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Resumen

Los preamplificadores son bloques fundamentales en los sistemas de acondicionamiento

de señal. En el caso particular del acondicionamiento de señales provenientes de

sensores, la amplitud de las señales es usualmente del orden de mV o incluso µV ,

de modo que el ruido del preamplificador es un factor cŕıtico que puede limitar la

resolución del sistema del sensor. Muchos sensores llevan información a baja frecuencias,

incluso cerca del DC, por lo cual, el offset y el ruido de baja frecuencia (ruido flicker)

de los preamplificadores limitan la precisión del sistema de acondicionamiento de la señal.

En esta Tesis se propusieron, fabricaron y caracterizaron sistemas de acondi-

cionamiento de señal de bajo ruido flicker, basados en la técnica dinámica de cancelación

chopping. Para ello, se propusieron amplificadores de voltaje de ganancia variable con

baja contribución de ruido flicker y bajo consumo de potencia. Se propuso además un

escalador de impedancia basado en la técnica de bootstrapping, el cual permite generar

impedancias flotantes sin degradar la linealidad del circuito y con una contribución

de ruido despreciable frente a la del resto del circuito. Adicionalmente, se propuso un

circuito de reducción de transconductancia basado en la técnica de bootstrapping para la

implementación de transconductores para filtros de tiempo-continuo con baja frecuencia

de corte mediante la técnica Gm-C. Finalmente se implementaron amplificadores chopper

para el acondicionamiento de señales empleando los preamplificadores propuestos como

bloque central, modulación en la entrada y la salida, y filtrado mediante los filtros Gm-

C de baja frecuencia.

Todas las topoloǵıas fueron diseñadas y fabricadas en una tecnoloǵıa CMOS de

0.18µm, y los resultados experimentales muestran un ruido referido a la entrada inte-

grado por debajo de 1.5µVrms con un ancho de banda de 1kHz y consumo de potencia

en el orden de decenas de µW , alcanzando figuras de eficiencia de ruido y de potencia

(NEF y PEF) por debajo de 5 y 45 V, respectivamente.
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Chapter 1

Introduction

The use of wireless sensors has opened countless applications in almost all fields, from

industry and science, to entertainment, household and security. For example, some

applications are infrastructure health monitoring, medical diagnosis or detection of

environmental pollutants [1-9]. In infrastructure monitoring, wireless sensors make it

possible to optimize energy distribution by establishing large occupancy patterns [4-5].

For medical diagnostics, it is possible to implant wireless sensors to monitor biological

potentials, which contain physiological and pathological information [6-9]. All these

applications are possible thanks to the development of sensors, i.e., devices which detect

different types of signals (physical, chemical or biological) and respond in the form of an

electrical signal, such as current or voltage. Sensors can be classified into different types

according to their application, conversion mechanism or type of input signal [1-3, 10].

The arrival of low-cost portable sensors has made it possible to monitor almost any

biological, physical or chemical variable. As a result, the realization of signal preprocess-

ing systems has become a major challenge, as they must comply with strict requirements

not to degrade the performance of the whole portable system. Low noise and high dy-

namic range amplifiers are required, which must furthermore be supplied with low voltage

compatible with battery operation, low power consumption and reduced area to ensure

portability [11-23]. Reducing the area reduces the size and weight of the sensing systems,

whereas low power consumption is essential to increase the useful life of the battery.

However, it is difficult to combine all these characteristics, as there are several trade-offs

in the design of integrated circuits, specially between noise, area and power consumption

[12,14,20].
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1.1. SENSOR SIGNAL CONDITIONING 1. Introduction

1.1 Sensor Signal Conditioning

Figure 1.1 shows a typical signal acquisition system. Amplification is necessary to provide

gain for low-range sensor outputs [25]. The analog front-end of an interface circuit con-

nected directly to the sensing element has to transform the raw sensor signal into a signal

suitable to be processed by the subsequent A/D converter. The preamplifier functions are

normally limited to amplification and filtering, leaving more complex signal processing

tasks to the digital section [26]. DC offset and flicker noise may degrade the dynamic range

(DR) of the preamplifier, as they limit the resolution of the processing chain. Therefore,

noise becomes a critical factor, determining the system performance [29], and the first

stage at the front of the sensor node, after the sensor itself, must be a low intrinsic noise

amplifier [27-28].

Sensor Analog Front-End Digital Convertion

Digital
Output

ADCLNP
Low-Pass Filter

Analog
Output

        Stage
Amplification

AO

Figure 1.1: Block Diagram of a Signal Acquisition System.

As a first step to design low-noise signal conditioning circuits, it is necessary to know

the sources of noise in integrated circuits, which will be presented in Chapter 2. Since

the output of the sensors is normally a low frequency signal, the noise source that limits

the dynamic range of the front-end amplifier is flicker noise. There are two different

approaches to reduce flicker noise. The first approach is through circuit topology and

transistor sizing, and can be to amplify signals of at least tens of microvolts. These

amplifiers will be called low-noise preamplifiers (LNPs) in this Thesis. The second method

is the use of dynamic offset cancellation techniques, which can be classified into two

groups: auto-zero and chopping [30-32]. The auto-zero technique consists in first sampling

and then subtracting the offset with low frequency components of the amplifier, but

undersampling of the broadband noise results in an increased thermal noise contribution.

The chopping technique, in turn, is a continuous time modulation technique in which the

signal is translated to higher frequency, amplified and demodulated back to base-band,

whereas the flicker noise is only modulated once and then filtered. As there is no noise

undersampling, the residual noise is lower than with the auto-zero technique [33]. This

2



1.1. SENSOR SIGNAL CONDITIONING 1. Introduction

technique is used in analog front-ends, as shown in Figure 1.2, for input signals lower

than tens of microvolts.

Sensor Analog Front-End Digital Convertion

Digital
Output

ADC
 Chopper
Amplifier

Analog
Output

CH1 CH2

LNP
LPF

        Stage
Amplification

AO

Figure 1.2: Block Diagram of a Signal Acquisition System with Chopper Amplifier.

The residual offset is a problem introduced by switches in chopping amplifiers

due to charge injection and it is proportional to the chopping frequency (fch), so

the residual offset can be decreased by reducing this frequency. However, to avoid

aliasing in the signal, and to completely eliminate the low frequency noise, the chopping

frequency can not be lower than the corner frequency fc, i.e., the frequency at which

the flicker noise is not predominant, and thermal noise becomes predominant. To further

reduce the residual offset, the nested-chopper technique is proposed in [34], where the

modulation-demodulation is applied twice at two different chopping frequencies, fHIGH

and fLOW . In this way, the residual offset can be reduced by a factor fHIGH/fLOW . As

only an extra pair of modulators and a low-frequency control circuit are required, there

is no significant increase in area and power consumption [34].

Another approach is the stabilized-chopper, which consists of two paths: a main

signal path, that provides a large bandwidth, and an auxiliary path with high gain,

where the chopping technique is applied to reduce flicker noise [35,38-39]. This technique

provides high bandwidth and high gain at the cost of area and power consumption due

to the use of the additional blocks.

This Thesis is devoted to the design of low-noise preamplifiers and low-frequency

low-pass filters (LPFs) as the main blocks of the analog front-end, in particular of

chopper amplifiers (Figure 1.2). Although the proposed LNPs and LPFs can be used

in more complex chopping configurations to obtain higher resolution front-ends, such

3



1.2. OBJECTIVES 1. Introduction

as the above mentioned nested-chopper and stabilized-chopper, for the purpose of this

Thesis the basic chopper amplifiers will be used as a proof of concept.

In order to characterize both the LNPs and the chopping amplifiers, there are two

main figures of merit. The trade-off between the input-referred noise and the power con-

sumption of the front-end amplifiers is usually expressed in terms of the noise efficiency

factor (NEF ) [42], defined as:

NEF = Vni,rms ·
√

2 · Itotal
π · 4kT · Vt ·BW

(1.1.1)

where Vni,rms is the input-referred noise voltage integrated in the bandwidth BW of

the preamplifier, Itotal is the current consumption, Vt is the thermal voltage, k is the

Boltzmann constant and T is the temperature. Another figure of merit used to compare

the design of amplifiers operating with different supply voltages is the power efficiency

factor (PEF ), defined as NEF 2 · VDD. The smaller the NEF and PEF , the better the

trade-off between noise and power consumption.

1.2 Objectives

The goal of this Thesis is to design low noise signal conditioning circuits in 0.18µm

CMOS process standard technology. In particular, the main focus of this Thesis is

the design of low-noise preamplifiers and low-frequency low-pass filters, as the main

building blocks of analog-front ends with dynamic noise cancellation. The proposed

chopping amplifiers will therefore be fully integrated, including the amplification stage,

modulation/demodulation and filtering stage.

The particular objectives of this Thesis are:

• Design of voltage preamplifiers by analyzing and reducing the noise contribution of

the devices not only through large sizing, but also through topology modifications.

• Implementation of fully integrated Gm-C low-pass filters with low cut-off frequency,

in particular taking advantage of a novel proposed bootstrapping technique to re-

duce the cut-off frequency in a range from hundreds of Hz to tens of kHz.

• Combination of the above presented blocks to design low-noise chopping amplifiers,

with moderate power consumption to achieve competitive noise and power efficiency

4
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factors.

1.3 Thesis Organization

This Thesis is organized in five chapters and two appendixes.

In this first Chapter a general overview of the signal acquisition circuits for portable

sensing systems, as well as the objectives of the Thesis, are presented.

Chapter 2 is focused on the design of different low-noise preamplifiers that use

transconductors as their core block. The first one, a flipped voltage follower (FVF)

preamplifier, shows compactness with high linearity. Then, several Variable Gain

Low-Noise Preamplifiers (VGLNPs) with low-power consumption, high-gain and low

input-referred noise are proposed, using a novel impedance scaler based on the boot-

strapping technique. All proposed architectures use source degeneration to improve

linearity and achieve a well-defined gain. Simulation results are presented in order to

validate every design in this Chapter, as well as experimental results of the integrated

prototypes, which correspond to the best performance (low power-consumption with

low-noise) proposals.

Chapter 3 treats with the implementation of low frequency Gm-C filters. First,

a novel pseudo-differential low-transconductance amplifier is proposed based on the

bootstrapping technique, which shows very low transconductance without the need for

large passive components. Next, three low Gm transconductors are presented, which

are then used to design three different Gm-C filters with low cut-off frequency and low

power consumption. Finally, simulation results of all Low-Pass Filter are presented, as

well as experimental results of the integrated prototypes, which were chosen to be the

most power efficient with the lowest cut-off frequency.

In Chapter 4, three novel chopper amplifiers are implemented, using the circuits pro-

posed in Chapter 2 and 3, as well as the modulator blocks and the non-overlapping clock

signal generator. Simulation results are presented in order to validate every design in this

Chapter, as well as experimental results of the integrated prototypes.
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Chapter 5 provides a compilation of the results and conclusions of this Thesis, as

well as some research directions that could be further studied in the future.

Appendix A shows the noise analysis carried out to determine the impact of intrinsic

contributions of the preamplifiers proposed and it provides the information needed to

perform periodic steady state (PSS) simulations. Finally, Appendix B details the exper-

imental setup used for the characterization of the integrated prototypes.
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Chapter 2

Low-Noise Preamplifiers

Preamplifiers are fundamental building blocks in sensor signal conditioning, as they

primarily determine the performance of the whole acquisition system. They are required

to amplify, with a well-defined gain, very weak differential signals, with minimum power

consumption. High common-mode rejection ratio (CMRR) and high power supply

rejection ratio (PSRR) are also necessary to attenuate environmental interference [1-6].

In this Thesis, we will refer to preamplifiers as compact and moderately linear low-noise

structures with low power consumption, which will be used as the constitutive building

block for the implementation of chopping amplifiers to further reduce noise contribution

and thus increase the resolution of the signal conditioning system [4-6]. The proposed

low-noise preamplifiers have been designed using appropriate topologies and transistor

sizing, so they are competitive in the current state of art.

Based on these considerations, the low-noise preamplifier design specifications can be

summarized as follows:

• Fully Differential stage in order to increase noise immunity.

• 40dB gain or higher to ensure that the noise of the entire system is determined by

this stage.

• Total harmonic distortion below −40dB for 1mV pp input-voltage amplitude to

ensure good linearity.

• A bias current in the order of a few tens of µA to ensure low power consumption.

According to these requirements, this Chapter presents several low noise preamplifiers

based on a voltage-current conversion at the input and current-voltage conversion at
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the output. First, a summary of the main noise sources in an electronic system are

presented. Next, a novel bootstrapping technique for the implementation of an impedance

scaler, which will be used in most of the proposals, is presented. The proposed low-noise

preamplifiers make use of PMOS transistors at the input, large area transistors and proper

topologies to reduce flicker noise. Simulation results of each proposed preamplifier are

presented and experimental measurements are shown in the case of the configurations

that were fabricated, which showed the best trade-off between gain, noise and power

consumption. Finally, the proposed topologies are compared with each other, and with

other implementations found in the literature in order to highlight the advantages and

disadvantages of each proposal. All proposed low-noise preamplifiers were designed and

implemented in a 0.18µm CMOS standard process with 1.8V supply voltage.

2.1 Electronic Noise

Noise is an electrical disturbance that interferes in the transmission, acquisition or

processing of signals, that is, it is a component of unwanted voltage or current. Noise

limits the minimum signal level that a circuit can process with acceptable quality, and

its study allows the development of mathematical models to determine its effects on the

performance of circuits and/or electronic systems and to propose strategies to reduce

such effects [7].

There are two types of noise: intrinsic and extrinsic. The first is generated in the

devices as a consequence of their physical nature and is random; the second is generated

as a result of the electrical or magnetic interaction between the circuit and the outside, or

between different parts of the circuit itself, and can be periodic, intermittent or random in

nature. The development of this work will focus on intrinsic noise reduction. It is possible

to identify different fundamental noise mechanisms [7-9]:

• Thermal noise is generated by the random movement of charge carriers. It does

not depend on the presence or absence of a direct current, so it is independent

of biasing. Because it originates from the thermal excitation of the carriers, it is

directly associated with absolute temperature. Thermal noise has a flat spectral

density, so it is classified as white noise.

• Shot noise occurs in PN junctions. It also exhibits a flat spectral density and is

caused by the individual flow of carriers when the bias current in DC experiences
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current pulses, so it is completely dependent on the bias current.

• Burst noise is a type of low-frequency noise. The origin of this type of noise is not

fully understood; however, it is related to the presence of impurity metal ions at the

oxide interface in a semiconductor. In consists of sudden and staggered transitions

between two or more voltage or current levels, in random and unpredictable times.

It usually depends on the bias level.

• Flicker noise (or 1/f noise) is a type of noise found in all active devices. The origins

of flicker noise are varied, but it is mainly caused by traps associated with impurities

and crystal defects at the semiconductor-oxide interface. These traps randomly cap-

ture and release charge carriers, generating noise signals with concentrated energy

at low frequencies. The spectral density of flicker noise is inversely proportional to

the frequency.

2.1.1 Noise Associated with MOS Devices

The dominant sources of noise in a MOSFET are flicker and thermal noise, which are

modeled, as shown in Figure 2.1, with a voltage source in series V 2
G and with a current

source in parallel I2th, respectively. The thermal noise power spectral density (PSD) is

given by:

I2th = 4kTγgm (2.1.1)

where k is the Boltzmann constant, T the absolute temperature, γ is a technology depen-

dent constant and gm the transconductance of the device. The flicker noise PSD is given

by:

V 2
G(f) =

Kf

WL · Coxf
(2.1.2)

where Kf represents the flicker noise constant for the particular device, W and L are

the device dimensions, Cox is the oxide capacitance and f the frequency. Constant

Kf can vary in a few orders of magnitude (according to technology), and depends on

the manufacturing process of the device, so it is only possible to make a statistical

calculation to approximate its value. Kf parameter depends on the type of transistor,

and is generally lower for PMOS transistors [7].
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2V  (f)G

2I  (f)th

*

Figure 2.1: Modeling of flicker and thermal sources noise in a MOSFET.

Both noise sources can be combined in a single equivalent noise voltage source at the

gate of the transistor, given by:

V 2
n,in(f) =

4kTγ

gm
+

Kf

WL · Coxf
(2.1.3)

Figure 2.2 shows noise PSD in a MOSFET device. It is possible to observe that at high

frequencies the dominant source is thermal noise whereas at low frequencies it is flicker

noise. The frequency at which the flicker noise ceases to be dominant is called corner

frequency and is given by:

fcorner =
Kf

WLCox

· gm
4KTγ

(2.1.4)

log [f (Hz)]
fcorner

Thermal Noise

Flicker Noise

Offset

2
 

 2
V

[V
/H

z]
n

Figure 2.2: Noise PSD for a MOSFET.
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Flicker noise therefore limits the overall performance of low-frequency signal process-

ing circuits. According to equation (2.1.2), increasing the area of the transistors decreases

the flicker noise contribution, because the probability that the charge carriers get trapped

in the oxide interface decreases. However, if the amplitude levels of the input signal to be

processed are very low, increasing the transistor dimensions is not sufficient to achieve a

significant signal-to-noise ratio (6 dB). Noise analysis is an effective tool to study noise

performance and design low noise configurations with the selection of topologies that min-

imize its contributions without increasing power and area consumption. However, noise

analyses sometimes result in equations with many terms which are difficult to interpret,

as presented in Appendix A. Therefore, the designer must also rely on simulation tools,

which allow knowing which devices contribute the most to the total noise in a given

topology.

2.2 Proposed Bootstrapping Resistors

The bootstrapping technique is often used to increase the input resistance of amplifiers

or to act as a constant current to bias output stages [11]. In this Thesis it will be used

to design high value resistors without the need for large area at low power cost. The

bootstrapping technique is applied using a resistor RL connected between the input and

output of a gain amplifier K, as shown in Figure 2.3a. Assuming the input impedance of

K is infinite, the current through RL is given by IRL = (1 − K)Vin/RL. Therefore, the

equivalent input resistance of the circuit is RLb = RL/(1 −K), and can be very high if

the gain of the amplifier is close to 1. The operation principle of the proposed resistance

boosting technique, shown in Figure 2.3b, uses two voltage amplifiers K1 and K2 to set

similar voltage levels at both terminals of RL and a current controlled current source to

complete the design. In this case RLb = RL/(K1−K2), and this proposal offers advantages

regarding Figure 2.3a in terms of DC offset voltages.

2.2.1 Grounded Bootstrapping Resistor

Figure 2.4 shows a CMOS implementation of the grounded bootstrapping resistor based

on the conceptual idea in Figure 2.3b. The two required amplifiers K1 and K2 are here

source follower amplifiers MRB1 and MRB2. Note that Ib1 = Ib2 and MRB2 is connected

as diode, so the input current is forced to be equal to the current through RL. If both

amplifiers are designed with similar gains the configuration results in a high value equiv-

alent resistor, so this configuration is an impedance scaler. Next a small signal analysis
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Figure 2.3: a) Bootstrapping technique and b) proposed resistance boosting.

is performed in order to provide more insight into how the technique works.

V1

Ib3 RL

MB1

MBIAS3

MRB1

MB2

MRB2

MB3

Ib2

Ib1

MBIAS1

MBIAS2

IRL

Figure 2.4: Proposed grounded bootstrapping resistor.

