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Summary

This work is a detailed analysis of the focusing characteristics of the Bessel beam, that
gathers and expands on all the concepts required to fully understand the formalism based
on the traveling conical waves that form these beam-like light structures.

In Chapters 2 and 3, we review in three coordinate systems the general solution to
the wave equation, the one is represented by the sum of two traveling waves in opposite
directions. Furthermore, we demonstrate the relation between the phase of a light wave and
its wavefront, which helps us have a prediction of the shape the wavefront takes as the wave
travels in space.

In Chapter 4 we present a revisitation of the diffraction subject. We discuss conditions
such as Sommerfeld’s radiation condition that have to be satisfied to consider valid the results
obtained with the diffraction integrals, otherwise, it can lead to inaccurate descriptions of
these. The most striking part of this section is the emphasis made on the definition of
diffraction, which ultimately states that any element that modifies the amplitude and/or
phase of the propagating wave will result in diffraction. Here, we are only concerned with
apertures (and obstacles), therefore we provide numerous examples that prove we cannot talk
about diffraction if there are no transverse limitations applied to the diffraction integrals.

Finally, Chapter 5 starts with a brief section dedicated to the focal shift effect and
the Gaussian beam focusing case, which helps to explain the former is a diffraction effect
related to the geometry of the aperture. Later, an analytical expression for the apertured
Bessel beam at the focal plane is presented, this solution is described as the product of
Bessel functions that represent an annular ring function. Additionally, we explain the nature
of the Bessel beams in terms of its constituent conical waves, as well as the axial and
transversal behavior of these beams when focused, the axial intensity is characterized by a
Lorentzian curve and a “pseudo-focal” point. The transverse case section provides a method
to calculate the transversal wavevector of the Bessel beam for each point along the axis.
Lastly, we analyze two apodization functions to reduce the oscillations on the focused Bessel
beam caused by diffraction: the Super Gaussian and the Flattened Gaussian beams. We
employ theorems of energy conservation to obtain the relations between the parameters that
modulate the functions and the radius of their waist. Both functions reduce the oscillations
however with the Super Gaussian profile the peak intensities reached were bigger than for
the Flattened Gaussian beam, but the latter demonstrated that for some cases the smaller
the focal length considered, the smaller the oscillations obtained. Finally, we derive two
geometrical approximations of the evolution of the Bessel beam passing through a lens and
analyze its focusing characteristics.
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Resumen

Este trabajo es un análisis detallado acerca de las características de enfocamiento de un
haz Bessel, que reúne y expande todos los conceptos necesarios para tener un entendimiento
completo del formalismo basado en las ondas cónicas viajeras que forman estos haces estruc-
turados.

En los capítulos 2 y 3, hacemos un repaso de la solución general de la ecuación de
onda , representada por la suma de dos ondas viajando en direcciones opuestas. Además,
demostramos la relación entre la fase de la onda de luz y su frente de onda, la cual nos ayuda
a tener una predicción de la forma que el frente de onda toma mientras la onda se propaga.

En el capítulo 4 revisitamos el tema de difracción, y discutimos las condiciones, tal
como la Condición de Radiación de Sommerfeld, que tienen que ser satisfechas para obtener
resultados validos con el uso de las integrales de difracción, porque de no ser así esto puede
llevar a interpretaciones erróneas de estos resultados. Pero, el punto más importante de
esta sección es el énfasis hecho en la definición de difracción, la cual nos dice que cualquier
elemento que modifique y/o la fase de la onda propagándose causará difracción. Además,
se dan ejemplos que prueban que no se puede hablar de difracción si no existen límites
transversales en las integrales de difracción.

Por último, el capítulo 5 comienza con una breve sección dedicada al efecto de desplaza-
miento focal y al caso de enfocamiento del haz Gaussiano, que ayuda a explicar que el primero
es un efecto de difracción relacionado con la geometría de la apertura. Posteriormente, se
presenta una expresión analítica para el haz de Bessel limitado por una apertura en el plano
focal, esta solución se describe como el producto de funciones de Bessel que representan un
patrón de anillo. Además, explicamos la naturaleza de los haces de Bessel en términos de sus
ondas cónicas fundamentales, así como el comportamiento axial y transversal de estos haces
cuando se enfocan. La intensidad axial se caracteriza por una curva Lorentziana y un punto
"pseudo-focal", mientras que la sección del caso transversal proporciona un método para
calcular el vector de onda transversal del haz de Bessel para cada punto a lo largo del eje.
Finalmente, analizamos dos funciones apodizadoras para reducir las oscilaciones en el haz
de Bessel enfocado causadas por la difracción: la Super Gaussiana y la Gaussiana Aplanada.
Empleamos los teoremas de conservación de la energía para obtener las relaciones entre los
parámetros que modulan las funciones y el radio de su cintura. Ambas funciones reducen las
oscilaciones sin embargo con el perfil Super Gaussiano las intensidades máximas alcanzadas
son mayores que para el haz Gaussiano Aplanado, pero este último demuestra que para
algunos casos cuanto menor es la distancia focal considerada, menores son las oscilaciones
obtenidas. Al final, derivamos dos aproximaciones geométricas de la evolución del haz de
Bessel que atraviesa una lente y estudiamos sus propiedades de enfocamiento.

ii



A mi familia...



Acknowledgements

I could not have undertaken this journey without the guidance of my advisor Dr. Sabino

Chávez Cerda, whose support and feedback were fundamental in the development not only

of this dissertation but in my development and growth as a scientist.

I would also like to express my deepest appreciation to my defense committee formed by

Dr. Gabriel Martínez Niconoff, Dr. Jesús Emmanuel Gómez Correa, and Dr. Ulises Ruiz

Corona, who not only generously provided expertise but were very patient with me through

all the process.

I am also very grateful to the CONAHCYTC national scholarships program and the INAOE,

for the resources and the opportunity of being one of the many students who can study a

postgraduate masters in our country.

I would like to extend my sincere thanks to the professors, who provided knowledge, and to

all the Department of Optics, and the INAOE technical and administrative staff for all the

considerate guidance and assistance. Special thanks to the security staff, the librarians, and

the custodians for their kindness and hard work.

Lastly, thanks should also go to my family and friends, for their constant support. Your

presence and belief in me have been instrumental in my success. And to my two dogs, for

providing me with enough distractions.

iv



Contents

Summary i

Resumen ii

Acknowledgements iv

1 Introduction 1

2 Propagating Electromagnetic Waves 12

2.1 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Wave Equation in Spherical Coordinates . . . . . . . . . . . . . . . . 18

2.1.2 Wave Equation in Cylindrical Coordinates . . . . . . . . . . . . . . . 19

3 Harmonic Electromagnetic Waves in Open Free Space 22

3.1 Helmholtz Equation and some fundamental solutions. . . . . . . . . . . . . . 22

3.1.1 Harmonic Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Harmonic Spherical Waves . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Harmonic Cylindrical Waves . . . . . . . . . . . . . . . . . . . . . . . 26

4 Origin of diffraction and Paraxial Approximation. 32

4.1 Rayleigh-Sommerfeld Diffraction Theory . . . . . . . . . . . . . . . . . . . . 32

4.1.1 First and Second Rayleigh-Sommerfeld Solutions . . . . . . . . . . . . 38

4.1.2 Diffraction produced by an arbitrary aperture . . . . . . . . . . . . . 41

4.2 Fresnel and Fraunhoffer diffraction . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Paraxial Optical Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Gaussian Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



CONTENTS vi

4.3.2 Gaussian beams in cylindrical coordinates: Laguerre-Gaussian . . . . 54

4.3.3 Validity and inconsistencies of the paraxial approximation . . . . . . 57

5 Focusing Gaussian beams and Bessel beams 60

5.1 Focused fields and focal shift. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Relation of Gaussian beams and ABCD Q-parameter . . . . . . . . . . . . . 67

5.2.1 Focusing of Gaussian beams: ABCD method . . . . . . . . . . . . . . 68

5.2.2 Focal shift of a Gaussian beams. . . . . . . . . . . . . . . . . . . . . . 71

5.3 Bessel beams, description as traveling waves . . . . . . . . . . . . . . . . . . 78

5.3.1 Whittaker integral and propagation invariant beams: interference of

conical waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Focusing of Bessel beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Bessel beam at the focal plane. . . . . . . . . . . . . . . . . . . . . . 85

5.4.2 Focusing a Bessel-Gauss beam. . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 Pseudo-focal position. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.4 Axial Intensity Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.5 Transverse Magnification. . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.6 Apertured Bessel Beams: Super-Gaussian beam Vs. Flattened Gaus-

sian beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.7 Geometrical Approximation . . . . . . . . . . . . . . . . . . . . . . . 129

6 Conclusions 136

Bibliography 150



Chapter 1

Introduction

In general terms, structured light refers to tailored intensity distribution, polarization and

phase, and the numerous combinations of the three [1]. This subject and its application

is vast and it is continuously evolving due to technological advancements. Many of these

Figure 1.1: Categories of the scalar diffraction theories.

applications involve the propagation of these structured waves through a medium and/or

optical system, consequently giving rise to the diffraction effect. For this reason, the study

of the evolution of a structured beam is intertwined with the scalar diffraction theory. We
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CHAPTER 1. INTRODUCTION 2

divide the scalar diffraction theories into three categories as shown in Figure 1.1 by the blue

rectangles.

The angular spectrum representation also called the Plane-Wave Propagation Method

consists of the decomposition of the light field into plane wave components traveling at dif-

ferent angles with respect to the propagating axis and the solution is reached through Fourier

transformations [2]. For its part, the Fresnel-Kirchhoff (FK) and Rayleigh-Sommerfeld (RS)

diffraction theories main difference lies in the boundary conditions imposed to reach the

analytical equations. The KF theory presents a mathematical inconsistency that in most

practical cases can be ignored and provide accurate results, however, this inconsistency is

absent in the RS theory. These three theories under paraxial approximation give rise to the

widely used Fresnel diffraction integral, which is usually the most common integral applied

to calculate the paraxial propagation of light in homogeneous mediums. We do not include

the Collins integral theory as one of the categories because Collins is a generalization of

the Fresnel integral, nevertheless is included in the diagram because it is highly useful to

study propagation through paraxial ABDC optical systems [3]. Albeit the RS diffraction

theory gives exact solutions to the Helmholtz equation because no paraxial approximation

is applied to it, the formulas are rarely used due to the mathematical difficulties when tried

to be solved analytically.

But before delving into that a short review of the development of the diffraction theory

which led to the formulation of the Rayleigh-Sommerfeld theory is made.

Grimaldi was the first to properly describe the diffraction phenomenon in 1665 when

he observed the light passing through an obstacle and deviating from the rectilinear path.

This was reported in what we could consider the first textbook on optics Physicomathesis

de lumine coloribus et iride [4, 5].

Years later in 1690 C. Huygens, who was a contemporary to Newton, wrote a theorem

that went against Newton’s corpuscles theory, in it, he declared “each element of a wave-

front may be regarded as the center of a secondary disturbance which gives rise to spherical

wavelets; and that the position of the wave-front at any later time is the envelope of all

such wavelets” [4]. However, it would take more than 100 years until Huygens’s ideas were

retaken because the prestige and authority Newton had around that time would cause his
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theory of light to prevail for a whole century.

Through the years 1802-1804 Young and his experiments with light led him to propose

a boundary diffraction wave theory, that opposed the corpuscular theory. His Lectures on

Natural Philosophy (1897) discussed the double-slit experiment, where the concept of inter-

ference of light was discussed [6, 5].

Unfortunately, his ideas were not valued enough and were mostly ignored by the scientific

community. It would have to pass a decade for Fresnel to appear and challenge once again

the corpuscular theory. Fresnel discovered independently the principle of interference when

studying the diffraction pattern by a thin rod. A few years later, in 1818, he presented his

complete diffraction theory. The basic principles were [5]:

• The diffracting object is merely an obstruction.

• Light is composed of long trains of waves.

• The Huygens’ principle must be applied at each point of the wavefront.

• The interference principle must be applied to account for the light distribution as a

superposition of the disturbances originated at the wavefront.

The conjunction of Huygens and Fresnel ideas evolved into the Huygens-Fresnel principle, a

fundamental part of the diffraction theory [4].

The next year, Fresnel submitted his work for a contest at the Academy of Science of

France. However, the mathematician Poisson, who was part of the panel of judges and a

strong defender of Newton’s corpuscular theory, commented that Fresnel’s theory predicted

that a bright spot should be formed in the middle of the dark circular shadow after parallel

light has encountered a circular obstacle, which made no sense to Poisson. F. Arago, who

was also one of the judges and a good friend of Fresnel, performed the experiment and found

the bright spot, this diffraction pattern is now called either Poissons’ spot or Arago’s spot

[7].

Continuing with one of the most popular names that pop up when talking about diffrac-

tion. Joseph Fraunhofer was a manufacturing optician, who conducted experiments on

diffraction with the novelty of the usage of optical instruments. His investigations on this
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matter were reported in the years 1821 and 1822, and this class of diffraction phenomena

is nowadays named after him [5]. Also in 1821, he accidentally formed a diffraction grating

when studying a series of parallel slits. This optical structure had already been discovered

and described by Rittenhouse [8] in 1785, but it drew no attention [4].

In 1882, Kirchhoff gave mathematical formalism to the Huygens-Fresnel principle when

he derived an integral theorem that Helmholtz had previously obtained in acoustics, the

theory found the solution of the homogeneous wave equations at a point P by applying

Green’s theorem to a closed surface that surrounds this point P [4]. This solution takes the

name of Helmholtz-Kirchhoff theorem integral.

Additionally, Kirchhoff proposed boundary conditions to the aperture in a screen, he es-

tablished that the field and its normal derivative on the aperture are unaltered by it and that

the field on the opaque screen and elsewhere are equal to zero. These boundary conditions

and the Helmholtz-Kirchhoff theorem are the basis of Kirchhoff’s diffraction theory [3].

As we mentioned at the beginning diffraction problems tend to be difficult and require

rigorous mathematical approaches, which is why Sommerfeld’s work studying the diffraction

of a plane wave over a semi-infinite thin plane screen and obtaining the exact result is

noteworthy. After his results, other mathematicians performed variations of this problem

over the years 1899-1916 [9].

A few years later, Lord Rayleigh published “On the Passage of Waves through Apertures

in Plane Screens and Allied Problems”, where he discussed boundary value problems by

considering a circular aperture of radius 𝑎 ≤ 𝜆 or an extremely narrow slit so the effects of

the edge could not be ignored [10]. In that same paper, he derived the diffraction formula

that takes his name.

To obtain his diffraction integral Sommerfeld went on and proposed boundary conditions

different from Kirchhoff’s, he considered that either the field or its normal derivative is zero

on the screen and elsewhere, but not both. The combination of his boundary conditions

with the condition of radiation (in optics called Sommerfeld’s radiation condition) led to the

Rayleigh-Sommerfeld diffraction theory, which consists of two diffraction integrals where the

main difference between them lies on the inclination factor [11].

So far, it is clear it took centuries to arrive at the scalar diffraction theories we use
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nowadays, but ultimately each contribution was concerned with the study of the amplitude

distribution of the light after "breaking" around the border of an object, this simple fact is

often overlooked which leads to misinterpretations of results because the diffraction theories

are used without consideration of the conditions these theories were constructed on. Conse-

quently, we repeat ourselves, the analysis of the propagation of wave beams requires a strong

understanding of diffraction theories, and similarly, the study of wave beams has taken many

years to establish its basis. However up to date the theory that surrounds Bessel beams is

yet not fully understood as we will show next.

During the sixties, numerous studies about laser resonators were conducted. In 1961, Fox

and Li [12] simultaneously with Boyd and Gordon [13] showed the existence of modes in a

Fabry-Perot interferometer that acted as a resonator. The latter represented these modes in

terms of Hermite-Gaussian functions. Around the same time, the description of the modes

of optical resonators was expanded [14, 15].

While the concept of mode referred to field distributions that reproduced their phase and

transversal profile as they traveled inside a cavity [15], the concept of wave beams was

introduced by Goubau and Schwering [14], nowadays we know them as light beams, and in

general they refer to a field whose intensity distributions are concentrated near the axis of

propagation [16], in other words, these light beams are solutions to the paraxial Helmholtz

wave equation. One of the most well-known solutions is the Gaussian beam.

Thus, in the following years multiple studies about the Gaussian beam were conducted,

these works were concerned with its propagation through free space, lenslike media, and its

interaction with different optical structures [17, 18, 16].

Fast forwarding to 1987, a key year for this work, when Durin used the term “non-

diffracting” beam [19] when he proposed a solution to the Helmholtz equation in free-space,

his solution was composed of a plane wave propagating on the z -axis and a zeroth-order

Bessel function, the nowadays called Bessel beam. It is interesting to point out that in 1941

[20], this solution had already been discovered but it did not attract any attention.

Durin et.al. [19] showed that the intensity distribution of his solution did not depend on

the z variable, which translated to a light beam that was not subjected to the diffraction

effects. However, he commented that it would require an infinite amount of energy to be able



CHAPTER 1. INTRODUCTION 6

to create a Bessel beam, so he restricted to analyzing apertured Bessel beams and showed

that the Bessel beam intensity is invariant to propagation over a distance range 𝑍𝑚𝑎𝑥 that

depends on the aperture radius.

The same year that Durin introduced his “diffraction-free” beams, these were experimen-

tally demonstrated [21]. Attention was brought to the fact the Bessel beam was an exact and

nonsingular analytical solution to the Helmholtz equation for the free space case because for

the Bessel beam to be realizable in a real-life experiment an aperture of infinite dimensions

would have to be used, so their work aimed to investigate the behavior of a truncated Bessel

beam. They found that the Bessel beam after passing through an aperture retained its inten-

sity transverse distribution over a propagation distance much larger than the non-spreading

range of a Gaussian beam. These truncated Bessel beams are often referred to as realistic

or realizable in the laboratory this is due again to the idea that “ideal” Bessel beams are

endowed with infinite energy [19, 21].

In their early stage, Bessel beams were a mystery, so in the later years, many works tried

to explain their formation and their characteristics. Here we supply a few demonstrative

examples.

One of the first attempts to explain how a Bessel beam is formed can be found in ref.

[22], where the authors describe the Bessel beams of zeroth-order as the simplest solution

to the scalar wave equation in cylindrical coordinates by only considering the nonsingular

solution to the Bessel differential equation. Additionally, they provide two interpretations

of the zeroth-order Bessel beam formation, one based on the imaging of the interference of

the spherical waves emitted by a ring source, and the other is related to the interference

field produced by the spherical waves originating from the source at the image space aka

a secondary ring source (which is the Fourier spectrum of a Bessel function). However,

this interpretation lacks an extensive formalism to be considered a definite description of

the Bessel beams. Albeit it is noteworthy to point out they solved the Fresnel diffraction

integral and found an analytical expression for the amplitude of the truncated Bessel beam

at the focal plane with the clever use of the Lommer integral. Moreover, they wrote the

Fresnel integral into a power series to analyze what happens with the Bessel beam axial

intensity and concluded that the maximum is shifted with respect to the focal plane when
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the focal lens used has a pupil radius larger than the central spot of the input Bessel beam,

this last result lacks significance when we consider that for a pupil lens smaller than the

central spot we would have a plane wave passing through a circular aperture which results in

the well-known Airy pattern, whose peak intensity is found at the focal plane, consequently,

we can conclude the authors were unable to clarify why the shift in the axial intensity.

Another work regarding the focusing of a Bessel beam during those years was carried out

by Baida Lü et.al. [23], they also calculated the axial intensity of the focused beam by solving

analytically the Huygens-Fresnel diffraction integral and performed numerical calculations

of their results which showed a Bessel beam focused by a lens forms a ring structure at the

focal plane, this was expected and in accordance with the observed experimentally. The

noteworthy result of this work is the expression they provided for the shifted position of

the peak axial intensity with respect to the focal plane, that they derived with geometrical

optics, and agrees well with their numerical simulations. However, they failed to give a proper

explanation of this result, this shift of the position of maximum intensity with respect to

the focal plane is attributed to the diffraction effect known as focal shift. Further, they

mentioned that the focal shift would be zero for an unapertured Bessel beam propagating,

but this is obvious, the absence of a converging lens is equivalent to a 𝑓 → ∞ which is exactly

the same case presented in [19]. The other limiting case they presented, is for a Bessel beam

whose central spot is much larger than the lens diameter which leads to the same result in

ref. [22]. Once again, we notice that the lack of understanding not only of the nature of the

Bessel beams but of diffraction effects such as the focal shift leads to incomplete descriptions

of the properties of these beams. Another example of these efforts to explain the properties

of the Bessel beams can be found in ref. [24] where the self-healing feature of the Bessel

beams is explained through Babinet’s principle.

However, at the beginning of the ninety’s decade, a new analysis of the formation of

the Bessel beams was presented, one based on the superposition of conical traveling waves

[25]. This work showed that the second singular solution to the Bessel differential equation

(Neumann function) should not be ignored and gave a specific complex linear combination of

the two solutions to build the first and second Hankel functions. Furthermore, they provided

a clear explanation for the formation of Bessel beams, they stated these beams are formed by
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a longitudinal series of transverse standing waves created by the interference of the Hankel

waves. Additionally, a physical description indicated that the Hankel waves represented an

outgoing and incoming conical wave, both with respect to the propagation axis.

This interpretation of the Bessel beams demonstrated that these exist within a cone

shaped region and can be created with finite energy because these traveling-wave approach

is in agreement with the Sommerfeld’s radiation condition. Further, the dynamics of the

incoming and outgoing conical waves helped to understand some of the features of these

beams like the self-healing [26].

Despite the completeness of the conical-wave formalism and the posterior works analyz-

ing the focusing characteristics of Bessel beams [27, 28, 29, 30] based on it, to this day it

is common to find that in the literature Durin’s interpretation is still widely accepted and

therefore the “mythes” surrounding the Bessel beams such as the idea they require infinite

power to be created or that Bessel beam can not be focused prevail. Not only that, mis-

takes are made when studying the propagation of these beams, mistakes not related to their

nature but to the lack of understanding of the diffraction theory, as is the case of a work

published last year where the authors tried to find analytical solutions to the paraxial (Fres-

nel) and non-paraxial (Rayleigh-Sommerfeld) diffraction integrals for the Bessel beam case

in a homogenous and GRIN media [31].

For the paraxial case, they did not set limits, as is required by the diffraction theories,

and if attention is brought to the brief history review we presented at the beginning, in each

step of the development of the diffraction theories a key element has always been the aperture

(obstacle) that blocks the light field propagation. If we do not restrict our solutions of the

Helmholtz wave equation we are not talking about diffraction and the results we obtain will

be erroneous as is the ref case [31].

Moreover, when the authors analyzed the case of the nonparaxial case, the Rayleigh-

Sommerfeld equation they applied was this one

𝐸 (𝑟, 𝜑, 𝑧) =
(
−𝑖𝑘𝑧
2𝜋

)
exp(𝑖𝑘 𝜌)

𝜌2

∫ ∞

0

∫ 2𝜋

0
𝐸0(𝑟0, 𝜑0, 0)

× exp

{
𝑖𝑘

2𝜌

[
𝑟20 − 2𝑟0𝑟 cos(𝜑0 − 𝜑)

]}
𝑟𝑜𝑑𝑟0𝑑𝜑0
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where 𝜌 = 𝑧 + (𝑥2 + 𝑦2)/2𝑧. A simple revision of any optics textbook [4, 11] would show

us this equation is not the non-paraxial diffraction integral, therefore the result obtained is

incorrect. This is evident even if we ignore the method they used because for this case they

also did not apply limits and from our history review we know that the Rayleigh-Sommerfeld

solution is an exact solution to the Helmholtz equation, so their result should have been the

Bessel beam unaltered since no limits in the diffraction integral means the propagation is

done through free-space where mathematically the Bessel beam is invariant.

The examples presented here are evidence of the theoretical gaps that surround the Bessel

beams, and the flawed interpretations of the results as a consequence, thus it is desirable to

have a definite theory of these and expand on their focusing characteristics to prove these

beam-light structures can be focused.

The aim of this work is then to present an extensive and comprehensive review of the con-

cepts required to fully understand the nature of the Bessel beams and their focusing features,

among these concepts, we present a revision of the D’Alembert formula of the wave equations

and an exhaustive description of the diffraction theory and paraxial optical beams. All with

the purpose of proving the Bessel beams can be focused, and examining a focused apertured

Bessel beam with the use of two apodization functions: the Super-Gaussian beam and the

Flattened Gaussian beam, and simultaneously providing a complete 3D characterization of

the evolution of a focused Bessel beam based on a geometrical approach.

This work is structured in the following manner. In Chapter 2, we recall D’Alembert

solution to the wave equation, which is formed by the sum of two waves traveling in opposite

directions. Additionally to the cartesian coordinate system, the solution is derived for the

spherical and cylindrical coordinate systems, proving that the general solution to the wave

equation is the same for every case. Further, we make this result evident when we explain

the decomposition of any wave trajectory in fundamental plane waves.

Chapter 3 is addressed to show a particular solution to the wave equation is the harmonic

wave, one that, likewise, can be written in the three main coordinate systems. We examine

the relation the phase of the wavefunction has with the wavefront and attention is drawn to

the harmonic cylindrical wave solution for the case of a wavefunction with dependence on

the radial and z coordinates, whose wavefronts behave as two traveling conical functions.
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The work continues in Chapter 4 by exploring the fundamental scalar diffraction theories,

the first section considers the Rayleigh-Sommerfeld diffraction integral, their mathematical

derivation, and the necessary conditions for their existence, among these we have the Som-

merfeld’s radiation condition, which explains that in order for the diffracted field to exist no

sources from infinite should be considered. Moreover, we show how the Fresnel diffraction

integral is an approximation of the RS integral formula and as such, the same conditions

apply to it which is often ignored in literature. The most striking result of this section is the

clarification it does about the diffraction phenomenon, by recalling that ultimately diffrac-

tion is produced by an element that modifies the amplitude or phase of the wave propagating,

the elements include but are not limited to apertures and obstacles, and as such, transverse

limits are required when studying the propagation of wave fields through an optical system.

