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Abstract 

 
In this this work, the acousto-optical interaction is studied. Since its 

inception, in 1922, it has been widely studied and applied. Here, the 

development of three advanced application of this branch of physics is 

considered. 

First, is analyzed the potential use of an acousto-optical cell for be included as 

a dynamic diffraction grating, in order to improve in many ways the actual 

static gratings used, in the Guillermo Haro astrophysical observatory. For 

this, it was necessary to estimate the performance of several acousto-optical 

materials available today. 

Second, a specific mechanism of the acousto-optical nonlinearity is studied to 

regulate the performance of the collinear acousto-optical filter. The theory of 

this phenomenon is analyzed and confirmed experimentally using and 

advanced filter based on calcium molybdate ( 4CaMoO ) single-crystal. The 

transmission function of electronically tunable filter exhibits a dependence on 

the applied acoustic power density, and as a result, it is possible to squeeze 

the transmission function at the cost of decreasing the device efficiency 

partially. 

And at final, the triple product processor is studied for its potential 

application in spectroscopy designed for 3-inch optics and analyzing all the 

materials needed for its realization. The need to use 3-inch optics is mainly 

oriented to exploit an acousto-optical cells with large aperture windows to get 

a large time-bandwidth product. 
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Resumen 

 
En este trabajo se estudia la interacción acusto-óptica. Desde sus comienzos 

en 1922 ha sido estudiada y aplicada ampliamente . Aquí están desarrolladas 

tres aplicaciones avanzadas de esta rama de la física. 

Primero, se analiza el uso potencial de una celda acusto-óptica para ser 

incluida como una rejilla de difracción dinámica, con el fin de mejorar en 

varios aspectos las rejillas que se usan actualmente en el observatorio 

astrofísico Guillermo Haro en Cananea. Para esto fue necesario estimar el 

desempeño de varios materiales acusto-ópticos disponibles en la actualidad. 

Segundo, un mecanismo específico de la nolinealidad acusto-óptica es 

estudiado para regular el desempeño de un filtro acusto-óptico colineal. La 

teoría de este fenómeno es analizada y posteriormente confirmada 

experimentalmente usando un filtro basado en un solo cristal de molibdato de 

calcio ( 4CaMoO ). La función de transmisión del filtro sintonizable 

electrónicamente muestra una dependencia en la densidad de potencia 

acústica aplicada, y como resultado, es posible estrechar la función de 

transmisión con la desventaja de disminuir parcialmente la eficiencia del 

aparato. 

Y por último se estudia un procesador de triple producto para su potencial 

aplicación en espectroscopía, diseñado para un arreglo óptico de 3 pulgadas, 

analizando los materiales necesarios para su realización. La necesidad de 

usar el arreglo óptico de 3 pulgadas está principalmente orientado para 

explotar una celda acusto-óptica con una larga ventana de apertura para 

obtener un producto tiempo-ancho de banda grande.  
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Introduction 

 
The acousto-optics is a branch of physics which joints the light phenomena 

with the sound and ultrasound phenomena. The study of the interaction 

between light and acoustic waves was first predicted by Brillouin in 1922 and 

later, this idea was refined by Debye and Sears in 1932, and by Lucas and 

Biquard. It continued with the investigations of Raman and Nath between 

1935 and 1936. A heuristic physical approach was later proposed by Van 

Cittert in 1937 and many more contributions were made in the theoretical 

explanation of the phenomenon by many authors. Later, with the invention of 

the laser in 1960, a new need for controlling the light was born and more 

developments were made in acousto-optical applications and theory as well.  

 

From deflection, filtering, and frequency shifting to parallel optical processing 

for the study of signals, the acousto-optics has never stopped in its 

development and has been used for several important experiments, for 

example, the first Bose-Einstein condensate in 1995. It has also been widely 

applied for spectroscopy in astrophysics, in filtering and acousto-optical 

signal processing. 
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Preface 

 
The study of acousto-optical interaction is widely discussed within this thesis. 

Also, the development of new applications using this discipline is analyzed. 

The main motivation for this matter is its use in astrophysical spectroscopy 

but it is not limited to this area. 

 

The first chapter is a very extensive introduction to acousto-optics, explaining 

the nature of acoustical and optical waves in order to establish the basic 

knowledge to understand the interaction between these two physical 

phenomena. Some concepts of the propagation of these waves in a medium 

are also explained. 

 

In chapter number two, the design of a novel acousto-optical spectrometer for 

the Guillermo Haro astrophysical observatory is discussed. The analysis for 

the design of an acousto-optical cell for this spectrometer is also considered 

and some estimations of its potential performance were made. 

 

In the third chapter a specific mechanism in the non-linear regime of acousto-

optical interaction is discussed for its use in a collinear acousto-optical 

tunable filter to control its transmission function with the use of acoustic 

waves of finite amplitude. 

 

The chapter four is directed to the analysis of the potential improvement of a 

triple product processor using 3-inch optics components in order to exploit the 

advantages for the time and space integration combined. 

 

In the chapter five, the general conclusions of this thesis are presented. 

 

Finally, some future work, related to the work developed in this thesis, is 

presented. 
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Chapter 1 

 

 

Acousto-Optics 

 
In this chapter, the basic theory of the acousto-optical interaction and 

generally some of the most used applications are presented [1.1] in order to 

set up the knowledge for the more recent and advanced applications. To 

understand this better, first is explained the behavior of the light in 

anisotropic media, then the propagation of sound in some medium and finally 

the interaction of these 2 phenomena. 

 

1.1. Light Propagation in Anisotropic Media 
 

The study of the propagation of light could be divided in two cases: isotropic 

and anisotropic. In an isotropic media the induced polarization is always 

parallel to the electric field and it is proportional to the susceptibility and this 

relation is independent to the direction of the applied field. It becomes more 

interesting for anisotropic media, where depending on the direction of the 

light in the media and its state of polarization, the induced polarization 

would change. 

 

1.1.1. Index Ellipsoid and Surfaces. 
 

Two different concepts must be introduced, which will allow the work 

mathematically and help visualize the differences between each type of 

crystals that will be used. In one hand it is the index ellipsoid which is 

defined as [1.2] 
 

1
zyx

zz

2

yy

2

xx

2










,                                        (1.1) 

 

where ii  are the components of the main diagonal in the dielectric tensor  , 

and knowing that 
 

n                                                 (1.2) 
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n  is the refractive index and   the magnetic permeability which is effectively 

unity for all the materials are concerned for this thesis. Now it is possible to 

rewrite (1.1) into 
 

 1
n
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n

x

2
z
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2
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x

2

 .                                         (1.3) 

 

As an example, let oyx nnn  , ez nn  , and let eo nn   so Eq.(1.3) becomes 

 

1
n
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n

yx

2
e

2

2
o

22
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

,                                         (1.4) 

 

with this spheroid in mind, consider the wave vector k


 in the direction of an 

arbitrary angle   to the z axis, then any plane that touches the origin and 

that is perpendicular to this wave vector  will intersect the spheroid in an 

ellipse, see Fig. 1.1, which will have the following properties: 

 

 
Figure 1.1 The index ellipsoid for a uniaxial medium. The shaded ellipse is 

perpendicular to the k


 vector 

 

1) The axes of this ellipse define two orthogonal directions for the electric 

displacement D


 which satisfy simultaneously the Maxwell’s equations 

and the constitutive relation 
 

ED 0


 .                                                (1.5) 

 

one of the two axes is always in the yx  plane and correspond to the 

direction of polarization of the ordinary wave and its length is 

independent of the direction of k


 . The other axes is related to the 

extraordinary wave and its length depends on the angle   between k


 

and the z axis. 
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2) The length  of the semi-axis  of the ellipse are the refractive indices, 

on  for the ordinary wave and )(n~e   for the extraordinary wave. The 

value of  )(n~e   is easily estimated from Fig. 1.2. The length of the bold 

line perpendicular to k  in Fig. 1.2 is the value of 
 

2
e

2

2
o

2

e
n

sin

n

cos
)(n~





 .                                        (1.6) 

 

On the other hand there are the index surfaces which represent the values of 

the refractive indices for all the possible directions of propagation of the wave 

vector k


. 

 

Using the previous example, the index surface would look like Fig. 1.3b or 

1.3c. The planes of polarization for the ordinary and extraordinary are 

perpendicular, this characteristic will be particularly useful for some 

applications listed in subsection 1.5. 

The present work is focused on this representation and it will be explained for 

the different crystal types in the next section. 

 

 
Figure 1.2 Projection of the index ellipsoid into the zk   plane. 

 

1.1.2. Crystals; Optically Isotropic, Uniaxial and 

Biaxial 
 

In crystals, the optical isotropy is observed in cubic crystal systems (also 

applicable for amorphous media), in these systems the dielectric tensor   is 

given by 
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where 0  is the permittivity of vacuum. In Fig. 1.3a is shown the expected 

index surface for this case which is the simplest one. 

 

 
Figure 1.3 Index surfaces for: (a) isotropic, (b) positive uniaxial, (c) negative 

uniaxial, and (d) biaxial medium. 
 

There also exist the uniaxial crystals; these ones are crystals systems of 

tetragonal, hexagonal and trigonal kind. Their dielectric tensor is of the form: 
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,                                             (1.8) 

 

being on  the ordinary and en  the extraordinary refractive index.  In Fig. 1.3b 

and 1.3c it is seen the two cases for its index surface, if oe nn    it is called 

‘positive uniaxial’ and if oe nn  it is called ‘negative uniaxial’. 

The biaxial crystals represent the most complicated case. The index surfaces 

for this type of crystal is shown in Fig. 1.3d. Its dielectric tensor is 

represented as 
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1.2. Ultrasound Propagation in Anisotropic 

Media 
 

The acoustic propagation is much more complicated than the light 

propagation, in the light wave what oscillates is the electromagnetic field but 

in the acoustic waves are the positions of the atoms/molecules. 

 

Strain tensor 
This tensor is related to the deformation of a body. In some coordinate system 

the position of any point is defined by a vector  32i xz,xy,xxr 


. When the 

body is deformed this position changes to a new vector  i'x'r , and this 

displacement is given by the vector r'ru


 ; 
 

iii x'xu  ,                                                 (1.10) 
 



19 

 

which is called the displacement vector. When a body is deformed, the 

distance between two points will change. Let us consider two very close points 

with the radius vector joining the points as idx , the vector joining this points 

when deformed will be iii dudx'dx  . Here the squared distance between the 

points is 2
i

2
dxdl   before the deformation and  2ii

2
i

2
dudx'dx'dl   after the 

deformation. Now   kkii dxxudu   is substituted to rewrite  
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the second term on the right can be rewritten as  
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and then, in the third term the suffixes i  and l   are interchanged so 
 

kiik
22

dxdxu2dl'dl  ,                                       (1.11) 
 

where the tensor iku   is defined as 
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iku  is called the strain tensor. This tensor represents the change in the 

distance between two points when a body is deformed. In this case, the body 

is a crystal  and the deformation is caused by the acoustic wave. It is easy to 

see, from Eq. (1.12), the symmetry of the strain tensor, 
 

kiik uu  .                                                 (1.13)  
 

Because of this symmetry the strain tensor can be diagonalized at any given 

point. When diagonalized at a given point, the element of length, Eq. (1.11), 

becomes 
 

      2
3

32
2

22
1

12
dx)u21(dx)u21(dx)u21('dl  , 

 

where  i
u  is the component of the diagonal of iiu . From this expression is 

possible to see that the strain tensor is the sum of three independent 

directions mutually perpendicular. 

 

1.2.1. Pure Longitudinal Waves 
 

In these waves the direction of propagation of energy is in the same direction 

as the direction of the perturbation and only in this direction, Fig. 1.4a, 

generating zones of greater pressure traveling along the media. 

 

In terms of the strain tensor, this wave is traveling in the same direction as 

the diagonalized strain tensor 
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1.2.2. Pure Shear Waves  
 

Now the acoustic wave, in contrast with the longitudinal wave, makes the 

oscillation of the particles perpendicular to the direction of propagation, see 

Fig. 1.4b. Shear waves are slower than longitudinal waves and this will make 

them very useful for the acousto-optical applications explained later. 

 

In terms of the strain tensor, this wave is traveling perpendicular to the 

direction of iiu . 

 

 
Figure 1.4 Acoustic waves in a medium; (a) pure longitudinal wave and (b) pure shear 

wave. 

 

1.3. Acousto-Optical Interactions 
 

This phenomenon occurs when the light propagates through a media which is 

under the action of acoustic waves (sound or ultrasound). 

One approach for explaining this phenomenon is the next one: it is known 

that the sound is a perturbation which causes a difference in the pressure of 

the media where it travels. This perturbation produce a change in the 

refractive index of the material and, because of the periodicity of the acoustic 

wave, it creates a phase grating, see Fig. 1.5, which will be the responsible for 

the light to be diffracted. The parameters of this grating will be entirely 

determined by the intensity and the frequency of the acoustic wave. 

 

The other approach comes from the quantum electrodynamics where the light 

will be treated like photons and the sound as phonons in a given field 

approximation, so the scattering will be caused when one photon absorbs one 

or more phonons and, because of the conservation of momentum, the photons 

will change their direction. To make it more clear, and get a deeper 

understanding of the phenomenon, the wave vector diagrams are introduced. 
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Figure 1.5 Acoustic wave traveling in a crystalline material and generating a phase 

grating. L is the interaction length, D is the aperture of the cell,   is the acoustic 

wavelength, and B  is the Bragg angle. 

 

1.3.1. Wave Vector Diagrams; Normal and 

Anomalous Light Scattering 
 

Let a set of interacting particles 1N  and 2N of two fields exist, where 1N  is 

the field of interest, Fig 1.6, if 21 NN   it is said that is in the regime of strong 

interaction (coupled fields), after the interaction, both fields are considerably 

affected. 

 

 
Figure 1.6 Two sets of interacting particles from an arbitrary field. 

 

If 21 NN  it is called weak interaction because the field of 1N  is barely 

affected after the interaction. If 21 NN   it is the so called given field 

approximation, where all the 1N  particles are interacting with the 2N . The 

number of  2N  particles is so large that after the interaction the field of 2N  is 

not even affected. The last one is the case for the acousto-optic interaction. 

Suppose one acoustic field and one optic field of the same intensity, the 

energy of each particle is given by 
 

 E ,                                                  (1.14) 
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where   is the Planck constant divided by 2  and   is the frequency of the 

particle. For the photons Hz10
14

L  , and for the phonons Hz10
9

A  , in 

order to have more or less the same energy in both fields there would be 
5

10 more phonons than photons, AL NN   so  it is possible to use the given 

field approximation for the acoustic field. 