Let rB1, rB2 and rB3 be the output resistance of the current source transistors MB1,

MB2 and MB3, respectively. If rB1rB2rB3RL >> rB1, rB2, rB3, RL, it can be shown that

the small signal current iRL which flows through RL is given by:

iRL =
(gm2rB2 − gm1rB3)Vin

gm1gm2rB3rB2RL + gm1rB3rB2 + gm2rB3rB2 + gm1rB3RL + gm2rB2RL

(2.2.1)

where gm1 is the transconductance of MRB1 and gm2 is the transconductance of MRB2.

Assuming that gm1rB3 and gm2rB2 >> 1, the equivalent impedance is approximately given

by:
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RLb =
gm1gm2rB3rB2RL

(gm2rB2 − gm1rB3)
(2.2.2)

If RL increases, the equivalence impedance RLb also increases. Besides, decreasing the

difference between gm2rB2 and gm1rB3 ensures that the denominator in equation (2.2.2)

decreases, which leads to a higher multiplying factor.

The impedance scaler was designed to operate in weak inversion in order to keep low

power consumption. It uses a resistor RL = 100kΩ and was biased with Ib1 = Ib2 = 1µA

and Ib3 = 500nA, so it consumes 2.7µW . Figure 2.5a shows the linear range of the

proposed block under these bias conditions. According to the simulation results, the

equivalent resistance is 4.3MΩ for an input signal of −240mV and changes to 4.85MΩ

for an input signal of 240mV (Figure 2.5b).

200 100 0 100 200
Input Voltage (mV)

660

680

700

720

740

760

780

800

In
pu

t C
ur

re
nt

 (n
A)

(a)

200 100 0 100 200
Input Voltage (mV)

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Eq
ui

va
le

nt
 R

es
ist

an
ce

 (M
Ω

)

(b)

Figure 2.5: a) Input current versus input voltage and b) equivalent grounded bootstrap-
ping resistance.

2.2.2 Floating Bootstrapping Resistor

The floating bootstrapping resistor, shown in Figure 2.6, consists of two impedance scaler

blocks with NMOS input transistors MRB1 to MRB4 acting as amplifiers. Bias current

sources are implemented with single transistors MBi with i = 1, 2, 3. The input transistors

MRB1 and MRB3 are cross-coupled, as shown in the Figure in order to complete the design.

The proposed floating bootstrapping resistor uses two 100kΩ resistors and was biased

with Ib1 = Ib2 = 1µA, and Ib3 = 500nA, so it consumes 5.4µW . Figure 2.7a shows

the linear range between −200mV to 200mV . Linear behavior is shown up to 200mV pp

(−100mV -100mV ).
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Figure 2.6: Proposed floating bootstrapping resistor.
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Figure 2.7: a) Input current versus input voltage and b) equivalent resistance for floating
bootstrapping resistor.

The equivalent resistance is presented in Figure 2.7b, and it varies from 7.8MΩ to

10.7MΩ, in a range from −100mV to 100mV input voltage. As mentioned, the polysilicon

resistors were 100kΩ on each branch, so the equivalent resistance was increased by a factor

of ≊ 45.
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2.2.3 Comparison with Other Implementations

The advantage of the proposed circuits is that high resistances can be implemented

without the need for large area, as would be the case with passive components, and

with low power consumption. Furthermore, linearity is not degraded in contrast to

other techniques used to obtain high resistance with active components, as is the case

of pseudo-resistors (PR) [12]. To corroborate this, a comparison between different

high-resistance implementations is performed. The total harmonic distortion (THD) is

obtained from simulations of a voltage divider, as shown in Figure 2.8 where a polysilicon

resistor Rc = 1MΩ is connected in series with another polysilicon resistor (Figure 2.8a),

a pseudo-resistor (Figure 2.8b) and the proposed floating resistor (Figure 2.8c). For a

fair comparison, the equivalent resistance in all cases is 10MΩ.
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Vin Vin

Vin

Ib2

RC

Vout

Ib1

RL RL

Impedance Scaler

(a)

Ib2 Ib1

Vout
RL

RC RC

Vout

Pseudo-Resistor

Vin Vin

Vin

Ib2

RC

Vout

Ib1

RL RL

Impedance Scaler

(b)

Ib2 Ib1

Vout
RL

RC RC

Vout

Pseudo-Resistor

Vin Vin

Vin

Ib2

RC

Vout

Ib1

RL RL

Impedance Scaler

Ib2 Ib1 Ib2

Vin

Ib1

RC

Vout

MTR1 MTR2

(c)

Figure 2.8: Voltage divider with a)Linear resistor, b)Pseudo-resistor, c)Floating boot-
strapping resistor.
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The THD for a sine input voltage at 50Hz with amplitude varying from 10mV to

250mV is shown in Figure 2.9 for the four different implementations. As expected, the

polysilicon resistor provides the highest linearity, at the cost of area (0.248mm2). In con-

trast, the pseudo-resistor consumes the least area, since only two PMOS transistors with

W/L = 3.5µm/36µm are required, but shows the highest distortion, with −35dB THD

at 250mV input amplitude. As for the proposed impedance scaler, it shows a THD 10dB

lower than the pseudo-resistor for a 250mV input amplitude, with an area of 0.009mm2

and lower power consumption of 5.4µW . A summary of the results is shown in Table 2.1.
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Figure 2.9: THD for different resistors implementations.

Table 2.1: Performance Comparison between Resistor Implementations.

Parameters
Polysilicon

resistor
Pseudo-resistor

Floating
resistor

Power Consumption (µW ) NA NA 5.4

THD (dB) @Input 100 mVpp -65 -41 -52

Area (mm2) 0.248 >0.001 0.009
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Finally, THD simulations were also performed by modifying the bias current in the

proposed floating resistor, for a 20mV pp sine output voltage at 50Hz. Figure 2.10a shows

the THD for different values of Ib1, sweeping Ib3, from 100nA to 1µA, which in turn results

in a variations of THD from −48dB to −51.2dB. Figure 2.10b shows the time response

at the output node (Vout) of the test circuit in Figure 2.8c.
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Figure 2.10: a) THD for several Ib1 and Ib2 and b) Time response for proposed floating
bootstrapped resistor.
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2.3 Low-Noise Preamplifiers

This section presents several proposals of fully-differential low-noise preamplifiers. In the

first two, LNP-0 and LNP-1, a polysilicon load resistor is used at the output to achieve

high gain. In all the others, the impedance scaler is used as load resistance, which also

adds the possibility of controlling the gain.

2.3.1 Flipped-Voltage Follower Low-Noise Preamplifier(LNP-0)

The first proposal, the LNP-0, consists of a flipped-voltage follower (FVF) based source

degenerated transconductor, as shown in Figure 2.11. The DC current through the input

transistors M1 and M2 is held constant which, together with the low impedance node es-

tablished at their source terminals, results in unity voltage gain and high current sourcing

capability [13]. The output current through M5 and M6 is therefore determined by the

differential input voltage and the degeneration resistor RS.The output current is copied

through M7 and M8 and converted into a differential output voltage by means of resistor

RL, so the gain of the LNP-0 is M ·RL/RS, where M is the gain of the current mirrors M5

to M8. The common mode feedback (CMFB) circuit consists of a differential difference

amplifier.
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Figure 2.11: Flipped-voltage follower Low-noise preamplifier (LNP-0).
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As shown in Appendix A, where the noise analysis of this circuit is presented, the

current mirror gain M should be chosen higher than 1 to reduce flicker noise. However,

there is a trade-off between the reduction in flicker noise and the increase in power

consumption due to the increase in the current through the output branches. For this

reason, M = 1.5 was chosen. It is preferable to use a PMOS FVF input because the flicker

noise contribution in NMOS transistors is higher. In order to obtain the best noise-power

trade-off, large area transistors operating in the weak inversion are used [14].

2.3.1.1 Simulation Results

The proposed circuit was designed in a 0.18µm CMOS process with 1.8V supply voltage,

and consumes 70µW total power. Table 2.2 summarizes the sizes of the transistors. The

bias current is Ibias = 5µA, the degeneration resistance RS = 1kΩ, and the output

resistance RL = 100kΩ. The preamplifier frequency response is shown in Figure 2.12.

The circuit presents a differential gain of 41 dB and 560kHz bandwidth.

Table 2.2: Transistor Size of the Low-Noise Preamplifier 0.

Transistors M1,2 M3,4 M5,6 M7,8 M9,10 MB1 MB2

W/L (µm/µm) 528/1 28/1 88/1 132/1 352/1 112/1 352/1
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Figure 2.12: LNP-0 frequency response.

Figure 2.13 shows the time response for a 1mV pp amplitude signal at 250Hz. Figure

2.14 presents the THD at several input voltage amplitudes, which is below −40dB for

sine input amplitudes up to 4mV pp.
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Figure 2.13: Output waveform at time response of the LNP-0.
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Figure 2.14: THD vs input amplitude of the LNP-0.

The equivalent input-referred noise power spectral density of the LNP-0 is shown in

Figure 2.15. At 100Hz the input-referred noise is 28nV/
√
Hz. When integrated from

0.1Hz to 1kHz, the input referred noise is 1µVrms, and 9.7µVrms when integrated in the

whole-bandwidth (from 0.1 to 560kHz).

The main characteristics of the preamplifier are summarized in Table 2.3.
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Figure 2.15: Input-referred Noise of LNP-0.

Table 2.3: Characteristics of the LNP-0.

Parameters Low-Noise Preamplifier 0

Gain 39.5 dB

Bandwidth 560 kHz

Power 70 µW

CMRR 74 dB@250Hz

PSRR 70 dB@250Hz

Input Voltage @ THD=−40dB 4 mVpp @250Hz

Input-Referred Noise 9.7 µVrms

(0.1Hz − 560kHz)

Offset µ = 1.3mV , σ = 830µV

2.3.2 Low-Noise Preamplifier 1 (LNP-1)

Figure 2.16 shows the schematic of the proposed LNP-1, which is based on a folded-

cascode differential pair with a high-resistivity polysilicon resistor RS as source

degeneration element. The current is carried to the output by means of transistors M7

and M8, where the conversion into a differential output voltage is carried out by means

of another high resistivity polysilicon resistor RL. The CMFB circuit, not shown in the

Figure, consists of a differential difference amplifier.
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Figure 2.16: Low-Noise Preamplifier 1 with Polysilicon Resistor RL.

The gain of the LNP-1 is given by:

A0 =
gm1 ·RL

gm1RS + 1
(2.3.1)

where gm1 is the input transconductance. In order to reduce the flicker noise contributions,

the dimensions of the PMOS input pair and CMFB transistors were increased.

2.3.2.1 Simulation Results

The proposed circuit was designed and simulated in a 0.18µm CMOS standard process.

The sizing of transistors is shown in Table 2.4. The bias current was chosen to be

IB1 = 1µA, to reduce the power consumption, and the amplifier was designed to operate

in weak inversion. Under these bias conditions, to achieve a differential gain of 40dB

according to equation 2.3.1, a relation RL/RS = 100 must be fulfilled. For this reason,the

degeneration and load resistances were 100kΩ and 10MΩ, respectively. Figure 2.17

shows the AC response. The gain of the preamplifier is 40.2dB and its cut-off frequency

is 250kHz.
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Table 2.4: Transistor Size of the LNP-1.

Transistors M1,2 M3,4 M5,6 M7,8 M9,10

W/L (µm/µm) 432/0.72 14.4/3.6 144/3.6 72/0.72 144/3.6
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Figure 2.17: Frequency response of Low-Noise Preamplifier 1.

Transient simulation results of the LNP-1 for a 4mV pp sine input signal at 250Hz

are shown in Figure 2.18a. for a 1mV pp sine input signal at 250Hz. As shown in Figure

2.18b, the total harmonic distortion is −60dB for a 4mV pp sine input signal, and

remains below −40dB at 5.2mV pp input. The equivalent input-referred-noise power

spectral density of the proposed preamplifier is shown in Figure 2.19. The integrated

input-referred noise of the LNP-1 from 0.1Hz to 1kHz and 0.1Hz to 250kHz is 2µVrms

and 13.2µVrms, respectively. Simulation results are summarized in Table 2.5.

0 1 2 3 4 5 6 7 8
Time(ms)

200

100

0

100

200

Ou
tp

ut
 V

ol
ta

ge
 (m

V)

(a)

0.5 1.0 1.5 2.0 2.5
Input Voltage Amplitude (mV)

65

60

55

50

45

40

35

TH
D 

(d
B)

(b)

Figure 2.18: a) Transient simulation results and b)THD vs Input amplitude of the LNP-1.
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Figure 2.19: Input-Referred Noise of LNP-1 with RL.

Table 2.5: Summary of Simulation Results of the LNP-1.

Parameters LNP-1

Technology 0.18 µm

Power Supply 1.8 V

Gain 40.2 dB

Bandwidth 250 kHz

Power 15 µW

CMRR 81 @ 250Hz

PSRR 84 @ 250Hz

Input Voltage @ THD=−40dB 5.2mV pp@250Hz

Input Referred Noise
(0.1 Hz - 250 kHz)

13.2 µVrms

Offset µ = 1.6mV , σ = 750µV

The main disadvantage of this circuit is the need for a very large polysilicon resistor,

which causes a considerable increase in the area required for the physical implementation.

In addition, due to the variations in the manufacturing process, mismatch between RL

and RS causes an uncertainty in the final value of gain, which can not be adjusted after

fabrication. For this reason, it is proposed to use the impedance scaler based on the

bootstrapping technique to replace RL and provide gain tunability, as shown in the next

Section.

29



2.3. LOW-NOISE PREAMPLIFIERS 2. Low-Noise Preamplifiers

2.3.3 Variable Gain LNP-1 (VGLNP-1)

Figure 2.20 shows the schematic of a LNP-1 where the load resistor is replaced by the pro-

posed floating bootstrapping resistor. This configuration also allows for gain adjustment,

so it is called Variable Gain Low Noise Preamplifier 1 (VGLNP-1).
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MB1
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M11 M22

Figure 2.20: Proposed Variable Gain Low-Noise Preamplifier 1.

2.3.3.1 Simulation Results

The VGLNP-1 was designed in a 0.18µm standard CMOS process with 1.8V supply

voltage. The circuit was biased with IB1 = 1µA, Ib1=Ib2=300nA and Ib3=100nA. To

achieve an equivalent load resistance of 10MΩ, the impedance scaler requires two 100kΩ

resistors to which the bootstrapping technique is applied, so the area occupied by

the passive resistors is reduced by a factor of 50. Furthermore, the use of a floating

bootstrapping resistor provides the ability to change the equivalent load resistance (RLb

equivalent in the impedance scaler) through the bias currents Ib1, Ib2 and Ib3, resulting

in a variable gain configuration.

Figure 2.21 shows the frequency response and gain for several Ib3 values. When the

bias current Ib3 changes from 100nA up to 900nA, the differential gain varies from 36dB

up to 40.2dB with almost constant bandwidth fc = 150kHz.
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Figure 2.21: Frequency response for several Ib3 in the impedance scaler a) Programma-
bility of the gain and b) Gain vs Ib3.

Figure 2.22a shows the time response also for several Ib3 values. The THD for a sine

differential input voltage at 50Hz as a function of the input signal amplitude, at a gain

setting of 40.2dB is shown in Figure 2.22b. It remains below −40dB for input voltages

up to 2mV pp.
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Figure 2.22: a) Output Voltage for different gains and b) THD for different input voltages
amplitudes

Finally, Figure 2.23 shows the input-referred noise power spectral density (PSD) of

the proposed preamplifier. When integrated from 0.1Hz to BW the input referred-noise

is 11.6µVrms.
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Figure 2.23: Input-referred Noise PSD of VGLNP-1.

2.3.3.2 Experimental Results

The VGLNP-1 was fabricated in 0.18µm CMOS standard technology. The chip micropho-

tograph and layout are shown in Figure 2.24. The area of the circuit is 450µmx90µm,

which includes the high resistivity polysilicon degeneration resistors (RS and RL),

designed to be 10kΩ and 100kΩ, respectively, and the CMFB circuit. In order to reduce

flicker noise, transistor lengths were set to 3.6µm, which together with interdigitation in

the layout, also improves matching.

For experimental characterization, the bias current IB1 was set to 1µA, whereas

the bias currents in the impedance scaler block were Ib1 = Ib2 = 600nA and Ib3 was

varied from 170nA to 250nA. Each current was generated via an external potentiometer.

Under these conditions, the preamplifier, including the impedance scaler and CMFB

block, consumes 22µW , with 1.8V supply. It provides a variable gain from 34dB to

38dB as shown in Figure 2.25a, whereas the bandwidth varies from 13kHz@34dB to

100kHz@38dB. Figure 2.25b shows the time domain output at different gain levels for

Vin = 2mV pp input signal at 1kHz.
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Figure 2.24: Microphotograph and layout of the VGLNP-1.
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Figure 2.25: a)Experimental frequency response for different Ib3 values and b) Experi-
mental time response of the VGLNP-1.

The THD was measured using a Rohde & Schwartz FSV - Signal Analyzer (10Hz-

3.6GHz). Figure 2.26 shows the THD for a sine differential input voltage at 1kHz and

with amplitude varying from 1mV to 3mV , at three different gain levels. In this case,

the measured THD is below −36dB for the minimum gain and increases to −34dB at

maximum gain. It remains below −40dB with input amplitude voltage up to 2mV for the

gain up to 36dB. For maximum gain, the input voltage amplitude must be below 1mV

to meet the stated specification.
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Figure 2.26: THD measurements at several gains.

Noise characterization was performed on three samples, using a SR530 Lock-in am-

plifier. The input-referred noise is shown in Figure 2.27. At 1kHz the power spectral

density is 35nV/
√
Hz. When integrated from 100Hz to BW the input-referred noise is

11.8µVrms.
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Figure 2.27: Input-referred noise PSD of the VGLNP-1.
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2.3.3.3 Comparative between the LNP-1 and the VGLNP-1

Table 2.6 shows a comparison between the proposed LNP-1 and VGLNP-1. The LNP-1

topology presents lower power consumption, lower input-referred noise, and higher

linearity. However, the area required for the implementation of the resistor is 50 times

higher than using the impedance scaler. In addition, the gain of the VGLNP-1 can

be adjusted through the bias currents, which can also be used to counteract process

variations, with a slight increase in power consumption.

Due to the versatility of the impedance scaler as output load resistor, the following

low noise preamplifier proposals were also based on this alternative, aiming at lowering

both the noise an power efficiency factors with respect to this first implementation.