The second part of this chapter involves the mathematical procedure performed to obtain the

paraxial Helmholtz wave equation and two of the most well-known solutions, the Gaussian

beam and the Laguerre-Gaussian beam. At the end, we discuss the validity of the paraxial

approximation and acknowledge the inconsistencies these approximations can cause.

The last chapter investigates the focusing characteristics of Gaussian beams and Bessel

beams. Here one of the main features of a diffracted wavefield is introduced, the focal shift.

We give a detailed explanation of this effect and an illustrative example to explain this shift

of the position of maximum intensity with respect to the focal plane is due to the diffraction

produced by an aperture (or obstacle) and that the point of maximum intensity reached by

the Bessel beam during propagation is not related to it. The second half of the chapter studies

in great detail the conical-wave formalism of the Bessel beam [25], this approach is used to

characterize the focused Bessel beam, i.e. the Bessel beam propagation is described through

its longitudinal axial intensity behavior and its transversal profile evolution through the

propagation axis, which explains that due to Bessel beams being formed by the interference

of traveling conical waves, its focusing characteristics are different from the other beams like

Gaussian beams, but nevertheless they can be focused as well.

Then, two apodization functions are presented, the Super Gaussian beam and the Flat-

tened Gaussian beam, these functions smooth the oscillations of the intensity on axis of the

propagating beam and prove once again that a Bessel beam can be focused. For this part,
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we employ Parseval’s theorem to ensure energy conservation when assigning the values of

the parameters of the two apodization functions, however, the energy loss is unavoidable

due to diffraction effects that we explain in detail. Nevertheless, the Super Gaussian func-

tion provides results closer to the ones obtained when working with an apertured Bessel

beam while at the same time reducing the contrast of the oscillations. But the Flattened

Gaussian beam demonstrates that the smaller the focal length considered, the smaller the

oscillations obtained for some cases. Finally, we obtain two expressions for the evolution of

the Bessel beam passing through a lens using a geometrical optics approach and characterize

the focusing characteristics, moreover these expressions obtained are written in controllable

parameters and as such they could be of aid in experiments.

At the end of the work, a short discussion of the results is given.



Chapter 2

Propagating Electromagnetic Waves

The basis for any study about light waves is the wave equation, and as such this chapter is

focused on deriving the general solutions to it in three coordinate systems.

2.1 The Wave Equation

Maxwell’s equations in matter describe the state of free electric charges and currents, as

well as electric and magnetic dipoles, that exist within the medium, and to achieve this the

appropriate constitutive equations are required. These constitutive equations, D and B,

encapsulate the character of the medium [32].

D = 𝜖0E + P (2.1)

B = 𝜇0H + 𝜇0M (2.2)

The electric displacement D, describes the response of the free charges and the bound charges

to the electric field, and its relationship with the electric field E depends on the electric

properties of the medium which are characterized by the polarization density P. Similarly,

the equation that relates the magnetic induction B and the magnetic field H describes the

magnetic properties of the medium characterized by the magnetization density M [33].

12
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Taking into consideration these relations Maxwell’s equations read:

∇ × E = −𝜕B
𝜕𝑡

(2.3)

∇ ×H =
𝜕D

𝜕𝑡
+ J (2.4)

∇ · D = 𝜌 𝑓 (2.5)

∇ · B = 0 (2.6)

where J is the current equation described by Ohm’s Law and 𝜌 𝑓 is the volume density of

the electric free charge.

Based on the previous equations and considering nonmagnetic media, i.e. M is zero, the

equation for the electric field E can be obtained by taking the curl of Eq. (2.3) and the time

derivative of Eq. (2.4) using the fact that the order of differentiation with respect to time

or space can be reversed [34].

∇ × (∇ × E) = ∇ × [−𝜕B
𝜕𝑡

] = − 𝜕
𝜕𝑡

(∇ × B) = −𝜇0
𝜕

𝜕𝑡
(∇ ×H) (2.7)

𝜕

𝜕𝑡
(∇ ×H) = 𝜕

𝜕𝑡

[
𝜕D

𝜕𝑡
+ J

]
=
𝜕

𝜕𝑡

[
𝜖0
𝜕E

𝜕𝑡
+ 𝜕P
𝜕𝑡

+ J

]
(2.8)

By substituting Eq. (2.8) into (2.7) we obtain

∇ × (∇ × E) − 𝜖0
𝜕2E

𝜕𝑡2
=
𝜕

𝜕𝑡

[
𝜕P

𝜕𝑡
+ J

]
(2.9)

The previous equation can be modified depending on the characteristics of the medium. The

terms on the right are source terms that depend on the presence of polarization charges and

currents. Now in the very specific case of a source-free medium, that is it contains no charges

or currents, Maxwell’s equations read as:

∇ × E = −𝜕B
𝜕𝑡

(2.10)

∇ ×H =
𝜕D

𝜕𝑡
(2.11)



CHAPTER 2. PROPAGATING ELECTROMAGNETIC WAVES 14

∇ · D = 0 (2.12)

∇ · B = 0 (2.13)

With D = 𝜖E and B = 𝜇H, where the scalar quantity 𝜖 = 𝜖0(1+𝜒) is the electric permittivity

of the medium and 𝜇 is the magnetic permeability of the medium.

For this kind of medium Eq.(2.9) transforms into

∇ × (∇ × E) − 𝜖0
𝜕2E

𝜕𝑡2
= 0 (2.14)

and using the vector identity

∇ × (∇ × V) = ∇(∇ · V) − ∇2V (2.15)

alongside with Eq.(2.12), we obtain the wave equation

∇2E =
1

𝑣2

𝜕2E

𝜕𝑡2
(2.16)

where

𝑣 =
1

√
𝜖 𝜇

(2.17)

Eq. (2.17) is the speed of light of the electric field propagating in the medium.

If we follow similar steps but this time taking the curl of Eq. (2.4) and the time derivative

of Eq. (2.3)

∇ × (∇ ×H) = ∇ × [𝜕D
𝜕𝑡

+ J] = 𝜕

𝜕𝑡
(∇ ×D) + ∇ × J

= 𝜖0
𝜕

𝜕𝑡
(∇ × E) + ∇ ×

[
𝜕P

𝜕𝑡
+ J

] (2.18)

𝜕

𝜕𝑡
(∇ × E) = 𝜕

𝜕𝑡

[
−𝜕B
𝜕𝑡

]
= −𝜕

2B

𝜕𝑡2
(2.19)

and once again substituting one equation into the other we obtain

∇ × (∇ × B) + 𝜖0𝜇0
𝜕2B

𝜕𝑡2
= 𝜇0∇ ×

[
𝜕P

𝜕𝑡
+ J

]
(2.20)
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And if once more we consider a medium for which Maxwell’s equations are reduced to Eq.

(2.10)-(2.13) the Eq. (2.20) transforms into

∇2B =
1

𝑣2

𝜕2B

𝜕𝑡2
(2.21)

Notice that a similar wave equation to Eq. (2.16) is obtained for the magnetic induction B.

Let us now find a general solution for the wave equation Eq.(2.16). First, we consider a

wavefunction in the form [35]

E = E(r · û, 𝑡) (2.22)

where û is a unit vector with a fixed direction.

Notice that at a given position r(x,y,z) the scalar product from Eq.(2.22) reads as:

r · û = 𝑥𝑢𝑥 + 𝑦𝑢𝑦 + 𝑧𝑢𝑧 (2.23)

by definition, it represents the product of the projection of r along the direction of û.

We can write the dot product as

r · û = 𝑠 (2.24)

where s describes a trajectory, because, for each point laying on the trajectory, we have a

vector r and û whose dot product is equal to a constant and so all these constant make up

the complete trajectory.

It is easy to see that Eq.(2.22) represents a plane wave since at each instant of time the

field is constant over each of the planes perpendicular to û.

Next, applying the chain rule we can obtain the following relations [35]

𝜕
𝜕𝑥

= 𝑢𝑥
𝜕
𝜕𝑠
, 𝜕

𝜕𝑦
= 𝑢𝑦

𝜕
𝜕𝑠
, 𝜕

𝜕𝑧
= 𝑢𝑧

𝜕
𝜕𝑠

(2.25)

thus

∇2E =
𝜕2E
𝜕𝑥2

+ 𝜕
2E
𝜕𝑦2

+ 𝜕
2E
𝜕𝑧2

= (𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧 )
𝜕2E
𝜕𝑠2

∇2E =
𝜕2E
𝜕𝑠2

(2.26)
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Substituting this differential equation into Eq. (2.16) it can be rewritten as a one-dimensional

partial differential equation, i.e.
𝜕2E
𝜕𝑡2

− 𝑣2 𝜕
2E
𝜕𝑠2

= 0 (2.27)

To solve Eq.(2.27) we define the new variables 𝜉 and 𝜂

𝜉 = 𝑠 − 𝑣𝑡

𝜂 = 𝑠 + 𝑡
(2.28)

Then by the chain rule, we obtain

𝜕2E
𝜕𝑠2

=
𝜕2E
𝜕𝜉2

+ 2
𝜕2E
𝜕𝜉𝜕𝜂

+ 𝜕
2E
𝜕𝜂2

(2.29)

𝜕2E
𝜕𝑡2

= 𝑣2
[
𝜕2E
𝜕𝜉2

− 2
𝜕2E
𝜕𝜉𝜕𝜂

+ 𝜕
2E
𝜕𝜂2

]
(2.30)

Thus, the partial differential equation (2.27) is transformed into

−4𝑣2 𝜕
2E

𝜕𝜉𝜕𝜂
= 0 (2.31)

Since the velocity can’t be zero, the previous equation is reduced to

𝜕2E
𝜕𝜉𝜕𝜂

= 0 (2.32)

To solve this partial differential equation we integrate first with respect to 𝜉 and then with

respect to 𝜂 ∫
𝜕2E

𝜕𝜖𝜕𝜂
𝑑𝜖 = 𝑔(𝜂)

⇒
∫

𝜕E

𝜕𝜂
𝑑𝜂 =

∫
𝑔(𝜂)𝑑𝜂 + E2(𝜖) = E1(𝜂) + E2(𝜖)

which gives as result

E(r, 𝑡) = E1(𝜂) + E2(𝜖) (2.33)

where E1 and E2 are any twice differentiable functions.



CHAPTER 2. PROPAGATING ELECTROMAGNETIC WAVES 17

Figure 2.1: Graphic representation of an arbitrary trajectory s and its decom-
position into plane waves.

Going back to the original variables the solution takes the form

E(r, 𝑡) = E1(r · û − 𝑣𝑡) + E2(r · û + 𝑣𝑡) (2.34)

Hence, the solution to Eq. (2.16) is the sum of two arbitrary functions that represent

traveling waves in opposite directions. This solution was found by d’Alembert in 1747 [36].



CHAPTER 2. PROPAGATING ELECTROMAGNETIC WAVES 18

What makes this result so relevant is the fact that so far we have not made assumptions

about the direction of the unitary vector û, and the vectorial format of Eq. (2.26) allows us

to see the traveling-wave nature of the wavefunction in any trajectory s. Moreover, notice

that it is possible to find a reference frame in which locally and instantly the field can be

approximated by a plane traveling wave. In Figure (2.1) we illustrate this, the red line in

the diagram at the middle represents a trajectory S. For each point over this trajectory, we

can make a change of the variables and by doing so we are "changing" the reference frame

to one where the angle between the propagation axis and the perpendicular plane to this

point is zero, this procedure can be repeated for any trajectory and thus the solution found

in Eq.(2.34) is valid consistently.

This last part is further proved in the next subsections, where it is show that Eq. (2.34)

can be used to represent traveling waves in different geometries.

2.1.1 Wave Equation in Spherical Coordinates

For the case of the wave equation in spherical coordinates, we remember the definition of

the Laplacian in spherical coordinates.

∇2E =
1

𝑟2

𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
E + 1

𝑟2 sin 𝜗

𝜕

𝜕𝜗

(
sin 𝜗

𝜕E
𝜕𝜗

)
+ 1

𝑟2 sin2 𝜗

𝜕2E
𝜕𝜑2

(2.35)

With a little mathematical manipulation, it can be rewritten as:

∇2E =
1

𝑟

𝜕2

𝜕𝑟2
(𝑟E) + 1

𝑟2 sin 𝜗

𝜕

𝜕𝜗

(
sin 𝜗

𝜕E
𝜕𝜗

)
+ 1

𝑟2 sin2 𝜗

𝜕2E
𝜕𝜑2

(2.36)

If we consider only radially symmetric solutions the Laplacian is reduced to

∇2E =
1

𝑟

𝜕2

𝜕𝑟2
(𝑟E) (2.37)

so the wave equation of Eq. (2.16) takes the form [35]

1

𝑟

𝜕2

𝜕𝑟2
(𝑟E) − 1

𝑣2

𝜕2E
𝜕𝑡2

= 0
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𝜕2

𝜕𝑟2
(𝑟E) − 1

𝑣2

𝜕2

𝜕𝑡2
(𝑟E) = 0 (2.38)

Replacing the variable r by 𝜌 and rE by E
′ the Eq. (2.38) reads

𝜕2E
′

𝜕𝜌2
− 1

𝑣2

𝜕2E
′

𝜕𝑡2
= 0 (2.39)

we can notice this is essentially the same partial differential equation obtained in Section 2.1

so its solution must be similar

E(𝑟, 𝑡) =
E

′

1(𝑟 − 𝑣𝑡)
𝑟

+
E

′

2(𝑟 + 𝑣𝑡)
𝑟

(2.40)

Eq. (2.40) is the sum of two arbitrary functions E
′

1 and E
′

2 that represent two traveling

waves in opposite directions with the difference that in this case, these traveling waves are

spherical waves, one diverging from the origin and the other converging towards the origin,

both propagating with a velocity v.

2.1.2 Wave Equation in Cylindrical Coordinates

For the case of the wave equation in cylindrical coordinates, we are unable to find two

arbitrary functions as an exact solution so instead we use a different approach to find a

solution, more specifically we use the method of separation of variables. But first, we define

the Laplacian in cylindrical coordinates as

∇2E =
1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕E
𝜕𝑟

)
+ 1

𝑟2

𝜕2E
𝜕𝜑2

+ 𝜕
2E
𝜕𝑧2

(2.41)

where 𝑥 = 𝑟 cos 𝜑, 𝑥 = 𝑟 sin 𝜑 and 𝑧 = 𝑧.

Once again we suppose a case with a wavefunction with radial symmetry so the wavefront

represents a circular cylinder centered on the z -axis and having infinite length.

Thus, the wave equation reads as

1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕E
𝜕𝑟

)
− 1

𝑣2

𝜕2E
𝜕𝑡2

= 0 (2.42)
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To separate the spatial and time variables we suppose a solution of the form

E(𝑟, 𝑡) = 𝑅(𝑟)𝑇 (𝑡)ê (2.43)

where ê represents an unitary vector in the direction of E.

Substituting it into Eq.(2.42) we obtain

𝑇 (𝑡)
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑅(𝑟)
𝜕𝑟

)
− 𝑅(𝑟)

𝑣2

𝜕2𝑇 (𝑡)
𝜕𝑡2

= 0 (2.44)

diving by 𝑅(𝑟)𝑇 (𝑡) and multiplying by 𝑣2

𝑣2

𝑅(𝑟)𝑟
𝜕

𝜕𝑟

(
𝑟
𝜕𝑅(𝑟)
𝜕𝑟

)
− 1

𝑇 (𝑡)
𝜕2𝑇 (𝑡)
𝜕𝑡2

= 0 (2.45)

So the equality holds the term dependent on r and the one on t must be both equal to the

same constant, that we conveniently make 𝜔2

1

𝑇 (𝑡)
𝜕2𝑇 (𝑡)
𝜕𝑡2

= −𝜔2 (2.46)

𝑣2

𝑅(𝑟)𝑟
𝜕

𝜕𝑟

(
𝑟
𝜕𝑅(𝑟)
𝜕𝑟

)
= −𝜔2 (2.47)

Solving Eq. (2.46) we obtain

𝑇 (𝑡) = 𝐴exp(−𝑖𝜔𝑡) (2.48)

Mathematically manipulating the Eq. (2.47) and remembering 𝑘 = 𝜔/𝑣 leads to

1

𝑅(𝑟)𝑟
𝜕

𝜕𝑟

(
𝑟
𝜕𝑅(𝑟)
𝜕𝑟

)
= −𝑘2 (2.49)

1

𝑅(𝑟)𝑟

(
𝜕𝑅(𝑟)
𝜕𝑟

+ 𝑟 𝜕
2𝑅(𝑟)
𝜕𝑟2

)
− 𝑘2 = 0 (2.50)

𝑟

(
𝜕𝑅(𝑟)
𝜕𝑟

+ 𝑟 𝜕
2𝑅(𝑟)
𝜕𝑟2

)
− 𝑟2𝑘2𝑅(𝑟) = 0 (2.51)
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we obtain the well-known Bessel equation whose general solution is the Hankel functions

𝑅(𝑟) = 𝐵𝐽0(𝑘𝑟) ± 𝑖𝐶𝑁0(𝑘𝑟) (2.52)

were 𝐽0 and 𝑁0 are the Bessel function of the first kind and the Neumann function (or

Bessel function of the second kind) respectively, and B and C are constants. So using the

asymptotic representations [37] of both functions and making 𝐵 = 𝐶 = 𝐷, where D is a

constant, we can approximate the general solution as

𝑅(𝑟) ≈ 𝐷
√︂

2

𝜋𝑟
exp(±𝑖𝑘𝑟) (2.53)

rewriting the last equation with the constant 𝐴′ =
√︁
2/𝜋 we have

𝑅(𝑟) ≈ 𝐴
′
(
exp(𝑖𝑘𝑟)

√
𝑟

+ exp(−𝑖𝑘𝑟)
√
𝑟

)
(2.54)

Finally, putting together Eq.(2.48) and (2.54) we get the solution of the wave equation in

cylindrical coordinates Eq. (2.42).

E(𝑟, 𝑡) ≈ 𝐴
′
(
exp[𝑖(𝑘𝑟 − 𝜔𝑡)]

√
𝑟

+ exp[𝑖(−𝑘𝑟 − 𝜔𝑡)]
√
𝑟

)
(2.55)

E(𝑟, 𝑡) ≈ 𝐴
′
(
exp[𝑖𝑘 (𝑟 − 𝑣𝑡)]

√
𝑟

+ exp[−𝑖𝑘 (𝑟 + 𝑣𝑡)]
√
𝑟

)
(2.56)

This solution represents the sum of cylindrical waves traveling at velocity v in opposite

directions.

We conclude the general solution of the wave equation (Eq.(2.16)) is formed by the sum

of two waves traveling in opposite directions regardless of the coordinate system we work on.

Next chapter, we analyze a particular solution of the wave equation.



Chapter 3

Harmonic Electromagnetic Waves in

Open Free Space

In this chapter we study the propagation of light in open free space, that is, no transverse

limitations in space are considered.

3.1 Helmholtz Equation and some fundamental solutions.

A particular solution of the wave equation Eq. (2.16) is a plane harmonic wave provided

that 𝑣 = 𝑤/𝑘. This particular solution can be written as a complex exponential expression

[38].

E(r, 𝑡) = E(r)exp(−𝑖𝜔𝑡) (3.1)

In this form, this equation receives the name of the complex wavefunction. The space-

dependent part E(r) is the complex amplitude of the wave.

Some other special harmonic waves are the spherical waves and the cylindrical waves, the

main difference between these types depends on the spatial coordinates used to represent

the complex amplitude [39].

Before going further into the particulars of these fundamental solutions it is worth men-

tioning that the complex amplitude can be written as E(r) = A(r)exp[𝑖𝑊 (r)], where A(r)

is an amplitude function and the argument of the exponential represent the wavefront. It

22
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makes sense to generalize the complex amplitude of the harmonic wave this way when we

remember that by definition the wavefront is a surface of constant phase, i.e. the phase

of the wavefunction gives us the shape of the wavefront. For a planar wave, the phase is

uniform in a plane orthogonal to the propagation direction, meanwhile, for a spherical wave,

the phase varies quadratically (in the paraxial regime) with transverse displacement from

the propagation axis [40], these examples will be clearer in the next subsections.

Now by substituting Eq. (3.1) into the wave equation Eq. (2.16) we obtain an equation

for the complex amplitude called the Helmholtz equation.

∇2E + 𝑘2E = 0 (3.2)

where k is the wavenumber. In the following subsections we present solutions to this equation

in three coordinate systems.

3.1.1 Harmonic Plane Waves

The simplest solution of the Helmholtz equation Eq. (3.2) is found in Cartesian coordinates

[33]

E(r) = Aexp(𝑖k · r) (3.3)

where A is the complex amplitude and k = 𝑘û = (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) where û is an unitary vector and

k is the magnitude of the wavevector which means 𝑘2 = 𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 . It is straightforward to

see that in this case, the phase of the wave is the plane equation.

k · r = 𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧 = constant (3.4)

This equation represents planes perpendicular to the wavevector k, so the wavefronts are

planar. Thus, with this complex amplitude, the harmonic plane wave solution takes the form

of

E(r, 𝑡) = Aexp[−𝑖𝑘 (û · r + 𝜔𝑡)] (3.5)
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which represents a traveling plane wave in the direction of the wavevector. But last chapter

we verified that the general solution of the wave equation in any coordinate system is of

the form Eq. (2.34), which translated to the harmonic plane wave solution tells us that the

particular solution of the Helmholtz equation, and therefore to the wave equation, is actually

of the form

E(r, 𝑡) = Aexp[−𝑖𝑘 (û · r + 𝜔𝑡)] + Bexp[−𝑖𝑘 (û · r − 𝜔𝑡)] (3.6)

In short, the general solution of the three-dimensional Helmholtz equation in cartesian co-

ordinates is the sum of two plane harmonic waves traveling in opposite directions.

So we have just established that the harmonic wave is a solution of the Helmholtz equa-

tion, one kind of harmonic wave is the one just described, the plane wave, but another kind,

it is the spherical wave or cylindrical wave, these kinds of waves can be constructed from the

superposition of planar waves propagating at different angles, as we explained in Chapter 1

with the Fig. 2.1.

This decomposition into plane waves that we can make for any wave resides in the fact

that a generalized coordinate system consists of a family of three surfaces whose equations

in terms of the Cartesian coordinates are 𝜀1(𝑥, 𝑦, 𝑧) = constant, 𝜀2(𝑥, 𝑦, 𝑧) = constant and

𝜀3(𝑥, 𝑦, 𝑧) = constant. The points of intersection of these surfaces are the coordinates points,

and in each point for orthogonal systems, there are three mutually perpendicular unit vectors

û1, û2 and û3 which are used to describe the wavefunction. In Cartesian coordinates, it is

easy to see that the three mutually perpendicular surfaces are the planes: 𝑥 = constant,

𝑦 = constant and 𝑧 = constant [41], which from what we have learned so far represent

the wavefront shape of the harmonic plane wave (Eq.(3.6)), this last part is obvious to

see. However, it is not as simple to identify these surfaces, and therefore the shape of the

wavefronts, in other coordinate systems so we shall discuss some characteristics of the most

used orthogonal coordinates in a real 3-dimensional space.

3.1.2 Harmonic Spherical Waves

For the case of spherical polar coordinates, the three mutually perpendicular surfaces of

constant coordinate are [42]:
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(a) Concentric sphere (b) Right circular cone

(c) Half-disc

Figure 3.1: Spherical coordinates surfaces

(1) a concentric sphere of radius r centered at the origin

𝑟 = (𝑥2 + 𝑦2 + 𝑧2) 12 = constant (3.7)

0 ≤ 𝑟 ≤ ∞ (3.8)

(2) a circular cone of opening angle 𝜃 with respect to z and centered in the origin

𝜃 = arccos
( 𝑧
𝑟

)
= constant (3.9)

0 ≤ 𝜃 ≤ 𝜋 (3.10)

(3) a plane half disc through the z (polar) axis at an angle 𝜑 measured from the x



CHAPTER 3. HARMONIC EM WAVES IN OPEN FREE SPACE 26

direction

𝜑 = arctan
( 𝑦
𝑥

)
= constant (3.11)

0 ≤ 𝜑 ≤ 2𝜋 (3.12)

the intersection of these three planes describes any point r of this coordinate system. Each

surface is illustrated in Figure 3.1.

In subsection 2.1.1 we established that the general solution for the wave equation in

spherical coordinates is the sum of two spherical waves thus a particular solution would be

𝐸 (𝑟, 𝑡) = 𝐴
(
exp[𝑖(𝑘𝑟 − 𝜔𝑡)]

𝑟
+ exp[𝑖(−𝑘𝑟 − 𝜔𝑡)]

𝑟

)
(3.13)

which represents two spherical harmonic waves, one diverging from the origin and the other

converging into it, this is now better understood from Figure 3.1a, because the phase from

both traveling waves in Eq.(3.13), excluding the temporal part, depends only on the radial

coordinate which is equivalent to having a spherical wavefront.

3.1.3 Harmonic Cylindrical Waves

In the case of circular cylindrical coordinates the three surfaces are [43]:

(1) a right-circular cylinder with the z -axis as the common axis

𝑟 = (𝑥2 + 𝑦2) 12 = constant (3.14)

0 ≤ 𝑟 ≤ ∞ (3.15)

(2) a half-plane through the z -axis at an angle 𝜑 measured from the x direction

𝜑 = arctan
( 𝑦
𝑥

)
= constant (3.16)

0 ≤ 𝜑 ≤ 2𝜋 (3.17)
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(a) Right-circular cylinder (b) Half-plane

(c) Plane parallel to the x -y plane

Figure 3.2: Cylindrical coordinates surfaces

(3) a plane parallel to the x -y plane, as in the Cartesian system

𝑧 = 𝑧 (3.18)

−∞ ≤ 𝑧 ≤ ∞ (3.19)

and analogously to spherical coordinates, the point of intersection of these planes describes

each point of this coordinate system. Each surface is illustrated in Figure 3.2.

