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Abstract The use of local features in images has become
very popular due to its promising results. They have shown
significant benefits in a variety of applications such as object
recognition, image retrieval, robot navigation, panorama
stitching, and others. SIFT is one of the local features meth-
ods that have shown better results. Among its main disad-
vantages is its high computational cost. In order to speedup
this algorithm, this work proposes the design and implemen-
tation of an efficient hardware architecture based on FPGAs
for SIFT interest point detection In order to take full advan-
tage of the parallelism in this algorithm and to minimize the
device area occupied by its implementation in hardware, part
of the algorithm was reformulated. The main contribution of
the hardware architecture proposed in this paper and the main
difference with the rest of the architectures reported in the
literature is that as the number of octaves to be processed is
increased, the amount of occupied device area remains almost
constant. The evaluations and experiments to the architecture
support this contribution, as well as accuracy, repeatability,
and distinctiveness of the results. Experiments also showed
device area occupation and time constraints of the hardware
implementation. The architecture presented in this paper is
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able to detect interest points in an image of 320 × 240 in
11 ms, which represents a speedup of 250× with respect to
a software implementation.

Keywords Local features · SIFT · Keypoint detection ·
Hardware architecture · FPGA

1 Introduction

In Computer Vision, it is necessary to extract image features
that can be used in applications such as object recognition,
image retrieval, robot navigation, panorama stitching, face
recognition, and others. These features should be invariant
to image variations such as translation, rotation, scale, view-
point, and illumination. The feature extraction process also
needs to be repetitive and precise, so that the same features are
extracted from different images containing the same object,
as well as distinctive, that is to say, that the different features
can be distinguished from each other.

In the past decade, significant progress was achieved in
this direction with the development of local invariant fea-
tures. One of the most popular and widely used local fea-
tures method that has shown good results in this area is the
Scale Invariant Feature Transform (SIFT) method proposed
by Lowe [13]. The features extracted by SIFT are largely
invariant to scale, rotation, illumination changes, noise, and
small changes in viewpoint. The idea of this method is to first
identify significant points in the image and to obtain a dis-
criminant description of these points from its surroundings,
which is then used for comparison between these descriptors
using a similarity measure.

One of the main disadvantages of the SIFT algorithm is its
high computational cost. This is the result of complex iter-
ative processes to obtain invariance to the aforementioned
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changes and transformations. For an image of 1,024 ×
768 pixels, a software implementation [24] of the algorithm
takes about 3 s to extract an average of 1,200 characteristics
in a PC (CPU P4 3.0 GHz, 2 GB RAM).

There are several scenarios and applications that require
features to be extracted and compared in real time (approx-
imately 30 frames per second) and even on high-resolution
images (more than 2 megapixels). Currently, very few sys-
tems running on personal computers achieve such processing
results, and those who reach that speed, process low-resolu-
tion images or reduce the number of octaves and scales in the
scale-space, compromising the robustness of the algorithm.
Therefore, an implementation of this algorithm that achieves
real-time processing with high repeatability and distinctive-
ness rates is desired.

A technique that has been widely used in recent years to
accelerate computational tasks is the use of Field-Program-
mable Gate Arrays (FPGAs). These are revolutionary devices
that combine the benefits of hardware and software. These
devices can implement circuits, providing great advantages
in energy, area, and performance compared with software.
They can be reconfigured in a simple and low-cost manner
to implement a wide range of tasks.

In this paper, to speedup the extraction of SIFT features,
we propose a reformulation of the most computationally
expensive phase of this algorithm: the detection of interest
keypoints. Based on this reformulation, we propose a parallel
algorithm and a hardware architecture for this stage of the
SIFT method.

The main contribution of the architecture and the parallel
algorithm proposed here is that, while increasing the number
of octaves to be processed, the amount of occupied device
area will remain almost constant, only increasing the number
of memory blocks needed to store the new octaves and the
logic needed to control the interleaving of more octaves. This
is possible because all octaves for the same scale, regardless
of the amount, will be processed in parallel in the same convo-
lution block. This is relevant as the trend in computer vision
is to work with larger images, and the number of octaves is a
function of the size of the image. Therefore, for higher resolu-
tion images (and thus a greater number of octaves), the hard-
ware logic required to process these higher resolution images
will be the same. This contribution was supported by the
experiments to architecture, showing quantitatively the ben-
efits introduced with the interleaving of octaves processing.

The rest of the paper is organized as follows: In Sect. 2 the
SIFT algorithm is described and its interest points detection
stage is detailed. Section 3 discusses the works presented
in literature to speedup SIFT using FPGA. The proposed
reformulations and parallel algorithm aimed to obtain the
maximum performance of a hardware implementation are
presented in Sect. 4. The hardware architecture that imple-
ments the algorithm introduced in Sect. 4 is explained in

Sect. 5. The tests to the proposed hardware architecture and
the main results are discussed in Sect. 6. Finally, Sect. 7 con-
cludes the paper, and future work is presented in Sect. 8.

2 Scale invariant feature transform

Methods based on comparisons of entire images or win-
dows within them are suitable for learning and describing
the global structure of objects, but cannot deal with partial
occlusion problems, sudden changes in pose or viewpoint, or
with non-rigid objects.

Significant advances have been accomplished in solving
these problems with the development of local invariant fea-
tures. The use of these features allows us to find local struc-
tures that are present in different views of the image. It also
provides a description of these structures that is largely invari-
ant to image transformations such as translation, rotation,
scale, illumination, and viewpoint. A study and comparison
of some local feature extraction methods is presented in [22].

The purpose of local features is to provide a representation
that allows us to find correspondences between images effi-
ciently and effectively. To satisfy this objective, the feature
extractor must meet two important aspects:

• The feature extraction process must be repeatable and
accurate, so that the same features of an object are
extracted from different images containing that object.

• The features should be distinctive, so that extracted fea-
tures can be distinguished from each other.

In turn, a sufficient number of features are required that
cover the entire object so that it can be recognized even under
partial occlusion.

SIFT, proposed by Lowe [13], is one of the most popular
local features methods. Its descriptor has shown better results
than other local descriptors [14]. This method tries to iden-
tify structures that are similar in different views of a scene
and describe them by a vector which is independent of image
size and orientation.

2.1 SIFT algorithm profiling

In order to achieve its invariance to scale changes and rota-
tion, and as a result of complex and iterative processes, the
SIFT feature extraction method is an expensive computa-
tional task.

Lowe divided his method in four major computational
stages:

1. Scale-space extrema detection
2. Keypoint localization
3. Orientation assignment
4. Keypoint description
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Table 1 SIFT algorithm profiling

Stage Time (ms) Percentage

(1) Scale-space extrema detection 1,391 44.83

(2) Keypoint localization 97 3.13

(3) Orientation assignment 341 10.99

(4) Keypoint description 1,274 41.05

(*) Whole algorithm 3,103 100.0

Table 1 shows execution times for each stage of the SIFT
algorithm. These times were obtained for an image of size
1,024 × 768 pixels. We used the software implementation
provided in [24]. The timing was acquired on a PC with an
Intel P4 processor at 3.0 GHz and 2 GB of RAM.

