpoint pattern
(CCP) is a pair (Ê,RÊ) where Ê is a partially ordered set
modeling a distributed computation, and RÊ is a set of local
checkpoints defined on Ê [5].

Figure 1 shows an example of a communication and
checkpoint pattern. The sequence of events ocurring at pi

between Cx−1
i and Cx

i (x > 0) is called a checkpoint interval,
denoted by Ix

i .

Definition 2. The happened-before relation (HBR) [8],
“→”, is the smallest relation on a set of events E satisfying
the following properties:

1. If a and b are events of the same process, and a was
originated before b, then a→ b.

2. If a is the event send(m) and b is the event delivery(m),
then a→ b.

3. If a→ b and b→ c, then a→ c.

Immediate Dependency Relation (IDR). The IDR is the
transitive reduction of the HBR [7]. We denote the IDR by
“↓”, and its formal definition is as follows:

Definition 3. Two events a, b ∈ E have an immediate de-
pendency relation “a ↓ b” if the following restriction is sat-
isfied.

a ↓ b if a→ b and ∀c ∈ E,¬(a→ c→ b)

Fig. 2 IDR Graph of Fig. 1.

In our context, we are only interested in identifying
the immediate dependency relations among the set of rel-
evant events R ⊂ E, which contain the checkpoint events.
Therefore, we say that a pair of checkpoint (relevant) events
x, y ∈ R is IDR related if and only if no other relevant event
z ∈ R exists, such that z belongs to the causal future of x
and to the causal past of y. The IDR graph of the scenario in
Fig. 1 is shown in Fig. 2.

Next, we present the principles of communication-
induced checkpointing.
Netzer and Xu [3] defined the notion of zigzag path (z-path)
as a generalization of HBR, as follows:

Definition 4. A z-path exists from Ci
p to another C j

q iff there
are messages m1,m2, . . . ,m� such that:

1. m1 is sent by process p after Ci
p,

2. if mk (1 ≤ k < �) is received by process r, then mk+1

is sent by r in the same or at a later checkpoint inter-
val (although mk+1 may be sent before or after mk is
received), and

3. m� is received by process q before C j
q.

Hélary et al. defined the following in [5].

Definition 5. A z-path [m1, . . . ,mq] is causal, iff for each
pair of consecutive messages mα and mα+1: delivery(mα)→
send(mα+1). Otherwise, it is a non causal z-path.

Definition 6. A local checkpoint Cy
j Z-depends on a local

checkpoint Cx
i , Cx

i

Z−→ Cy
j, if:

1. j = i and y > x, or
2. there is a z-path from Cx

i to Cy
j.

Definition 7. A z-cycle is a Z-dependency from a local

checkpoint Cx
i to itself: Cx

i

Z−→ Cx
i .

In Fig. 1, the messages [m4,m1] form a z-cycle involving C1
k ,

and [m6,m5,m4,m3] form a z-cycle in C2
i .

Theorem 1. The following properties of a communication
and checkpoint pattern (Ê,RÊ) are equivalent:

1. (Ê,RÊ) has no z-cycle.
2. It is possible to timestamp its local checkpoints in such

a manner that A
Z−→ B⇒ A.t < B.t.

where t is a logical clock as defined by Lamport [8].
†A set R of relevant events is a subset of events of the dis-

tributed computation, such that R constitutes a major abstraction
level of it.

888
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

3. S-FI Algorithm

The S-FI algorithm is based on the principles introduced in
the FI checkpointing protocol proposed by Hélary et al. [5]
and the IPT2 tracking protocol [9]. Specifically, S-FI uses
Theorem 1 and the forced checkpoint condition C 2′′ of FI to
prevent z-cycles, and it uses the tracking approach of IPT2
that is based on the IDR to reduce the communication over-
head.

To fuse such principles in S-FI, it was first necessary to
define an initial forced checkpoint condition named D . This
condition is expressed, as well as C 2′′, with static struc-
tures, but in terms of IDR related checkpoints. This means
that the size of the structures used in both conditions is con-
stant. We show that D is equivalent to C 2′′ to ensure Theo-
rem 1. Then D is redefined by using dynamic structures and
it is called D ′. In this case, the size of the data structures
to be analyzed is dynamically adapted according to the IDR
checkpoint behavior of the system. Based on this last con-
dition, the S-FI algorithm presented in Table 1 is designed.

Since the condition C 2′′ of FI is fundamental for our
work, we begin by giving a detailed description about its
main components.

3.1 The FI Forced Checkpoint Condition

The forced checkpoint condition C 2′′, as shown in [5], en-
sures Theorem 1. If in the reception of a message at a pro-
cess pi the condition C 2′′ is true, then such process is forced
to take a local checkpoint. This action breaks a z-path that
contains a checkpoint which eventually can belong to a z-
cycle. This condition is defined as follows.

C 2′′ ≡ ((∃k : sent toi[k] ∧ m.greater[k]) ∧ m.lc > lci)
∨ (ckpti[i] = m.ckpt[i] ∧ m.taken[i]),

where :

• sent toi[1 . . . n] is a boolean array. sent toi[k] is true iff
pi has sent messages to process pk since its last check-
point.

• lci is an integer that represents a Lamport’s logical
clock managed by process pi. When pi sends a mes-
sage m, the current value of lci is included in m (de-
noted by m.lc).

• greateri[1 . . . n] is a boolean array. greateri[k] is true
iff lci > lck. greateri[i] always keeps a false value. This
array is updated as follows:

– When pi takes a (local or forced) checkpoint, for
each k � i, greateri[k] is set to true. When pi

sends a message m, this array is included in m (de-
noted as m.greater[]).

– When pi receives a message m, it performs the
following updates:

case
m.lc > lci →
∀k � i do greateri[k] := m.greater[k];enddo

m.lc = lci →
∀k do

greateri[k] := greateri[k] ∧ m.greater[k];
enddo

m.lc < lci → skip
endcase

• ckpti[1 . . . n] is a vector clock [8] that counts how many
checkpoints have been taken by each process. ckpti[k]
is the number of checkpoints taken by pk to pi’s knowl-
edge. When pi sends a message m, this vector is in-
cluded in m (denoted as m.ckpt[]).