The relation the phase has with the shape of the surface with which the wave propagates

in space will be relevant in Chapter 5, when we describe the wavefronts that lead to the

formation of the Bessel beams, for now, we limit to showing the surfaces of constant phase

we obtain by mixing the coordinates of the cylindrical system.

If we consider the phase is written in terms of the three coordinates, i.e. the phase takes

the form exp
[
−𝑖Φ𝑟𝑧𝜑 (𝑟, 𝑧, 𝑚)

]
where Φ𝑟𝑧𝜑 (𝑟, 𝑧, 𝑚) = 𝑘𝑟𝑟 + 𝑘𝑧𝑧 + 𝑚𝜑 then the wavefront is
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(a) Phase Φ𝑟 𝑧𝜑 (𝑟, 𝑧, 𝑚) = 𝑘𝑟𝑟 + 𝑘𝑧𝑧 + 𝑚𝜑. (b) Phase Φ𝑟 𝜑.

(c) Phase Φ𝑟 𝑧. (d) Phase Φ𝜑𝑧 .

Figure 3.3: Wavefronts result of the mixing of the cylindrical coordinates in the
phase of the wave.

approximated to spiraling cones (Figure 3.3a). But if the phase only depends on the radial

and azimuthal coordinates (Φ𝑟𝜑) then the wavefront resembles a wrapped tortilla (Figure

3.3b), while if it depends on the radial r and z coordinate (Φ𝑟𝑧) the wavefront will take the

form of an up and down cone (Figure 3.3c), and for a dependency on the azimuthal 𝜑 and z

coordinate (Φ𝜑𝑧) the wavefront looks like a spiraling ramp (Figure 3.3d).

Now, for the cylindrical coordinate system in subsection 2.1.2 we obtained Eq.(2.56),

which analogously to the plane and spherical coordinate case represents the sum of two

coaxial circular cylinders filling all space and traveling toward or away from an infinite

source [44] (see Figure 3.2a). But with what we have learned so far we can consider a more

general case, one with a wavefunction whose wavefront is written in terms of the radial r
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and z coordinate. For this case, the wave equation reads as

1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕E
𝜕𝑟

)
+ 𝜕

2E
𝜕𝑧2

− 1

𝑣2

𝜕2E
𝜕𝑡2

= 0 (3.20)

To separate the spatial and time variables we suppose a solution of the form

E(𝑟, 𝑡) = 𝑅(𝑟)𝑍 (𝑧)𝑇 (𝑡)ê (3.21)

where ê represents an unitary vector in the direction of E.

Substituting it into Eq.(3.20) we obtain

𝑇 (𝑡)
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑅(𝑟)
𝜕𝑟

)
+ 𝑅(𝑟)𝑇 (𝑧) 𝜕

2𝑍 (𝑧)
𝜕𝑧2

− 𝑅(𝑟)
𝑣2

𝜕2𝑇 (𝑡)
𝜕𝑡2

= 0 (3.22)

diving by 𝑅(𝑟)𝑇 (𝑡)𝑍 (𝑡) and multiplying by 𝑣2

𝑣2

𝑅(𝑟)𝑟
𝜕

𝜕𝑟

(
𝑟
𝜕𝑅(𝑟)
𝜕𝑟

)
+ 𝑣2

𝑍 (𝑧)
𝜕2𝑍 (𝑧)
𝜕𝑧2

− 1

𝑇 (𝑡)
𝜕2𝑇 (𝑡)
𝜕𝑡2

= 0 (3.23)

for this equality to hold, the spatial and temporal term must be both equal to the same

constant, that we conveniently make 𝜔2

1

𝑇 (𝑡)
𝜕2𝑇 (𝑡)
𝜕𝑡2

= −𝜔2 (3.24)

𝑣2

𝑅(𝑟)𝑟
𝜕

𝜕𝑟

(
𝑟
𝜕𝑅(𝑟)
𝜕𝑟

)
+ 𝑣2

𝑍 (𝑧)
𝜕2𝑍 (𝑧)
𝜕𝑧2

= −𝜔2 (3.25)

Solving Eq. (3.24) we obtain

𝑇 (𝑡) = 𝐴exp(−𝑖𝜔𝑡) (3.26)

Mathematically manipulating Eq. (3.25) and remembering that 𝑘 = 𝜔/𝑣

1

𝑅(𝑟)𝑟
𝜕

𝜕𝑟

(
𝑟
𝜕𝑅(𝑟)
𝜕𝑟

)
+ 𝑣2

𝑍 (𝑧)
𝜕2𝑍 (𝑧)
𝜕𝑧2

= −𝑘2 (3.27)

Now, we repeat the mathematical procedure of splitting and equating the differential equa-

tion to a constant, but for this case, we conveniently rewrite k as 𝑘2 = 𝑘2𝑟 + 𝑘2𝑧 , so we
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have
1

𝑅(𝑟)𝑟

(
𝜕𝑅(𝑟)
𝜕𝑟

+ 𝑟 𝜕
2𝑅(𝑟)
𝜕𝑟2

)
+ 𝑘2𝑟 = 0 (3.28)

1

𝑍 (𝑧)
𝜕2𝑍 (𝑧)
𝜕𝑧2

+ 𝑘2𝑧 = 0 (3.29)

It is clear to notice Eq. (3.29) is the same as Eq.(3.24) thus the result is the same

𝑍 (𝑧) = 𝐴′exp(−𝑖𝑘𝑧𝑧) (3.30)

In the case of Eq.(3.28), we rewrite it in the following form

𝑟

(
𝜕𝑅(𝑟)
𝜕𝑟

+ 𝑟 𝜕
2𝑅(𝑟)
𝜕𝑟2

)
+ 𝑟2𝑘2𝑟 𝑅(𝑟) = 0 (3.31)

and we obtain the well-known Bessel equation whose general solution is the Hankel functions

𝑅(𝑟) = 𝐵𝐽0(𝑘𝑟𝑟) ± 𝑖𝐶𝑁0(𝑘𝑟𝑟) (3.32)

were 𝐽0 and 𝑁0 are the Bessel function of the first kind and the Neumann function (or

Bessel function of the second kind) respectively, and B and C are constants. And similar

to what we did in Section 2.1.2 we use the asymptotic representations of both functions and

approximate the general solution as

𝑅(𝑟) ≈ 𝐷
(
exp(𝑖𝑘𝑟𝑟)√

𝑟
+ exp(−𝑖𝑘𝑟𝑟)√

𝑟

)
(3.33)

where 𝐷 =
√︁
2/𝑖𝜋.

Finally putting together Eqs.(3.26), (3.30) and (3.33) we get the solution of the wave

equation in cylindrical coordinates Eq. (3.20) as

E(𝑟, 𝑡) ≈ 𝐴
′
(
exp[𝑖(𝑘𝑟𝑟 + 𝑘𝑧𝑧 − 𝜔𝑡)]√

𝑟
+ exp[𝑖(−𝑘𝑟𝑟 − 𝑘𝑧𝑧 − 𝜔𝑡)]√

𝑟

)
(3.34)

Notice the phase depends on the coordinates r and z, and from Fig.3.3c, we know the

wavefront will then take the form of a cone, moreover the temporal part of the phase tells
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us we have two conical wavefronts are traveling in opposite directions. This result will be

expanded on in Chapter 5.

Now we can have a better visualization of the wavefronts of the harmonic traveling waves

solutions to the Helmholtz equation in other coordinate systems which as we mentioned in

Chapter 1 will come in hand later.



Chapter 4

Origin of diffraction and Paraxial

Approximation.

As we mentioned at the beginning of this work, we cannot talk about the propagation of

light without talking about diffraction which is why this chapter is a revisitation of the scalar

diffraction theory and the paraxial optical beams.

4.1 Rayleigh-Sommerfeld Diffraction Theory

The last two chapters have revolved around solving the Helmholtz equation by finding fun-

damental solutions like harmonic waves in different coordinate systems and while it was not

explicitly stated we have been considering initial boundary conditions at infinity. In this

section we will focus on the solution when we apply finite initial boundary conditions, this

is done through the use of integral mathematical methods. The initial boundary condi-

tions represent an aperture (or obstacle), an element essential to talk about diffraction as

we will see in this chapter consequently before proceeding further, it seems wise to give a

classification of the kind of apertures based on their transmissivity profile of light.

Apertures can be hard or soft ones, the first one refers to those that either fully transmit or

fully block the light, examples of these are the binary apertures such as the circular aperture.

The second kind is the type where the transition of light has a gradual spatial variation;

an example is a Gaussian aperture where a Gaussian function describes the transmissivity

32
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profile. Soft apertures can help to avoid or mitigate the effects of diffraction [45]. Another

classification for apertures refers to their geometric borders, these can be finite or semi-

infinite, the latter refers to apertures that are open from one side. For the rest of the chapter

and in the next ones we will focus only on finite apertures.

Now that we have established the aperture as the starting point to delve into the diffrac-

tion subject, it is understandable we will require the Green Theorem to build the diffraction

theory because this theorem tells us:

Let E(P) and G(P) be any two complex-valued functions of position evaluated on the

point P, and let S be a closed surface surrounding a volume V. If E, G, and their first and

second partial derivatives are single-valued and continuous within and on S, then we have

[46] ∭
𝑉 ′

(
𝐸∇2𝐺 − 𝐺∇2𝐸

)
𝑑𝑣 =

∬
𝑆′

(
𝐸
𝜕𝐺

𝜕𝑛
− 𝐺 𝜕𝐸

𝜕𝑛

)
𝑑𝑠 (4.1)

where 𝜕
𝜕𝑛

signifies a partial derivative in the outward normal direction at each point on

S. To use this theorem in the solution of diffraction problems it is necessary to make the

Figure 4.1: Arbitrary surface S that surrounds the point 𝑃0 at where we want
to find the optical field.
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appropriate selection of the auxiliar function G and closed surface S.

Kirchoff’s formulation to find the optical field at an observation point 𝑃0 surrounded by

an arbitrary surface S chooses as the auxiliar function a spherical wave centered at 𝑃0

𝐺 (𝑃1) =
exp(𝑖𝑘𝑟01)

𝑟01
(4.2)

To ensure the function G and its derivates are continuous as the theorem requires the discon-

tinuity at 𝑃0 is excluded by enclosing this point with a small spherical surface 𝑆𝜖 of radius 𝜖 ,

as shown in Figure 4.1. So the volume of integration 𝑉 is the one lying between the surfaces

S and 𝑆𝜖 , and the surface of integration is the sum of these two surfaces, that is 𝑆′ = 𝑆 + 𝑆𝜖 .

Notice that we have used the letter E in our definition of the Green theorem because

it represents the wavefunction (or wavefield) we are trying to find and as such we have

assumed this function E satisfies the Helmholtz equation. In the case of the function G, this

is a spherical wave so within the volume 𝑉 it also satisfies the Helmholtz equation, which

means that

∇2𝐸 = −𝑘2𝐸 (4.3)

∇2𝐺 = −𝑘2𝐺 (4.4)

We substitute these relations into the left-hand side of Green’s theorem∭
𝑉 ′

(
𝐸∇2𝐺 − 𝐺∇2𝐸

)
𝑑𝑣 = −

∭
𝑉

(
𝐸𝐺𝑘2 − 𝐺𝐸𝑘2

)
𝑑𝑣 = 0 (4.5)

Thus the right-hand side of the Green theorem is reduced to:∬
𝑆+𝑆𝜖

(
𝐸
𝜕𝐺

𝜕𝑛
− 𝐺 𝜕𝐸

𝜕𝑛

)
𝑑𝑠 = 0 (4.6)

⇒ −
∬

𝑆𝜖

(
𝐸
𝜕𝐺

𝜕𝑛
− 𝐺 𝜕𝐸

𝜕𝑛

)
=

∬
𝑆

(
𝐸
𝜕𝐺

𝜕𝑛
− 𝐺 𝜕𝐸

𝜕𝑛

)
(4.7)

Now Eq.(4.2) it is our auxilar function for a general point 𝑃1 on 𝑆′ so we have

𝜕𝐺 (𝑃1)
𝜕𝑛

= cos(®𝑛; ®𝑟01)
(
𝑖𝑘 − 1

𝑟01

)
exp(𝑖𝑘𝑟01)

𝑟01
(4.8)
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where cos(®𝑛; ®𝑟01) represents the cosine of the angle between the vectors ®𝑛 and ®𝑟01. For the

case of the point 𝑃1 being inside the surface 𝑆𝜖 then cos(®𝑛; ®𝑟01) = −1 because the normal of

this surface points towards the center of it.

Thus when 𝑟01 = 𝜖 we have

𝐺 (𝑃1) =
exp(𝑖𝑘𝜖)

𝜖
⇒ 𝜕𝐺 (𝑃1)

𝜕𝑛
=

(
1

𝜖
− 𝑖𝑘

)
exp(𝑖𝑘𝜖)

𝜖
(4.9)

When we substitute Eq. (4.9) into the left-hand side of Eq. (4.7) and take the limit as 𝜖

approaches zero we obtain

lim
𝜖→0

∬
𝑆𝜖

(
𝐸
𝜕𝐺

𝜕𝑛
− 𝐺 𝜕𝐸

𝜕𝑛

)
𝑑𝑠

= lim
𝜖→0

4𝜋𝜖2
[
𝐸 (𝑃0)

(
1

𝜖
− 𝑖𝑘

)
exp(𝑖𝑘𝜖)

𝜖
− 𝜕𝐸 (𝑃0)

𝜕𝑛

exp(𝑖𝑘𝜖)
𝜖

]
= 4𝜋𝐸 (𝑃0)

(4.10)

Equating this result to the right-hand side of Eq.(4.7) and using the auxiliar function Eq.(4.2)

gives as a result

𝐸 (𝑃0) =
1

4𝜋

∬
𝑆

[
exp(𝑖𝑘𝑟01)

𝑟01

𝜕𝐸

𝜕𝑛
− 𝐸 𝜕

𝜕𝑛

(
exp(𝑖𝑘𝑟01)

𝑟01

)]
𝑑𝑠 (4.11)

This equation is called the Integral Theorem of Helmholtz and Kirchhoff and its

relevance in the scalar diffraction theory resides in the fact it describes the field at a point

𝑃0 as the result of the contributions on any closed surface that surrounds it.

Next, we apply this integral theorem to the case of a wave disturbance coming from a

source located at a point 𝑃2 at the left of an opaque screen and aperture, the objective is

to find the field in a point 𝑃0 on the right side of the aperture, this is illustrated in Figure

4.2. To do so it is important to choose a convenient surface that surrounds the point 𝑃0

like the theorem requires, in this instance Kirchhoff’s theory proposes a closed surface will

be formed by two parts, a plane surface, 𝑆1, lying directly behind the opaque screen, and a

closed spherical cap, 𝑆2, of radius R and centered at the observation point 𝑃0. So the total

surface S is simply the sum of 𝑆1 and 𝑆2. Thus, the Integral Theorem of Helmholtz and
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Figure 4.2: Surface S consisting of two parts, 𝑆1 and 𝑆2, proposed by Kirchhoff’s
theory.

Kirchhoff takes the form [47]

𝐸 (𝑃0) =
1

4𝜋

∬
𝑆1+𝑆2

[
𝐺
𝜕𝐸

𝜕𝑛
− 𝐸 𝜕𝐺

𝜕𝑛

]
𝑑𝑠 (4.12)

where the auxiliar function is still a spherical wave like Eq. (4.2). For a point on 𝑆2 we have

that

𝐺 =
exp(𝑖𝑘𝑅)

𝑅
⇒ 𝜕𝐺

𝜕𝑛
=

(
𝑖𝑘 − 1

𝑅

)
exp(𝑖𝑘𝑅)

𝑅
(4.13)

If we consider a large R then the normal derivate of G can be approximated by

𝜕𝐺

𝜕𝑛
≈ 𝑖𝑘𝐺 (4.14)

Consequently, we rewrite the integral over the surface 𝑆2 as

1

4𝜋

∬
𝑆2

[
𝐺
𝜕𝐸

𝜕𝑛
− 𝐸 𝜕𝐺

𝜕𝑛

]
𝑑𝑠 =

∫
Ω

𝐺

[
𝜕𝐸

𝜕𝑛
− 𝑖𝑘𝐸

]
𝑅2𝑑𝜔 (4.15)
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where we made a change of variables from Cartesian to Spherical 𝑑𝑠 = 𝑅2 sin 𝜃𝑑𝜑𝑑𝜔 = 𝑅2𝑑𝜔

and used the solid angle Ω subtended by 𝑆2 at 𝑃0.

The existence of this integral is assured if |𝑅𝐺 | < ∞, on that account for the integral to

vanish over 𝑆2 as 𝑅 → ∞ the following condition must be met

lim
𝑅→∞

𝑅

[
𝜕𝐸

𝜕𝑛
− 𝑖𝑘𝐸

]
= 0 (4.16)

this condition is known as Sommerfeld radiation condition, and it tells us the integral will

vanish exclusively for outgoing waves on 𝑆2, as opposed to incoming waves for which the

integral might not be zero for large R. In other words, the field on 𝑃0 depends entirely on

the source 𝑃2 located on the left side of the aperture and not on sources that come from the

right side of the aperture, that is infinity sources do not contribute to the field.

This interpretation is related to the causality principle because by definition causality

refers to the influence one event (cause) has on another (effect) and the dependence be-

tween both of them, in this case, the cause is the field at the aperture and the effect is the

phenomenon of diffraction that the integral Theorem of Helmholtz and Kirchhoff describes.

Taking into consideration the Sommerfeld radiation condition the integral over 𝑆2 van-

ishes and the Eq. (4.12) is reduced to an integral exclusively over 𝑆1 [48].

𝐸 (𝑃0) =
1

4𝜋

∬
𝑆1

[
𝐺
𝜕𝐸

𝜕𝑛
− 𝐸 𝜕𝐺

𝜕𝑛

]
𝑑𝑠 (4.17)

Now this integral is fundamental to the diffraction theory because it describes the diffracted

field once it has passed through the aperture and this last part is key because most liter-

ature fails to give a precise definition of the diffraction phenomenon when ultimately this

phenomenon is the result of an element, be this an aperture, an obstacle, a film, a crystal,

a spatial light modulator, etc., that modifies the amplitude and/or the phase of a propa-

gating wave. Here we are only concerned with elements that modify the amplitude, more

specifically apertures.

The diffraction integral Eq. (4.17) provides the value of the amplitude distribution of the

diffracted field caused by the aperture at some point in the propagation axis. However, there

are conditions to ensure this integral exists and is valid which simultaneously will ensure that
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the diffracted field calculated with the integral is accurate, these are

1. The scalar theory holds.

2. Both E and G satisfy the Helmholtz wave equation.

3. The Sommerfeld radiation condition is satisfied.

Notice the last condition tells us that any diffracted field can not be infinite because infinite

sources do not contribute to the integral Eq. (4.17), this is of relevance because this integral

is the basis of the diffraction theory, taking it as a starting point one can arrive to the

Rayleight-Sommerfeld (RS) diffraction integral and the Fresnel-Kirchhoff (FK) diffraction

integral depending of the approximations considered, furthermore, from the RS and FK

diffraction integrals an expression for the Huygens-Fresnel principle is obtained, and thus

for the Fresnel and Fraunhoffer integrals. Therefore, the conditions presented here for the

validity of the diffraction integral are conditions necessary for the validity of these posterior

approximations as well. When the origin of the diffraction integrals is ignored it can lead to

erroneous interpretations of the results obtained with them.

4.1.1 First and Second Rayleigh-Sommerfeld Solutions

Following Sommerfeld formulation of diffraction, the boundary conditions are either E or
𝜕𝐸
𝜕𝑛

are zero on all the surface 𝑆1, but not both at the same time contrary to the Kirchhoff

boundary conditions in which both are zero and leads to a mathematical inconsistency [48].

Additionally, the KF theory makes paraxial approximations regarding the size of the aperture

and observation plane, and the distance between them, which can lead in certain cases to

inaccurate results as we will see in Section 4.1.2.

For the auxiliar function in the RS theory, the existence of a second point source is

proposed, this second source is located at 𝑃′0 which is the mirror image of the point source

at position 𝑃0 on the opposite side of the aperture, as illustrated in Figure 4.3, both sources

have the same wavelength 𝜆 but there is a phase difference of 𝜋 between them. So the Green’s

function is given by [48]

𝐺−(𝑃1) =
exp(𝑖𝑘𝑟01)

𝑟01
−

exp(𝑖𝑘𝑟′01)
𝑟′01

(4.18)
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Figure 4.3: Sommerfeld’s auxiliary function consisting of two mirroring points.

It is easy to see that at position 𝑃1, the auxiliar function Eq. (4.18) is zero because 𝑟01 = 𝑟′01,

and the boundary condition applied is that E vanishes over all the surface 𝑆1 except for the

plane aperture Σ, so the integral of Eq. (4.17) takes the form

𝐸𝐼 (𝑃0) = − 1

4𝜋

∬
Σ

𝐸
𝜕𝐺−
𝜕𝑛

𝑑𝑠 (4.19)

This integral is called the first Rayleigh-Sommerfeld solution.

Equation (4.18) is not the only possible Green’s function, an alternative option is

𝐺+(𝑃1) =
exp(𝑖𝑘𝑟01)

𝑟01
+

exp(𝑖𝑘𝑟′01)
𝑟′01

(4.20)

in this case, the normal derivative is zero across the screen and aperture, and the boundary

condition is 𝜕𝐸
𝜕𝑛

= 0 on all the surface 𝑆1 except at the plane aperture Σ thus we the field is

𝐸𝐼 𝐼 (𝑃0) =
1

4𝜋

∬
Σ

𝐺+
𝜕𝐸

𝜕𝑛
𝑑𝑠 (4.21)

This is the second Rayleigh-Sommerfeld solution.
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We can rewrite both solutions in terms of the exponential function [49], first, we calculate

the normal derivative of 𝐺−

𝜕𝐺−(𝑃1)
𝜕𝑛

= cos(®𝑛, ®𝑟01)
(
𝑖𝑘 − 1

𝑟01

)
exp(𝑖𝑘𝑟01)

𝑟01

− cos
(
®𝑛, ®𝑟′01

) (
𝑖𝑘 − 1

𝑟′01

) exp(𝑖𝑘𝑟′01)
𝑟′01

(4.22)

We notice from Figure 4.3 that 𝑃1 is located on the aperture Σ and right in the middle of

both sources so we have that 𝑟01 = 𝑟′01 and cos(®𝑛, ®𝑟01) = − cos
(
®𝑛, ®𝑟′01

)
, hence the normal

derivative takes the form

𝜕𝐺−(𝑃1)
𝜕𝑛

= 2 cos(®𝑛, ®𝑟01)
(
𝑖𝑘 − 1

𝑟01

)
exp(𝑖𝑘𝑟01)

𝑟01
(4.23)

If we assume that 𝑟01 >> 𝜆 then

𝜕𝐺−(𝑃1)
𝜕𝑛

= 2𝑖𝑘 cos(®𝑛, ®𝑟01)
exp(𝑖𝑘𝑟01)

𝑟01
(4.24)

we substitute this result into the first solution Eq.(4.19) to obtain

𝐸𝐼 (𝑃0) = − 1

𝑖𝜆

∬
Σ

𝐸 (𝑃1) cos(®𝑛, ®𝑟01)
exp(𝑖𝑘𝑟01)

𝑟01
𝑑𝑠 (4.25)

For the second solution, it is straightforward to see from Eq.(4.20) that on 𝑃1 and under the

condition of 𝑟01 >> 𝜆 we have that

𝐺+(𝑃1) = 2
exp(𝑖𝑘𝑟01)

𝑟01
(4.26)

Consequently, the second solution can be rewritten as

𝐸𝐼 𝐼 (𝑃0) =
1

2𝜋

∬
Σ

exp(𝑖𝑘𝑟01)
𝑟01

𝜕𝐸 (𝑃1)
𝜕𝑛

𝑑𝑠 (4.27)

In the literature, we can find numerous examples of the usage of these Rayleigh-Sommerfeld

solutions to solve diffraction problems, one example is briefly presented in the following
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subsection.

4.1.2 Diffraction produced by an arbitrary aperture

The Rayleigh-Sommerfeld integrals presented last section provide exact solutions however

they tend to be complicated to solve analytically which is why reducing them can be very

useful.

If we consider an incident plane wave of amplitude 𝐸0 on the aperture and use polar

coordinates, then the Eq.(4.25) can be rewritten as:

𝐸 (𝑥, 𝑦, 𝑧) = 𝐸0𝑧

2𝜋

∬
Σ

(
1

𝑟
− 𝑖𝑘

)
exp(𝑖𝑘𝑟)

𝑟
𝑑𝑟𝑑𝜑 (4.28)

The key point now is to use as the origin of the polar coordinates, the projection of the

observation point on the plane of the aperture, with this and integrating by parts it yields

[50]:

𝐸 (𝑥, 𝑦, 𝑧) = − 𝐸0𝑧

2𝜋

∫ [
exp (𝑖𝑘𝑅𝑚𝑎𝑥 (𝜑))

(
1

𝑅𝑚𝑎𝑥 (𝜑)

)]
𝑑𝜑

+ 𝐸0𝑧

2𝜋

∫ [
exp (𝑖𝑘𝑅𝑚𝑖𝑛 (𝜑))

(
1

𝑅𝑚𝑖𝑛 (𝜑)

)]
𝑑𝜑

(4.29)

where 𝑅𝑚𝑎𝑥 (𝜑) and 𝑅𝑚𝑖𝑛 (𝜑) are the maximum and minimum values of r, the distance between

a point in the aperture and the location point of the observation point projected on the origin

plane, for a given value of 𝜑, respectively. For the integration limits for the variable 𝜑 there

are two cases, one where the projection on the origin plane of the observation point falls

inside the aperture, for this case 𝑅𝑚𝑎𝑥 (𝜑) =
√︁
𝑧2 + 𝑐2(𝜑) and 𝑅𝑚𝑖𝑛 (𝜑) = 𝑧, where 𝑐(𝜑) is the

distance from the projection point to the border of the aperture. The other case considers the

projection points falling outside the aperture, here the border of the aperture is divided into

two curves: 𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 where one is the side of the border closer to the projection point

and the other is the side of the border further apart from the projection point respectively.

