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Abstract

Outdoor images are often captured in weather conditions, such as fog, haze, or clouds,

that cannot be controlled. These conditions degrade images causing loss of contrast and

fine details in color images since dispersion has dimming and smoothing effects. The NIR

band of the electromagnetic spectrum has become an important source for improving the

quality of RGB images. NIR has high transmittance characteristics, which visually rep-

resent how materials absorb and reflect energy. So in NIR images, the contrast between

foreground objects and the background is higher than in visible images. Thus, by fusing

the RGB and NIR information, it is possible to complement and improve the quality of

visual information. Although current V-NIR fusion methods allow image enhancement,

some issues such as edge preservation and oversaturation need to be addressed. This thesis

presents the results fusion method, which performs a selective V-NIR fusion of the most

relevant structures through top-hat and bottom-hat morphological transformations. The

performance of the methods is evaluated by quantifying added information, color sim-

ilarity, and saturation. Experimental results show that it was possible to enhance image

quality while color oversaturation is avoided. The proposed method showed to be compet-

itive with other fusion methods. In addition, the proposed method can estimate the sizes

of the structures that mainly must be enhanced, having the characteristics of adaping the

enhancement according to the image information.
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Resumen

Las imágenes en exteriores se suelen capturar en condiciones climáticas que no se pueden

controlar, tales como neblina, niebla o nubes. Estas condiciones degradan las imágenes

causando pérdida de contraste y detalles finos en las imágenes de color, ya que la dis-

persión tiene efectos de atenuación y suavizado. La banda del infrarrojo cercano (NIR)

del espectro electromagnético se ha convertido en una fuente importante para mejorar la

calidad de las imágenes RGB. El NIR tiene la caracterı́stica de alta transmitancia, que

permite representar visualmente cómo los materiales absorben y reflejan la energı́a. Por

lo que en las imágenes NIR el contraste entre los objetos de primer plano y el fondo es

mayor que en imágenes visibles.

Al realizar la fusión de la información contenida en visible y el NIR es posible rescatar

información complementaria y ası́ mejorar la calidad de las imágenes. A pesar de que los

métodos de fusión V-NIR actuales logran la mejora de las imágenes, aún deben abordarse

algunos problemas como la preservación de los bordes y la sobresaturación.

En esta tesis se reportan los resultados del método fusión selectiva V-NIR de las estruc-

turas más relevantes a través de las transformaciones morfológicas top-hat y bottom-hat.

El desempeño de los métodos se evalúa cuantificando la información agregada, similitud

de colores y saturación. Los resultados experimentales muestran que fue posible mejo-

rar la calidad de la imagen mientras se evita la sobresaturación. El método propuesto

demostró ser competitivo con otros métodos de fusión. Además, de permitir estimar los

tamaños de las estructuras que principalmente deben ser mejoradas, teniendo las carac-

terı́sticas de adaptar el realce según la información de la imagen.

Palabras clave— Fusión de imágenes V-NIR, mejora de imágenes, morfologı́a matemática.
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Chapter 1

Introduction

The quality of outdoor color images may be degraded by several conditions such as haze, fog,

poor light conditions, even pollution. These conditions often may cause loss of contrast and de-

tails in the image, as well as edges attenuation and smoothing effect [Ancuti and Ancuti, 2013,

Sadeghipoor et al., 2015, Kudo and Kubota, 2018, Tan, 2008, Elliethy and Aly, 2017]. Figure 1.1

contains some examples of these problems: depicted how haze makes it difficult to observe the

division between regions. It also indicates how fog can cause loss of information; other problems

as shadows cause shape deformation of objects and loss of contrast between regions, degrading

image quality. The objects and relevant information for the scene analysis are difficult to observe

and analyze in such conditions. Moreover, the performance in tasks such as segmentation, remote

sensing, surveillance, or other computer vision applications could be affected by processing im-

ages under these conditions [Kaur et al., 2021].

There are several methods in digital image processing to enhance color images by dehazing

process, for example, [Fattal, 2008] method for estimating the optical transmission in hazy scenes

given a single input image. Based on this estimation, the scattered light is attenuated. Also,

[Cai et al., 2016] proposed a dehazing method based on convolutional neural network (CNN).

[He et al., 2011] used image prior-dark channel prior to removing haze from a single input im-

age. While [Zhu et al., 2015] uses color attenuation prior to haze removal. Other methods focus

1



(a) (b) (c)

Figure 1.1: Outdoor scenes under conditions of (a) haze, (b) fog, and (c) shadows; red rectangles
highlight areas where information is lost.

on improving the contrast of color images for example [Barreto and Villalobos, 2011] proposed a

morphological rational operator for contrast enhancement. The Retinex algorithm deals with the

compensation of image illumination [Jobson, 2004].

Currently, image fusion methods have gained relevance in image improvement due to the high

amount of image acquisition systems. Image fusion is a technique that allows combining informa-

tion from several sources and preserving the detail of each to improve the quality of the informa-

tion [Kaur et al., 2021]. According to [Zitová and Flusser, 2003], image fusion can be categorize

into:

• Multi-temporal: Images of the same object are taken at different times to detect changes

between them. Usually it is used for monitoring or tracking [Choi et al., 2017, Rad et al., 2007].

• Multi-view: Images are acquired from different viewpoints, e.g. three-dimensional mi-

croscopy images [Swoger et al., 2007, Trinidad et al., 2019].

• Multi-sensor: Images of the same scene come from different sensors to integrate both

sources of information to obtain complementary scene representation for example, mul-

tispectral/panchromatic [Choi et al., 2005], computed tomography (CT)/positron emission

tomography (PET) [Kostakoglu et al., 2004], visible/NIR [Ma et al., 2019].

Fusing another spectrum band, as NIR, can add information that is not captured directly

in the visible band. Since NIR images have high transmittance, the contrast is higher in NIR

images than in visible images; biomass and vegetation usually have high values in a NIR image.

These are a complementary source of information. In recent years, information from the NIR has
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been used for the enhancement of visible images (V). V-NIR image fusion techniques are widely

used in diverse fields including autonomous navigation of vehicles [Choe et al., 2018], security

and surveillance [Salamati et al., 2011], aerial or landscape photography, dehazing, tone mapping,

biometrics [Sharma and Gool, 2016], object recognition, image enhancement, and remote sensing

[Ma et al., 2019].

Several approaches for image enhancement through V-NIR fusion have been proposed, in-

cluding fusion by mapping and multi-scale transforms. The V-NIR fusion methods are focused

on enhancing low-quality regions with information from the NIR, while high-quality regions

are kept in the visible image [Sharma et al., 2017, Elliethy and Aly, 2017]; some other methods

have a specific purpose such as dehazing [Ahn et al., 2011, Zhuo et al., 2010, Schaul et al., 2009,

Fredembach and Süsstrunk, 2008, Kudo and Kubota, 2018, Jang and Park, 2017]. Although V-NIR

fusion has proved to be a suitable method for improving image quality, some drawbacks, such as

edge blurring and color oversaturation, remain and must be addressed.

1.1 Motivation

There are several challenging situations where the environmental or climatic conditions difficult

images future applications, such as autonomous navigation of vehicles, e.g.low-light problems

such as those at dusk or dawn, and poor-visibility conditions such as haze, and fog [Choe et al., 2018].

The study and analysis of different sources of images are considered pertinent to obtain informa-

tion on the same scene. NIR information as a complement to the visible spectrum has become

an important tool for image quality improvement. For instance, NIR is used to overcome the low

quality of outdoors images and capture information despite climatic conditions.

As mention in [Ghassemian, 2016] the fusion method must preserve the relevant information

from the sources, avoiding irrelevant information, noise, artifacts, and inconsistencies in the fused

image. One way to evaluate fusion methods is to measure the information retrieved in the fused

images, and in the case of color images, the color is also evaluated. Current fusion methods present

two main drawbacks: blurred edges and color oversaturation. The blurred edges can be associated
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with the type of used filter to select the information to fused. Color oversaturation emerges from

the overlap of visible and NIR bands and affects the fused image, making it look unnatural. Thus

in outdoor images, it is not common to see pure colors.

Performing a V-NIR fusion method in which as much NIR information as possible is recovered to

complement the visible while maintaining the color of the reference image is one way to exploit

the benefits of both sources.

1.2 Problem statement

Starting from an image I(x, y) and h(•) where:

• I(x, y) is defined by a bi-dimensional function whose value is n-dimensional I : Z2 → R2.

• Each pixel (x, y)Z2 has an associated value m = (c1, c2, c3, ···, ck). The range of values

for m depends on the image bit-depth and the color space chosen for its representation

[Gonzalez Rafael C. et al., 2009].

• Depending on the number of the n dimension, a image can be binary or grayscale (n = 1),

color (n = 3) or multiespectral (n > 3).

Then, it is intended to obtain a new image Î (x, y) where the value of I(x, y) have been altered

according to h(•) where:

Î(x, y) = h(I(x, y)) (1.1)

Therefore, the problem is to propose and define the parameters of the transformation h(•) that

makes the value of fused image contrast higher than original image contrast and satisfies the re-

strictions of fused image saturation as similar as possible from initial image saturation and, color

similarity.

From now on, we denote V to I(x, y), with the filters corresponding to visible (n=3), and N the

ones with corresponding to NIR (n=1).
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1.3 Research questions

The following questions will guide this doctoral research in order to achieve the scientific contri-

butions in the thesis topic.

Q1. How could the information that complements V be selected from N to overcome the low

contrast caused by capture in poor-quality conditions?

Q2. What criterion or method could follow the image fusion process to complement the visible

information with the NIR information?

Q3. How can the information related to the color present in the visible be kept once the fusion

is done?

1.4 Hypothesis

An image fusion method that selects relevant information from visible (V ) and NIR (N ) images

could be able to enhance low-contrast regions while avoids color oversaturation generating a fused

image (Î) of higher quality than V when evaluated of image information and color.

1.5 Objectives

To propose and validate a selective V-NIR fusion method that extracts the relevant information

from the NIR image to complement the visible image to increase the image quality. Moreover, the

fusion method will be able to avoid color oversaturation in the fused image. The results will be

measure through information quality (contrast, entropy) and color (color similarity and saturation).

Specific Objectives

O1. To establish criteria for the selection of relevant information based on the NIR image.
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O2. To develop and validate a method capable of fusing the V and NIR images to maximize the

contrast in low-quality regions.

O3. To propose an algorithm that overcomes color oversaturation in the resulting fused image.

1.6 The rationale of the solution

Most of the fusion V-NIR methods process the source images in a general way because they assign

fixed weights of how much every source contributes to the fusion. Usually, the NIR band has a

higher weight since it is assumed that the image structures are better defined on it. However, this

condition cannot be generalized because the low-quality regions affected by the haze in our study

case do not always cover the entire image. Therefore, there could be regions in V with higher

defined than in N , and they must be preserved. But the low-quality regions in V must be com-

plemented with N to enhance them. In this way, current issues such as edges and color distortion

could be overcome. Figure 1.2 shows an example of the luminance from V (lV ), a normalized N

(lN ) and luminance of the method proposed by [Vanmali et al., 2015] (lV anmali2015). The distri-

bution of the (lV ) has high-intensity values associated with haze in the environment. On the other

hand, the (lN ) image has a broad distribution because it is less affected by weather conditions, thus

higher contrast. The distribution of (lV anmali2015) is shortened compare to the V , and N when the

goal is to take the well-contrasted information of both source images, V , and N , to complement

each other and generate an enhanced image.
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Figure 1.2: Luminances histograms of V , N and [Vanmali et al., 2015] method.

1.7 Scope and limitations

Despite some of the image quality problems that can be solved during the capture, we focus on

the already registered images. Therefore, we are not working on enhancing the environment or the

physical sensors where the images are taken. Instead, the enhancement of the images is realized

from a computing approach.

Another consideration is that the images should be aligned spatially and temporarily for the fusion

process. We are not working in real-time; all the processes are offline. The fusion method is

designed and proved on outdoor images; we do not consider biomedical images.
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1.8 Contribution and research products

The main contribution of this research is a fusion method that allows increasing the quality of

images affected by haze conditions. Moreover, the proposed fusion method adds N information

without generating blurring edges or color oversaturation. Obtained results showed that the pro-

posed method reached better results than fusion methods in the state-of-the-art. The following

works were derived from this research and have been published:

• JCR Journal Article

− M.A. Herrera-Arellano, H. Peregrina-Barreto, and I. Terol-Villalobos, “Visible-NIR

Image Fusion Based on Top-Hat Transform, ”IEEE Transactions on Image Process-

ing, vol. 30, pp. 4962–4972, 2021. Available: https://ieeexplore.ieee.org/document/9427055/

[Herrera-Arellano et al., 2021].

• Conference paper (Full length)

− M. A. Herrera-Arellano, H. Peregrina-Barreto, and I. Terol-Villalobos, “Color outdoor

image enhance-ment by V-NIR fusion and weighted luminance,” in IEEE Autumn

Meeting on Power, Electronics and Computing, 2019. ROPEC 2019. IEEE, Ixtapa,

Mexico, 2019 [Herrera-Arellano et al., 2019].

1.9 Thesis outline

This chapter presents the introduction, research questions, hypothesis, and objectives that guided

this research and the general thesis overview. The rest of the thesis is structured as follows: In

chapter 2, the basics theory related to the thesis, beginning with an introduction to digital image

processing, color spaces theory, a description of the morphological operators, and transformation

applied to imaging processing are presented. Chapter 3 reports the works in the literature that

frame the present research regarding the fusion methods of visible and NIR implemented in the

state-of-the-art. Chapter 4 describes every step toward the development of the fusion method.
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Chapter 5 presented the fusion results with the implemented algorithms, and a comparison is made

with some state of art methods. Finally, chapter 6 describes the conclusions of this research and

suggestions for future work derived from this thesis.
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Chapter 2

Theoretical framework

This chapter presents an introduction to the main concepts used in this work. It seeks to explain the

fundamental concepts necessary to understand the technical details of the thesis. First, concepts

related to image processing are shown, such as visible and NIR images. Then, color spaces theo-

ries and Mathematical Morphology (MM), which are necessary to understand the fusion method.