• takeni[1 . . . n] is a boolean array. takeni[k] is true iff
there is a causal z-path from the last checkpoint of
pk known by pi to the next checkpoint of pi, and this
causal z-path includes a checkpoint. This array is man-
aged in the following way:

- When pi takes a checkpoint, for each k � i,
takeni[k] is set to true. When pi sends a mes-
sage m, this array is included in m (denoted as
m.taken[]).

- When pi receives m, it updates takeni[] in the fol-
lowing way:

∀k � i do
case
m.ckpt[k] > ckpti[k] →

takeni[k] := m.taken[k];
m.ckpt[k] = ckpti[k] →

takeni[k] := (m.taken[k] ∨ takeni[k]);
m.ckpt[k] < ckpti[k]→ skip

endcase
enddo

The condition C 2′′ can be organized in three parts, and
expressed as follows:

C 2′′ ≡ (FIa ∧ FIb) ∨ FIc,
where :
FIa ≡ (∃k : sent toi[k] ∧ m.greater[k])
FIb ≡ m.lc > lci

FIc ≡ ckpti[i] = m.ckpt[i] ∧ m.taken[i]

The aim of FIa and FIb is to detect non-causal z-paths,
while FIc is oriented to identify causal z-paths (see Fig. 3).

3.2 The Initial S-FI Forced Checkpoint Condition

To capture the same behavior as C 2′′ leveraging the IDR,
we define an initial forced checkpoint condition called D .
The condition D has two main differences with respect

Fig. 3 A causal z-path.

CALIXTO SIMON et al.: A SCALABLE COMMUNICATION-INDUCED CHECKPOINTING ALGORITHM FOR DISTRIBUTED SYSTEMS
889

to C 2′′. First, the vector ckpti[], which has a monotonic
strictly increasing behavior, is replaced in S-FI by a vector
that presents a non-constant monotonic increasing strictly
behavior denoted lc ckpti[]. Secondly, the boolean ar-
ray takeni[], used in FI, is replaced by the boolean array
idr ckpt[]. Through idr ckpt[] we identify if a pair of con-
secutive checkpoints taken by a process is IDR related. Two
local consecutive IDR related checkpoints means that: a)
there is a causal z-path between such checkpoints; b) there is
not an intermediate checkpoint between them. On the other
hand, if two consecutive checkpoints are not IDR related,
this indicates that there is a causal z-path with an intermedi-
ate checkpoint between them. We are interested in this last
behavior since this indicates that a z-cycle (see Definition 7)
is detected.

The condition D is defined as follows.

D ≡ (S FIa ∧ S FIb) ∨ S FIc,
where :
S FIa ≡ (∃k : sent toi[k] ∧ m.greater[k])
S FIb ≡ max(m.lc ckpt) > lci

S FIc ≡ lc ckpti[i] = m.lc ckpt[i] ∧ ¬m.idr ckpt[i]

S FIa and S FIb have the same aim as FIa and FIb of
C 2′′, respectively. S FIc as well as FIc is used to detect
the causal z-paths (see Fig. 3), with the difference that S FIc

is based on IDR checkpoint dependencies. We note that
S FIb and S FIc share the structure lc ckpt[]. This avoids
the inclusion of the sender’s logical clock at the emission of
a message m as is detailed below. The variables and data
structures used by D are the following:

• The array sent toi[] and the vector greateri[] have the
same meaning and management as in C 2′′.

• lci is the same Lamport’s clock used by C 2′′; however,
it is not included in the messages sent by pi.

• lc ckpti[1 . . . n] is a vector of logical clocks. lc ckpti[i]
has the value of logical clock lci when pi takes its
last checkpoint. lc ckpti[k] has the value of the logi-
cal clock lck when pk takes its last checkpoint to pi’s
knowlegde. This vector is managed in the following
way:

- When pi takes a checkpoint, it increments by one
the current value of lci and the result is assigned to
lc ckpti[i]. When pi sends a message m, lc ckpti[]
is included in m (denoted as m.lc ckpt[]).

- When pi receives m, it updates lc ckpti[] as fol-
lows:

∀k � i do
case
m.lc ckpt[k] > lc ckpti[k] →

lc ckpti[k] := m.lc ckpt[k];
m.lc ckpt[k] < lc ckpti[k] → skip
m.lc ckpt[k] = lc ckpti[k] → skip

enddo

max(u) is a function that obtains the maximum value
stored in an array u. We note that the sender’s logical
clock lc j is determined by the receiver pi from the array

lc ckpt[] included in m (lc j = max(m.lc ckpt[])).
• idr ckpti[1 . . . n] is a boolean array. The value of

idr ckpti[k] is true, if there is an IDR between the last
checkpoint of pk known by pi and the next checkpoint
of pi.
This array is managed in the following way:

- When pi takes a checkpoint, it sets idr ckpti[i] to
true, and for each k � i, idr ckpti[k] is set to false.
When pi sends a message m, it includes the array
idr ckpti[] (m.idr ckpt[]) to m.

- When pi receives a message m, it updates
idr ckpti[] as follows:

∀k � i do
case
m.lc ckpt[k] > lc ckpti[k] →

idr ckpti[k] := m.idr ckpt[k];
m.lc ckpt[k] = lc ckpti[k] →

idr ckpti[k] := (m.idr ckpt[k] ∧ idr ckpti[k]);
m.lc ckpt[k] < lc ckpti[k]→ skip

endcase
enddo

Now we state the equivalence of conditions as follows:

Theorem 2. Condition D is equivalent to the condition
C 2′′.

The proof of this theorem is given in Appendix A. For
our problem, D ≡ C 2′′ means that both conditions detect
the same patterns; and therefore, they will trigger the same
number of forced checkpoints.