The integral Eq.(4.29) gives the diffracted field produced by an arbitrary aperture by

reducing the 2-D integral Rayleight-Sommerfeld solution into a 1-D parametric integration

over the perimeter of the aperture, it has proved to be easier to solve and give exact results
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for on-axis and off-axis cases [50]. But the relevance of the integral Eq.(4.29) dwells on the

fact the integral depends on a parameter 𝜑 that characterizes the border of the aperture

which further establishes that the diffracted field depends on the geometry of the aperture.

Now, before taking this matter further, a simple example of what we are trying to high-

light in this section is none other than the well-known Babinet’s principle, it tells us the

diffraction pattern in the far field of an aperture and its complementary aperture is the

same[51]. This arises when we consider the function of a complementary aperture 𝑓𝑐 and we

write it as

𝑓𝑐 (𝑥, 𝑦) = 1 − 𝑓 (𝑥, 𝑦) (4.30)

where 𝑓 (𝑥, 𝑦) is the function of the aperture (or obstacle). The Fourier Transform, which

will be explained better in the next section, is applied to Eq.(4.30) to obtain

𝔉[ 𝑓𝑐 (𝑥, 𝑦)] = 𝔉[1] − 𝔉[ 𝑓 (𝑥, 𝑦)]

= 𝛿(𝑢, 𝑣) − 𝔉[ 𝑓 (𝑥, 𝑦)]
(4.31)

So the square of the modulus of the Fourier transform for points different from zero is

|𝔉[ 𝑓𝑐 (𝑥, 𝑦)] |2 = |𝔉[ 𝑓 (𝑥, 𝑦)] |2 (4.32)

This result proves that the intensity of the diffraction pattern of the aperture and its com-

plementary in the far field is the same and notice that the one feature they share is the

geometrical shape of their border, this is fundamentally the same result Eq.(4.29)gives, the

diffraction pattern depends on the shape of the border of the aperture (or obstacle), which

subsequently agrees with the concept that any element that modifies the amplitude of a

propagating wave produces diffraction.

It has been proved too that Babinet’s principle gives an exact result, the same as the

Rayleigh-Sommerfeld diffraction integral [52]. An illustrative example can be found when

calculating the intensity of Poisson’s spot. When instead of using the Rayleigh-Sommerfeld

integral the Fresnel-Kirchhoff integral is applied the result fails to converge.
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The field at a point on the propagation axis is for the Rayleigh-Sommerfeld integral yields

𝐸 (0, 0, 𝑧) = 𝐸0
𝑧

𝑟0
exp(𝑖𝑘𝑟0) (4.33)

and for the Fresnel-Kirchhoff the result is [52]

𝐸 (0, 0, 𝑧) = 𝐸0
1

2

(
1 + 𝑧

𝑟0

)
exp(𝑖𝑘𝑟0) − 𝐸0

1

2
exp[𝑖𝑘 (𝑟 → ∞)] (4.34)

where in both 𝑟0 =
√
𝑧2 + 𝑎2 and a represents the radius of the circular obstacle at the 𝑧 = 0

plane. So we notice when 𝑎 = 0, that is there is no obscuration, both results should be

the unaltered plane wave 𝐸0 exp(𝑖𝑘𝑧) which is not the case for Eq.(4.34). To eliminate the

diverging term the Babinet’s principle is required. For this case we consider the plane wave to

be the result of the sum of the diffraction pattern of the obstacle and the diffraction pattern

of its complementary aperture: 𝑈𝑜𝑏+𝑈𝑎𝑝 = 𝐸0 exp(𝑖𝑘𝑧). Thus 𝑈𝑜𝑏 = 𝐸0 exp(𝑖𝑘𝑧) −𝑈𝑎𝑝 which

yields

𝐸 (0, 0, 𝑧) = 𝐸0
1

2

(
1 + 𝑧

𝑟0

)
exp(𝑖𝑘𝑟0) (4.35)

Notice Eq.(4.35) will be a plane wave in the absence of an obstacle but the inconsistency this

time involves the boundary condition, it does not satisfy the Kirchhoff boundary condition

however this matter is beyond the scope of this section. We can conclude from this analysis

that in some cases the Rayleigh-Sommerfeld integral leads to accurate descriptions of the

diffracted field while the Fresnel-Kirchhoff integral fails to do so.

Nevertheless, both of these integrals even after reducing them can still be difficult to

solve for many practical cases which is why in the next section, we will explore in detail the

diffraction integrals most used in the literature.

4.2 Fresnel and Fraunhoffer diffraction

So far we have described the diffraction phenomenon through the Rayleigh-Sommerfeld so-

lutions but the use of simpler expressions can be helpful, which is why in this section we

introduce the Fresnel and Fraunhoffer approximations.
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But first, it is important to establish the Huygens-Fresnel principle which states that each

point on a wavefront generates a spherical wave. The envelope of these secondary waves (or

"edge-waves") constitutes the new wavefront and their superposition constitutes the wave

in another plane [53]. Figure 4.4 illustrates this, where the "edge-waves" are generated

on the plane (𝑥′, 𝑦′) with each point of the diffracting aperture Σ as their source and the

superposition of these results into the diffracted field that lies on the plane (x,y) parallel to

(𝑥′, 𝑦′). Mathematically this principle can be stated as Eq.(4.25) with a positive sign [54].

𝐸𝐼 (𝑃0) =
1

𝑖𝜆

∬
Σ

𝐸 (𝑃1) cos 𝜃
exp(𝑖𝑘𝑟01)

𝑟01
𝑑𝑠 (4.36)

where we defined the argument of the cosine as 𝜃. If we explicitly write the cosine term as

Figure 4.4: The diffraction field at 𝑧 ≫ 𝜆 is the result of the superposition of
the "edge-waves" generated by the aperture.

cos 𝜃 = 𝑧/𝑟01 and express the wave field in its corresponding coordinates then the principle

can be rewritten as

𝐸 (𝑥, 𝑦, 𝑧) = 𝑧

𝑖𝜆

∬
Σ

𝐸 (𝑥′, 𝑦′, 𝑧 = 0) exp(𝑖𝑘𝑟01)
𝑟201

𝑑𝑠 (4.37)
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where

𝑟01 =
√︁
𝑧2 + (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 (4.38)

Now the Fresnel approximation mentioned earlier is applied to this distance 𝑟01, to do so we

take out z from the square root

𝑟01 = 𝑧

√︄
1 +

(
𝑥 − 𝑥′
𝑧

)2
+

(
𝑦 − 𝑦′
𝑧

)2
(4.39)

and if we suppose the observation points are close to the axis z but far away enough from

the aperture i.e.

𝑧 >> 𝜆; 𝜃 <
1

2
⇒ 𝑧 >> max [𝑥′, 𝜂 | 𝑥′, 𝜂 ∈ Σ] (4.40)

then we can use the Taylor expansion to approximate the Eq. (4.39) to

𝑟01 ≈ 𝑧
[
1 + 1

2

(
𝑥 − 𝑥′
𝑧

)2
+ 1

2

(
𝑦 − 𝑦′
𝑧

)2]
(4.41)

The term 𝑟01 appears in the argument of the exponent multiplied by k, which happens to

be a large number with a length value around 107, and we know phase shifts as little as

a fraction of radian change the value of the exponential function so to diminish the error

as much as possible we substitute the approximation Eq.(4.41) into the exponent, however

for the 𝑟01 that appears in the denominator the error will be small even if we drop all the

quadratic terms and leave only the z. Once we have taken into consideration this the integral

equation takes the form

𝐸 (𝑥, 𝑦, 𝑧) = 𝑧

𝑖𝜆

∬ ∞

−∞
𝐸 (𝑥′, 𝑦′, 𝑧 = 0)

exp
{
𝑖𝑘𝑧

[
1 + 1

2

(
𝑥−𝑥′
𝑧

)2
+ 1

2

(
𝑦−𝑦′
𝑧

)2]}
𝑧2

𝑑𝑥′𝑑𝑦′ (4.42)

Notice the limits of the integral are changed because now the information about the geometry

of the aperture is contained in the field 𝐸 (𝑥′, 𝑦′, 𝑧 = 0). With some algebraic manipulations,

we rewrite the integral Eq.(4.42) as [54]

𝐸 (𝑥, 𝑦, 𝑧) = exp(𝑖𝑘𝑧)
𝑖𝜆𝑧

∬ ∞

−∞
𝐸 (𝑥′, 𝑦′, 𝑧 = 0)exp

{
𝑖𝑘

2𝑧

[
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2

]}
𝑑𝜉𝑑𝜂 (4.43)
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this integral equation is known as the Fresnel diffraction integral.

If we expand the quadratic factor of the exponent the Fresnel integral takes the following

form

𝐸 (𝑥, 𝑦, 𝑧) = exp(𝑖𝑘𝑧)
𝑖𝜆𝑧

exp
[
𝑖
𝑘

2𝑧
(𝑥2 + 𝑦2)

] ∬ ∞

−∞

{
𝐸 (𝑥′, 𝑦′, 𝑧 = 0)exp

[
𝑖
𝑘

2𝑧

(
𝑥′2 + 𝑦′2

)]}
× exp

[
−𝑖𝑘
𝑧
(𝑥𝑥′ + 𝑦𝑦′)

]
𝑑𝑥′𝑑𝑦′

(4.44)

Eq. (4.44) allows us to see more clearly that the Fresnel diffraction integral is the Fourier

transform of a product of the complex field on the plane of the aperture and a quadratic

phase exponential.

Another useful approximation to the diffraction integral is done when the exponential

term with the quadratic phase is either eliminated or neglected [55]. There are two paths to

arrive at the same expression for this approximation, the first one is to consider the optic

field 𝐸 (𝑥′, 𝑦′) is incident on a thin lens located at 𝑧 = 0 and calculate the diffracted field at

the focal plane 𝑧 = 𝑓 . The lens adds a quadratic phase term defined as

𝑝𝑙𝑒𝑛𝑠 (𝑥′, 𝑦′) = exp

[
−𝑖 𝑘

2 𝑓
(𝑥′2 + 𝑦′2)

]
(4.45)

We introduce this term into the integral Eq. (4.44) and it is straightforward to see the two

quadratic terms cancel so we obtain the following integral equation:

𝐸 (𝑥, 𝑦) = exp(𝑖𝑘 𝑓 )
𝑖𝜆 𝑓

exp
[
𝑖
𝑘

2 𝑓
(𝑥2 + 𝑦2)

] ∬ ∞

−∞
𝐸 (𝑥′, 𝑦′)exp

[
−𝑖𝑘
𝑧
(𝑥𝑥′ + 𝑦𝑦′)

]
𝑑𝑥′𝑑𝑦′ (4.46)

The other path is to consider distances z large enough such that 𝑧 ≫ 𝑥′2 + 𝑦′2, this is con-

sidered the far-field region, and this allows to approximate the quadratic phase exponential

inside the integral Eq. (4.44) to unity and thus obtain a simpler expression

𝐸 (𝑥, 𝑦, 𝑧) = exp(𝑖𝑘𝑧)
𝑖𝜆𝑧

exp
[
𝑖
𝑘

2𝑧
(𝑥2 + 𝑦2)

] ∬ ∞

−∞
𝐸 (𝑥′, 𝑦′, 𝑧 = 0)exp

[
−𝑖𝑘
𝑧
(𝑥𝑥′ + 𝑦𝑦′)

]
𝑑𝑥′𝑑𝑦′

(4.47)

Notice how both Eq.(4.46) and (4.47) represent a Fourier transform in Cartesian coordinates

of the kernel 𝐸 (𝑥′, 𝑦′, ). Equation (4.46) is called the Fraunhofer diffraction integral mean-
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while Eq. (4.47) is the Fraunhofer approximation. However, the last one becomes the same

as Eq.(4.46) when 𝑧 = 𝑓 . The main difference between the two of them is that Eq.(4.46) is

exact and Eq.(4.47) is not, for it to be exact the distances z considered have to satisfy the

condition [55]

𝑧 ≫ 𝑘 (𝑥′2 + 𝑦′2)𝑚𝑎𝑥
2

(4.48)

where (𝑥′2 + 𝑦′2)𝑚𝑎𝑥 is the maximum value of the radio (𝑥′2 + 𝑦′2) that contributes to the

integral. If we define the Rayleigh length 𝐿𝐷 = 𝑘𝑎2/2 where for this case 𝑎 = (𝑥′2+𝑦′2)𝑚𝑎𝑥 then

we can conclude the Fraunhofer approximation will give accurate enough results provided it

is evaluated for distances z larger than the Rayleigh length.

The intent of presenting both approaches is to expand the understanding we have of

the Fraunhofer integral. The Fraunhofer approximation tells us that the diffracted field

calculated with the integral Eq. (4.47) is an approximation that will maintain its transversal

shape within the far-field region, in other words, the only major change on the diffracted

field as it propagates will be the spreading of its profile, provided the distance z is larger

than the Rayleigh length.

For its part, the Fraunhofer diffraction integral Eq. (4.46) gives us the exact diffracted

field calculated at the focal plane of a lens once the field has passed through it. Ultimately,

both are the same, because in the literature is common to refer to these "far-field" distances

z where the diffracted field is found as "infinite" so the role of the lens is to "pull" the field

from infinite and locate it at the focal plane, hence both integrals yield look-alike diffracted

pattern.

In sum, the Fresnel diffraction integral is used to obtain the field diffracted by an aperture

(or obstacle) at 𝑧 = 0 for points within the near-field region (0 < 𝑧 < 𝐿𝐷) and the Fraunhofer

diffraction integral calculates the diffracted field at the focal point of a lens located at the

right side of the aperture (𝑧 > 0).

A well-known example of the usage of the Fraunhofer integral is found when calculating

the diffracted field of a circular aperture. For this case, we consider a plane wave with
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amplitude equal to unity passing through a circular aperture that we represent as

𝑈 (𝜌𝜀) = circ
( 𝜌𝜀
𝑎

)
We are using polar coordinates due to the geometry of the aperture, so 𝜌′ =

√︁
𝑥′2 + 𝑦′2 and a

is the ratio of the circular aperture. As we concluded from Eqs. (4.46) and (4.47) the field

U(𝜌) is the result of a Fourier transform, i.e.

𝑈 (𝜌) = exp
[
𝑖
𝑘

2𝑧
𝜌2

]
F {𝑈 (𝜌′)}

where F represents the Fourier transform in polar coordinates which yields

𝑈 (𝜌) =
(
𝜋𝑎2

2𝜆𝑧

)
exp

[
𝑖
𝑘

2𝑧
𝜌2

] 𝐽1 (
𝑘𝑎𝜌

2𝑧

)(
𝑘𝑎𝜌

2𝑧

) (4.49)

and so the intensity of the diffracted field on the observation plane is of the form [55]

𝐼 (𝜌) = |𝑈 (𝜌) |2 =
(
𝜋𝑎2

2𝜆𝑧

)2 
𝐽1

(
𝑘𝑎𝜌

2𝑧

)(
𝑘𝑎𝜌

2𝑧

) 
2

(4.50)

We mentioned previously that when using Eq.(4.47) the field obtained will keep its transverse

shape and with this example, we can explicitly see what we meant by that. Notice the

intensity distribution is always a Bessel function 𝐽1 scaled by z, this tells us the form of the

diffraction pattern does not change but the larger the distance z, the bigger the spreading

of the diffracted field will be.

To find the exact value we evaluate the result for 𝑧 = 𝑓 and we obtain

𝐼 (𝜌) = |𝑈 (𝜌) |2 =
(
𝜋𝑎2

2𝜆 𝑓

)2 
𝐽1

(
𝑘𝑎𝜌

2 𝑓

)(
𝑘𝑎𝜌

2 𝑓

) 
2

(4.51)

This function takes the name of the English mathematician, George Biddell Airy, who first

derived it, and it is known as an Airy disk which is shown in Figure 4.5. It is clear to see
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Eqs.(4.50) and (4.51) are basically the same, this is what we meant when we mentioned the

Fraunhoffer approximation and exact integral produce the same diffracted pattern.

Figure 4.5: Airy disk

The radius of the Airy disk is given by the first zero of the Bessel function 𝐽1 which

yields:

3.83 =
𝑘𝑎𝜌𝐴

2 𝑓

When we solve for 𝜌𝐴 we obtain

𝜌𝐴 = (3.83) 2 𝑓
𝑘𝑎

≈ 1.22

(
𝜆 𝑓

𝑎

)
In the next chapter, we will use the diffraction integrals presented here but before that, it

is necessary to discuss the features of the paraxial optical beams and present some examples

of these, which will help us better understand the concept of light beam.



CHAPTER 4. ORIGIN OF DIFFRACTION 50

4.3 Paraxial Optical Beams

From Chapter 3 we recall the complex amplitude can be written as E(r) = A(r)exp[𝑖𝑊 (r)],

so for the case of a plane wave traveling in the z direction it takes the form

𝐸 (r) = 𝐴(r)exp(−𝑖𝑘𝑧) (4.52)

Where 𝐴(r) represents a slowly varying complex function, we refer to a slow variation when

within a distance of a wavelength 𝜆 = 2𝜋/𝑘 we have that Δ𝐴 << 𝐴. Eq.(4.52) is then what

we know as a paraxial wave and when substituted into the Helmholtz equation Eq.(3.2) we

obtain (
𝜕2𝐴

𝜕𝑥2
+ 𝜕

2𝐴

𝜕𝑦2

)
− 2𝑖𝑘

𝜕𝐴

𝜕𝑧
+ 𝜕

2𝐴

𝜕𝑧2
= 0 (4.53)

But A varies slowly with z so when 𝑧 ≈ 𝜆 we have that [56]

Δ𝐴 ≈ 𝜕𝐴

𝜕𝑧
𝜆 ⇒ 𝜕𝐴

𝜕𝑧
<<

𝐴

𝜆
⇒ 𝜕𝐴

𝜕𝑧
<< 𝑘𝐴 (4.54)

It is logical to assume the derivative of 𝜕𝐴/𝜕𝑧 also varies slowly which means

𝜕2𝐴

𝜕𝑧2
<< 𝑘2𝐴 (4.55)

This inequality allows us to neglect the second derivative term in the Eq.(4.53) and obtain(
𝜕2𝐴

𝜕𝑥2
+ 𝜕

2𝐴

𝜕𝑦2

)
− 2𝑖𝑘

𝜕𝐴

𝜕𝑧
= 0 (4.56)

Which is known as the Paraxial Helmholtz equation. The simplest solution to this equation

is the paraboloidal wave. Other well-known solution is the Gaussian beam, also called the

“fundamental mode” [16], and the Laguerre-Gaussian beam, the following sections will center

around these two beams.

But before that, we normalize the paraxial Helmholtz equation to find the Gaussian

beam complex amplitude, the normalization is not necessary but it allows us to work with

dimensionless variables which makes the derivation far easier as we shall see.
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First, we propose new variables

𝑥′ =
𝑥

𝑤0
, 𝑦′ =

𝑦

𝑤0
(4.57)

and by the chain rule, we have the following relations

𝜕

𝜕𝑥
=

1

𝑤0

𝜕

𝜕𝑥′
⇒ 𝜕2

𝜕𝑥2
=

1

𝑤2
0

𝜕2

𝜕𝑥′2
(4.58)

𝜕

𝜕𝑦
=

1

𝑤0

𝜕

𝜕𝑦′
⇒ 𝜕2

𝜕𝑦2
=

1

𝑤2
0

𝜕2

𝜕𝑦′2
(4.59)

Substituting these into Eq.(4.56)

1

𝑤2
0

(
𝜕2

𝜕𝑥′2
+ 𝜕2

𝜕𝑦′2

)
𝐴 + 2𝑖𝑘

𝜕𝐴

𝜕𝑧
= 0

(
𝜕2

𝜕𝑥′2
+ 𝜕2

𝜕𝑦′2

)
𝐴 + 2𝑖𝑘𝑤2

0

𝜕𝐴

𝜕𝑧
= 0 (4.60)

And to simplify this equation even more we use the definition of Rayleight length 𝐿𝐷 = 𝑘𝑎2/2

we gave in Section 4.2 to define 𝜁 = 𝑧/𝐿𝐷 with 𝑎 = 𝑤0. Additionally we define 𝐸 = 𝐸0𝐴

where |𝐴| = 1 at 𝑧 = 0. With all these into consideration, the paraxial equation is reduced

to the form
1

4

(
𝜕2

𝜕𝑥′2
+ 𝜕2

𝜕𝑦′2

)
𝐸 + 𝑖 𝜕𝐸

𝜕𝜁
= 0 (4.61)

This equation is the normalized paraxial Helmholtz wave equation. From here on when we use

the paraxial wave equation we might change the denotation of the variables to facilitate the

mathematical derivations, however, we will specify if we are working with the conventional

paraxial Helmholtz wave equation Eq.(4.56) or the normalized one Eq. (4.61).
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4.3.1 Gaussian Beams

To find the expression for the amplitude distribution of a Gaussian beam we start with the

paraxial normalized Helmholtz wave equation Eq.(4.61) with a different notation.

−𝑖 𝜕𝐸
𝜕𝑧

+ 1

4

(
𝜕2𝐸

𝜕𝑥2
+ 𝜕

2𝐸

𝜕𝑦2

)
= 0 (4.62)

and propose the ANSATZ [16, 57]

𝐸 (𝑥, 𝑦, 𝑧) = exp
[
−𝑖

(
𝑃(𝑧) + 𝑥

2 + 𝑦2
2𝑄(𝑧)

)]
(4.63)

where 𝑃(𝑧) and 𝑄(𝑧) are for now arbitrary complex functions, to find their analytic expres-

sions we start with the following initial condition

|𝐸 (𝑥, 𝑦, 0) |2 = exp
(
−𝑥

2 + 𝑦2
2

)
(4.64)

After the corresponding derivations of Eq.(4.62) and substitutions into the paraxial Helmholtz

equation, we obtain
𝑥2 + 𝑦2
2𝑄2

(
𝑄′ − 1

2

)
− (𝑥0 + 𝑦0)

(
𝑃′ + 𝑖

2𝑄

)
= 0 (4.65)

It is well known that the subspace (1, x, 𝑥2, . . . ) is a linearly independent base so for

Eq.(4.65) to be satisfied, each term between parenthesis should be equal to zero which gives

us as result.

𝑄′(𝑧) = 1

2
, 𝑃′(𝑧) = − 𝑖

2𝑄
(4.66)

With the use of the initial condition we can find the value of Q because

𝐸 (𝑥, 𝑦, 0) = exp
(
−𝑥

2 + 𝑦2
2

)
= exp

(
−𝑖 𝑥

2 + 𝑦2
2𝑄

)
⇒ 𝑄(𝑧 = 0) = 𝑖 (4.67)

To find the explicit expressions for Q and P we integrate Eqs. (4.66). For the case of Q, it

is easy to see we have

𝑄(𝑧) = 𝑧

2
+ 𝑖 (4.68)
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Where we used Eq.(4.67), with this result we can rewrite the exponential as

exp
(
−𝑖 𝑥

2 + 𝑦2
2𝑄

)
= exp

−𝑖
𝑥2 + 𝑦2

2

©­­«
1

𝑧
2

(
1 + 4

𝑧2

) − 𝑖

𝑧2

4 + 1

ª®®¬
 (4.69)

For the case of P(z) the integration yields

𝑖𝑃(𝑧) = ln

(
1 − 𝑖𝑧

2

)
(4.70)

we rewrite the complex argument of the natural algorithm in the polar form.

−𝑖𝑃 = − ln

[√︂
1 +

( 𝑧
2

)2
exp

(
−𝑖 arctan

( 𝑧
2

))]
(4.71)

and finally obtain

exp(−𝑖𝑃) =
(√︂

1 +
( 𝑧
2

)2)−1
exp

(
−𝑖 arctan

( 𝑧
2

))
(4.72)

Putting together Eq. (4.69) and (4.72) we have the expression for a Gaussian beam normal-

ized amplitude distribution

𝐸 (r) = 𝐸0𝔄(𝑧)exp[−𝑖Φ(𝑧)]exp
(
−𝑖(𝑥2 + 𝑦2)2

2𝑅(𝑧)

)
exp

(
− (𝑥2 + 𝑦2)2

2𝑤2(𝑧)

)
(4.73)

or alternatively

𝐸 (r) = 𝐸0𝔄(𝑧)exp[−𝑖Φ(𝑧)]exp
(
−𝑖𝑟2
2𝑅(𝑧)

)
exp

(
− 𝑟2

2𝑤2(𝑧)

)
(4.74)

with 𝑟2 = (𝑥2 + 𝑦2)2 and where the parameters are defined by

𝑤2(𝑧) = 1 + 𝑧
2

4
(4.75)

Φ(𝑧) = arctan
( 𝑧
2

)
(4.76)

𝑅(𝑧) = 𝑧

2

[
1 +

(
4

𝑧2

)2]
(4.77)
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𝔄(𝑧) = 1√︃
1 + 𝑧2

4

(4.78)

We emphasize once again that we are considering normalized variables for this subsection.

As we mentioned at the beginning of this section, the Gaussian beam is a solution to the

paraxial Helmholtz equation but not the only one, an alternative solution can be obtained

when we consider cylindrical coordinates instead of cartesian, and the result is the well-known

Laguerre-Gaussian beams. The following subsection focus on these.

4.3.2 Gaussian beams in cylindrical coordinates: Laguerre-Gaussian

To find the Laguerre-Gaussian amplitude distribution we will use once again the normalized

paraxial Helmholtz equation now in cylindrical coordinates.