 

In every physical interaction there are some measurable properties that must 

be conserved, for this subject, these ones are the energy and the linear 

momentum. In quantum mechanics, the linear momentum of a particle is: 
 

kp  ,                                                (1.15) 
 

where k  is the wave vector. So the relations that must be satisfied are: 
 

 EEE AL                                          (1.16a) 

 ppp AL


                                          (1.16b) 
 

where E  stands for energy, p  for momentum, the subscripts L  and A  are for 

the light and the acoustic fields, and the subscripts   is for the scattered 

light. Using Eq. (1.14), (1.15), (1.16a) and (1.16b) is possible to  arrive to two 

conditions: 
 

10  ,                                          (1.17a) 

 10 kKk


 ,                                          (1.17b) 
 

here the subscripts 0  and 1  are for the incident and the scattered light, from 

now on the uppercase greek letter   and uppercase K  are for the acoustic 

frequency and the acoustic wave vector respectively. This conditions can be 

displayed in the so called “wave vector diagrams”, see Fig. 1.7. In the 

diagrams each vector represents the wave vector of each interacting particle 

and the resultant vector is the scattered photon. 

 

These diagrams will help to visualize the two kinds of scattering that will be 

studied: the normal and the anomalous scattering. In the normal case, the 

scattered light will continue on the same surface, see Fig. 1.7, and in the 

anomalous case, the scattered light will “jump” to other surface, see Fig. 1.8.  
 

 

 
Figure 1.8 Anomalous light scattering 

in an anisotropic media. 

 

 
Figure 1.7 Simple wave vector diagram 

of light scattering in isotropic media. 



23 

 

Note that the anomalous light scattering cannot occur in isotropic media 

because there is just one surface. On the other hand, the normal light 

scattering can occur on both, isotropic and anisotropic media. 

 

1.3.2. Collinear Interaction 
 

This kind of interaction takes place when the acoustic wave and the optical 

wave are in the same direction. With the aid of the wave vectors is easy to see 

that collinear interaction is only possible on anisotropic media, see Fig. 1.9, 

nevertheless, this interaction has been reported to exist on isotropic media in 

a more complex phenomenon called “backward collinear acousto optic 

interaction” [1.3] but that matter is out of the interest of this thesis. In Fig. 

1.9, is shown the collinear interaction on anisotropic media, where the  

photon absorbs one phonon to change its wave vector, in so doing the light 

will not change its direction but other properties such as polarization state. 

The basic arrangement for the collinear interaction will be depicted in 

chapter 3. 

 

1.3.3. Non-Collinear Interaction 
 

This is the most versatile interaction because it has more degrees of freedom. 

Here exist an angle between the optical wave and the acoustic wave 

directions, Fig. 1.8. In this interaction the light can stay in the same wave 

vector surface by changing its direction, it even can jump to another wave 

vector surface and then come back to the previous surface (two phonon light 

scattering), see Fig. 1.10. It can occur on both, isotropic and anisotropic media 

(Fig. 1.7 and 1.8),  

 

 
 

 
Figure 1.9 Cuasi-collinear interaction 

in an anisotropic media, in the 

collinear interaction the three wave 

vectors are in the same line. 

 Figure 1.10 Two-phonon light 

scattering occurred in anisotropic 

media. 
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1.4. The Formal Approach (Differential 

Equation Method) 
 

This method starts with the Maxwell’s equations for a dielectric medium with 

a changing dielectric constant )t,y,x(  as a function of position and time. After 

some well known operations, the Maxwell’s equations give the differential 

equation for the electric field of light as 
 

  0E
tc

1
E

2

2

2

2 



                                              (1.18) 

 

Now the particular interaction geometry illustrated in Fig. 1.11 is considered. 

In this geometry the acoustic wave propagates in the x direction with and 

angles ±, where  
 

L2


  ,                                                       (1.19)  

 

and  is the wavelenght of the acoustic wave, the acoustic wave has an 

infinite depth in the y  direction, and the width of the acoustic wave extends 

from 2L to 2L  in the z  direction. The geometry assumes that a 

monocromatic plane wave of light is incident from the left downward on the 

sound column at and angle   from the z  axis. This geometry eliminates the 

y axis dependence of the problem. The time and spatial dependence of the 

dielectric constant due to the presence of the acoustic wave can be written in 

the form 
 

 )tKx(sin0                                         (1.20) 
 

K  is the wave vector of the acoustic wave,   is the angular frequency of the 

acoustic wave. Although   is a tensor quantity, it is assumed, for simplicity, 
 

 
Figure 1.11 Geometry oy the acousto-optic interaction in a medium of leght L , an 

acoustic wave K  and incident light at an angle  . 
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that it can be represented by a scalar. With this geometry the electric field 

can be written in the form  
 

)]tcoskzsinkx(i[expUE 0                                 (1.21) 
 

Now, it is possible to assume that the solution of the diffracted light is given 

by the sum 
 

 

l

l ]}coskzx)lsink(t)l[(i{exp)z(UE                  (1.22) 

 

This sum represents a series in plane waves whose amplitudes )z(Ul  vary 

within the crystal along the z  coordinate. Each plane wave, except 0U , 

originates from the absorption or emission of one or more phonons by the 

incident light beam in the interaction volume but this particular 

representation is only valid for 2,1l   . 

 

This solution is substituted into Eq.(1.18). If the amplitude of each of the 

diffracted plane waves increases slowly with distance z z, the resulting terms 

in 2
l

2
dzUd  can be neglected. Also one can neglect the terms which are 

relatively small by the factor  1  and the factor 1cV  . Using the 

substitutions ck   and V , the resulting equations for the amplitude 

factors )z(Ul  are  
 

0)]z(U)z(U[)z(Ui)z('U 1l1llll                             (1.23) 
 

where 
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l                       (1.24) 

The general solution for the equations system in Eq.(1.23) is very complicated 

so it is considered that l1l UU   and that initially only 0U0  . The equation 

for lU  can be written as 
 

1ll
l UUi

z

U





                                         (1.25) 

 

The solution for this differential equation can be written in the form 
 

 
 

z

l1lll 'dz)'zi(expU)zi(expU                            (1.26) 

 

Now the case 1l   is considered, it corresponds to the first order diffraction. If 

the acoustic-wave amplitude is uniform and nonzero only in the range 2L to 

2L , then   is constant and nonzero only within the same limits. And, since 

01 UU  , it is assumed that the diffraction process removes a negligible 

fraction of the incident light beam power. Thus, 0U  is basically constant in 

value and the amplitude of the first order diffracted light is  
 

 
2/L

2/L
101l 'dz)'zi(expU)zi(expU  
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2/L

)2/L(sin
LU)zi(expU

1

1
01l




                               (1.27) 

 

where  
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
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Using Eq.(1.23) is possible to estimate the fractional amount of light intensity 

which is diffracted by the acoustic wave as 
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The maximum amount of power diffracted into one order occurs when 01  . 

For this condition, 
 

2
1

0

1 )L(
I

(max)I
                                           (1.30) 

 

Second order diffraction occurs when the light beam is scattered by two 

phonons. Using Eq. (1.21) and solving the equation system while assuming 

that l1l UU   and 0U0  , is possible to find the amplitude for the second 

order diffraction. This gives 
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                             (1.31) 

 

Neglecting the first term and assuming that the amplitude of the acoustic 

wave is uniform and nonzero between 2L to 2L  gives the result 
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The use of Bragg diffraction is based on the results obtained in Eqs.(1.26) 

which express the diffracted light amplitude in terms of the scattering 

parameters and the experimental conditions. Using the particular case of an 

optical beam passing through a uniform-intensity acoustic beam of width L , 

the diffracted light amplitude for the second order is Eq. (1.32). where, using 

Eq. (1.24) 
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The central maximum of the diffraction pattern occurs when 02  , which 

leads to  
 




sin
k

                                               (1.33) 
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 where 
V

f

k

c



, V is the speed of the acoustic wave, cf  is the central 

frequency of the scattered light and   is the wavelength inside the material. 

The relative peak intensity of the diffracted beam is  
 

1

0
2

2
2

LU
U




 .                                             (1.34) 

 

By differentiating Eq. (1.33), one obtains the diffraction bandwidth 
 

 
L

cos
V2

f





                                             (1.35) 

 

1.5. Applications of Modulation, Filtering and 

Deflection 
 

There are several applications for acousto-optics and each one can reach 

different limits according to the materials and techniques used. Here is 

presented a brief explanation of the three applications which will be exploited 

in this thesis. 

 

Light Modulation 
This application consist in the modulation of light intensity of one selected 

diffraction order, usually the first order, while blocking the rest of the orders. 

The modulation of the selected order is achieved by increasing the diffraction 

efficiency given by 
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defined as the ratio of the power of the first order divided by the incident light 

power, aP   is the acoustic beam power and peakP  is the power of the peak 

diffraction efficiency. 

 

For the zeroth-order, the diffraction efficiency can be approximated by the 

complement of the first-order diffraction efficiency; 
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The major performance is given by the response time related to the transit 

time   defined as the time required for the acoustic beam to travels through 

the light beam, 
 

s

in

V

D
 ,                                                 (1.38) 

 

where inD  is the diameter of the light beam and sV is the velocity of the sound 

in the media. 
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Deflection 
It is used for very precise deflection of light beams, the acousto-optic (AO) 

deflector designed to diffracts a collimated light beam into a single order 

whose spatial position will be determined by the frequency of the acoustic 

wave applied to the device. When working in the Bragg regime, it is called 

Bragg cell. Using the conservation of momentum is possible to estimate the 

angle of deflection, 
 

Kkk id


                                                 (1.39) 

 

where dk


 is the wave vector of the deflected light, ik


 for the incident light 

and K


 for the acoustic wave, which magnitude is: 
 

Bsink2K  ,                                           (1.40a) 




 

n2
sin 01

B ,                                         (1.40b) 

 

here n  is the index of refraction of the AO medium, 0  is the free-space 

wavelength of the light, and   is the acoustic wavelength. B  is called the 

Bragg angle, note that this is the same angle that maximizes the amount of 

light diffracted in Eq. (1.29). When the AO cell is illuminated at this angle, 

the total angle of deflection is 
 

nV

f
2 0

BD


                                             (1.41) 

 

where f  is the frequency of the acoustic wave, so the angle of deflection is 

proportional to this frequency. 

 

Filtering 
Generally, there exist two kinds of AO filters: isotropic AO filters, which use a 

pinhole for selectivity, and collinear filters made with anisotropic crystals. 

The second kind is more common and this work will focus on that type of 

filters. The condition for such an interaction to exist is 
 






Vn
f ,                                                (1.42) 

where oe nnn   and   is the wavelength of the light in the crystal. The 

resolution can be estimated as  
 

L

V1
f 


 ,                                               (1.43) 

 

where   is the sound transit time and L the collinear interaction length. 

Based on this, longer interaction lengths help to improve the frequency 

resolution  

For optically anisotropic media, the acousto-optical interaction can change 

the polarization state of the light, see Fig. 1.8 and 1.9. This can be exploited 

to filter the scattered from the non-scattered light using an acousto-optical 

cell between crossed polarizers and will be explained in more details in 

chapter 3. 
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1.6. Acousto-Optic properties of Materials 
 

The most important characteristics concerned for the acousto-optical 

interaction are listed and their values for some selected materials are shown 

in Table 1.1. When choosing a material to work with, there are several 

aspects one look forward, and depending on the selected application, the 

material could develop great in some aspect but very bad in other ones. There 

is no perfect material and it is necessary to find a balance in its properties to 

have the best overall performance, for example; 2TeO  has a very large figure 

of merit 2M , which is a good quality, but its high acoustic losses set a limit 

for its use in some applications. 

 

Range of transmission 
One of the most important thing to take into account is the range of 

transmission. This parameter tell us which light wavelengths are not (or less) 

absorbed by the material. Some crystal could have the best acoustic 

properties for some specific problem but will be useless if all the light is 

absorbed or even reflected.  

 

Sound velocity 
This parameter can be estimated using considering a simple model of an 

array of points of mass M  separated a distance a  and bounded by springs of 

constant C . By taking into account just the nearest neighbor interactions the 

sound velocity is [1.4] 
 

M

aC
V

2

                                                    (1.44) 

 

Measured in scm , this characteristic is closely related with the figure of 

merit, which is described later, but also have an important role for generating 

the index gratings. As it is known, 
 




V
,                                                    (1.45) 

 

where V  is the velocity of the sound,   is the frequency injected by the 

piezoelectric transducer, and   is the wavelength of the sound, which will be 

directly related to the period of the grating. With this in mind, with a small 

velocity will be easier to generate gratings with more lines per centimeter 

because not too high frequencies on the piezoelectric will be needed.  

 

Acoustic losses  

For the study of this characteristic an important parameter is the ratio of the 

acoustic wavelength   and the mean free path of phonons. The mean free 

path, in turn, is the inverse of  , the collision time between phonons. If 

1  the acoustic losses will come from the lattice phonons in thermal 

equilibrium. The other regime, when 1 , is more interesting for this 

work. Here the mean free path of thermal phonons is smaller than the 

acoustic wavelength. The higher density regions will have greater 

temperature than the lower density regions and this will produce thermal 
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conduction between them, as a result, energy from the acoustic wave will be 

subtracted. The previous analysis is not enough to explain the experimentally 

observed acoustic losses so another mechanism should exist. The Akhiezer 

mechanism of sound absorption was formulated to treat this phenomenon 

described as a phonon viscosity effect. 

The attenuation   per unit path length is [1.5]: 
 

V
A r

2
 ,                                                 (1.46) 

 

where A  is a constant to be determined, r  is the relaxation time of the 

thermal phonons. With this result one can say that the losses are 

proportional to the acoustic frequency and that low-velocity materials have 

higher losses than the high-velocity materials. 
 

Figures of Merit  
The efficiency of the light diffracted at the Bragg angle is [1.6]: 
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where LHIPa   is the acoustic power in a beam of intensity I  with width L  

and height H . Smith and Korpel in 1965 [1.6] propose 2M  as a figure of merit 

for materials operating under the Bragg conditions: 
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where n is the refractive index,   is the density of the material, effp  is the 

effective photo-elastic constant, and V  is the acoustic velocity.  

The efficiency is proportional to the acoustic beam width but the bandwidth, 

according to Eq. (1.35), is inversely proportional to the beam width. In 1966, 

Gordon [1.7] proposed a quantity independent of the width, 
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The factor 
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is another figure of merit for materials used in modulators and deflectors.  

In Eq.(1.47) and Eq.(1.49) it was assumed that the acoustic beam height is 

larger than the light beam diameter. Reducing the acoustic beam height  to 

the size of the light beam and using the relation  L to have tho same 

spreading angles in both optical and acoustic beams, one can get the quantity 

[1.8] 
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which is, in contrast with Eq.(1.47) and Eq.(1.49), independent of the sizes of 

the acoustic and optical beams. With this, it is possible to set  
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as the third figure of merit. Each figure of merit will have certain relevance 

depending on the conditions of the acoustic-optical cell. For the interest of 

this work, the most relevant will be the figure of merit 2M . 