As could be seen in Table 1 total running time was above
3 s. The scale-space extrema detection stage was the most
expensive occupying nearly 45 % of the total processing.
The high computational cost of this stage is due to the large
number of convolutions that are produced to generate the Dif-
ference of Gaussians (DoG) scale-space, resulting in a large
number of multiplication-accumulation (MAC) operations of
floating-point numbers. The number of MAC operations to
be performed for an M × N sized image to generate its DoG
scale-space with O octaves and S scales is given by

ω =
O−1∑

i=0

M N

4i
k2S,

where k is the Gaussian convolution kernel width.
Also, in this stage there are a large number of compari-

sons to find local extrema in the DoG scale-space which are
marked as candidate keypoints. The number of comparisons
at this stage is roughly given by

� =
O−1∑

i=0

26 · M N

4i
(S − 2), (1)

For example, for the configuration used to obtain the above
profiling (M = 1,024, N = 768, O = 4, S = 6 and k = 7)
the number of MAC operations for the generation of the DoG
scale-space is 307 077 120, and the number of comparisons
for local extrema detection is 108 625 920.

The keypoint description stage proved to be the second
largest in terms of computational cost, with more than 40 %
of the total processing. At this stage of the algorithm, for
each keypoint, a descriptor is generated from the gradient
direction and magnitude of its neighbors. The calculation of
the gradient orientation involves trigonometric operations,
which are the most computationally expensive operations in
the descriptor generation phase. In hardware, to achieve a
result per clock cycle, this type of operation requires a large

amount of device area. There are other solutions that use less
silicon area, but take several clock cycles [23].

Scale-space extrema detection and keypoint description
stages have similar computational costs, but the former has
greater potential for parallelism and hardware acceleration.
For these reasons, to obtain the highest possible acceleration
of the SIFT algorithm by speeding up one of its parts, we
focused on the scale-space extrema detection stage.

2.2 Scale-space extrema detection

This work presents an algorithm reformulation and a hard-
ware architecture for the scale-space extrema detection phase
of SIFT. This section describes in detail this stage of the algo-
rithm and some of its theoretical foundations.

The scale-space extrema detection stage searches through
all scales and image locations to find potential interest points
that are invariant to scale and orientation. For this, the image
is convolved with Gaussian filters at different scales and then
differences between adjacent blurred images are obtained.
Finally, the local maxima and minima in the difference of
Gaussians (DoG) at different scales are marked as interest
points.

For a given image I (x, y), the SIFT detector is constructed
from its Gaussian scale-space, L(x, y, σ ), that is built from
the convolution of I (x, y) with a variable-scale Gaussian:

L(x, y, σ ) = G(x, y, σ ) ∗ I (x, y),

where∗ is the convolution operator in x and y, and G(x, y, σ )

is the Gaussian kernel defined by

G(x, y, σ ) = 1

2πσ 2 e−(x2+y2)/2σ 2
.

The Gaussian scale space is created by generating a series
of smoothed images at discrete values of σ . Thus, the σ

domain is quantised in logarithmic steps arranged in O
octaves, where each octave is further subdivided in S sub-
levels. The value of σ at a given octave o and sub-level s is
given by

σ(o, s) = σ02o+s/S, o ∈ [0, . . . , O − 1],
s ∈ [0, . . . , S − 1],

where σ0 is the base scale level, e.g., σ0 = 1.6. At each
successive octave the data are spatially down-sampled by a
factor of two.

To efficiently detect stable keypoint locations in scale
space, Lowe proposed to use extrema in the DoG scale-space,
D(x, y, σ ), computed from the difference of adjacent scales:

D(x, y, σ (o, s)) = L(x, y, σ (o, s + 1))

−L(x, y, σ (o, s)).

In order to detect the local maxima and minima of
D(x, y, σ ), each pixel in the DoG images is compared with
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its eight neighbors at the same image, plus the nine corre-
sponding neighbors at adjacent scales. If the pixel value is
bigger or smaller than all these neighbors, it is selected as an
interest point.

3 Related work

In recent years, as a result of the popularity of SIFT as a local
features method, and because of its high computational cost
which makes it not viable for many real-time applications,
several researchers have been trying to obtain faster imple-
mentations of this algorithm. Some researchers have focused
on the use of Graphics Processing Units (GPUs). Examples
of such works are [10,12,20,21]. Some other works in the
literature have also addressed the speeding up of SIFT by
using approximations or modifications in software. The most
significant examples are [2,8,11]. Also, due to the wide-
spread use and positive results of FPGAs as a means to
speedup various computing tasks, researchers have begun
to focus on developing systems based on FPGAs for real-
time extraction of SIFT features. The main works that use
these devices to accelerate SIFT are [3,6,15,17–19]. In this
section we only discuss each of the last papers, highlighting
their advantages and disadvantages, and analyzing the type of
hardware architecture proposed in each of them, as they are
the most relevant publications for the purpose of this paper.

The first work reported in the literature in the field of scale
and orientation invariant feature extraction based on FPGAs
was the work of Se et al. [19]. In their work, to speedup
SIFT with respect to software implementations, the authors
presented an FPGA implementation of the algorithm using
fixed point arithmetic. This implementation was developed
based on a software implementation employing floating point
representation. The authors also mentioned that several of the
routines of the software version were modified to make more
efficient their hardware implementation. In order to imple-
ment most of the algorithm they used Xilinx System Gen-
erator. The authors suggest that using low-level hardware
description languages, such as VHDL or Verilog, would be
very costly in terms of development time. However, VHDL
was used to implement low-level processes such as Direct
Memory Access (DMA) and other memory access routines.
In this study they used a Xilinx Virtex II FPGA. The SIFT
execution time for a 640 × 480 image was reduced to 60 ms
compared with 600 ms required by a Pentium III processor at
700 MHz. Their paper only provided the above details; there
is not any kind of information about the modifications to the
algorithm, and architecture specifications.

In [15], Pettersson and Petersson presented a partial
implementation of SIFT for online stereo calibration. They
implemented some of the most expensive parts of SIFT: the
generation of DoG scale-space and Sobel filtering. These

parts of the algorithm were implemented in a Xilinx Virtex
II FPGA and the rest of the algorithm was implemented in
software running on a personal computer. The authors pro-
pose a pipeline architecture where convolution blocks are
cascaded to reduce the errors introduced by having a very
small kernel compared with its standard deviation, and to be
able to use a kernel of fixed size. For obtaining each scale-
image it is used a different convolution block. For the con-
volution they use the separability property of the Gaussian
kernel, and multiplications are replaced by using a Look Up
Table (LUT); how to do this is described in [1,7]. This tech-
nique, despite replacing the multiplication operations, is a
compromise between accuracy and size of the LUT, because
it depends on the width of the convolution kernel and the
number of bits used to represent it. The authors state that
their systems work at 60 Hz and reduce the feature extrac-
tion time between 50 and 70 %, but no information about the
resolution of the input image is provided. Besides there is no
details on the use of FPGA device area; neither is there any
analysis on the replacement of multiplications or any other
information on the architecture that affects the accuracy of
the results.

Another FPGA-based partial implementation of the SIFT
is presented in [6]. In this work, Chati et al. present
a hardware/software co-design to detect SIFT keypoints,
implementing in hardware the parts with large degree of par-
allelism. They propose to use a wide array or sliding window
to produce all scales at the same time; however, this is only
mentioned and they do not provide any information about the
operation of this method. In their paper, Chati et al. exposed
some modifications to the algorithm for operation in hard-
ware, but they did not provide details of the system architec-
ture, nor mention details about the use of device resources,
silicon area occupation, or other analysis. The device used
was a Xilinx Virtex II Pro FPGA, where the system can pro-
cess images of size 320 × 240 pixels in 0.8 ms.