𝜕2𝑈

𝜕𝜌2
+ 1

𝜌

𝜕𝑈

𝜕𝜌
+ 1

𝜌2

𝜕2𝑈

𝜕𝜙2
+ 𝑖4𝜕𝑈

𝜕𝑧
= 0 (4.79)

The proposed ANSATZ is of the form [58]

𝑈 (r) = 𝐹
[
𝜌

𝑤(𝑧)

]
𝐺 (𝜙)𝐸 (r) exp[𝑖𝛼(𝑧)] (4.80)

where 𝐸 (r) is a Gaussian beam defined by Eq.(4.74).

After the corresponding derivation process of Eq.(4.80) we substitute in Eq.(4.79) to

obtain

1

𝐹

𝜕2𝐹

𝜕𝜌2
+ 1

𝐸

𝜕2𝐸

𝜕𝜌2
+ 2

𝐹𝐸

𝜕𝐸

𝜕𝜌

𝜕𝐹

𝜕𝜌
+ 1

𝜌

[
1

𝐹

𝜕𝐹

𝜕𝜌
+ 1

𝐸

𝜕𝐸

𝜕𝜌

]
+ 1

𝜌2𝐺

𝜕2𝐺

𝜕𝜙2
+ 4𝑖

[
1

𝐸

𝜕𝐸

𝜕𝑧
+ 1

𝐹

𝜕𝐹

𝜕𝑧

]
− 4

𝜕𝛼

𝜕𝑧
= 0

(4.81)

But we know the Gaussian beam satisfies the paraxial Helmholtz equation so the sum of the

terms that depend solely upon 𝐸 (𝑟) are equal to zero. The expression is then reduced to

1

𝐹

𝜕2𝐹

𝜕𝜌2
+ 2

𝐹𝐸

𝜕𝐸

𝜕𝜌

𝜕𝐹

𝜕𝜌
+ 1

𝜌

[
1

𝐹

𝜕𝐹

𝜕𝜌

]
+ 1

𝜌2𝐺

𝜕2𝐺

𝜕𝜙2

𝜕𝛼

𝜕𝑧
+ 4𝑖

𝐹

𝜕𝐹

𝜕𝑧
− 4

𝜕𝛼

𝜕𝑧
= 0 (4.82)
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Now we define a new variable

𝜚 = 𝜌/𝑤 (4.83)

and with the use of the chain rule of differentiation, we obtain the following relations

𝜕

𝜕𝜌
=

1

𝑤

𝜕

𝜕𝜚
(4.84)

𝜕𝐹

𝜕𝑧
=
𝜕𝜚

𝜕𝑧

𝜕𝐹

𝜕𝜚
= − 𝜚

2𝑅

𝜕𝐹

𝜕𝜚
(4.85)

Notice the second term of the differential equation Eq.(4.82) still has a dependency to 𝐸 (𝑟)

so we proceed to find the derivative of the function.

𝜕𝐸

𝜕𝜌
= − 𝜚

𝑤

(
𝑖𝑤2

𝑅
− 1

)
𝐸 (4.86)

We substitute Eq.(4.86) and use the relations Eq.(4.84) and (4.85) to rewrite the differential

equation, which yields

1

𝑤2𝐹

𝜕2𝐹

𝜕𝜚2
− 2

𝐹

(
𝑖𝑤2

𝑅
− 1

)
𝜚

𝑤2

𝜕𝐹

𝜕𝜚
+ 1

𝜚𝐹

1

𝑤2

𝜕𝐹

𝜕𝜚
− 2𝑖 𝜚

𝑅𝐹

𝜕𝐹

𝜕𝜚
+ 1

𝜚2𝐺

2

𝜔2

𝜕2𝐺

𝜕𝜙2
− 4

𝜕𝛼

𝜕𝑧
= 0 (4.87)

By multiplying by 𝑤2 and canceling the equal term we finally obtain

𝜚

𝐹

𝜕2𝐹

𝜕𝜚2
− 2𝜚

𝐹

𝜕𝐹

𝜕𝜚
+ 1

𝜚𝐹

𝜕𝐹

𝜕𝜚
+ 1

𝜚2𝐺

𝜕2𝐺

𝜕𝜙2
− 4𝑤2 𝜕𝛼

𝜕𝑧
= 0 (4.88)

Now to solve it we separate the differential equation into terms that solely depend on one

variable and solve each one individually.

For the term dependant of 𝛼 we set it equal to a constant C and so its solution is

𝛼(𝑧) = 𝐶
2

arctan
( 𝑧
2

)
(4.89)

For the term dependant on 𝜙 we set it equal to a constant −𝑚2 where m is an integer and

the solution G is

𝐺 (𝜙) = 𝐴𝑚exp(𝑖𝑚𝜙) + 𝐵𝑚exp(−𝑖𝑚𝜙) (4.90)
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To solve the differential equation first, we equal Eq.(4.88) to (−𝐶 −𝑚2) and notice it can be

further reduced to the following expression

𝜕2𝐹

𝜕𝜚2
+

[
1

𝜚
− 2𝜚

]
𝜕𝐹

𝜕𝜚
+

[
𝐶 − 𝑚2

𝜚2

]
𝐹 = 0 (4.91)

what follows is to make the coordinate transform 𝑦 = 𝜚2 and rewrite once again Eq.(4.91) in

the following way

𝑦
d2𝐹

d𝑦2
+ (1 − 𝑦) d𝐹

d𝑦
+ 1

4

[
𝐶 − 𝑚2

𝑦

]
𝐹 = 0 (4.92)

It is straightforward to see the differential equation (4.92) has a singular point at 𝑦 = 0 which

happens to be also a regular point this means we can apply the Frobenius method to solve

it. The proposed solution is thus of the form

𝐹 (𝑦) =
∞∑︁
𝑘=0

𝑎𝑘 𝑦
𝑘+𝑠 (4.93)

The indicial equation gives 𝑠 = ±𝑚/2 for 𝑎0 ≠ 0, and if we choose as the only regular solution

at the origin the positive root then we can define a function H(y) that reads as

𝐻 (𝑦) = 𝑦𝑚/2𝐹 (𝑦) (4.94)

Once we rewrite the differential equation Eq.(4.92) in terms of this new function we obtain

𝑦𝐻′′ + (𝑚 + 1 − 𝑦)𝐻′ +
(
1

4
𝐶 − 𝑚

2

)
𝐻 = 0 (4.95)

Eq. (4.95) is the Laguerre’s differential equation and its solution is the Laguerre polynomials

𝐿𝑚𝑛 (𝑦), so putting together the Eqs. (4.89), (4.90) and the 𝐿𝑚𝑛 (𝑦) polynomials back in the

original coordinates the result of the normalized paraxial Helmholtz equation in cylindrical

coordinates is [58]

𝑈𝑚
𝑛 (r) =

√︄
2𝑛!

𝜋𝜔2
0(𝑛 + 𝑚)!

(√
2𝜌

𝜔(𝑧)

)𝑚
𝐿𝑚𝑛

(
2𝜌2

𝜔2(𝑧)

)
exp(𝑖𝑚Φ)exp(𝑖𝛼(𝑧))𝐸 (r) (4.96)

with 𝑛 = 𝐶/4 − 𝑚/2 and so 𝛼(𝑧) = (2𝑛 + 𝑚)arctan
(
𝑧
2

)
, and the first term is a normalization
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term to ensure the energy is finite and equal to 1.

Equation (4.96) is a solution to the paraxial Helmholtz wave equation and it is called a

Laguerre-Gaussian beam (LG beam). It shares similar properties with the Gaussian beam

because as we can notice this beam has the same parameters 𝑤(𝑧) and 𝑅(𝑧) defined in Section

4.3.2, which tells us under free space propagation or transformation by lens a beam of higher

order like the LG beam will remain as a mode of the same order [16], exactly like it happens

with a Gaussian beam.

4.3.3 Validity and inconsistencies of the paraxial approximation

Throughout this chapter, we have employed the paraxial approximation, and it was in-

strumental in the derivation of the Paraxial Helmholtz wave equation, which is why it is

important to briefly talk about the region of validity of this approximation.

We have mentioned in Chapter 2 that any optical beam can be represented as the super-

position of plane waves traveling at different angles with respect to the propagation axis. So

if for simplicity we consider a 2-D case then we can write a plane wave traveling at angle 𝜃

to the z-axis as [59]

𝐸 (𝑥, 𝑧) = exp [−𝑖𝑘𝑥 sin 𝜃 − 𝑖𝑘𝑧 cos 𝜃]

= 𝐴(𝑥, 𝑧) exp[−𝑖𝑘𝑧]
(4.97)

where the amplitude A(x,z) is defined as

𝐴(𝑥, 𝑧) = exp [−𝑖𝑘𝑥 sin 𝜃 − 𝑖𝑘𝑧(1 − cos 𝜃)] (4.98)

to evaluate the validity of the paraxial approximation we shall apply it to the amplitude

A(x,z) and rewrite it in the form

𝐴(𝑥, 𝑧) = exp

[
−𝑖𝑘𝜃𝑥 + 𝑖𝑘 𝜃

2

2
𝑧

]
= exp

[
−𝑖𝑘

(
𝑥𝜃 − 𝜃2

2
𝑧

)]
(4.99)

Now we perform the corresponding first and second derivatives that appear in the paraxial
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Helmholtz Eq. (4.56)

2𝑖𝑘
1

𝐴

𝜕𝐴

𝜕𝑧
≈ 𝑘2𝜃2 (4.100)

1

𝐴

𝜕2𝐴

𝜕𝑥2
≈ −𝑘2𝜃2 (4.101)

If we remember the second derivative is related to the curvature of a path [60] then the

second derivative of Eq.(4.101) can provide us with information about the magnitude of the

angle 𝜃.
1

𝐴

𝜕2𝐴

𝜕𝑧2
≈ − 𝑘

2𝜃4

4
(4.102)

We notice the right side of the Eq.(4.102) is smaller than Eqs. (4.100) and (4.101) by the

ratio 𝜃2/4 and to ensure this ratio is much smaller than one i.e. we stay under the limits of

the paraxial approximations, we need that the next inequality is fulfilled

𝜃 <
1

2
radians (4.103)

With this, we guarantee that the 𝜕2𝐴

𝜕𝑧2
will be an order of magnitude smaller than either of

the other terms [59], or in other words that the magnitude of the wave vector inclination

angle will fall under the paraxial approximation.

Another path to verify the limits of the validity of the paraxial approximation is to

center our attention on the beam radius function, the one given by the normalized Eq.

(4.75), the minimum is found at the 𝑧 = 0 plane, which is called beam waist and it increases

monotonically with z and from the Figure 4.6 we can make the following approximation

tan 𝜃𝑀𝐴𝑋 =
1 + 𝑧2

4

𝑧
(4.104)

and for 𝑧 → ∞ we will have

tan 𝜃𝑀𝐴𝑋 ≈ 1

2
≈ 𝜃𝑀𝐴𝑋 (4.105)

which once again confirms the limits of the paraxial approximation. Moreover, for distances

z much larger than the Rayleigh length the evolution of 𝑤(𝑧) will be linear with z [61], that

is 𝑤(𝑧) ≈ 𝑧 𝜃𝑀𝐴𝑋 , which from Eq. (4.105) translates to 𝑤(𝑧) ≈ 𝑧
2 and this is nothing more
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than the asymptote to Eq.(4.75) which is perfectly illustrated in the Figure 4.6.

Figure 4.6: The Gaussian beam width. The yellow dotted line represents the
asymptote to w(z).

However, even if we stay under the paraxial approximation we will find inconsistencies

that sometimes can lead to inexact results, for example, if we once again pay attention to

the function of the waist beam we will notice it represents the equation of hyperbole while

the wavefronts of the Gaussian beam are represented by a paraboloidal equation which can

be approximated by spheres under the paraxial approximation [61]. This is of relevance

because hyperboles and paraboles (or spheres) are not perpendicular and if the direction of

the energy flux density (hyperbole) is not perpendicular to the wavefronts (parabole) then

one of the results of the electromagnetic theory in vacuum space (Eqs. (2.10 - 2.13)) is

contradicted which tells the Poynting vector points in the propagation direction of the wave

[62].

In most cases we can ignore this contradiction and the use of the paraxial approximation

will provide accurate enough results. Still, we must be careful and not lose sight of the fact

we are working ultimately with an approximation.



Chapter 5

Focusing Gaussian beams and Bessel

beams

We have finally arrived at the main chapter of this work in which we explain the nature of

the Bessel beams, and how their formation as interference of conical waves impacts the way

they behave after passing through a converging thin lens. But first, we present in detail one

last effect related to diffraction, the focal shift.

5.1 Focused fields and focal shift.

Born and Wolf studied the diffraction of a spherical monochromatic wave that passes through

a circular aperture and converges towards the axial focal point, they did so through the Debye

integral and established that the maximum irradiance of the diffracted field is found at the

focal plane [63]. In this plane the field takes the form of the Airy disk which is expected

from the Fraunhofer diffraction theory, as it was shown in the Section 4.2. However, Goubau,

van Nie and Kogelnik [17, 64, 18] found that when focusing a Gaussian beam the maximum

irradiance point does not correspond to the geometrical focus but to a point closer to the

aperture which contradicts the established before.

The Debye integral is an approximation done to the Huygens-Fresnel integral which does

not consider the nature of the aperture. Its boundary conditions are based on the Kirchhoff

diffraction theory, which is why later Li and Wolf [65] showed that the Debye integral may not

60
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always describe the diffracted field with enough accuracy as the Huygens-Fresnel treatment

would do it, they found that for the case of an angular semi-aperture smaller than 45° the

condition for the Debye treatment to be valid is to have the Fresnel number of the circular

aperture to be larger than unity. Even further, they showed that this shift in the location

of the maximum intensity with respect to the focal plane of a focused wave depends only on

the Fresnel number of the aperture and it was called focal shift [66].

Their analysis draws from the Huygens-Fresnel principle applied to a general case of

monochromatic, uniform, converging spherical wave, diffracted at an aperture of radius a in

an opaque screen. Figure 5.1 shows the spherical wave being focused at an aperture, F is the

geometrical focus, O is the origin, and P is an arbitrary point along the axis not too close

to the aperture.

For this analysis two assumptions are necessary

𝑎 ≫ 𝜆 and
(
𝑎

𝑓

)
≫ 1 (5.1)

Figure 5.1: Schematic diagram of a converging spherical wave being focused
after passing through an aperture of radius a.
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The field at the point P is

𝐸 (𝑃) = −
(
𝑖𝑘

2𝜋

)
𝐴exp(−𝑖𝑘 𝑓 )

𝑓

∬
𝑆

exp(𝑖𝑘𝑠)
𝑠

𝑑𝑆 (5.2)

Notice this integral is the Huygens-Fresnel principle defined by Eq.(4.36) with 𝐸 (𝑃1) being

a converging spherical wave and cos 𝜃 ≈ 1 because we are considering small angles (paraxial

approximation) according to Eq. (5.1).

In Eq.(5.2) 𝑠 = 𝑄𝑃 is the distance between the points P and Q, Q lies over the spherical

wavefront product of the diffraction caused by the aperture, and it is defined as

𝑠 = [𝜌2 + ( 𝑓 + 𝑧 − 𝑧′)2]1/2 (5.3)

where

𝜌2 = 𝑥′2 + 𝑦′2 (5.4)

is the square of the distance of the point Q from the 𝑧′-axis.

After some mathematical manipulation and the usage of the assumptions Eq.(5.1) the

distance s can be approximated to

𝑠 ≈
[
( 𝑓 + 𝑧)2 −

(
𝑧

𝑓

)
𝜌2

]1/2
(5.5)

Thus the integral Eq.(5.2) takes the form

𝐸 (𝑃) = −
(
𝑖𝑘 𝐴

2𝜋

)
exp(−𝑖𝑘 𝑓 )

𝑓

∫ 𝑎

0

∫ 2𝜋

0

exp
{
𝑖𝑘

[
( 𝑓 + 𝑧)2 −

(
𝑧
𝑓

)
𝜌2

]1/2}
[
( 𝑓 + 𝑧)2 −

(
𝑧
𝑓

)
𝜌2

]1/2 𝜌𝑑𝜌𝑑𝜙 (5.6)

where 𝜙 is the azimuthal angle in the aperture plane. This integral can be solved with a
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simple change of variable, and the explicit result for the field E(P) is

𝐸 (𝑃) = − 𝐴exp(−𝑖𝑘 𝑓 )
𝑧

×
exp

𝑖𝑘 ( 𝑓 + 𝑧)
(
1 −

(
𝑎

𝑓 + 𝑧

)2
𝑧

𝑓

)1/2 − exp [𝑖𝑘 ( 𝑓 + 𝑧)]


(5.7)

The expression Eq. (5.7) can be further simplified provided that the analysis is restricted to

points P whose distance from the aperture is no less than 0.4f [66], therefore the field E(P)

is reduced to

𝐸 (𝑃) = 𝐴exp(𝑖𝑘𝑧)
𝑧

{
exp

[
−1
2
𝑖𝑘

(
𝑧

𝑓

)
𝑎2

𝑓 + 𝑧

]
− 1

}
(5.8)

At the beginning of this section, we mentioned the Fresnel number of the aperture N is

associated with the focal shift, so a definition of the Fresnel number is needed, namely

𝑁𝑎 =
𝑎2

𝜆 𝑓
(5.9)

Now, before moving forward is necessary to state that Eq.(5.9) is a general expression for

the Fresnel number. For example, if we consider the case of a Gaussian aperture then a will

take the value of the waist of the Gaussian function i.e. 𝑎 = 𝑤, which results in the Fresnel

number of the Gaussian beam

𝑁𝑤 =
𝑤2

𝜆 𝑓
(5.10)

Continuing with the mathematical derivation it is useful to rewrite argument of the Eq.(5.8)

as follows

𝐸 (𝑃) = 𝐴exp(𝑖𝑘𝑧)
𝑧

{
exp

[
−

(
𝑖

2

)
𝑎2

𝜆 𝑓

(
2𝜋

𝑧

𝑓 + 𝑧

)]
− 1

}
= 𝐴

exp(𝑖𝑘𝑧)
𝑧

{
exp

[
−

(
𝑖

2

) (
2𝜋𝑁𝑎

𝑧

𝑓 + 𝑧

)]
− 1

}
= 𝐴

exp(𝑖𝑘𝑧)
𝑧

{
exp

[
−

(
𝑖

2

)
𝑢𝑁

]
− 1

} (5.11)

where 𝑢𝑁 is defined as

𝑢𝑁 = 2𝜋𝑁𝑎
𝑧

𝑓 + 𝑧 (5.12)
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With Eq. (5.12) it is easier to show the relationship between the Fresnel number and the

focal shift, and it is straightforward to obtain the expression for z in terms of 𝑢𝑁 which will

be useful later

𝑧 =
𝑢𝑁

2𝜋𝑁𝑎 − 𝑢𝑁
𝑓 (5.13)

with both of these definitions Eq. (5.12) and (5.13), we may rewrite the expression for the

field on point P as

𝐸 (𝑃) = 𝐴
(
2𝜋𝑁𝑎 − 𝑢𝑁

𝑓 𝑢𝑁

)
exp

(
𝑖𝑘 𝑓 𝑢𝑁

2𝜋𝑁𝑎 − 𝑢𝑁

) [
exp

(
− 𝑖
2
𝑢𝑁

)
− 1

]
(5.14)

Now as was mentioned, the focal shift manifests as an apparent displacement of the point of

maximum intensity from the geometrical focal point so to verify this we need to center our

attention on the intensity of the field E(P)

𝐼 (𝑃) = |𝐸 (𝑃) |2 (5.15)

Substitution of the Eq.(5.14) into Eq.(5.15) gives as a result

𝐼 (𝑃) = 𝐼0
(
1 − 𝑢𝑁

2𝜋𝑁𝑎

)2 [
sin

( 𝑢𝑁
4

)( 𝑢𝑁
4

) ]2
(5.16)

where

𝐼0 =

(
𝜋𝑎2 |𝐴|
𝜆 𝑓 2

)2
(5.17)

is the intensity at the geometrical focus F.

Additionally, it is well known that to find the point of maximum intensity along the axis

one must find the roots of the derivative of the expression for the intensity, i.e.

d𝐼

d𝑧
≡ d𝐼

d𝑢𝑁

d𝑢𝑁
d𝑧

= 0 (5.18)

Equation (5.18) is then satisfied for the solutions of any of the following three equations [66]:(
1 − 𝑢𝑁

2𝜋𝑁𝑎

)
= 0 (5.19)
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sin
( 𝑢𝑁
4

)( 𝑢𝑁
4

) = 0 (5.20)

tan
( 𝑢𝑁
4

)( 𝑢𝑁
4

) = 1 − 𝑢𝑁

2𝜋𝑁
(5.21)

The Eq. (5.19) is never zero for any value of 𝑢𝑁 , but we find the roots of Eq.(5.20) at the

points:

𝑢𝑁 = ±4𝑚𝜋, 𝑚 = 1, 2, 3, ... (5.22)

At these points, we found a minimum of intensity. For its part, Eq.(5.21) is a transcendental

function, so to find the roots of the equation it is required to plot the two functions and locate

the intersection points which is what we illustrate in Figure 5.2, the blue curve represents

the function on the left side of the Eq.(5.21) and the orange line its right side.

Figure 5.2: Roots of the transcendental function. The blue line is the function
on the left side of the equation and the orange line represents its right side.

From Figure 5.2 we observe we have a root between each of the values given by Eq.(5.22),

this tells us the roots of the transcendental function represents the maximal points of inten-

sity. The greatest maximum intensity is located at the position 𝑢𝑁 in the range −2𝜋 < 𝑢𝑁 < 0

[66], marked by the green dot in Figure 5.2. The value of this green point can be found for

different Fresnel numbers and using the expression for z defined in Eq.(5.13) we can calculate

the value of the focal shift and its dependence with the Fresnel number, which is shown in
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Figure 5.3. Figure 5.3 shows that when 𝑁𝑎 ≤ 3 the relative focal shift is bigger than 10% of

Figure 5.3: The relative focal shift Δ 𝑓 / 𝑓 vs. the Fresnel number of the aperture.

f, and as the Fresnel number increases this focal shift decreases. This tells us for very large

Fresnel numbers the difference in intensity at the geometrical focus and the "real" focus is

minimal. However, the main result of this analysis is the confirmation that the existence of

the focal shift is a result of the aperture size, because if 𝑎 → ∞, i.e. no aperture, then the

focal shifts tend to zero, as expected.

With the purpose of providing an expression to calculate the focal shift, we present an

approximation done for small values of 𝑢𝑁 .

For small values of 𝑢𝑁 the Taylor series expansion of the tangent can be applied here

tan
(𝑢𝑁
4

)
≈ 𝑢𝑁

4
+ 1

3

(𝑢𝑁
4

)3
(5.23)

Then when it is substituted in the transcendental Eq.(5.21) and solved for 𝑢𝑁 it is found

that the point on the axis where the intensity is maximum is

𝑢′𝑁 ≈ − 24

𝜋𝑁
(5.24)

This value is substituted in Eq. (5.13) to find the value of the focal shift, the reason why we
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rename this specific value of z as Δ 𝑓

𝑧 |𝑢′
𝑁
= Δ 𝑓 ⇒ Δ 𝑓 ≈ − 𝑓

1 + 𝜋2𝑁2
𝑎

12

(5.25)

Notice that regardless of the value of the Fresnel number N the focal shift is always negative

which tells us the shift is always towards the aperture. This formula calculates the focal

shift of a focused spherical wave with enough accuracy for apertures whose Fresnel number

𝑁𝑎 is greater than 12 [66] and it is very similar to the one found for the case of a focused

Gaussian beam as we will see in the next section.

Additionally, emphasis on three important facts used to find the focal shift expression

should be made, first, converging spherical waves were considered, two, we were concerned

with finding the the diffracted field at a point P around the geometrical focal plane and

three, we used the maximum intensity to find the position of the displacement. These three

points are of relevance because if we look at Eq.(5.16) we will understand we calculated the

diffraction pattern of the spherical wave that has passed through an aperture (lens) and

then we were interested in the point where this diffraction pattern reached its maximum

intensity, that is, the focal shift is related to the point where the diffracted field distribution

is maximum and consequently, this displacement is a consequence of diffraction.

Another study about focused beams found a technique based on the Fourier transform

to calculate the focal shift and applied it to annular beams and came to the same conclusion

about the focal shift being always towards the aperture and its dependency on the value of

the Fresnel number 𝑁𝑎 with the addition that for annular beams the value of the ratio of the

central obscuration plays a role too, more precisely if this ratio increases then the focal shift

increases too [67], which further proves the focal shift as a diffraction related effect because

it depends on the shape of the aperture.

5.2 Relation of Gaussian beams and ABCD Q-parameter

To study the transformations of a Gaussian beam when transmitted through an optical

system it is often used the parameter Q and the ABCD matrix law.
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In Chapter 4 we found the parameter Q when we obtained the amplitude distribution of

a Gaussian beam and the definitions for its parameters that describe the beam properties

such as the waist beam w(z ) and radius R(z ).

However, before proceeding to explain the ABCD method it is inevitable to clarify that

from here on we will not be using the normalized definitions of the parameters because as

we explained in the previous chapter while it has been proven to be easier to mathematically

manipulate the expression in their normalized versions, there are circumstances where the

problem gives results that are more directly understood using the standard definitions, which

happens to be the case here.

5.2.1 Focusing of Gaussian beams: ABCD method

The ABCD law relates the Q-parameters of an incident (𝑄1) and transmitted (𝑄2) Gaussian

beam through an optical system described by the transmission matrix ABCD [16], i.e.

𝑄2 =
𝐴𝑄1 + 𝐵
𝐶𝑄1 + 𝐷

(5.26)

Where A, B, C, D are the elements of the matrix. This equation describes the effects an

optical paraxial system has on a Gaussian beam. For this section, we are interested in the

effects of a thin lens of focal length f on Gaussian beams.