3.3 The S-FI Forced Checkpoint Condition with Dynamic
Structures

From an algorithmic point of view, to implement the condi-
tion D we need to attach the boolean arrays greater[] and
idr ckpt[], and the vector lc ckpt[] to each message. This
implies a constant overhead per message equal to n integers
plus 2n bits. By using the principles of the IPT2 protocol [9],
the condition D can be evaluated by using only the informa-
tion about IDR related checkpoints. This implies dynami-
cally determining and adapting the control information to be
sent, resulting in a significant reduction in the overhead sent
per message. The condition based on IDR dependencies and
expressed with dynamic structures is defined as follows:

D ′ ≡ (S FI′a ∧ S FI′b) ∨ S FI′c,
where :
S FI′a ≡ [∃k : sent toi[k] ∧ ((∃y ∈ m.ψ, y.id = k :

y.greater) ∨ (�y ∈ m.ψ, y.id = k))]
S FI′b ≡ max(m.ψ) > lci

S FI′c ≡ (∃z ∈ m.ψ, z.id = i : lc ckpti[i] = z.lc ckpt ∧
¬z.idr ckpt)

The parts S FI′a, S FI′b and S FI′c in the D ′ condition
correspond to the parts S FIa, S FIb and S FIc of D , respec-
tively. The data structures and variables used in this condi-
tion are:

890
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

• The array sent toi[], the vector lc ckpti[] and the logi-
cal clock lci have the same meaning and management
as in D condition.

• m.ψ is a data structure made up by tuples. Each tu-
ple contains: a process identifier id, a logical clock
lc ckpt, and two boolean values idr ckpt and greater
(tuple ≡ (id, lc ckpt, idr ckpt, greater)). m.ψ is con-
structed from the structures lc ckpti[], idr ckpti[] and
greateri[] and therefore it is a partial or full copy of
such structures. A detailed description of the construc-
tion of m.ψ is presented below.
The function max(m.ψ) gets the maximum logical
clock (y.lc ckpt) included in some tuple y ∈ m.ψ.

For the problem of immediate predecesors tracking, to
identify the control information that a process pi requires
to include in m, Anceaum et al. in [9] defined the abstract
condition K(m, k) and the condition K2(m, k). K identifies
which entries from the vectors are not neccessary to be pig-
gybacked in a message m, and K2 is an implementation that
aproximates K, which can be locally evaluated by a process.
Based on K2, we define the condition K3 that is also an
aproximation of the abstract condition K. K3 is oriented to
satisfy D ′ and it is defined as follows:

Definition 8.

K3(m, k) ≡ (send(m).lc ckpti[k] = 0) ∨
((send(m).Ti[j, k]=1) ∧ (send(m).idr ckpti[k]=1))

where send(m).lc ckpti[k] and send(m).idr ckpti[k] are the
k-ths values of logical clock vector and boolean array of pi,
respectively, when it sends m. Ti is a boolean matrix that
satisfies the following property:

Property 1. For each message sent by pi to p j,

(send(m).Ti[j, k] = 1)⇒
(send(m).lc ckpti[k] ≤ pred(receive(m)).lc ckpt j[k])
∧ (max(send(m).lc ckpti[]) > send(m).lc ckpti[k])

where pred(receive(m)) denotes the checkpoint event Cx
j

immediately preceding the reception of m in the sequence
Hj. We note that pred(receive(m)).lc ckpt j[k]) is the most
recent value lc ckpt j[k] known by pi at the moment of
send(m).

When send(m).Ti[j, k] = 1 means that process pi does
not know more recent information than pj with respect to
process pk.

In general, when K3 is true means that the tuple
(k, lc ckpt[k], idr ckpt[k], greater[k])) is useless with re-
spect to the correct management (updating process) at pj

of lc ckpt j[k], idr ckpt j[k] and greater j[k], and therefore it
must not be piggybacked on m. The proof of K3(m, k) ⇒
K(m, k) is presented in Appendix B (see Theorem 4).

In order to satisfy Property 1, matrix Ti is managed as
follows:

T0 Ti is initialized to true. ∀(j, k) : Ti[j, k] := 1.
T1 When pi takes a checkpoint, it resets the i-th column of

its matrix Ti. ∀ j � i : Ti[j, i] := 0. When pi sends a
message, the matrix Ti is not updated.

T2 When pi receives a message m from p j, Ti is updated
as follows:

∀w ∈ m.ψ do
case
w.lc ckpt > lc ckpti[w.id] →
∀� � i do Ti[�,w.id] := 0;
if (max(m.ψ) > w.lc ckpt) ∨ (lci > w.lc ckpt)
then Ti[j,w.id] := 1;

endif
w.lc ckpt = lc ckpti[w.id] →

if (max(m.ψ) > w.lc ckpt) ∨ (lci > w.lc ckpt)
then Ti[j,w.id] := 1;

endif
m.lc ckpt[k] < lc ckpti[k]→ skip

endcase
enddo

In Appendix B the proof that Property 1 is accom-
plished by the previous updating process (see Lemma 4) is
presented.
Now we state the equivalence of conditions as follows:

Theorem 3. Condition D ′ is equivalent to the condition D .

The proof of this theorem is given in Appendix B. In
addition, numerical results are presented in Sect. 4 that attest
that for all cases the S-FI’s D ′ condition triggers the same
number of forced checkpoints as C 2′′.

3.4 Description of the S-FI Algorithm

S-FI is composed by three parts: ωo, ω1 and ω2 (see Table
1). The part ω0 initializes the logical clock lci, as well as the
data structures lc ckpti[], idr ckpti[], greateri[] and Ti[][]
described in Sect. 3.2 and 3.3 (see lines 2-6, Table 1). In ad-
dition, it takes the initial checkpoint at a process pi. In part
ω1, when a message m is sent to a process p j, the boolean ar-
ray sent toi[j] is updated, the set ψi is constructed (see lines
9-19, Table 1) and included in m. In part ω2, the reception
of messages is managed. ω2 updates the data structures ac-
cording to the piggybacked IDR information (see lines 27-
52, Table 1). Finally, in ω2, the forced checkpoint condi-
tion D ′ is evaluated to determine if pi should take a forced
checkpoint (see lines 22-24, Table 1).