The most complete FPGA implementation of SIFT
reported to date in the literature is the work of Bonato
et al. [3,4]. Their implementation uses a hardware/software
co-design strategy; except the generation of descriptors,
which is executed on a NIOS-II software processor, the
remaining stages of SIFT are implemented in hardware. This
architecture consists of three hardware blocks, one for the
generation of DoG scale-space, one for the calculation of the
orientation and magnitude, and one for the location of key-
points. The block for DoG scale-space generation receives
the input image from the camera and the result is sent to the
other two hardware blocks. In addition, this architecture has
a software block that handles the generation of descriptors
for each keypoint. The authors suggest that the generation of
descriptors is developed in software as the type of calculation
performed at this stage is more feasible to be conducted by
a software processor; also it is easier to implement in soft-
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ware than in hardware and gives greater flexibility to modify
the descriptor according to the final application. The imple-
mentation of the DoG scale-space generation block considers
the properties of separability and symmetry of the Gaussian
kernel. In addition, they save four multipliers by normal-
izing the convolution kernel so that it always takes values
of 0 or 1 on its first and last positions, avoiding the mul-
tiplication at these points. This brings the disadvantage of
being forced to work with fixed point or floating point values,
because for certain values of σ if these results are normal-
ized in this way and then rounded to integers, all elements
will have the same value. The proposed system implements
18 blocks of convolution with Gaussians, one for each scale-
image, under a configuration of three octaves and six scales.
Another modification in the architecture to save area of the
device, is that they represent the DoG images with a 5-bit
unsigned representation. Using an unsigned format affects
the amount of points detected, which is reduced by about
half, since only local maxima points are considered, not tak-
ing into account the minima. According to the authors, this
decrease in the number of points is not considered a prob-
lem for their application to Simultaneous Localization and
Mapping (SLAM) where only a few dozen of these are nec-
essary, but this decrease in the number of points could affect
other applications. This system, implemented in an Altera
Stratix II FPGA with a NIOS-II soft processor running at
100 MHz, requires 33 ms to extract the SIFT features in
an image of 320 × 240 pixels, where the architecture bot-
tleneck is the generation of descriptors held in the NIOS-
II.

In [18], Qiu et al. present an architecture for the genera-
tion of the DoG scale-space. This work outperforms [3] and
[17] in terms of the use of device resources. This system
manages to generate the DoG scale-space for input images
of size 320 × 240 pixels in 12 ms. For this, they exploit
the separability property of the Gaussian kernel, making
the separable convolution as [17]. In addition, it uses the
associative property of convolution, where the result of a
convolution can be equivalent to two successive convolu-
tions, and the sum of the squares of the radii of the con-
volution kernels of the latter is equal to the square of the
radius of the first (R2

0 = r2
1 + r2

2 ). This allows them to split
one convolution in two, but using smaller kernels. Accord-
ing to the authors, the advantages of using this technique
is given by the possibility of reusing intermediate results,
saving hardware resources and simplifications provided by
the order in which they perform the convolutions. Theoret-
ically, this gives them a saving of up to 17.8 % of the cost
of hardware resources. In this architecture, the authors pro-
pose to use only five convolution blocks, in which, after
seven iterations, the DoG scale-space for five octaves and
six scales (O = 5, S = 6) is generated. This scheme
has the disadvantage that, despite using only five blocks of

convolution (which implies a saving in the use of device
area), seven iterations must be completed to obtain the whole
DoG scale-space. The authors achieved not only improve-
ments in the FPGA resources occupation with respect to
[3,4], they also mentioned improvements in processing time,
but comparing their architecture with the whole system in
[3,4] and not just with the DoG scale-space generation
stage of the algorithm, which in [3,4] is more efficient in
time than the architecture proposed in the work of Qiu
et al.

In our work we present a hardware architecture in order
to speedup the detection of interest points (i.e. scale-space
extrema) of the SIFT algorithm. The main difference between
the architecture proposed in our work with earlier architec-
tures reported in the literature, lies in a more efficient use of
FPGA resources by interleaving the processing of octaves,
while obtaining a result every two clock cycles, implying
a considerable speedup over existing software implementa-
tions and many of the hardware implementations discussed
in this section. Furthermore, the architecture presented in
our work achieves higher rates of FPGA resources saving as
the number of processed octaves is increased. This implies a
great advantage since the number of octaves depends on the
size of the image, and the trend in computer vision is to work
increasingly with higher resolution images.

4 A parallel algorithm for scale-space extrema detection

When performing a particular computational task it is com-
mon to have several methods or algorithms. The final selec-
tion is usually given by the application and the hardware
device to be use. Usually, the optimal algorithm for FPGA
differs from the optimal algorithm for a general purpose pro-
cessor or a sequential computer.

Although the specifications and configuration of FPGA
systems looks like software programs in high-level lan-
guages, they specify hardware and not software. A reformula-
tion of the algorithm in software can often mean a substantial
improvement in the performance of the hardware due to the
fact that a specific computational technique that is good in
software does not necessarily have to be good in hardware
[9]. Hardware provides flexibility to create optimal compu-
tational structures that best undertakes a given task as well
as to exploit low level parallelism.

This section describes the proposed parallel algorithm for
the scale-space extrema detection. This algorithm is a refor-
mulation of the algorithm presented by Lowe [13] for this
purpose. This algorithm is aimed at obtaining maximum per-
formance in a hardware implementation of this stage of the
algorithm. These reformulations are primarily focused on
taking full advantage of parallelism in this process, while
trying to minimize the device area occupied.
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I

G

f = I    G

Fig. 1 In 2D convolution, the result of a pixel depends only on a neigh-
borhood of the same size of the convolution window around the pixel in
the input image. In this figure for a convolution window G of size 3×3
the result depends only on a region of equal size in the input image I

4.1 General considerations of the algorithm

In order to obtain an algorithm that allows a more efficient
use of FPGA resources, we took into account the potential
for exploitation of data parallelism, the separability prop-
erty of Gaussian kernel, and the interleaving in the process-
ing of octaves. This section details these elements that form
the basis of our proposed reformulation for the scale-space
extrema detection algorithm.

4.1.1 Exploiting data parallelism

Let I be a two-dimensional image and let G be a convolution
mask of odd size k × k, then the convolution of I and G is
given by

f (x, y) =
i∑

−i

j∑

− j

I (i, j)G(x − i, y − j), (2)

where i, j = ⌊ k
2

⌋
.

As can be seen in Eq. 2, for the calculation of f (x1, y1)

only a neighborhood of size k × k of center (x1, y1) is nec-
essary. This is also shown graphically in Fig. 1. Similarly, to
determine if a point is a point of interest only a neighborhood
of size 3 × 3 is needed in the DoG image and in the adjacent
images in the DoG scale-space.

Previously mentioned characteristics of the 2D convolu-
tion and of the scale-space extrema detection provide a high
potential for data parallelism, specifically the type Single
Process, Multiple Data (SPMD). As an example of using the
SPMD parallelism in this task we can divide an image into
P partitions with an overlap of k − 1 lines and process all
partitions simultaneously by using P different processors.
This implies an improvement in processing time of P times,
but also an increase in the use of the device area by the same
factor. Therefore, the right balance between desired speedup
and device area must be found depending on the application.