Finally, the functions used to evaluate the fusion methods are explained in detail.

2.1 Digital images

A digital image I(x, y) is defined by a bi-dimensional function whose value is n-dimensional I :

Z2 → R2, where each pixel (x, y)Z2 has an associated value m = (c1, c2, c3, ···, ck). Depending

on the number of the n dimension, a image can be binary or grayscale (n = 1), color (n = 3) or

multiespectral (n > 3). The range of values for m depends on the image bit-depth and the color

space chosen for its representation [Gonzalez Rafael C. et al., 2009].
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2.1.1 Visible and NIR images

The electromagnetic spectrum is defined as the graphical representation of electromagnetic waves

arranged according to their wavelength. Thus, the electromagnetic spectrum spans the entire range

of wavelengths of electromagnetic radiation from the shortest to the longest wavelength that can be

generated physically (Figure 2.1) [Zwinkels, 2014]. The human eye is sensitive to the visible spec-

trum whose wavelength is between 350 nm and 780 nm, approximately. While NIR wavelengths,

from 700 to 1100 nm approximately [Whetsel, 1968], have the characteristic of high transmittance,

while optical transmittance refers to the amount of light that passes through a body at a specific

wavelength; also, transmittance gives a physical measure of the ratio of incident and transmitted

intensity as it passes through. As the wavelength lengthens, the transmittance increases so that the

absorbed and refracted energy is less than that transmitted, making an object translucent at specific

wavelengths. Thus, by this phenomenon, different objects can be observed between the visible and

the NIR [Uzal, 2019]. For example, biomass* and vegetation usually have high values in a NIR

image since, in outdoor environments, less energy is absorbed from the NIR than from the visible

spectrum.

Figure 2.1: The electromagnetic spectrum, showing the range of the visible spectrum+NIR.

The high contrast in NIR images can be exploited to identify and highlight boundaries, e.g.,

landforms and shorelines. Moreover, NIR is less sensitive to atmospheric conditions, so it captures

information through haze, fog, etc. Rayleigh scattering where the intensity of the scattered light is

related to that of the incident light by two variables: the photon’s wavelength λ and the scattering

particle’s size. Haze is formed when the aerosol particles are smaller than λ/10 and the scattering

*Biomass is the organic matter generated in biological processes, e.g., the plant material derived from
CO2(carbon dioxide) in the air, water, and sunlight via photosynthesis. The biomass’s characteristics depend
on the chemical and physical properties of the molecules from which it is made. [McKendry, 2002]
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follows Rayleigh’s law: Es ∝ E0
λ4 [Schaul et al., 2009]. This scattering is why, in landscape im-

ages, distant objects become blurred and have a blue color cast. This phenomenon, atmospheric

haze, is almost absent from NIR images, yielding haze-free images with a more considerable opti-

cal depth. [Firmenichy et al., 2011, Barsi et al., 2014, Sharma et al., 2017, Choe et al., 2018].

In Figure 2.2, a pair of visible and NIR images is shown. As observed, the NIR provides

relevant information in certain regions that is not noticeable in the visible image.

(a)

(b) (c)

Figure 2.2: Pair of images captured from (a) the visible and (b) the NIR spectra; (c) red rectangles
show a zoomed view where information through the haze can be found in NIR.

Visible images typically have a high spatial resolution, where spatial resolution measures the

smallest discernible detail in an image. For example, the largest number of discernible line pairs
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per unit distance (e.g. 250 line pairs per mm) or dots per inch [Gonzalez Rafael C. et al., 2009].

Also, color information; thus, they are suitable for human visual perception. However, these

images can be degraded by some conditions, such as poor illumination, fog, haze and other effects

of bad weather. While, NIR images, which depict the thermal radiation of objects, overcome to

these disturbances but typically have low resolution [Ma et al., 2019]. A color image is generally

represented as a combination of three color channels: red, green and blue. However, it is not the

only way to represent them, so color spaces are discussed below.

2.2 Color spaces

Color spaces (also named color model) are geometrical representations of color accepted by a

convention or a standard. These representations correspond to n-dimensional arrangements of

color (vectors of n components), typically color models have three or four color components

[Gonzalez Rafael C. et al., 2009]. It is also defined as a system for measuring colors that can

be perceived by a human and a process of combining different values as a set of primary col-

ors [Ibraheem et al., 2012]. Finally, color spaces provide a method for specifying, ordering, and

manipulating colors. There are numerous color spaces today.

2.2.1 RGB color space

RGB (red, green, and blue) color space in which the quantities of the three channels are mixed

to obtain a color. This color space is based on the tristimulus model and additive, which means

in RGB space, the color is specified by the positive sum of red, green, and blue, forming in 3D

space the cube shown in the Figure 2.3. The range of each RGB color coordinate or component

is usually [0,1], although, in multimedia and image processing, the specification in discrete quan-

tities present in the interval [0,255] is more widespread. Images in the RGB color model are three

independent image planes, each corresponding to a primary color. When inputting an RGB mon-

itor, the three images are combined on the phosphor screen to produce a composite color image

[Gonzalez Rafael C. et al., 2009]. There are some drawbacks with this color space, such as: At
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this color space is not possible to match all the colors by additive mixture, it is device-dependent

and also the tristimulus values depend on the luminance. RGB is commonly used in virtually

computer system as television, video etc. However, there will be times when the model is not the

most suitable for image processing. For example, in a process or technique that is desirable to

enhance the light intensity, a change at the individual channels may result in a color change. This

color change is because all the RGB channels are highly correlated. A color model that represents

intensity in a component will be the most suitable in this case [Hawkes, 2004].

Figure 2.3: A 3D cube geometrically representing the RGB color space

2.2.2 XYZ color space

The XYZ color space is obtained by a linear transformation of the RGB system and was introduced

by the International Commission on Illumination (CIE). In this case, XYZ’s primary colors are

imaginary i.e. they do not represent a physical light. The linear transformation matrix between

the RGB and XYZ spaces is presented in Eq. 2.1. The representation of the spectrum is achieved

in a 2D plane known as the x, y chromaticity diagram. Figure 2.4 shows the chromatic diagram

according to CIE standard. In a chromatic diagram, a straight line connecting any two points

defines the variations of the different colors obtained by combining the two primaries in an additive
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way. The XYZ color space is device independent and is used in applications where the color

representation does not depend on the nature of the equipment or hardware. Likewise, the XYZ

model is used for standard color specification and colorimetric calculations. It is not usual to find

the XYZ space in digital image processing. However, it will be required as an intermediate space

to transform the RGB system to other chromatic coordinates such as CIE L*a*b* or lαβ, every

color space obtained using XYZ space is also regarded as device independent [Young et al., 1998,

Kahu et al., 2019].


X

Y

Z

 =


0.6067 0.1736 0.2001

0.2988 0.5868 0.1143

0.0000 0.0661 1.1149



R

G

B

 (2.1)

Figure 2.4: Chromatic diagram (x,y) according to the CIE standard.

2.2.3 CIE L*a*b* color space

The CIE standardizes the CIE L*a*b* color space in 1976 to achieve a perceptually uniform rep-

resentation of the color. In this way, colors are represented at distances proportional to the visual

differences between them. CIE L*a*b* is a color-opponent space where the component L* mea-

sures luminance, while the components a* and b* define magenta-green and yellow-cyan color,
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respectively. The spatial representation of the CIE L*a*b* model is illustrated in the Figure 2.5.

The L* component ranges from 0 to 100 (dark to light). While if a* component is a positive value

tends to be color redness. Suppose a negative value is the color greenness. Finally b* compo-

nent approximately measures the color yellowness (positive value) or blueness (negative value)

[Fairchild, 2005]. For the transformation of the RGB space to CIE L*a*b*, the values are cal-

culated, through non-linear transformations, using the XYZ space (Appendix A.1). CIE L*a*b*

space is a linear color space. That is, Euclidean distance between two colors is approximately

proportional to their perceived difference by humans. And it is also a uniform space, and thus

colors in the CIE L*a*b* space are perceptually more uniformly spaced than those in RGB or

HSV. The CIE L*a*b* space is device-independent and used in applications that accurately mea-

sure the perceptual distance between two colors e.g., in the comparison of image filtering results,

the distance metric to measure color similarity (∆E). Another characteristic of the CIE L*a*b* is

that the luminance component can be processed individually without affecting the chroma of the

image. [Sharma and Trussell, 1997, Kahu et al., 2019].

Figure 2.5: Geometrical representation of the CIE L*a*b* space.
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2.2.4 YCbCr color space

YCbCr color space is an international standard for digital coding of TV pictures for 525 and

625 lines [BT.601-5, 1995]. The YCbCr color space is defined as one luminance (Y) and two

chrominance components (Cb and Cr). In contrast to RGB, the YCbCr color space is luminance

independent. The linear conversion between RGB color space and YCbCr color space is described

in Appendix A.2. Figure 2.6 shows the YCrCb geometrical representation. As can be seen, the

possible RGB colors occupy only part of the YCbCr color space limited by the nominal ranges.

Therefore, many YCbCr combinations result in invalid RGB values. It color space is widely used

for image and video compression [Kahu et al., 2019].

Figure 2.6: RGB color cube in the YCbCr space.

2.2.5 HSV color space

In image processing systems, it is common to specify colors that are compatible with the hardware

used. In this sense, the RGB model stands out compared to the rest for being the closest to the

computer vision hardware. However, this computationally practical system is not very useful in

specifying and recognizing colors. The human being does not recognize color because it has a

quantity of red, green, or blue components but uses perceptual attributes of luminance, saturation,
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and hue.

The HSV color space, proposed by [Smith, 1978], encodes color with the perceptual attributes

of luminance (V), saturation (S), and hue (H), and are defined as intuitive, psychological, or user-

oriented spaces, as they are optimal for human interaction. It has a cone shape (Figure 2.7) in which

the values for the hue axis vary from 0◦ to 360◦, beginning and ending with red and running through

all intermediary colors. The V is the vertical axis, and the vertex V=0 corresponds to black color.

Like the YCbCr and CIE L* a* b* spaces, the luminance or intensity information is decoupled from

the color information present in hue and saturation components. Hue, saturation, and value are cal-

culated from RGB values. However, the HSV color space also has drawbacks e.g. the conversion

between spaces is not linear (detailed extensively in Appendix A.3), high instability in saturation

and hue values for reduced changes in RGB coordinates [Gonzalez Rafael C. et al., 2009].

Figure 2.7: HSV space representation.

2.2.6 lαβ color space

lαβ perception-based logarithmic color space, proposed by [Ruderman et al., 1998], is expressed

in the channels of luminance (l) and chroma (αβ). This color space was derived from a large

ensemble of hyperspectral images of natural scenes using the first orders statistics of the images.

It has some characteristics such as compactness, symmetry, and its principal characteristic is the

decor-relation between components. The last one allows separating with some confidence in the
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absence of undesirable cross-channel artifacts [Reinhard et al., 2001]. The transform matrices are

in the Appendix A.4. This is one of the spaces we considered using because the three channels are

independently correlated it can help reduce color changes in the fusion.

Table 2.1: Summary of characteristics and applications of color spaces.

Color Space Characteristics Aplications
RGB Orthogonal and hardware

friendly, not uniform, based
on trichromatic theory, high
correlation between compo-
nents.

Color monitors, computer
graphics and color video
cameras.

XYZ Device independent color
space, all the colors defined
by X, Y and Z cannot be re-
alized by actual color stimuli.

Colorimetric calculations,
and is a reference color space
for device calibration.

CIE L*a*b* Device independent color
space.

Industrial color measurement
systems, evaluation in the
color difference, and image
analysis.

YCbCr No uniform. Widely used for image and
video compression. Skin
color extraction and classifi-
cation.

HSV User oriented. Human visual perception,
computer graphics, process-
ing, computer vision, and
image analysis.

lαβ Symmetrical, and decorre-
lated.

Image analysis.

In this section, the specification of color in different spaces or systems has been indicated.

The concept of color space has been defined as a codification of sensations chromatics in three-

dimensional vectors that represent spatial coordinates. In digital image processing, there is no one

optimal color space for all applications. The choice of a color space depends on the properties

of the model and the characteristics of the application. Table 2.1 summarizes the spaces of color

commented in this chapter and the applications for which they are used. Regarding obtaining

chromatic coordinates of the models, it has been commented that most are derived from direct
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transformations of the RGB space. However, some spaces require intermediate use of XYZ color

space.

2.3 Mathematical morphology

Mathematical morphology (MM), extended by Matheron and Serra [Serra, 1986], has been widely

developed in image processing. MM is defined as the theory of spatial analysis of structures.

The basis of MM is set theory operations such as union, intersection, complementation, etc. The

notation for sets will be upper case (X, Y, Z, ...), and lower case the elements contained in it

(x, y, z, ...). A morphological transformation Ψ(f) is obtained by a relationship between the

pixel values of the image f and the values of a subset called the structuring element (Bλ). The

shape (morphology) of Bλ is commonly chosen a priory by taking into account the morphology

of the set on which it will interact, also, according to the extraction of shapes to be obtained.

The shapes can be square, circular, linear, hexagonal, rhomboid, among others; Basic examples

of structuring elements used in practice are shown in Figure 2.8. However, due to its ease of

application, the square shape is commonly used [Fang et al., 2020]. The square shape is defined

(a) (b) (c)

Figure 2.8: Example of basic flat shapes of Bλ: (a) circle, (b) square, (c) diamond.

as Bλ = (2λ+ 1) × (2λ+ 1) where λ ∈ N is associated with the size of the transformation.