 

Elasto-optic Tensor 
Also knowing as strain-optic tensor, is a physical quantity which relates the 

strain tensor and the index of refraction through the acousto-optical 

interaction. This interaction occurs in all states of matter and is described by 
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where ij  is the change in the optical impermeability tensor, iju  is the 

strain tensor, and ijklp  is the elasto-optic tensor. An acoustic wave in a 

crystal change the index ellipsoid of the crystal Eq. (1.1) to 
 

1xx)up( jiklijklij  .                                         (1.54) 

 

Due to the symmetry of the strain and the impermeability tensor, the indices 

i  and j  as well as k  and l  can be permuted. The elasto-optic tensor has the 

same symmetry of the quadratic electro-optic tensor [Yariv] so one can use 

the contracted indices to simplify Eq. (1.53) to 
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Photo-elastic constant 
This constant can be estimated using the photo-elastic tensor ijklp , the strain 

tensor klu  , the direction of the sound wave in the crystal 1d


, and the 

direction of the interacting light 0d


. The effective photo-elastic constant is  
 

0klijkl1eff dupdp


 ,             6...,,2,1j,i  ,        (1.56) 
 

and using the Eqs. (1.53) and (1.54) one can rewrite Eq. (1.56) with the 

contracted indices to simplify the notation. Equation (1.56) then becomes 
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Table 1.1 List of acousto-optical materials with their principal characteristics in their 

most used mode. 

 
Material Symmetry 

 

Range of 

transm. 

]m[  

  

]m[  

V

]scm10[
5

 

Mode & 

prop. 

dir. 

  















2
GHzcm

dB

 

2M
















g

s
10

3
18  

n  

2SiO  32 .12 – 4.5 0.589 6.32 L[001] 2.1 1.48 1.54 

2TeO  422 0.35 – 5 0.633 0.62 S[110] 288.7 1200 2.26 

4CaMoO  4/m 0.45 – 3.8 0.671 2.95 S[100] 60 1.98 1.98 

OH 2  Isotropic 0.2 – 0.9 0.633 1.49 L 2400 126 1.33 

5KRS   m3m 0.58 – 32 0.671 1.92 L[111] 10 930 2.57 

22ClHg  4/mmm 0.38 – 28 0.633 0.347 S[110] 230.5 703 2.27 

2012GeOBi  23 0.45 – 7.5 0.633 1.77 S[110] 2.5 5.17 2.55 

2012SiOBi  23 0.45 – 7.5 0.633 3.83 L[100] 2.5 9.02 2.55 

3LiNbO  3m 0.4 – 5 0.633 6.57 L[100] 0.15* 7.0 2.20 
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1.7. Formulation of Problems 

 
A new acousto-optical dynamic diffraction grating for the spectrometer 
The Guillermo Haro astrophysical observatory uses an optical spectrometer 

with several exchangeable traditional (made of a suitable optical glass i.e. 

static in behavior) diffraction gratings as the dispersive elements. Due to the 

current needs of astrophysical observations the resolution of spectrometer has 

to be changed time to time that can be done only by mechanical substitution 

of one static diffraction grating with another one. Every time the static 

grating is substituted, the spectrometer needs to be realigned and 

recalibrated; however, it leads to potential errors in measurements and losing 

very important physically and rather expensive time for the observations. In 

order to improve this situation, an alternative for the static diffraction 

gratings has been proposed: to use specially designed acousto-optical cell as 

the dynamic (i.e. completely electronically tunable) diffraction grating, whose 

capabilities will make it possible in the nearest future to replace all the static 

diffraction gratings from the spectrometer. The principal advantages of 

similar dynamic acousto-optical grating are excluding any mechanical 

operations within the observation process, avoiding recalibrations (i.e. 

bringing in additional errors) and any losses of time. In connection with this, 

the first steps in design of a desirable acousto-optical cell, adequate to the 

above-mentioned needs, are considered as the first problem within this thesis. 

 

Acousto-optical filter 
Usually, the performances of acousto-optical filters, exploited in linear regime 

and operated by low-level external electronic signals, are completely 

determined by the properties and size of a crystalline material chosen for the 

device. Nevertheless, preliminary and more detailed consideration of the 

filtering process makes it possible to predict that a specific mechanism of the 

acousto-optic nonlinearity capable to regulate performances of the collinear 

acousto-optical filter exist and could be used practically. That is why the 

possibility of analyze this mechanism theoretically and try to confirm it 

experimentally with an advanced filter based on calcium molybdate 

( 4CaMoO ) single-crystal and governed by external signals of finite amplitude 

is formulated as the second problem within this thesis. 

 

Triple Product Processor 
Detailed studies in the extra-galactic astronomy and searching the extra-

solar planets are now actual avenues of astrophysical investigations. One of 

the most powerful instruments in both these areas is the precise multi-

channel spectrum analysis of radio-wave signals. Recently performed 

estimations show that the algorithm of space-and-time integrating could be 

definitely suitable for a wideband spectrum analysis with an ultimate 

frequency resolution. This algorithm requires an advanced acousto-optical 

processor to produce the folded spectrum of those signals, accumulating 

advantages of space and time integrating. In a view of similar requirement, 

developing a schematic arrangement for the triple product acousto-optical 

processor based on at least 3-inch optical components of a top-level quality is 

suggested as the third problem for this thesis. 
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Chapter 2 

 

 

Acousto-Optical Version of 

Optical Spectrometer for 

Guillermo Haro Observatory 

 
Optical spectrometer of the Guillermo Haro astrophysical observatory 

(Mexico) exploits mechanically removable traditional static diffraction 

gratings as dispersive elements. There is a set of the static gratings with the 

slit-density 50 – 600 lines/mm and optical apertures 9 cm x 9 cm that provide 

the first order spectral resolution from 9.6 to 0.8 A/pixel, respectively, in the 

range 400 – 1000 nm. However, the needed mechanical manipulations, 

namely, replacing the static diffraction gratings with various resolutions and 

following recalibration of spectrometer within studying even the same object 

are inconvenient and lead to losing rather expensive observation time. 

Exploiting an acousto-optical cell is suggested, i.e. the dynamic diffraction 

grating tunable electronically, as dispersive element in that 

spectrometer.which can realize tuning both the spectral resolution and the 

range of observation electronically and exclude filters. 

 

2.1. Introduction 
 

The Boller & Chivens (B & C) Cassegrain spectrographs available at 

Guillermo Haro Observatory (GHO) are classical grating spectrographs. 

Presently, B & C spectrograph is available on GHO at the 2.12m telescope 

with 9 gratings, allowing a good coverage in both dispersion and wavelength 

within the CCD sensitivity ranges. The observer can communicate most of the 

commands necessary to control the spectrographs through a display console 

in the control room. 

 

The B & C spectrograph design is shown in Fig. 2.1. The converging light 

beam from the telescope passes through the spectrograph entrance slit in the 

telescope focal plane to the collimator, an off-axis parabolic mirror. The 

reflected parallel beam then falls on to the grating surface. The diffracted 
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light passes through a Schmidt camera which images the spectrum on to the 

CCD detector. The slit assemblies consist of two 64mm long polished and 

aluminized jaws on which the stellar image can be seen by reflection. The slit 

jaws form a biparting slit that is continuously adjustable by a micrometer 

screw from 50 to 1200 m . Note that the slit appears smaller to the detector 

than is the real width (called projected slit-width). This is due to two effects. 

Firstly, because of the transversal magnification factor", and secondly, to the 

grating anamorphism. The apparent reduction in slit-width can be 

compensated for by selecting the required resolution at the detector and 

calculating back the slit-width. For example, if a projected slit width on the 

CCD detector of 30 m  is required (2 x 15 m  pixels), then the real slit-width 

should be 30/(0.78 x   (= 0.191)) = 201 m . Here, it is assumed that the 

spectrometer is working at a grating angle of 15°. 
 

 
Fig 2.1 Boller and Chivens spectrograph layout 

 

The opto-mechanical configuration allows for a fixed angle between the 

incident and diffracted beam axis of the grating (grating angle  ). The 

grating is mounted in an adjustable rotating cell that permits the choice of 

the central wavelength and spectral orders. 

 

The spectrograph cameras currently in use at the 2.12 m telescopes have a 

focal length of 465 mm and are optimized for use over the range 3200-
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12000 Å  where they have an efficiency of about 50 - 55 %. Below 3200 Å , the 

efficiency drops rapidly to 10% at 3000 Å . A field-flattening lens is also 

mounted immediately in front of the CCD dewar in order to correct for 

camera field curvature. 

 

An order blocking filter assembly is located below the slit jaws to prevent 

overlapping of unwanted spectral orders. The 2.12m spectrograph may hold 

up to four filters. The correct choice of filter is normally determined by the 

optical group and installed before an observing run. No deckers are used with 

the B & C spectrographs for observation. There is a decker mounted in front 

of the slit, but this is used for setup purposes only. 

 

Detectors 
The CCD detector of the Boller & Chivens spectrograph is a back illuminated 

Tektronix chip of format 1024x1024 pixels (TK1024AB grade 1) 

 

Calibration Lamps 
Calibration lamps are mounted at 2.12m, one blue halogen lamp for flat-

fielding and one Helium-Argon spectral lamp for wavelength calibration. 

Lamp selection and illumination is done remotely. A neutral density wheel is 

also available at the 2.12m. These can be used to attenuate both the He-Ar 

and the internal flat-field lamps.  

 

Instrumental Rotation 
The Cassegrain adapters on telescope can be rotated up to 180º in either 

direction. For the 2.12m telescope, the rotation has to be done manually in 

the dome. This Cassegrain adapters have scales for accurately setting the 

position angles of the spectrograph slit. Instrument rotation can be done with 

the 3.6m telescope at any zenith distance. However, since the rotation at the 

2.12m telescope is done manually, this is usually done with the telescope at 

the zenith to facilitate reading of the position angle scale on the Cassegrain 

adaptor. This is particularly important for the 2.12m telescopes, since, once 

the spectrograph is unclamped ready for rotation, it may start to rotate 

rapidly as the spectrograph is not balanced about the optical axis. 

 

TV Acquisition and Guiding 
The front surfaces of the spectrograph slits are aluminized and tilted slightly 

with respect to the incoming beam to allow the use of an integrating TV 

acquisition and guiding system. There is also a "field-viewing" position 

(approximate field, 5' x 4') for object acquisition. A visual magnitude (V) ~ 20 

mag star can be seen without integration on a moonless night on the center 

field camera. The 2.12m telescope also has an intensified camera for auto 

guiding. Under good moonless conditions stars of V ~ 18 can be seen. Note 

that these are approximate magnitudes and critically depend on focusing, 

seeing etc. 
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2.2. Guillermo Haro Observatory Spectrograph 

Performances 
 

Available Gratings 
The Observatory has 9 gratings available. All gratings are 90 x 90 mm and 

are used mostly in the first and second order with dispersions ranging from 

29 to 450 -1
mmÅ . 

For some gratings, the astronomer must consider the different efficiencies 

encountered for the polarization directions both parallel and normal to the 

grooves, especially for highly polarized objects. For most astronomical 

observations, however, the average between the two polarization efficiencies 

is sufficiently accurate. 

 

Spectral Coverage 
The grating dispersion, camera focal length, and detector size determine the 

observable spectral range. For example, grating # 21, which has a dispersion 

of 172 Å
1

mm
 , when used in the first order will provide a spectral coverage 

of 172 X 15.36 = 2642 Å  with a high resolution RCA chip (1024 X 15 m = 

15.36 mm). Given that the grating is centered at   5400 Å , the wavelength 

limits will be 4079 Å  and 6721 Å . 

 

Spectral Resolution 
The theoretical spectral resolution depends on the grating dispersion, grating 

position, pixel size, collimator and camera focal length, and entrance slit-

width. The effective CCD spectral resolution also depends on the detector 

sampling. A detailed calculation of these parameters is shown later in this 

text.  

 

As an example, a grating with blaze angle 6°54', centered for Å5400  will have 

theoretical resolutions of 1.72 and 3.45 Å  for slit-widths of 1" and 2" 

respectively. Decreasing the entrance slit-width will improve the resolution. 

However, this will be possible only when the sampling requirements (Nyquist 

criterion; one resolution element imaged onto at least two detector elements) 

are respected and also when the instrumental response is not diffraction 

limited. 

 

Spatial Resolution 
The spatial resolution depends on the transversal magnification factor of the 

spectrograph given in Table 2.1. (This spatial scale can easily be determined 

by moving a star a known distance along the slit and taking an exposure at 

both positions.  

The CCD control program allows the CCD pixels to be binned in either 

direction (spatial or dispersion) before reading out. This can be an advantage 

when the objects are faint in which case may be wanted to bin in the spatial 

direction. No spectral resolution will be lost but there will be a decrease in 

the read-out-noise by a factor of the square root of the number of pixels 

binned. Therefore, this may allow the use of shorter exposure times and 

higher signal-to-noise ratios at the cost of decreased spatial and/or spectral 
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resolutions, depending on which direction you are binning. Also, binning 

increases the risk of cosmic ray events influencing data since several pixels 

are averaged before readout. Furthermore, binning also reduces the contrast 

of particle events making automatic removal more difficult. Should spectral 

resolution be of vital importance, bin the chip only along the X (spatial) 

direction. 

 

The CCD program also allows "readout windowing". This means that only 

those pixels within a predefined window or area on the chip are recorded. The 

spectrograph slits do not extend across the entire width of the CCDs and 

therefore no information is contained outside the length of the slit. 

Windowing can thus provide significant savings in the sizes of your data files 

and image display time. 

 

Grating Efficiencies 
The efficiency as well as the dispersion at the desired working wavelength is 

an important parameter when choosing a grating. The efficiencies of the 

available gratings have been measured experimentally one is shown in Fig. 

(2.2). Note that the total system efficiency is the combination of the 

efficiencies of the telescope, spectrograph, grating, camera and the detector. 

 

 
Figure 2.2. Maximum diffraction (reflection) efficiency of the static diffraction grating 

with: the slit-density 300 lines/mm, dispersion 224 Å 1
mm

 , and blaze angle of 

 '18º4 : solid line is for the light polarized parallel to slits and dashed line is for the 

light polarized perpendicular to slits. 

 

Total efficiency 
The total telescope efficiency is the ratio of the number of detected photons 

divided by the number of incident photons entering the telescope. This latter 

quantity is found for standard stars from: 
 

)xAm(4.0
10

10
105.4

LN 
 




                         (2.1) 
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where, L is the telescope primary mirror area in square meters and N . is the 

number of photons at wavelength   incident on the telescope per second and 

Angstrom. A . is the mean extinction coefficient and x is the airmass. The 

values of m  are found from tables of standard stars. 

 

Expected S/N ratios 
The expected S/N ratio obtained by a CCD with a finite read-out-noise and 

dark current, is: 
 

5.022
r

1)0mm(4.0
0

)0mm(4.0
0

]tD)Nb(10tn3600[

10tn3600

N

S










               (2.2) 

 

where 0n is the efficiency in e-1s-1pixel-1 for a star of magnitude 0m ,   is the 

width of the spectrum in pixels, perpendicular to dispersion, rN is the read-

out-noise in 11
pixele

 , D  is dark current in 111
hrpixele

 , t  is the exposure 

time in hours, b  is the binning factor perpendicular to the dispersion 

direction, and m  is the stellar magnitude. 