Fig. 2 A matrix of M × N is separable if it can be decomposed into
two matrices M × 1 and 1 × N

4.1.2 Exploiting the separability property
of the Gaussian kernel

A technique that has been widely used in image processing
to reduce the computational complexity of the 2D Gaussian
filtering is the exploitation of the separability property of the
Gaussian kernel [16]. A 2D filter is separable if it can be
divided into two 1D signals: a vertical and a horizontal pro-
jection (see Fig. 2). The Gaussian filter can be separated as
follows:

G(x, y, σ ) = h(x, σ ) ∗ v(y, σ ),

where

h(x, σ ) = 1√
2πσ

e−x2/2σ 2
, and v(y, σ ) = 1√

2πσ
e−y2/2σ 2

.

In addition, the convolution associative property holds:

I (x, y)∗(
h(x, σ )∗v(y, σ )

)

=(
I (x, y) ∗ h(x, σ )

) ∗ v(y, σ ).

Therefore, the 2D image convolution with a Gaussian filter
can be carried out by first convolving the image with h(x, σ )

in the horizontal direction and then with v(y, σ ) in the
vertical direction or vice versa. A 1D convolution to obtain
an output value require k MAC (multiplication–accumula-
tion) operations compared with k2 MAC operations required
by the 2D variant. Therefore, the computational advantage
of the separable convolution versus non-separable is k2/2k.
Having a convolution window of size 7 × 7, the use of this
technique would represent a reduction in the number of MAC
operations by a factor of 49/14 = 3.5, which could represent
a reduction of up to 3.5 times in the use of device area for
these operations.

4.1.3 Octaves interleaving for spatial pyramid processing

After processing each octave, the image is sub-scaled by
a factor of two, taking every second pixel in each row
and column, i.e. Io(x, y) = Io−1(2x, 2y). After scaling an
image in half, the total number of pixels is reduced by four.
In hardware, to reduce the amount of data, its sampling rate
is reduced by the same factor. If after processing every octave
the amount of data is reduced by a factor of four, the sampling
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Octave 3

Octave 2

Octave 1

Octave 3

Octave 2

Octave 1

All Octaves

(a)

(b)

Fig. 3 The rising edges that are not marked in bold in (a) indicate the
amount of processing time that is not used to obtain a new result. In (b)
a way to take advantage of these times is shown, where the sampling

period of each octave is doubled, making possible to interleave the pro-
cessing of all the octaves in a single convolution block

period τ for an octave o is given by

τ(o) = τ04o, (3)

where τ0 is the sampling period of the first octave. Therefore,
after sub-scaling, there is a large percentage of idle process-
ing time with respect to the processing time of the first octave.
This large amount of idle processing time is a result of the
high sampling period in the last octave due to the small size
of the images with respect to the original one. The idle pro-
cessing time for a system of O octaves is given by

î =
O−1∑

o=0

[τ(o) − 1],

and can be identified in Fig. 3a as the rising edges not marked
in bold in each of the octaves.

The main contribution of this paper is a scheme for spatial
pyramid processing that takes advantage of these periods of
inactivity, enabling the calculation of the O octaves of a scale
in a single convolution block, no matter how big O is.

The general idea of this approach is to interleave the pro-
cessing of the O octaves in only one processor. In order to do
that, the sampling period of every octave is doubled, aiming
to make place in the first octave processor for the calculation
of the rest of the octaves. Figure 3b shows this idea.

We claim that using this technique, regardless of the num-
ber of octaves, all the octaves for a specific scale could be
processed in a single processor (with the required latency),
which involve a great system scalability and saving of hard-
ware resources.

Proposition 1 Let the first octave occupy every odd clock
cycle, every other octave k (where k = 0 refers to the sec-
ond octave) will occupy the cycles defined by the following
sequence:

sk : ak, ak +τ1 · 4k, ak +2(τ1 · 4k), . . . , ak +n(τ1 · 4k), . . .

(4)

where ak is the first processing cycle of the octave k and
τ1 = 8 is the sampling period of the second octave.

This interleaving order ensures that two or more octaves
will never request the same processing clock cycle, allowing
to interleave an infinite number of octaves. Moreover, letting
ak be the first unused cycle, an optimal interleaving order its
obtained.

Proof. by Mathematical Induction:
BASIS: The case k = 0:

s0 : 2, 10, 18, . . . a0 = 2, x ≡ 2(8),∀x ∈ s0

is trivially satisfied because every clock cycle in s0 is even
and every clock cycle occupied by the first octave is odd.

INDUCTION STEP: Consider any k > 0. Assume the induc-
tion hypothesis that any two or more octaves except the
last one will never request the same processing clock cycle
(i.e. s0

⋂
s1

⋂
. . .

⋂
sk−1 = ∅):

s0 : a0, a0 + 8 · 40, a0 + 2(8 · 40), . . . , a0 + n(8 · 40), . . .

s1 : a1, a1 + 8 · 41, a1 + 2(8 · 41), . . . , a1 + n(8 · 41), . . .

...

sk−1 : ak−1, ak−1 + 8 · 4k−1, ak−1 + 2(8 · 4k−1), . . . ,

ak−1 + n(8 · 4k−1); . . .

then, the following congruences are satisfied:
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x0 ≡ a0(8), ∀x0 ∈ s0

x1 ≡ a1(8 · 41), ∀x1 ∈ s1

... (5)

xk−1 ≡ ak−1(8 · 4k−1), ∀xk−1 ∈ sk−1

Assume that ∃ak such that it is not in any sequence
si ,−1 ≤ i ≤ k − 1; then ak do not satisfy any of the previ-
ous congruences in Eq. 5 and since 8 · 4k ≡ 0(8), 8 · 4k ≡
0(8·41), . . . , 8·4k ≡ 0(8·4k−1) by properties of congruences
we have

ak +8 · 4k 
≡ a0(8), ak +2(8 · 4k) 
≡a0(8), . . . , ak +n(8 · 4k)


≡ a0(8)ak + 8 · 4k


≡ a1(8 · 41), ak + 2(8 · 4k)


≡ a1(8 · 41), . . . , ak + n(8 · 4k) 
≡ a1(8 · 41)

...

ak + 8 · 4k 
≡ ak−1(8 · 4k−1),

ak + 2(8 · 4k) 
≡ ak−1(8 · 4k−1), . . . ,

ak + n(8 · 4k) 
≡ ak−1(8 · 4k−1)

Then, based on the assumption that ∃ak such that it is not
in any sequence si ,−1 ≤ i ≤ k − 1 we have proved that
s0

⋂
s1

⋂
. . .

⋂
sk = ∅. Now we have to prove that there is

always a possibility to find an ak that is not present in any of
the previous sequences.

The total number of clock cycles occupied by an infinite
number of octaves is given by

L = |U |
2

+ |U |
2 · 4

+ |U |
2 · 42 + · · · + |U |

2 · 4k
+ · · ·

L = |U |
(

1

2
+ 1

2

(
1

4

)
+ 1

2

(
1

4

)2

+ · · · + 1

2

(
1

4

)k

+ · · ·
)

which have the form of the infinite geometric series ar0 +
ar1 + ar2, . . . ,+ark + · · · which converges to a

1−r if and

only if |r | < 1, since a = 1
2 and r = 1

4 ,

L = 2

3
|U |.

As the number of occupied clock cycles is less than the
number of available ones (L < |U |) there will always exist a
clock cycle ak that is not occupied. This complete the proof
of the induction step and thus of the proposition.

Further details about the hardware architecture that imple-
ments this idea are provided in Sect. 5.1.