Table 2.6: Performance Comparison of LNP-1 and VGLNP-1

Parameters
LNP-1 VGLNP-1

Simulation Simulation Experimental

Technology (µm) 0.18 0.18 0.18

Supply (V ) 1.8 1.8 1.8

Gain (dB) 40.2 36 - 42 34 - 38

Bandwidth (kHz) 250 15 - 150 13 - 100

Power (µW ) 15 16.2 22

CMRR (dB) 81 @ 250Hz 76 @ 250Hz -

PSRR (dB) 84 @ 250Hz 76 @ 250Hz -

Input Voltage @ THD=−40dB 5.2 mVpp 5.3 mVpp 3 mVpp

Input-Referred
Noise (µVrms)

13.2 11.6 11.81

Mean Offset (mV ) 1.3 1.6 -

Load Resistor RL (MΩ) 10 0.2 0.2

Area (mm2) 0.2 0.004 0.004

NEF 2.9 3.2 5

PEF (V ) 15.3 19.3 45.1

1Integrating from 100Hz to 100kHz.
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2.3.4 Variable Gain Low-Noise Preamplifier 2 (VGLNP-2)

Figure 2.28 shows the proposed VGLNP-2. The core transconductor consists of a

super-source follower (SSF) based differential amplifier with source degeneration. Since

the input transistors M1 − M2 are biased with a constant current, their source-gate

voltages remain constant, so the differential input voltage is established between the

terminals of RS, and the generated current flows through M7-M8 and is converted back

to a differential voltage by the floating bootstrapping resistor.
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Figure 2.28: Proposed Variable Gain Low-Noise Preamplifier 2.

The super-source follower introduces a negative feedback loop via the transistors M7,8,

strongly reducing the output resistance. The gain of VGLNP-2 is given by:

AO =
gm1ro1

1 + gm1ro1
· RLb

RS

(2.3.2)

where gm1 and ro1 are the transconductance and output resistance of transistor M1,

and RLb is the equivalent resistance of the load bootstrapping resistor. The degeneration

resistor is 10kΩ and the equivalent load resistor is 1.5MΩ, to set a gain of 40dB.
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2.3.4.1 Simulation Results

The VGLNP-2 was designed in a 0.18µm CMOS process with 1.8 V supply voltage, and

consumes 15µW with the bias currents set to IB1 = IB2 = 1µA. In order to achieve an

equivalent load resistance of 1.5MΩ, RL was set to 10kΩ and the impedance scaler was

biased with Ib1 = 2Ib2 = 1µA and Ib3 = 500nA. The sizing of transistors is shown in

Table 2.7. In order to reduce flicker noise, the size of the PMOS input transistors and the

PMOS biasing transistors M3-M4 were increased. The preamplifier frequency response

for several values of Ib3 and the gain as a function of Ib3 are shown in Figure 2.29. The

proposed circuit presents a variable differential gain from 19dB to 39.5dB when Ib3 is

varied from 100nA to 500nA, with 20kHz to 200kHz bandwidth.

Table 2.7: Transistor Size of the Variable Gain Low-Noise Preamplifier 2.

Transistors M1,2 M3,4 M5,6 M7,8 M9,10

W/L (µm/µm) 90/1.8 72/3.6 36/3.6 36/3.6 72/1.8
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Figure 2.29: a) Frequency response for different Ib3 values and b) Gain vs Ib3 of the
VGLNP-2.

Figure 2.30a shows the time response for a 1mV amplitude sine input signal at 250Hz

at different gain settings. Figure 2.30b shows the total harmonic distortion as a function

of the input voltage for 40dB gain. In particular, the THD is −42dB for a 4mV pp sine

input signal at 250kHz and decreases down to −57dB for a 400µV pp input.
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Figure 2.30: a)Output Voltage for different gains and b) THD simulation of the VGLNP-
2.

Finally, Figure 2.31 shows the input-referred noise power spectral density. At 10Hz

the input-referred noise is 28.5nV/
√
Hz. Integrating from 0.1Hz to 20kHz the input

referred-noise is 4.7µVrms.
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Figure 2.31: Input-referred Noise of the VGLNP-2.
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2.3.5 Variable Gain Low-Noise Preamplifier 3 (VGLNP-3)

Figure 2.32 shows the VGLNP-3. It also consists of a super-source follower based on de-

generated differential pair but the output currents are now copied to the output branches

through mirrors in order to increase the output resistance. As in the former topology, the

input pair is held at a constant bias current IB1, which increases linearity. The CMFB

circuit consist of a differential difference amplifier, not shown in Figure 2.32.
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Figure 2.32: Variable Gain Low-Noise Preamplifier 3.

2.3.5.1 Simulation Results

The VGLNP-3 circuit was designed in a 0.18µm CMOS process with 1.8V supply voltage.

All transistors were biased in the weak inversion region. The total power consumption of

the circuit is 17.1µW . The sizing of transistors is shown in Table 2.8.

Table 2.8: Transistor Size of the Variable Gain Low-Noise Preamplifier 3.

Transistors M1,2 M3,4 M5,6 M7,8 M9,10 M11,12

W/L (µm/µm) 180/1.8 72/3.6 72/1.8 36/3.6 72/3.6 36/3.6

As in all configurations, the area of the PMOS input transistors was increased to

reduce the flicker noise contribution. A degeneration resistance RS = 25kΩ and load

resistors RL = 50kΩ were used. The bias current was set to IB1 = 1µA, whereas, the

impedance scaler was biased with Ib1 = Ib2 = 1µA and Ib3 = 500nA. Figure 2.33 shows
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the frequency response at several Ib3 bias current values. The gain of the topology changes

from 40dB to 45.5dB with almost constant 150kHz bandwidth.
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Figure 2.33: a) Frequency response for several Ib3 values in the impedance scaler and b)
Gain vs Ib3 for the VGLNP-3.

Figure 2.34a shows the time domain for a 500µV amplitude input signal at 250Hz,

at different gain settings. For the Figure 2.34b shows the THD versus the input voltage

amplitude at 250Hz, at 40dB gain. As shown, the THD remains below −40dB up to

1.2mV input voltage amplitude.
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Figure 2.34: a) Time response analysis for different bias currents Ib3 and b) THD simu-
lation for different input voltages amplitude.

The input-referred noise power spectral density is shown in Figure 2.35. If integrated

in a range from 0.1Hz to 150kHz, the equivalent noise voltage is 5.4µVrms. Simulation

results are summarized in Table 2.9.
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Figure 2.35: Input-referred noise of the VGLNP-3.

Table 2.9: Summary of Simulation Results of the VGLNP-3.

Parameters VGLNP-3

Technology 0.18 µm

Power Supply 1.8 V

Gain 40 - 45.5 dB

Bandwidth 110 - 150 kHz

Power 17.1 µW

CMRR 75.5 @ 250Hz

PSRR 76 @ 250Hz

Input Voltage @ THD=−40dB 2.4mV pp@250Hz

Input Referred Noise
(0.1 Hz - 150 kHz)

5.4 µVrms

Offset µ = 1mV , σ = 280µV

Since the objective in portable systems is low consumption, a topology with reduced

power consumption is proposed next, keeping low the noise contribution with moderate

area.
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2.3.6 Variable Gain Low-Noise Preamplifier 4 (VGLNP-4)

Based on the complementary input stage, the architecture of the Variable Gain Low-

Noise Preamplifier 4 is proposed, as shown in Figure 2.36. It combines an NMOS with

a PMOS input differential pair, both with source degeneration. The source-degeneration

complementary input amplifier allows the input range to be extended [15]. In this case,

complementary input is used to double the effective transconductance without increasing

the bias current [16].
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cmfb
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VB1
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M1A M2A

M15
M16

VB2

Figure 2.36: Proposed Variable-Gain Low-Noise Preamplifier 4.

2.3.6.1 Simulation Results

The VGLNP-4 was designed in a 0.18µm CMOS process with 1.8V supply voltage and

consumes 9.45µW . All transistors were biased in the weak inversion region and their sizes

are shown in Table 2.10. As in all cases, the width and length of the input transistors were

increased to reduce the flicker noise contribution. Degeneration resistors RS = 10kΩ were

used in both differential pairs for source degeneration. Load resistors RL = 100kΩ were

used in the impedance scaler. Bias currents were set to IB1 = 500nA and IB2 = 250nA,

the impedance scaler was biased with Ib1 = Ib2 = 300nA and Ib3 = 100nA. Under

these conditions, the VGLNP-4 shows a differential gain of 40.5dB with a bandwidth of

115kHz. Figure 2.37a shows the simulated differential gain on the VGLNP-4 for several

Ib3 values, from 100nA to 500nA. In this range, the gain varies from 35.8dB to 40.5dB,

as shown in Figure 2.37b, with bandwidth constant of 115kHz.
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Table 2.10: Transistor Size of the Variable Gain Low-Noise Preamplifier 4.

Transistors M1A,2A M1B,2B M3,4,9,10 M5,6,7,8 M11,12 M13,14

W/L (µm/µm) 216/0.72 72/0.72 14.4/3.6 72/0.72 14.4/3.6 72/0.72
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Figure 2.37: a) Frequency response for different Ib3 values and b) Gain vs Ib3 of the
VGLNP-4.

Figure 2.38 shows the total harmonic distortion as a function of the input voltage for

40dB gain. The THD is −49dB for a 400µV pp sine input signal at 250Hz and increases

up to −40dB for a 2.2mV pp.
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40
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Figure 2.38: THD simulation for different input voltage amplitude of VGLNP-4.
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Figure 2.39 shows the time response for a 1mV amplitude sine input signal at 250Hz

at different gain settings. Figure 2.39 shows the THD versus the bias current Ib3 in

the impedance scaler. The THD remains below −40dB for maximum gain (40.5dB @

Ib3 = 100nA), and decreases down to −49dB at minimum gain (35.8dB @ Ib3 = 500nA).
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Figure 2.39: a) Time response for different bias currents Ib3 and b) THD for a 1mV
amplitude signal at 250Hz versus Ib3 at same input voltage amplitude.

The input-referred noise power spectral density of the VGLNP-4 is shown in Figure

2.40. The topology presents an integrated noise of Vn,rms = 2.7µVrms, in a range frequency

from 0.1Hz to 1kHz, whereas from 0.1Hz to 115kHz the input noise is 8µVrms.
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Figure 2.40: Input-referred noise of VGLNP-4.
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Although the input-referred noise is higher than for the VGLNP-3 the VGLNP-4 was

preferred because of its lower power consumption, more suitable for portable applications.

For this reason, this configuration was chosen for integration.

2.3.6.2 Experimental Results

The VGLNP-4 was fabricated in 0.18µm CMOS technology. The chip microphotograph

and layout are shown in Figure 2.41. The area of the circuit is 450µmx100µm, which

includes the high resistivity polysilicon resistors (RS and RL), designed to be 10kΩ and

100kΩ, respectively, as well as the CMFB circuit. In order to reduce flicker noise, transistor

lengths were set to 3.6µm, which, together with interdigitation in the layout, also improves

matching.

         Differential
Complementary Input

   Impedance
Bootstrapping

   CMFB

   Resistive Network

450 μm

10
0 
μ

m

   RL

   RS

   VGLNP-4

Figure 2.41: Microphotograph and layout of the VGLNP-4.

For experimental characterization the bias current IB1 was set to 500nA, whereas IB2

was set 250nA. The bias currents in the impedance scaler were Ib1 = Ib2 = 600nA and Ib3

was varied from 170nA to 250nA. The preamplifier provides a variable gain from 35dB

to 42dB, as shown in Figure 2.42a, where the bandwidth of the circuit varies from 11kHz

@ 35dB to 100kHz @ 42dB. Figure 2.42b shows the time response at different gain levels.
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Figure 2.42: Experimental characterization of the proposed VGLNP-4 a) Programmability
of the gain and b) Time response taken from the oscilloscope.

The total harmonic distortion (THD) was also measured at several gain settings with

a differential sine input voltage at 50Hz. The measured THD is below −40dB at 2mV pp

for the three established gains, as shown in Figure 2.43. If the minimum gain is considered,

the THD is below −40dB up to an input amplitude voltage of 5mV .
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Figure 2.43: Output linearity measurements for several gains.

The input-referred noise power spectral density of the proposed preamplifier is shown

in Figure 2.44. At 1kHz the input-referred noise is 18nV/
√
Hz. When integrated from

100Hz to 100kHz the input-referred noise is 8.2µVrms. Simulation and experimental

results are presented in Table 2.11.
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Figure 2.44: Input-referred noise power spectral density of VGLNP-4.

Table 2.11: Summary of Simulation and Experimental Results of VGLNP-4

Parameters
VGLNP-4

Simulation Experimental

Technology (µm) 0.18 0.18

Power Supply (V ) 1.8 1.8

Gain (dB) 35.8 - 42.5 35 - 42

Bandwidth (kHz) 100 - 115 11 - 100

Power (µW ) 9.45 12.3

CMRR (dB) 79 @ 250 Hz -

PSRR (dB) 80 @ 250 Hz -

Input Voltage @ THD = −40dB 2.2 mVpp @ 250 Hz 2 mVpp @ 50 Hz

Input-Referred Noise (µVrms) 8 8.21

Mean Offset (µV ) 245 -

1Integrating from 100Hz to 100kHz.

2.3.6.3 Comparative between the VGLNP-1 and the VGLNP-4

Table 2.12 shows a comparison between the experimental characterization of the

proposed VGLNP-1 and VGLNP-4. The VGLNP-1 shows higher linearity, however,

the gain is lower and the power consumption increases. In both cases, the gain can be

adjusted though the bias currents. Under the same bias consideration in the impedance
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scaler, the VGLNP-4 shows higher gain, even with lower bias current in the core

transconductor. Furthermore the VGLNP-4 presents lower input-referred noise and lower

power consumption, so it shows lower noise efficiency factors.

According to the experimental results, the VGLNP-4 presented a better performance,

so it was used to implement two of the proposed chopping amplifiers in Chapter 4.

Table 2.12: Performance Comparison of VGLNP-1 and VGLNP-4

Parameters VGLNP-1 VGLNP-4

Technology (µm) 0.18 0.18

Supply (V ) 1.8 1.8

Gain (dB) 34 - 38 35 - 42

Bandwidth (kHz) 13 - 100 11 - 100

Power (µW ) 22 12.3

CMRR1 @250 Hz (dB) 76 79

PSRR1 @250 Hz (dB) 76 80

Input Voltage2 @ THD= −40dB 3 mVpp 2 mVpp

Input-Referred Noise3 (µVrms) 11.8 8.2

Mean Offset (mV ) 1.6 0.24

Area (mm2) 0.004 0.0045

NEF 5 2.6

PEF (V ) 45.1 12.2

1Simulation results, 2At maximum gain, 3Integrating from 100Hz to BW.
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2.4 Comparison

In Table 2.13, the main characteristics of all the proposed LNPs and VGLNPs are

presented. The LNP-0 shows low-noise and, due to the use of a polysilicon load resistor,

good linearity, though at the cost of power consumption, which directly impacts its NEF.

The LNP-1, in turn, presents low power consumption, with low input-referred noise

and high linearity, but requires a 10MΩ resistor to achieve high gain, which occupies a

very large chip area, and makes it an unattractive option. To reduce the required area

of the resistor at the output of the preamplifiers, the proposed low area and low power

consumption bootstrapping resistor is used. As an additional feature, this block allows

modifying the gain as a function of its bias currents. In this way, the VGLNP-2 presents

the lowest noise power spectral density. Nevertheless, the output swing is limited and

quickly saturates. As for the, VGLNP-4, it shows similar NEF and PEF values than

the VGLNP-3, but with the lowest power consumption, so it was chosen for fabrication.

Finally, to better show the contribution of this chapter, the main characteristics of

the VGLNP-4 prototype are summarized in Table 2.14 and compared to those of other

integrated low-noise preamplifiers found in the literature.

VGLNP-4 presents a NEF of 2.6, very similar to that of [26] and only improved by [30].

However, [26] has a constant gain slightly lower than 40dB. In addition, both [28] and [29]

and [30] use a lower than nominal supply voltage (1.8V ) to reduce the PEF. This implies

that, to optimize the dynamic range of the conditioning circuit prior to converting the

signal to digital, the following amplification stages will require a shift of the DC level.

49



2.4. COMPARISON 2. Low-Noise Preamplifiers

T
ab

le
2.

13
:

P
er

fo
rm

an
ce

C
om

p
ar

is
on

w
it

h
th

e
P

ro
p

os
ed

L
ow

-N
oi

se
P

re
am

p
li

fi
er

s.

P
ar

am
et

er
s

L
N

P
-0

L
N

P
-1

V
G

L
N

P
-1

V
G

L
N

P
-2

V
G

L
N

P
-3

V
G

L
N

P
-4

S
im

u
la

ti
on

S
im

u
la

ti
on

S
im

u
la

ti
on

E
x
p

er
im

en
ta

l
S

im
u

la
ti

on
S

im
u

la
ti

on
S

im
u

la
ti

on
E

x
p

er
im

en
ta

l

G
ai

n
(d
B

)
39

.5
40

.2
36

-
42

34
-

38
19

-
39

.5
40

-
45

.5
35

.8
-

42
.5

35
-

42

B
an

d
w

id
th

(k
H
z)

56
0

25
0

15
-

15
0

13
-

10
0

20
-

20
0

11
0

-
15

0
10

0
-

11
5

11
-

10
0

P
ow

er
(µ
W

)
70

15
16

.2
22

15
17

.1
9.

45
12

.3

C
M

R
R

@
25

0H
z

(d
B

)
74

81
76

-
65

75
.5

79
-

P
S

R
R

@
25

0H
z

(d
B

)
70

84
76

-
69

76
80

-

In
p

u
t

V
ol

ta
ge

@
T

H
D

=
−

40
d
B

4
m

V
p

p
5.

2
m

V
p

p
5.

3
m

V
p

p
3

m
V

p
p

4.
2

m
V

p
p

2.
4

m
V

p
p

2.
2

m
V

p
p

2
m

V
p

p

In
p

u
t-

R
ef

er
re

d
N

oi
se

(µ
V
r
m
s
)

9.
7

13
.2

11
.6

11
.8

1
4.

7
5.

4
8

8.
21

P
S

D
(n
V
/√

H
z)

@
10

0
H

z

28
5

64
70

3.
8

54
40

45

M
ea

n
O

ff
se

t
(m

V
)

1.
3

1.
3

1.
6

-
1.

5
1

0.
24

-

L
oa

d
R

es
is

to
r

(Ω
)

10
0

k
10

M
20

0
k

20
0

k
20

k
10

0
k

20
0k

20
0k

A
re

a
(m

m
2
)

-
0.

2
0.

00
4

0.
00

4
-

-
0.

00
45

0.
00

45

N
E

F
3.

1
2.

9
3.

2
5

3.
7

1.
65

2
2.

6

P
E

F
(V

)
17

.3
15

.1
19

.3
45

.2
25

4.
9

7.
7

12
.2

1
In
te
gr
at
in
g
fr
om

10
0H

z
to

B
W

.

50



2.4. COMPARISON 2. Low-Noise Preamplifiers

T
ab

le
2.

14
:

C
om

p
ar

is
on

w
it

h
ot

h
er

L
N

P
s

in
th

e
L

it
er

at
u

re
.

P
ar

am
et

er
s

W
at

ta
n

ap
an

it
ch

Z
ou

B
id

h
en

d
i

Y
u

W
u

L
ee

A
n

n
-N

g
V
G
L
N
P
-4

[2
6]

20
07

[2
7]

20
09

[2
8]

20
17

[2
9]

20
13

[3
0]

20
18

[3
1]

20
15

P
ro

ce
ss

(n
m

)
50

0
35

0
18

0
18

0
18

0
65

18
0

S
u

p
p

ly
(V

)
2.