 

2.2.1. Calculations for the Spectral Resolutions 
 

Here, it is presented the formulae for deriving the spectral resolution. 
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where   is the central wavelength in Å , n  is the number of lines per mm , m  

is the diffraction order,  is the grating configuration angle (see Fig. 2.3),   is 

the grating angle,   is the entrance slit-width in m , '  is the projected slit-

width in m , 1f  is the  collimator focal length in mm , 2f  is the camera focal 

length in mm , D  is the dispersion in -1
mmÅ , sR  is the theoretical 

spectrograph resolution in Å  (without detector), and 12 ff  is the 

transversal magnification factor  

 

The effective CCD.spectral resolution is the convolution of sR  with the 

detector pixel size. With suitable detector sizes, the spectrum may be 

sufficiently sampled to avoid spectral information distortion (eg. line profile 

distortions). The common sampling criterion is pixels2Rs   (i.e. Nyquist 

criterion). 
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2.3. Acousto-Optical Cell 
 

In this chapter the potential use of an acousto-optical cell as a diffraction 

grating is discussed. In order to apply this for the design of the spectrograph, 

the parameters of the diffraction gratings, currently used, must be know, also 

its performance. Later, the analysis of the performance of the acousto-optic 

phase grating needs to be made to compare it with the previous gratings. 

 

2.3.1. The nature of Acousto-optical dynamic 

diffraction grating 
 

Photo-elastic effect consists in connection between the mechanical 

deformations   or stresses   and the optical refraction index n . This effect 

takes place for all the condensed matters and mathematically can be 

explained as [2.1] 
 

lklkjilklkji
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2ji p

n

1







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  ,                            (2.7) 

 

where ji
2

ji )n/1(  represents varying the tensor of optical 

impermeability or, what is the same, the parameters for an ellipsoid of optical 

refractive indices; while p  and   are the tensors of photo-elastic and piezo-

optical coefficients, respectively. Usually, the higher-order terms relative to 

the deformations   or the stresses   are omitted due to smallness about 5
10

  

of both the deformations   and/or the stresses  . The symmetry inherent in 

a medium determines non-zero factors of the tensors p  and  . With non-zero 

external mechanical perturbations, an ellipsoid for the refractive indices can 

be explained by 
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Due to all the tensors  , p , and   are symmetrical in behavior, one can use 

so-called matrix indices [2.1]. Now, let us consider propagation of the 

traveling harmonic longitudinal elastic wave along the ||z


]001[ -axes through 

an isotropic medium, so that the displacement u  of particles is described by 

)xKt(cosU)t,x(u 333  , where ,,U   and K  are the amplitude, cyclic 

frequency, and wave number of that traveling elastic wave, respectively. The 

field of linear deformations ])x/u()x/u([)2/1( ijjiji  , occurred by 

this wave, is )xKt(sinUK 333  . The components of the optical 

impermeability tensor can be written as 
 

a) )xKt(sinUKp 3122211  ,      b) )xKt(sinUKp 31133  ,  2.9) 

 

while 0ji   for the indices ji  . Here, mnp  are the components of the 

photo-elastic tensor p  with matrix indices. In this case, Eq.(2.8) gives 
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Due to Eq.(2.10) does not include any cross-terms, the main axes inherent in 

a new ellipsoid for the refractive indices will have the same directions as 

before. Consequently, new main values jN  of the refractive indices can 

explained as 
 

a) )xKt(sinUKpn
2

1
nNN 312

3
21  , 

b) )xKt(sinUKpn
2

1
nN 311

3
3  .                              (2.11) 

 

These equations mean that in the presence of the traveling acoustic wave, the 

taken isotropic medium becomes a periodic structure, which is equivalent to a 

bulk grating with the grating constant equal to the acoustic wavelength 

 K/2 , because variations in the main refractive indices 3312
3

2,1 pnn   

and 3311
3

3 pnn   are proportional to the amplitudes of displacement or/and 

deformations in that acoustic wave. An example for a sinusoidal variation of 

the refractive index is illustrated in Fig.2.3. This periodic perturbation in a 

medium is varying in space and in time as well. It represents a traveling 

wave propagating with the ultrasound velocity K/V  , whose magnitude in 

the condensed matters is typically equal to about s/cm10)71(
5 . However, 

the light velocity exceeds this magnitude by about 5  orders, so that periodic 

perturbations conditioned by that acoustic wave can be always considered as 

quasi-static in behavior relative to light propagation. Thus, potential 

resolution R  of similar diffraction grating measured in the number of slits 

per unit aperture d  (let us say, for mm1d  ) or, what is the same, the line 

density can be determined by the ratio  /dR .  

 

 
 

Figure 2.3. The instantly frozen acoustic wave, which consists of alternating with one 

another areas of compressed and decompressed material density and the 

corresponding sinusoidal variations of the refractive index. 
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2.3.2. Requirements and Design 
 

The list of the, currently in use, diffraction gratings is shown in Table 2.1.  

 
Table 2.1 List of static diffraction gratings available at the GHO with their  specific 

wavelength of operation and resolution. 

 

lines/mm Blaze wavelength (Å) Resolution (Å/pixel) Order 
150 5000 3.2 1 
300 5000 1.6 1 
300 7500 1.6 1 
600 7500 0.8 1 
600 4850 0.8 1 

 

2.3.3. Material Selection 
 

The requirements to the acousto-optical cell (AOC) combine a large optical 

aperture with the needed slit-density R , an acceptable level of uniformity for 

acoustical grooves limited by linear acoustical losses in the chosen material, 

and possibly high efficiency of operation under an acceptable applied acoustic 

power. The list of the, currently in use, static diffraction gratings was shown 

in Table 2.2. This is why initially one have restricted the problem by the 

given slit-density (for example, mm/lines300R  ), which leads to the 

inequality R/1f/V   )cm1033.0(
3 , where  2/f , i.e. to the 

requirement  
 

RVff low   ]MHz[  .                                              (2.12) 
 

The other requirement is connected with the uniformity of acoustical grooves 

is restricted by the acoustic attenuation, whose level B  along the total optical 

aperture D  of AOC should not exceed a given value, let say dB6 . The acoustic 

attenuation is a square-law function of the carrier acoustic frequency f [2.2]. 

Let us use the conventional factor   of acoustic attenuation [2.3] expressed in 

)GHzcm/(dB
2 . Thus various forms of limitations connected with acoustic 

attenuation can be written. For example, the total level ]dB[B  of acoustic 

attenuation can be expressed as 
 

222
RVDfD]dB[B  .                                        (2.13) 

 

Table 2.2 demonstrates the carrier frequencies f  allowing us to realize the 

AOC, which provide the slit-density mm/lines300R   together with the 

potential total losses along the AOC aperture. Considering those values, one 

can find that the best performances are exhibited by the following pair of 

materials, namely, 2012GeOBi  and 3LiNbO , because of their very low acoustic 

losses. Nevertheless, even with acoustic losses 40  times larger, the figure of 

merit 2M of calomel ( 22ClHg )[2.3] is 100 times larger than the figure of merit 

of 2012GeOBi , it is almost the same situation with the crystal 5KRS  . The rest 

of the materials cannot offer similar advantages so one must forget them. 
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Table 2.2. Estimations for the carrier frequencies f  and the corresponding total 

acoustic losses ]dB[B along the AOC with a cm9 -aperture for the dynamic grating 

with the slit-density of 300R   lines/mm. 

 

Material 2SiO  2TeO  5KRS   22ClHg  2012GeOBi  2012SiOBi  3LiNbO  

f  [GHz] 1.89 0.19 0.58 0.10 0.53 1.15 1.97 

]dB[B ] 68.0 89.9 29.9 22.51 6.3 29.7 5.2 

 

Then, a given value of ]dB[B  for the acoustic attenuation will require the 

aperture of 21
fBD
  or the carrier frequency  

 

D/Bff up   ]GHz[                                       (2.14) 
 

at a given optical aperture D  within the chosen acousto-optical material. It is 

naturally to search for the materials allowing the choice of the carrier 

acoustic frequency f  satisfying the combined inequality uplow fff  . Let us 

consider the case of mm/lines300R  , cm9D , and dB6B  , which leads to 

the following choice [2.4, 2.5]: 

1. 2012 OGeBi  ]110[ , s/cm1077.1V
5

SS  , )GHzcm/(dB5.2
2 : MHz531f low   

and MHz516fup  . 

2. 3ONbLi  ]100[ , s/cm1057.6V
5

L  , )GHzcm/(dB15.0
2 : GHz971.1flow   

and GHz108.2fup  . 

3. 5KRS   ]111[ , s/cm1092.1V
5

L  , )GHzcm/(dB10
2 : MHz576f low   and 

MHz258fup  . 

Here, SSV  and LV  are the slow shear acoustic mode and longitudinal one, 

respectively. They both are pure acoustic modes, providing exact coincidence 

between the wave vectors and the energy flow vectors with the chosen 

directions (in fact, with the acoustic axes in crystals) of these elastic waves 

propagation. The Bragg regime of light diffraction occurs with a large length 

L  of acousto-optical interaction. In this case the dynamic acoustic grating is 

rather thick, so that during the analysis of diffraction one has to take account 

of the phase relations between waves in different orders. When the incident 

light beam is unlimited in a transverse direction, the reflected beam will be 

placed in the plane of incidence (i.e. in the 32 xx -plane) and the angle of 

reflection should be equal to the angle B  of incidence. The coupled-mode 

theory predicts that a considerable reflection of the incident light can be 

expected under condition 
 

 /m2Kmsink2 B ,                                       (2.15) 

 

where  /m2k  is the light wavelengths, while m  is the whole number, 

which reflects the thm   Fourier component of the perturbed dielectric 

permeability. In the case of pure sinusoidal profile peculiar to the acoustic 

wave, all the Fourier-components with 2m   will be equal to zero. Thus, the 

Bragg a regime can be realized only when the angle of light incidence B  on a 
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thick dynamic acoustic grating meets the Bragg condition  2/msin B  and 

inequality 1/LQ
2   for the Klein-Cook parameter [2.6]. Usually, when 

an acoustic mode exited by the applied electric signal, the Bragg regime 

includes the incident and just one scattered light modes, whose normalized 

intensities are described by [2.7] 
 

a) )xq(cosI 1
2

0  ,                                 b) )xq(sinI 1
2

1  , 

c) 2/PM)cos(q 2
1

B
 ,                d) )V/(pnM

32
eff

6
2  ,       (2.16) 

 

where 1x  is the space coordinate almost along the light propagation; P  is the 

acoustic power density,   is the material density, effp  is the effective photo-

elastic constants for light scattering, and n  is the averaged effective 

refractive index of a material. The Bragg regime is preferable for practical 

applications due to an opportunity to realize an %100  efficiency of light 

scattering by the acoustic wave. Taking the case of Lx1   in Eq.(2.16b) and 

1cos B   in Eq.(2.16c), one can find from these equations that the acoustic 

power density 0P  needed for %100  efficiency of light diffraction into the first 

order can be estimated through the requirement 2/Lq   in Eq.(2.16b) as 
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ML2

P


 .                                             (2.17) 

 

Thus, at the same values of optical wavelength   and the interaction length 

L , the required acoustic power density will be inversely proportional to the 

acousto-optic figure of merit 2M . For the above-mentioned orientations of 

crystals, one can cite that 4,5: (1) 2M ( 2012 OGeBi  ]110[ , SSV ) g/s1017.5
318  

and (2) 2M ( 3ONbLi , ]100[ , LV ) g/s100.7
318 . For reaching %100  efficiency 

of operation at nm500  and cm1L  , the following acoustic power densities 

0P  can be found from Eq.(2.17): (1) 0P ( 2012 OGeBi  ]110[ , 

SSV ) 237
mm/W242.0s/g1018.24   and (2) 0P  ( 3ONbLi , ]100[ , 

LV ) 237
mm/W179.0s/g1086.17  . 

It should be explained additionally: applying the needed electronic signals at 

the electronic input of AOC in such a way that the above-obtained levels of 

acoustic power density will be provided makes it possible physically and 

potentially technically to achieve %100  efficiency of control over the incident 

light diffraction. By the other words, instead of about %70  maximum 

efficiency shown in Fig.1 for traditional static diffraction gratings, involving 

the acousto-optical technique via creating the dynamic acousto-optical 

diffraction gratings is potentially able to provide close to %100  efficiency of 

dispersive element over all the range of the above-mentioned spectrum 

analysis. 

 

The practical aspects of designing an updated version of the schematic 

arrangement for spectrometer under consideration lead first of all to creation 

of a modified optical scheme, which has to include some peculiarities of the 

AOC. Fig.2.4 represents the modified configuration of the spectrometer using 
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the AOC as dynamic diffraction grating instead of the static diffraction 

gratings; here, B  is the Bragg angle of light incidence for the chosen optical 

wavelength, see Eq.(2.15). The light coming from the telescope will pass 

through the spectrometer entrance slit at the focal plane of the collimator 

mirror, the reflected beam, a plane wave, will fall on to the AOC at the Bragg 

angle. Then, the diffracted beams corresponding to the first order will be 

imaged using a Schmidt-camera and analyzed. An additional modification is 

connected with the fact that the acousto-optical dynamic diffraction grating 

operates sufficiently effective in the Bragg transit regime instead of the 

reflection regime inherent in the above-mentioned classical spectrometer 

whose static diffraction gratings exhibit about %70  maximum efficiency. 

 

 
Figure 2.4. Layout for a new acousto-optical schematic arrangement inserted into the 

spectrometer; the proposed dispersive element, i.e. the dynamic diffraction grating is 

presented by acousto-optical cell operating in the transit regime of Bragg light 

diffraction. 

 

2.4. Diffraction of the light beam of finite width 

by a harmonic acoustic wave at low acousto-

optic efficiency 
 

Schematic arrangement of the acousto-optical version of spectrometer, see 

Fig. 2.5, exhibits potential presence of optical beams whose widths are 

restricted due to condition of observations. This is why the diffraction of light 

beam of finite width by harmonic acoustic wave has to be reviewed and 

characterized. At first, to illustrate the existing physical tendency simpler let 

us start from a low acousto-optical efficiency approximation 
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222
1 )x/()x(sin)xq(I  , where now 0  is the angular-frequency mismatch. 

Due to almost orthogonal geometry of non-collinear acousto-optical 

interaction the angles of incidence 0  and diffraction 1  do not exceed 

usually about o
10 , so that one can use the simplified formulas 
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where n  is the average refractive index; 1,0n  are the refractive indices for the 

incident or diffracted light, respectively. 