At ΨBλ(f) the origin of Bλ overlaps with the analyzed pixel in image f(x), analyzing all the

subyacent image pixels in f according to Ψ [Soille, 2013].
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2.3.1 Dilation and erosion

The fundamental operations in MM are dilation δBλ and erosion εBλ. In the case of functions or

gray level images the erosion of a set f by a structuring element Bλ is defined as shown in Eq. 2.2,

where xn is the value of the image at the point x+ k, which means f(x+ k).

εBλ(f(x)) = max {f(y) : yϵBλx} (2.2)

Erosion and dilation have opposite effects on images. More formally they are dual by com-

plementation. The dilation of a set f by Bλ is defined as (Eq. 2.3).

δBλ(f(x)) = min {f(y) : yϵBλx} (2.3)

On the one hand, morphological dilation generates the growth of local regions with higher gray

levels, allowing the connection of regions reached by Bλ. The result of erosion in gray scale

images is a darker image. On the other hand, morphological erosion generates a reduction of

the regions, by setting them to a lower gray level, and also it increases the distance among them.

For images in gray levels, δ generates an image perceived lighter than the original f ; ε has the

contrary effect [Haralick et al., 1987]. Figure 2.10 shows an example of the morphological erode

and dilation operations applied to a gray image. Figure 2.10 (b) shows that when εBλ (f) is applied

to disconnected regions (i.e. space between petals), the size of these regions is also increased in λ

pixels. The opposite case occurs when applying δBλ(f) (Figure 2.10 (c)).

(a) (b) (c)

Figure 2.9: (a) Original image (f ), examples of (b) erode εBλ(f), (c) dilation δBλ(f); where Bλ
is a disk of radius 5.
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Morphological erosion and dilation operations comply the following properties:

• Duality: These two operations are dual to their complement. In other words, an erosion is

equivalent to the complement of the dilation of the image that has been complemented with

the same structural element and vice versa.

εBλ(f) = [δBλ(f
C)]C (2.4)

• Increasing: These two operations are increasing; they respect the order present in the struc-

ture of the lattice. For two images f and g.

if f ≤ g ⇒ ε(f) ≤ ε(g) (2.5)

if f ≤ g ⇒ δ(f) ≤ δ(g) (2.6)

Increasing property in erosion and dilation implies that these operators respect the order

relationships between the different stacked sets of an image.

• Extensiveness and anti-extensivity: Dilation is an extensive operation, and erosion is an

anti-extensive operation; the structuring element must contain the origin:

f ≤ δ(f) (2.7)

ε(f) ≤ f (2.8)

In general, for structuring elements that contain their origin, it is true that: ε(f) ≤ f ≤ δ(f).
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2.3.2 Opening and closing

The morphological opening of a signal f by a structuring element Bλ is denoted by γBλ (f) and

is defined as the erosion of f , followed by dilation by the same structuring element:

γBλ (f) = δBλ [εBλ (f)] (2.9)

The morphological closing of a signal f by a structuring element Bλ is denoted by φBλ (f) and is

defined as the dilation of f followed by erosion by the same structuring element.

φBλ (f) = εBλ [δBλ (f)] (2.10)

An application of closing and opening could be removing unwanted objects from an image e.g.

Figs. 2.10 (b-c) show the morphological opening and closing, respectively; Both allow to elimi-

nate those components that cannot contain the structural element. The opening does it inside the

function, during the closing on the complement of the function.

(a) (b) (c)

Figure 2.10: (a) Original image (f ), examples of (b) opening γBλ (f), (c) closing φBλ (f); where
Bλ is a disk of radius 5.

Properties of morphological opening and closing:

• Duality: The opening of an image is equivalent to the complement of the closing of the

complemented image. This means that the opening and closing are dual operations with

respect to the complementation:

φBλ(f) = [γBλ(f
C)]C (2.11)
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• Order relations: The closing operation is an extensive operation, while the morphological

opening is anti-extensive. This means that the following order relationship can be presented

between the original image f and transformations:

γBλ (f) ≤ f ≤ φBλ(f) (2.12)

• Increasing and idempotent: These two operations are increasing and idempotent. The

idempotent property is important in image filtering, ensuring that iterations of the transfor-

mation will not modify the image. Given two images f and g.

if f ≤ g ⇒ γ(f) ≤ γ(g) (2.13)

if f ≤ g ⇒ φ(f) ≤ φ(g) (2.14)

2.3.3 Top-hat and bottom-hat

The top-hat (TwBλ(f)) and bottom-hat (BtBλ(I)) transformations are residual filters, which use

a combination of opening and closing operations. Top-hat is defined as the difference between the

image input and its opening.

TwBλ(I) = f − γBλ (I) (2.15)

Bottom-hat is defined as the difference between closing and the input image.

BtBλ(I) = φBλ (I)− f (2.16)

The top-hat transformation is useful to discovering those image structures that have been

eliminated in the opening or closing (filtering that with the choice of a structuring element of

suitable shape, size, and orientation, it is possible to filter the image and eliminate certain elements

in the original image) [Meyer, 1978]. A difference operation between the original and the filtering

greatly increases the contrast of the removed areas . Thus, TwBλ(f) is used to highlight bright
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regions of the image that are smaller than Bλ. In comparison, TbBλ(I) is used to extract dark

regions of an image that are smaller than the structuring element [Dougherty and Lotufo, 2003].

For instance, consider that the relevant features in an image are those that stand out from

the background. Figure 2.10 (a) shows a well-contrasted image since the main objects are distin-

guished. A feature may seem irrelevant from a general context (whole image), but locally (regions)

it could be important. The top-hat transform deals with the identification of relevant local features

(such as within flower petals or grass). In this way, the top-hat transform extracts the relevant light

features from the image. Similarly, the bottom-hat extracts the dark features. To achieve this, the

morphological opening γBλ flattens the relevant features according to the Bλ size, which evens

out the local background. This process generates a higher difference in gray values between the

relevant features and the new background from γBλ, e.g., the contrast between them increases.

Figures 4.9(a-b) show the differences between TwBλ(I) and BtBλ(f), respectively, by containing

the outstanding features of each region. An example of the use of these features is to increase the

contrast between regions as shown in Figure 4.9 (c) [Hassanpour et al., 2015].

(a) (b) (c)

Figure 2.11: Example of applying: (a) TwBλ(f), (b) BtBλ(f), and (c) the image improvement
by using bottom and top-hat f + TwBλ.

The choice of the structuring element used in top-hat operations depends on the morphology

of the structures to be extracted, e.g., the bright objects detection in an image is achieved with a

top-hat with a structuring element larger than the objects to be detected. On the other hand, the

same utility is achieved with a bottom-hat in the case of dark objects.
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2.3.4 Granulometry by openings

Granulometry and is used in several areas, such as imaging processing for feature extraction, size

estimation, image segmentation, etc. The granulometric analysis of an image through a family

of openings is an iterative process by increasing the scale of the transformation γλ+∆(f) until it

reaches the empty set. The measure associated with the granulometric is denoted Pattern Spec-

trum (PS) and is used to derive the granulometric curves (Eq. 2.17), where mes is the sum of

all the pixel values of the image, and γλ(f) = f when λ = 0. Thus, it is possible to mea-

sure the normalized area of the granulometric residues of the structures that are in the image

[Santibañez, 2007, Vincent, 1994].

PS (f) =
mes(γλ(f))−mes(γλ+∆(f))

mes(f)
(2.17)

Where there is a high number of structures of λ size in f , the PS value is high; likewise,

when the structures are few, the PS value decreases. Thus, the PS for a range of λ values suggests

the most suitable structure sizes to use in a morphological transform. Figure 2.12 illustrates an

example of the procedure followed to measure the particles size by using Eq. 2.17. The higher

peaks indicate particles of similar sizes; in the example, the sizes are 3, 5 and 7.
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(a)

(b) (c)

(d) (e)

Figure 2.12: (a) Granulometric analysis of: (b) the original image I and their openings with
different sizes (c) γ3(f), (d) γ5(f) and (e) γ7(f).

2.4 Quality assessment for image fusion

The concept of image fusion has different definitions in the literature. Image fusion is a technique

that allows combining information from several sources and preserving the detail of each to im-

28



prove the quality of the information [Kaur et al., 2021]. Then [Bai, 2012] extends the image fusion

and also refers to image fusion algorithm as ”The effective image fusion algorithm should extract

the useful image regions and details for image fusion well, so that the final fusion image is clear and

contains more image details”. Several quantitative methods and functions have been proposed for

the evaluation of images resultant of fusion methods. These objective evaluation methods come in

different types according to what they want to evaluate or the theory they take. Structural similarity

index (SSIM) proposed by [Zhou Wang and Bovik, 2002] is used for measuring image quality. A

higher value indicates better image quality. Root Mean Square Error (RMSE) denotes the dissim-

ilarity between the fused and visible images. A small RMSE metric indicates that the fused image

has a small amount of error and distortion [Jagalingam and Hegde, 2015]. The SSIM and mean

squared RMSE are used to indicate the level of the resemblance of the final output to that of the

original image [Kumar et al., 2019, Ma et al., 2019]. The peak signal-to-noise ratio (PSNR) metric

is the ratio of peak value power and noise power in the fused image and thus reflects the distortion

during the fusion process. The larger the PSNR, the closer the fused image is to the source images

and the less distortion the fusion method produces [Ma et al., 2019, Jagalingam and Hegde, 2015].

The mutual information metric is a quality index that measures the amount of information that is

transferred from source images to the fused image. A high mutual information value means that

considerable information is transferred from source images to the fused image, which indicates

a good fusion performance according to [Qu et al., 2002]. Table 2.2 shows some representative

fusion evaluation measures and the references where they are used. In some cases, it is required

to measure the characteristics of the original image to evaluate the improvement achieved by the

fusion method applied [Ma et al., 2019]. The functions mentioned above are used in state-of-the-

art works related to the fusion of visible and NIR. However, it is considered that when looking for

an improvement, the image is not completely similar to the original image, as in the case of the

Mutual information, PSNR, RMSE, and SSIM.

One of the problems while fusing images is preserving the images edges, which means it must

preserve the important details of the components of the source images in the fused image. As

mentioned above, these functions assess the quality of the fused information. However, in the

particular case of color images, it is crucial to keep the information that color gives as this is the

key to interpreting the image. Color is a descriptor that often is useful for object identification
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and extraction from a scene , then it is also important to assess the effect of image fusion over

it [Russ and Neal, 2015, Gonzalez Rafael C. et al., 2009]. Therefore, it is relevant to assess and

measure the added information and color distortion for image fusion methods. Each author defines

how to measure image improvements; there is no standardized metric to measure these improve-

ments. So we opted for the entropy and contrast functions to measure the information and quality

of the image and the saturation and color similarity to measure the differences in color of the

merged image with respect to the original. Therefore, it was decided to measure the quality of the

images described below.

Table 2.2: Representative fusion evaluation measures and references.

Evaluation mea-
sure

Description Formula Uses in

Feature mutual in-
formation ↑

To measure information. Appendix B.1 [Roberts et al., 2008]

Structural similar-
ity index measure
(SSIM) ↑

To measure the amount of
edge information.

Appendix B.2 [Kumar et al., 2019,
Jung et al., 2020]

Anisotropic Quality
Index ↑

To reflects the distribution
and contrast of the fused
image: standard deviation.

Appendix B.3 [Vanmali et al., 2015,
Vanmali and Gadre, 2017]

Mean squared error
(MSE) ↓

To measure the dissimilar-
ity, spatial frequency mea-
sure detail and texture of
an image.

Appendix B.4 [Sharma and Gool, 2016,
Sharma et al., 2017]

Peak signal-to-noise
ratio (PSNR) ↓

To measure the distortion
during the fusion process.

Appendix B.5 [Sharma et al., 2017,
Park, 2020]

Entropy ↑ To measure information. Equation 2.19 [Zhang Jingyun et al., 2016,
Vanmali et al., 2015]

Contrast ↑ To measure the contrast. Equation 2.18 [Son et al., 2015,
Jang and Park, 2017]

Saturation = To measure the level of
saturation.

Equation 2.21 [Jang and Park, 2017]

Colorfulness = To measure the color con-
tent in an image.

Appendix B.6 [Son et al., 2015]

*Value to look for fusion results(Higher ↑/Lower ↓)
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2.4.1 Added information

Contrast is defined by [Burger and Burge, 2016] as ”a combination of the range of intensity values

effectively used within a given image and the difference between the maximum and minimum

pixel values”. This difference allows distinguishing objects in the background of an image.

C =
1

NM

N∑
x=1

M∑
y=1

(f(x, y))2 −

 1

NM

N∑
x=1

M∑
y=1

f(x, y)

2

(2.18)

Equation 2.18 computes the deviation of gray levels where f(x, y) is the intensity image. The

more uniform the gray distribution of the image, the higher the value of C, indicated the more

uniform the gray distribution of the image would be; therefore, the better the contrast of the image

[ZHANG Chang Jiang, 2004]. It is expected that the fusion method generates a significant differ-

ence between the local values and the global representative value, which indicates an increase in

contrast [Shi et al., 2017]. When an image has high contrast, areas are better differentiated. There-

fore, in a low contrast image it is difficult to distinguish between objects. Hence, when performing

a image fusion process, the contrast value of the resulting image must be greater than the value of

the original image to assume improvement.

Shannon’s entropy measures the uncertainty of a source of information and is usually used to

quantifies the image information content [Tang and Mat Isa, 2014]; entropy is defined as Eq. 2.19

where the term log2(P (g)) implies the amount of gray values information obtained from an image

with probability P (g) of a pixel with gray level g and G is the maximum possible gray level (e.g.,

255 for an 8-bit image). In this way, an image with a large number of pixels with the same intensity

will have a low entropy, while with a more uniform distribution of gray values, a high entropy

will be obtained. A high EN value (uncertainty, disorder) indicates higher information content

[Ma et al., 2019, Son and Zhang, 2017]. For instance, a fog region in the image is associated with

low quality since the similitude of the values reduces the contrast among the structures. Therefore,

these results in low information content or low entropy in the region.