8
1

0.
6

1
1.

5
0.

5
1.

8

G
ai

n
(d
B

)
40

.8
45

.6
-

60
39

44
.5

-
56

39
.8

52
.1

35
-4

2

B
an

d
w

id
th

(k
H
z)

5.
3

0.
29

0.
17

5
10

10
8.

2
11

-
10

0

P
ow

er
(µ
W

)
7.

5
0.

89
0.

69
13

3.
28

2.
8

12
.3

C
M

R
R

(d
B

)
66

@
5.

3k
H

z
71

@
30

0H
z

74
@

-
-

11
0

@
1k

H
z

80
@

1k
H

z
79

3
@

25
0H

z

P
S

R
R

(d
B

)
75

@
5.

3k
H

z
84

@
30

0H
z

70
@

-
-

10
1

@
1k

H
z

78
@

1k
H

z
80

3
@

25
0H

z

T
H

D
(%

)
@

In
p

u
t

V
ol

ta
ge

1@
7.

3m
V

p
p

0.
6@

-
1@

0.
2m

V
p

p
-

0.
4@

4m
V

p
p

1@
1.

4m
V

p
p

1@
2m

V
p

p

In
p

u
t-

R
ef

er
re

d
N

oi
se

(µ
V
r
m
s
)

3
(4

5H
z-

5.
3k

H
z)

2.
5

(0
.0

5H
z-

46
0H

z)
2.

3
(2

H
z-

17
5H

z)
4.

4
(0

.1
H

z-
10

k
H

z)
3

(1
0H

z-
10

k
H

z)
4.

1
(1

H
z-

8.
2k

H
z)

8.
2

(1
00

H
z-

10
0k

H
z)

O
ff

se
t

(m
V

)
-

-
-

-
-

-
0.

24
1

A
re

a
(m

m
2
)

0.
16

12
0.

05
22

0.
07

6
0.

07
5

0.
04

2
0.

04
5

N
E

F
2.

7
3.

2
7.

2
5.

45
1.

7
2.

9
2.

6

P
E

F
(V

)
19

.9
10

.6
31

.3
29

.7
4.

3
8.

6
12

.2

1
M
ea
n
va
lu
e,

2
A
re
a
in
cl
u
d
es

p
ro
gr
am

m
ab

le
g
a
in

a
m
p
li
fi
er
,
ca
p
a
ci
to
r
a
rr
ay

a
n
d
th
e
d
ig
it
a
l
co
m
p
a
ra
to
r,

3
S
im

u
la
ti
o
n
R
es
u
lt
s.

51



2.5. CONCLUSIONS 2. Low-Noise Preamplifiers

2.5 Conclusions

This chapter presents the proposal of an impedance scaler based on the bootstrapping

technique suitable for the implementation of low noise preamplifiers. The advantage of

this block is that the impedance programmability makes it possible to compensate for

variations in the resistive value due to its manufacture, without a high impact on power

consumption. Besides, the noise contributions are minimal, because the block is placed in

the output nodes of the preamplifier. Six low-noise preamplifiers topologies were presented

using different techniques, reducing noise at a topological level, analyzing the contribu-

tions of the topology itself. The proposed preamplifiers include a voltage-current conver-

sion input stage, and a current-voltage output conversion stage, so a well-defined gain is

achieved. The gain can be programmable, thanks to the use of the proposed impedance

scaler. The preamplifiers were designed and simulated in a 0.18µm CMOS standard pro-

cess. The VGLNP-1 and VGLNP-4 were fabricated in a 0.18µm CMOS standard process

with 1.8V power supply. Experimental results show a low input-referred noise for the

VGLNP-1 and VGLNP-4 with low power consumption. The proposed preamplifiers are

a very competitive solution for the signal conditioning in portable applications.
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Chapter 3

Low Frequency Gm-C LPFs

The Gm-C technique, also called OTA-C, is the most popular technique used for the

integration of continuous time filters in CMOS technologies due to its advantages in

terms of tunability and simplicity [1-3]. The basic elements of Gm-C circuits are voltage-

current converters (which in this Thesis will be interchangeably called Operational

Transconductance Amplifiers, OTAs, or transconductors) and capacitors.

Gm-C filters, suffer from high variability to temperature, process and aging variations;

thus, some tuning is needed to keep the frequency response within its specifications. For-

tunately, the frequency response of the Gm-C can be controlled by the transconductance

of the voltage-current converters and/or the capacitances. The usual way of tuning the

transfer function of a filter is by adjusting the bias current of the transconductors.

The main block for continuous time filter implementation is the integrator, shown in

Figure 3.1, whose transfer function is given by:

Vout

Vin

=
Gm

sC
(3.0.1)

Therefore, the output voltage is equal to the integration of the differential input

voltage multiplied by the unity-gain frequency, which is given by:

fu =
Gm

2πC
(3.0.2)

where Gm is the transconductance of the OTA and C is the capacitor value.
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Vin Gm

C

VOut+

_

Figure 3.1: Single-ended Gm-C Integrator.

Low-pas filters are connected to the output of low-noise preamplifiers in order to

limit the bandwidth of the conditioning system and thus reduce noise contribution [1-9].

In the case of chopping amplifiers, the output low-pass filter is responsible for removing

the modulated low-frequency noise as well as undesired harmonics generated by the

chopping technique, so the cut-off frequency is required to be as low as possible to filter

out unwanted signals and eliminate the offset effectively.

To compare the performance of low-pass analog filters, several figures of merit

(FOMs) are introduced [10-11]. These figures of merit involve the main parameters of

filter performance: power consumption, dynamic range (DR), order of the filter (n),

bandwidth (BW) and area consumption.

The dynamic range is defined as the ratio of the maximum and minimum level which

the circuit can handle. The minimum signal level is determined by noise and the maximum

level by total harmonic distortion. Dynamic range can be defined as:

DR =
Vsignal,rms

Vnoise,rms

(3.0.3)

The first FoM is the relationship between the normalized power (NP), the order of

the filter and the dynamic range, and is given by:

FoM1 =
NP

n ·DR
(3.0.4)
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where the normalized power is defined as NP = Power · [0.5/(VDD −Vth)] · (1/VDD). The

second FoM takes into account the required area for the implementation on chip and the

cut-off frequency. This FoM is given by:

FoM2 =
Power ·BW ·NA

n ·DR
(3.0.5)

where normalized area is defined as NA = area/Tech2, Power is the power consumption

and BW the bandwidth of the filter.

In order to achieve low cut-off frequencies, large capacitors and/or large resistors

are required, which are impractical in fully integrated solutions. For this reason, other

approaches to achieve large time-constants have been proposed in the literature, such as

the use of capacitance multipliers or pseudo-resistors [12-13]. However, these techniques

suffer from large area and high non-linearity, respectively, limiting their application.

A popular approach to achieve low frequencies without sacrificing area or linearity is

to use of Gm-C filters based on very low Gm OTAs [14-18]. CMOS OTAs designed in

strong-inversion normally have a transconductance in the order of µA/V , whereas OTAs

in weak inversion have a transconductance in the order hundreds of nA/V [9]. To further

reduce the transconductance, other approaches are necessary, as will be commented in

the next Section.

This chapter presents four continuous time low-pass filters designed in a 0.18µm

CMOS process with 1.8V power supply. First, the use of the bootstrapping technique

presented in Section 2.1 to design low-Gm transconductors is showed, and then the

low-frequency low-pass filters designs are shown. Simulation results are presented, and

experimental measurements are shown in the case of the configurations that were

fabricated. Finally, the proposed filters are compared with each order and with other

implementations found in the literature in order to highlight the advantages and

disadvantages of each proposal.

59



3.1. PROPOSED GM -C REDUCTION TECHNIQUE 3. Low Frequency Gm-C LPFs

3.1 Proposed Gm-C Reduction Technique

There are several techniques to design low Gm transconductors. In the triode region, for

example, it is possible to exploit the benefits of the smaller gm/ID ratio, obtaining small

transconductances without increasing the power consumption; however, the linearity

is degraded [19]. Another way to reduce transconductance is to use the bulk-driven

approach, as the bulk transconductance gmb is typically 0.2 to 0.4 times gm. However,

the input impedance depends in this case on the input signal value [20-22]. Current

attenuation, consists in reducing the output current of the OTA by using current mirrors

with large division factors. These current mirrors are sometimes based on series-parallel

transistor structures to achieve a small copy factor, increasing the area of the circuit

[4,23]. Another current attenuation technique is the so called current-steering approach,

which provides programmability and current reduction using voltage-controlled current

mirrors implemented via unbalanced differential pairs [24]. The main disadvantage of

this technique is the control voltage range, which limits the transconductance range, and

that some times the current of one of the branches is waisted. The current cancellation

technique, in turn, reduces the equivalent Gm of the OTA by splitting each input

transistor in the differential pair into two parallel transistors, one of them carrying

N times the current through the other. When cross-coupling the drains of these split

input transistors, the transconductance is reduced by a factor (N − 1)/(N + 1). This

configuration is sensitive to mismatch, so N cannot be arbitrarily close to 1 and

therefore the reduction in Gm is limited [25-26]. Another alternative is the use of a

capacitive network at the input of the OTA to reduce its transconductance [27]. The

main disadvantages of this technique are the DC offset and the increased area due to

the capacitors. Although the input voltage attenuator can also be implemented with an

active cell to reduce the required area, this implies an increase in the noise contribution

of the OTA. Finally, many authors use a combination of two or more of these techniques

to further reduce Gm, without avoiding the trade-offs of each of them [4,26].

To avoid all these limitations, novel low-Gm transconductors based on the bootstrap-

ping technique presented in Section 2.2 are proposed. To keep a high input impedance,

the technique is applied as shown in Figure 3.2a [28]. As in the implementation of the

impedance scaler in Chapter 2, the current IR through the resistor R is copied to the

output branch, but in this case that current is not supplied by the input. A possible

practical implementation is the one shown in 3.2b, where the amplifiers A1 and A2 are
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implemented with the source followers MSF1 and MSF2, and the IR current is copied to

the output branch by the mirror M3-M4. In this way, low transconductance is achieved,

which can be adjusted by means of the bias currents IB1 and IB2. A PMOS configuration

was chosen to avoid body-effect by tying bulk and source together, and to reduce flicker

noise.

K1

K2

VIN

IRL

RLV1

V2

K V2 IN

I  = IOUT RL

(a)

VIN

IR

R
V1

V2

IOUT

MSF2 MSF1

M3 M4

IB2 IB1

(b)

Figure 3.2: a) Block diagram of the proposed Gm reduction technique and b) Circuital
implementation.

As transistors are biased in weak inversion, the voltages at nodes V1 and V2 are given by:

V1,2 = Vin − nsVt · ln

[
ISF1,2

IS

]
(3.1.1)

where ISF1 = IB1 + IR, ISF2 = IB2 − IR, Vt is the thermal voltage, ns is the slope factor

and IS is the characteristic current. If IR << IB1, IB2, as will be the case, a truncated

Taylor expansion can be used to find the approximate value of IR:

IR ≈ −nsVtIB1IB2

RIB1IB2 + nsVt(IB1 + IB2)
· ln

[
IB1

IB2

]
(3.1.2)

From this equation, it is observed that a DC current is established through R if the

bias currents IB1 and IB2 are not equal. Furthermore, ideal current sources have been

considered in this analysis and, as a result, the gain of both source followers is forced to

be A1=A2=1, so the transconductance of the proposed circuit is Gm = 0, as expected.

Now let rB1 and rB2 be the output resistances of the current sources IB1 and IB2,

respectively. If rB1rB2R >> rB1, rB2, R, it can be shown that the small signal current iR

which flows through RS is given by:
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iR =
(gm1rB1 − gm2rB2) · vin

R(gm1rB1 + gm2rB2) + rB1rB2(gm1 + gm2 + gm1gm2R)
(3.1.3)

where gm1 is the transconductance of MSF1 and gm2 is the transconductance of MSF2.

Assuming gm1rB1 >> 1 and gm2rB2 >> 1, equation (3.1.3) can be approximated by:

Gm =
∆(gm · rB)

gm1gm2rB1rB2R
(3.1.4)

where ∆(gmrB) represents the difference between gm1rB1 and gm2rB2. If both branches are

designed to be identical, with the same bias current IB1=IB2, the ideal transconductance

is Gm = 0, since A1=A2, as expected. In practice, however, the actual transconductance

under these conditions would be determined by mismatch, and it would not be possible to

predict its polarity, resulting in potentially unstable systems if using the OTA in closed

loop configurations. For this reason, it is not advised to use the same bias current in

both branches. It can be noted, however, than even if IB1 ̸= IB2, gm1rB1 and gm2rB2 can

still be similar, and the high-value resistance in the denominator in equation (3.1.4) still

ensures a low equivalent transconductance. Note that the output resistance rB1 of the

bias current IB1 sets a minimum transconductance limit, due to the fact that, if the signal

current flowing through R is much lower than the current through rB1, the equivalent

resistance seen at the source of MSF1 is rB1. This technique will be used for the design

of several low Gm transconductors.

3.2 Proposed Low-Gm OTAs

In this Section several low-Gm OTAs are presented. Except for the first one, all of them

are based on the technique proposed in the previous Section.

3.2.1 FVF-based Low-Gm OTA (LGmOTA-0)

Figure 3.3 shows the LGmOTA-0, which consists of a FVF-based source degenerated

transconductor. The output current through M5 and M6 is determined by the differential

input voltage and the degeneration pseudo-resistor PRS. The output current is copied

through M7 and M8. The CMFB circuit consists of a differential difference amplifier not

shown in Figure 3.3.
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Vin+
Vin-

IB1

M1

M3

M2

M4

M5 M6

M12

M7

M9 M10

M11

IB1

M8

Iout

VBIAS

PRS

Figure 3.3: FVF-based low-Gm OTA (LGmOTA-0).

To achieve a low transconductance, a degeneration resistor in the order of tens of MΩ

is required. In order no to increase the area, it is implemented with a pseudo-resistor

instead of a polysilicon resistor. Figure 3.4 shows the implementation of the PRS [35].

VTUNE

V1 V2

Figure 3.4: Pseudo-resistor implementation.

With this architecture, it is possible to achieve small transconductances as a function

of the degenerated resistance without the need for additional Gm reduction techniques.
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3.2.1.1 Simulation Results

The LGmOTA-0 was designed in a 0.18µm CMOS process with 1.8V supply voltage, and

consumes 9µW with the bias current set to IB1 = 1µA. The dimensioning of LGmOTA-0

is presented in Table 3.1.

Table 3.1: Transistor Size of Low-Gm OTA-0

Transistor M1,2 M3,4 M5,6 M7,8 M9,10 MB1 MB2

W/L (µm/µm) 528/1 28/1 88/1 132/1 352/1 112/1 352/1

In the pseudo-resistor (Figure 3.4), the PMOS transistors are biased in weak-inversion

and either their bulk-drain or their bulk-source terminals are short-circuited. Although

high resistance values are achieved, the THD is degraded due to the non-linearity of the

MOS transistors. The main advantage is that the equivalent resistance can be modified

through VTUNE and, in this way, process variations can be compensated.

The LGmOTA-0 exhibits a variable Gm from 3.25nA/V to 25nA/V , when VTUNE is

varied from 100mV to 900mV , as shown in Figure 3.5a. Figure 3.5b shows the dependence

of transconductance on the input voltage which results in signal distortion.

200 400 600 800
VTUNE(mV)

0

5

10

15

20

25

30

Tr
an

sc
on

du
ct

an
ce

 (n
A/

V)

(a)

100 50 0 50 100
Input Voltage (mV)

0

5

10

15

20

25

30

35

40

Tr
an

sc
on

du
ct

an
ce

 (n
A
/V

)

(b)

Figure 3.5: a) Transconductance as a function of VTUNE and b) dependence of Gm on Vin

og the LGmOTA-0.

Figure 3.6a shows the total harmonic distortion for a sine differential input voltage

at 1kHz with amplitude varying from 10mV to 50mV with VTUNE = 400mV and a

transconductance Gm = 10nA/V . The THD remains below −40dB for input voltages

up to 100mV pp. Figure 3.6b shows the THD when the transconductance changes due
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to the change in VTUNE, for a sine amplitude voltage of 10mV . In this case, when the

transconductance is reduced, the THD increases.
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Figure 3.6: a) THD for different input voltage amplitudes and b) THD by modifying
VTUNE at same input voltage amplitude (10mV ).

Finally, Figure 3.7 shows the input-referred noise power spectral density. At 10Hz

the input-referred noise is 28µV/
√
Hz. Integrating from 0.1Hz to the bandwidth the

input-referred noise is 150µVrms. The main characteristics of the low transconductance

LGmOTA-0 are summarized in Table 3.2.
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Figure 3.7: Input-Referred Noise of the LGmOTA-0.
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Table 3.2: Characteristics of the Low-Gm OTA-0.

Parameters LGmOTA-0

Process 0.18 µm

Supply 1.8 V

Gm 3.25 - 25 nS

Bandwidth 560 kHz

Power 9 µW

THD @ Input Voltage 1% @ 100 mV pp

Power Spectral Density 9 µV/
√
Hz @ 100Hz

Input-Referred Noise 150 µVrms (0.1Hz-BW )

3.2.2 Low-Gm OTA-1 (LGmOTA-1)

The proposed LGmOTA-1, shown in Figure 3.8, is a pseudo-differential configuration. It

consists of two Gm-reduction blocks with PMOS input transistors M1 to M4 acting as

source followers (as proposed in Section 3.1) [28]. The bias current sources are imple-

mented with single transistors M11 to M14, whose currents are set through IB1 and IB2.

The output current of each block is copied to the output branch through simple current

mirrors so that the DC component is ideally cancelled out. In order to validate the pro-

posed technique, these current mirrors have no gain, though an attenuation factor could

be added to further reduce Gm. The equivalent transconductance of the LGmOTA-1 can

be written, based on equation (3.1.4), as:

Gm =
2(gmSF1ro13 − gmSF3ro11)

gmSF1gmSF3ro13ro11R
(3.2.1)

where ro11 is the output resistance of M11-M12, ro13 the output resistance of M13-M14 and

gmSF1 and gmSF3 the transconductance of M1-M2 and M3-M4, respectively.

3.2.2.1 Experimental Results

The LGmOTA-1 was fabricated in a 0.18µm standard CMOS process with 1.8V supply

voltage. The chip microphotograph and layout are shown in Figure 3.9. The area of

the circuit is 110µmx90µm, which includes the high resistivity polysilicon degeneration

resistors R, designed to be 100kΩ each. In order to achieve good matching, interdigitation

was used in the layout and transistor lengths were set to 0.36µm.
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Figure 3.8: Proposed LGmOTA-1.
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Figure 3.9: Microphotograph and layout of the LGmOTA-1.

For experimental characterization the bias current IB2 was set to 1µA, whereas IB1

was varied from 20.5 to 72nA. Each current was generated via an external potentiometer

and a two channel signal generator was used to apply the differential input voltage. The
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OTA exhibits a power consumption of 4µW , and provides a variable Gm from 15nA/V

to 18.5nA/V , as shown in Figure 3.10.
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Figure 3.10: Measurement results of transconductance as a function of the differential
input voltage, for several IB1 values.