 

Now, we assume that the area of propagation for a harmonic acoustic wave is 

bounded by two planes 0x   and Lx   in a crystal. This acoustic wave has the 

amplitude function ])tzK(i[expu)t,z(u 000   with the amplitude 0u , wave 

number 0K , and cyclic frequency 0 , and travels along z -axis. Then, let 

initially monochromatic light beam incidents on the area of interaction under 

the angle 0 . At the plane 0x  , the light field is described by the complex 

valued amplitude function )z(ein , reflecting the spatial structure of light 

field. The spectra of these fields are [2.8] 
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 , 

b) )KK()ti(expu2)K(U 000  ,                           (2.18) 
 

where 0k  is the wave number of the incident light. Each individual 

component of the incident light beam is diffracted by the acoustic harmonic in 

the interaction area. Using Eqs.(2.17) and (2.18) within taken low acousto-

optical efficiency, the angular spectrum of the diffracted light can be written 

as [2.9] 
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Equation (2.19) describes AOC as linear optical system with the transmission 

function ),(T B0  , which is real-valued (and positive) within its bandwidth, 

i.e. AOC does not insert phase perturbations in the spectrum of optical signal. 

 

When the width inD  of the incident light beam is less than acoustic aperture 

of AOC, one can say that acoustic beam is infinitely wide, while light beam is 

described by the complex amplitude function )D/z(recte)z(e in0in  , where 
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1)(rect   only when 2/1||   and 0)(rect   when 2/1||  . Its angular 

Fourier spectrum is given by 
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Substituting Eq.(2.21) in Eq.(2.19), one can obtain angular distribution for 

the diffracted light intensity at low acousto-optical efficiency. 
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The functions 2
0S  and 2

0T  represent angular spectra of light and acoustic 

beams. The diffracted light structure is determined by overlapping the 

functions 2
0S  and 2

0T , i.e. by relation between the light divergence angle 

inL Dn/  and the acoustic one L/0S  , so that the Gordon parameter 

SL /G   had been introduced [2.10]. With 1G  , the widths of 2
0S  and 2

0T  

have the same order. When 1G   ( SL  ), one can simplify Eq.(2.22a) as 

)(I 1D   2
0

2
in

2
0

22
S)DeLq(  ; with 1G   ( SL  ), one yields 

2
0

2
in

2
0

22
1D T)DeLq()(I  . These peculiarities of diffracting light beam of finite 

width are illustrated by Fig. 2.5. The diffracted light waves take their origin 

in all the points of overlapping light and acoustic beams. Due to their 

interference, these waves shape the diffracted light beam, propagating at the 

angle 0n/  . The diffracted light width DD  can be estimated by 

 

)n(/LD)(cos])2/(tan2cosD[D 0in00
1

inD    
 

This relation can be rewritten as 1
S

1
L

1
D

  , where )Dn/( DD  . Thus 

the divergence angle of the diffracted light is close (in its order of quantity) to 

the smallest divergence angle of the interacting beams. 

 

The acousto-optic efficiency   can be determined as ratio of the diffracted 

light intensity to the incident light intensity when both 2
0in |)(E|   and 

)(I 1D   from Eqs.(2.21) and (2.22a) will be integrated over the corresponding 

angle ranges: 
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Figure 2.5. Geometry of interaction between light and acoustic beams 
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Efficiency of diffraction for the plane incident light wave has maximum 

efficiency at B0  , and the term 22
Lq , describing the acousto-optical 

efficiency for plane incident light wave, is marked out here to highlight the 

contribution of light beam finiteness. However, Bragg condition cannot be 

provided now for all the angular components described by Eq.(2.21). This is 

why one can chose the angle of incidence 0  in such a way that the phase 

synchronism condition will be satisfied for the axis-component of incident 

beam. In the case of 2
0S  with B0  , one can obtain [2.11], see Fig. 2.6. 
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Equation (2.23) should be compared with the above taken relative intensity of 

diffraction 2
1 )Lq(I  for plane optical waves at low acousto-optical efficiency. 

One can see from Eq.(2.23) that a finite width of the incident light beam leads 

to appearing an additional factor )G(B  depending only on the Gordon 

parameter SL /G  . The factor )G(B  reaches unity only in the limit of 

0G  , which corresponds to the case of plane incident light wave. Growing 

the Gordon parameter makes acousto-optical interaction worse. Physically, 

this effect is motivated by the fact that exact phase synchronism can be 

realized only for one, namely, axis-component of light beam, while all other 

components are diffracted with lower efficiency.  

Within Bragg diffraction of a high acousto-optical efficiency, the factor q , 

conditioned by acoustic power density P  via Eq.(10c), has to be taken into 

account. The transmission function ),(T B0   from Eq.(2.20) should be 

substituted by 
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This modification leads ultimately to another expression for efficiency 

)G,q(B)Lq(sin B
2

B  , which is similar to Eq.(2.23). As before, the term 

)Lq(sin
2 , describing the diffraction of high efficiency for plane incident light 

wave, is marked out to exhibit the contribution of light beam finiteness, while 

the function )G,q(BB  reflects the same tendency as )G(B . Anyway, finally 

one can conclude that when AOC operates over the light beams of finite 

width, decreasing the acousto-optical efficiency due to partial asynchronism 

for the divergent incident light beam cannot be eliminated. 

 

 
Figure 2.6. The factor )G(B  versus the Gordon parameter SL /G  . 

 

2.5. Conclusions 
 

It was suggested exploiting an acousto-optical cell (AOC) as a dispersive 

element in Optical spectrometer of the Guillermo Haro astrophysical 

observatory (Mexico) [2.12, 2.13]. Potentially, involving acousto-optical 

technique, which can realize tuning both the spectral resolution and the 

range of observation electronically, makes possible eliminating the above-

mentioned practical demerits. The requirements to the cell combine a large 

optical aperture with the needed slit-density and possibly high efficiency of 

operation under an acceptable acoustic power. This is why initially one have 

restricted the problem by the slit-density 300 lines/mm. The analysis has 

show that at least the following materials can be used for designing similar 

cell. It can be lithium niobate ( 3LiNbO )-crystal excited by the longitudinal 

acoustic mode along the [100]-axis at the frequency 2 GHz. This selection 

gives 300 lines/mm with total losses ~5.4 dB/aperture. Then, one can consider 

bismuth germanate ( 2012GeOBi )-crystal using the shear acoustic mode along 

the [110]-axis at 0.53 GHz, so that the slit-density 300 lines/mm appears with 

the losses ~6.3 dB/aperture. The neighboring figures of acousto-optical merit 

for these materials promise desirable efficiencies of operation, so that even 

close to %100  efficiency peculiar to the dynamic acousto-optical dispersive 

element over all the range of the spectrum analysis can be expected. The 

potential performance of the described grating will be within the most 

requested resolutions and range of wavelengths ( nm1000400 ) at the 

Guillermo Haro astrophysical observatory. Finally, diffracting the light beam 

of finite width by a harmonic acoustic wave at low acousto-optic efficiency 

have been briefly discussed. 
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Chapter 3 

 

 

Transmission Function of 

Advanced Collinear Acousto-

Optical Filter 

 
An opportunity for exploiting specific mechanism of the acousto-optic 

nonlinearity to regulate performances of the collinear acousto-optical filter, 

realizing the sequential spectrum analysis of optical signals, is considered. 

This possibility is theoretically analyzed and confirmed experimentally with 

an advanced filter based on calcium molybdate ( 4CaMoO ) single-crystal with 

a 15 microsecond time-aperture. It is able to operate over red and near-

infrared light at relatively low radio-wave frequencies providing almost 

lossless regime for the controlling acoustic waves of the finite amplitude. 

Under certain conditions, the transmission function of electronically tunable 

filter exhibits a marked dependence on the applied acoustic power density, 

and as a result, one can significantly squeeze the transmission function, i.e. 

in fact improve the spectral resolution of this filter at the cost of decreasing 

the device efficiency partially. The identified and observed non-linear effect 

makes possible varying the performance data of similar advanced collinear 

acousto-optical filter governed by external signals of the finite amplitude. 

 

3.1. Theory and Operation 
 
In 1970 – 80s, novel optical spectral devices, electronically tunable acousto-

optical filters (AOFs) had been proposed and developed. During the years 

gone the AOFs have been remarkably progressed, and now they are widely 

exploited, for instance, in modern astrophysical observations [3.1, 3.2]. 

Schematically, the AOFs can be separated on collinear and non-collinear 

filters, depending on the relative directions of passing the waves through 

crystalline cell within their geometric arrangements, as well as on sequential 

and parallel devices, depending on the algorithms realizing for spectrum 

analysis of optical signals. Their features are characterized by the amplitude 

and spectral parameters. Collinear acousto-optical interaction by itself had 
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been initially predicted and studied in the middle of sixties by R.W. Dixon 

[3.3] and then, starting from the seventies has been successfully exploited in 

various applications, among which first of all one ought to call the collinear 

tunable acousto-optical filters [3.4–8]. The conventional analysis of this 

phenomenon in terms of lossless plane waves was presented in a number of 

classical issues [3.9, 3.10]. Practically, the methods of acousto-optics had 

manifested themselves as rather effective due to their property of quantum 

mechanic amplification resulting in the control over high-energetic photons 

by low-energetic phonons. The corresponding gain is represented by the direct 

ratio of the scattered photon frequency to a frequency of the controlling 

phonon frequency. It allows practical application of a given acoustic field 

approximation or the regime of a weak coupling, when the spatial 

distribution of acoustic beam is almost independent on the spatial 

distribution of light that leads to considerable theoretical and practical 

facilities. In particular, 100% efficiency of light scattering may be achieved 

without any effect on the acoustic beam, so the above-mentioned control can 

be repeated for a lot of times with low losses of acoustic energy. Moreover, an 

essential difference between velocities of light and ultrasound gives us an 

opportunity for applying the quasi-stationary approximation to the analysis 

of modern acousto-optical problems. In the past decades great progress has 

been made in acousto-optics and now it is a widely used technique in the field 

of data processing [3.11]. Nevertheless, recently the existence of a new branch 

in studies and applications of collinear acousto-optical interaction, which is 

associated with acousto-optical nonlinearity, for example, in the form of 

three-wave coupled states, has been manifested [3.12, 3.13]. That is why it is 

a worthwhile investment to develop this line more, because the objects being 

under consideration here are closely connected with the above-mentioned 

nonlinearity in the regime of a weak coupling. Within this consideration, the 

exact and closed analytical model of the collinear light scattering by 

continuous acoustic waves of the finite amplitude in a birefringent lossless 

material is developed. Similar approach definitely includes practically 

important case of the presence of really small acoustic attenuation in widely 

used acousto-optical filters operating in the traveling-wave regime at 

relatively low radio-frequency acoustic waves and exploiting such materials 

as  quartz or calcium molybdate single crystals. In so doing, the peculiarities 

of the effect conditioned by the acousto-optical nonlinearity are analyzed, 

which leads to a measurable dependence of the transmission function and 

consequently, the spectral resolution peculiar to this filter, on the applied 

power density of acoustic waves of finite amplitude in a way allowing, for 

instance, to improve the spectral resolution of similar device at the cost of 

partial demerit for the filter efficiency. 

 

3.2. Three Wave Collinear Interaction 
 

A three-wave co-directional collinear interaction with the mismatched wave 

numbers in a two-mode lossless medium is described by a set of three 

nonlinear partial differential equations. Here, the regime of a weak coupling 

is considered [3.12, 3.13], when two light modes are scattered by relatively 

slow wave, being non-optical by its nature, when essentially effective Bragg 

scattering of light can be achieved without any observable influence of the 
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scattering process on that non-optical wave, because the number of 

interacting photons is a few orders less than the number of the scattering 

quanta injected into a medium. Then, the velocities of light modes can be 

approximated by the same value c , because usually the length of crystalline 

materials does not exceed cm20 . In this regime, the above-mentioned set of 

equations falls into an independent equation for the complex amplitude 

)t,x(U  of a slow wave ( V  is the velocity of this wave) and a pair of the 

combined equations for the complex amplitudes )t,x(C0  and )t,x(C1  of the 

incident (pumping) light wave and scattered one, respectively, 
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Here, 1,0q  are the constants of interaction and 2  is the mismatch of wave 

numbers inherent in the interacting light waves. Now, the tracking 

coordinates )cxt,x(   are taken into account and assume that non-optical 

wave, governed by Eq.(3.1a) and described by )i(exp]V)cV1(x[uU  , 

has the constant phase  , so that one can convert Eqs.(3.1b) and (3.1c) into 

equations of the second order 
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with the condition ])t,x(i[exp)t,x(aC 1,01,01,0  , x1,01,0   and then 

divide real and imaginary parts in Eqs.(3.2) as 
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Equations (3.4) have the following general solutions 
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where 1,0  are the integration constants. The analysis shows that the 

collinear light scattering with 01,0   leads to appearing optical backgrounds. 

Within further analysis here, the only regime with 01,0   will be considered 

in a view of potential application to filtering optical beams without 

backgrounds. 

 

Choosing the simplest case of 01,0   in Eqs.(3.5), one can study the 

phenomenon in the continuous-wave regime for both the incident light and 

the non-optical wave when 0U]V)cV1(x[u   is constant. Equations (3.3) 

and (3.4) are analyzed with the fixed magnitude of the mismatch   and 
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natural for practice the boundary conditions 1)t,0x(a0  , 

0)t,0x()xa( 0  , 0)t,0x(a1  , 001 Uq)t,0x()xa(   in a half-infinite 

medium. In so doing, one yields  1,0  and 2
1,0

2
1,0 2  . Thus, with 

the parameter 22
010 Uqq  , characterizing physically contributions of both 

the material properties and the power density of non-optical wave, Eqs.(3.3) 

take the form 
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To construct the solution, which can be easily used in practically important 

cases of significant phase mismatches the conservation law 0
2
11

2
00 qaqaq   - 

const is used, resulting from Eqs.(3.1). Combining Eqs.(3.6) for 0a  and 1a , one 

can obtain a pair of the following equations 
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whose solutions with arbitrary integration constants 1,0  are given by 

 

a)  )x(Gsinqqa 1,0
2

0
1
1,0

2
1,0    ,           b) 22

x)x(G  .          (3.8) 

 

Using the above-noted boundary conditions, one arrives at 
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so that the stationary intensities of the pumping and scattered light waves 

can be expressed as 
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These solutions include contributions of two types. The first summand in the 

intensity 2
0 |С|  represents a background determined by the mismatch  ; the 

second one gives the oscillations imposed on that background. The scattered 

light wave contains only oscillations without a background due to the above-

chosen restriction 01,0  . 