4.2 Local extrema detection

As detailed in Sect. 2.2, the scale-space is constructed by
generating a series of images blurred at discrete values of σ ,
where its domain is divided into logarithmic intervals orga-
nized in O octaves and where each octave is then divided in S

sub-levels. Therefore, to obtain a result at a given location in
the image in a certain scale it is necessary to obtain the value
of that same location in the previous scale, and so on. Since
a result of convolution only depends on a small region, all
convolutions are performed concurrently, existing a latency,
in the input data with respect to previous scale, relatively
small compared with the size of the image. Similarly, the
differences between adjacent scales to form the DoG scale-
space are performed concurrently at the same time the DoG
scale-space is being obtained.

In order to detect local extrema in the DoG scale-space,
each pixel in the DoG images is compared with its eight
neighbors in the same image, plus the corresponding nine
neighbors in the adjacent scales. This implies that the same
neighborhood of 3 × 3 on a certain scale is used three times,
while processing its scale and while processing the two adja-
cent scales (see the total number of comparisons in Eq. 1).
An efficient and equivalent way to obtain local maxima and
minima that allows to reuse partial results is described below.

For every adjacent images is obtained the minimum and
maximum point to point

Min1(x, y, o, s) = min (D(x, y, o, s), D(x, y, o, s + 1)),

Max1(x, y, o, s) = max (D(x, y, o, s), D(x, y, o, s + 1)).

Then the process is repeated on the images obtained in the
previous step:

Min2(x, y, o, s)

= min (Min1(x, y, o, s), Min1(x, y, o, s + 1)),

Max2(x, y, o, s)

= max (Max1(x, y, o, s), Max1(x, y, o, s + 1)).

With this procedure it is possible to obtain images repre-
senting the minimum and maximum values over three adja-
cent images. To check whether a pixel is a point of interest
it is necessary to prove that it is a local maximum or a min-
imum of Min2(x, y, o, s) or Max2(x, y, o, s), respectively.
Figure 4 shows a diagram for this procedure. In addition, it
should be checked that its value is equal to the corresponding
pixel in the DoG, and despite being a local extrema it is not
equal to its counterpart in any of the adjacent scales. For this
to Min2(x, y, o, s) and Max2(x, y, o, s) a flag β(x, y, o, s)
is added to indicate these phenomena.

The total number of comparisons with the proposed local
extrema detection method is defined in every octave by the
S−1 image comparisons for the calculation of the first-order
extrema, plus the S − 2 image comparisons for the second-
order extrema, plus the eight comparisons of every pixel in
the second-order extrema images against its neighbors and
the one needed to check the β flag:
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Fig. 4 A pixel (marked with X in D) is selected as a point of interest if it is a local minimum in a 3 × 3 neighborhood in Min2 (marked with
circles). Min2 is the second order minimum between adjacent scales in the DoG scale-space. Similarly this figure applies to the maximum

Fig. 5 The proposed
architecture consists of two
main parts: one for the
generation of the DoG
scale-space and the other for the
detection of extrema in this
space. The first block receives
the image, generating the DoG
scale-space, which serves as
input to the second block, which
extracts the points of interest

SIFT Interest Keypoints Detection

Input Image

DoG 
Scale-Space 
Generation

DoG
Scale-Space

Extrema
Detection

DoG (o=O, s=S-1 )

DoG (o=1, s=1) 

DoG (o=1, s=2) 

DoG (o=1, s=S-1) 

...

DoG (o=2, s=1)

DoG (o=2 s=2 )

DoG (o=2, s=S-1)

...
...

Interest Points (o=1)

Interest Points (o=2)

Interest Points (o=O)

...

� ′ =
O−1∑

i=0

M N

4i
[(S − 1) + (S − 2) + 9(S − 2)],

=
O−1∑

i=0

11 · M N

4i
(S − 1.9). (6)

Comparing the total number of comparison operations of
the proposed method (Eq. 6) with the comparisons needed
by the classical method (Eq. 1), a decrease by at least a factor
of two is appreciated.

5 Proposed hardware architecture
for scale-space extrema detection

In the previous section we proposed a reformulation for the
scale-space extrema detection phase of the SIFT algorithm
presented by Lowe [13]. This reformulation tries to maxi-
mize the advantage of the parallelism of this algorithm and
to minimize the device area occupied by a hardware imple-
mentation. In this section we propose a hardware architec-
ture for the scale-space extrema detection stage of the SIFT
method. The architecture presented here implements the par-
allel algorithm proposed in the previous section.

The proposed architecture uses the elements discussed
in Sect. 4, namely the exploitation of data parallelism, the
exploitation of the separability property of the Gaussian ker-
nel, and the octaves processing interleaving. The utilization
of these elements contributes to a better use of the device area
since they provide an efficient way to perform this process.

This section describes each of the parts that integrates the
architecture, which are also illustrated with diagrams, indi-
cating their relation with the parallel algorithm proposed in
the previous section.

For the detection of scale-space extrema, the architecture
is divided into two parts: (i) generation of DoG scale-space
and (ii) detection of local extrema in this space (see Fig. 5).
The input image is processed by the DoG scale-space gen-
eration block, which returns O · (S − 1) images that form
the DoG scale-space. These images are given to the local
extrema detection block that determines which image loca-
tions are considered as points of interest.

5.1 DoG scale-space generation

In the architectures proposed in [15] and [3], to generate the
DoG scale-space, the authors use one convolution block for
each convolution operation that is carried out and divide the
processing by octaves, so it takes O · S convolution blocks.
In the architecture presented here, we propose to use only S
convolution blocks for the O · S convolutions, dividing the
processing by scales while keeping the same system perfor-
mance. This is achieved by interleaving the octaves process-
ing as detailed in Sect. 4.1.3.

A block diagram for the generation of DoG scale-space is
shown in Fig. 6. This diagram shows a system of four octaves
and five scales (O = 4, S = 5). This architecture can also
be generalized to any configuration of these parameters.

The proposed architecture is mainly composed of Scale
Calculation Blocks (SCB). A single SCB block performs O
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Octave 4
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Scale 2

Octave 1

Octave 2

Octave 3

Octave 4

Scale 3

Octave 1

Octave 2

Octave 3

Octave 4

Scale 4

Octave 1

Octave 2

Octave 3

Octave 4

Scale 5

Octave 1

Octave 2

Octave 3

Octave 4

HSB

HSB

HSB
DoG (o=1, s=1)

DoG (o=3, s=1)
DoG (o=4, s=1)

DoG (o=2, s=1)

DoG (o=1, s=2)

DoG (o=3, s=2)
DoG (o=4, s=2)

DoG (o=2, s=2)

DoG (o=1, s=3)

DoG (o=3, s=3)
DoG (o=4, s=3)

DoG (o=2, s=3)

DoG (o=1, s=4)

DoG (o=3, s=4)
DoG (o=4, s=4)

DoG (o=2, s=4)

DoG Scale-Space Generation

Fig. 6 High-level diagram of the architecture for DoG scale-space
generation. This diagram shows the cascade connections between the
scale processor blocks, where each of these blocks processes O octaves.

As output of this block DoG scale-space is obtained which serves as
input to the local extrema detection block

Gaussian filtering operations for a given scale, following the
interleaving procedure described in Sect. 4.1.3. Therefore,
each SCB block has O input ports and O output ports, one
for each octave, respectively, where the sampling period for
each octave is defined by Eq. 3. SCB blocks are cascaded
to use a convolution kernel of fixed size and thus avoid the
convolutions with large kernels. This cascading can be seen
in Fig. 6.