Figure 3.11 shows the total harmonic distortion (THD) for a sine differential input

voltage at 1kHz varying from 50mV pp to 350mV pp. The characterization was carried

out at each Gm setting and it shows that, in all cases, the THD remains below −40dB

for input voltages up to 340mV pp. Experimental results of the proposed LGmOTA-1a

are summarized in Table 3.3.
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Figure 3.11: Measurement results of THD versus input voltage for several IB1 values.

Table 3.3: Characteristics of the Low-Gm OTA-1.

Parameters LGmOTA-1

Process 0.18 µm

Supply 1.8 V

Gm 15 - 18.5 nS

Bandwidth 15 kHz

Power 4 µW

THD @ Input Voltage 1% @ 340 mV pp

Power Spectral Density 70.3 µV/
√
Hz @ 100Hz

Input-Referred Noise 475 µVrms (0.1Hz-BW )

3.2.2.2 Second Order Effects

In order to gain more in-depth understanding of the proposed OTA operation, some

simulations are provided that show the impact of the chosen current mirrors and mismatch

on the characteristics.
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3.2.2.3 Impact of rB1

The OTA shown in Figure 3.8 is the simplest implementation derived from the proposed

Gm reduction technique, and was integrated to prove the effectiveness of this approach.

However, in an extreme case, when the signal current flowing through R is much lower

than the current through the output resistor rB1 of the bias current source (M13, M14),

rB1 actually sets a minimum transconductance limit. To show the effect of this limitation,

simulations were carried out to see the dependence of G−1
m on the value of R, both with

simple current sources and when replacing M13 and M14 by cascode configurations. As

shown in Figure 3.12, the value of G−1
m when using simple current sources tends to saturate

as R increases, due to the limit established by rB1. As for the case with cascode current

sources, with an output resistance about 20 times higher, the value of Gm was decreased

(as predicted by equation (3.1.4)) and no saturation of G−1
m is observed in the considered

range of R.

Figure 3.12: Equivalent resistance G−1
m using simple and cascode current mirrors.

3.2.2.4 Current Mirror Effects

From the DC analysis in Section 3.1 it was shown that the proposed Gm reduction

technique can provide very high linearity, as the output current is independent of the

input voltage in a first order approximation. In practice, the linearity of the integrated

OTA will be limited by the distortion introduced by the output current mirrors, M5-M10.
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To prove this, simulations were carried out where these current mirrors were substituted

by cascode current mirrors, which not only provide higher output resistance and accuracy

in the copy, but also higher linearity. By doing so, the transconductance of the OTA

with IB1 = 72nA was decreased from 21nA/V to 16.5nA/V , due to a more accurate

current copy to the output. Figure 3.13 shows the THD in both cases, for sine input

voltages ranging from 40mV pp to 350mV pp at 1kHz. In order to compare the THD

also at the same output levels, IB1 was increased to 100nA in the cascode current mirror

implementation to obtain the same Gm = 21nA/V than in the simple case. As shown, the

harmonic distortion in mainly determined by the current mirrors, and an improvement

in their linearity highly impacts on the THD of the whole topology. In particular, the use

of cascode current mirrors reduced the THD of the OTA around 6dB.
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Simple Current Mirror (Gm = 21.5nA/V)
Cascode Current Mirror (Gm = 17nA/V)
Cascode Current Mirror (Gm = 21.5nA/V)

Figure 3.13: Simulation results of THD with different current mirrors.

3.2.2.5 Mismatch Effects

In order to determine the impact of mismatch on Gm and THD, Monte Carlo simulations

(1000 runs each) of the LGmOTA-1 with IB1 = 70nA and IB2 = 1µA were carried

out. Figure 3.14a shows the impact of mismatch on Gm, at three different input voltage

amplitudes (−100mV, 0mV and 100mV ). The red line in the box plot indicates the mean

value of the transconductance, which is 21.5nA in all three cases with a standard deviation

of 1.5nA/V . As shown, the distribution is symmetric. The boxes cover the interquartile

range of the distribution, i.e., 50% of the measurements lie in the range from 19.7nA/V

71



3.2. PROPOSED LOW-GM OTAS 3. Low Frequency Gm-C LPFs

to 22nA/V . Figure 3.14b shows the THD histogram for an input voltage of 350mV pp at

1kHz, which has a mean value of 0.15% and 0.06% standard deviation.
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Figure 3.14: Monte Carlo simulations for Mismatch a)Transconductance Box Plot and
b)THD Histogram.

3.2.3 Comparison

Table 3.4 shows a comparison with previous low-Gm OTAs found in the literature. The

highest linearity is achieved in [31] and [34], at a cost of high voltage supply and high

power consumption, in the first case, and, though not mentioned in the paper, at a cost of

variable input impedance due to the rail-to-rail input operation in a bulk-driven configu-

ration [22], in the second case. In contrast, the proposed LGmOTA-1 shows high linearity

with moderate power consumption, low noise contribution and low area consumption. In

particular, THD is 1% for a 350mV pp sine input signal at 1kHz, and decreases down

to 0.15% for a 100mV pp input. This THD would be even lower if simple current mir-

rors in the topology were replaced by cascode configurations, as will be shown in Section

3.2.2.4. It must also be noted that large bias currents were used during the characteriza-

tion process due to experimental limitations. Even so, the power consumption is reduced

when compared to OTAs based on current attenuation, such as [31] and [33], since there

is no current waste. Furthermore, simulations show that the power consumption of the

proposed topology can be decreased down to the order of hundreds of nW .
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3.2.4 Low-Gm OTA 2a (LGmOTA-2a)

Figure 3.15 shows the LGmOTA-2a, a pseudo-differential OTA which consists of two

bootstrapped resistance blocks with NMOS/PMOS complementary input transistors (M1

to M8) acting as source followers. The transistors M9 to M16 are current mirrors, copying

the bias current IBi established by the gate voltage VBi, with i = 1, 2, 3, 4. The output

current of each block is copied to the output branch through simple current mirrors.

Finally, the LGmOTA-2a uses current cancellation in the output branches, in order to

further reduce the transconductance Gm.

Vin+Vin-

VB1

M1 M3 M2M4M5 M6

M12

M7

M9
M10M11

VB1

VB2

M8

M13 M14

RS

M17

IOut

M15 M16

M18M19 M20

VB3

VB4VB3

M21

M23

M22

M24

RS

RSRS

VB4

Figure 3.15: Bootstrapping Technique based LGmOTA-2a.

Assuming gmpmosrBpmos, gmnmosrBnmos >> 1, the transconductance can be approxi-

mated by:

Gm =
∆(gmpmosrBpmos)

gm3rB3gm7rB7RS

− ∆(gmnmosrBnmos)

gm1rB1gm2rB2RS

(3.2.2)

where ∆(gmirBi) represents the difference between gm3rB3 and gm7rB7 for i = pmos, and

between gm1rB1 with gm2rB2 for i = nmos.
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3.2.4.1 Simulation Results

The LGmOTA-2a was designed in a 0.18µm CMOS process with 1.8V . The sizing of the

transistors is shown in Table 3.5. The circuit was designed to operate in weak inversion.

Table 3.5: Transistor Size of Low-Gm OTA 2a

Transistors M1,2,3,4 M5,6,7,8 M9,10,11,12 M13,14,15,16 M17,18,19,20 M21,22,23,24

W/L (µm/µm) 36/3.6 72/3.6 72/3.6 36/3.6 72/3.6 36/3.6

The OTA exhibits a power consumption of 5.2µW , and provides a variable Gm from

29nA/V to 54nA/V when iB2 varies from 100nA to 1µA, with iB1, iB3 and iB4 set

to 250nA, 250nA and 500nA, respectively, as shown in Figure 3.16a. Figure 3.16 shows

the tunable transconductance, when iB2 and iB4 change from 100nA to 500nA, simul-

taneously, with iB1 and iB3 set to 250nA. It is shown that the transconductance it is

more sensitive to iB4, i.e., the NMOS side transconductance is more sensitive to the bias

current.
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Figure 3.16: Transconductance a) as a function of the bias current iB4 and b) as a function
of iB2 at different iB4 values , for the LGmOTA-2a.

Figure 3.17a shows the total harmonic distortion for a sine differential input voltage

at 1kHz with amplitude varying from 10mV to 200mV . The THD remains below −40dB

for input voltages up to 380mV pp.

The input-referred noise power spectral density of the LGmOTA-2a is shown in Figure

3.17b. The topology shows an integrated noise of Vn,rms = 128µVrms in a range frequency

from 0.1Hz to bandwidth. The power spectral density at 10Hz is 5µV/
√
Hz. Finally,

simulations results are summarized in Table 3.6.

75



3.2. PROPOSED LOW-GM OTAS 3. Low Frequency Gm-C LPFs

0 50 100 150 200
Input Voltage Amplitude (mV)

70

65

60

55

50

45

40

TH
D 

(d
B

)

(a)

10-1 100 101 102 103 104

Frequency (Hz)
10-1

100

101

102

103

In
pu

t-R
ef

er
re

d 
No

ise
 (µ
V
/√ H

z
)

38µV/
√
Hz

5µV/
√
Hz

0.6µV/
√
Hz

(b)

Figure 3.17: a) THD for different input voltage amplitudes and b) Input-Referred Noise
of the LGmOTA-2a .

Table 3.6: Characteristics of the Low-Gm OTA-2a.

Parameters LGmOTA-2a

Process 0.18 µm

Supply 1.8 V

Gm 29 - 54 nS

Bandwidth 390 kHz

Power 5.2 µW

THD @ Input Voltage 1% @ 380 mV pp

Power Spectral Density 0.6 µV/
√
Hz @ 100Hz

Input-Referred Noise 128 µVrms (0.1Hz-BW )
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3.2.5 Low-Gm OTA 2b (LGmOTA-2b)

The proposed LGmOTA-2b is shown in Figure 3.18. It is very similar to the LGmOTA-2a,

but in this case the value of resistor R is zero, and the low transconductance is achieved

by current division (through the input transistor M1 to M8) and current cancellation at

the output.

Vin+Vin-

VB1

M1 M3 M2M4M5 M6

M12

M7

M9
M10M11

VB1

VB2

M8

M13 M14

M17

IOut

M15 M16

M18M19 M20

VB3

VB4VB3

M21

M23

M22

M24

VB4

Figure 3.18: Schematic circuit of the proposed LGmOTA-2b.

3.2.5.1 Simulation Results

The LGmOTA-2b was designed in a 0.18µm CMOS process with 1.8V supply voltage

and consumes 5.2µW with the bias currents set to iB1 = 250nA, iB3 = 150nA and

iB2 = 150nA, and iB4 = 250nA. Table 3.7 shows the dimensions of the transistors.
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Table 3.7: Transistor Size of Low-Gm OTA 2b

Transistors M1,2,3,4 M5,6,7,8 M9,10,11,12 M13,14,15,16 M17,18,19,20 M21,22,23,24

W/L (µm/µm) 36/3.6 72/3.6 72/3.6 36/3.6 72/3.6 36/3.6

The LGmOTA-2b exhibits a variable Gm from 23nA/V to 79nA/V , when the bias

currents iB4 varies from 100nA to 1µA, as shown in Figure 3.19a. Figure 3.19b shows the

variation of the transconductance, when iB2 changes from 100nA to 500nA, at different

iB4 values (100nA to 500nA).
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Figure 3.19: Transconductance a) as a function of the iB4 and b) as a function of iB2 at
different iB4 values, for the LGmOTA-2b.

Figure 3.20a shows the total harmonic distortion for a sine differential input voltage

with amplitude varying from 10mV to 200mV . The response shows that the THD

remains below −40dB for input voltages up to 340mV pp.

The input-referred noise is shown in Figure 3.20b. At 10Hz the power spectral density

is 5µV/
√
Hz, while in 100Hz is 0.5µV/

√
Hz. When integrated from 0.1Hz to bandwidth

the input-referred noise is 125µVrms. Finally, simulations results are summarized in Table

3.8.
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Figure 3.20: a) THD for different input voltage amplitudes and b) Input-Referred Noise
of the LGmOTA-2b .

Table 3.8: Characteristics of the Low-Gm OTA-2b.

Parameters LGmOTA-2b

Process 0.18 µm

Supply 1.8 V

Gm 24 - 79 nS

Bandwidth 390 kHz

Power 5.2 µW

THD @ Input Voltage 1% @ 340 mV pp

Power Spectral Density 0.5 µV/
√
Hz @ 100Hz

Input-Referred Noise 125 µVrms (0.1Hz-BW )
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3.2.6 Comparison

Table 3.9 shows the main characteristics of all proposed LGmOTA. The LGmOTA-0

shows the lowest transconductance at a cost of an increased power consumption. Besides,

due to the use a pseudo-resistor as degeneration element, its THD is high compared

to the other proposals. The LGmOTA-1 presents low transconductance with the lowest

power consumption. However, as the design was focused on the validation of the proposed

bootstrapping technique to reduce Gm, and no special considerations were taken in terms

of noise contribution, it also shows the highest input-referred noise. The LGmOTA-2a and

LGmOTA-2b show similar results, with low power consumption, high linearity and the

lowest input-referred noise.

Table 3.9: Performance Comparison of Proposed Low-Gm Transconductors

Parameters LGmOTA-0* LGmOTA-1 LGmOTA-2a* LGmOTA-2b*

Process (µm) 0.18 0.18 0.18 0.18

Supply (V ) 1.8 1.8 1.8 1.8

Technique
source

degeneration
bootstrapping

bootstrapping &
current cancellation

division & current
cancellation

Gm (nA/V ) 3.25 - 25 15 - 18.5 29 - 54 24 - 79

Bandwidth (kHz) 560 15 390 390

Power (µW ) 9 4 5.2 5.2

THD
@ Input Voltage

1
@ 100 mVpp

1
@ 340 mVpp

1
@ 380 mVpp

1
@ 340 mVpp

PSD (µV/
√
Hz)

@ 100 Hz
9 70.3* 0.6 0.5

Input-Referred
Noise** (µVrms)

150 997.5* 128 125

∗Simulation Results, ∗∗Integrating in the bandwidth.
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3.3 Proposed Gm-C Low-Pass Filters

In this section the design, simulation and experimental measurements of different low-

pass filters based on the above proposed low-Gm transconductors are presented. The

proposed LPFs are: fully differential, first-order configurations, with cut-off frequencies

in the order of units of kHz, with low power consumption in the order of tens of µW and

moderate area including the capacitor.

3.3.1 Low-Pass Filter (LPF-0)

The block diagram of the fully differential LPF-0 is shown in Figure 3.21.It consists of a

low-Gm transconductor with resistive and capacitive load. Its transfer function is given

by:

H(s) =
Gm ·RL

(1 + sCLRL)
(3.3.1)

where RL is the load resistor and CL is the load capacitor.

Vid

+
Gm CL

VOut+

_

+

_ +

_
VOut-

RL

Figure 3.21: Gm-C implementation of the Low-pass Filter 0.

Figure 3.22a shows the circuit implementation of the proposed LPF-0, which is based

on the LGmOTA-0 (FVF based source degenerated transconductor), with Gm = 1/PR1.

The output current is therefore determined by the differential input voltage and the

degeneration resistor PR1, and is copied to the output branches through M7 and M8, and

converted back into a differential output voltage by means of the load pseudo-resistor

RL = PR2.
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Figure 3.22: a) Proposed LPF-0 and b) pseudo-resistor.

The pseudo-resistors are implemented with four PMOS transistors connected in

series, as shown in Figure 3.22b. The pseudo-resistor exhibits a weak dependence on V12,

which results in a large resistance with moderate linearity [35].

The use of pseudo-resistors results in low cut-off frequency without increasing the re-

quired area, and allows modifying the gain and the cut-off frequency of the filter through

the control voltage VTUNE. In particular the cut-off frequency is modified through PR2,

whereas, the gain is adjusted through PR1. Note that if fc needs to be changed while keep-

ing constant the gain of the filter, both PR1 and PR2 must be simultaneously adjusted

to keep their ratio constant.
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The cut-off frequency was chosen fc = 4kHz to process input signals up to 400Hz,

so a capacitor CL = 35pFand a pseudo-resistor PR2 = 4.5MΩ were chosen. The PR

only takes 0.52µm2 active area, as each transistor is W/L = 0.36µm/0.36µm, whereas

the capacitor, if implemented with a MIM configuration, requires 0.11mm2.

3.3.1.1 Simulation Results

The proposed LPF-0 was designed in a 0.18µm CMOS process with 1.8V supply volt-

age and consumes 14µW . As already mentioned, the DC gain of the filter can be pro-

grammable through the voltage VTUNE. The frequency response for the LPF-0 is shown

in Figure 3.23a. It exhibits a cut-off frequency fc = 4kHz, and operates correctly in a

tuning range from 400mV to 600mV at the gate of the pseudo-resistors. Under these

conditions, the LPF-0 achieves a programmable gain from −1dB to 10dB with cut-off

frequencies from 1kHz to 4kHz.
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Figure 3.23: a) Frequency response and b) Modifying VTUNE from 400mV to 600mV for
the LPF-0.

Figure 3.24a shows the total harmonic distortion (THD) for a sine differen-

tial input voltage at 50Hz and with amplitude varying from 20mV pp to 100mV pp.

The THD remains below −40dB for 80mV pp and decreases down to −50dB for 20mV pp.

Figure 3.24a shows the input-referred noise power spectral density. At 100Hz

the input-referred noise is 2.5µV/
√
Hz. Integrating from 0.1Hz to 1kHz the input

referred noise is 40µVrms. Finally, Table 3.10 shows the main characteristics of the LPF-0.
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Figure 3.24: a) THD for several input voltage amplitudes and b) Input-referred noise of
the LPF-0.

Table 3.10: Simulation Results for the LPF-0.

Parameters Simulation

Technology (µm) 0.18

Vsupply (V ) 1.8

Power (µW ) 14

Gain (dB) -1 - 10

fc (kHz) 1 - 4

Input-Referred Noise (µVrms) 40 (0.1Hz − 1kHz)

PSD (µV/
√
Hz) @100Hz 2.5

THD (%) @Output mVpp 1 @ 80 at 50Hz

DR (dB) 63

NP (µ) 2.7

NA 4.6

FoM1 (n) 1.96

FoM2 (µ) 183

Area* (mm2) 0.15
∗Estimated area including MIM capacitor.
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3.3.2 Low-Pass Filter 1 (LPF-1)

The LPF-1 is based on the same configuration shown in Figure 3.21, but in this case the

low-Gm transconductor is the bootstrapping-based LGmOTA-1, and the load resistor

RL is implemented with the floating bootstrapped resistor proposed in Section 2.2.2, as

shown in Figure 3.25 .
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M13

MTRMTR

Figure 3.25: Schematic circuit of the LPF-1.

85



3.3. PROPOSED GM-C LOW-PASS FILTERS 3. Low Frequency Gm-C LPFs

The transfer function of the LPF-1 is given by:

H(s) =
∆(gm · rB)

gm1gm3ro5ro6RTR

· RL

1 + sCLRL

(3.3.2)

where RTR is the equivalent resistance of the transistors (MTR) in the triode region and

∆(gmrB) represents the difference between gm1ro5 and gm3ro6, while RL is the equivalent

floating resistance.