EN = −
G∑

g=0

P (g)log2(P (g)) (2.19)
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2.4.2 Color similarity

There are many discrepancies in brightness and image structures between the NIR images and

the visible color images. Due to this discrepancy, some color distortion problems emerge during

V-NIR fusion. I.e., the original color significantly changes due to the image fusion, then false

or oversaturated colors are generated [Son and Zhang, 2018, Elliethy and Aly, 2017]. Therefore,

to measure how much the colors change after a fusion process the functions of color similarity

(∆E00) and saturation (Ŝ) are used. These functions are explained bellow.

Color similarity denoted as ∆E00 was defined by CIE L*a*b* 2000 where the Greek letter

delta is used in mathematics to denote difference and the E comes from the German term Empfind-

ung or Sensation. ∆E00 is used to measure the difference between two colors designated as two

points in the CIE L*a*b* color space, as shown in Eq. 2.20 [Sharma et al., 2005]. The lightness

(∆L′), chroma (∆C ′) and hue (∆H ′) differences of two color parameters being compared. Where

KL, KS and KH are parametric coefficients to compensate for the interference of external factors

in the perception of color difference, with KL = Kc = KH = 1 for standard lighting conditions

[Mokrzycki and Tatol, 2011]. While, SL, Sc and SH are compensation coefficients. Additional

functions for calculating this metric are described in the formulas in Appendix B.7.

∆E00 =

√(
∆L′

KLSL

)2

+

(
∆C ′

KcSc

)2

+

(
∆H ′

KHSH

)2

+RT

(
∆C ′

KcSc

)(
∆H ′

KHSH

)
(2.20)

The range of values for ∆E00 is from 0 to 100. The higher the value of ∆E00, the lower the

color equality, i.e. 100 indicates the two colors are opposite. According to CIE L*a*b*, the ∆E00

falls into five different ranges:

• 0 < ∆E00 < 1: the difference is not noticeable.

• 1 < ∆E00 < 2:the difference is only noticed by an experienced observer.

• 2 < ∆E00 < 3.5: the difference is noticed by an unexperienced observer.

• 3.5 < ∆E00 < 5: the difference is clearly noticeable.
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• 5 < ∆E00: these are two different colors.

Figure 2.13 shows examples of colors expressed in RGB, and the ∆E00 values. The first

color pair varies in the component B from 137 to 131 the new color obtained a ∆E00 = 1.32.

This result means that the difference is only noticed by an experienced observer. In the following

case, the value of ∆E00 = 2.12, which even an unexperienced observer might notice. At the last

example the is ∆E00 = 5.51 where the observer note two different colors.

Figure 2.13: Color similitude between pairs of colors according to ∆E00. From top to bottom:
∆E00 = 1.32, ∆E00 = 2.12, and ∆E00 = 5.51 [Mokrzycki and Tatol, 2011].

Saturation refers to the intensity of a specific hue and is based on the purity of the color. A

high saturated color has a vivid and intense color appearance while a low saturated color appears

mute or grayish which means it is less colorful [Shi et al., 2017]. In the case of V-NIR image

fusion it is expected that the saturation of the fused image is close to the original image. Thus, a

saturation metric (Eq. 2.21) can be used to know in what extend the image fusion affects the color

in the resulting image; in this metric, S is the saturation channel from the HSI color space.

Ŝ =
1

nm

n∑
i=1

m∑
j=1

S(i, j) (2.21)

In this section, the quality evaluation functions of the images resulting from V-NIR fusion were re-

viewed. In particular, the quantity and quality of the information and the measure of the difference

in the color obtained. Evaluation functions are generally complemented by a subjective evaluation,

for example, the amount of information. Since not all the fuse information is necessary informa-

tion, artifacts could appear in the images that, although they increase the amount of information,

visibly do not correspond to the structures of the images.

In this chapter, the basic principles to understand this thesis were explained. The main char-

acteristics of visible and NIR images were described. Then the color spaces were mentioned with
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particular attention to the ones that separate the luminance from chroma. Then the principles of

mathematical morphology were described, emphasizing that the top-hat and bottom-hat transfor-

mations were applied in the proposed methodology. An essential part of these transformations is

the choice of the size of the structuring element, which is why the granulometry technique to select

a size is described. Finally, a compendium of the main evaluation functions for images was made,

focusing on information measurement and over-saturation functions.
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Chapter 3

V-NIR fusion methods

In this chapter, the related works associated with V-NIR fusion techniques are reviewed and dis-

cussed. Outdoor color images can be deteriorated by factors, mostly by weather conditions, that

cannot be controlled, such as haze, lighting or fog. These factors may affect the visualization of

edges, contrast, saturation. It is where the image fusion takes place to improve the quality of the

images. As mentioned above image fusion integrates the complementary multi-temporal, multi-

view, or multi-sensor information into a single image. In this way, image quality is improved and

original features are keep.

Image fusion methods are divided according to three levels: pixel level, feature level, and deci-

sion level (Figure 3.1). The pixel-level techniques directly integrate the information from input

images while feature-level techniques extracts relevant features, e.g., textures or edges that are

compounded to create supplementary merged features; in decision level techniques, the input im-

ages are processed one at a time to extract information [Li et al., 2017, Kaur et al., 2021]. All the

included works consider that source images, visible and NIR, were taken simultaneously from the

same scene, and at the same time, the fusion process is multi-sensor. Most of the V-NIR fusion

methods presented below are performed at pixel-level, combining pixels from source images to

obtain the fused image.

The reviewed works take into account three main approaches: i) Fusion by mapping: these meth-

ods are based on the calculation of maps using the characteristics of the images, such as the level
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of haze, fog, or contrast level. ii) Multi-scale transform: these methods decompose the source im-

ages into n levels (layers), fuse corresponding layers with fusion rules, and reconstruct the target

images. iii) Other approaches for V-NIR fusion: the methods that correspond to this category use

mixed techniques or techniques not included above, such as CNN, fuzzy wavelet.

(a) (b) (c)

Figure 3.1: Image fusion according to the processing level (a) Pixel level, (b) feature level, and
(c) decision level.

3.1 Fusion by mapping

This approach consists in taking the average of the two source images pixel by pixel. However,

when this approach is performed directly, The information can be overlap; this causes the presence

of artifacts or the deletion of the information. Therefore, it has been proposed to make fusion maps

that search in the source images for some distinctive characteristics to fuse, such as contrast, haze,

or salience maps. Those maps allow a weighted fusion, that take a linear weighted average of the

two source images as shown in Eq.3.1, where WA,WB are the given weights for the source images

A(n,m) and B(n,m) [Smith and Heather, 2005]. Next, some works that attempt to V-NIR fusion

based on by mapping are discussed bellow.

I(n,m) = WAA(n,m) +WBB(n,m) (3.1)
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The method [Son et al., 2015] defines a relationship between NIR and visible through a

preservation-contrast map to generate the fused image. This mapping model is used to correct the

chrominance distribution of the visible images. The results of this method is shown in Figure 3.2

(c). Its main contribution is to avoid distorting the color during the fusion process; however, the re-

sults obtained when compared with other methods such as [Sharma et al., 2017] (Figure 3.2 (d)), it

can be seen that it could fuse more information, also Figure 3.2 (a) and Figure 3.2 (c) seems similar.

(a) (b)

(c) (d)

Figure 3.2: (a) Visible image, (b) NIR, and the result of the method proposed by: (c)
[Son et al., 2015], (d) [Sharma et al., 2017]. Red rectangles show a particular area where different
information can be found.

Figure 3.3 (b) shows the results of the proposed method by [Feng et al., 2013]. The method

first consists of estimating the color of the aerial light, taking the differences between RGB and

NIR to generate a haze map. Later they carry out a dehazing stage by enforcing the NIR gradient
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constraint through an optimization framework. From this approach, it is possible to fuse informa-

tion corresponding to the NIR specialty to the zones in the red squares. The authors do not present

any metrics or quantitative comparisons, and the image shown is the only one that they present in

their results. So there is little that can be said about this method regarding its results. The only

apparent backward could be Figure 3.3 (b) is more saturated than the original image Figure 3.3 (b).

(a) (b)

Figure 3.3: (a) Source visible and NIR images, and (b) result of the method proposed by
[Feng et al., 2013].

Another method that proposed a haze map is [Zhang Jingyun et al., 2016] to addresses the

fog problem. First, infrared-blue light intensity difference factor and dark channel prior* make a

haze distribution map. Then according to the map, NIR information and visible information are

used. Finally, a guide filter, fast fuzzy algorithm, and downsampling are applied. Their results

show that the methods that use only the priority dark channel have less Entropy and Average gra-

dient than when adding the optimization part composed of fast fuzzy algorithm + downsampling

+ fast guide filter.

The method overview proposed by [Elliethy and Aly, 2017] is presented at Figure 3.5. This

method consist first in calculated the local contrasts for the NIR image INIR and the luminance

plane (Y) of the visible image IRGB . Then, the spatial details from the NIR are extracted us-

ing a high pass filter. Finally, the spatial details are weighted according to a fusion map (F)

*For outdoor images, in the non-sky local area, at least one color channel has very low intensity at some
pixels and those pixels can form a so-call dark channel [He et al., 2009]
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to obtain the fused image (JRGB). In their results, the authors are compared qualitatively with

[Fredembach and Süsstrunk, 2008] and [Son et al., 2015]. The authors mention that the fused im-

ages ”show a great enhancement” to the scene details compared to the original preserving the

spectral contents of visible, in addition to not modifying the color.

Figure 3.4: The overview of the method proposed by [Elliethy and Aly, 2017].

(a) (b) (c)

(d) (e)

Figure 3.5: (a) Original, (b) NIR and the proposed method by: (c)
[Fredembach and Süsstrunk, 2008], (d) [Son et al., 2015], and (e) [Elliethy and Aly, 2017].

The main drawback in fusion by mapping is the calculation of the maps since this depends

on the elements, variables or considerations taken to calculate the maps. Most of them physical

considerations, such as haze distribution or the color of the aerial light. Thus, in the case of
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omission of some consideration in the map calculations, it may not be possible to rescue all the

information belonging to source images.

3.2 Multi-scale fusion approaches

Methods that do not use maps to perform the fusion are presented below, e.g., fusion techniques

use a multi-resolution signal decomposition scheme, such as Laplacian pyramid and Gaussian

pyramids, edge-preserving filters, and weighted least squares (WLS). Multi-scale V-NIR image

fusion approach comprises three steps (Figure 3.6). First, the source images are decomposed into a

series of multi-scale representations. Then, the multi-scale representations of the source image are

fused according to a given fusion rule. Finally, the fused image is done by using the corresponding

inverse multi-scale transforms on the fused representations [Kaur et al., 2021].

Figure 3.6: Generic multi-scale decomposition based image fusion scheme.

3.2.1 Laplacian and Gaussian pyramids

A pyramid is a sequence of images where each image is filtered, with a low pass filter, represent-

ing a subsampled copy of its predecessors. Figure 3.7 shows the relationship between Gaussian

and Laplacian pyramids. Where Gaussian pyramid is a set of images {FL}, called levels, which

represent progressively lower-resolution versions of the image G. Thus, the pyramid base contains

the image with the highest resolution (F0 = G), and the lowest resolution is found at the top.

FL +1 = REDUCE(FL) is a low value pass version of FL with half the weight and height. The

filtering and the decimating process are repeated n times.
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The Laplacian pyramid is related construction, whose levels {LL} represent details on dif-

ferent spatial scales, decomposing the image into separate frequency bands. The levels of the

Laplacian pyramid are defined by the details that distinguish the successive levels of the Gaussian

pyramid, LL = FL − EXPAND(FL + 1), where EXPAND(·) is an operator that doubles the

size of the image in each dimension using a smooth kernel. The highest level of the Laplacian pyra-

mid, also called the dual residue, is defined as Ln = Fn and corresponds to a tiny version of the

image. To reconstruct the original image by recursively applying FL = LL+EXPAND(FL+1)

until F0 = G is recovered [Burt and Adelson, 1987].

Figure 3.7: Relationship between Gaussian and Laplacian Pyramids.

[Vanmali and Gadre, 2017] use a Laplacian–Gaussian pyramid based multi-resolution fu-

sion process, guided by weight maps generated using local entropy, local contrast and visibility as

metrics to control the fusion. The method proposed by [Jang and Park, 2017], first decomposes the

input images by a Gaussian low pass filter. Then, to carry out the weight map from a guided filter

proposed by [He et al., 2009], which gives rise to what the authors call a fusion layer. Finally, the

fusion is carried out by joining the layer without fog with the layer of details. Its contribution is
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to increase the details in the hazy regions without distorting the color and producing artifacts at

the edges. However, after observing the results presented (Figure 3.8 ), It is visibly noticeable that

could be retrieved more information.

The pyramids are commonly regarded as poor for applications in which image edges play an im-

portant role. Thus, the use of edge-preserving filters is used to prevent blurred edges at fusion. The

bilateral filter in its direct form has the limitation on simultaneously edge-preserving and image

smoothing. It can introduce various image artifacts, e.g., the introduction of false edges in the

images. Also, it can produce halos around some edges due to unwanted smoothing of these edges

[Zhengguo Li et al., 2013].