A SCB block, for Gaussian filtering, takes advantage of
the separability property of Gaussian kernel as described in
Sect. 4.1.2. Taking advantage of that property, this block per-
forms filtering first in the horizontal direction and then in the
vertical, which can be seen in Fig. 7.

The internal organization of horizontal filtering block is
detailed in Fig. 8. Each input signal is shifted through k − 1
registers, where k is the number of coefficients of the 1D
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Fig. 7 2D convolution is
performed by two consecutive
1D convolution, first passing
through a horizontal filter and
then through a vertical one
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Fig. 8 Internal structure of a horizontal filtering block. It can be seen
how all the octaves are processed in the same block, sharing the same
hardware elements for convolution. The operating logic for interleaving

the processing is given by the block M and by the multiplexers to which
it controls

convolution kernel. The k signals corresponding to the O
octaves are multiplexed with the aim of controlling the pro-
cessing order of octaves and achieve the desired interleaving.
The operating logic of the multiplexers in an instant t is deter-
mined by block M, which implements the interleaving order
defined in Proposition 1.

The structure of vertical filtering block is the same as the
horizontal, with the difference that each buffer stores the last

k lines of the image instead of the last k pixels. To store
these values a RAM block is used to store each line. There-
fore, this part of the design will use k − 1 blocks of RAM
for each octave in each SCB block; hence the amount of
RAM blocks used to generate the DoG scale-space is given
by

#RAM_blocks = (k − 1) · O · S.
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Fig. 9 High-level diagram of the architecture for local extrema detection in the DoG scale-space. Each block isExtremum receives all the DoG
images of an octave, for which, this block determines the local extrema, i.e. points of interest

A 1D convolution block uses k multipliers and k − 1
adders, number that we call r(k). Then, the amount of multi-
pliers and adders resources used by the architecture for build-
ing the scale-space is given by

#multipliers_adders = 2 · r(k) · S.

As it can be seen, this quantity only depends on the size of
the convolution kernel and the number of scales, and it is
independent of the number of octaves.

The HSB block in Fig. 6 performs image subscaling. To
this end, an addressable shift register and a counter is used.

In order to replace the use of fixed-point values using inte-
gers, the coefficients of the convolution kernel are multi-
plied by a constant. Then, the filtered result is divided by this

same constant. Preferably, this constant must be a power of
two, to replace the division operation by a simple bit shift
operation.

5.2 Local extrema detection on the DoG scale-space

The processing block that detects local extrema receives
as input the DoG scale-space. This block implements
the algorithm for this purpose stated in Sect. 4.2.
A high-level diagram of this block for a system with a DoG
scale-space of four octaves and four scales (O = 4, S = 4)

is shown in Fig. 9. This architecture can also be generalized
for any configuration of these parameters.
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Fig. 10 Internal structure of isExtremum block. First, the block obtains
the maxima and minima for every three adjacent images, this is done in
two stages in order to reuse intermediate results. The blocks enclosed

in dashed lines implement the β flag, which serves as input to the isLo-
calMin and isLocalMax blocks which determine the points of interest

For each octave, all the DoG images are passed to a is
Extremum block, which determines which are the points to
be considered of interest. The output of this block is a 1-bit
vector indicating for each point if it is regarded as an interest
point or not. The internal structure of a isExtremum block is
detailed in Fig. 10.

As explained in Sect. 4.1.1, the procedure designed to
detect local extrema aims to reuse the intermediate calcula-
tions by more than one scale, resulting in device resources
saving. As can be seen in Fig. 10, this process was divided
into two stages where minimum and maximum values in the
images in common are reutilized. The blocks enclosed in
dashed lines implement the β flag, which indicates whether
each minimum or maximum value is equal to its correspond-
ing pixel in the DoG and if it is not equal to its counterpart
in any of the adjacent scales. isLocalMin and isLocalMax
blocks determine whether each pixel is a local extremum in
a neighborhood of 3 × 3, taking into account also the value
of the β flag. If a point is an extremum at any scale it is con-
sidered as an interest point, so one OR gate is used before
the output.

6 Experimental results

This section details and analyzes the experiments conducted
on the proposed architecture for the scale-space extrema
detection phase of the SIFT method. The evaluation of the
architecture focused on measuring the reliability and accu-
racy of the results obtained and how they affect the repeat-
ability and distinctiveness of the extracted SIFT features. The
efficiency in the occupation of device area and the speedup
obtained with respect to a software implementation is also
analyzed. In addition, we compare our results with other
related architectures reported in the literature.

In order to verify the accuracy and reliability of our pro-
posed architecture a hybrid system was implemented where
scale-space extrema detection stage is performed by our pro-
posed architecture. The remaining stages of the algorithm are
performed by Vedaldi [24] software implementation avail-
able online. Figure 11 shows an schematic of this hybrid
system.

The proposed architecture was modeled and simulated
using Xilinx System Generator 10.1 + Simulink. As shown
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Fig. 11 Experimentation
platform. The detection of the
SIFT interest points stage is
performed by our proposed
architecture. The results are
passed to a software
implementation that executes
the rest of the stages

Scale-Space
Extrema

Detection

Keypoint
Description

Keypoint
Localization

Orientation
Assignment

Vedaldi Software
Implementation

Our Proposed
Hardware

Architecture

in Fig. 11, the results of the first stage of the SIFT obtained
from the simulation of the architecture are passed to the
Matlab workspace, where the software implementation takes
the values necessary to perform the remaining stages of the
algorithm. The comparison between results obtained by this
hybrid implementation and a software implementation [24]
will provide us with a basis for determining the quality of the
results produced by our architecture.

6.1 Accuracy evaluation

To evaluate the accuracy of our proposed hardware architec-
ture we compared the results obtained in a set of 38 images
for the hybrid implementation with the results obtained by
the software implementation of Vedaldi. Test images were
taken from Krystian Mikolajczyk website.1 These images
were captured with the aim of testing local feature extraction
methods and were used in [14] to compare state-of-the-
art local features methods. The experiments and analysis
presented here only focus on the generation of the DoG
scale-space, since for the detection of local extrema in this
space the results were identical to the software implementa-
tion.

As evaluation measure we used the Mean Square Error
(MSE). The MSE quantifies the difference between an
obtained result and its expected or true value. It measures
the average of the square of the error, where the error is the
amount by which the result differs from the true value. In this
paper the MSE is used to measure the difference between the
values obtained by the proposed hardware architecture and a
software implementation. The MSE is defined by Eq. 7.

MSE =
∑

M,N [Isw(m, n) − Ihw(m, n)]2

M N
(7)

where Isw(m, n) and Ihw(m, n) are the intensity values of
the pixel (m, n) in the images of size M × N generated by
the hybrid and the software implementations, respectively.

For these tests we use the scale-spaces generated for a
configuration of six octaves and five scales (O = 6, S = 5).
Smaller values of MSE indicate that the results generated
by our architecture are more similar to those obtained by

1 http://lear.inrialpes.fr/people/Mikolajczyk/.
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M
S

E
Fig. 12 MSE values for each octave and scale. The rounding and
aproximation errors committed in the convolution process are prop-
agated in the order of dependence between the images in scale-space
and hence the MSE increase in that order

Hybrid Implementation using
Our Proposed HW Architecture

Input
Image

Vedaldi 
Software Implementation

Fig. 13 SIFT features are extracted from input image using both imple-
mentations independently. Then, based on their keypoint correspon-
dences we calculate the error in detection

the software implementation (i.e. higher degree of accuracy).
The results of this test are summarized in Fig. 12.