3.3.2.1 Simulation Results

The LPF-1 was designed in a 0.18µm CMOS standard process with 1.8V power supply

and consumes 21.8µW . The simulated frequency response is shown in Figure 3.26. The

DC gain of the filter is 1dB with 1.5kHz cut-off frequency.
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Figure 3.26: Frequency Response for LPF-1.

The gain and cut-off frequency of the configuration can be controlled either by modi-

fying the bias voltage VTR of the triode transistors MTR in the LGmOTA-1 or by changing

the output floating resistor RL through the bias current Ib1 of the bootstrapped floating

resistor. Figure 3.27a shows the frequency response when VTR changes from 100mV to

500mV . Note that under these conditions the transistors MTR do not leave the triode

region to avoid linearity degradation. The LPF-1 shows a programmable gain from 0dB

to 3.5dB. Figure 3.27b presents the frequency response when Ib2 changes from 100nA

to 500nA. In this case, a gain variation from 1dB to 6dB is achieved, with an almost

constant cut-off frequency fc = 1.5kHz.
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Figure 3.27: Frequency response of the LPF-1: a)Modifying VTR and b)Modifying RL

through Ib2.

Figure 3.28 shows the total harmonic distortion for a sine input voltage at 50Hz with

amplitude varying from 1mV to 55mV . The THD remains below −40dB up to 100mV pp.
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Figure 3.28: THD simulation for different input voltages amplitude.

Figure 3.29 presents the simulated input-referred noise power spectral density. The

integrated noise from 0.1Hz to 1kHz is 40µVrms.

3.3.2.2 Experimental Results

The LPF-1 was fabricated in a 0.18µm CMOS process. The active area occupies

390µmx280µm, as shown in Figure 3.30. The layout includes the high resistivity polysil-

icon degeneration resistors R1 designed to be 100kΩ, and the load capacitor CL = 20pF .
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Figure 3.29: Input-referred Noise of the LPF-1.
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Figure 3.30: Microphotograph and layout of LPF-1.

The measured transfer function of the LPF-1 is shown in Figure 3.31. The filter gain

is 0dB, while the cut-off frequency varies from 490Hz to 7.1kHz when Ib1 changes from

350nA to 850nA in the bootstrapped resistor.
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Figure 3.31: Experimental frequency response at several Ib1 values.

Figure 3.32a shows the time response for two different frequencies f0 = 50Hz and

f1 = 200Hz with 300mV pp output voltage. Figure 3.32b shows the total harmonic

distortion (THD) for a sine input differential voltage at several frequencies from

100Hz up to 500Hz and with amplitude varying from 100mV pp to 300mV pp. The

characterization was carried out at a cut-off frequency of 1.5kHz and in all cases, the

THD remains below −34dB for input voltages up to 200mV pp. The THD is due to the

use of the triode transistors MTR, which degrade the linearity of the LGmOTA-1 when

compared to the use of polysilicon resistors.
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Figure 3.32: Experimental a)Time response for fc = 1.5kHz and b)THD of the LPF-1.
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Figure 3.33 shows the experimental input-referred noise PSD of the LPF-1, which is

16µV/
√
Hz at 100Hz, and decreases down to 4.9µV/

√
Hz at 1kHz. Integrating from

100Hz to 1kHz the input-referred noise voltage is 42µVrms. Finally both the simulation

and experimental results of the LPF-1 circuit are summarized in Table 3.11.
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Figure 3.33: Experimental input-referred noise PSD of the LPF-1.

Table 3.11: Simulation and Experimental Results for the LPF-1.

Parameters Simulation Experimental

Technology (µm) 0.18 0.18

Vsupply (V ) 1.8 1.8

Power (µW ) 21.8 23.4

Gain (dB) 0 - 3 0

fc (kHz) 1.5 0.49 - 7.2

Input-Referred Noise (µVrms)
40

(0.1Hz-1kHz)
42

(100Hz-1kHz)

PSD (µV/
√
Hz) @100Hz 12.6 16

THD (%) @Output mVpp
1

400 @50 Hz
1.1

200 @100 Hz

DR (dB) 71 64.5

NP (µ) 4.32 4.64

NA 3.3 3.3

FoM1 (n) 1.22 2.75

FoM2 (µ) 31.1 22.9

Area (mm2) 0.109 0.109
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3.3.3 Low-Pass Filter 2a (LPF-2a)

The next low-pass filters are based on the fully differential first-order configuration shown

in Figure 3.34. The transfer function of the filter is given by:

H(s) =
Gm1

Gm2 + sCL

(3.3.3)

where Gm1 is the transconductance of the first OTA, and Gm2 the transconductance of

the OTA in feedback loop, that emulates a load resistor. The cut-off frequency of the

Gm−C filter can be tuned by changing the Gm2 transconductance, whereas the gain can

be adjusted by varying either Gm1 or Gm2. Note that if Gm2 changes, both gain and fc

change.

Vin

+
Gm1 CL

Vout+

_

+

_ +

_

Vout-

+

_
Gm2

+

_

Figure 3.34: Block Diagram of the Low-pass Filter 2a.

The LPF-2a in particular consists of two LGmOTA-2a configurations and the

load capacitor CL. Both OTAs are designed with the same nominal transconductance

Gm = 30nA/V , whereas CL = 20pF .

Because the transconductance range of the transconductor is quite wide, the resul-

tant filter also has a wide cut-off frequency range under suitable working conditions. In

this case, the tunable cut-off frequency and gain can be controlled using Ib3 and Ib1,

respectively.
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3.3.3.1 Simulation Results

The proposed LPF-2a was designed and simulated in a 0.18µm CMOS standard process

with 1.8V power supply and consumes 2.9µW . Figure 3.35 shows the AC response. The

DC gain of the LPF-2a is −1dB and its cut-off frequency is 1.5kHz.
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Figure 3.35: Frequency Response of LPF-2a.

Figure 3.36a shows the gain programmability from 0dB to 5dB when Ib3, which con-

trols Gm1, changes from 100nA to 250nA. Figure 3.36b presents the cut-off frequency

when Ib1, which controls Gm2, varies from 100nA to 1µA. Under these conditions, fc

changes from 1.5kHz to 11kHz.
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Figure 3.36: Frequency response of the LPF-2a when a)modifying Gm1 through IB3 and
b) modifying Gm2 through IB1.

As shown in Figure 3.37, the total harmonic distortion remains below −40dB up to

180mV pp input at 50Hz.
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Figure 3.37: THD for different input voltages amplitudes of the LPF-2a.

Figure 3.38 shows the input-referred-noise power spectral density of the proposed LPF-

2a. The input-referred noise is 10µV/
√
Hz at 100Hz and decreases down to 3.5µV/

√
Hz

at 1kHz. Integrating from 0.1Hz to 1.5kHz the input-referred noise voltage is 17.6µVrms.
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Figure 3.38: Input-Referred Noise of LPF-2a.

3.3.3.2 Experimental Characterization

The LPF-2a was fabricated in a 0.18µm standard CMOS process with 1.8V power

supply. Figure 3.39 shows the microphotograph and layout of the fabricated chip, which

includes the high resistivity polysilicon degeneration resistors R, designed to be 100kΩ

each, and the load capacitor. The silicon active area including two transconductors and

the load capacitor is 470µmx300µm.
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Figure 3.39: Microphotograph and layout of proposal LPF-2a.

The experimental frequency response of the LPF-2a is shown in Figure 3.40. The

cut-off frequency varies from 2kHz (with Ib1 = 250nA and Ib3 = 520nA) to 18kHz (with

Ib1 = 1.2µA and Ib3 = 1.6µA). The DC gain is about −1dB.
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Figure 3.40: Experimental frequency response of the LPF-2a.
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Figure 3.41a shows the time response. The graph shows the output signal at different

frequencies with Ib1 = 250nA and Ib3 = 520nA and fc = 2kHz. Figure 3.41b shows

the total harmonic distortion for a differential sine input voltage at frequencies 200Hz

and 400Hz with amplitude varying from 40mV pp to 150mV pp. The characterization was

carried out at a cut-off frequency of 2kHz. In all cases, the THD remains below −40dB

for input voltages up to 120mV pp.
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Figure 3.41: a) Time Response for several frequencies and b) THD measurements for
LPF-2a.

The input-referred noise density is shown in Figure 3.42. The PSD of the input-

referred noise is 5.2µV/
√
Hz at 100Hz, and decreases down to 2.3µV/

√
Hz at 1kHz.

Integrating the passband noise from 100Hz to 1kHz results in an input-referred noise

voltage Vrms = 27.7µVrms. The simulation and experimental results are summarized in

Table 3.12.
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Figure 3.42: Input-Referred Noise PSD of the LPF-2a.
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Table 3.12: Simulation and Experimental Results for the LPF-2a.

Parameters Simulation Experimental

Technology (µm) 0.18 0.18

Vsupply (V ) 1.8 1.8

Power (µW ) 2.6 5.3

Gain (dB) 0 - 5 -1

fc (kHz) 1.5 - 11 2 - 18

Input-Referred Noise (µVrms)
17.7

(0.1Hz - 1kHz)
27.7

(100Hz - 1 kHz)

PSD (µV/
√
HZ) @ 100 Hz 3.5 5.1

THD (%) @ Output (mV pp)
1

200 @ 50 Hz
1

150 @ 200 Hz

DR (dB) 72 68

NP (µ) 0.515 1.05

NA 4.35 4.35

FoM1 (n) 0.09 0.32

FoM2 (µ) 18.8 14.4

Area (mm2) 0.141 0.141

3.3.4 Low-Pass Filter 2b (LPF-2b)

The LPF-2b is based on the same fully differential configuration (Figure 3.34), but in this

case, the OTAs are the LGmOTA-2b presented in Section 3.2.4. Again, both the gain and

the cut-off frequency can be adjusted through the bias currents Ib1-Ib4.

3.3.4.1 Simulation Results

The LPF-2b was designed in a 0.18µm CMOS standard process. The simulated transfer

function is presented in Figure 3.43. The DC gain is 0dB with a cut-off frequency of

1.9kHz.

In the same way as the LPF-2a, the gain and cut-off frequency can be tuned through

the transconductances Gm1 and Gm2. Figure 3.36a shows how the gain varies from

0dB to 6.5dB when Ib3 changes from 100nA to 250nA, i.e., when the transconductance

Gm1 is changed. Figure 3.36b shows the variation of the cut-off frequency when Ib3

varies from 100nA to 2.5µA. Under these conditions, fc changes from 2kHz up to 45kHz.

96



3.3. PROPOSED GM-C LOW-PASS FILTERS 3. Low Frequency Gm-C LPFs

10-1 100 101 102 103 104 105

Frequency (Hz)

40

30

20

10

0

Ga
in

 (d
B)

fc = 1.9kHz

Figure 3.43: Simulated transfer function for LPF-2b.
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Figure 3.44: Frequency response a)Modifying the gain by Gm1 and b)Modifying fc through
Gm2 of the LPF-2b.

Figure 3.45a shows the total harmonic distortion as a function of the input voltage

for 0dB gain. The THD is −49dB for a 60mV pp sine input voltage and increases up to

−40dB for 170mV pp.

Figure 3.45b shows the simulated input-referred-noise power spectral density of the

proposed LPF-2b, which is 10µV/
√
Hz at 100Hz and decreases down to 3.5µV/

√
Hz at

1kHz. Integrating from 0.1Hz to 1.9kHz the input-referred noise voltage is 17.9µVrms.

97



3.3. PROPOSED GM-C LOW-PASS FILTERS 3. Low Frequency Gm-C LPFs

20 30 40 50 60 70 80 90 100
Input Voltage Amplitude (mV)

50

48

46

44

42

40

38

36

TH
D 

(d
B)

(a)

10-1 100 101 102 103 104

Frequency (Hz)
100

101

102

In
pu

t-R
ef

er
re

d 
No

ise
 (

V/
√ H

z
)

30 V/
√
Hz

10 V/
√
Hz

3.5 V/
√
Hz

(b)

Figure 3.45: a)THD for different input voltages amplitudes and b)Input-referred noise
PSD of the LPF-2b.

3.3.4.2 Experimental Results

The proposed LPF-2b was fabricated in a 0.18µm standard CMOS process and operates

with 1.8V supply voltage. Figure 3.46 shows the microphotograph and layout of the

fabricated chip. The silicon active area for LPF-2b (shown inside the rectangular frame)

is 600µmx240µm.
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Figure 3.46: Microphotograph and layout of proposal LPF-2b
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The circuit was biased with Ib1 = 250nA, Ib2 = 500nA and Ib3 = 520nA, Ib4 = 690nA.

The frequency response is shown in Figure 3.47. It can be noted that the cut-off frequency

varies from 1.6kHz to 15kHz. The DC gain is around 0dB.
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Figure 3.47: Measured frequency responses over the tuning range.

Figure 3.48a presents the time response for two different signal frequencies fs = 500Hz

and fs = 750Hz. Figure 3.48 shows the THD for a sine differential input voltage at the

same frequencies and with amplitude varying from 50mV to 150mV . The characterization

was carried out at a cut-off frequency of 1.6kHz, and in all cases the THD remains below

−40dB for input voltages up to 250mV pp.
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Figure 3.48: Experimental a) Time response and b) THD for different amplitude input
voltages for the LPF-2b.

The input-referred noise density is shown in Figure 3.49. The power spectral density

of the input-referred noise is 4µV/
√
Hz at 100Hz, and decreases down to 1.95µV/

√
Hz at

1kHz. Integrating the input-referred noise from 100Hz to 1kHz gives an input-referred
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noise voltage Vrms = 24µVrms. Simulation and experimental results of the LPF-2b circuit

are summarized in Table 3.13.
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Figure 3.49: Input-Referred Noise of LPF-2b.

Table 3.13: Simulation and Experimental Results for the LPF-2b.

Parameters Simulation Experimental

Technology (µm) 0.18 0.18

Vsupply (V ) 1.8 1.8

Power (µW ) 2.7 5.4

Gain (dB) 0 - 6 0

fc (kHz) 1.9 - 45 1.6 - 15

Input-Referred Noise (µVrms)
17.9

(0.1Hz-1kHz)
24

(100Hz-1kHz)

PSD (µV/
√
Hz) @ 100 Hz 2.7 4

THD (%) @Output mVpp
1

170 @50 Hz
1

140 @500Hz

DR (dB) 73 69.4

NP (µ) 0.535 1

NA 4.4 4.4

FoM1 (n) 0.08 0.29

FoM2 (µ) 3 10.4

Area (mm2) 0.144 0.144
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3.3.5 Performance Comparison of LPF

The summary and performance comparison of the proposed Gm-C filters designed

and tested are shown in Table 3.14. The LPF-0 is a very compact configuration which

provides a variable gain from −1 to 10dB, and cut-off frequency as low as 1kHz.

However, the linearity is degraded due to the use of pseudo-resistors. The LPF-1,

based on the LGmOTA-1, provides a variable gain from 0 to 3dB, and variable cut-off

frequency from 490Hz to 7.1kHz. It achieves the lowest cut-off frequency at a cost of an

increased power consumption, due to the boosting resistance block used at the output.

Finally, both the LPF-2a and LPF-2b show the lowest FoM1, i.e., the best trade-off

between power consumption and dynamic range. The LPF-2a provides a variable gain

from 0 to 5dB, and variable fc from 2kHz to 18kHz. The LPF-2b provides a variable

gain from 0 to 6dB, and variable fc from 1.6kHz to 15kHz, and shows the lowest FoM2,

i.e., the best trade-off between power consumption, bandwidth, area and dynamic range.

To better show the contribution, the main characteristics of the fabricated filters are

summarized in Table 3.15 and compared with other Gm-C filters found in the literature.

When compared with other topologies, the proposed LPFs do not achieve such low fre-

quencies as some of them. The LPF-2a shows the second lowest power consumption, after

[39], which also achieves lower cut-off frequencies, at a cost of a decreased gain (i.e., at

a cost of attenuating the signal, which in a chopper amplifier is already low), and with

lower dynamic range. In terms of dynamic range, the proposed LPFs are second best after

[33]. The proposed LPFs, however, provide not only tunable cut-off frequency but also

tunable gain, which can be increased as required. The nominal gain of [33], in contrast,

is 0dB and cannot be tuned.
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3.4 Conclusions

This chapter presented several novel low-Gm transconductors with tuning capability and

high linearity to implement low-pass filters with low cut-off frequency. The first proposal,

the LGmOTA-0, is based on a FVF transconductor and relies on a pseudo-resistor

to achieve low Gm without the need for large area polysilicon resistors. It achieves a

transconductance ranging from 3.25nA to 25nA/V , but linearity is degraded by the

pseudo-resistor. The LGmOTA-1 is a novel topology which applies the bootstrapping

technique to increase the equivalent resistance of polysilicon resistors, and thus achieve

low Gm. It was fabricated in a 0.18µm CMOS process and experimental results show a

transconductance range from 15nA/V to 18.5nA/V , with good linearity, thus validating

the proposed technique. Finally, the LGmOTA-2a and LGmOTA-2b are proposed, based

on similar topologies. The first one relies on bootstrapping and current cancellation to

achieve low Gm, whereas the second one only relies on current and division cancellation.

Both show similar results, with a variable Gm from 29nA/V to 54nA/V in the first case,

and 24nA to 79nA in the second case, very low input-referred noise of approximately

600nV/
√
Hz, and good linearity.

Furthermore, three filters were designed and fabricated using the proposed core

transconductors. The LPF-1 and LPF-2 were implemented using a complementary differ-

ential input combined with bootstrapping and applying current cancellation to achieve

low-transconductance. Finally, a comparison between the proposed filters and recently

integrated LPF found in the literature is presented. The proposed filters show high pro-

grammability of gain and cutoff frequency and, depending on the equivalent transcon-

ductance of the core OTA have a wide operating range with moderate THD and cut-off

frequencies in the order of tens of kHZ.
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Chapter 4

Chopper Amplifiers

The chopping technique is a continuous time modulation technique used to reduce

the offset and flicker noise, in which the low-frequency signal is translated to higher

frequencies, amplified and demodulated back to baseband, whereas the flicker noise

is modulated at high frequencies and then filtered out. To avoid aliasing due to the

unwanted mixing of the input signals and the switching signals, the switching frequency

must be appropriately selected [1-10].

Figure 4.1a shows the block diagram of the chopping technique and Figure 4.1b the

spectrum of a low frequency signal. After the first chopper modulator (CH1), the signal

is translated at higher frequencies than the flicker noise (Figure 4.1c). After amplification

and the second chopper block (CH2), the amplified signal is demodulated back to low

frequency, while the noise content is modulated once, so its frequency components are

now around the odd harmonics of the chopping frequency (Figure 4.1d). Finally, the

signal passes through a low-pass filter (LPF) to eliminate the noise contribution (Figure

4.1e). To completely remove the residual noise, the chopping frequency must be higher

than the noise corner frequency.

The noise power spectrum of a chopper amplifier is shown in Figure 4.2 [2]. It shows

a flat spectral density, with a peak at the chopping frequency due to the commutation of

the switches. The superior noise performance of the continuous-time chopper technique

over the sampled auto-zero technique makes it the best choice to realize low-noise sensor

interfaces with low-power consumption [2].
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4. Chopper Amplifiers
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Figure 4.1: Principle of the Chopping Technique.