 

3.3. Efficiency of Collinear Interaction in 

CaMoO4 
 

Now let us consider a few practically useful estimations related to 

experimental observation of the collinear acousto-optical interaction with 

linear acoustic losses in a birefringent cell made of a calcium molybdate 

( 4CaMoO ) single crystal. In this particular case, one can observe only 
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anomalous process of light scattering, so that the parameters 1,0q  are 

described [3.9] by 
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Here, 1,0n  are the refractive indices for the interacting light waves, 

 1,01,0 n2k


,   is the light wavelength in a vacuum, and the last term in 

brackets, describing the efficiency of interaction, is subject to find. This term 

includes the eigen-orts 1,0e


 of polarizations for the incident and scattered 

light beams as well as the tensor   of perturbations of the dielectric 

permittivity under action of the acoustic wave in a medium. To estimate the 

efficiency of interaction, i.e. to find the contribution of brackets to Eq.(3.11), 

the acoustic modes with the wave unit-vector m


 oriented along the ]100[ -axis 

are considered, so that 1,01,0 kmk


 . In this case, the longitudinal mode 

gives zero efficiency of interaction due to the symmetry of 4CaMoO -crystal, 

while the contribution from the shear mode with its unit-vector u


 of the 

transversal elastic displacements oriented along the ]001[ -axis, i.e. with 

]1,0,0[u 
 , has to be calculated. Thus, one can write the deformation tensor   

and the unperturbed dielectric permittivity tensor   in the main 

crystallographic axes as 
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Here, 0  is the amplitude of the shear deformation, while 2
00 n  and 2

ee n  

are the eigen-values of the unperturbed dielectric permittivity tensor  . Now, 

the tensor   of the second rank with the components lk  )3,2,1l,k(   can be 

converted into a 6-dimension vector )0,1,0,0,0,0(0  with the components 

  )6,,1(   using the standard procedure [3.14], which includes re-

notating kk   )3,2,1(   and lk2    )6,5,4,lk(  . If now one will 

use the same procedure [3.14] and take the photo-elastic tensor p  of the 

fourth rank for a calcium molybdate single crystal in the form of a 66  

matrix p̂ , it will be allowed first to construct and to calculate the product 

)0,p,p,0,0,0(p̂ 44450 , and then to convert the result back to the form of a 

standard tensor )p(   of the second rank. 

 

The next step of the analysis is connected with finding the dielectric 

permittivity perturbations tensor  , whose components can be written as 

lklknmjnmiji p   [3.9]. In the particular case of a 4CaMoO -crystal 

whose point symmetry group is 4/m, one can write [3.14 - 16]: 
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 .               (3.13) 

 

The result of calculating has the form 
 


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
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Now, the orts 1,0e


 of polarization for the incident and scattered light waves 

are taken into account. When the wave vectors of these light waves are 

collinear to the wave normal ort m


 for the acoustic wave and, of course, to the 

]100[ -axis in calcium molybdate crystal, the eigen-orts 1,0e


, of light 

polarizations should be oriented, as it directly follows from Eq.(3.12b), along 

the ]010[  and ]001[  axes, so that one can take, for example, ]0,1,0[e 0 


 and 

]1,0,0[e 1 


 with o0 nn   and e1 nn  . As a result, one can obtain the 

contribution of brackets to Eq.(3.11) as 
 

45e000110 pee~ee~ 


 .                           (3.15) 
 

In so doing, one can find that 45
2

e,o0o,e
1

1,0 pnn)2(q   . One can see now 

that the difference between 0q  and 1q  is rather small, because oe10 nnqq  . 

Then, because the amplitude of deformation can be explained as 

)V(P2
3

0  , where P  is the acoustic power density, one can finally 

obtain 
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It should be noted that the factors taken in brackets in Eqs.(3.16) represent 

the figure of acousto-optical merit peculiar to estimating the efficiency of 

crystalline materials in acousto-optics [3.17] , while the refractive indices are 

slightly dispersive in behavior, see Table 1. 
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 At this step, a few numerical estimations inherent in the collinear 

interaction under consideration at the light wavelength of  nm671  in the 

4CaMoO -crystalline cell are ready to be performed. Taking the material 

density 3
cm/g34.4 , acoustic velocity s/cm1095.2V

5 , 06.0p45  , 

9889.1ne  , 9811.1no  , and 0078.0n   at the chosen light wavelength [3.18], 

one can calculate the figure of acousto-optical merit 1323
e

3
o2 )V(pnnM

 , 

where p  is an effective photo-elastic constant, and   is the crystal density, as 

)g/s(10977.1M
318

2
  with an accuracy of about %1 . 

 

3.4. Resolution of CaMoO4 Filter 
 

3.4.1. Traditional Approach 
 

As previously mentioned the spectral resolution   and the frequency 

resolution f  of collinear acousto-optical filters are usually estimated as 

f)f/(|| 0   and L/Vf  , where 0f  and V  are the carrier frequency and 

velocity of acoustic wave; L  is the longitudinal aperture of filter, i.e. the 

length of acousto-optical interaction. It is obviously seen that these formulas 

do not include potential influence of the initial acoustic power density on the 

resolution. 

 

At first, let us consider Eqs.(3.13b) and (3.15b) for the lossless medium in the 

case of infinitely small signals, i.e. with 0 . In so doing, one can estimate 

x)x(G  , 0)0(G  , and write 

2

2

1

2
02

1
)x(

)x(sin

q

)x(q
)x(С


















 
  ,                          (3.17) 

 

where the distance x  can be considered as a parameter. Historically, 

estimating the resolution is connected with the well-known Rayleigh 

criterion, which predicts in fact separating a pair of the neighboring 

2
)u/usin( shaped distributions at the intensity level of 4053.0 . This is 

exactly the case of Eq.( 3.17), and one has to resolve the transcendent 

algebraic equation )x(6368.0)x()x(sin
21  . The first (both positive 

and negative) solutions to this algebraic equations are 2/x)(   . They 

lead to the bandwidth from 2/x)(    to 2/x)(   , i.e. to the full 

bandwidth at the intensity level: 4053.0  

  |2/||2/|xxx )()( . Together with this a one-side 

mismatch   had been previously [see Eqs.(3.1)] determined as 

V/f2/K  , so that in the more detailed form V/f )()(    (where 

)(f   are the corresponding one-side frequency deviations) and consequently, 

the total deviation of the mismatch is given by 

V/fV/)ff( )()()()(   . Combining the expressions, which 

include  , one arrives at the above-noted formula x/Vf  , where one can 
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undoubtedly put Lx  . Thus, one can see that full width of the main lobe 

inherent in a 2
)u/usin( shaped distribution at the intensity level 4053.0  

gives the “standard” determination of the frequency resolution in acousto-

optics, which is conditioned by the limit 0 . 

 

3.4.2. Loss-Less Medium Case 
 

Now, lets consider Eqs.(3.8b) and (3.10b) in the lossless case with signals of 

finite amplitude when 0 . Because of 22
x)x(G   and 0)0(G  , one 

can write 
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To estimate the frequency resolution at the above-noted intensity level 

4053.0  Eq.(3.17) has to be normalized as 
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The 3D-plots inherent in these distributions are presented in Fig. 3.1 for the 

scattered light intensity 
2

1 )x(С  in absolute units, see Eq.(3.18), and for the 

normalized intensity from Eq.(3.19) in practically reasonable approximation 

1q/q 10  . Fig. 3.1a gets the interval  3x0  and illustrates a regular 

structure in absolute units, which exhibits reaching a sequence of unit-valued 

maxima along the line 0x  with a dimensionless period  x . Fig. 3.1b 

reflects the normalized distribution on the smaller interval  x0  and 

includes the level 4053.0 -plane for estimating the width in terms of a one-

side dimensionless mismatch x .  

 

 
Figure 3.1. The 3D-plots of the scattered light intensity profile with 1q/q 10  : (a) for 

the absolute values on the interval  3x0  and (b) for the normalized 

distribution on the interval  x0  
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A set of 2D-plots for the scattered light intensity 
2

1 ])x(,)x([С   is 

presented in Figs. 3.2 in the absolute form for the range of products 

 x0.1  in the same approximation 1q/q 10  . These 2D-plots illustrate in 

details the dynamics of evolving the distributions step by step and confirm 

that one can expect narrowing the normalized intensity profile noted by 

Eq.(3.19) with  x  from smaller values as depicted in Fig.3.1b. 
 

With  x0.1 , estimations at the above-chosen intensity level 4053.0  

give one-side mismatches 511.1)0.1x(x  , 414.1)2/x(x  , 

292.1)0.2x(x  , 059.1)5.2x(x  , and 524.0)0.3x(x  , see Fig.3.2b, 

which lead to the corresponding full bandwidths )x(x2)x(x  . These 

numbers should be compared with the previously obtained a one-side 

mismatch estimation 5708.12/)0x(x   and the full bandwidth 

 )0x(x , corresponding to relatively low efficiency of light scattering 

in the regime of a given incident optical field approximation. One can see 

from these estimations and Fig. 3.2 that the contribution from acoustic wave 

of the finite amplitude narrows the profiles, and the most efficient regime, 

providing theoretically %100  efficiency of light scattering, can be achieved 

with 2/x  , see Fig.3.2a, when the profile width will be about %10  better 

than in the case of a low-power non-optical wave. Growing the product x  

makes it possible to narrow profile for more, but at the cost of decreasing the 

efficiency significantly, see Fig 3.3. Nevertheless, a desirable balance between 

the contour width and efficiency can be found here, for instance in vicinity of 

0.2x  , if the case requires. 

 

 

Figure 3.2. The 2D-plots 
2

1 ])x(,)x([С   for the products  x0.1  with 

1q/q 10  : (a) for the absolute values and (b) after normalization by the zero 

magnitudes. 
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Figure 3.3. The light intensity 
2

1 )x(С  and a one-side dimensionless mismatch x  

versus the product x .  

 

Fig. 3.4 represent a 2D-contour plot for the normalized light intensity on the 

plane ])x(,)x([  . The contour lies on the interval  x0  and 

demonstrates the tendency of squeezing the normalized light intensity profile 

with growing the product x . As a result, one can see that profile width at 

 x  is a few times narrower than initial one with 0x  , i.e. squeezing of 

the transmission function is observed. 

 

Another set of 2D-plots for the normalized scattered light intensity 
2

1 ])x(,)x([С 
2

1 )0(С


  is presented in Fig.3.5 for the range of 

products  2x . This range of products x  has not been shown in 

Fig.3.1b. It is clearly seen from Fig. 3.5 that the profile width becomes 

dramatically gained within this range. The most effective case when 

1)0(С
2

1   is reached at 2/3x  , see Fig.5a, but it gives already the 

profile one-side width 5.2)2/3x(x   at the level 4053.0 , which is 

definitely wider than the corresponding profile in the range of products 

 2x . 

 

 
Figure 3.4. A 2D-contour for the normalized light intensity on the plane ])x(,)x([   

on the interval  x0 . 
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Figure 3.5. The 2D-plots 
2

1 ])x(,)x([С   for the products  2x  with 

1q/q 10  : (a) for the absolute values and (b) after normalization by the zero 

magnitudes. 

 

Figure 3.6 demonstrates the general tendency to repeat squeezing the profile 
2

1 ])x(,)x([С   periodically, although only the interval  3x  is 

depicted here. However, the presented 2D-contour plot shows clearly that 

each next period exhibits a wider profile in the vicinity of the points 

 m)2/(x , ,3,2,1,0m   related to maximal efficiency of light 

scattering as well as at the points  )1m(x  of maximal squeezing at this 

period with the chosen number m . It should be noted that the dynamics of 

profile transformation within each particular period can be imagined in 

certain respects by analogy with the plots presented in Figs. 3.2 and 3.5 with 

obvious corrections, of course, for scaling along the x -axis. Thus, Fig. 3.6 

makes it possible to conclude that increasing the dimensionless product x  

as far as the involved number m  grows does not promise any additional 

squeezing the profile in comparison with the case of 0m  . 

 

 
 

Figure 3.6. A 2D-contour plot for the normalized light intensity on the plane 

])x(,)x([   on the interval  3x0 . 
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3.5. Some Estimations For The CaMoO4 AOTF 
 

Together with this, one can estimate the potential contributions of the 

acoustic losses. The coefficient of linear attenuation for the chosen shear 

acoustic wave passing along the ]100[ -axis is )GHzcm/dB(60
2  in a calcium 

molybdate single crystal [3.18]. The factor   of the amplitude acoustic losses 

measured in 1
cm

  can be expressed via the standard relation: 

)GHz(f)GHzcm/dB(1152.0)cm(
221   . The carrier frequency 0f , peculiar 

to the collinear acousto-optical interaction in calcium molybdate at the above-

mentioned light wavelength nm671 , can be calculated as 

MHz3.37/Vnf0  , so that one can estimate the amplitude factor of 

acoustic losses by )cm/dB(08334.0)GHz(f)GHzcm/dB(
2
0

2   and 

1
cm00962.0

 . Due to the smallness of the factors   and  , one can neglect 

the effect of acoustic attenuation and consider this case like practically 

lossless one. 

 

The angular divergence of acoustic beam in a calcium molybdate collinear cell 

at the frequency MHz3.37f   can be estimated as well. Practically, a reliable 

spatial size of the initial acoustic beam aperture that is considered is close to 

2.0d   cm. Thus, one can estimate cm1091.7fV
3 , and 

o2
267.2rad10955.3d/   , and conclude that the angular divergence of 

acoustic beam can be also omitted. The full mismatch   is connected with 

the frequency resolution f . Due to the above-mentioned expression 

V/f , one can find )L(/V)x(f  . 

 

At this step, a few practical numerical estimations inherent in the collinear 

interaction at the light wavelength of  nm671  in the 4CaMoO -crystalline 

cell with )g/s(10977.1M
318

2
  and cm4.4L   are ready to be performed. The 

periodicity of collapsing the resolution (see Fig. 3.7) is characterized by simple 

formula  mLm , so that for a pair of the first periods with 2,1m   one has 

1
1 cm714.0L/

  and 1
2 cm428.1L/2

 . 

Using the standard determination introduced above, one can write 
 

a) 2100 M
2

P
qqU




  ,             b) 

2
2

22

M

2
P




  .                       (3.20) 

 

Consequently, Eq.(3.20) gives  212
]cm[457.0]mm/W[P

 , so that 

]mm/W[233.0P
2

1   for 1  and ]mm/W[932.0P
2

2   for 2 , see Fig. 3.7. One 

can see that reaching the second point of collapsing the resolution needs four-

times higher acoustic power density in comparison with the first point and 

looks rather conjectural from the viewpoint of requirements to electric 

strength inherent in the available piezoelectric transducer. Then, the above- 

presented theoretical 2D-contour plot had shown that each next period 
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exhibits a wider profile in the vicinity of the points  m)2/(x , 

,3,2,1,0m   related to maximal efficiency of light scattering at this period. 

 

 
Figure 3.7. Acoustic power density P  vs. the parameter   at  nm671  in the 

above-chosen collinear 4CaMoO -crystalline cell. 

 

3.6. Scheme for the experiments with a 

CaMoO4 cell 
 

To realize experimentally the process of filtering the  schematic shown in Fig. 