3.2.2 Edge-preserving filters

The aim of edge-preserving filter is to preserves the edges and their information while blur-

ring an image. The base layer is obtained using an edge-preserving filter, e.g., bilateral filter

[Tomasi and Manduchi, 1998], anisotropic diffusion filter [Perona and Malik, 1990], guided filter,

and WLS. On the image, edge-preserving filter potentially captures the intensity changes. The

detail layers comprise a series of different images that can preserve details at various progressively

scales. For more detailed information on edge preservation filters refers to [Pal et al., 2015]. The

Figure 3.8: Result of the method proposed by [Jang and Park, 2017]

method proposed by [Kumar et al., 2019] is based on an edge-preserving smoothing filter with a

multiresolution decomposition based on contrast images. The results of this method (Figure 3.9)
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show a desaturation, which is reflected as a change of color.

(a) (b) (c)

Figure 3.9: (a) Original, (b) NIR, (c) results of the proposed method by [Kumar et al., 2019]

Weighted least squares (WLS)

An approach that use WLS is proposed by [Schaul et al., 2009]. Figure 3.10(c) shows the results of

this proposed method. The fusion of the NIR detail information and the color images is done using

the WLS framework using a multiresolution approach. Results obtained show less haze and with

more details compared to the original. However, the authors mention that colors might change

radically in extreme luminance changes due to only work with luminance. Also, [Park, 2020]

proposed a V-NIR image fusion method that decomposed the visible and NIR images by using

WLS into detail and base images, respectively. Nevertheless, the NIR detail image was obtained

by boosting in an analytical manner, which can change the result according to this factor. Figure

3.10 (d) shows the results of these method. The main advantage of this method is not to need

calculated haze, airlight detection, or the generation of depth maps. Therefore no assumptions are

needed to generate a correct depth map. However, there are still some limitations, such the manual

boosting part.

Bilateral filters (BF) uses two kernel filters: Spatial Kernel is the distance between the image

pixels (Euclidean distance), and range kernel is the intensity similarity between two pixels in the

image. [Sharma and Gool, 2016, Sharma et al., 2017] combined a WLS filter with a BF. Where

BF filter preserves edges and can extract details at a fine spatial scale but cannot extract details at

arbitrary scales. At the same time, the WLS filter is used to preserve fine details at arbitrary scales.

43



(a) (b)

(c) (d)

Figure 3.10: (a) Original, (b) NIR, and results of the method proposed by: (c) [Schaul et al., 2009]
and (d) [Park, 2020] using WLS filter.

Taking an average between the two filters gets the details from both. The method proposed by

[Ahn et al., 2011] also uses a BF in a multi-resolution approach obtaining fused images enhanced

with detail information and high image contrast than the visible one. However, the main drawback

is the smooth of the borders that make lose information about the limits of the regions.

3.3 Other approaches for V-NIR fusion

This section shows methods that cannot be classified as the previous ones since their approaches

are hybrid or are not based on maps or multiscale filters. The [Kudo and Kubota, 2018] method

uses an hybrid method. The method uses a transmission map where the amount of the light that

is not scatted and reaches by the camera is set, using the method of [He et al., 2009]. This map is

used to give weights to the visible image. To later decompose the luminance and NIR image using

a Laplacian pyramid. The authors show as the main contribution that they do not overemphasize
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the contrast in the haze-free regions. However, results show that they cannot wholly remove the

haze, which is an opportunity for improvement. If the NIR images contain information without

haze, it seeks to recover as much information as possible with the fusion.

[Jung et al., 2020] proposed a net for fusion of RGB and NIR images based on two stage

CNN as can be see at Figure 3.11. The method focuses on removing noise from visible images

through fusion V-NIR. Tor training set, added Gaussian noise to the images and used the original

images as ground truth. However, CNN has challenges when applied to image fusion. First,

training a network requires high-labeled data. Second, the artificially designed image fusion rules

are challenging to realize the end-to-end model network. Thus, some errors will be mixed in the

feature reconstruction process, affecting the image’s feature final reconstruction [Sun et al., 2020].

Figure 3.11: Proposed method by [Jung et al., 2020].

[Fredembach and Süsstrunk, 2008] propose two approaches; the first approach separates the

visible and the NIR images according to their frequencies. Then, a low-pass Gaussian filter is ap-

plied to the images to obtain their low frequencies. High-frequency images are calculated as the

original image minus its low frequencies. The fusion is performed once the high and low-frequency

images have been found for the visible and NIR images. The second approach uses wavelet trans-

forms. First, the authors decompose the luminance of the visible and NIR images using symmetric

8-band wavelet filter and 8 levels of the wavelet decomposition. Then, the wavelet coefficients

of each decomposition for each pixel, the maximum coefficient between the NIR and the visible

image for the high frequencies, and averaged these coefficients for the low frequencies parts of the
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image. The improvement is not perceived; most regions are not affected, or too substantial, color

changes.

Figure 3.12: Results of the proposed method by [Fredembach and Süsstrunk, 2008].

Table 3.1 summarizes the comparisons of the methods of state of the art. Most of them sepa-

rate the chroma from the luminance and work only with luminance. As an exception, [Jang and Park, 2017],

decided to fuse the NIR directly with the red channel of the RGB color space. Even though several

methods mention some quantitative measures, the results of the experiments obtained indicate them

based on a few images, from 1 to 5 images such as [Jang and Park, 2017, Son and Zhang, 2017].

Some suggest that their quantitative measures were made to a set of images and give the best re-

sults ([Son et al., 2015]). Or the authors provide a value that could be interpreted as an average

([Zhang Jingyun et al., 2016]). In any of these cases, the information is not sufficient for statisti-

cal comparison. Of all the methods reviewed, only [Son et al., 2015] evaluates the color by using

the colorfulness metric, proposed by [Hasler and Susstrunk, 2003], but does not mention the value

obtained. As seen during this chapter, some methods over-saturate or de-saturate the images; this

causes the color changes to the original image. Therefore, part of the limitation for the design of

the method is to avoid this color change. To make a quantitative comparison in the results section,

it was necessary to replicate some methods. Then analyzed using the same database and compared

with the selected quantitative functions.
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Table 3.1: Review of methods reported in literature.

Work Method Color space Quantitative functions or
metrics reported

[Kudo and Kubota, 2018] Transmission map *NR NR
[Ahn et al., 2011] Local contrast estima-

tion map
NR NR

[Jang and Park, 2017] Weight map RGB Contrast, Saturation and Re-
stored edges

[Feng et al., 2013] Haze distribution map NR NR
[Zhang Jingyun et al., 2016] Haze map YUV Entropy, Gray variance and

Average gradient
[Son et al., 2015] Contrast-Preserving

Map
lαβ Colorfulness, Spatial fre-

quency, Entropy and Contrast
[Son and Zhang, 2017] Contrast-Preserving

Map + Detail layer
transfer

lαβ Colorfulness, Spatial fre-
quency, Entropy and Contrast

[Elliethy and Aly, 2017] Local contrast Map YcbCr NR
[Sharma et al., 2017] Laplacian-Gaussian

pyiramid to generate
weight maps

YCbCr RMSE and PSNR

[Sharma and Gool, 2016] BF YCbCr RMSE and PSNR
[Ahn et al., 2011] BF NR NR
[Schaul et al., 2009] WLS NR NR
[Park, 2020] WLS YCbCr PSNR
[Vanmali and Gadre, 2017] weight maps, calcu-

lated on the basis of
local entropy, local
contrast and visibility,
Laplacian–Gaussian
pyramid fusion

HSV Entropy, Quality index,
Quality-aware clustering,
Edges, Visual information
fidelity

[Fredembach and Süsstrunk, 2008] Gaussian filter and the
fast Fourier transform

HSV/ YCbCr NR

[Vanmali et al., 2015] Depth map and airlight
estimation

HSV Entropy and Quality index

[Jung et al., 2020] CNN CIE L* a* b* PSNR, SSIM,BIQE
[Kumar et al., 2019] Fuzzy-wavelet CIE L* a* b* Contrast restoration, Newly

visible edges, Naturalness
Image Quality Evalua-
tor(NIQE), Blind/ Reference-
less Image Spatial Quality
Evaluator (BRISQUE), SSIM
and MSE

*NR=No reported.
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Chapter 4

Proposed method

The proposed method aims to complement the visual image with information of the structures

obtained from the NIR image through a selective fusion process that avoids color over-saturation.

The proposed approach is designed based on the following assumptions: i) commonly, in outdoor

images, there are significant differences between the content highlighted in the visible and NIR

bands that can improve the information of the visible; ii) the added information is selected through

a criterion to assess if it is relevant for being fused; iii) the source images, V and N , are properly

spatially and temporally aligned. The general fusion method is described in four phases or main

Figure 4.1: General description of the V-NIR fusion method.

stages as shown in Figure 4.1.

1. Image transform: To carry out the image fusion, it is proposed to separate the chroma

from the luminance of the visible image (V ) in order to work with the latter without affect-

ing the original colors significantly. In V-NIR fusion, these color spaces have been used:
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YUV [Zhang Jingyun et al., 2016], YCbCr [Elliethy and Aly, 2017, Sharma et al., 2017,

Fredembach and Süsstrunk, 2008], HSV [Vanmali et al., 2015, Vanmali and Gadre, 2017,

Fredembach and Süsstrunk, 2008], and lαβ [Son et al., 2015]. The one decided to use is

the lαβ given its low correlation between the channels. This transform is done by convert-

ing RGB to lαβ color space using the equations presented by [Reinhard et al., 2001].

2. Information extraction: The information is extracted selectively using a difference map

or morphological transformations. This selection allows only relevant information to be

brought into the fusion and avoids unwanted artifacts.

3. Fusion rule: Once the information is obtained from the sources, a fusing criterion is pro-

posed to establish the combination or proportion in which this information will be fused.

Not all the proposed criteria give the same result.

4. Inverse transformation: Finally the information is fused in the luminance band, an inverse

transformation of the color space is carried out from lαβ to RGB to get the final fused image

and visualize the results.

4.1 Visible luminance and NIR distributions

This section analyzes the luminance and NIR distributions to observe the characteristics as help to

propose a way to extract the information. By analyzing the luminances of V and N and plotting

them in a histogram, complementary distributions can be found as shown in Figures 4.2 (a-b)

the red squares remarks the areas where complementary information can be found. Figure 4.2

(c), the distribution of the V image is concentrated on the high-intensity values since the image

has a whitish appearance associated with the presence of fog in the environment. On the other

hand, the N distribution covers a wider range of V . Since the NIR image is less affected by

weather conditions, it distinguishes the structures present in the fog region from the visible bands.

Therefore, there is a greater difference between the regions translated into a wider range and better

contrast. Then the goal is to take the well-contrasted information from both source images, V and

N , to complement each other. The main idea of the proposed algorithm is to use the information

from both images to obtain a fused image with the best characteristics of the input images.
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(a) (b)

(c)

Figure 4.2: (a) Visible image, (b) NIR image,(c) their corresponding luminance distributions (lV ,
lN ), red squares show the possible areas where complementary information can be found.

4.2 Fusion by weighted luminance

In the first approach of the fusion method, it is assumed that the information to be fused by finding

differences between the luminances of V images and N . So direct subtraction is performed to

find these differences. Then, the fusion criterion is based on image fusion technique weighted

pixel averaging by the weight assignation of luminances. The overview of the proposed method is

presented in Figure 4.3 and is establish at the Algorithm 1.

First, transform the V image into a grayscale (Gv) (Algorithm 1 line 1) for ranging the

values of V image to correspond to the range of the N image. Then, to find the differences
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Figure 4.3: Overview of the fusion by weighted luminance.

Algorithm 1 V-NIR fusion method based on weighted luminance
Input: N : Near-infrared image,V :visible image
Result: F : Fused image
1 Gv ← RGB to gray (V )
2 n← (N −Gv)
3 [lV , αV , βV ]← RGB to lαβ(V )
4 lN ← Normalize N
5 lT ← (lV ∗ n) + (lN ∗ (1− n))
6 F ← lαβ to RGB(lT , αV , βV )

between these two images, a subtraction is performed. The results of this subtraction will be found

in the matrix n; where n contains the normalized differences between the sources images, ranging

from -1 to 1. The normalization is by dividing the value of n by the maximum value of bits used

to define each pixel of the images, which in this particular case is 255. There are two possible

extremes cases where the range comes from:

• Case 1: When N = 255 and Gv = 0; therefore n = (255− 0)/255 = 1.

• Case 2: When N = 0 and Gv = 255 in this case result n = (0− 255)/255 = −1.

Figure 4.4 shows an example of Gv, N and n where the differences between the two images can

be observed. The more considerable difference when N value is higher than Gv, the value of n

tends to 1, which is reflected in the image as a lighter pixel. Conversely, when the value of Gv is

greater than N , the value of n tends to -1, so it is displayed darker. This differences map is use

later to assign weights to the luminances in the fusion rule.

Next transform the color image V to lαβ (Algorithm 1 line 3) to obtain the luminance values

also lN which is the normalized N image (Algorithm 1 line 4). The normalization is carried out
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(a) (b)

(c)

Figure 4.4: (a) Gray image from visible Gv, (b) NIR image N and (c) differences value n matrix.

by substituting the value of N in place of the matrix of R, G, B in the transformation Eqs. (A.21-

A.23) so that it is in the same range of values as lV . The idea of the fusion rule starts from the

general method of assigning weights, where it is assumed that both images contribute the same.

However, the proposed method starts from the assumption that the input images can contribute in

different proportions. And this ratio can be controlled with the difference map n that has just been

calculated. In Eq. 4.1 the proportions in which lv and lN will contribute are established. This rule

is used to calculate the new luminance value (lT )(Algorithm 1 line 5). Where the operator A ∗ B

is the element-by-element product of A and B.

lT = (n ∗ lV ) + ((1− n) ∗ lN ) (4.1)

In the fusion rule, there may be three possible cases:

• Case 1: When N = Gv in this case n = N−Gv = 0; therefore lT = (lV ∗0)+ lN (1−0) =
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lN the value of the luminance of the NIR (lN ) is taken. In this case it does not matter which

one contributes more or less.