The chopping technique usually does not introduce extra noise, especially when the

modulators are positioned at low impedance nodes. However, there is still residual offset

due to the modulators commutations[7-10]. Furthermore, as already mentioned, the

chopper frequency must be higher than the noise corner frequency of the amplifier, and

at least 10 times the bandwidth of the amplifier to avoid residual noise contributions

due to switching [7].

The proposed chopper amplifiers are designed to process input signals from 500µV

to 1mV with frequencies from 0.1Hz to 100Hz. The amplifier must have at least 40dB

gain, to ensure that it determines the overall noise of the acquisition system with power
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Figure 4.2: Noise power spectrum of Chopper Technique.

consumption in the order of tens of µW .

This Chapter presents the implementation of three fully differential chopping ampli-

fiers based on the building blocks proposed in the former Chapters. First, the implemen-

tation of the modulators and their control circuitry are presented. Then, the first chopper

amplifier (ChA-0) is proposed, based on the LNP-0 and the LPF-0. The chopper ampli-

fier 1 (ChA-1), in turn, consists of the VGLNP-4 in conjunction with the LPF-1. Finally,

the chopper amplifier 2 (ChA-2) is proposed also based on the VGLNP-4 but with the

LPF-2a, which has lower power consumption and higher linearity than the LPF-1.

4.1 Modulators and Clock Signal Generation

The chopping technique involves the use of two modulation blocks controlled by a

clock (clk) signal with complementary phases, i.e. in counter-phase. Each modulator

consists of four switches, as shown in Figure 4.3a, which, in CMOS technology can be

implemented with MOSFETs, as shown in Figure 4.3b.

A MOS transistor switch has a non-infinite impedance when it is off and non-zero

impedance when it is on. The on resistance can be as high as 10kΩ for minimum size

switches, and the off resistance is typically about 10MΩ. A voltage drop thus occurs

when current is flowing through the open switch. Additionally, there is a small delay

between the signal controlling the MOSFET switch gates and the switching action. The

main cause of delay is the relatively high capacitance of the clock line [1].
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Figure 4.3: a) Schematic of a Modulator and b) its implementation with MOSFET.

The main problem introduced by switches in a chopping amplifier is the charge in-

jection, as it produces an unwanted ripple at the output of the amplifier (glitches). This

inconvenient is caused by two phenomena: redistribution of channel charge and clock

feed-through. Several techniques for reducing charge injection can be applied [7-8]:

• Dummy Switches: Charge injection can be reduced by adding dummy switches

driven by a complementary clock, which inject an amount of charge that com-

pensates for the charge injected by the main switch. The dummy switch can be

connected in series, as shown in Figure 4.4a, or in parallel.

• Complementary Switches: Another way to reduce the charge injection is to use a

transmission gate, as shown in Figure 4.4b, so that the PMOS and the NMOS

transistors inject opposite charge and cancel each order.

• Fully Differential Circuit: Another way to compensate charge injection is to use fully

differential configurations. If the charge injection in the two half circuits matches,

the charge injection only results in a change in the common-mode voltage, which is

finally cancelled out at the output.

For the design of the proposed chopper amplifiers and in order to reduce the

charge injection, the modulator blocks in this Thesis were implemented with com-

plementary devices, as shown in Figure 4.5. When clk goes to GND, the transistors

MN1 and MP1 are turned on, allowing the signal to pass, whereas the transistor MN2

and MP2 are in the cut-off region. When clk changes its logic state, the transistors

MN1 and MP1 enter the cut-off region, whereas MN2 and MP2 are turned on. In this

way, the signal is modulated with chopping frequency fchop defined by the clock frequency.
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Figure 4.4: Charge Injection Compensation with: a) a dummy switch, and b) a transmis-
sion gate.
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Figure 4.5: Schematic Circuit of the Implemented Chopper.

The modulator block was designed in a 0.18µm CMOS standard process, with

(W/L)N = 2(W/L)P so that the charge injections are compensated, and with minimum

PMOS transistor dimensions, in order to reduce the parasitic capacitances. Figure 4.6

shows the layout of the modulator block. The active area of the circuit is 10µmx6µm.
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Figure 4.6: Layout of the chopper modulator.

Non idealities in clock timing, such as clock skew and overlapping, introduce residual

offset. Clock skew is a phenomenon in which the clock signals change at different

transitions times. Overlapping, in turn, occurs when there is a time lag and both clocks

are high/low at the same time for a short period, causing a short circuit between the

differential signal paths. This causes a low input impedance, so, the effective gain of the

amplifier is reduced, resulting in increased noise and offset [7].

To avoid this effect, a non-overlapping circuit is required. In synchronous circuits, a

two-phase clock refers to clock signals distributed on two wires, each with non-overlapping

pulses. Figure 4.7 shows the non-overlapping clock generator using NAND and inverters

gates with feedback.

clk

clk

Figure 4.7: Two-Phase Non-overlapping Clock Generator.
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The non-overlapping clock generator was designed in the same 0.18µm CMOS stan-

dard process. The dimensions of the transistors were designed so that the logic gates

switch at VDD/2. Figure 4.8 shows the layout, with an active area of 75µmx10µm.

75 μm

10
 μ

m

Figure 4.8: Layout of the Non-Overlapping Clock Generator.

Figure 4.9 shows the time response of the two-phase clock generator, when, injecting

a square signal with fclk = 10kHz. The simulation shows both non-overlapping output

signals.
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Figure 4.9: Simulation of the two-phase clock.
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4.2 Chopper Amplifier 0 (ChA-0)

Figure 4.10 shows the block diagram of the first proposed chopper amplifier, which will

be called ChA-0. The chopper technique is applied to the voltage amplifier LNP-0 by

means of an external chopper modulator CH1, an embedded chopper modulator CH2,

and the output filter LPF-0.

Vid

+
GM CL

VOut+

_

+

_ +

_

VOut-

fCH

AO

LPF-0
LNP-0

CH1 CH2

RL

Figure 4.10: Block Diagram of Chopper Amplifier 0.

Figure 4.11 shows the complete schematic circuit. The LNP-0 was chosen for its

low noise contribution (9.7µVrms) and high linearity (THD = 1% for input signals up

to 4mV pp). Cascode transistors MSW1 and MSW2 in the output branches are used to

implement the output modulator CH2, making use of the generated low impedance

nodes, thus reducing glitches and resulting in a more compact solution [12]. The LPF-0 is

based on the same transconductance cell as the LNP-0, with reduced power consumption

(14µW versus the 70µW consumed by the LNP-0 presented in Section 3.3.1) and a

cut-off frequency of 1kHz to eliminate the modulated noise components. It also features

a programmable gain through the control voltage of the pseudo-resistor PR2 without

degrading noise performance.

4.2.1 Simulation Results

The proposed circuit was designed in a 0.18µm CMOS process with 1.8V supply voltage,

and consumes 84µW total power. The frequency response is shown in Figure 4.12. The

circuit presents a differential gain of 41dB and 1kHz bandwidth. Figure 4.13 shows the

time response for a 500µV amplitude sine input signal at 250Hz. The demodulated and

amplified input signal is shown before filtering the modulated noise (Figure 4.13a), and
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Figure 4.11: Proposed Chopper Amplifier 0.

at the output of the LPF (Figure 4.13b). The total harmonic distortion of the output

signal under these conditions is 1.5%. The simulated CMRR and PSRR is 75dB and

72dB, respectively, at 50Hz.
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Figure 4.12: Frequency Response of Chopper Amplifier 0.

After running the PSS simulation in conjunction with PNoise, the input-referred noise

power spectral density of both the LNP-0 and the proposed ChA-0 is shown in Figure 4.14

for comparison. At 250Hz the input-referred noise decreases from 24.5nV/
√
Hz without

the chopping technique, to 14.5nV/
√
Hz with the chopping technique. When integrated
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Figure 4.13: Waveforms at the a) input and b) output of the Low-Pass Filter.

from 0.1Hz to 1kHz the input referred noise is 1µVrms for the LNP-0, and 0.56µVrms

for the whole configuration. The efficiency factors of the ChA-0 are NEF = 4.6 and

PEF = 38V .
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Figure 4.14: Comparison of Input-Referred Noise between the LNP-0 and the ChA-0.
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4.3 Chopper Amplifier 1 (ChA-1)

The block diagram of the proposed Chopper Amplifier 1 is shown in Figure 4.15. It consists

of the VGLNP-4, based on bootstrapping technique, and the LPF-1. The VGLNP-4 was

selected as the main preamplifier as it featured the lowest power consumption (12.3µW )

with NEF = 2.6, PEF = 12.2V and programmable gain. The LPF-1 was used in this

configuration due to the low cut-off frequency (fc = 1kHz with CL = 20pF ) and the

ability to adjust both the gain and frequency.

Vid

+
Gm CL

VOut+

_

+

_ +

_

VOut-

fCH

RL
AO

VGLNP-4

CH1 CH2

LPF-1

Figure 4.15: Block Diagram of the Chopper Amplifier 1.

The transistor level circuit of the ChA-1 is shown in Figure 4.16. In contrast with the

LPF-1 in Chapter 3, here the polysilicon resistors RS were replaced by MOS transistor

MRs in order to reduce the required area. To ensure linearity, transistors MRs were biased

in deep triode. Besides, the gain can be modified through Vtune. Ultimately, the load

floating bootstrapping resistor makes it possible to modify the cut-off frequency of the

filter when the bias current IB4 is modified.

4.3.1 Simulation Results

The proposed circuit was designed in a 0.18µm CMOS process with 1.8V supply voltage,

and consumes 31µW total power. All transistors in the preamplifier and filter were

biased in the weak inversion region. The bias currents were set to IBIAS1 = 500nA

and IBIAS2 = 250nA for the VGLNP-4, whereas the output load bootstrapping resistor

was biased with Ib1 = Ib2 = 1µA and Ib3 = 500nA. The bias currents in the LPF-1

were set to IB1 = 500nA and IB2 = 250nA. The frequency response of the ChA-1

under these conditions is shown in Figure 4.17. The circuit presents a differential gain
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Figure 4.16: Schematic Proposed Chopper Amplifier 1.

of 41.5dB and 800Hz bandwidth. Figure 4.18 shows the time response for a 600µV pp

sine input signal at 50Hz. The demodulated and amplified input signal is shown before

filtering the modulated noise (Figure 4.18a), and at the output of the LPF (Figure 4.18b).

The input-referred noise power spectral density of the VGLNP-4 and ChA-1 is

shown in Figure 4.19a. At 250Hz the input-referred noise decreases from 30nV/
√
Hz

without the chopping technique, to 16nV/
√
Hz with the chopping technique. When

integrated from 0.1Hz to 1kHz the input referred noise is 2.7µVrms for the VGLNP-4,

and 1µVrms for the whole configuration. In order to determine the offset voltage, Monte

Carlo simulations (1000 runs) were carried out. Figure 4.19b shows the histogram of the
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Figure 4.17: Simulated frequency response of the ChA-1.
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Figure 4.18: Waveforms at the a) input and b) output of the Low-Pass Filter.

input-offset voltage, which has a mean value of 141µV and 470µV standard deviation,

whereas the VGLNP-4 presented an input-offset voltage with mean value of 243µV and

364.5µV standard deviation.

As already mentioned, the filter gain is programmable through the control voltage

Vtune. When this voltage is varied from 100mV to 600mV , the gain changes from 37dB

to 45dB with constant cut-off frequency of 800Hz. Figure 4.20a shows the frequency

response for several Vtune values, and Figure 4.20b presents the dB gain versus the Vtune

values.

Finally, the Chopper Amplifier 1 presents a NEF = 5 and a PEF = 46.2V for a

122



4.3. CHOPPER AMPLIFIER 1 (CHA-1) 4. Chopper Amplifiers

10-1 100 101 102 103

Frequency (Hz)
101

102

103

In
pu

t-R
ef

er
re

d 
No

ise
 (n

V/
√ H

z
)

VGLNP-4
ChA-3

(a)

500 0 500 1000 1500 2000
Offset Voltage (µV)

0

50

100

150

No
. o

f S
am

pl
es µ= 141µV

σ= 470µV

Gaussian Distribution
Offset Voltage

(b)

Figure 4.19: Simulation of a) input-referred noise and b) Input Offset Histogram from
Monte Carlo Analysis.
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Figure 4.20: Simulated a) Frequency Response for several Vtune at MRs and b) Gain vs
Vtune of the ChA-1.

noise integration bandwidth from 0.1Hz to 1kHz.

4.3.2 Experimental Results

The ChA-1 was integrated in 0.18µm CMOS standard technology with 1.8V power

supply. A microphotograph and layout of the ChA-1 are shown in Figure 4.21. The

frequency response is shown in Figure 4.22. The measured gain is 39dB with 1.3kHz

bandwidth. Figure 4.23 shows the response in the time domain.

Figure 4.24 shows the measured input-referred noise power spectral density of both

the VGLNP-4 and the ChA-1. The input low-frequency noise level measured at 200Hz

is 35nV/
√
Hz, for the VGLNP-4, and is reduced down to 16nV/

√
Hz for the whole
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Figure 4.21: Microphotograph and Layout of the Proposed Chopper Amplifier 1.
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Figure 4.22: Experimental frequency response of the ChA-1.

configuration. When integrated from 100Hz to 1kHz, the experimental input-referred

noise is reduced from 8.2µVrms for the VGLNP-4 to 1.2µVrms. The efficiency factors of

the ChA-1 are NEF = 8.9 and PEF = 144V .
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Figure 4.23: Experimental time response of the ChA-1.
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Figure 4.24: Comparative between measured and simulated input-referred noise of the
VGLNP-4 and the ChA-1.

4.4 Chopper Amplifier 2 (ChA-2)

Figure 4.25 shows the block diagram of the chopper amplifier 2 (ChA-2). It consists of

the VGLNP-4, input and output chopper modulators (ChA-1 and ChA-2) and the output

filter LPF-2a. The detailed schematic of the ChA-2 is shown in Figure 4.26. As for the

ChA-1, the VGLNP-4 was chosen because of its low power consumption (9.45µW ) with

good efficiency factors and programmable gain (from 35dB to 42dB). The LPF-2a is
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used because of its low power consumption (5.3µW ), a tunable low cut-off frequency

from 2kHz to 18kHz with CL = 20pF and moderate area consumption (0.144mm2). The

chopper modulators and the clock signal generator were implemented as shown in Section

4.1.
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Figure 4.25: Block Diagram of the Chopper Amplifier 2.
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126



4.4. CHOPPER AMPLIFIER 2 (CHA-2) 4. Chopper Amplifiers

4.4.1 Simulation Results

The ChA-2 was designed in a 0.18µm CMOS process with 1.8V supply voltage. All

transistors in the preamplifier and filter were biased in weak inversion. The total power

consumption of the circuit is 12.2µW . The bias currents were set to IBIAS1 = 500nA

and IBIAS2 = 250nA for the VGLNP-4, whereas the load bootstrapping resistor was

biased with Ib1 = Ib2 = 1µA and Ib3 = 500nA. The frequency response is shown in

Figure 4.27. The chopper amplifier provides a differential gain of 39.2dB and 1.6kHz

bandwidth. Figure 4.28 shows the time response for a 1mV pp sine input signal at 50Hz

before filtering and at the output of the low-pass filter.
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Figure 4.27: Frequency Response of the Chopper Amplifier 2.
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Figure 4.28: Waveforms at the a) input and b) output of the LPF.
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The input-referred noise power spectral density of both the VGLNP-4 and the

Chopper Amplifier 2 are shown in Figure 4.29a. When integrated from 0.1Hz to

1kHz, the input-referred noise is 2.7µVrms without chopping technique and decreases to

0.42µVrms for the whole configuration. In order to determine the offset voltage, Monte

Carlo simulations (1000 runs) were carried out. Figure 4.29b shows the histogram of the

input-offset voltage, which has a mean value of 14.5µV and 285µV standard deviation.

The input-offset voltage without chopping was 202µV with 364.5µV standard deviation.
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Figure 4.29: a) Input-referred Noise PSD and b) Input Offset Histogram from Monte
Carlo Analysis of ChA-2.

Figure 4.30 shows the THD for a sine differential input voltage at 50Hz and with

input amplitude varying from 500µV to 2mV . The simulation carried out shows that,

the THD remains below −40dB up to 3.6mV pp.

It is possible to change the gain of the ChA-2 from 28dB to 43dB when the bias

currents IB1 and IB2 of the LPF-2a change from 100nA to 500nA without modifying

the cut-off frequency (fc = 1.6kHz). Figure 4.31 shows the frequency response when IB1

and IB2 change from 100nA to 500nA, and from 100nA to 200nA respectively.

The input-referred noise is reduced from 8µVrms for the VGLNP-4 to 420nVrms in a

range frequency from 0.1Hz to 1.6kHz. The efficiency factors are NEF = 1.5 y PEF =

3.7V .
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Figure 4.30: THD for several Input Voltages.
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Figure 4.31: Gain programmability for several bias currents in the impedance scaler.

4.4.2 Experimental Results

The ChA-2 was integrated in 0.18µm CMOS standard technology. A chip microphoto-

graph is shown in Figure 4.32. For experimental characterization, the bias current IBIAS1

was set to 500nA, whereas IBIAS2 was set to 250nA. The bias currents in the impedance

scaler were Ib1 = Ib2 = 500nA and Ib3 = 170nA. Finally, the bias currents in the low-pass

filter were IB1 = IB3 = 150nA, IB2 = IB4 = 100nA.
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Figure 4.32: Microphotograph and Layout of the Proposed Second Chopper Amplifier

Figure 4.33 shows the experimental frequency response at the highest gain, i.e. 38.5dB,

and it shows a bandwidth of 1kHz. Figure 4.34 shows the response in the time domain.
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Figure 4.33: Experimental frequency response of the ChA-2.
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Figure 4.35 shows the measured input-referred noise power spectral density of both

the VGLNP-4 and the ChA-2. The input low-frequency noise level measured at 200Hz

is 35nV/
√
Hz, for the VGLNP-4, and is reduced down to 20nV/

√
Hz at 200Hz for

the ChA-2. Integrating from 100Hz to 1kHz, the experimental-referred noise is reduced

from 8.2µVrms for the VGLNP-4 to 0.65µVrms. The efficiency factors are NEF = 3.6 y

PEF = 24.2V .
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Figure 4.35: Comparative between measured and simulated input-referred noise of the
VGLNP-4 and the ChA-2.

According to the experimental results, the ChA-2 shows a NEF of 3.6 and a PEF of

24.2V with a noise integration bandwidth from 100Hz to 1kHz.
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4.4.3 Comparison

Table 4.1 shows the simulated and measured performance of the three proposed chopper

amplifiers. The ChA-0 shows low input-referred noise and a good trade-off between

noise, power consumption and bandwidth. However, the high power consumption makes

it an unattractive solution for portable applications. The ChA-1 in contrast, reduces the

power consumption, but at a cost of increasing the input-referred noise, which leads to

a slight increase in the noise efficiency factor. Finally, the ChA-2 presents the lowest

consumption, the lowest input-referred noise and, therefore, the best NEF and PEF.