3.8 is used, It consists of a continuous-wave laser, a 4CaMoO -crystalline 

acousto-optical cell with a pair of the Glan-Thompson crystalline polarizers 

(with the extinction ratio 5
10  each) whose combined layout is presented in 

details in Fig. 3.9, a silicon photo-detector, and a set of electronic equipment 

for both generating and registering the corresponding electric ultra-high-

frequency (UHF) radio-wave signals. Initially, the tunable UHF-signal is 

applied to the electronic input port of the collinear acousto-optical cell 

through a wide-band UHF-amplifier HD18858 ( ,MHz100010 W8 ), see Figs. 

3.8 and 3.9, and to the input of an oscilloscope (or computer) as the etalon 

signal, see Fig. 3.8. 

 

 
Figure 3.8. Schematic arrangement of the experimental set-up 

 

A two-mode co-propagating collinear 4CaMoO  crystalline cell was 

characterized by a crystal length cm4.4L   along the ]100[ -axis, an acoustic 

velocity s/cm1095.2V
5  for the shear elastic mode whose displacement 

vector is oriented along the ]001[ -axis. The continuous-wave beam at a dark-
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red light wavelength of  nm671  (the output optical power mW40~ ) had 

been chosen, first, to minimize the controlling acoustic wave frequency down 

to about MHz35  in a view of realizing as close as possible “almost lossless” 

regime for the propagation of acoustic beam through the 4CaMoO  crystalline 

cell and, second, to keeping just the visible range of operation with light 

beams simplifying the experimental conditions of observations. Thus, the 

light beam at  nm671  with the output optical power mW40~  was used as 

an optical pump during the experiments providing the traveling-wave regime 

of interaction between the pumping light beam and the acoustic wave. The 

first polarizer was precisely aligned in correspondence with the optical axes of 

a crystal in a cell. As the optical pump and the continuous-wave acoustic 

wave were interacted, already two orthogonally polarized light beams, 

incident and signal ones, passed through a cell. The second polarizer gave us 

an opportunity to be aligned in correspondence with the polarization of the 

signal beam and to extract the output optical signal, see Fig. 3.9. 

 

 
Figure 3.9. Scheme of the co-propagating collinear 4CaMoO -cell providing the 

traveling-wave regime of interaction between the pumping light beam and the 

continuous-wave lossless acoustic beam. 

 

Then, one can restrict oneself by a maximal level 2
mm/W5.0P   of acoustic 

power density, which is conditioned by the absolute acoustic power 

magnitude of about W2  and the acoustic beam cross section of about 2
mm4  

in the chosen collinear acousto-optical cell. Consequently, one can calculate 

that 1
cm2

 . These estimations demonstrate that the above-noted 

limitations on both the needed acoustic power density 2
1 mm/W233.0P   and 

the parameter 1
1 cm714.0

  lie in the frames of accessible value, while 

similar parameters 2P  and 2  for the second point of collapsing the 

resolution are beyond these frames.  

 

The nonlinear dynamics of varying the transition functions of the optical 

filter under consideration has been sequentially followed during the 

experiments as the acoustic power density of the finite amplitude grows. A 

few examples of the corresponding digitized oscilloscope traces are shown in 

Fig. 3.10 [3.19] 

 

Now, let us discuss this set of oscilloscope traces for the scattered light 

component intensity 2
1 |C|  detected during the experiments with the collinear 

4CaMoO  crystalline cell and estimated at the level 4055.0  conditioned by the 

Rayleigh criterion. All these traces can be easily interpreted in terms of the 
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above-developed theory taking into account that. The first trace in Fig. 3.10a 

reflects the filter transition function inherent in almost the regime with 

infinitely small amplitude of the controlling acoustic signal due to the 

dimensionless value 21.0L   is very close to zero. This value (which is non-

zero, in fact) had been taken as an example to show rather adequately 

conventional representation for the transition function width or, what is the 

same, the filter frequency resolution, being close to kHz44.68L/Vf  , as 

well as to have a chance for identifying the output response whose relative 

intensity is small enough, i.e. even less then %5 . The second and third 

traces, peculiar to 0.1L   and 2/L   are presented in Figs. 3.10b and 

3.10c, respectively. 

 

Figure 3.10 The digitized oscilloscope traces for the scattered light intensity 
2

1 |C|  

observed at the output of the collinear 4CaMoO  cell at the carrier acoustic frequency 

of MHz3.37~  and estimated at the level 4055.0 . Reshaping the transmission 

function is followed at the same optical pump in variable scales: (a) 21.0L  , 

]mm/W[00104.0P
2 ; (b) 0.1L  , ]mm/W[0236.0P

2 ; (c) 2/L  , 

]mm/W[0582.0P
2 ; (d) 0.2L  , ]mm/W[0944.0P

2 ; (e) 5.2L  , 

]mm/W[148.0P
2 , and (f) 0.3L  , ]mm/W[223.0P

2 . 
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From a viewpoint of widely used acousto-optic approach, they can be 

considered as a natural testimony of growing the relative intensity of the 

output optical signal up to 715.0  and 0.1~  under action of the increasing 

acoustic power density. They both exhibit the optical resolution of more or 

less the same order, which varies slightly from the above-mentioned kHz44.68  

to kHz84.65f   and kHz45.61f  , respectively. Such a conclusion looks 

rather plausible within quasi-linear approximation for the transition function 

as well as in the course of possible measurements in the frequency domain 

with not enough accuracy. Nevertheless, further increase of the acoustic 

power density, depicted by the traces with 0.2L   and 5.2L   in Figs. 3.10d 

and 3.10e, is able to demonstrate step by step that the existing specific 

acousto-optical nonlinearity leads to squeezing the transition function or to 

improving the frequency resolution to kHz24.56f   and kHz14.46f  , 

respectively. This process is accompanied by decreasing the relative intensity 

of the output optical beam down to about 82.0  and 35.0  in the so chosen 

points. Finally, the last trace, see Fig. 3.10f, illustrates obviously nonlinear 

process of squeezing the transition function or improving the frequency 

resolution in the vicinity of the first point L  of a collapse. Namely the 

value 0.3L   has been taken to have an opportunity for revealing the 

transition function characterized by kHz86.22f   whose relative intensity 

becomes already dramatically small and does not exceed %2 . 

 

3.7. Conclusions 
 

It was revealed the nonlinear squeezing of the transition function inherent in 

the collinear acousto-optical interaction under condition of the simplifying 

approximation of lossless (or low-loss) propagation for the acoustic waves. 

This nonlinear effect can be interpreted also as improving the spectral and 

frequency resolution peculiar to the collinear acousto-optical filter operated 

by the controlling acoustic waves of the finite amplitude. Rather adequate 

theory of this effect has been developed analytically and illustrated via the 

corresponding computer simulations. In particular, a periodicity for the 

nonlinear squeezing of the transition function, which includes a set of points 

for its collapses originating periodically, has been found and estimated. It has 

been shown that the first period of similar collapsing exhibits the best 

relation between the width and magnitude of the squeezed transition function 

from the viewpoint of practical application. Then, the needed estimations has 

been performed for the collinear interaction, which made it possible to choose 

a dark-red light laser beam, lying still in the visible range, and a low-

frequency acoustic wave, providing its almost lossless propagation, in a 

4CaMoO  single crystal. Finally, the results of the experiments illustrating the 

nonlinear squeezing of the transition function with lossless propagation of 

acoustic waves in the collinear calcium molybdate crystalline cell have been 

presented and briefly discussed. 
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Chapter 4 

 

 

Acousto-Optical Triple Product 

Processor for Astrophysical 

Applications 

 
The spectroscopy is a very important technique for the study of the radiation, 

focused on astrophysical application, the use of acousto-optical phenomena is 

widely used all around the world. A Triple Product Processor (TPP) was 

developed in the 70s for signal processing and spectroscopy applications. In 

this chapter a new setup for the TPP for 3 inch optics is proposed. It is 

described and analyzed theoretically, first by describing the basic theory 

needed for its study, then the fundamental concepts of the operation of a TPP 

focused on the time integration analysis, and later the schematic 

arrangement proposed along with some estimations of the potential 

performance for such a device. 

 

4.1. Introduction 
 

An extremely adaptable optical architecture of an acousto-optical triple-

product processor, which had been initially suggested in Ref.[4.1, 4.2] and 

whose general schematic arrangement is presented in Fig.4.1, will be 

discussed. 

 

The laser diode or LED, for example, can be used as a point light source 

whose radiation is modulated in time by the initial electronic signal )t(0 . 

The vertically oriented acousto-optic cell AOC-1 realizes a modulation by the 

first additional electronic signal )t(1 . This cell is lighted by the optical 

beam from a point source through the spherical lens 1L  and the cylindrical 

lens 2L . The light beam, scattered by the AOC-1, is modulated by the product 

)V/xt()t( 1110  . In a view of lighting the AOC-2, which is placed 
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horizontally, the output light beam after the AOC-1 is broadened horizontally 

and focused vertically by the spherical lens 3L . Let the second additional 

electronic signal, which is applied to the AOC-2, is )t(2 . As a result, the 

light beam, scattered by the AOC-1, is modulated by the product 

)V/xt()V/xt()t( 2221110  . 

 

 
 
Figure 4.1. General schematic arrangement of optical components for a triple-product 

acousto-optical processor. 

 

The obtained product includes in fact two time delays 111 V/xt   and 

222 V/xt  , where 2,1x  and 2,1V  are physical spatial coordinates along the 

corresponding acousto-optical cells and the acoustic wave velocities, 

respectively. These time delays 1t  and 2t  must satisfy the inequality 

1t(0  , T)t2  , where the aperture transit time T  of the modern acousto-

optical cells can be equal to about s5010  . The cylindrical lens 4L  and the 

spherical lens 5L  shape the image of the AOC-2 at the output plane in 

horizontal direction, while the spherical lenses 3L  and 5L  give the image of 

the AOC-1 at the output plane in vertical direction. A two-dimensional matrix 

of photo-detectors is placed in the output plane, so that charges )t,t(g 21  

collected by each individual pixel under acting the light during the time iT  at 

a point )t,x(  are proportional to 
 

 

iT

222111021 td)V/xt()V/xt()t()t,t(g ,                            (4.1) 

 

where iT  is the time of integration, which is limited by the detector and could 

be about ms1  or more; the time delays 1t  and 2t  represent a pair of the 

coordinates in the output focal plane, i.e. in a plane of the CCD matrix photo-

detector. Such a system represents a triple-product processor. This processor 

consists of a pair of the two one-dimensional correlators operating 

simultaneously in two mutually orthogonal planes. However, the system does 

not simply collect two one-dimensional conversions; the final result appears 

within a joint two-dimensional processing of all the input signals. This 

architecture always calculates Eq.(4.1), but it exhibits really high flexibility, 
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because all the three input signals are given initially as electronic signals, so 

that this processor can be easily re-oriented from fulfilling one algorithm to 

another in the frames of completely the same optical resources simply by 

varying the input electronic signals )t(j  with )2,1,0j(  . 

 

In figure 4.2 are shown the both main parts of the processor. The one related 

to the space-integrating processing made using the first cell (oriented to the 

coarse resolution) and the time-integrating processor made with the second 

cell (oriented to the fine resolution) and the photo detector matrix. 

 

 
 

Figure 4.2 Schematic arrangement of TPP showing space and time integration. 

 

4.2. Time Integration 
 

The use of time integration technique in acousto-optics data from 1970 with 

the work of Montgomery [4.3] and later studied by several researchers; 

Turpin, Sprage, Bader, and Kellman just to mention some of them. 

 

4.2.1. Time Integrating Correlation 
 

The simplest case of time integrating processor is the time integrating 

correlator [4.2], Fig. 4.3. In this correlator, the first Bragg cell is modulating 

the intensity of the laser beam with the signal )t(f . Then, the diffracted light 

cross the second Bragg cell which modulates the intensity of light again but 

with the signal )Vxt(g  , here, x   is the position along the Bragg cell and V  

still stands for the speed of acoustic wave in the cell. So, the output signal in 

the detector at the x  position is: 
 

 
Figure 4.3 Time integrating correlator. 
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dt)Vxt(g)t(f)x(r
T

0  ,                                      (4.2) 

 

T is the integration time of the detector, with the selected detector, this can 

range from s38  to s60 . Note that, according to the sampling theorem, the 

Bragg cell bandwidth must be twice the bandwidth of the signals of interest. 

 

4.2.2. Resolution of Spectral Analysis 
 

To estimate the resolution it is necessary to introduce some characteristic 

parameters in the frequency analysis. The first is the number of resolvable 

spots, which is given by [4.4]: 
 

TBfN  ,                                               (4.3) 
 

where V/D  is the transit time of the signal through the acousto-optical 

aperture D  of the device, V  is the acoustic wave velocity, f  is the 

bandwidth of the acousto-optical cell. So, the number of resolvable spots is 

equal to the time-bandwidth product.  

 

Now, chirp signals must be introduced in the acousto-optical cells to make the 

spectrum analysis. The chirp rate  /fa , called the fast chirp rate will be 

injected on the first cell. With this, one will obtain the coarse frequency 

resolution. The second cell will be controlled by a slow chirp signal with a 

chirp rate b , having N/ab  . This slow chirp determines the fine frequency 

resolution s0 T/1f  , where sT  is the duration of the slow chirp [4.5]. 

 

4.3. Rayleigh Criterion and Sampling Theorem 
 

4.3.1. Practical Estimations 
 

In order to get the best performance of the TPP, will be needed the largest 

number of spots which the CCD pixel array would resolve. To estimate this, 

will be taken into account the sampling theorem and the spot size of the last 

lens in the TPP setup. 

 

The sampling theorem states that [4.6]: 

 

“If a function contains no frequencies higher than HzW , it is completely 

determined by giving its ordinates at a series of points spaced W21  seconds 

apart.” 

 

Translating this to space coordinates it means that if one have one signal of 

size metersX  (space frequency would be   1
mX1

 ) will be completely 

determined if samples are taken every  m2X . For example; with a spot size 

of m10  , according with the sampling theorem, taking measurements every 

m5  would be enough to recover the signal and, at the same time, avoid 

oversampling. 
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 It is known from the literature [4.7] that the amplitude of a Gaussian beam 

have the form: 
 


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exp ,                                              (4.4) 

 

Where r  is the radius from the center, having its maximum at 0r  . 
 






























2

0

2
0

2

z

z
1)z(                                              (4.5) 

 

is a function related to the width of the beam, this function will be changing 

as the beam propagates through the z  direction. 0z  is a measure of the 

length where the beam width will have almost a constant value. 0  is the 

minimum width of the beam and it is called the “spot size”. When the radius 

of the beam is equal to this spot size, the amplitude of the beam will be 1
e
  

and the intensity, which is proportional to the amplitude squared, will be 2
e
 . 

This will be called the 2
e
  level. 

A focused Gaussian beam will have a minimum waist, 
 

D

F
f

#
0


 ,                                                  (4.6) 

 

where #
f equals focal length ( F ) divided by the diameter ( D ) of the lens. With 

this limitation the smallest spot size for the lenses in the market will be 

around m7 . Besides of that, the aberrations of the lens should be taken into 

account, which will enlarge even more the size of the spot. For that reason, 

the analysis of the spot sizes of several lenses should be done in order to 

select the one which will perform better in the 3 inch TPP. 