Figure 5.4 illustrates the case we will analyze, the incident Gaussian beam has a Q-

parameter 𝑄1 which can be written as

1

𝑄1
=

1

𝑅1
− 𝑖 𝜆

𝜋𝑤2
1𝑛

(5.27)

If we consider the distance 𝑑1 is the position where 𝑅1 → ∞, that is where the wavefront of

the beam is plane then
1

𝑄1
= −𝑖 𝜆

𝜋𝑤2
1𝑛

=
1

𝑖𝐿𝐷1
(5.28)

where 𝐿𝐷1 = 𝜋𝑛𝑤2
1/𝜆. With the use of the ABCD matrix method we can find the Q-parameter
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Figure 5.4: Diagram of a Gaussian beam transmitted through a thin lens of
focal length f.

of the transmitted Gaussian beam (𝑄2) when we consider the matrix to be


𝐴 𝐵

𝐶 𝐷

 =


1 𝑑2

0 1



1 0

− 1
𝑓

1



1 𝑑1

0 1

 (5.29)

The expression for 𝑄2 is found with the use of Eqs. (5.28) and (5.29):

𝑄2 =
𝐴𝐶𝐿2

𝐷1 + 𝐵𝐷 + 𝑖𝐿𝐷1
(𝐿𝐷1𝐶)2 + 𝐷2

(5.30)

To ensure the position 𝑑2 marks the point of the minimum waist of the transmitted Gaussian

beam, i.e. the position where the beam is focused, we need the real part of Eq.(5.30) to be

zero. This condition leads us to the expression:

𝐿𝐷1 = −𝐵𝐷
𝐴𝐶

(5.31)

where according to Eq.(5.29), 𝐴 = 1−𝑑2/ 𝑓 , 𝐵 = 𝑑1+𝑑2−(𝑑1𝑑2/ 𝑓 ), 𝐶 = −1/ 𝑓 and 𝐷 = 1−𝑑1/ 𝑓 .
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If we solve Eq.(5.31) for 𝑑2 − 𝑓 we obtain

𝑑2 − 𝑓 =
(𝑑1 − 𝑓 ) 𝑓 2

𝐿2
𝐷1 + (𝑑1 − 𝑓 )2

(5.32)

which represents the position of the minimum waist we were looking for. From Eq.(5.32),

we can obtain the expression for the value of the transmitted beam waist

𝑤2
2 =

𝑤2
1 𝑓

2

𝐿2
𝐷1 + (𝑑1 − 𝑓 )2

(5.33)

Eq. (5.32) is the same result H. Kogelnik found in 1965 [18], and it gives us the position

of the waist of the transmitted Gaussian beam 𝑤2 in terms of the distance the incident

Gaussian beam is from the lens and the focal length of the latter.

If we consider the input Gaussian beam has its waist at the lens position, i.e. 𝑑1 = 0 and

use Eq.(5.32) to obtain the relative distance between the point where the Gaussian beam is

focused and the geometrical focal point, we have that:

𝑑2 − 𝑓 =
− 𝑓 3

𝐿2
𝐷1 + (𝑑1 − 𝑓 )2

(5.34)

It is straightforward to see the value of 𝑑2 is then

𝑑2 =
𝑓

1 +
(
𝐿𝐷1
𝑓

)2 =
𝑓

1 + (𝜋𝑛𝑁𝑤)2
(5.35)

Notice the denominator is always a positive quantity and because we are considering distances

here the Eq.(5.35) tells us the Gaussian beam is not focused at the geometrical focal plane

of the lens but at the shorter distance and closer to the lens, that is, Eq.(5.35) is the focal

shift of a Gaussian beam obtained with the use of the ABDC method. Further, note we have

written 𝐿𝐷1 in terms of the Fresnel number of the Gaussian beam Eq. (5.10) to explicitly

show the focal shift obtained in Section 5.1 (Eq. (5.25))is indeed similar to the one obtained

here.

Other approaches to this subject can be made by taking the Hyugens-Fresnel integral
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as a starting point and instead of using the Q-parameter the attention is centered on the

apertures, this approach provides a more general analysis of the problem and highlights once

again the focal shift is due to the presence of apertures, soft or hard, which is why the

following section is dedicated to this subject.

5.2.2 Focal shift of a Gaussian beams.

Focal shift on-axis.

In Section 5.1, we established the definition and analytical expression of the focal shift, but

for this section, we center our attention on the particular case of the focal shift experimented

by an apertured Gaussian beam.

The process of finding the analytical expression is analogous to the general case in Section

5.1 with the obvious difference that the field that emerges from the focusing lens is expressed

as a monochromatic Gaussian beam

𝐸 (𝜌, 𝑧) = 𝐴 exp
(
− 𝜌2

𝑤2(𝑧)

)
exp(𝑖𝑘 𝑓 )

𝑓
(5.36)

where the periodic time-dependent factor has been omitted and the last term represents the

spherical converging wave created by the focusing lens. The waist of the beam is located in

the plane of the lens.

The field is inserted into the Huygens-Fresnel integral Eq.(4.36) to find the diffracted

field at an arbitrary point P on the propagation axis around the focal plane

𝐸 (𝑃) = −
(
𝑖𝑘

2𝜋

)
𝐴exp(−𝑖𝑘 𝑓 )

𝑓

∬
𝑆

exp

(
− 𝜌

2

𝑤2

)
exp(𝑖𝑘𝑠)

𝑠
𝑑𝑆 (5.37)

where similarly to Section 5.1, s is the distance between the point Q on the reference plane

and the P the observation point along the axis (see Figure 5.1), defined as

𝑠 = [𝜌2 + ( 𝑓 + 𝑧 − 𝑧′)2]1/2 (5.38)
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where

𝜌2 = 𝑥′2 + 𝑦′2 (5.39)

is the square of the distance of the point Q from the 𝑧′-axis. The expression for s can be

approximated for paraxial waves to [68]

𝑠 ≈
[
( 𝑓 + 𝑧)2 −

(
𝑧

𝑓

)
𝜌2

]1/2
(5.40)

Further, Eq.(5.40) can be expanded into a power series:

𝑠 ≈ ( 𝑓 + 𝑧)
[
1 − 1

2

(
𝜌

𝑓 + 𝑧

)2 (
𝑧

𝑓

)
− 1

8

(
𝜌

𝑓 + 𝑧

)4 (
𝑧

𝑓

)2
− ...

]
(5.41)

However, two different approximations are considered for the second term that accompanies

the Gaussian term in the integral Eq. (5.37). The s on the denominator is approximated by

the first term of Eq. (5.41) and the s on the exponential function by the first two terms of

the powers series.

For the approximation done in the denominator to be valid, the first term of the expansion

has to be smaller than unity, which leads to the condition [68]:

𝑧 > −0.5 𝑓 (5.42)

This tells us, that the results we obtain with the first approximation are accurate for points

P whose distance from the focal plane is at least half of the focal length and not closer than

that.

For the second approximation, the following condition must be met to ensure it is valid:����� 𝑘8 (
𝜌

𝑓 + 𝑧

)4 (
𝑧

𝑓

)2����� ≪ 2𝜋 (5.43)
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which rewritten in terms of the Fresnel number of the aperture (Eq.(5.9)) yields:

(
𝑎

𝑓

)2
≪ 8

𝑁𝑎


���1 + 𝑧

𝑓

���3(
𝑧
𝑓

)2  (5.44)

But the paraxial wave approximation marks that of (𝑎/ 𝑓 )2 ≪ 1, so the equation we need to

solve to obtain the range of validity of the second approximation is

1 =
8

𝑁𝑎


(
1 + 𝑧

𝑓

)3(
𝑧
𝑓

)2  (5.45)

where we have already considered 𝑧 > − 𝑓 , we solve Eq.(5.45) numerically and find a solution

𝐾 (𝑁𝑎) that depends on the Fresnel number. The plot of this function is presented in Figure

5.5, alongside the line 𝑧/ 𝑓 = −0.5 from Eq.(5.42). So the second condition to ensure the

Figure 5.5: The region of validity is the space above both of the curves, specified
by the Eqs.(5.42) and (5.45).

results we obtain with the approximations are accurate is

𝑧 ≥ 𝐾 (𝑁𝑎) 𝑓 (5.46)
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Thus provided the inequalities of Eq.(5.42) and (5.46) hold and after long calculations, it is

possible to find the field on the P on-axis [68]

𝐸 (𝑃) = 𝑖𝐴
(
𝜋𝑁𝑎 − 𝑢

𝑓

)
exp

(
𝑖𝑘 𝑓

𝑢

𝜋𝑁𝑎 − 𝑢

)
exp(−𝛼 − 𝑖𝑢) − 1

𝛼 + 𝑖𝑢 (5.47)

where N is the Fresnel number of the aperture defined in Eq.(5.9) and 𝛼 is the coefficient of

truncation of the Gaussian beam

𝛼 =

( 𝑎
𝑤

)2
(5.48)

and u is a dimensionless parameter dependent on the variable z, analogous to Eq.(5.12).

𝑢(𝑧) = 𝜋𝑁𝑎𝑧

𝑓 + 𝑧 =
𝑢𝑁

2
(5.49)

The intensity at the point P will be [68]

𝐼 (𝑃) = 𝐼 (𝐹)
(
1 − 𝑢

𝜋𝑁𝑎

)2
𝛼2

𝛼2 + 𝑢2
cosh𝛼 − cos 𝑢

cosh𝛼 − 1
(5.50)

where

𝐼 (𝐹) =
(
𝜋 |𝐴|
𝑓

)2
[1 − exp(−𝛼)]2 𝑁2

𝑤 (5.51)

represent the intensity at the lens plane and 𝑁𝑤 is the Fresnel number of the waist of the

incident Gaussian beam defined by Eq. (5.10).

In a similar way as in the case presented in Section 5.1, the mathematical procedure

leads to a transcendental equation that can be solved numerically to find the location 𝑢𝑀 of

the principal maximum in intensity, substituting this principal root 𝑢𝑀 into Eq.(5.49) the

expression for the relative focal shift of the Gaussian beam case reads as [68]

Δ 𝑓 = 𝑓
𝑢𝑀

𝜋𝑁𝑎 − 𝑢𝑀
(5.52)

To better analyze the correlation between the focal shift and the Fresnel numbers it is useful
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to redefine the coefficient of truncation as

𝛼 =
𝑁𝑎

𝑁𝑤
(5.53)

this will allow us to examine two limiting cases, the first one happens when 𝛼 ≫ 1 which

translates to

𝑁𝑎 ≫ 𝑁𝑤 (5.54)

From the definitions of both Fresnel numbers, it is straightforward to see this inequality

happens when the radius of the aperture is larger than the waist of the Gaussian beam,

which is referred to as weak truncation. For this case, the focal shift depends majorly on

the Fresnel number of the beam.

Additionally, for this case, the focal shift of the Gaussian beam can take the following

form [68]

Δ 𝑓 = − 𝑓

1 + 𝜋2𝑁2
𝑤

(5.55)

which happens to be basically the same as Eq.(5.25).

The opposite case is when 𝛼 ≪ 1 and then we have

𝑁𝑎 ≪ 𝑁𝑤 (5.56)

for this case the waist of the Gaussian beam is larger than the aperture radius, this is called

strong truncation, and contrary to the previous case the focal shift will depend mainly on

the Fresnel number of the aperture. When the waist w tends to infinity we obtain the same

case presented in Section 5.1.

In summary, we calculated the diffracted field of a Gaussian field that has passed through

an aperture (lens) and then found the point of maximum intensity because once again,

diffraction produces a focal shift and this effect is the relative displacement of the diffracted

pattern with respect to the geometric focal point. The question that arises now is if this

focal shift happens for beams whose propagation axis is tilted.
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Focal shift of tilted off-axis of beams.

The focal shift is present in off-axis cases as well, and it also depends on the Fresnel numbers,

as expected. This means that regardless of the focusing set-up used, the amplitude distri-

bution of the beam, or the tilt angle if one beam has the same Fresnel number as another

they are both going to suffer the same focal shift [69].

If we consider an off-axis focusing, monochromatic beam with an amplitude distribution

given by a real function 𝑝(𝑟0, 𝜙0) we can find the intensity distribution along a tilted chief

axis characterized by the variable 𝜃. For this approach, the scalar paraxial approximation

was used, and the Fresnel diffraction formula for this case yields [69]

𝐼 (𝑧) =
[

2𝜋

𝜆 𝑓 (𝑧 + 𝑓 )

]2 ����∫ ∞

0
𝑡 (𝑟0) exp

[
−2𝜋 𝑧

2𝜆 𝑓 (𝑧 + 𝑓 ) 𝑟
2
0

]
𝑟0𝑑𝑟0

����2 (5.57)

where z denotes the on-axis coordinate and

𝑡 (𝑟0) =
1

2𝜋

∫ 𝜋

−𝜋
𝑝𝑟 (𝑟0, 𝜙0) exp

[
−𝑖2𝜋𝑟0

sin𝛼

𝜆
sin(𝜙1 + 𝜙0)

]
𝑑𝜙0 (5.58)

with

𝑝(𝑟0, 𝜙0) = 𝑝(𝑟0 sin 𝜙0, 𝑟0 cos 𝜙0) (5.59)

here 𝑝(𝑟0, 𝜙0) represents the amplitude distribution of the beam at the 𝑥0-𝑦0 plane, for this

formulation this function acts as the aperture function as well. The angle 𝜙0 and 𝑟0 are the

azimuthal and radial coordinates in circular coordinates of the reference place respectively,

and 𝜙1 is the azimuthal coordinate that locates the focus point on the chief axis. This is

illustrated in the Figure 5.6. To find an expression for the relative focal shift along the

tilted axis with respect to the off-axis focal point the Eq.(5.57) is expanded into a Taylor

series around the focal point from which it is possible to determine the position of maximum

intensity which leads to the expression [69]:

Δ 𝑓 = − 𝑓

𝜋2𝑁2
𝑔

(5.60)

where the parameter 𝑁𝑔 is referred to as the generalized Fresnel number whose main differ-
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Figure 5.6: Schematic representation of the focusing set-up.

ence from the previous definitions is the use of the standard deviation of the function 𝑡 (√𝑟0)

denoted by 𝜎

𝑁𝑔 =
𝜎

𝜆 𝑓
(5.61)

where 𝜎 is given by

𝜎 =

[
𝑚2

𝑚0
−

(
𝑚1

𝑚0

)2]1/2
(5.62)

with

𝑚𝑛 = 2

∫ ∞

0
𝑡 (𝑟0)𝑟2𝑛+1𝑜 𝑑𝑟0 (5.63)

From Eq.(5.60) it is evident the displacement produced by the focal shift is the same for

beams with the same Fresnel number regardless of the focal point laying on-axis or off-axis,

because the equation does not depend on the tilted factor 𝜃. Additionally, notice from the

definition of expression of the focal shift for off-axis cases that the negative sign confirms

that the point of maximum irradiance along the chief axis is closer to the aperture, which

was expected.

Now that we understand the concept of focal shift, we can move on to the definition of

Bessel beams, and their focusing properties where we explain further how the effect of focal

shift is not related to the maximum in intensity found when propagating this beam.
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5.3 Bessel beams, description as traveling waves

In 1987, J. Durin presented a solution to the wave equation in free-space that represented

what he called diffracted-free beams, the simplest one being the Bessel beam. He defined

the amplitude of this kind of beam in the form [19]:

𝐸 (r, 𝑡) = exp [𝑖(𝑘𝑧𝑧 − 𝜔𝑡)]
∫ 2𝜋

0
exp [𝑖𝑘𝑟 (𝑥 cos 𝜙 + 𝑦 sin 𝜙)] d𝜙

2𝜋

= exp [𝑖(𝑘𝑧𝑧 − 𝜔𝑡)] 𝐽0(𝑘𝑟𝜌)
(5.64)

Where 𝜌2 = 𝑥2 + 𝑦2 and 𝐽0 is the zeroth-order Bessel function of the first kind.

This Helmholtz wave equation solution is exact and considered to be impractical for

real-life applications, as such, the study of Bessel beams is centered in the apertured kind.

However, regardless of the transverse limitation applied to the Bessel function of zeroth-

order, these beamlike waves undergo minimal spreading due to diffraction in comparison

with other wave propagation like Gaussian beams [21, 70]. which is why the Bessel beams

are still to this day referred to as "diffraction-free", but we will see that in reality, these

beamlike waves are a result of the interference of fundamental waves and not per-see beams.

An interpretation of the Bessel beam that provides a complete formalism to explain the

nature of the beamlike structure, it describes these beams as the superposition of fundamental

solutions of the wave equation with cylindrical symmetry [25].

From Chapters 2 and 3 we know that to find the solution of the wave equation in cylin-

drical coordinates we use the method of separation of variables which leads to the Bessel

differential equation of order zero for the variable r.

d2𝐻

d𝑟2
+ 1

𝑟

d𝐻

d𝑟
+ 𝑘2𝑟𝐻 = 0 (5.65)

Whose general solution is the Hankel functions Eqs. (3.32) we represented in Section 3.1.3.

Here we have conveniently changed the nomenclature from R(r) to H(r) in Eq. (5.65).

Most times only one of the two functions of the Hankel equation is considered as the solu-

tion, however, neither the Bessel function nor the Neuman function satisfies the Sommerfeld

radiation condition, which as we explained in Chapter 4 states that no waves incoming from
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infinite sources contribute to the field amplitude distribution. This tells us we can not use

these solutions separately to describe the propagation of light and that the general solution

to the wave equation is a linear combination of both equations, the Bessel and the Neuman.

The main reason for many authors ignoring the second solution of the differential equation

is the singularity at the origin (𝑟 = 0) as illustrated in Figure 5.7, but soon we will see this

feature has a physical explanation. Furthermore, we also established in Section 3.1.3 that

the general solution of the wave equation in cylindrical coordinates is the superposition of

two conical traveling waves (see Eq. (3.34)). In other words, the correct solution of the wave

equation in cylindrical coordinates must be the Hankel equations.

Figure 5.7: Bessel function of the first kind and second kind, both of order 0.

In [25] the method of characteristics is used to obtain the characteristic surfaces to have

a geometrical interpretation of the Hankel solutions because as we established in Chapter 3

these constant phase surfaces are related to the wavefronts of the beams.

The equation of characteristics surfaces associated with the wave equation in cylindrical

coordinates is then (
𝜕𝜑

𝜕𝑟

)2
+

(
𝜕𝜑

𝜕𝑧

)2
− 1

𝜈2

(
𝜕𝜑

𝜕𝑡

)2
= 0 (5.66)

In this case the phase 𝜑 has the value of 𝜑 = ±𝑘𝑟𝑟 + 𝑘𝑧𝑧 − 𝜔𝑡 = constant so the Eq.(5.66) is
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rewritten as (
𝜕𝑡

𝜕𝑟

)2
+

(
𝜕𝑡

𝜕𝑧

)2
=

1

𝜈2
(5.67)

The solution of this equation is the conic surface 𝜑 = 𝑟2 + (𝑧 − 𝑧0)2 + 𝜈2(𝑡 − 𝑡0)2 = 0 and

the vertex (0, 𝑧0, 𝑡0) is the singular point of the surface. This result supports the fact

that the wavefronts of the solutions of the wave equation in cylindrical coordinates are

conic. So following the solution obtained through the method of separation of variables, the

fundamental solutions of the wave equation with cylindrical symmetry are [25]

𝐸𝑜𝑢𝑡 (𝑟, 𝑧, 𝑡) = [𝐽0(𝑘𝑟𝑟) + 𝑖𝑁0(𝑘𝑟𝑟)] exp(𝑖𝑘𝑧𝑧 − 𝑖𝜔𝑡) (5.68)

𝐸𝑖𝑛 (𝑟, 𝑧, 𝑡) = [𝐽0(𝑘𝑟𝑟) − 𝑖𝑁0(𝑘𝑟𝑟)] exp(𝑖𝑘𝑧𝑧 − 𝑖𝜔𝑡) (5.69)

The nomenclature 𝐸𝑜𝑢𝑡 (𝑟, 𝑧, 𝑡) and 𝐸𝑖𝑛𝑡 (𝑟, 𝑧, 𝑡) represents an outgoing conic wave and an

incoming wave respectively, both with its origin as the z -axis. This behavior is deduced from

the method of characteristics which indicates a positive solution with an outward-pointing

normal vector and a negative solution with an inward-pointing normal vector.

Notice that since the z -axis is the origin for both solutions, 𝐸𝑖𝑛 (𝑟, 𝑧, 𝑡) becomes 𝐸𝑜𝑢𝑡 (𝑟, 𝑧, 𝑡)

after passing through it. As a result of keeping the complete general solution of the wave

equation, the outgoing Hankel waves of Eqs. (5.68) and (5.69) satisfy the Sommerfeld radi-

ation condition as 𝑟 → ∞ [25].

For the purpose of providing a physical explanation of the singularity that we talked

about before we make the dependence on z zero (𝑘𝑧 = 0) and the attention is centered in the

cylindrical case (r,t). Now the fundamental solution, the Hankel function, is formed by a

non-singular term (Bessel function) and a singular one (Neumann function), as we mentioned

at the start of the section the latter is often ignored under the statement of considering only

“real” solutions however while it is correct to say any linear combination of the Bessel and

Neuman functions is a solution to the wave equation, we are interested in the one given by

Eqs.(5.68) and Eq.(5.69), which represent cylindrical wavefronts collapsing and being created

at the longitudinal z-axis because the general solution must represent traveling waves, and it

is precisely this source-sink duality of the solution which gives rise to the physical singularity
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[25].

Additionally, taking into account the last part it is logical to assume the linear combina-

tion creates a region where the resulting standing waves exist, i.e. there is a region where

the Hankel waves superpose. So when 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡 are added the singular parts are canceled

leaving only the Bessel function.

𝐸𝑖𝑛 (𝑟, 𝑧, 𝑡) + 𝐸𝑜𝑢𝑡 (𝑟, 𝑧, 𝑡) = 2𝐽0(𝑘𝑟𝑟) exp(𝑖𝑘𝑧𝑧 − 𝑖𝜔𝑡) (5.70)

Figure 5.8: Esquematic diagram of the region of existence of the Bessel beam.

This equation tells us the Bessel beams are the result of the superposition of conic trav-

eling waves. Another important result from Eq. (5.70) is the fact the incoming waves that

form the solution should be produced at a finite distance from the z -axis in order to satisfy

the Sommerfeld radiation condition and consequently, the Bessel beam must exist in a finite

transverse 𝑥 − 𝑦 space [25], contrary to what the general interpretation of the Bessel beams

states.

Now, from a geometrical perspective, the conic nature of the traveling waves means the
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interference region of both Hankel waves is conic and it is within this region where the Bessel

beam exists which agrees well with the literature [19]. Outside this cone of interference, we

have an outgoing diffracted Hankel wave as illustrated in Figure 5.8. The semi-angle of the

cone of existence is given by tan 𝜃0 = 𝑘𝑟/𝑘𝑧, and this value, as well as the radius aperture

R of the generating system, describes the range of existence of the Bessel beam, that is

𝑧𝑀𝐴𝑋 = 𝑅/tan 𝜃0 [19, 25]. Within the cone region, the light would appear to travel parallel

to the optical axis z, since instantaneously it forms a transverse stationary wave in space

[26].

However, we must not lose sight of the conical waves that created those standing waves,

these are traveling in a direction dictated by the cone of wave vectors. This fact explains one

of the apparently non-physical features that the Bessel beams have, the self-healing property,

since the light that "self-reconstructs" was not blocked by the opaque object [26].

Further, from Figure 5.8 it is obvious the outgoing Hankel wave is subjected to diffraction,

and the energy of the system is lost as a consequence. However, simulations have proved

Bessel beams can be created with finite energy [25].

Lastly, this description of the Bessel beams helps us understand the propagation of aper-

tured Bessel beams. The aperture function modulates the Hankel waves that constitute the

beam, and this function is subjected to diffraction effects which will impact on the propa-

gation of the conical waves. Outside the cone of existence, the outgoing Hankel wave will

be modulated by the diffraction pattern of the aperture function, and within the cone, the

diffraction pattern of the aperture function follows the path of the conical waves, i.e. we

have a modulating function traveling along an off-axis direction.

5.3.1 Whittaker integral and propagation invariant beams: inter-

ference of conical waves.

Whittaker found that a solution of the Helmholtz wave equation that represents non-diffracting

optical field can be written as a plane wave expansion [71]

𝐸 (𝑥, 𝑦, 𝑧) = exp(𝑖𝑘𝑧𝑧)
∫ 𝜋

−𝜋
𝐴(𝜑) exp [𝑖𝑘𝑡 (𝑥 cos 𝜑 + 𝑦 sin 𝜑)] 𝑑𝜑 (5.71)
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this equation is a reduced form of the integral Whittaker proposed, where 𝐴(𝜑) is a complex

function corresponding to the frequency spectrum where the set of wavevectors have the same

angle 𝜃0 = arctan(𝑘𝑧/𝑘) with respect to the propagation axis and the tips lie on a circular

delta of radius 𝑘𝑟 , for this reason it can be called the annular spectrum [29]. The annular

spectrum is responsible for the transverse structure of the field when 𝐴(𝜑) = exp(𝑖𝑚𝜑) the

field E(x,y,z ) is a mth-order Bessel beam 𝐽𝑚 (𝑘𝑟𝑟 exp(𝑖𝑚𝜑)). If 𝐴(𝜑) = 1 then a Bessel

function is obtained

𝐽0(𝑥, 𝑦) =
∫ 𝜋

−𝜋
exp [𝑖𝑘𝑡 (𝑥 cos 𝜑 + 𝑦 sin 𝜑)] 𝑑𝜑 (5.72)

This equation tells us the Bessel beam is formed by multiple tilted plane waves, and each

wave vector of these plane waves lies on a cone, and when we spin the plane waves around

the z -axis we obtain a conical wavefront [26] as illustrated in Figure 5.9a. This mathematical

interpretation agrees with the stated in the previous section because then we can conclude

the wave vectors form a cone with two conic wavefronts associated, one incoming and the

other outgoing, this is illustrated in Figure 5.9b. In the last section, we explained why these

traveling conical waves are fundamental when talking about the propagation of diffraction-

free beams.