• Case 2: When N > Gv in this case n = N −Gv = +n the result of n will have a positive

sign, therefore lT = nlV + lN (1− n) = n(lV − lN ) + lN .

• Case 3: When Gv > N in this case n = Gv −N = −n the result of n will have a negative

sign therefore lT = −nlV + lN (1 + n) = n(lN − lV ) + lN .

Finally, the fused image (F ) is obtained by using the channels lT , αv and βv for returning back

to the RGB color space (Algorithm 1 line 6). As can be seen in Figure 4.5 the fused image,

information that could not be seen in the visible can be recovered, especially in the region covered

with haze. And as expected, the histogram of the fused image (Figure 4.5 (f)) shows how the

information is complemented.

The fusion carried out in this section was based on the assignment of weights of the two lu-

minances through a difference map, from now on is mentioned as [Herrera-Arellano et al., 2019].

Although it was possible to fuse information, it is still not possible to improve the contrast com-

paring to the original, and in some cases, the images are desaturated. So it was decided to explore

morphological transforms to select information.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: (a) Original V , (b) luminance histogram lV , (c) NIR image N , (d) luminance his-
togram lN , (e) fused image (F ) using the proposed method and (e) luminance histogram lT .

4.3 Fusion by top-hat and bottom-hat

In this fusion method, the selection of information is carried out using the top-hat, and bottom-hat

transforms. Assuming that using the top-hat transformation is possible to extract the information

from the light regions and the bottom-hat, the information of dark regions is selected.
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Figure 4.6: Framework of the proposed V-NIR fused method.

The fusion method (Figure 4.6), is performed between the luminance component of V and

N input images. First, it is analyzed to determine the optimal λ scale for the top-hat transformation

through a granulometric process for the data set. This ensures that both transformations, TV and

TN , have the same target structure size. Then the information to fuse is selected by top-hat (TT )

and bottom-hat (BT ). Next, a fusion criterion is applied by considering the luminance lV and the

higher improvement reached by top-hat (TT ) and bottom-hat (BT ). Finally, lV is replaced by the

new fused luminance lT in the inverse transform to return F to the fused color image F .

Algorithm 2 V-NIR fusion method based on top-hat and bottom-hat
Input: N : Near-infrared image,V :visible image,λ = 9
Result: F : Fused image
1 [lV , αV , βV ]← RGB to lαβ(V )

2 [lN ]← Normalize N
3 TN ← Twλ (lN )
4 TV ← Twλ (lV )
5 BN ← Tbλ (lN )
6 BV ← Tbλ (lV )
7 TT ← max(TN , TV )
8 BT ← max(BN , BV )
9 lT ← lV − TV + TT −BT

10 F ← lαβ to RGB(lT , αV , βV )

4.3.1 Information selection

As part of selecting the information is the use of the top-hat transform in which the setting of

structural element to use is important in this type of transformation. Thus it is essential to know
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which structure sizes (λ) are relevant to use. The selection of the structuring element is carried out

using the entire database, and once the structuring element is selected, this variable is set for the

subsequent fusion process. The idea is to find a representative size of the entire database that can

be left fixed to simplify the complexity of the processing. However, it is also possible to select the

element for each of the images.

Structural element selection.

In Figure 4.7, it can see how the result of the fusion is affected by the structuring element depend-

ing on the size and shapes that it can present. Therefore, a granulometric analysis was carried out

to establish the size. Then define the shape to be used.

Granulometric analysis to determined structural element size.

The NIR image contains well-contrasted regions that complement the visible information. Thus,

the NIR image is processed, through a granulometric analysis, to identify the regions with a higher

contribution. To determine the most suitable size for TwBλ
, a granulometric analysis was per-

formed by using (Eq. 2.17), the parameter λ controls the size of the operation γBλ applied to the

image. The range of values [1, 50] with an increment ∆ = 1 for λ was used. Figure 4.8 illustrates

an example of the pattern spectrum obtained through the granulometric analysis. The higher PS

values in the plot are associated with λ sizes from 1 to 9 that cause a significant change in the

image, either because they match with large structures or there is a higher occurrence of λ size

structures. Small λ values are common in textured images because of the high variation of gray

levels. Since the dark regions are smaller than the light regions, the λ value for the bottom-hat is

fixed at 3. For this work, a λ value of 9 was used since it showed a reliable performance during

testing. The analysis performed for the used database indicates that 133 of the 305 tested images

get the same λ value due to their similar textural characteristics. The others tried images that have

closer values to λ, but they are not the majority by themselves. A fixed scale could be relevant

when seeking to reduce the processing, such as in real-time applications. However, it is impor-

tant to highlight that our methodology can be easily adapted by analyzing individual images as

input instead of the complete database. This characteristic allows a wide range of applications, for

example, when working with images that have different characteristics of each other.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Difference among structural element shapes and sizes. (a) Square shape λ = 3, (b)
Square shape λ = 9, (c) Square shape λ = 15, (d) Disk shape with λ = 3, (e) Disk shape with
λ = 9, (f) Disk shape λ = 15.

Top-hat and bottom-hat.

Once the structural element is chosen, the bottom-hat and top-hat transform are applied to extract

the information to be fused. First the N values are normalized, as lN , to compare them with the

luminance values (algorithm 2, lines 1-2). The normalization is carried out by substituting the

value of N in place of the matrix of R, G, B in the transformation Eqs. (A.21-A.23) so that it is

in the same range of values as lV . Then the top-hat is applied to lV and lN as TV = TwBλ (lV )

and TN = TwBλ (lN ), respectively (algorithm 2, lines 3-4). The top-hat transform extracts im-

age regions of size Bλ. Also, the bottom-hat is applied to lV and lN as BV = TbB3 (lV ) and
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Figure 4.8: Pattern spectrum obtained from the granulometric analysis for the λ range [1, 50] with
∆ = 1 to select the λ value to use in the top-hat.

BN = TbB3 (lN ), respectively (algorithm 2, lines 5-6). Figure 4.9 shows the information obtained

after applying the top-hat and bottom-hat transforms where the four images show that they contain

information in common, which is the information contained in V and N but also have different

information, which is the complementary information. So in the following step consist of recov-

ering this information to keep the similar information and add the different one. The selection of

relevant structures for the fusion imaging process is performed though the maximum value TT and

BT (Algorithm 2, lines 7-8). This is the selective part of fusing the information by taking the max-

imum values of both transformations; similar information is kept while the different information

is added (Figure 4.10).

4.3.2 Fusion strategy

The next step is the selection of the final luminance (lT ) (Algorithm 2, line 9). The fusion criterion

is based on the following reasoning. First, the luminance from the visible lV must be increased to

a particular value to reach a contrast improvement. Second, the difference obtained through top-

hat transformation allows the structures reached by the λ scale and from bottom-hat to outstand

from the background. Then, the most outstanding value is passed to the fusion criterion as the
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(a) (b)

(c) (d)

Figure 4.9: Results of: (a) top-hat applied to lV , (b) top-hat applied to lN , (c) bottom-hat applied
to lV , (d) bottom-hat applied to lN

(a) (b)

Figure 4.10: The maximum value of: (a) top-hat (TT ) and (b) bottom-hat (BT ).
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incremental value TT by taking the maximum value between between TV and TN . The fusion

criterion must consider that the analyzed images contain a well-contrasted region to keep and a

low-contrast region that requires improvement. Thus, if the maximum value comes from TV , the

original luminance is preserved, but if it comes from TN , the original luminance is increased to

reach contrast improvement, as stated in (Eq. 4.1). However, a direct increment lV +TT may cause

a value overflow; to avoid it, the value of TV is used as a limiter. By removing BT , the dark areas

are highlighted, specially non-hazy regions. In this way, fused luminance lT and the channels αV

and βV are used to return to the RGB color space, obtaining the final fused image F (Figure ??).

In this section, two methods were proposed; the first one is based on assigning weights

through a difference map whose part of fusing the different information. However, despite having

more information than the original image, it has desaturated colors. So it was decided to find

another way to extract the information. In the second method, the information is extracted using

morphological transformations. The top-hat is used to extract information from light regions,

while the bottom-hat is used to extract information from dark regions. The main contribution of

the fusion by morphological transformations is the fusion of edges. With this method, information

is fused selectively, avoiding the appearance of artifacts and color over-saturation.
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Chapter 5

Experiments and results

This chapter shows the experimental results of the visible and NIR image fusion process using the

methods described in methodology (Section 4). The experiments were done on the method based

on mathematical morphology that, from here on, is called the proposed method.

First, it describes the characteristics of the database used. The second part shows the ex-

periments carried out to set the parameters of the proposed method. Then the parameters of the

methods with which the comparison was made. Next, the qualitative results and quantitative eval-

uations using the evaluation functions mentioned in the background (Section 2.4.2), following

luminance analysis. Finally, the discussion is made, including over-saturation, blurred edges, and

a possible application.

5.1 Experiments

The experiments run using Matlab 2020b. The images with which the experiments were carried out

belong to the database V-NIR EPFL (École Polytechnique Fédérale de Lausanne). Images were

captured with the Nikon D90 and a Canon T1i cameras, using the ”B+W 486” filter for visible

and the ”093” filter for NIR images. The cutoff between the two filters is approximately 750nm.
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Visible and NIR images are 1024× 680 pixels [Brown and Süsstrunk, 2011]. This dataset consists

of 477 pairs of images divided into nine categories: country, field, forest, indoor, mountain, old

building, street, urban, water. But for this work, the indoor and old building images were discarded

the same way the images that are not aligned. Therefore the total images used in the experiments

were 305 pairs.

ANOVA tests were used to evaluate the results of the experiments where the null hypothesis (H0)

proposes no difference between the means of evaluation functions values. In contrast, the alterna-

tive hypothesis (Ha) states that at least one mean is different. The H0 is rejected if the P ≤ α value

equality of means and concludes that at least one population means different from the others. The

ANOVA table shows the between-groups variation and error. Where SS is the sum of squares, and

df is the degrees of freedom. While MS is the mean squared error. Finally the F statistics is the

ratio of the mean squared errors [Triola, 2018].

5.1.1 Shape of the structural element.

Even though it is not common to find a specific morphology in outdoor images, this experiment is

carried on to know if there is a morphology that could be better adapted and improve the subsequent

results. This experiment is done to know if the shape of the structural element affects the contrast

results. The size that was already selected in the previous step is left fixed. The analyzed shapes

are diamond, square, disk, cube, and octagon. In this experiment, the p-value (Prob > F ) is

1. This p-value can be taken as evidence that all means were equal when the image dataset was

processed with different shapes of structural elements. Usually, a square structuring element is

used unless objects with specific morphologies are processed, which in the case of natural outdoor

images does not occur because of the diversity of the regions. Moreover, a square shape may

also facilitate further replicating and comparing the work since most software tools include it.

Therefore, the usual square shape was used in the following processes. The ANOVA comparison

is summarized in Table 5.1. The quality measure of contrast was taken as reference to perform

the test, showing that there was not a significant difference in the results when the image dataset

was processed by the common square shape or by some other shapes (Figure 5.1). Commonly, the

difference generated by the shape of the structuring element is reflected in the edge of the objects
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Table 5.1: ANOVA Table for different structural element shape

Source SS df MS F P>F
Groups 0.03 4 0.00655 0 1
Error 5351.12 870 6.15072 - -
Total 5351.15 874 - - -

when they contrast from their surroundings.

Figure 5.1: Comparison of the mean and standard deviation estimations of the contrast evaluation
function by using different structural element shapes.

5.1.2 Color spaces

Different color spaces are used in the literature for V-NIR fusion and have not yet defined an

optimal one for these applications. Moreover, each color space has characteristics that can favor

or harm the fusion results. Therefore, the following experiment seeks to know how the results

are affected by using the chosen color space lαβ or a different one. So the next test is performed

using some of the state-of-the-art color spaces that separate the luminance information from the

chroma, such as YCbCr, HSV, CIE L∗a∗b∗, and lαβ. The ANOVA test of the C value for the color

spaces (Table 5.2) showed that the difference was not significant ; therefore, similar results by the

proposed method regardless of the color space were observed. Consequently, it can be inferred
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that the proposed method results are independent of the color space used.

Table 5.2: ANOVA table for color spaces

Source SS df MS F Prob>F
Groups 17.06 3 5.686 0.97 0.4073
Error 39994.79 680 5.874 - -
Total 4011.85 683 - - -

The proposed method results were compared with some V-NIR fusion state-of-the-state

methods: [Vanmali et al., 2015], [Vanmali and Gadre, 2017], [Sharma et al., 2017], [Elliethy and Aly, 2017]

and with a previous proposal of our authorship based on weighted luminance [Herrera-Arellano et al., 2019].

The codes of the fusion methods are all publicly available, and their parameters are all set in

accordance with those in the original studies, Table 5.3 summarizes the parameters values. In

[Vanmali et al., 2015] uses a constant λ1 to calculated depth map values, while [Vanmali and Gadre, 2017],

adds an β1 value to control the color saturation of the fused image. Secondly [Sharma et al., 2017]

used a n to defined the levels of decomposition of a WLS filter. The proposed top-hat and bottom-

hat method uses a λtop−hat and λbottom−hat associated with the size of the structural element of

the transformations. On the other hand [Herrera-Arellano et al., 2019] does not need parameter

settings.

Table 5.3: Parameters settings of V-NIR fusion methods.