 

Now there is another problem, the reduced number of large high quality 

lenses in the market. Several catalogs were checked and the lenses chosen for 

the analysis were the AC508-500-A from Thorlabs, a 2 inch lens with a focal 

length of mm500 , and the #30-976 from Edmund Optics, a 3 inch lens with a 

focal legth of mm9.849 , both of them are achromatic lenses and designed for 

nm6.587 . 

 

The analysis was made using the software OSLO (Optics Software for Layout 

and Optimization) from Lambda Research Corporation. In the software the 

properties of the lens must be specified; the radius of curvature of each 

surface, thickness, material, and the aperture radius. 

 

After that, the properties of the beam must be provided but, before this, the 

criterion of the size beam must be established. The previously estimated spot 

size was calculated at the level of 2
e
  but, according to the Rayleigh Criterion 

[4.5], one just need the spot size at the level of 405.0 , see Fig. 4.4. So, the spot 

size must be recalculated to this level. To do this, the Gaussian distribution 

was adopted for the beam profile. The ratio of the spot size at the level of 2
e
  

divided by the spot size at the level of 405.0  was calculated as, approximately, 
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23 , see Fig. 4.5. With this in mind, instead of using a Gaussian beam with 

''30  , a waist of ''5.40   will be selected. While introducing these 

parameters in OSLO, one must be very careful because the software works 

with radius instead of the diameters.  

 

 
Figure 4.4. Rayleigh Criterion for resolving two signals. The dashed line is the sum of 

the intensities of the two signals. 

 

First the parameters of the Gaussian beam must be established by clicking 

“SETUP” on the “Surface Data Spreadsheet”, enabling the “Gaussian beam” 

option and selecting the beam size (at the level of 2
e
 ). For this analysis a 

radius of mm15.57  (for the ''3  lens) and mm1.38  (for the ''2  lens) were 

selected in order to have the beam at the level of 405.0  on the edges of the 

lenses. Now it is time to do the analysis using the “Truncated Gaussian 

Beam…” feature in OSLO. Then, the monochromatic option is selected and 

using 64  points for better resolution. The results show us spot sizes of m6.9   

for the Thorlabs lens, Fig. 4.6a, and m6.11   for the Edmund Optics lens, Fig. 

4.6b. Both results at the level of 2
e
 , using the approximation for the 405.0  

level, the sizes would be m4.6   and m7.7  , respectively.  

 

 
 

Figure 4.5. Gaussian Distribution function (continuous) and 2
Sinc function (dashed). 
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a.  
 

b.  
 

Figure 4.6. OSLO Point Spread Functions for: a) Thorlabs AC508-500-A lens  and b) 

Edmund Optics #30-976 lens 

 

4.3.2. CCD Selection Requirements 
 

First, the choice between CCD or CMOS sensors has to be taken. The main 

advantage of a CCD over a CMOS is the higher dynamic range, moreover the 

CCD have less noise, making it ideal for low-light imaging. The CCD also 

have a more uniform shuttering which is better for imaging objects in motion. 

With the estimated spot sizes one is ready to look for a CCD camera with a 

pixel size of half the spot size generated by the last lens to be in agreement 

with the sampling theorem. The most common pixel size in the optics 

specialized market is about m65.4  for a 10241280  CCD array which would 
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not be small enough for the needs of this problem. There is also CCD arrays 

with a pixel size of m45.3   in a matrix of 20502448  from Edmund Optics, 

model number EO-5023M, which would be more suitable for this prototype. 

The complete characteristics of EO-5023M are shown in Table 4.1 

 
Table 4.1 Characteristics of EO-5023M 

 

Type of Sensor Sony ICX655 

 

Sensing Area, H x V 

(mm) 

8.45 x 7.07 

Imaging Device Progressive Scan 

CCD 

Pixels (H x V) 2448 x 2050 

Pixel Size, H x V 

(μm) 

3.45 x 3.45 

Pixel Depth 12-bit 

Frame Rate (fps) 6 

Exposure time 38μs – 60s 

Dimensions (mm) 34 x 32 x 34.4 

 

4.4. Optical Arrangement of Triple Product 

Processor  
 

Here is depicted, Fig 4.7, the proposed experimental arrangement for the TPP 

for 3 inch optics. The distances of the picture are explained in the subsection 

4.3.2 and gathered it Table 4.2. 

 

 
 

Figure 4.7 Layout of the TPP, SL is for the spherical lenses, CL cylindrical lenses, 2 

acousto-optical cells (AOC). 

 

4.4.1. Experimental Setup 
 

The arrangement starts with a solid state laser, for the maximum input 

power, coming out from an optical fiber which will work as a point source. 

Then a Glan-Thompson polarizer is used to ensure the polarization of the 



75 

 

light. Then a spherical lens (SL1) will collimate the light before it passes 

through the first cylindrical lens, which will focus the light in a line over the 

first acousto-optical cell (AOC1). At the same effective distance of the CL1 

and AOC1 will be a second spherical lens (SL2 with the same focal distance of 

CL1) which will collimate the beam along on axis and focus it on the 

perpendicular axis. Now the light will be focus on a line over the second 

acousto-optical cell (AOC2 perpendicular to AOC1 ). Then the light will be 

collimated again with the second cylindrical lens (CL2) before it reaches the 

last spherical lens (SL3) which will collect all the light and focus it on the 

CCD camera. 

 

4.4.2. Components Selection 
 

Here is the complete list of components needed and the motivation for its 

selection among several options in the market. 

 

Solid State Laser 
First of all, Diode Pumped Solid State (DPSS) laser was selected over other 

kinds of laser because its high output power and faster speed of operation 

besides the option of a fiber coupled output. The selected DPSS laser is Cobolt 

Samba from the Swedish company Cobolt, with 3.0nm1.532   and a CW 

output power of mW300 . Coupled to a single mode optical fiber with a core 

diameter of m5.3  . Because of diffraction effect the beam will be spread in to 

an angle of  112 00  [4.7] at the level of 2
e
  in intensity.  

 

Polarizer 
A Glann-Thompson polarizer was selected because of its high extinction ratio 

against other kinds of polarizers. GTH10M-A from Thorlabs was selected, 

with an extinction ratio of 1:000,100  and antireflection coating for 

nm700350 . Due to the angle of the expanding beam and the longitude of the 

polarizer, the polarizer must be at around mm10  from the point source, then, 

mm10x1  . 

 

First Spherical lens 
The first lens must be located at its focal distance from the point source in 

order to collimate the light. The criteria for selecting the focal distance of this 

lens is to have the lens completely illuminated by the point source at the level 

of 405.0 . Using the angle 0 , previously calculated, the minimum distance 

would be  
 

cm57.39)2(taninches5.1x 0min   
 

at 2
e
  level, which for the level of 405.0  would be cm60xmin  . So the 

previously analyzed lens from Edmund Optics #30-976 would be in 

accordance with this limit. mm9.839xmm9.849x 12  . 
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Cylindrical lenses 
For 3 inch optics there are not too many options in the catalogs. The best 

option available was the cylindrical lens LJ1267L1-A from Thorlabs, with a 

focal length of mm250 and size of mm60mm62  , whose diagonal is about 

mm86 . Here, the spherical and cylindrical lenses are separated mm20  in 

order to give some space between the mounts. mm20xx 103  , note that 

these distances are between the focal planes of the lenses. mm250x4  . 

 

Acousto-Optical Cells 
Based on previous studies [4.8]the selected material for the AO cells is 2TeO  

which will give us 4000  resolvable spots for the mm60  aperture and a 

working frequency around MHz50 . 

 

Mirrors  
In order to reduce the size of the experimental arrangement, one needs to use 

a set of mirrors. The selected mirrors are 2 Edmund Optics #47307, a 

mm75 right angle mirror with enhanced aluminum coating. 

 

Second Spherical lens 
The second spherical lens is used to collimate the light coming from the first 

AOC on one axis while focusing it on the other, perpendicular, axis. To do so, 

this lens need to have the same focal length as the cylindrical lens: mm250 . 

The total length between the AOCs and the collimating/focusing lenses, must 

be the same, mm150xx 85  , mm100xx 76  , and mm250x8  . 

 

Third Spherical lens 
Based on the analysis made in the section 4.1, the achromatic lens #30-976 

from Edmund Optics with a focal length of mm9.849  and 3 inch diameter 

was selected, with an estimated spot size of m7.7  . mm9.849x11  . 

 

CCD camera 
As mentioned in subsection 4.1.2, the best option for the selected last lens in 

the arrangement is the Megapixel5  CCD camera EO-5023M from Edmund 

Optics with a pixel size of m45.3  . According to the sampling theorem at least 

2 detector elements per spot, condition fully satisfied with the m45.3   pixels 

for the m7.7   spot. 

 

Mounts 
To ensure the maximum stability and the precision for the alignment of the 

experimental arrangement solid mounts with five degrees of freedom are 

required (3 translational and 2 rotational), each one with micrometric 

precision, for every single component. A third rotational degree of freedom is 

added for the AO cells. 
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Table 4..2 Distances for the layout of TPP, Fig 4.6, the values are on millimeters. 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 Total 
10 839.9 20 250 150 100 100 150 250 20 849.9 2739.8 

 

All the selected components are depicted in Fig. 4.8 following the layout 

proposed in Fig. 4.7 

 

 
 

Figure 4.8. Experimental setup with the selected components. 

 

4.5. Some estimations 
 

From previous studies [4.8], the time-bandwidth of an acousto-optical cell 

made of TeO2, with a velocity of s/cm1065.0
5 , an effective aperture of 40mm, 

central frequency of 75 MHz, and a measured bandwidth of 65.5 MHz, was 

estimated as 4000. With the use of 3-inch optics, in contrast, is possible to 

realize the use of a TeO2 acousto-optical cell with an effective aperture up to 

60mm and the rest of the parameters from the previously used cell, 

potentially achieving time-bandwidth products (TMBP) of 6000. 

 

The estimation of the potential frequency resolution is as follows. Taking both 

cells as equals will have the same parameters, including the same TBWP. 

Suppose that one wants to analyze a signal with a bandwidth of GHz2 , the 

frequency resolution would be 55 Hz using the appropriate chirp signals. For 

the previous version with 2-inch optics the resolution would have been 

around 125Hz, this means a total improvement of 125% 
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4.6. Conclusions 
 

The analysis of the components for a 3-inch optics triple product processor is 

considered. Selecting top quality components for each part of the device and 

with the adequate characteristics to have the best possible performance. The 

proposed triple product processor has the capability of exploiting the larger 

window aperture than previous studies [4.8], around 60 mm, of a potential 

acousto-optical cell made of tellurium dioxide, previously studied with 2-inch 

optics  and an acousto-optical cell with aperture of 40 mm, improving the 

time-bandwidth product about 50% on each cell, having with this, an 

improvement of 125% in spectral resolution which shows a great potential for 

is application in astrophysical spectroscopy. 
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Chapter 5 

 

 

General Conclusions 

 
The inefficient situation in the Guillermo Haro observatory, related to the 

need of changing diffraction gratings, can be solved. An alternative for the 

static diffraction gratings is the use of specially designed acousto-optical cell 

as a dynamic (i.e. completely electronically tunable) diffraction grating, whose 

capabilities will make it possible in the nearest future to replace all the static 

diffraction gratings from the spectrometer. The principal advantages of 

similar dynamic acousto-optical grating are excluding any mechanical 

operations within the observation process, avoiding recalibrations (i.e. 

bringing in additional errors) and any losses of time. The design of a desirable 

acousto-optical cell, adequate to this problem, have been proposed and 

analyzed 

 

Now, it is possible to predict that a specific mechanism of the acousto-optic 

nonlinearity is capable of regulate performances of the existent collinear 

acousto-optical filter and can be used practically. The analysis of this 

mechanism has been made theoretically and has been confirmed 

experimentally with an advanced filter based on calcium molybdate 

( 4CaMoO ) single-crystal and governed by external signals of finite amplitude. 

 

The previous performed estimations which showed that the algorithm of 

space-and-time integrating was definitely suitable for a wideband spectrum 

analysis were taken into account and the design of a new triple product 

processor with an ultimate frequency resolution has been made. This 

algorithm uses an advanced acousto-optical processor to produce the folded 

spectrum of those signals, accumulating advantages of space and time 

integrating. The developing of a schematic arrangement for the triple product 

acousto-optical processor based on 3-inch optical components of a top-level 

quality have been made and the estimations show an improvement of 125% in 

the spectral resolution with respect to the previous considered system. 
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Future work 

 
The work presented in this thesis can be continued in several ways. First, the 

use of an acousto-optical dynamic grating leads to infinite possibilities in its 

arrangement, starting from the use of different kinds of acousto-optical cells 

to the possibility to search for new materials with better properties. Also it 

can be focused on other spectra; it is not limited to the visible range. Another 

possibility is the use of more than one cell to use another kind of spectral 

analysis. The next thing to do, almost applicable immediately, is the use of 

several frequencies at the same time in the cell. This will generate several 

diffraction gratings simultaneously and potentially it will bring more 

advantages to the spectrometer. 

 

After the study of the filter in a lossless medium, the next thing to do is to 

make the same analysis but having in consideration the acoustic losses in the 

medium of interaction and study the behavior of the transmission function 

and other properties in the collinear acousto-optical filter. Also it is 

reasonable to analyze other tunable acousto-optical filters based on different 

materials. 

 

Related to the triple product processor, the next step would be the realization 

of the prototype to study its capabilities experimentally for its direct 

application in astrophysical spectrum analysis. Another way to continue the 

developing of this device would be to extend the study, previously done, of 

new materials for its use in the acousto-optical cells. 
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Statements 

 
1. A new dynamic diffraction grating realized by specially designed acousto-

optical cell could be potentially exploited as a dispersive element within uses 

an optical spectrometer for The Guillermo Haro astrophysical observatory. 

Such a dynamic (i.e. completely electronically tunable) diffraction grating 

represents an alternative for a set of traditional static diffraction gratings. 

The principal advantages of similar dynamic acousto-optical grating are 

excluding any mechanical operations within the observation process, avoiding 

recalibrations (i.e. bringing in additional errors together with losses of time), 

and improving the efficiency of spectrum analysis. 

 

2. A specific mechanism of the acousto-optic nonlinearity, being capable to 

regulate performances of the collinear acousto-optical filter, exists and could 

be used practically when an advanced filter is governed by external electronic 

signals of finite amplitude. 

 
3. The algorithm of space-and-time integrating could be suitable for a 

wideband spectrum analysis with an ultimate frequency resolution. This 

algorithm requires an advanced acousto-optical processor to produce the 

folded spectrum of those signals, accumulating advantages of space and time 

integrating. The suggested schematic arrangement for the triple product 

acousto-optical processor, based on three-inch optical components of a top-

level quality, can be designed. 

 