The overhead per message of S-FI is determined by
the amount of tuples in ψ (lines 11 to 19). Each tuple
is formed by a process identifier (one integer), a logical
clock (one integer) and two boolean values (two bits). If
an integer is represented by s bits, and t tuples are sent,
then for each message we have t(2s + 2) bits. Therefore,
in the best case, (2s + 2) bits are sent; in the average case,
1/(n− 1)

∑n−1
i=1 (i)(2s+ 2) bits are sent; and in the worst case,

(n−1)(2s+2) bits are sent. Nevertheless, for the worst case,
it is better to send all the information of the static data struc-
tures (n(s + 2) bits). In Table 2, we show the results of this
brief analysis and the overhead messages for the algorithms
FI and FINE.

CALIXTO SIMON et al.: A SCALABLE COMMUNICATION-INDUCED CHECKPOINTING ALGORITHM FOR DISTRIBUTED SYSTEMS
891

Table 1 S-FI algorithm.

(ω0) Initialization of process pi.

1 k, l : 1 . . . n, where n is the number of processes.
2 ∀k do lc ckpti[k] := 0; enddo
3 ∀k, l do Ti[k, l] := true; enddo
4 idr ckpti[i] := true;
5 greateri[i] := f alse;
6 lci := 0;
7 taken checkpoint();

(ω1) When pi sends a message m to p j.

8 sent toi[j] := true;
9 ψi ← ∅;

10 ∀k do
11 if

[
(¬Ti[j, k] ∨ ¬idr ckpti[k]) ∧ (lc ckpti[k] > 0)

]
then

12 ψi ← ψi ∪ (k, lc ckpti[k], idr ckpti[k], greateri[k]);
13 endif
14 enddo
15 s := 32; //s is the #-bits to represent a logical clock(lc ckpti).
//size(ψi) returns the cardinality of ψi .

16 if size(ψi) > (n)(s + 2)/(2s + 2) then
17 ψi ← ∅;
18 ∀k do ψi ← ψi ∪ (−, lc ckpti[k], idr ckpti[k], greateri[k]); enddo
19 endif
20 send(m:=(ψi, Data)) to p j;

(ω2) When pi receives the message m := (ψ,Data) from p j.

21 max lc ckpt := max(ψ);
22 if

[(∃k : sent toi[k] ∧ (∃y ∈ ψ, y.id = k : y.greater ∨
23 �y ∈ ψ, y.id = k)

) ∧ max lc ckpt > lci
] ∨

24
[∃z ∈ ψ, z.id = i : lc ckpti[i] = z.lc ckpt ∧ ¬z.idr ckpt

]
25 then take checkpoint();
26 endif
27 ∀w ∈ ψ do
28 case
29 w.lc ckpt > lc ckpti[w.id]→
30 lc ckpti[w.id] := w.lc ckpt;
31 idr ckpti[w.id] := w.idr ckpt;
32 ∀ l � i do Ti[l,w.id] := f alse; enddo
33 if (max lc ckpt � w.lc ckpt) ∨ (lci > w.lc ckpt) then
34 Ti[j,w.id] := true;
35 endif
36 w.cl ckpt = cl ckpti[w.id]→
37 idr ckpti[w.id] := (idr ckpti[w.id] ∧ w.idr ckpt);
38 if (max lc ckpt � w.lc ckpt) ∨ (lci > w.lc ckpt) then
39 Ti[j,w.id] := true;
40 endif
41 w.cl ckpt < cl ckpti[w.id]→ skip
42 endcase
43 enddo
44 case
45 max lc ckpt > lci →
46 lci := max lc ckpt;
47 ∀k � i do greateri[k] := true; enddo
48 ∀� ∈ ψ, �.id � i do greateri[�.id] := �.greater; enddo
49 max lc ckpt = cli →
50 ∀� ∈ ψ do greateri[�.id] := greateri[�.id] ∧ �.greater; enddo
51 max lc ckpt < lci → skip
52 endcase
53 delivery(m);

Procedures and functions used in S-FI.
//When pi takes a local or forced checkpoint.

54 procedure taken checkpoint()
55 ∀k do sent toi[k] := f alse; enddo
56 ∀ k � i do
57 idr ckpti[k] := f alse;
58 greateri[k] := true;
59 Ti[k, i] := f alse;
60 enddo
61 lci := lci + 1;
62 lc ckpti[i] := lci;
63 endprocedure
// max(α) gets the maximum logical clock in α.

64 function max(α)
65 max := 0;
66 ∀x ∈ α do
67 if x.lc ckpt > max then max := x.lc ckpt; endif
68 enddo
69 endfunction

Table 2 Overhead per message (bits) to S-FI, FI and FINE.

Algorithm Best-Case Average-Case Worst-Case
S-FI 2s + 2 (n)(s + 1) (n)(s + 2)
FI (n)(s + 2) + s

FINE (n)(s + 1)
s-number of bits to represent an integer.
n-number of processes.

Fig. 4 Simulation results.

4. Simulation Results

We compare the performance of S-FI versus two check-
pointing algorithms: FI and FINE [10]. We chose FINE
since it is a recent algorithm also based on FI.

The algorithms S-FI, FI and FINE were simulated and
analyzed using the simulator for distributed checkpointing
ChkSim [11]. ChkSim follows a deterministic simulation
model that allows us to reproduce a simulation as many
times as necessary and compare two or more algorithms.
For the analysis, we use two metrics: the number of forced
checkpoints and the overhead per message.

The performance was analyzed for four scenarios of
1000, 2500, 5000 and 50000 messages, with a uniform dis-
tribution among the send events, and by varying the number
of processes from 10, 20,. . . , 120. For each scenario, 100
iterations were executed with different communication and
checkpoint patterns.

In Fig. 4 we can observe that the overhead per mes-
sage presented by S-FI is dynamic since it depends on the
density of messages and not on the number of processes. In-
stead, the overhead of FI and FINE present a constant linear
growth according to the number of processes. Furthermore,
the overhead per message of S-FI has an under linear growth
where the upper limit is determined by the FI overhead.

On the other hand, S-FI and FI generate the same num-
ber of forced checkpoints, while FINE generates a lower
amount [10] that represents on average only a 3% gain with
respect to FI.