In Table 4.2 the ChA-2 is compared with other chopping amplifiers found in the

literature. Together with [17], the ChA-2 shows the lowest input-referred noise, which is

only 650nVrms. In terms of NEF, the lowest value is achieved by [17], as the ChA-2 is

penalized by the power consumption. Even so, it achieves a good noise efficiency factor

of 3.6. Furthermore, the proposed configuration is the only one which provides control of

both the gain and the cut-off frequency, so the amplifier can be adapted according to the

range of signals to be handled.
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4.5 Conclusions

This Chapter presented the design of three chopper amplifiers in a 1.8V - 0.18µm CMOS

process.

The ChA-0 shows a modular design employing the same core transconductor in

the preamplifier and in the output low-pass filter. The structure of the transconductor

allows the output demodulator block to be embedded in the output branches of the

circuit, which reduces the glitches generated by the chopping technique. However, the

increased power consumption is an inconvenient for portable applications. The use of

pseudo-resistors allows modifying then gain and cut-off frequency of the ChA-0 through

a tuning voltage.

The ChA-1 was implemented using the VGLNP-4 as core preamplifier and the

LPF-1. The structure allows achieving high programmable gain, which can be adjusted

through the load bootstrapped resistor in the VGLNP-4. The ChA-1 showed low noise

with moderate area and power consumption. However, the NEF and PEF values were

not as low as expected due to power consumption. Furthermore, the ChA-1 showed the

highest distortion due to the use of triode transistors in the output LPF-1.

Finally, the ChA-2 achieved the best efficiency factors, with NEF = 3.6 and PEF =

23.3V , and with only 14.6µV input-offset. It also provides programmability for both the

gain and cut-off frequency through the bias current of the LPF and the bias currents in

the load bootstrapped resistor of the VGLNP-4.
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Chapter 5

Conclusions and Future Work

In this final Chapter the conclusions obtained during this Thesis are presented. Also some

ideas derived of the results obtained from this Thesis are discussed as future work.

5.1 General Conclusions

In this Thesis, the simulation, design and experimental verification of chopper amplifiers

in 0.18µm CMOS standard process has been presented, which are an essential building

block in the front-end circuitry for signal conditioning.

First, a novel implementation, based on the bootstrapping technique, of high-value

resistors with low power and area consumption, is proposed. The presented configura-

tions, both grounded and floating topologies, are able to provide equivalent resistance

values about 40 to 50 times the integrated polysilicon resistor values. Furthermore, the

equivalent resistance is adjustable through the bias current of the impedance scaler, so

when used as load resistor in a preamplifier, it provides a way of tuning the equivalent

gain of the circuit.

Several low noise preamplifiers are proposed in this Thesis. All of them are designed

to reduce noise contributions at a topological level, and are based on a voltage-current

conversion input stage and a current-voltage output conversion stage, to obtain a well-

defined gain. The LNP-0 is based on a flipped-voltage-follower (FVF) transconductor

with a polysilicon resistor (RS = 1kΩ) as degeneration element and another polysilicon

resistor (RL = 100kΩ) as output load, i.e., as current-voltage conversion element. This

amplifier is very compact, and shows good linearity. Although it also shows a good
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noise-power-bandwidth trade-off, with a noise efficiency factor NEF = 3.1, the relatively

high power consumption may be a handicap in portable systems. The LNP-1 is based

on a folded-cascode configuration with a polysilicon resistor RL = 10MΩ as output

load to achieve the current-voltage conversion. The LNP-1 is highly linear and shows

a noise efficiency factor NEF = 2.7, which indicates a good trade-off between noise,

power consumption. The VGLNP-1 is also based on a folded-cascode configuration,

with the polysilicon resistor at the output replaced by a floating bootstrapped resistor

for current-voltage conversion. The floating resistor allows to reduce the area required

to achieve high gain, and provides gain tunability. Experimental results show a noise

efficiency factor NEF = 5, i.e., the proposal exhibits a trade-off between power and

area. The VGLNP-2 is based on a super-source-follower with a polysilicon resistor as

source degeneration element. Again, the current-voltage conversion is done through a

floating bootstrapped resistor at the output. The VGLNP-2 shows low noise and low

power consumption, and a noise efficiency factor NEF = 3.7. However, the output swing

is limited. A modification of proposal VGLNP-2 is the VGLNP-3, which is based on

the super-source follower with degeneration source, but the output currents are copied

though current mirrors to increase the output resistance. The VGLNP-3 uses the load

floating bootstrapped resistor to achieve high gain with moderate power consumption. It

shows the lowest noise efficiency factor NEF = 1.65. Finally, to complete the low-noise

preamplifiers Section, the VGLNP-4 is described. It is based on a complementary

NMOS/PMOS input differential pair with source degeneration, which allows doubling

the effective transconductance without increasing the bias currents. VGLNP-4 shows the

lowest power consumption with high linearity. The preamplifier is compact and presents

a good noise-power-bandwidth trade-off with a noise efficiency factor NEF = 2.6. These

characteristics make it attractive for signal conditioning in portable applications.

The VGLNP-1 and the VGLNP-4 were fabricated and verified experimentally. The

VGLNP-1 achieved a tunable gain from 34dB to 38dB, with 100kHz bandwidth and

11.8µVrms input-referred noise, achieving a NEF of 5 and PEF of 45 with moderate power

consumption. Finally, the VGLNP-4 presents a tunable gain from 35dB up to 42dB with

100kHz bandwidth and 8.2µVrms input-referred noise and low power consumption. The

efficiency factors are 2.6 and 12.2V for noise and power respectively, which shows that it

is a suitable topology for low power applications.
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Next, several low transconductance amplifiers are proposed for the design of low cut-

off frequency filters. The LGmOTA-0 is a flipped voltage-follower transconductor with a

pseudo-resistor as degeneration element. The topology achieves low transconductance in

the order of units to tens of nA/V , but linearity is degraded due to the distortion intro-

duced by the pseudo-resistor. This issue is circumvented in the LGmOTA-1 by applying

the bootstrapping technique to reduce the equivalent transconductance. Experimental

results show a Gm range from 15nA/V to 18.5nA/V with 4µW power consumption

and THD lower than −40dB for input voltages up to 340mV pp. The LGmOTA-2a

combines the bootstrapping technique applied to two low-Gm transconductors in parallel

with current cancellation at the output, resulting in a tunable low transconductance

from 29nA/V to 54nA/V , with 5.2µA power consumption, a THD lower than −40dB

for input voltages up to 380mV pp, and with only 600nV/
√
Hz input noise at 100Hz.

Finally, the LGmOTA-2b is based on a similar topology without the need for polysilicon

resistors. It achieves similar results, with a variable transconductance from 24nA/V to

79nA/V , 5.2µW power consumption, THD lower than −40dB for input voltages up to

340mV pp, and with 500nV/
√
Hz input noise at 100Hz.

The low Gm transconductors were used to implement four different low cut-off

frequency LPFs. All of them have the capability to modify both the cut-off frequency

and the gain through a given bias current. The LPF-0 is a very compact configuration

which provides a variable gain from -1 to 10dB, and cut-off frequency as low as 1kHz.

However, the linearity is degraded due to the use of pseudo-resistors. The LPF-1,

based on the LGmOTA-1, provides a variable gain from 0 to 3dB, and variable cut-off

frequency from 490Hz to 7.1kHz. The dynamic range of this configuration is improved,

even though the configuration is still limited by the distortion level, as shown in the

experimental results. Finally, both the LPF-2a and LPF-2b show the lowest FoM1, i.e.,

the best trade-off between power consumption and dynamic range. The LPF-2a provides

a variable gain from 0 to 5dB, and variable cut-off frequency from 2kHz to 18kHz. The

LPF-2b provides a variable gain from 0 to 6dB, and variable cut-off frequency from

1.6kHz to 15kHz, and shows the lowest FoM2, i.e., the best trade-off between power

consumption, bandwidth, area and dynamic range.

Finally, the three chopper amplifiers implemented using previously designed blocks

were presented. First, the ChA-0 was implemented with a modular design, employing the

same core transconductor in the preamplifier and in the LPF. The structure of the pream-
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plifier makes it possible to use a demodulator block embedded in the output branches of

the circuit, which reduces the glitches generated by the chopping technique. The ChA-0

achieves good efficiency factors (NEF = 4.6 and PEF = 38V.), but the increased power

consumption (84µW ) is not suitable for portable applications. The ChA-1 was imple-

mented using a VGLNP-4 as core preamplifier, and the LPF-1. It shows lower power

consumption (31µW ) but the input-referred noise is increased (1µVrms), resulting in sim-

ilar noise efficiency factors than the LNP-0, with NEF = 5 and PEF = 46.2V . As for

the ChA-2, it used the VGLNP-4 as core preamplifier with the LPF-2a. Experimental

results showed the best noise-power trade-off, and therefore the best efficiency factors. It

presented an input-referred noise of 0.65µVrms in an integration bandwidth of 100Hz to

1kHz, and a power consumption of 35µW . The efficiency factors are NEF = 3.6 and

PEF = 24.2V , which makes it an attractive option for signal conditioning in portable

applications.

5.2 Future Work

In this Thesis, the proposed bootstrapping technique to achieve high resistance or low

transconductance has been applied using the simplest topology as voltage amplifiers. In

particular, source followers are used as the main building block. As future work, other

buffer configurations can be used instead, leading to novel low-Gm transconductors

which may result in even lower transconductance values.

Other research line could be the design of alternative filter topologies by taking

advantage of the multiple outputs that can be made easily available in the proposed

low-Gm OTAs. In particular, if the output of each source follower in the low-Gm cell

is copied to an output branch, OTAs with two differential outputs can be obtained. If

this fact is conveniently exploited, it could lead to fully differential filters with compact

structures saving power and chip area.

Another line of work to be explored in the future is the design of other chopping

amplifier configurations employing the building blocks proposed in this Thesis, in order

to further reduce the residual offset. In particular, the nested chopper amplifier is a

promising configuration, as it reduces the residual low-frequency noise without increasing

circuit complexity and power consumption.
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Appendix A

Noise Analysis and Simulation

A.1 Noise Analysis

The input-referred flicker noise of the LNP-0 is given by:

V 2
n,1/f =

2

Coxf

[
Kp

(WL)1
+ g2m5R

2
S

[
Kp

(WL)5
+

Kp

(WL7)

]]
+

2
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· g

2
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· Kn
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+
2

Coxf
· g

2
m9
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· g2m5R
2
S · Kn

(WL)9

(A.1.1)

where Kn and Kp are technology dependent constants, Cox is the oxide capacitance, f

is the frequency, and gmi and (WL)i are the transconductance and area of transistor

Mi respectively. As RS and RL are linear polysilicon resistors, they only contribute with

thermal noise, which is not taken into account in equation A.1.1. If transistors M7−M8 are

designed M times wider than M5 −M6 to provide some gain to the current mirror, their

area and transconductance are also M times higher. Therefore, assuming gm1RS >> 1,

equation A.1.1 can be rewritten as:

V 2
n,1/f =

2 ·Kp
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[
1
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2
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2
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] (A.1.2)
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The gain M of the current mirror should be chosen higher than 1 to reduce flicker

noise. However, there is a trade-off between the reduction in flicker noise and the increase

in power consumption due to the increase in the current through the output branches.

For this reason, M = 1.5 was chosen.

The input-referred noise flicker or the LNP-3 is given by:

V 2
n,1/f =

2 ·Kp

Cox(WL)1 · f

+
2 ·Kn
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2
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+
2 ·Kp
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2
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· (gm1gm5Req1Req2ro1ro4 + gm5Req1Req2ro4)
2
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2
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(A.1.3)

where Req1 = ro6||RL and Req2 = RS||ro3||ro2. Kn and Kp are technology dependent

constant, Cox is the oxide capacitance, f is the frequency, and gmi and (WL)i are the

transconductance and area of transistor Mi respectively. To reduce flicker noise, it is

required to increase the transconductance of transistors M1 and M5, however, increasing

gm1 and gm5 generates an increase in power consumption, so, there is a trade-off between

flicker noise and power consumption. The main advantage of the technique is that the

impedance scaler does not generate additional flicker noise to the preamplifier, since the

noise is determined by the differential input and bias stages.

A.2 PNoise Simulation

Chopper amplifiers use modulation to reduce the low frequency noise. The modulator is

implemented with four MOSFET switches, as shown in Figure 4.3. Noise calculations

in conventional simulators (like SPICE) are based on a small-signal linearized model

of the circuit at its DC operating point [1]. Because of the linearization, frequency

translation of noise due to the switch modulation cannot be directly determined in these
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simulations [1]. For example, SPICE can calculate the noise of a circuit based on the

DC operating point when clk1 and clk2 are fixed but can not calculate when it clk1 and

clk2 are constantly changing.

Spectre simulator extends the traditional time-domain algorithms to handle RF

simulation. It uses the Newton shooting method to calculate the periodic steady-state

(PSS) response of those circuits. The period of chopper amplifier is the time when

a modulation switch is opened once an closed once. The first step to simulate a

chopper amplifier is to calculate the periodic steady-state (PSS) response of the circuit

to determine the periodical operating point. With the PSS analysis, the input of

a circuit is biased to a common input voltage with only the chopper clock applied.

The chopper clock will help to determine the period of the PSS response of the circuit [2].

The circuit is linearized around the periodic operating point, and the steady-state

response of the periodically varying linear circuit is calculated by superimposing the

signal that it is driven by a small sinusoidal signal at an arbitrary frequency.

To complete the noise analysis, a type of analysis known as PNOISE is required.

Pnoise analysis is similar to conventional noise analysis, except that it includes the effects

of frequency conversion. PNOISE analysis is a two-step process, where the PSS is used

to calculate the response to a large periodic signal such as a clock. In the second step,

which is the actual PNOISE analysis, the resulting noise performance is calculated [3].
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Appendix B

Experimental Characterization

In this Appendix the experimental setup used to characterize the designed integrated

circuits in this Thesis is presented. The setup equipment used in the laboratory and the

way each circuit of the Thesis was connected to be tested are shown.

Figure B.1 shows the Test Bench for experimental measurements of the transconduc-

tor (output current). Each current (IB1 and IB2) was generated via an external poten-

tiometer, and a two signal generator was used to apply the differential input voltage. A

transimpedance amplifier, implemented with the general purpose amplifier TL081 and a

feedback resistor RF = 2.2MΩ, was connected to the output of the transconductor in

order to convert the output current into an output voltage.

Oscilloscope

VIN+ VIN

IB1

VOUT

RF

TL081

       Chip 

VDD

Arbitrary Signals
Generator

+

Spectrum Analyzer

IOUT

IB2

IOUT

Figure B.1: Setup Experimental to Gm Measure and THD.
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The transconductance was measured by applying a 100Hz triangle wave to the input

from 0 to VDD and obtaining the derivative of the output voltage with respect to the

input voltage, Gm = (1/Rf )(dVout/dVid), with a digital oscilloscope. Finally, for the THD

measurements, they were carried out with the dynamic signal analyzer HP89440A.

Figure B.2 shows the Test bench for experimental characterization of the Variable Gain

Low-Noise Preamplifiers. Measurements of the time response was carried out using the

Tektronix DPO7104 Digital Phosphor Oscilloscope, whereas for the THD measurements,

the signal analyzer Rohde & Schwarz FSV 10Hz-3.6GHz was used.

Oscilloscope

VNA

VIN+ VIN

Ib1 IBIAS1
Ib0 Ib2

VOUT
RF

RF

R1

R1

TL081

TL081

IBIAS2

       Chip 1

VDD

VIN+ VIN

Ib1 IBIAS1
Ib0 Ib2

VOUT
RF

RF

R1

R1

TL081

TL081

IBIAS2

       Chip 1

VDD

Arbitrary Signals
Generator

+

+

+

+

Spectrum Analyzer

Figure B.2: Setup Experimental for Time Response and THD.

The input signal was applied using a single output signal generator HP33120A. How-

ever, it was necessary to convert the input signal Vin into a differential signal (Vin− and

Vin+) by means of two operational amplifiers, implemented with the general purpose am-

plifier TL081, connected in an inverter configuration. Resistors R1 an RF in Figure B.2

were used to attenuate the input signal and avoid saturating the output. The input signal

was attenuated with the inverters down to 1mV . Figure B.3 shows the protoboard used

to measure the Variable Gain Low-noise Preamplifiers. Each current was generated via

an external potentiometer as shown in Figure B.3. Finally, Figure B.4 shows the complete

measurement setup.
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   Device 
Under Test

  Bias Currents
Potentiometers

 TL081

  Bias Currents
Potentiometers

Figure B.3: Photograph of Test Protoboard.

   Device 
Under Test

 Bias Currents
Potenciometers

 Bias Currents
Potenciometers

 TL081

Figure B.4: Photograph of the whole setup.

To analyze the frequency response of the VGLNP, the same protoboard arrange was

used. Figure B.5 shows the diagram of the Test bench for experimental measurement of

the frequency domain. A Keysight E5061B Network Analyzer was used for this charac-

terization. The equipment was calibrated along with the measuring wires connected to

the power splitter. Calibration ensures proper measurement of the frequency response of

the device under test (DUT). Resistors were used to attenuate the signal and generate
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Vin. A Vin signal of −30dBm was used and attenuated down to 1mV amplitude. Figure

B.6 shows the complete measurement setup for the frequency response.

Oscilloscope

VNA

VIN+ VIN

Ib1 IBIAS1
Ib0 Ib2

VOUT
RF

RF

R1

R1

TL081

TL081

IBIAS2

       Chip 1

VDD

VIN+ VIN

Ib1 IBIAS1
Ib0 Ib2

VOUT
RF

RF

R1

R1

TL081

TL081

IBIAS2

       Chip 1

VDD

Arbitrary Signals
Generator

+

+

+

+

Spectrum AnalyzerFigure B.5: Setup Experimental for Frequency Response.

Figure B.6: Photograph of whole setup.

Finally, the experimental noise characterization was carried out using a SR530 Lock-

In Amplifier (LIA). Figure B.7 shows the schematic diagram for noise measurements. The

LIA provides a voltage mode differential output signal, which is fed directly to the input

of the circuit under test. The signal from the sample under test is amplified by an AC-
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packed high-gain amplifier. The output of this amplifier is multiplied by the outputs of

the internal PLL in two phase-sensitive detectors (PSD1 and PSD2). This multiplication

shifts each frequency component of the input signal by the reference frequency [1].

VIN+ VIN

Ib1 IBIAS1
Ib0 Ib2

VOUT

IBIAS2

       Chip 2

VDD

Arbitrary Signals
Generator

Lock-In
Amplifier

Figure B.7: Setup Experimental for Noise Measurement.

The external signal generator allows defining the frequency at which the power spectral

density measurement is taken. Table B.1 shows the main parameters of the LIA. In order

to ensure a reliable measurement, three samples from each circuit were measured.

Table B.1: Specifications of the LIA.

Parameters Specifications

Full-Scale Sensitivity 100 nV - 5 mV

Dynamic Response High - 60 dB

Offset Off

Equivalent-Noise Bandwidth (EnBW) 1 Hz

Active Filters Bandpass - Line Notch

The same characterization was carried out for the low-pass filters (LPF) and the

chopper amplifiers.
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