Method Parameters Color space
[Vanmali et al., 2015] λ1 = 1 HSV

[Vanmali and Gadre, 2017] β1 = 1.5 HSV
[Sharma et al., 2017] Λ = 0.125, c = 1.2, n = 1 YCbCr

[Elliethy and Aly, 2017] S = 5, ωcut, k = 19 YCbCr
[Herrera-Arellano et al., 2019] - lαβ

Proposed method λtop−hat = 9, λbottom−hat = 3, square lαβ

66



5.2 Results

The first section of the results shows some of the images obtained from the proposed method

against the other methods. Subsequently, the average values of the contrast, entropy, saturation,

and color similarity evaluation functions are obtained. An ANOVA analysis was then carried out to

determine if there are significant differences between the resulting images and the original image

with respect to these same evaluation functions values. Then, the discussion is addressed over-

saturation also, an analysis of luminance and edges after image fusion is needed. Finally, it is

examined how the proposed image fusion results could improve a post-processing task such as

segmentation.

With the proposed fusion method, the top-hat and bottom-hat transformations extract the infor-

mation from the visible and the NIR. At the same time, the lαβ color space is used to process

only the luminance of the V images. Under this approach, it is possible to fuse the visible and

NIR information to improve the visualization of low contrast structures, hidden by haze, result-

ing in a higher quality image. While using a selective approach for fusion (top-hat and bottom-

hat), it is possible to avoid over-saturation. In the Figure 5.2 is shown a compendium of re-

sults of the comparison fusion methods against the proposed method. The first two rows show

the input images V and N , while following rows show the results of the methods. In general,

the compared methods manage to recover information that is behind the haze. But in the par-

ticular case of [Vanmali et al., 2015] and [Vanmali and Gadre, 2017] the results show that over-

saturation is generated. Also, the amount of detail revealed is visually less noticeable compared

to other methods. On the other hand, in the results of [Herrera-Arellano et al., 2019] the visibil-

ity of the structures behind the haze is improved compared to the methods [Vanmali et al., 2015],

[Vanmali and Gadre, 2017] and [Sharma et al., 2017]. However, there is color desaturation. Fi-

nally, the proposed method highlighted and improved the structures providing a more detailed

visual description than the other methods. This increase in detail is due to the contribution of

NIR images. Furthermore, the proposed method provides additional and detailed structures and

preserves those of the haze-free regions. A notable advantage is that there is no over-saturation or

desaturation, which is reflected in the V image colors preserved after V-NIR image fusion.
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Figure 5.2: Comparison between images fused with reference V-NIR methods on four NIR and
the proposed method. Quantitative evaluations associated with the results is provided in Table 5.4.68



5.2.1 Quantitative evaluation.

All outdoor images included in the dataset were evaluated with contrast, entropy, saturation, and

color similarity evaluation functions. As indicated above, the objective of the method is to recover

as much information from the NIR to merge it with V (which is measured by contrast and entropy)

while avoiding over-saturation (measured by saturation and color similarity). It is expected to

have higher values of entropy and contrast to consider an improvement. Also, saturation values

stay the closest to the input image V while the color similarity values are no greater than 5; this

indicates that color is similar. Table 5.4 shows the results obtained in the evaluation functions. In

addition, an ANOVA test was performed to know if the differences in the results were statistically

significant comparing to original. It is complemented with multiple comparisons of the means

using Tukey-kramer, which allows examining which means are different and estimating the degree

of difference.

Table 5.4: Average of 175 images of fusion results based on the selected evaluation functions

evaluation function
Method

∆E00 ≤ 5 Ŝ = EN ↑ C ↑
Original - 12.63± 5.62 13.98± 0.41 26.06± 2.45
[Vanmali et al., 2015] 10.47± 3.80 22.97± 13.67 13.82± 0.45 24.36± 2.10
[Vanmali and Gadre, 2017] 8.83± 3.37 18.18± 7.72 13.94± 0.40 24.42± 2.17
[Sharma et al., 2017] 1.75± 0.53 12.86± 5.77 13.99± 0.39 26.04± 2.45
[Elliethy and Aly, 2017] 0.87± 0.54 13.06± 5.83 14.02± 0.39 26.23± 2.35
[Herrera-Arellano et al., 2019] 11.19± 3.39 11.54± 4.96 13.91± 0.41 23.79± 2.10
Proposed 2.15± 0.89 12.54± 5.61 14.09± 0.39 26.70± 2.36

Added information

When a contrast method or entropy values are lower than the original image, it indicates a loss of

information due to, for instance, a blurring in the edges of the original image. These are the cases of

[Vanmali et al., 2015], [Vanmali and Gadre, 2017] and [Herrera-Arellano et al., 2019] where the

contrast quality evaluation function are lower respect to the original.The proposed method has

higher contrast and entropy values than the original image. Also they are significantly different as
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shown in Figures 5.3 (b) and 5.5 (b). In Figures 5.3 (a) and 5.5 (a) the differences also can be

seen by comparing the median line of the box plot associated with the value of the tested set. If the

median line of a box plot lies outside of a comparison box plot, then there is a difference between

the two groups; otherwise, the highest values of contrast are obtained by [Sharma et al., 2017],

[Elliethy and Aly, 2017] and the proposed method (Table 5.4). The slight difference may due

to the contrast value evaluates the whole image, but regions, where information was added by

fusion, cover a smaller area in most cases. However, another way to assess methods performance

is through the outliers they generate (red crosses in Figures 5.3 and 5.5). An outlier is a datum

point located outside the whiskers of the box plot. Two characteristics are essential for analysis,

the box length and the number of outliers. On the one hand, the larger the box, the bigger the

dispersion of the values. On the other hand, a higher amount of outliers represents those cases for

which the method cannot achieve a result near to its mean improvement or indicates that there are

conditions not considered by the method that affects its final result. A few outliers are associated

with the original set, indicating that the image set has similar conditions, according to the obtained

evaluation functions values. Therefore, if images in similar conditions are processed by the same

method, it is expected that results behave similarly, e.g., a few outliers close to the whiskers of

the box. Then, in fusion methods, it is important not only to reach a high contrast and entropy

value but also a small number of outliers to ensure a reliable performance. Then the multiple

comparison of group means plots (Figures 5.3 (b) and 5.5 (b)) illustrate whether the values are

significantly different among methods. On the y-axis are the compared methods, while values in

the x-axis are related to the mean values of each analyzed group. The group original mean and

the comparison interval is in blue. If the comparison intervals for the other groups do not intersect

with the intervals for the group original mean, they are highlighted in red. Otherwise, they are

highlighted in green. The ANOVA table corresponding to these plots are shown in Table 5.5 and

Table 5.6.

Table 5.5: ANOVA Contrast (C)

Source SS df MS F Prob>F
Groups 1681.72 6 280.286 57.31 1.55843e-62
Error 5956.94 1218 4.891
Total 7638.66 1224
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(a)

(b)

Figure 5.3: Contrast comparison of fusion methods to compare the new added information.
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(a)

(b)

Figure 5.4: Entropy comparison of fusion methods to compare the new added information.
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Table 5.6: ANOVA Entropy (EN)

Source SS df MS F Prob>F
Groups 4.317 6 0.71954 4.65 0.0001
Error 188.332 1218 0.15462
Total 192.649 1224

Color over-saturation

As it has been handled throughout the investigation, less significant changes are desirable regarding

the color change. Thus is desirable the Ŝ values keep similar as possible from the original images

and the color similarity value under five. The Figures 5.5 (a) and 5.6 show the results of evaluate the

color changes; with respect to Ŝ, [Vanmali et al., 2015] and [Vanmali and Gadre, 2017] methods

obtained significant differences. While [Herrera-Arellano et al., 2019] method presents a slightly

lower value than the original one (Figure 5.5 (b)). Finally, [Sharma et al., 2017], [Elliethy and Aly, 2017],

and the proposed method are not different from the original. Concerning the color similarity Figure

5.6, the [Sharma et al., 2017], [Elliethy and Aly, 2017], and the proposed method are the only ones

that keep above five. In addition, these methods have a lower dispersion of values Figure 5.5 (a),

which means that the proposed image fusion can provide consistent results and is less affected by

variations in the input images. Therefore, the results demonstrated that the proposed method could

add new information while avoiding significant color changes. The ANOVA table corresponding

to this plot are shown in Table 5.7.

Table 5.7: ANOVA Saturation (Ŝ)

Source SS df MS F Prob>F
Groups 26854.3 6 4475.71 73.63 1.88309e-78
Error 74040 1218 60.79
Total 100894.2 1224
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(a)

(b)

Figure 5.5: Evaluation functions comparison of fusion methods for assessing color over-
saturation.

5.2.2 Luminance

This thesis mainly works with luminance, so we analyze how this process affects luminance (lT ).

Considering a row segment of the images in Figure 5.7 is taken to analyze the fusion based on a

top hat and a bottom hat. The Figure 5.8 (a) shows the original luminances lV (solid black line)

and lN (solid red line) of the segment and its corresponding top hat TV (dotted black line) and TN
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(a)

Figure 5.6: Comparison of fusion methods for assessing color difference.

(dotted red line). It can be seen that when the top hat TV is greater than or equal to TN (columns

5 to 15), the luminance result (lT ) remains the same as the luminance of the visible. On the other

hand, for columns 40 to 45, TN is greater than TV so lT is greater than lv. This means that ln

provides more information on the fusion process according to Eq. 4.1. Figure 5.8 (b) shows a

comparison between the fusion results obtained by the proposed method and the state-of-the-art

methods. When we see the difference in the shapes of the lines (column 10-20), it can see that

the luminance lV appears to be constant, while in the fusion methods, it is varying either with

higher or lower values. In this case, we can say that a structure or shape that was not in visible

was fused. It cannot be said that if the value of lT is greater than lV it is better because that

depends on the image. For example, we could find an image with fog whose value of lV is high,

and when merging, the result of lT will be less than the original. What can also be said is that

when performing a direct weighted combination of information from the visible and NIR bands,

some regions are affected, especially when there are conditions where there is low contrast mixed

with well-contrasted regions. As is the case with [Herrera-Arellano et al., 2019], higher values are

always obtained in lT than in lV and the resulting values of the evaluation functions are not the

best. This is because if both source images are combined directly, they could still cancel each

other out. The proposed approach considers that image fusion can be improved if the information

is first extracted from both sources, and only the most relevant information is part of the fusion (Eq.
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4.1). As a result, contrast enhancement is ensured or maintained when it comes to well-contrasted

regions.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.7: Luminance comparison (a) VisiblelV , (b) NIR lN , and the comparison of
the resulting fused luminance by (c) [Sharma et al., 2017], (d) [Vanmali et al., 2015], (e)
[Vanmali and Gadre, 2017], (f) [Elliethy and Aly, 2017], (g) [Herrera-Arellano et al., 2019] and
(h) proposed method.

In case of being required, the comparison with the results of the evaluation functions estab-

lished in some articles the results when evaluating the state-of-the-art methods with the proposed

method for the Mutual information, PSNR, RSMS, SSIM evaluation functions, are found in the

Appendix C.
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(a)

(b)

Figure 5.8: (a) Luminance enhancement through top-hat in lV and lN , and (b) the comparison
with reference methods.

77



5.3 Discussion

5.3.1 Blurred edges

Once the images are fused, they are often used in further processing, for example, segmentation

and corner detection. It is then that the quality of the image concerning the edges is important.

For instance, if the borders between regions are well defined, the results of the segmentation pro-

cess colud be more accurate. However, if the edges are poorly defined, the value between the

regions and their edges is close. Thus two or more regions could be identified as those generating

incorrect segmentation. Therefore, for example, although the entropy and contrast obtained by

[Sharma et al., 2017] are generally higher than the originals, blurred edges persist in the results.

Figure 5.9 shows an example of the differences in edges definition when the entropy and contrast

are smaller than the original. In the case of the proposed method, this condition was found only one

time in the 305 analyzed images, while for [Vanmali et al., 2015] 189 times, [Sharma et al., 2017]

36 times, and [Herrera-Arellano et al., 2019] 194 times.

5.3.2 Over-saturation

Although the proposed method does not generate over-saturation, it is necessary to consider what

happens when it occurs. The over-saturation is generated in these methods mainly when the image

does not contain a homogeneous haze distribution, mainly when it is only in a small region. For

example, the original image in Figure 5.10 (a) has not area of haze. Therefore, the results of the

fusion of the first image tend to be over-saturated by [Vanmali et al., 2015] method Figure (5.10

(b)). Considering that V-NIR fusion applications do not only focus on haze removal, it is important

to consider the visible image saturation level. It is worth noting that when high over-saturation is

generated, the resulting image would require color correction. Thus, an essential advantage of the

proposed method is to avoid color over-saturation in the fusion results.
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(a) C = 20.3770, EN = 6.4281

(b) C = 19.6445, EN = 6.4035

(c) C = 20.4095, EN = 6.5185

Figure 5.9: Difference in edges definition. A zoomed view of an example for (a) the original
image, (b) [Sharma et al., 2017], and (c) the proposed method.
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(a) Ŝ = 0.2207

(b) Ŝ = 0.4420

(c) Ŝ = 0.2203

Figure 5.10: Saturation values for: (a) Original image and after image fusion through
(b)[Vanmali et al., 2015], and (c) proposed method.
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Chapter 6

Conclusions

This last chapter describes the conclusions of the research carried out and presented throughout

this document. Likewise, this doctoral thesis offers different perspectives on future work in the

coming years on the same subject under study. This research has addressed the fusion V-NIR im-

ages considering the contrast as a quality measure, including the color change problem. It was

hypothesized that if relevant information is selected images, it could enhance low-contrast regions

while avoiding oversaturation. The proposed method uses the morphological top-hat and bottom-

hat transform to select the information, thus complementing the visible information with the NIR,

increasing the contrast of the visible input image. Based on the comparison of the results obtained

through the evaluation functions, the proposed method reaches a statistically significant difference

concerning other methods. It was also tested to be robust regarding changes in the color space of

images by providing consistent results. The main goal of this thesis was reached by accomplishing

that:

The results show that it is possible to extract the information fused by using morphological trans-

forms, avoiding unwanted artifacts. The performance of the proposed methods was compared

against some state-of-the-art methods using the evaluation functions of contrast, entropy, color

similarity, and saturation. Results have shown that the proposed method could fuse relevant in-

formation and details, keeping well-defined edges. Moreover, color oversaturation was avoided,

regardless of the visible image’s conditions, such as the area affected by the haze. The images
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resulting from the fusion method developed in this work can be used in other applications, such as

segmentation.