892
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

5. Conclusions

In this article the S-FI checkpointing algorithm was pre-
sented. The S-FI algorithm was compared with the FI and
FINE algorithms. The results show that the overhead per
message presented by S-FI is scalable because it presents an
under-linear growth as the number of processes and/or the
message density increase. Instead, the overhead of FI and
FINE are not scalable since they present a constant linear
growth according to the number of processes. On the other
hand, the results show that S-FI and FI generate the same
number of forced checkpoints.

References

[1] E.N.M. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol.34, pp.375–408, Sept. 2002.

[2] B. Randell, “System structure for software fault-tolerance,” SIG-
PLAN Not., vol.10, pp.437–449, April 1975.

[3] R.H.B. Netzer and J. Xu, “Necessary and sufficient conditions for
consistent global snapshots,” IEEE Trans. Parall. Distrib. Syst.,
vol.6, no.2, pp.165–169, Feb. 1995.

[4] L. Alvisi, S. Rao, S.A. Husain, A. de Mel, and E. Elnozahy,
“An analysis of communication-induced checkpointing,” Proc. 29th
Annu. Internatio. Sympo. Fault-Tolerant Comp., FTCS ’99, pp.242–
249, IEEE Computer Society, 1999.

[5] J.M. Hélary, A. Mostefaoui, R.H.B. Netzer, and M. Raynal,
“Communication-based prevention of useless checkpoints in dis-
tributed computations,” Distributed Computing, vol.13, pp.29–43,
Jan. 2000.

[6] J. Tsai and J.W. Lin, “On the fully-informed communication-
induced checkpointing protocol,” Proc. 11th Pacific Rim Interna-
tional Symposium on Dependable Computing, pp.151–158, IEEE
Computer Society, 2005.

[7] S.E. Pomares, J. Fanchon, and K. Drira, “The immediate depen-
dency relation: an optimal way to ensure causal group communi-
cation,” Annu. Rev. Scal. Compt., Ser. Scal. Compt., 6, pp.61–79,
2004.

[8] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Commun. ACM, vol.21, pp.558–565, July 1978.

[9] E. Anceaume, J.M. Hélary, and M. Raynal, “Tracking immediate
predecessors in distributed computations,” Proc. 40th Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’02,
pp.210–219, ACM, 2002.

[10] Y. Luo and D. Manivannan, “Fine: A fully informed and efficient
communication-induced checkpointing protocol for distributed sys-
tems,” J. Parallel and Distributed Computing, vol.69, pp.153–167,
Feb. 2009.

[11] G.M.D. Vieira and L.E. Buzato, “Chksim: A distributed checkpoint-
ing simulator,” Tech. Rep. IC-05-34, Institute of Computing, Univer-
sity of Campinas, Dec. 2005.

Appendix A

Theorem 2. Condition D is equivalent to the condition
C 2′′.

Proof. We divide the proof into two parts. In the first
part we demonstrate that FIb is equivalent to S FIb; and in
the second part, we demonstrate that FIc is equivalent to
S FIc. We do not demonstrate that FIa is equivalent to S FIa

because both manage and modify the arrays sen toi[] and
greateri[] in the same way.

Part I. To demonstrate that FIb is equivalent to S FIb, we
formulate and prove the following Lemma:

Lemma 1. The x-th value of the logical clocks lcx
i(FI)

and
lcx

i(S FI)
of a process pi for FIb and S FIb, respectively, are

equal. In other words:

∀i ∈ P : lcx
i(FI)
= lcx

i(S FI)

Proof of Lemma 1. Using induction, we have:

• Base case (k = 2): at the beginning, these variables are ini-
tialized to 1. For the second value of lcx

i(FI)
and lcx

i(S FI)
, we

have two cases: The first case is when process pi takes a
checkpoint and updates its lci. The second case is when pi

receives a message m and updates its lci according to the pig-
gybacked information in m.

- pi takes a checkpoint. pi updates its lci as follows:

lc2
i(FI)

:= lc1
i(FI)
+ 1, lc2

i(S FI)
:= lc1

i(S FI)
+ 1,

lc ckpt2
i [i] := lc2

i(S FI)
= 2

Therefore, lc2
i(FI)
= lc2

i(S FI)
= 2.

- pi receives m from pj immediatly after of its first checkpoint
and m.lc = 2. In this case, in FI pi updates lc2

i(FI)
in the fol-

lowing way:

i f m.lc(FI) > lc1
i(FI)

then lc2
i(FI)

:= m.lc(FI)

Therefore, lc2
i(FI)

is updated with the greatest logical clock
seen by pi and pj.
In S-FI, lc2

i(S FI)
is also updated with the greatest logical clock

seen by pi and pj, with the difference that the greatest log-
ical clock seen by pj is extracted from the vector lc ckpt[]
included in m. lc2

i(S FI)
and lc ckpti[] are updated as follows:

i f max(m.lc ckpt[]) > lc1
i(S FI)

then
lc2

i(S FI)
:= max(m.lc ckpt[])

∀ l � i : i f m.lc ckpt[l] > lc ckpti[l] then
lc ckpti[l] := m.lc ckpt[l]

Therefore, lc2
i(FI)
= lc2

i(S FI)
= 2, since for both FI and S-FI,

each process locally updates its logical clock in the same way.
• Inductive step: we assume now that the result holds for k > 2,

thus: lck
i(FI)
= lck

i(S FI)
.

• Inductive hypothesis: we will prove that it holds for k + 1.
This part of the proof is divided into two cases. The first
case is when a pi takes a checkpoint and updates its logical
clock. The second case is when a pi receives a message m
and updates its logical clock according to the piggybacked
information included in m.

- pi takes a checkpoint. Therefore, pi updates its logical
clock in the following way:

lck+1
i(FI)

:= lck
i(FI)
+ 1, lck+1

i(S FI)
:= lck

i(S FI)
+ 1,

lc ckptk+1
i [i] := lck+1

i(S FI)

Therefore, lck+1
i(FI)
= lck+1

i(S FI)
.

CALIXTO SIMON et al.: A SCALABLE COMMUNICATION-INDUCED CHECKPOINTING ALGORITHM FOR DISTRIBUTED SYSTEMS
893

- pi receives a message m from pj. We note that in the
algorithm FI, the lc j(FI) (j � i) included in a message m
(m.lc(FI)) corresponds to the greatest clock seen by pj.
In this case, lck+1

i(FI)
is updated in the following way:

i f m.lc(FI) > lck
i(FI)

then lck+1
i(FI)

:= m.lc(FI)

Therefore, lck+1
i(FI)

is updated with the greatest logical
clock seen by pi and pj.