But to further explain this last part, we shall start with a simple example, the superposi-

tion of two tilted plane waves which results in a cosine interference pattern. This interference

pattern presents a change of phase of 𝜋 because we have dark and bright fringes. If we pay

attention only to this pattern ignoring the plane waves that formed it we can consider it

a "cosine beam" that propagates parallel to the z -plane and it is diffraction-free within a

delimited region, but this interpretation is erroneous. The light is traveling following an

off-axis direction, the plane waves are the ones propagating and the cosine beam is merely

the interference of them, i.e. the cosine beam is a transverse stationary wave in space. This

same logic is applied to the Bessel beam case and other families of invariant beams. In

summary, the most important result of these two last sections is that Bessel beams are the

result of the interference of two traveling conical waves.

At this point, one could say it has been proved enough that Bessel beams are not rig-
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(a) Each plane has associated a
wavevector whose tips lie on a
circle.

(b) Rotating the wave vectors two conic surfaces are created,
these represent the conical wave fronts.

Figure 5.9: Cone of wavevectors of the Bessel beam with its associated conic wavefronts.

orously speaking diffraction-free beams nonetheless the Bessel function is indeed a solution

of the Helmholtz equation, the same as the Gaussian beam we talked about in Chapter 4

however we must talk about the reason behind the latter is affected by diffraction and not

the former, at least mathematically speaking.

If we recall from Section 4.3.1 to find the amplitude distribution of the Gaussian beam

Eq. (4.74) we established as an initial condition a Gaussian function Eq.(4.64), physically

this represents an aperture, a soft one, and thus Gaussian beams suffer diffractive spreading

because as we clarified in Section 4.1 the diffraction is produced by an aperture or obstacle.

In Durin’s case when he proposed the Bessel beams as a solution to the Helmholtz

equation no initial conditions were imposed, i.e. his solution is for free open space. Another

well-known solution in free open space is the plane waves, as we saw in Chapter 3, which also

happen to be considered of infinite energy as Durin himself stated, but analogous to what

happens with Bessel beams, in both cases, this happens due to the lack of consideration

about the limitations in space of the source, that is, Durin solved the Helmholtz equation

without physical transversal limits. Additionally, he does not take into account the Rayleight-

Sommerfeld radiation condition we explicated in Chapter 4, which tells us we cannot consider

infinite sources. Thus, his mathematical result is not incorrect but calling this solution

"diffraction-free" is. This erroneous interpretation of the Bessel beams is one of the examples
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we referred to in Chapter 4 when we mentioned the importance of understanding the origin

of the diffraction theories.

5.4 Focusing of Bessel beams.

Now that we have established Bessel beams in terms of constituent conical waves represented

by Hankel functions and explained how the aperture function will modify these conic waves

we will center our attention on the focusing characteristics of apertured Bessel beams.

When a Bessel beam passes through a lens the conical waves converge into a ring structure

in the geometrical focal plane, as we will demonstrate in the first section of this chapter. Still,

it has been proved before that if we follow the focusing evolution of the traveling conical

waves it can be found a position behind the focal plane where the axial and transverse

intensities of the beam reach a maximum value, this point can be viewed as a pseudo-focal

point for the Bessel beams [28, 29, 30].

Furthermore, a geometrical approach can be applied to find the analytical expression for

the position of the pseudo-focal point, the axial intensity, and the transverse magnification

of the Bessel beam to have its complete tridimensional characterization.

5.4.1 Bessel beam at the focal plane.

While we cannot find analytically an expression that describes the propagation of a Bessel

beam that has passed through a thin lens, we can find the diffracted field of the apertured

Bessel function at the focal plane, which is what we will do next, but before doing that we

present the normalization of the Fresnel integral we obtained in Section 4.2.

From Eq.(4.44) the standard Fresnel integral is

𝐸 (𝑥, 𝑦, 𝑧) = exp(𝑖𝑘𝑧)
𝑖𝜆𝑧

exp
[
𝑖
𝑘

2𝑧
(𝑥2 + 𝑦2)

] ∬ ∞

−∞

{
𝐸 (𝑥′, 𝑦′, 𝑧 = 0)exp

[
𝑖
𝑘

2𝑧

(
𝑥′2 + 𝑦′2

)]}
× exp

[
−𝑖𝑘
𝑧
(𝑥𝑥′ + 𝑦𝑦′)

]
𝑑𝑥′𝑑𝑦′

(5.73)
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to normalize it we propose a new set of variables scaled to 𝑤 and the Rayleigh lenght:

𝜉 =
𝑥′

𝑤
, 𝜂 =

𝑦′

𝑤
, 𝜁 =

𝑧

𝐿𝐷
(5.74)

and so the Eq.(5.73) can be rewritten as

𝐸 (𝜉, 𝜂, 𝜁) = exp(𝑖𝜅𝜁)
𝑖𝜋𝜁

exp
[
𝑖
1

𝜁
(𝜉2 + 𝜂2)

] ∬ ∞

−∞

{
𝐸 (𝜉′, 𝜂′, 0)exp

[
𝑖
1

𝜁

(
𝜉′2 + 𝜂′2

)]}
× exp

[
−2𝑖
𝜁
(𝜉𝜉′ + 𝜂𝜂′)

]
𝑑𝜉′𝑑𝜂′

(5.75)

where 𝜅 = (𝑘𝑤/
√
2)2.

Now, making the change to cylindrical coordinates is straightforward if we consider a

radially symmetric light field and define the following variables

𝜌 = 𝜉2 + 𝜂2, 𝜉 = 𝜌 cos 𝜑, 𝜂 = 𝜌 sin 𝜑 (5.76)

further we can use this integral of the Bessel function∫ 2𝜋

0
exp[−𝑖𝛼 cos(𝜑 − 𝜙)]𝑑𝜑 = 2𝜋𝐽0(𝛼) (5.77)

Which leads to the reduced Normalized Fresnel Integral in cylindrical coordinates

𝐸 (𝜌, 𝜁) = −𝑖
𝜋𝜁

exp[𝑖𝜅𝜁] exp
[
𝑖𝜌2

𝜁

] ∫ ∞

0
𝐸 (𝜌′, 0) exp

[
𝑖𝜌′2

𝜁

]
𝐽0(𝑘𝑟𝑛𝜌′)𝜌′𝑑𝜌′ (5.78)

where 𝑘𝑟𝑛 = 2𝜌/𝜁 . Now if we remember Section 4.2, the Fresnel integral becomes the

Fraunhofer diffraction integral when a lens is introduced, for that reason, we consider an

incident field of the form:

𝐸 (𝜌′
, 0) = 𝐸 ′

1(𝜌
′
, 0)exp(−𝑖𝜌

′2

𝑓𝑁
) (5.79)

where 𝑓𝑁 = 𝑓 /𝐿𝐷 is the normalized focal length.

We substitute Eq.(5.79) into Eq.(5.78), and translate the variable 𝜁 to the focal plane,
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i.e. 𝜁 = 𝑓𝑁 , to obtain the normalized Fraunhofer diffraction integral:

𝐸 (𝜌, 𝜁 = 𝑓𝑁 ) =
−𝑖
𝜋 𝑓𝑁

exp

(
𝑖𝜅

𝜁

)
exp

(
𝑖𝜌2

𝑓𝑁

) ∫ ∞

0
𝐸

′

1(𝜌
′
, 0)𝐽0

(
2𝜌𝜌

′

𝑓𝑁

)
𝜌
′
𝑑𝜌

′
(5.80)

which analogously to Eq.(4.46) this integral represents a Hankel Transform.

If we define 𝑘′𝜌 = 2𝜌/ 𝑓𝑁 we can rewrite last integral as

𝐸 (𝜌, 𝑓𝑁 ) =
−𝑖
𝜋 𝑓𝑁

exp(𝑖𝜅𝜁) exp
(
𝑖𝜌2

𝑓𝑁

) ∫ 𝑎

0
𝐸

′

1(𝜌
′
, 0)𝐽0(𝑘′𝜌𝜌

′)𝜌′
𝑑𝜌

′
(5.81)

With Eq.(5.81) we can find the diffracted field of an apertured Bessel beam, but as we

mentioned in Section 4.2 the information about the geometry of the aperture is contained in

the field 𝐸 (𝜌′, 0) which we define as:

𝐸′
1(𝜌

′
, 0) = 𝑇

(
𝜌′

𝑎

)
𝐽𝑛

(
𝑎𝑘′

𝑇
𝜌
′

𝑎

)

=


𝐽𝑛

(
𝑎𝑘 ′

𝑇
𝜌
′

𝑎

)
, |𝜌′ | < 𝑎

0, |𝜌′ | > 𝑎

(5.82)

We substitute Eq.(5.82) into Eq.(5.81), which yields

𝐸 (𝜌, 𝑓𝑁 ) =
−𝑖
𝜋 𝑓𝑁

exp(𝑖𝜅𝜁) exp
(
𝑖𝜌2

𝑓𝑁

) ∫ 𝑎

0
𝐽𝑛

(
𝑎𝑘′

𝑇
𝜌′

𝑎

)
𝐽0(𝑘′𝜌𝜌

′)𝜌′
𝑑𝜌

′
(5.83)

We solve this integral by substitution, with the new variables being 𝑝 = 𝜌′/𝑎, 𝜅𝑇 = 𝑎𝑘′
𝑇
, and

𝛽 = 𝑎𝑘′𝜌, this results in

𝐸 (𝜌, 𝑓𝑁 ) =
−𝑖𝑎2
𝜋 𝑓𝑁

exp(𝑖𝜅𝜁) exp
(
𝑖𝜌2

𝑓𝑁

) ∫ 1

0
𝐽𝑛 (𝜅𝑇 𝑝) 𝐽0(𝛽𝑝)𝑝𝑑𝑝 (5.84)

For 𝑛 = 0, i.e. the case of a Bessel beam of zeroth-order, the integral is reduced to

𝐸 (𝜌, 𝑓𝑁 ) =
−𝑖𝑎2
𝜋 𝑓𝑁

exp(𝑖𝜅𝜁) exp
(
𝑖𝜌2

𝑓𝑁

) ∫ 1

0
𝐽0 (𝜅𝑇 𝑝) 𝐽0(𝛽𝑝)𝑝𝑑𝑝 (5.85)
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And using the formula integral [72], also called Lommel integral∫ 1

0
𝑥𝐽𝜈 (𝛼𝑥)𝐽𝜈 (𝛽𝑥)𝑑𝑥 =

𝛽𝐽𝜈−1(𝛽)𝐽𝜈 (𝛼) − 𝛼𝐽𝜈−1(𝛼)𝐽𝜈 (𝛽)
𝛼2 − 𝛽2

(5.86)

and the Bessel function identity

𝐽−𝑚 = (−1)𝑚𝐽𝑚 (𝑧) (5.87)

Figure 5.10: Transerve intensity profile at the focal plane of the apertured
Bessel beam.

The intensity distribution of an apertured Bessel beam of zeroth-order at the focal plane

is described by the equation:

𝐸 (𝜌, 𝑓𝑁 ) =
−𝑖𝑎2
𝜋 𝑓𝑁

exp(𝑖𝜅𝜁) exp
(
𝑖𝜌2

𝑓𝑁

)
𝜅𝑇 𝐽1(𝜅𝑇 )𝐽0(𝛽) − 𝛽𝐽1(𝛽)𝐽0(𝜅𝑇 )

𝜅2
𝑇
− 𝛽2

(5.88)

and the diffraction pattern is:

𝐼 (𝜌) =
(
𝑎2

𝜋 𝑓𝑁

)2 [
𝜅𝑇 𝐽1(𝜅𝑇 )𝐽0(𝛽) − 𝛽𝐽1(𝛽)𝐽0(𝜅𝑇 )

𝜅2
𝑇
− 𝛽2

]2

𝐼 (𝜌) =
(
𝑎

𝜋 𝑓𝑁

)2 [
𝑘′
𝑇
𝐽1(𝑎𝑘′𝑇 )𝐽0(𝑎𝑘′𝜌) − 𝑘′𝜌𝐽1(𝑎𝑘′𝜌)𝐽0(𝑎𝑘′𝑇 )

(𝑘′
𝑇
)2 − (𝑘′𝜌)2

]2
(5.89)
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where 𝑘′𝜌 = 2𝜌/ 𝑓𝑁 . In Figure 5.10 we show the transverse intensity profile described by

Eq.(5.89), where the maxima points represent the annular ring we expected to obtain.

5.4.2 Focusing a Bessel-Gauss beam.

As an example of what we talked in Section 5.3 about how the aperture function modulates

the Bessel beam we present an example, the Bessel-Gauss beam[73]. This kind of beam is a

Bessel beam whose transverse profile is limited by a Gaussian function, the latter precisely

working as an aperture. The transverse amplitude distribution of a Bessel-Gauss beam

(BGB) can be written as:

𝑝𝑟 (𝑟0) = 𝐽0(𝑟0𝑘 sin 𝜃) exp
[
−

(𝑟0
𝑤

)2]
(5.90)

Figure 5.11: The relative focal shift of a Bessel-Gauss beam versus the 𝜃 coor-
dinate that characterizes the tilted chief axis.

We know that the wave vectors of a Bessel beam lie on a cone, and for the BGB the

propagation axis of the Gaussian beam lies on this same cone, which means the Gaussian

beam follows an off-axis direction and it can be viewed as an off-axis focus case. The opening
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of the tilted chief axis is given by 𝜃.

We are interested with what happens once the BGB has passed through a thin converging

lens, and to further explain the concept of focal shift, we analyze this displacement of the

diffracted pattern and its dependence on the angle 𝜃.

In Section 5.1 and 5.2.2 we concluded the focal shift depends of the Fresnel number of

the light field, so first we present the generalized Fresnel number of the BGB [69]:

𝑁𝑔 =
𝑤2

𝜆 𝑓

(
1

2

[
(𝛽 − 2)2 − 𝛽(𝛽 − 3) 𝐼1(𝛽/2)

𝐼0(𝛽/2)

]
− 1

4

[
(𝛽 − 2) − 𝛽 𝐼1(𝛽/2)

𝐼0(𝛽/2)

]2)1/2
(5.91)

Figure 5.12: Notice how for 𝜃 smaller than 1
5 (= 0.2) radian the Bessel function

resembles a Gaussian function, and for larger values, we have a windowed Bessel
function.

where 𝛽 = 𝑘2𝑤2 sin2 𝜃, and 𝐼𝑛 represents the modified Bessel function of the first kind,

order n. The diffracted wave field will suffer an off-axis tilt, the one is determined by the

angle of the cone of existence of the Bessel beam.

We use Eq.(5.91) and the definition of focal shift Eq. (5.60) for this analysis. We consider

angles 𝜃 > 0 because for 𝜃 = 0 the Bessel function disappears and there will be no cone of

interference, and for higher values of 𝜃 we ensured these values fell within the paraxial wave

approximation. Additionally, we verified the Gaussian beam profile was large enough to
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Figure 5.13: Representation of the propagation and diffraction pattern of a
focused Bessel-Gauss beam for increasing values of 𝑘 sin 𝜃.

ensure it contains at least the center lobe of the Bessel function, however the value of 𝑤

remains constant and we only vary 𝜃. Figure 5.11 depicts our results, the negative value of

the relative focal shift signals the displacement is closer to the aperture than to the focus,

which was expected.

When 𝜃 falls between (0, 1
5 radian) we notice that for values closer to zero the relative

focal shift is large and it increases swiftly as 𝜃 grows, and for values of 𝜃 larger than 1
5 radian

the focal shift value tends to a constant. This was expected because as mentioned in Section

5.2.2 the focal shift will be the same regardless of the Bessel function amplitude distribution.

For 𝜃 → 0, the BGB’s chief axis is closer to the optical axis and its profile is almost

identical to the Gaussian beam as illustrated in Figure 5.12 because while 𝑤 is a constant, k

decreases with 𝜃. Moreover, the propagation range 𝑧𝑀𝐴𝑋 of the Bessel beam tends to infinity,

so in summary we have a Gaussian beam propagating almost on-axis which translates into a

large focal shift as a consequence of the diffraction of the Gaussian function. This is obvious

from Eq.(5.91) when we approximate 𝛽 ≈ 0 and it reduces to the same Fresnel number we

obtained for the Gaussian beam in Eq.(5.10).
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For high values of 𝜃, the beam actually resembles an apertured Bessel beam, as seen in

Figure 5.12, with a finite range of propagation. Now, in Section 5.2.2 we concluded the light

fields that follow an off-axis direction experiment the same focal shift that would experiment

on-axis. The Bessel beam can be understood as plane waves whose direction of propagation is

dictated by the cone of wavevectors, i.e. tilted plane waves, this means these plane waves will

suffer a focal shift which will result in a displacement of the annular ring (Eq.(5.89))with

respect to the focal plane. This focal shift of the diffraction pattern with respect to the

geometrical focal plane is so minimal that in Figure (5.13) where we show the propagation

of BGB for different values of 𝜃 the annular ring is always so close to the focal plane 𝑧 = 0.4,

that this displacement is imperceptible which is what the curve in Figure 5.12 shows too.

Moreover, from the propagation Figures 5.13, we can appreciate the beam reaches a

maximum intensity before the geometrical focal plane and it is the position of this peak in

intensity, and the size of the radius of the ring pattern, the most significant variation we can

observe as 𝜃 increases. The variation in the position is not negligible so if the focal shift was

responsible for this peak in intensity the curve in Figure 5.11 for large 𝜃 would not represent

a Δ 𝑓 small. The next section will explain the reason behind this apparent focal point but

for now, it is clear this analysis proves once again the focal shift refers specifically to the

relative displacement on-axis or off-axis the diffraction pattern of a field suffers with respect

to the geometrical focal plane, and that peak in intensity in Figure 5.13 is not related to it.

5.4.3 Pseudo-focal position.

Consider a Bessel beam generated by an axicon with refractive index n and base angle 𝛾

that passes through a lens with focal length f, as a result, the conical waves transform into

converging spindle torus waves that interfere beyond the lens in a conical region [30] as shown

in Figure 5.14. It is within this conical region, that the Bessel-like beam is created.

It is straightforward to see that the position of the vertex of the cone is located at [29,

30]

𝑧1 =
𝑓 𝑅

𝑅 + 𝜌 (5.92)
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Figure 5.14: Geometric evolution of the focusing of a Bessel beam.

where

𝜌 = 𝑓 tan 𝜃0 (5.93)

is the radius of the image ring at the focal plane. Equation (5.92) is the geometrical point

on the longitudinal axis where the intensity is maximum, this is the pseudo-focal point that

we referred to in the last section.

Figure 5.15 shows the propagation of a Bessel beam with normalized radial wave number

𝑘𝑟 = 4 after passing through a thin lens of radius 𝑅 = 50, for this simulation, it was used a

MatLab program which solves the Helmholtz equation numerically. The focal length used

was 4, also in normalized coordinates. On the focal plane, the two peaks represent the ring

focus of the conical waves, but in a position behind this point the intensity on-axis reached

a maximum, this is the "exact" pseudo-focus, which for this case is reached at 3.32, this is

better appreciated in Figure 5.16.

We refer to this point as "exact" because Eq. (5.92) is a geometric approximation, and

as such, it provides an approximation to the point of maximum intensity. In Figure 5.16 the

red dashed line marks the position of maximum intensity of the Bessel beam, and the green

vertical dashed line marks the position 𝑧1 calculated by Eq.(5.92), which gives 𝑧1 = 3.44. In
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Figure 5.15: Propagation of a Bessel beam 𝐽 (𝑘𝑟𝑟) after passing through a thin
lens.

general, the green dashed curve represents the function that describes the axial intensity of

the Bessel beam [28, 29]:

𝐼 (𝑧) = 𝑓 2

(𝑧 − 𝑓 )2
(5.94)

At the point where the axial intensity has a value of 0.25𝐼 (𝑧1), the position of 𝑧1 is found,

similar to what happens with Bessel beam propagating, the position 𝑧𝑀𝐴𝑋 = 0.25𝐼0 where 𝐼0

is the initial value [28].

If the conical waves theory of the Bessel beams is not taken into account it can lead

to misguided interpretations of the focusing evolution of the Bessel beam. One example is

found in ref. [23], where the intensity of a focused Bessel beam was studied, and it was

reported that the position of maximum intensity along the axis is not at the geometrical

focal plane but closer to the aperture, this result is correct as this subsection has shown, the

confusion arises when the authors gave an explanation for such behavior, they attributed

this displacement to the focal shift effect. However, in Section 5.4.2 we proved the focal shift

is strongly associated with the diffraction phenomenon, and as we observed in Figure 5.13

the diffraction pattern of the BG beam, i.e. the annular ring, is always found around the
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Figure 5.16: Axial Intensity of the focused Bessel beam verus z. The red dashed
line marks the position of peak axial intensity, at 3.32. The green dashed vertical
line marks the position of 𝑧1 (Eq.(5.92)) at 3.44.

geometrical focal plane and the maximum point of intensity is not related to the focal shift

effect.

Additionally, if we remember Section 4.2 where we concluded the field generated by a thin

converging lens is the far-field pattern then we can understand that for a Gaussian beam,

the diffracted pattern spreads but it retains its transversal profile, i.e. for the far-field case

the diffracted Gaussian beam remains as a Gaussian beam, and its maximum of intensity is

found closer to the lens. However, due to the nature of the Bessel beams we explained in this

section this behavior does not happen for them. The far-field diffraction pattern of a Bessel

function is an annular ring, not a Bessel beam thus if we wrongly assumed the pseudo-focus

is a focal shift effect this would mean the waist of this ring should be found at 𝑧1 [30], which

does not occur.

In resume, the separation between the geometrical focus and this pseudo-focus point is

not associated with the focal shift, but the existence of this pseudo-focus point proves that

the Bessel beams can be focused.
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5.4.4 Axial Intensity Behavior

Notice how in Figure 5.14 there is a second interfering region beyond the focal plane that

begins at the point 𝑧2. This region can only exists if 𝜌 < 𝑅 and the point 𝑧2 is given by [29,

28]:

𝑧2 =
𝑓

1 − 𝜌

𝑅

(5.95)

However, to generate a Bessel beam within this region a second lens must be located in such

a way the distance between the lens and the annular ring of radius 𝜌 is the focal length of the

former, this way the Bessel beam will be the formed as the imaging of the spherical waves

generated by the ring source [28, 22].

Last section we provided the Eq.(5.94) without an explanation, but to arrive at this

equation that describes the axial intensity we can use a geometrical approach again. First,

we consider the propagation invariant light field, in this case a Bessel beam, is composed of

N plane waves and these waves become converging spherical waves after passing through the

lens, and the field distribution E inside the conical region is given by the superposition of

the N spherical waves [29]

𝐸 (𝑟) = exp(𝑖𝑘𝑑)
𝑁−1∑︁
𝑛=0

𝐴𝑛 exp (±𝑖𝑘 |𝑟 − 𝑟𝑛 |)
|𝑟 − 𝑟𝑛 |

(5.96)

Where 𝐴𝑛 are the complex amplitudes corresponding to the discrete annular spectrum

𝐴(𝜑) = ∑
𝐴𝑛𝛿(𝜑 − 𝜑𝑛). The negative and positive signs inform us about the converging and

diverging spherical waves. The factor |𝑟 − 𝑟𝑛 | is the distance from the nth image point (𝑟𝑛)

to the observation point at r, and 𝑑 =
√︁
𝜌2 + 𝑓 2 is the distance from those same image points

but to the origin (𝑟 = 0). To simplify the calculations, it is taken into account only points

located along the z -axis which leads to factoring out the distance between the image points

and the origin, additionally, the summation can be written as a general complex number in

its polar form and find the amplitude when lossless lens is assumed and 𝐼0 as the initial axial

intensity so for 𝑧 ∈ [0, 𝑧1] and 𝑧 ∈ [𝑧2,∞) the axial field becomes

𝐼 (𝑧) = 𝜌2 + 𝑓 2

𝜌2 + (𝑧 − 𝑓 )2
(5.97)
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Figure 5.17: Evolution of the axial intensity of a focused Bessel beam. The
green dashed lines represent the Eq.(5.94).

Notice this expression represents a Lorentzian curve, and it is valid for any propagation

invariant optical field, including the Bessel beams.

Although for experimental cases we can consider the inequalities 𝜌 ≪ 𝑓 and 𝑅 ≪ 𝑓 hold

and the Eq.(5.97) can be simplified to Eq.(5.94), which is only valid within the conical region

where the Bessel beam exists [29]. This approximation is illustrated in Figure 5.16 and 5.17

where the green dashed line represents the Eq.(5.94), and as we can appreciate describes the

behavior of the Bessel beam axial intensity.

5.4.5 Transverse Magnification.

The interest in knowing the transverse magnification of Bessel beams at the pseudo-focal

point and along the z -axis relies on the fact it can be used to characterize the coherence

of vortex Bessel beams [30], and other applications in optical tweezers and atom guiding.

However, it can also be used to build a geometrical approximation of the evolution of the

focusing transverse field profile.
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The calculations done on the pseudo-focal point start considering the transverse wave

vector component of the incident Bessel beam which is related to the incident angle 𝜑, that

is 𝑘1𝑟 = 𝑘1 sin 𝜑 � 𝑘1(𝑛 − 1)𝛾 where only small angles are considered, and n and 𝛾 are the

refractive index and base angle of the axicon that creates the Bessel beam, respectively.

We approximate locally the spindle torus waves, created after the conical waves have

passed through the lens, as conical waves within the neighborhood of the axis. The conical

waves inside the cone region are determined by the tangents to the surfaces at the axis

illustrated by pink lines in Figure 5.18.

Figure 5.18: Schematic evolution of the focusing of a Bessel beam.