Each bar in Fig. 12 represents the average MSE of
the 38 test images in a specific octave and scale. In this
figure, we can see how the error within an octave is
increasing at every scale, as well as increases at every
octave. This is due, as explained in Sect. 2.2, that each
scale-image depends on the former scale-image, and the
first image in each octave depends on the penultimate
scale-image in the previous octave. Therefore, the error in
the calculation of each image is propagated to the next.
These dependencies between the images can be seen in
Fig. 6.

The initial error, which is then increased over each scale
and octave is caused by approximations to the Gaussian
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Fig. 14 Errors in the extraction of keypoints using our architecture with respect to software implementation. a, b shows the localization errors,
c shows errors in orientation, and d errors in scale

convolution kernel to substitute arithmetic operations on float
numbers with operations with integer values. This process is
detailed in Sect. 5.1.

The MSE provides a quantitative measure of how much
the rounding affects the scale-space obtained, but provides
no information about how much these approximations affect
the output of the algorithm, which is the detection of inter-
est points. With this objective in mind, we extracted SIFT
keypoints using the hybrid and software implementations
described above from the same set of images. For each image,
correspondences between the keypoints extracted by both
implementations were found. An example of this is shown in
Fig. 13.

Figure 14 shows the average variation in each of the 38
images for the keypoints obtained with both implementa-
tions. We measured variations in the coordinates, scale, and
orientation of the gradient of the keypoints detected. It can
be seen that variations in terms of coordinates of keypoints
identified for these images did not exceed one pixel on aver-
age, although major changes were of four pixels. For gradient
orientation each point variation was also small; the average
variation was smaller than 2.5◦, and the largest variations
were of 10.0◦. The average variation of σ was 0.2, which
also represents a small difference.

6.2 Repeatability and distinctiveness evaluation

The previous section presented results showing the accuracy
of the proposed architecture from a more theoretical perspec-
tive focusing on the error in the scale-space generation and
keypoints detection. This section follows an experimentation
more focused on the use of these features in an application.
In a real application, we need points to be detected with
great accuracy, but we also need repetitive and distinctive
keypoints, that is, the same point can be detected in different
views of the scene or object and that it can be differentiated
from the others.

To this end, we checked the correspondences between
SIFT keypoints detected by our architecture in different
images of the same scene. Figure 15 shows examples of
images used to evaluate the repeatability and distinctive-
ness of the proposed architecture. We evaluated four dif-
ferent changes in image conditions: changes in viewpoint
(Fig. 15a), changes in scale and rotation (Fig. 15b), different
JPEG compressions (Fig. 15c), and image blurring (Fig. 15d).
In images with viewpoint changes the camera position varies
from a frontal to a lateral position with a deviation of 60◦.
Images with scale and rotation changes were obtained by
varying the camera tilt and optical zoom. Different JPEG
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(a) (b) (c) (d)

Fig. 15 Test set. In a changes in viewpoint, b changes in scale and rotation, c variations in JPEG compression, and d variations of blur. For each
of these subsets the first image is taken as reference image

compressions were obtained with a standard software by
modifying the parameter of image quality. Blurred images
were obtained by varying the focus of the camera. These
images were also obtained from the website of Krystian
Mikolajczyk2; they were captured specifically aiming to test
and compare local descriptor through a similar experimenta-
tion.

To measure keypoints repeatability and distinctiveness we
use the matches rate. This is calculated as the ratio between
the number of correct matches between two images and the
smaller number of detected points in this pair of images:

2 http://lear.inrialpes.fr/people/Mikolajczyk/.

matches_rate(I, I ′) = #correct_matches(I, I ′)
min(#keypoints(I), #keypoints(I ′))

.

It is desired that the proposed architecture presents high
matches rate values but also a high number of matches.

The results of these tests are shown in Fig. 16. The mea-
sure was calculated for each of the above variations between
a reference image (first image in each column of Fig. 15) and
the rest of the images in the subset. An ideal response would
be a horizontal line at 100 %.

As can be seen in Fig. 16, for the first three vari-
ations, matches rates of the proposed architecture are
smaller in comparison with software implementation, espe-
cially in the images of minor variations, with more similar
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Fig. 16 Matches rates and number of matches for each subset of vari-
ations. As can be seen in a, c, and e matches rates of the proposed
architecture are a little smaller when compared with the software imple-
mentation, particularly in the minor variations images, with more sim-
ilar rates in images with greater variations. In g, the opposite situation
is evidenced, induced in spite of the number of matches is smaller,
the matches found were the most repetitive. As can be seen in b, d, f,

and h the number of matches found was always more than 200, which
represents a good number of extracted features for many applications.
The differences in matches rates and matches count obtained by the
hybrid implementation with respect to software implementation, show
the impact on the repeatability and distinctiveness caused by errors dis-
cussed in the previous section. However, the fall of these values was
not very drastic

rates in images with greater variations. The number of
matches found was always more than 200, which rep-
resents a good number of extracted features for many
applications.

The lines that describe the results obtained by the pro-
posed architecture in all cases have a smaller slope than
those obtained for the software implementation, indicating
that despite their lower match rates in the images with minor
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Fig. 17 Advantage in device area achieved by interleaving the octaves processing. a, c The differences between the proposed architecture using
this technique and ignoring it. In b and d percentages of savings in the use of hardware resources

variations, the results were more stable over all images.
Moreover, for the blurred images set the results showed a pos-
itive slope. The differences in match rates and match count
obtained by the hybrid implementation with respect to soft-
ware implementation show the impact on the repeatability
and distinctiveness caused by errors discussed in the previ-
ous section. However, the fall of these values was not very
drastic.

6.3 Evaluation of efficiency in FPGA resources occupation

In Sect. 4 it is stated that by introducing octave pro-
cessing interleaving, for the same scale, all octaves could
be calculated in the same processing unit; therefore, a
great advantage in the consumption of the device area
would be achieved. Later, in Sect. 5 the architecture that
implements this idea is proposed and then the savings in
FPGA resources that it implies are better evidenced. In
this section we present several tests to validate the men-
tioned contribution. With this aim, the proposed architec-
ture was redesigned having only one significant change, i.e.
the removal of the interleaving of octaves processing. In
this new design a filtering block is added for each image
convolution at each scale and each octave. The resulting
design is very similar to that proposed by Bonato et al.

in [3]. Its high-level structure remains the same as the one
shown in Fig. 6.

To demonstrate the benefits of octaves processing inter-
leaving, we obtained several implementations of both archi-
tectures for different configurations of its parameters, where
the number of octaves varied between three and seven
(O = [3, 7]), and the number of scales (S = 5) and
the dimensions of the image (M = 512, N = 512) were
kept constant. Then, these implementations were synthesized
for a Xilinx Virtex II Pro device (XC2-VP30-5FF1152),
to obtain the amount of device resources occupied by
each of these architectures for different number of octaves,
and to obtain a quantitative measure of the advantage in
terms of device area, achieved by interleaving the octaves
processing.