In the S-FI algorithm, lc j(S FI) is also the greatest logi-
cal clock seen by pj, but in this case, it is included in
the vector lc ckpt j[] of m, (lc j(S FI) ∈ m.lc ckpt[]). The
logical clock lck+1

i(S FI)
and the vector lc ckpti[] are updated

in the following way:

i f max(m.lc ckpt[]) > lck
i(S FI)

then
lck+1

i(S FI)
:= max(m.lc ckpt[])

∀ l � i : i f m.lc ckpt[l] > lc ckpti[l] then
lc ckpti[l] := m.lc ckpt[l]

Therefore, lck+1
i(S FI)

is also updated with the greatest lc(S FI)

seen by pi and pj, while the vector lc ckpti[] is updated
also with the greatest lc(S FI).

Therefore, lck+1
i(FI)
= lck+1

i(S FI)
. �Lemma 1

Proposition 1. As a consequence of Lemma 1 and the induc-
tive proof, we can state that:

lcx
i(FI)
= (lcx

i(S FI)
= max(lc ckpti[]))

Now using the Lemma 1 and the Proposition 1, we can state
that: m.lc > lci ≡ max(m.lc ckpt) > lci.
Therefore, FIb ≡ S FIb. �

Part II. Now we will prove that FIc is equivalent to S FIc.
We divide this proof into two parts. In the first part, we
prove that lc ckpti[i] has a similar behavior as ckpti[i] dur-
ing an interval. For the second part we show that by identify-
ing the immediate dependency relations among checkpoints,
we can detect the same pattern than the array takeni[] of FI
algorithm.

• Part II.A. Since the logical clock ckpti[i] has a strictly in-
creasing behavior, we prove that the logical clock lc ckpti[i]
has the same property.

Lemma 2. The logical clock lc ckpti[i] of process pi has a
strictly increasing behavior, as follows:

∀i ∈ P : lc ckpt1
i [i] < · · · < lc ckptx−1

i [i] < lc ckptx
i [i],

where x represents the x-th taken checkpoint of pi.

Proof Lemma 2. This part is demonstrated by direct proof.
We note that lci(FI) has a strictly increasing behavior [5]. From
Lemma 1 we have that lcx

i(S FI)
= lcx

i(FI)
; therefore the logical

clock lci(S FI) also has the same behavior. Since lc ckptx
i [i]

is set to lcx
i(S FI)

, for each taken checkpoint at process pi, we
have that the logical clock lc ckpti[i] has a strictly increasing
behavior. �Lemma 2

Now using Lemma 2 and knowing that the logical clock

lc ckpti[i] is only updated when pi takes a local checkpoint,
we can state that the logical clock lc ckptk

i [i] is constant dur-
ing at an interval.

• Part II.B. In FI algorithm takeni[j] = true indicates that
there is a causal zigzag path, including a checkpoint, from
the last checkpoint Cy

j , known by pi, to the next checkpoint
Cx+1

i . Specifically we are interested when takeni[j] = true
and j = i since there is a causal zigzag path that includes a
checkpoint Cz

k in the interval defined by the checkpoints Cx
i

and Cx+1
i . For this, we state in the Lemma 3 that the S-FI

detects this pattern by identifying the immediate dependency
relations among checkpoints.

Lemma 3. For a message m sent by pj and received at pi,
i � j

i f (m.idr ckpt[i] = f alse) then
∃Cz

k ∈ R, k � i : Cx
i → Cz

k → Cx+1
i

For Lemma 3, we give a sketch of proof. According to defi-
nition 3, we have that two checkpoints Cx

i and Cx+1
i are IDR

related if �Cz
k : Cx

i → Cz
k → Cx+1

i .
During the message exchange between Cx

i and Cx+1
i , in S-FI

the value idr ckpti[i] = true is propagated between each pair
of consecutive messages iff a checkpoint Cz

k does not exist.
This is accomplished since at the reception of a message, the
vector idr ckpti[] is updated with the last IDR information
(see updating process of message reception for idr ckpti[],
page 889). Otherwise, when a local checkpoint is taken, the
IDR history of pk with respect to pi is erased by reinitializing
idr ckptk[i] = f alse (see the updating process for idr ckpti[],
page 889).

Therefore FIc ≡ S FIc. �

Appendix B

Theorem 3. Condition D ′ is equivalent to the condition D .
Proof. We divide the proof into two parts. First,

we demonstrate that the condition K3(m, k) implies K(m, k)
which ensures the tracking of checkpoints that are imme-
diate predecesors without requiring to piggyback the whole
control information in each message. Secondly, we demon-
strate that S FIa ∧ S FIb is equivalent to S FI′a ∧ S FI′b and
S FIc is equivalent to S FI′c.

Part I. To demonstrate that K3(m, k) implies K(m, k) we
state and prove Theorem 4.

Theorem 4. Let K3(m, k) ≡ (send(m).lc ckpti[k]=0)
∨ ((send(m).Ti[j, k] = 1) ∧ (send(m).idr ckpti[k]=1)). We
have: K3(m, k)⇒ K(m, k).

where, the abstract condition K(m, k) was defined by An-
ceaume et al. in [9] as follows:

K(m, k) ≡ (send(m).VCi[k] = 0)
∨ (send(m).VCi[k] < pred(receive(m)).VC j[k])
∨ ((send(m).VCi[k] = pred(receive(m)).VC j[k])
∧ (send(m).IPi[k] = 1))

894
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

here, VCi[] is a vector of logical clocks and IPi[] is a
boolean array.