6.1 Future work

Likewise, this doctoral thesis offers different perspectives on future work in the coming years

on the same subject under study. Based on the results obtained, some future studies have been

identified.

• The artifacts could stand out for the proposed methodology since it is based on a mathemat-

ical morphology transformation. For example, the fixed shape and size of the structuring

element may generate artifacts. However, for the V-NIR EPFL database, only a few images

have such conditions. To the best of our knowledge, ongoing research addresses struc-

turing elements that dynamically change their shape depending on the processed region,

which may significantly improve the results and reduce the artifacts generated in the images

[Fang et al., 2020]. Thus, determining if changing the structuring element for an adaptive

one can significantly improve the contrast in the images could be useful, also evaluating the

computational cost versus the benefit of the adaptive structuring element.

• Another possible test could be to check what happens if a multiscale is used instead of

a fixed scale. A test was carried out using the principles of the proposed methodology,

where instead of defining a fixed scale, five scales obtained from granulometry are used. An

example of the results is shown in the Figure 6.1.

• Use the proposed algorithm as a previous process for other applications, such as image

segmentation, detection of objects, among others to verified the improvement. For this

reason, a test was carried out using the original images and the images from the fused

methods to determine the differences between the results of the segmentation process using

the technique proposed in [Bampis et al., 2016]. This method uses segmentation based on

the characteristics of the texture, and as a result, it merges the areas with similar textures

labeling into five colored segments. The color scale for textured regions ranges from lower
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(a)

(b)

(c)

Figure 6.1: (a) The original visible image, (b) Proposed method, and (c) multiscale method.

values (in blue) to higher values (in yellow), allowing visualize how the texture levels of the

image change. As can be seen in Figure 6.2 (a) , there are lower texture values in the valley

region of the original image, and in the mountains, the values are higher in texture. On

the one hand, the proposed method presents more texture comparing to the other methods
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specially in the valley region, reflected in the segmented image (Figure 6.2 (b)). On the

other hand [Vanmali et al., 2015, Vanmali and Gadre, 2017] present the lower values at the

valley (Figure 6.2 (c-d)). While [Sharma et al., 2017] appears to have more textures in the

mountain region, the regions with intermediate textures are reduced Figure 6.2 (f).

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Segmentation by texture results: (a) Original, (b) Proposed method, (c)
[Vanmali et al., 2015], (d) [Vanmali and Gadre, 2017], (e) [Herrera-Arellano et al., 2019], (f)
[Sharma et al., 2017].

• Test the proposed fusion method on different bands of the electromagnetic spectrum, such

as visible-infrared, due to infrared images can also avoid the influence of the external en-

vironment, such as sunlight, and smoke [Sun et al., 2020].And review what modifications

or adaptations are necessary to obtain the desired results. Try also using visible-visible and

making the necessary modifications or adaptations for obtaining the desired results.

• Explore another technique for information selection, e.g., generating a contrast map, salience

map. Even proposed another fusion rule with different ratios.
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Appendix A

Color space transformation arrays and

algorithms

A.1 RGB to CIE L*a*b*

Convert RGB to CIE 1976 L*a*b*: L*,a*,b* The values corresponding to a stimulus with CIE

XYZ [Sharma and Trussell, 1997].

L∗ = 116f

(
Y

Yn

)
− 16 (A.1)

a∗ = 500

(
f

(
X

Xn

)
− f

(
Y

Yn

))
(A.2)

b∗ = 200

(
f

(
Y

Yn

)
− f

(
Z

Zn

))
(A.3)

where: Xn, Yn, Zn are tristimuli of the white stimulus and

f(x) =

 x
1
3 ;x > 0.008856

7.7787x+ 16
116 ;x ≤ 0.008856

(A.4)

85



A.2 RGB to YCbCr

Convert RGB to Y CrCb where the components are derived directly from digital form [BT.601-5, 1995]


Er

Eg

Eb

 =


int(219R) + 16

int(219G) + 16

int(219B) + 16

 (A.5)

Y =
77

256
Er +

150

256
Eg +

29

256
Eb (A.6)

Cr =
131

256
Er +

110

256
Eg − 21

256
Eb+ 128 (A.7)

Cr = −
44

256
Er −

87

256
Eg +

131

256
Eb+ 128 (A.8)

A.3 RGB to HSV

Convert the RGB values into HSV by using the algorithm proposed by [Smith, 1978].

R′ = R/255 (A.9)

G′ = G/255 (A.10)

B′ = B/255 (A.11)

V = max(R′, G′, B′) (A.12)

X = min(R′, G′, B′) (A.13)

Saturation calculation

S =

 0;V = 0

V−X
V ;V ̸= 0

(A.14)
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Hue calculation 
r

g

b

 =


V−R
V−X

V−G
V−X

V−B
V−X

 (A.15)

If R = V then H=(if G=X then 5+b else 1-g);

If G=V then H=(if B=X then 1+r else 3-b);

else H=(if R=X then 3+g else 5-r);

H =
H

6
(A.16)

HSV to RGB algorithm

H = 6×H (A.17)

I = Floor(H) (A.18)

where Floor(x) is the integer just less than or equal x.

F = H − I (A.19)


M

N

K

 =


V × (1− S)

V × (1− (S × F ))

V × (I − (S × (I − F )))

 (A.20)

Switch on I into:

case 0: (R,G,B) = (V,K,M);

case 1: (R,G,B) = (N,V,M);

case 2: (R,G,B) = (M,V,K);

case 3: (R,G,B) = (M,N,V);

case 4: (R,G,B) = (K,M,V);

case 5: (R,G,B) = (V,M,N);
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A.4 RGB to lαβ


X

Y

Z

 =


0.5141 0.3239 0.1604

0.2651 0.6702 0.0641

0.0241 0.1228 0.8444



R

G

B

 (A.21)


L

M

S

 =


0.3897 0.6890 −0.0787

−0.2298 1.1834 0.0464

0.0000 0.0000 1.0000



X

Y

Z

 (A.22)

The following transform from LMS to lαβ by using Eq. A.23. These transformation matrices

were proposed by [Ruderman et al., 1998].


l

α

β

 =


1√
6

0 0

0 1√
6

0

0 0 1√
2



1 1 1

1 1 −2

1 −1 0



logL

logM

logS

 (A.23)

To transfer lαβ back to RGB


L

M

S

 =


1 1 1

1 1 −1

1 −2 0




√
3
3 0 0

0
√
6
6 0

0 0
√
2
2



l

α

β

 (A.24)

L = 10L

S = 10S

M = 10M

(A.25)


R

G

B

 =


4.4679 −3.5873 0.1193

−1.2186 2.3809 −0.1624

0.0497 −0.2439 1.2045



L

M

S

 (A.26)
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Appendix B

Evaluations quality functions

B.1 Feature mutual information

A large Feature mutual information (FMI) value indicates that considerable feature information is

transferred from source images to the fused image [Ma et al., 2019].

FMI = MIÁ,F́ +MIB́,F́ (B.1)

where Á,B́,and F́ denote the feature maps of infrared, visible, and fused images, respectively.

B.2 SSIM

Structural similarity index measure (SSIM) ranges into [−1, 1], the best value is 1 and it occurs

when yi = xi, for all i = 1, 2, ..., N [Zhou Wang and Bovik, 2002].

Q =
4σxyx̄ȳ

σ2
x + σ2

y [(x̄)
2 + (ȳ)2]

(B.2)

• X = {xi|i = 1, 2, ..., N} and y = {yi|i = 1, 2, ..., N} are the original and the test image

signals, respectively.
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• x̄ = 1
N

∑N
i=1 xi , ȳ = 1

N

∑N
i=1 yi

• σ2
x = 1

N−1

∑N
i=1 (xi − x̄)2, σ2

y = 1
N−1

∑N
i=1 (yi − ȳ)2

• σxy = 1
N−1

∑N
i=1 (xi − x̄) (yi − ȳ)

B.3 Anisotropic Quality Index

Anisotropic Quality Index method for determining the quality of digital images [Gabarda and Cristóbal, 2007].

σ(t) =

√√√√ S∑
s=1

(
µt − R̄(t, θs)

)2
/S) (B.3)

• R̄[t, θs] =
∑

nR3[n, θs]/M This equation provides a value of entropy R3[n, θs] for each

pixel, where θsϵ [θ1, θ2..., θS ] represents S different orientations taken to measure entropy.

• µt is the mean of the values R̄(t, θs)

• M is the image size.

• t count different images integrating the data set.

• The range in image t can be defined as rg(t) = max
{
R̄(t, θs)

}
−min

{
R̄(t, θs)

}

B.4 MSE

Mean squared error (MSE) indicates a good fusion performance, which means that the fused image

approximates to the source images and minimal error occurs in the fusion process [Ma et al., 2019].

MSE =
MSEAF +MSEBF

2
(B.4)

• MSEXF = 1
MN

∑M−1
i=0

∑N−1
j=0 (X(i, j)− F (i, j))2

• M,N image weight and height respectively.
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• MSEAF denoted the dissimilarity between the fused and visible image.

• MSEBF denoted the dissimilarity between the infrared and visible image.

B.5 PSNR

The larger Peak signal-to-noise ratio (PSNR), the closer the fused image is to the source images

and the less distortion the fusion method produces [Ma et al., 2019].

PSNR = 10log10
r2

MSE
(B.5)

Where r denoter the peak value of the fused image.

B.6 Colorfulness

CF = σab + 0.94µc (B.6)

where:

• σa:Standard deviation along the a axis.

• σb:Standard deviation along the b axis.

• σab =
√
σ2
a + σ2

b : The trigonometric length of the standard deviation in lab space.

• µc =
1
N

∑N
p=1Cp: The mean of chroma where: p = 1 to N . The image has N pixels, and

Cp =
√
a2 + b2.

B.7 Color similarity ∆E00 definitions

∆L′ = L∗
2 − L∗

1 (B.7)

91



∆C ′ = C ′
2 − C ′

1 (B.8)

∆H ′ = 2
√
C ′
1C

′
2sin

(
∆h′

2

)
(B.9)

h′ =

 0 b∗i = a′i = 0

tan−1(b∗i , a
′
i) ; i = 1, 2

(B.10)

C ′
i =

√
(a′i)

2 + (b∗i )
2; i = 1, 2 (B.11)

a′i = (1 +G) a∗i ; i = 1, 2 (B.12)

G = 0.5

(
1−

√
C̄∗7
ab

C̄∗7
ab + 257

)
(B.13)

C̄∗
ab = C∗

1,ab + C∗
2,ab (B.14)

C∗
i,ab =

√
a∗i + b∗i ; i = 1, 2 (B.15)

SH = 1 + 0.015C̄ ′T (B.16)

Sc = 1 + 0.045C̄ ′ (B.17)

SL = 1 +
0.015(L̄′ − 50)2√
20 + (L̄′ − 50)2

(B.18)

Where:

RT = −sin(2∆θ)Rc (B.19)

RC = 2

√
C̄ ′7

C̄ ′7 + 257
(B.20)

∆θ = 30exp

{
−
[
h̃′−275◦

25

]2}
(B.21)

T = 1− 0.7cos(h̄′ − 30◦) + 0.24cos(2h̄′) + 0.32cos(3h̄′ + 6◦)− 0.20cos(4h̄′ + 63◦) (B.22)

h̄′ =



h′
1+h′

2
2 |h′1 − h′2| ≤ 180◦;C ′

1C
′
2 ̸= 0

h′
1+h′

2+360◦

2 |h′1 − h′2| > 180◦; (h′1 + h′2) < 360◦;C ′
1C

′
2 ̸= 0

h′
1+h′

2−360◦

2 |h′1 − h′2| > 180◦; (h′1 + h′2) ≥ 360◦;C ′
1C

′
2 ̸= 0

(h′1 + h′2) C ′
1C

′
2 = 0

(B.23)
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Appendix C

Results of: Mutual information, PSNR,

RMSE, and SSIM

As mentioned in the Section 2.4, there are several metrics used in the literature. This section adds

some of the most used in state of the art. The values shown in bold are the best results; according to

these metrics, the results obtained by the first of the proposed methods ,[Herrera-Arellano et al., 2019],

have the best results in most of the parameters.

Method Metric
Mutual information ↑ PSNR ↑ RMSE ↓ SSIM↑

[Sharma et al., 2017] 2.846±0.724 66.735±1.759 0.015±0.005 1.755±0.116
[Vanmali et al., 2015] 5.756±0.334 65.645±1.276 0.015±0.005 1.715±0.163
[Vanmali and Gadre, 2017] 2.411±0.732 66.775±1.568 0.015±0.005 1.757±0.104
[Elliethy and Aly, 2017] 3.807±0.801 66.749±1.795 0.015±0.005 1.717±0.125
[Herrera-Arellano et al., 2019] 3.126±0.820 66.992±1.854 0.014±0.005 1.771±0.118
[Herrera-Arellano et al., 2021] 2.493±0.608 65.838±1.384 0.018±0.005 1.587±0.141

*Bold text indicated the best scores.
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[Uzal, 2019] Uzal, J. (2019). Diagnóstico por imagen en bandas no visibles sobre patrimonio

cultural: Una aproximación a la imagen infrarroja, ultravioleta, fluorescencias y análisis de

imagen. Books on Demand.

102



[Vanmali and Gadre, 2017] Vanmali, A. V. and Gadre, V. M. (2017). Visible and nir image fusion

using weight-map-guided laplacian–gaussian pyramid for improving scene visibility. Sādhanā,
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