Figure 17 summarizes these comparisons. In Fig. 17a, c,
the number of registers and LUTs occupied by each of
the architectures is shown. Also, the reduction of FPGA
resources introduced by the octaves processing interleav-
ing can be noticed; moreover, its lower growth trend can be
appreciated and the line that describes it has a lower slope.
Figures 17b and d show the percentage of saved registers and
LUTs provided by the use of this technique. These values
are almost all above 50 % and with a noticeable tendency
to increase while increasing the number of octaves being
processed.
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Table 2 Hardware synthesis
results of the proposed
architecture for a configuration
of M = 320, N = 240, O =
3, S = 6, k = 7 using a Xilinx
Virtex II Pro
(XC2VP30-5FF1152)

Logic utilization Used Available Utilization

Number of Slice Flip Flops 5,676 27,392 20

Number of 4 input LUTs 5,554 27,392 20

Logic Distribution

Number of occupied slices 4,393 13,696 32

Number of Slices containing only related logic 4,393 4,393 100

Number of Slices containing unrelated logic 0 4,393 0

Total Number of 4 input LUTs 6,699 27,392 24

Number used as logic 5,154

Number used as a route-thru 1,145

Number used as Shift registers 400

Number of bonded IOBs 153 644 23

Number of RAMB16s 108 136 79

Number of BUFGMUXs 1 16 6

Table 3 Comparison with
related works Comparison Proposed Bonato et al. [3] Qiu et al. [17] Qiu et al. [18]

parameters architecture

Image Size QVGA QVGA VGA QVGA
Max. clock frequency MHz 145.122 149.0 82.0 95.0

Throughput (Mpixels/seg) 72.6 149.0 5.1 15.3

Speed 900 fps 1,940 fps 16 fps 81 fps

Registers 5,676 7,256 6,333 6,120

LUTs 5,554 15,137 5,825 5,011

6.4 Comparison with related architectures

This section compares the results obtained by our proposed
architecture with related works of Bonato et al. [3], and Qiu
et al. [17,18]. To this end, the proposed architecture was
synthesized in a Xilinx Virtex II Pro (XC2VP30-5FF1152)
with a configuration as close to that of those works (M =
320, N = 240, O = 3, S = 6, k = 7). The synthesis results
for these settings are summarized in Table 2.

After this process of synthesis was also determined that
the implementation could operate at a maximum frequency
of 145.122 MHz. Therefore, since the architecture returns
a result every two clock cycles, our system is able to pro-
cess 72.6 millions of pixels per second. With the achieved
throughput it is possible to process high-definition video
(1080 × 1280 pixels) at a 50 frames per second (fps) rate.

Table 3 compares these results with those obtained by
related architectures (discussed in Sect. 3) reported in the
literature for the detection of SIFT interest keypoints.

As can be seen in Table 3, the maximum frequency at
which the system could work is higher than the rest of these
works, except for the work of Bonato et al., which have very

similar maximum frequencies. This maximum frequency,
combined with the fact that our architecture returns a result
every two clock cycles, allows us to have a processing speed
of 900 fps, well above Qui et al. architectures [17,18]. The
work of Bonato et al. for this stage of the algorithm returns
a result per clock cycle, so this part working separately can
achieve twice the speed of our system, although its general
architecture has a restriction of 30 fps, which is introduced
by another stage of the algorithm. The architecture proposed
in this paper achieves half the throughput of the work of
Bonato et al.; this is because to perform the octaves process-
ing interleaving it is necessary to reduce by two the sample
rate. However, we sacrifice half of throughput to obtain an
advantage in device area of almost three times, which is the
critical factor. Our work exceeds several times the through-
put provided by Qiu et al. works. The proposed architecture
also consumes less silicon area than the other architectures,
except the number of LUTs compared with the work of [18]
where the difference is very small. In addition, as discussed in
other sections, the greater the number of octaves processed,
the smaller the increased rate in the use of the device area of
our architecture. Therefore, for a larger number of octaves,
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Table 4 Comparison with other
known implementations on
software and GPU

Comparison Proposed SIFT OpenCV SURF OpenCV SiftGPU [25]
parameters architecture 2.3.1 [5] 2.3.1 [5]

Used FPGA Xilinx Macbook Intel 2.4 GHz Macbook Intel 2.4 GHz 8800 GTX

Hardware Virtex II Pro Core 2 Duo, 4 Gb RAM Core 2 Duo, 4 Gb RAM 768 Mb GPU

Image size QVGA QVGA QVGA QVGA

Speed 900 fps 8 fps 19 fps 153 fps

the savings of hardware resources achieved by our architec-
ture will be much bigger.

6.5 Comparison with other known implementations

This section compares the results obtained by our pro-
posed architecture implemented in a Xilinx Virtex II Pro
(XC2VP30-5FF1152) with other software and GPU-based
well-known implementations. We compare our implementa-
tion against the implementations of SIFT and SURF in the
latest version of OpenCV (2.3.1) [5] and against the GPU-
based implementation SiftGPU [25]. The comparison results
are shown in Table 4. As could be seen in Table 4 our results
also outperform these implementations.

7 Conclusions

In this paper we proposed a hardware architecture for the
detection of SIFT interest points. In order to take full advan-
tage of the parallelism of this stage of the algorithm and
to minimize the device area occupied by its implementation
in hardware, part of the algorithm was reformulated. Given
the characteristics of the algorithm we took into account the
potential for exploitation of data parallelism. To decrease
the amount of multiplication-accumulation operations and
thanks to the separability property of Gaussian kernel we
used the separable convolution. Also, we introduced the
octaves processing interleaving, which allowed us to per-
form all convolution operations for a given scale in a single
processing unit.

The main contribution of this architecture and the algo-
rithm that it implements is that as the number of octaves to
be processed is increased, the amount of occupied device
area remains almost constant. This phenomenon is due to
the fact that all octaves for the same scale—no matter how
many—will be processed in the same convolution block.

The experiments and evaluations to the architecture, as
first target, checked how similar the results were com-
pared with a software implementation. Low error rates in
the generation of Gaussian scale-space were reported, as
well as average errors lower than a pixel on the loca-
tion of interest points. Also, a series of tests to verify the

variation in repeatability and distinctiveness of SIFT fea-
tures detected by our architecture were conducted. We took
into account several variations in the images as viewpoint,
rotation and scale, JPEG compression and blur. The dif-
ferences in matches rates were small, detecting a suffi-
cient number of features correspondences between images.
A series of tests that showed quantitatively the benefits
introduced by interleaving the octaves processing were
also carried out, resulting in savings in the use of device
area above 50 % with an increasing tendency while more
octaves are being processed. Finally, we compared the results
obtained by our proposed architecture with other architec-
tures reported in the literature for the detection of SIFT
interest points. The proposed architecture showed best indi-
cators of time and efficiency of device area use than the
rest in almost all parameters. The architecture presented
in this work is able to detect SIFT interest points in an
image at a rate of one pixel every two clock cycles. Imple-
mented in a Xilinx Virtex II Pro FPGA, with a configu-
ration of three octaves and six scales, and a clock restric-
tion of 145 MHz, an image of 320 × 240 is processed
in 1.1 ms (900 fps), which represents a speedup of 250x
(two orders of magnitude) with respect to Vedaldi software
implementation.

8 Future work

Based on the results obtained in this paper, some ideas arise
that can be followed as future work. First, to implement
in hardware the remaining stages of SIFT, in particular the
descriptors generation phase which is the second largest stage
in terms of computational cost, and to thus obtain a greater
speedup of the algorithm in general. Also, it is worth to
explore hardware acceleration of other SIFT variations, since
their algorithmic conception was designed with the aim of
speeding up this algorithm, either by approximations or by
substituting operations with equivalents of lower computa-
tional cost.
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