Lets consider the following. The management (updat-
ing process) of VCi[] and IPi[] is equal to the management
of the vector ckpti[] of FI (see Sect. 3.1) and the boolean
array idr ckpti[] of our proposal, respectively. We recall
that the vector ckpti[] was replaced in S-FI by the vector
lc ckpti[] without affecting the desired results as is demon-
strated in Theorem 2. Specfically, it was demonstrated that
the logical clocks of the vector lc ckpti[] present a strictly
increasing behaviour as well as the logical clocks of the vec-
tor ckpti[] and consequently, as the logical clocks of the vec-
tor VCi[] (see Lemma 1 and Lemma 2) as well. Taking into
account these comments, we present the proof of Theorem
4 as follows.
Proof. We begin by showing that the matrix Ti provides
a correct meaning to pi’s knowledge. (send(m).Ti[j, k] =
1)⇒ ((send(m).lc ckpti[k] ≤ pred(receive(m)).lc ckpt j[k])∧
(max(send(m).lc ckpti[]) > send(m).lc ckpti[k])).

Lemma 4. Let IT (e, j, k) the following property:

(e.Ti[j, k] = 1)⇒ A0 ∨ ((A1 ∨ A2 ∨ A3) ∧ B0),

where :
A0 ≡ (j= i), A1 ≡ (j=k), A2 ≡ (e.lc ckpti[k]=0),
A3 ≡ ∃ m′ f rom pj to pi,∀z ∈ m′.ψ, k = z.id :

((receive(m′)→ e) ∨ (receive(m′) = e)) ∧
(send(m′).lc ckpt j[k] = z.lc ckpt = e.lc ckpti[k]),

B0 ≡ (max(e.lc ckpti[]) > e.lc ckpti[k]).

∀i,∀e ∈ Hi,∀ j,∀k: IT (e, j, k) holds.

Proof. The proof is by induction on Ê. We consider only
the events e such that e.Ti[j, k] = 1. When e.Ti[j, k] = 0, the
property IT (e, j, k) trivially holds.

• Base case: let e be the first event of pi. We have that
e.Ti[j, k] = 1 only in the following cases:

- e is the first checkpoint of pi. Thus, from T0, T1 and
the management of lc ckpti[] (see, Sect. 3.2 and 3.3);
we have that max(e.lc ckpti[]) = (e.lc ckpti[i]) = 1
and:

– j = i,∀k : (Ti[j, k] = 1)⇒ A0.
– ∀ j � i,∀k � i : (Ti[j, k] = 1)⇒ A2 ∧ B0.
– ∀ j � i, k = i : Ti[j, k] = 0.

- e is the reception of a message m from p j immediatly
after the first checkpoint of pi. Then, from T2 and the
management of lc ckpti[], we have:

– j = i,∀k : (Ti[j, k] = 1)⇒ A0.
– ∀x � i,∀y,∀z ∈ m.ψ, k = z.id : (e.Ti[x, y] =

1) ⇒ [(x = j) ∧ (y = k) ∧ (max(e.lc ckpti[]) >
z.lc ckpt)

] ∨ [(y� i) ∧ (y�k) ∧ (lc ckpti[k]=0)
]
.

First alternative holds. m satisfies A3 and
B0, receive(m) = e ∧ send(m).lc ckpt j[k] =
z.lc ckpt = e.lc ckpti[k] < max(e.lc ckpti[]).
Second alternative also holds. e.lc ckpti[k] = 0
satisfies A2 and B0.

Thus, in every case, IT (e, j, k) holds.
• Inductive step: let e ∈ Hi. We assume that ∀e′ ∈
{e′ | e′ → e},∀ j,∀k : IT (e′, j, k) holds.

• Inductive hypothesis: we will prove that ∀ j,∀k, the
property IT (e, j, k) holds. We proceed by case anal-
ysis about the type of event.

- e is a checkpoint. pi resets the i-th column of Ti (see
T1), ∀ � i : Ti[j, i] := 0.

- e is a send event. There are no updates in the matrix Ti

(see T1). Therefore, IT (e, j, k) holds.
- e is the reception of m from p j. pi only updates the

row j of Ti (see T2). Then: x = j,∀z ∈ m.ψ, z.id =
k : (e.Ti[x, k] = 1) ⇒ ((x = j) ∧ (max(e.lc ckpti[]) >
z.lc ckpt). Thus, e satisfies A3 and B0. receive(m) =
e ∧ send(m).lc ckpt j[k] = z.lc ckpt = e.lc ckpti[k] <
max(e.lc ckpti[]).
Thus, in every case, IT (e, j, k) holds.

�Lemma 4

Now, let m be a message sent by pi to p j (e = send(m))
and send(m).Ti[j, k] = 1. From Lemma 4, we have three
cases (we note that j � i and e never can be a receive event).

• From A1, j = k. Thus, from the properties of vector
clocks, we have:
send(m).lc ckpti[k] ≤ pred(receive(m)).lc ckpt j[k].

• From A2, send(m).lc ckpti[k] = 0. Then,
send(m).lc ckpti[k] ≤ pred(receive(m)).lc ckpt j[k].

• From A3, we have: send(m′).lc ckpt j[k] = e.lc ckpti[k]
≤ pred(receive(m)).lc ckpt j[k]. Hence,
send(m).lc ckpti[k] ≤ pred(receive(m)).lc ckpt j[k].

Therefore, (sent(m).Ti[j, k] = 1)⇒ (send(m).lc ckpti[k]
≤ pred(receive(m)).lc ckpt j[k]).

Hence, we have:

K3(m, k) ≡ (send(m).lc ckpti[k] = 0)
∨((send(m).Ti[j, k] = 1) ∧ (send(m).idr ckpti[k]=1))
⇒ (send(m).lc ckpti[k]=0) ∨((send(m).lc ckpti[k]≤

pred(receive(m)).lc ckpt j[k])∧(send(m).idr ckpti[k]=1))
⇒ (send(m).VCi[k]=0) ∨((send(m).VCi[k]≤

pred(receive(m)).VC j[k]) ∧ (send(m).IPi[k]=1))
≡ K(m, k) �Theorem 4

Part II.a. In order to demonstrate that S FI′a∧S FI′b is equiv-
alent to S FIa ∧ S FIb, we demonstrated by direct proof that:
S FIa ∧ S FIb ⇒ S FI′a ∧ S FI′b; where:

S FIa ≡ (∃k : sent toi[k] ∧ m.greater[k])
S FIb ≡ (max(m.lc ckpt[]) > lci)
S FI′a ≡ (∃k : sent toi[k] ∧ ((∃y ∈ m.ψ, y.id = k :

y.greater) ∨ (�y ∈ m.ψ, y.id = k))
)

S FI′b ≡ (max(m.ψ) > lci)

We note that the value of sent toi[k] is equal for both
D and D ′ (seen 3.2 and 3.3), and max(m.lc ckpt[]) =
max(lc ckpt j[]) = max(m.ψ) (see 3.2 and Lemma 4). In
addition, max(lc ckpt j[]) is always included in m.ψ (see
Lemma 4). Now, let m sent by p j to pi and sent toi[k] =
true. We have two cases to analyze:

CALIXTO SIMON et al.: A SCALABLE COMMUNICATION-INDUCED CHECKPOINTING ALGORITHM FOR DISTRIBUTED SYSTEMS
895

• ∃y ∈ m.ψ, y.id = k. In this case, (S FIa ∧ S FIb) ⇒
(S FI′a ∧ S FI′b), holds.

• �y ∈ m.ψ, y.id = k. In this case, from Theorem 4, we
also have two cases:

− send(m).lc ckpt j[k] = 0. From management
of greater j[] (see, Sect. 3.1) we have: lc j ≥
send(m).lc ckpt j[j] ≥ 1 > send(m).lc ckpt j[k] =
0 = lck; thus, greater j[k] is true. Therefore, (S FIa ∧
S FIb)⇒ (S FI′a ∧ S FI′b) holds.

− (send(m).T j[i, k]=1) ∧ (send(m).idr ckpt j[k]=1). Let
e = send(m), from Lemmma 4, we have (we note that
j � i and e is not a receive event):

– From A1, k = i. Thus, send(m).lc ckpt j[k] ≤
pred(receive(m)).lc ckpti[k], max(e.lc ckpt j[]) >
e.lc ckpt j[k] and (send(m).idr ckpt j[k] = 1). Let
e.lc ckpt j[s] = max(e.lc ckpt j[]) = lc j. Then ex-
ists a sequence of causal messages [m1 ↓ m2 ↓
. . . ↓ m�] from ps to p j. Hence, we have two
cases:

∗ There is a sequence of causal messages from
ps to pi and another from pi to p j exists.
In this case, lci = lc j = max(e.lc ckpt j[]).
Thus, S FIb = S FI′b = f alse.

∗ There is not a sequence of messages from ps

to pi. Thus, lc j > lci, then greater j[k] =
true.

Therefore, S FIa ∧ S FIb ⇒ S FI′a ∧ S FI′b holds.
– From A2, send(m).lc ckpt j[k] = 0. It was anal-

ized previously.
– From A3, ∃m′ from pi to p j, ∀z ∈ m′.ψ, . . .

Let e.lc ckpt j[s] = max(e.lc ckpt j[]) = lc j and as
in the case k = i, we have:

∗ There is a sequence of causal messages from
ps to pk and another from pk to p j. Thus,
lck = lci = lc j =max(e.lc ckpt j[]). Therefore,
S FIb = S FI′b = f alse.

∗ There is not sequence of causal messages
from ps to pk. Thus, lc j > lck, therefore
greater j[k] = true.

Thus, in all the cases (S FIa ∧ S FIb) ⇒ (S FI′a ∧
S FI′b) holds.

Part II.b. Finally, in order to prove that S FI′c is equiva-
lent to S FIc, we demonstrate by direct proof that: S FIc ⇒
S FI′c; where:

S FIc ≡ lc ckpti[i] = m.lc ckpt[i] ∧ ¬m.idr ckpt[i]
S FI′c ≡ (∃z ∈ m.ψ, z.id = i : lc ckpti[i] = z.lc ckpt ∧

¬z.idr ckpt)

Proof. In this proof we have two cases to analyze:

• ∃z ∈ m.ψ, z.id = i. In this case S FIc ⇒ S FI′c holds.
• �z ∈ m.ψ, z.id = i. Thus, S FI′c is always false for this

case. Let e = send(m), from Theorem 4 we have two
cases:

– send(m).lc ckpt j[k] = 0. If k = i then we have
�e′ ∈ E such that e′ ∈ Hi ∧ e′ → e. Thus, S FIc =

f alse and S FI′c is false. Therefore, S FIc ⇒ S FI′c
holds.

– (send(m).T j[i, k] = 1) ∧ (send(m).idr ckpt j[k] =
1). Here, if k = i we have that ∃e′ ∈ E
such that e′ ∈ Hi ∧ e′ ↓ e. Thus, S FIc =

f alse (e.idr ckpt j[i] = m.idr ckpt[i] = true) and
S FI′c= f alse. Therefore, S FIc⇒S FI′c holds.

�Theorem 3

Alberto Calixto Simon is currently a Ph.D
student in the Department of Computer Science
at INAOE. His research interests include partial
order and checkpointing algorithms. His post
graduate studies are supported by CONACYT,
and the University of Papaloapan (UNPA) of
Mexico

Saul E. Pomares Hernandez is a re-
searcher in the Department of Computer Sci-
ence at INAOE, in Mexico. He completed his
Ph.D Degree at the LAAS of CNRS, France in
2002. Since 1998, he has been researching in
the field of distributed systems and partial order
algorithms.

Jose Roberto Perez Cruz is currently a
Ph.D student in the Department of Computer
Science at INAOE. His research interests in-
clude partial order algorithms, sensor networks
and secure group communications. His post
graduate studies are supported by CONACYT.

Pilar Gomez-Gil received the MSc and PhD
degrees from Texas Tech University, USA, in
computer science. She is a researcher in com-
puter science at INAOE. Her research interests
include the design and use of artificial neural
networks, pattern recognition and sensor-related
applications. She is an active member of the
IEEE and the ACM.

896
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

Khalil Drira obtained the Ph.D. and HDR
degrees in Computer Science from University
Toulouse III, in 1992 and 2005 respectively. He
is Research Director at LAAS-CNRS. His re-
search interests include formal design, imple-
mentation provisioning of distributed communi-
cating systems and cooperative networked ser-
vices (see his wiki).