Once the Bessel beam has passed through a thin lens the wave vector changes so the

conical waves have a new wave vector ®𝑘2 that forms an angle with respect to the z -axis,

given by

tan 𝛽 =
𝜌

𝑓 − 𝑧1
(5.98)

and when it is considered the expression of the pseudo-focus Eq.(5.92), the Eq.(5.98) and the
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paraxial approximation, the explicit expression for the transverse wave vector ®𝑘2 is found

[30]

𝑘2𝑟 = 𝑘2

[
𝑅

𝑓
+ (𝑛 − 1)𝛾

]
(5.99)

This expression is used to calculate the transverse field at the pseudo-focal place once it is

substituted into the Bessel function 𝐽 (𝑘2𝑟𝑟).

Furthermore, the transverse magnification is easily derived from the definitions of the

incident and transmitted wave vectors, that is [30]

𝑘2𝑟

𝑘1𝑟
=

𝑘2

[
𝑅
𝑓
+ (𝑛 − 1)𝛾

]
𝑘1(𝑛 − 1)𝛾 (5.100)

For the case of the same medium behind and ahead of the thin lens, 𝑘1 = 𝑘2 = 2𝜋
𝜆

, so the

relation is reduced to
𝑘2𝑟

𝑘1𝑟
=

𝑅

𝑓 (𝑛 − 1)𝛾 + 1 (5.101)

This same mathematical procedure can be performed for the points along the axis within

the region between the lens and the pseudo-focus, to do so the tangents of the converging

spherical waves are taken and with this, a geometrical approximation of the evolution of

the focusing transverse field profile of the Bessel beam is obtained, this will be explained in

detail in Section 5.4.7 but first, we analyze the focusing of apertured Bessel beams.

5.4.6 Apertured Bessel Beams: Super-Gaussian beam Vs. Flat-

tened Gaussian beam

Multiple works have studied the propagation of Bessel beams with different apodization

functions because reducing the oscillations produced by diffraction is of great interest [74,

75, 76]. These oscillations are created when a field light is limited by an aperture with hard

edges, this causes an abrupt discontinuity in the field that requires higher spatial frequencies

to represent its spectrum, this translates into fluctuations in the curve that describes its

propagation. The apodization of a function reduces these fluctuations by making the edges

of the aperture smoother. Here we consider three cases: (1) a Bessel beam focused by a thin
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lens with an aperture radius of 𝑅 = 50, the same Bessel beam but apodized by (2) a Super

Gaussian profile, and (3) a Flattened Gaussian profile.

We solve numerically the 3D Helmholtz reduced wave equation in cylindrical coordinates

using normalized variables to illustrate the main characteristics of each apodization function.

We center our attention on the oscillations produced along the axis through the propagation,

the peak axial intensity and the position at which it is reached, and the output 2D profile

at this position.

Apertured Bessel beam

The following function represents the initial condition

𝐸 (𝑥, 𝑦, 𝑧 = 0) =


𝐽0(𝑘𝑟𝑟) exp

(
−𝑖 𝑟2

𝑓

)
if 𝑟 ≤ 𝑅

0 otherwise
(5.102)

where the wavevector was 𝑘𝑟 = 4, and the focal length f will take two values, 𝑓 = 2 and

𝑓 = 4. From the equation 𝜌 = 𝑘𝑟 𝑓 /2 it follows that the radius of the ring produced at the

focal plane is 𝜌 = 4 and 𝜌 = 8, respectively.

In Figure 5.19 and 5.20 we show the propagation of the apertured Bessel beam and the

axial intensity versus the propagating distance z for the two focal length cases. The red

line in Figure 5.20 marks the position of peak axial intensity 𝐼𝑝, which we refer to as 𝑧𝑝,

and the green line represents the position where the intensity is 0.25𝐼𝑝, i.e. the 𝑧1 value

calculated by the Eq. (5.92). For the focal length of 2, these positions are 𝑧𝑝 = 1.72 and

𝑧1 = 1.85, and for focal length 4 the values are 𝑧𝑝 = 3.32 and 𝑧1 = 3.44. Both lines are

very close in distance from each other, and geometrically we can calculate 𝑧1 which helps

us understand the propagation of the Bessel beam in geometrical terms as the diagram in

Section 5.4 showed. From the Figures 5.20 the axial oscillations induced by the hard aperture

are clearly seen. It is known that apodization is used to reduce this effect. Here, we use two

different apodization functions to reduce the oscillations.

The 2D input profile of the apertured Bessel beam at 𝑧 = 0 is shown in Figure 5.21, and

the central peak radius 𝑟1 is 0.512. The 2D output profile at the position of maximum axial
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(a)

(b)

Figure 5.19: Propagation of an apertured Bessel beam through a thin lens of
focal length (A) 𝑓 = 2 and (B) 𝑓 = 4.
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intensity 𝑧𝑝 for the case of a thin lens of focal length 2 is shown in Figure 5.22a and for

the focal length of 4 in Figure 5.22b, the center lobe radius is 𝑟1 = 0.073 and 𝑟1 = 0.097,

respectively. As expected, there is a reduction in size at the position 𝑧𝑝 where the beam is

focused.

It is obvious the increase of energy at the central peak from the colorbar values of Figures

5.22, for the focal length 𝑓 = 2 the peak intensity is 𝐼𝑝 = 54.92 and for 𝑓 = 4 it is 𝐼𝑝 = 44.46.

The reduction of its radius is more evident too when we look at the ratio of the radius of

the input and output profiles, for 𝑓 = 2 the ratio 𝑟1(output)/𝑟1(input) = 0.14, and for 𝑓 = 4

it is 𝑟1(output)/𝑟1(input) = 0.18. In Figure 5.23 we show the input and output profiles side

to side to better appreciate this. The increase of intensity and reduction of energy at the 𝑧𝑝

were expected because at this position the Bessel beam gives the impression of being focused

which translates into the beam energy being concentrated in a very small area.

Another evident feature is the downsizing of the side-lobes between Figures 5.22a and

5.22b. This is explained when we consider the dependence the 𝑧1 has on the focal length,

which tells us the length of the cone-shaped region of interference of the conical waves, and

the radius of the focal ring 𝜌, grows for larger values of f. This is illustrated in the Figure

5.24.

As we explained in Section 5.3, the Hankel waves are affected by the diffraction effects

of the modulation function, in this case, the spreading produced by the circular aperture, so

for the case of a larger cone section the diffraction distance increases which means major and

faster loss of energy. Additionally, from Figure (5.8) the spreading of the outgoing Hankel

wave grows alongside the propagation axis, which means energy is being lost through this

action too.



CHAPTER 5. FOCUSING GAUSSIAN BEAMS AND BESSEL BEAMS 103

(a)

(b)

Figure 5.20: Evolution of the axial intensity corresponding to Figure 5.19. The
dashed red line represents the position of exact maximum intensity 𝑧𝑝 and the
dashed green line the position of 𝑧1.
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Figure 5.21: 2D input profile of the apertured Bessel beam.
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(a)

(b)

Figure 5.22: 2D output profiles of the focused apertured Bessel beam at the
plane where the maximum intensity is reached.
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Figure 5.23: Comparison of the input and output profiles of the apertured
Bessel beam.
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Figure 5.24: Comparison of the length of 𝑧1 and 𝜌 for different values of f.

In Table 5.1 we resume the characteristics of the apertured focused Bessel. Note we

added the case for a focal length 𝑓 = 6 albeit we did not illustrate their propagation nor

profile, this is because it would be repetitive, and with two focal lengths, we could explain

the general behavior of the Bessel beam. However, in the next subsections, we make those

values.

f=2 f=4 f=6

𝐼𝑝 𝑧𝑝 𝑧1 𝑟1 𝐼𝑝 𝑧𝑝 𝑧1 𝑟1 𝐼𝑝 𝑧𝑝 𝑧1 𝑟1

54.92 1.72 1.85 0.073 44.46 3.32 3.44 0.097 23.02 4.58 4.83 0.122

Table 5.1: Bessel beam focusing characteristics for the case of a thin lens
with focal length 𝑓 = 2, 𝑓 = 4 and 𝑓 = 6.

Before talking about the apodization functions, we briefly describe the preliminary con-

siderations to numerically simulate the propagation.

We consider a system that generates a Bessel beam (an axicon for example) and is

illuminated by a light beam (a Gaussian beam for example) with a specific power 𝑃0 as

shown in Figure 5.25.

An “unity” quantity is required to serve as a parameter in case this approach could be

implemented experimentally. We propose to consider a Gaussian beam described by Eq.
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Figure 5.25: Example of a generating system of the apertured Bessel beam.

(5.103) as the apodization function.

𝑈𝐺 (𝑟) = exp

[
−

(
𝑟

𝑤𝐺

)2]
(5.103)

To ensure energy conservation, the following integral of the Parsevals’s theorem was solved.

𝑃0 =

∫ ∞

0

�����exp
[
−

(
𝑟

𝑤𝐺

)2] �����2 𝑟𝑑𝑟 (5.104)

which yields

𝑤𝐺 (𝑃0) = 2
√︁
𝑃0 (5.105)

With Eq. (5.105) we choose two values of 𝑃0: 𝑃1 and 𝑃2, such that the function Eq.(5.103)

takes the values 𝑈𝐺 (𝑟 = 𝑅) = 0.12 and 𝑈𝐺 (𝑟 = 𝑅) = 0.002 respectively. These quantities

obtained make it easier to see 𝑃1 > 𝑃2. Their corresponding profiles are shown in Figure

5.26 as a reference, where we have included the Bessel function we are trying to apodize.

Now, this procedure is only meant to serve as a guide, once we introduce the apodization

functions the use of 𝑤𝐺 (𝑃) to ensure energy conservation will be clearer.
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(a) Gaussian beam generated with the power 𝑃1. (b) Gaussian beam generated with the power 𝑃2.

Figure 5.26: Gaussian beam used as the basis for the energy conservation
procedure.

Super Gaussian beam

In 1988, a Super-Gaussian (SG) function was proposed as the reflectivity profile used to

smooth the output beam within an unstable resonator [77]. This profile function can be

defined as

𝑈SG(𝑟) = exp

[
−

(
𝑟

𝑤𝑆𝐺

)2𝑚]
(5.106)

where r is the radial coordinate, 𝑤𝑆𝐺 is the beam waist, and m is a positive integer that

marks the main difference with an ordinary Gaussian beam when 𝑚 > 1.

Because we want to maximize the energy in our system, we repeat the integration of

Eq.(5.104) but replace the Gaussian beam with the Super Gaussian beam, which yields

𝑃0 =
𝑤2
𝑆𝐺

4

[
1

𝑚
Γ

(
1

𝑚

)]
(5.107)

Rewriting 𝑃0 in terms of the 𝑤𝐺 according to Eq.(4.6) we obtain an expression for 𝑤𝑆𝐺 .

𝑤𝑆𝐺 (𝑚) = 𝑤𝐺
√︄

𝑚

Γ
( 1
𝑚

) (5.108)

By doing this we are obtaining a 𝑤𝑆𝐺 that depends on the initial 𝑃0, however, it is evident

Eq.(5.108) depends on the parameter m, for such reason in Table 5.2 we show a list of some

values.

And in Figure 5.27 we plot the profiles of the values from Table (5.2) for the case of the
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Parameter m 𝑤𝑆𝐺

1 𝑤𝐺

2 1.0622𝑤𝐺

3 1.0582𝑤𝐺

5 1.0436𝑤𝐺

10 1.0252𝑤𝐺

25 1.01096𝑤𝐺

Table 5.2: Numerical calculation of the size of the waist of the Super Gaussian
beam for different values of the parameter m.

𝑃1. If we had used the smaller power 𝑃2 instead, the dashed red line would be shorter, i.e.

the “box-shaped” profile would be narrower.

Figure 5.27: SG profiles versus r for values of m.

We implemented the Super Gaussian for the two cases of power values, 𝑃1 and 𝑃2, in the

program we used to simulate the propagation and focusing of the apertured beam. To analyze

the differences that come with using different power values we compare their respective peak

axial intensity 𝐼𝑝 with respect to the Table (5.1) for the cases 𝑓 = 2 and 𝑓 = 4. The results
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(a) (b)

Figure 5.28: Relative peak axial intensity of a Bessel beam with an SG function
when focused with a lens with a focal length of (A) 2 and (B) 4.

are shown in Figures 5.28.

We notice that as expected the behavior is the same regardless of the power because the

only difference is that if more energy is entering the system, then the peak axial intensity

can reach higher values. Moreover, for the case of 𝑃1, the power is enough to reach the exact

same value as the apertured Bessel beam for both focal lengths, while for the lower power

𝑃2, this does not happen.

Given that the power is not that relevant for the general behavior, we work from now on

with 𝑃1 and analyze the propagation profile because we are concerned with the reduction of

the oscillations due to diffraction.

In Figures 5.29 we show the axial intensity versus z for the three cases, 𝑓 = 2, 𝑓 = 4, and

𝑓 = 6, for different values of m. The red dashed line marks the position 𝑧𝑝 for the apertured

Bessel beam case without apodization, and the green dashed curve represents the Lorentzian

curve we explained in Section 5.4.2 that describes the behavior of the axial intensity.

It is necessary to point out that the apodization function for 𝑚 = 1 is a standard Gaus-

sian beam, and as such we have small oscillations mainly caused by diffraction, which was

expected [75]. Further, it is straightforward to see in Figure 5.29 that for the cases of 𝑓 = 4

and 𝑓 = 6, the curve is smooth for 𝑚 ≥ 2, but this does not happen with 𝑓 = 2, moreover,

the oscillations do not decrease. For the three figures, the most notorious changes with the

increase of m are the peak axial intensity and the position at which is reached. But to

understand why for 𝑓 = 2 the oscillations are not eliminated we used 𝑃2 and propagated

the beam again, we noticed the axial intensity curve was smooth for this power, this tells us
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the reason behind the “failure” in the apodization function in Figure 5.29a is because as we

explained in Figure 5.24, for larger values of f the energy loss is bigger and faster, which is

what happens here. The contrast in the oscillations of intensity increases for bigger power.

This result is of relevance because it confirms there are cases where the effects of diffraction

can be “fixed” at the cost of lower energy [75].

However, when we use the bigger power 𝑃1, we notice for 𝑚 ≥ 10 the peak energy reaches

the same value 𝐼𝑝 as in the apertured Bessel beam, this is because a larger value of m means

a bigger “window” which translates into more energy entering the system, but if we look

at Figure 5.27 with the profiles for the Super Gaussian beam we note its edges are sharper

as m increases, which for its part translates into discontinuities in the field at those points

consequently creating oscillations by diffraction.

Moving on, for 𝑓 = 4 the axial intensity reaches the same value as the apertured Bessel

beam for 𝑚 ≥ 25, and in the case of 𝑓 = 6 at a value of 𝑚 = 25 the peak axial energy will

be about the 67% of the 𝐼𝑝 of Table (5.1). The explanation for this is the same we provided

alongside Figure 5.24, the effects of diffraction of the function that modules the Bessel beam

are more evident for larger values of f, and as such energy is lost through the outgoing Hankel

wave.

Next, we center our attention on the displacement of the peak axial intensity with respect

to the red dashed line, we used the position 𝑧𝑝 instead of 𝑧1 because it is easier to see the shift

the axial intensity suffers, but this shift happens with respect to the geometrical “pseudo-

focal” point 𝑧1 as well. To explain this behavior, we remember the definition Eq.(5.92) which

depends on the value of the radius of the focal ring, the focal length, and the radius R of the

aperture. For the apertured Bessel beam, the size of the circular function remains constant,

but now we need to consider the apodization profile acts as the new aperture, and if we recall

from the beginning of the section the 𝑤𝑆𝐺 depends on the parameter m. Thus, the radius of

the aperture is different for every value of m while 𝜌 and f do not change. In Table 5.3 we

calculated the values of the 𝑧1 with the Eq.(5.92), for the values of m illustrated in Figure

5.29. We note the value of 𝑧1 is closer to the “real” ones in Table (5.1), especially for the

case 𝑓 = 2, but for 𝑓 = 4, 6 the variations are slightly more evident. The fact the positions

of maximum intensity do not vary much is due to the condition of conservation of energy we
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Parameter m 𝑧1

𝑓 = 2 𝑓 = 4 𝑓 = 6

1 1.79 3.24 4.45

2 1.80 3.28 4.52

3 1.80 3.28 4.52

5 1.80 3.27 4.50

10 1.79 3.26 4.48

Table 5.3: Theoretical calculation of 𝑧1 for different values of focal length and m, for the
SG case.

established at the beginning because if we considered an arbitrary 𝑤𝑆𝐺 and used it for every

different parameter m then displacement in position will more notorious and similarly with

the peak axial intensity, we would not reach values as high as the ones we showed.

Finally, we analyze the 2D output profiles at their respective 𝑧𝑝 plane for the case 𝑓 = 2

and 𝑓 = 4, for 𝑚 = 2 and 𝑚 = 10, illustrated in Figures 5.30 and 5.31. For case 𝑓 = 2, the

central peak radius is the same as the apertured Bessel beam in Table (5.1), 𝑟1 = 0.073, for

both values of m. For 𝑓 = 4, the radius is larger, more specifically we obtained a value of

0.146 for 𝑚 = 2 and 0.122 for 𝑚 = 10. But if we look at Figures 5.30 and 5.31 and compare

them with Figure 5.22 we notice not only does the colorbar shows smaller values of intensity,

as expected, but for both parameters of m we note a downsizing in the visible lobes, whose

radii are smaller too. This characteristic is notorious too between them, there is a reduction

in side-lobes when using 𝑚 = 10 instead of 𝑚 = 2. The explanation is once again related

to the diffraction effects, which not only affect the maximum intensities reached but cause

beam divergence, and as a result, we have bigger lobes but with less energy. The reduction

of side lobes when using bigger parameters of m is due to the broader shape of the "window"

that propagates and suffers diffraction effects.
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(a)

(b)

(c)

Figure 5.29: Evolution of the axial intensity of the apertured Bessel beam
apodized by a Super Gaussian function. The dashed red line represents the
position of exact maximum intensity 𝑧𝑝 for the beam without apodization.
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(a)

(b)

Figure 5.30: 2D output profiles of the focused apertured Bessel beam apodized
by the SG function at the plane 𝑧𝑝 for a focal length 𝑓 = 2.
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(a)

(b)

Figure 5.31: 2D output profiles of the focused apertured Bessel beam apodized
by the SG function at the plane 𝑧𝑝 for a focal length 𝑓 = 4.
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Flattened Gaussian beam

F. Gori [78] presented another Gaussian-like function whose steepness is controlled by an in-

teger parameter N, he called them Flattened Gaussian beams (FG beams). Multiple formulas

describe this kind of profile, but we will use the one that takes the form

𝑈FG(𝑟) = exp

[
−

(
𝑟

𝑤𝐹𝐺

)2] 𝑗=𝑁∑︁
𝑗=0

1

𝑗 !

(
𝑟

𝑤𝐹𝐺

)2 𝑗
(5.109)

where r and 𝑤𝐹𝐺 are again the radial coordinate and beam waist respectively, and N is a

positive integer parameter.

The analysis follows the same order we employed for the SG function, first, we solved the

Eq. (5.104) which yields

𝑃0 =
𝑤𝐹𝐺

2
𝐶𝐹 (𝑁) (5.110)

where the

𝐶𝐹 (𝑁) =
∫ ∞

0
exp(−2𝑢)

(
𝑁∑︁
𝑗=0

𝑢 𝑗

𝑗 !

)
𝑑𝑢 (5.111)

Thus, when we write the 𝑃0 in terms of 𝑤𝐺 we obtain

𝑤𝐹𝐺 =
𝑤𝐺√︁

2𝐶𝐹 (𝑁)
(5.112)

Eq. (5.112) was solved numerically for different values of N, the values are shown in Table

5.4.

In Figure 5.32 we illustrate the profile of this function for different values of N according

to the values of Table 5.4 and the same 𝑤𝐺 we used for the SG function. It is evident that

the center is flat and the shape around the waist resembles an ordinary Gaussian function.

Additionally, the FG takes the form of an ordinary Gaussian when 𝑁 = 0.

As expected the behavior with respect to the two powers, 𝑃1 and 𝑃2, is analogous to the

SG case, more energy means the peak axial intensity is larger. However, the main difference

lies in the fact that the FG case seems to not reach the same peak axial intensity described

in Table 5.1 for the apertured Bessel beam regardless of the focal length or power used, this

is illustrated in Figure 5.33.
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Parameter N 𝑤𝑆𝐺

0 𝑤𝐺

1 0.6324𝑤𝐺

2 0.4923𝑤𝐺

10 0.2337𝑤𝐺

25 0.1470𝑤𝐺

50 0.1031𝑤𝐺

Table 5.4: Numerical calculation of the size of the waist of the Flattened Gaussian beam
for different values of the parameter N.

The reason for the lower peak axial intensities reached with this apodization function is

found in its profile (see Figure 5.32). The red dashed line is shorter for the FG function

than it was for the SG beam, which means the "window" is narrower and as such it has a

lower transmittance. However, we work with power 𝑃1 to analyze the same characteristics

we analyzed for the other apodization profile.

In Figure 5.34 we show the axial intensity versus z for different values of N and the same

three cases of focal length: 𝑓 = 2, 𝑓 = 4, and 𝑓 = 6. Once again, the red dashed lines mark

the position 𝑧𝑝 at which the axial intensity of the apertured Bessel beam without anodization

is maximum, and the green dashed curve represents the Lorentzian that describes the axial

intensity.

Analogously to the SG case, the energy reaches higher values when N increases. As we

mentioned, 𝑁 = 0 corresponds to the standard Gaussian profile, which is the reason the

curve is the same as in Figure 5.29 for 𝑚 = 1. However, the maximum peak intensities

reached for each case were 68%, 28.3%, and 31.5% of the peak intensity of 5.1 for 𝑓 = 2, 5, 6

respectively when using 𝑁 = 25. But we note the curve for the 𝑓 = 2 case is smothered

for 𝑁 ≥ 25, which if we recall, the SG function could not smooth no matter how large

the parameter m was. The reason for this once again can be placed on the profile of the

apodization function. The lower transmittance of this function results in the decrease of

the contrast of the axial oscillations. Now, if we considered the energy had to be conserved

and found the "appropriate" size of 𝑤𝐹𝐺 to ensure this when using Parseval’s theorem, then
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Figure 5.32: FG profiles versus r for values of N.

(a) (b)

Figure 5.33: Relative peak axial intensity of a Bessel beam with an SG function
when focused with a lens with a focal length of (A) 2 and (B) 4.

why do we say the transmittance is lower? This is because if we pay attention both SG and

FG functions have a similar shape, i.e. similarly to the SG function the center of the FG

function is flat but the shape around the waist of the latter resembles an ordinary Gaussian

function, while the borders of the SG function are more vertical. Thus, this "Gaussian-like

tail" is responsible for the low "real" transmittance, because as it has been proved [75] a

Gaussian profile with low transmission creates an axial intensity with small oscillations at

the expense of a fast loss of energy. This is notorious in the three plots of Figure 5.34, and



CHAPTER 5. FOCUSING GAUSSIAN BEAMS AND BESSEL BEAMS 120

Parameter N 𝑧1

𝑓 = 2 𝑓 = 4 𝑓 = 6

0 1.79 3.24 4.45

1 1.69 2.92 3.87

2 1.62 2.72 3.52

4 1.51 2.44 3.07

10 1.33 2.01 2.41

25 1.12 1.55 1.78

50 0.94 1.23 1.37

Table 5.5: Theoretical calculation of 𝑧1 for different values of focal length and N, for the
FG case.

not only that. Nevertheless, putting the energy matter aside as an apodization function

this profile proves to produce a slighter smoother curve than the SG profile, and it does not

require large values of N, for the cases 𝑓 = 4 and 𝑓 = 6 with 𝑁 > 0 is enough.

Continuing with the displacement with respect to the red dashed line, we note this is

much larger than the one we observed in Figures 5.29. But before providing an explanation,

in Table 5.4 we calculated the values of 𝑧1 with the use of Eq. (5.92) for some values of N.

From Table 5.5 we see the value of 𝑧1 becomes smaller while N grows. This is explained

when we remember 𝑧1 depends on the aperture radius which in this case is equivalent to

𝑤𝐹𝐺 , and these values vary for every parameter N, and as we described when we analyzed

the axial intensity, the transmittance of the FG function is lower because its waist is narrower,

consequently, this impacts on the value of the "pseudo-focal" point, making it shorter.
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(a)

(b)

(c)

Figure 5.34: Evolution of the axial intensity of the apertured Bessel beam
apodized by a Flattened Gaussian function. The dashed red line represents the
position of exact maximum intensity 𝑧𝑝 for the beam without apodization.
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Lastly, we center our attention on the 2D output profiles for the two cases, 𝑓 = 2 and

𝑓 = 4, at their respective 𝑧𝑝 plane, illustrated in Figures 5.35 and 5.36. For the case 𝑓 = 2,

the central peak radius 𝑟1 has a value of 0.097 for 𝑁 = 1 and 0.073 for 𝑁 = 10. For its part,

when 𝑓 = 4, the radius takes the values 0.170 for 𝑁 = 1 and 0.146 for 𝑁 = 10.

We analyze the case 𝑓 = 2 and notice the value of 0.073 from Table 5.1 is reached for

𝑁 = 10, but with a reduction of intensity amplitude and a downsizing of the visible size-lobes

with respect to the apertured case. However, for 𝑓 = 4 this is not the case. The behavior is

the same, an increase in intensity amplitude at the center lobe with respect for a larger N

but a downsizing of the visible side-lobes. The explanation for this result is the same as we

gave for the SG beam about the loss of energy by diffraction effects.
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(a)

(b)

Figure 5.35: 2D output profiles of the focused apertured Bessel beam apodized
by the FG function at the plane 𝑧𝑝 for a focal length 𝑓 = 2.
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(a)

(b)

Figure 5.36: 2D output profiles of the focused apertured Bessel beam apodized
by the FG function at the plane 𝑧𝑝 for a focal length 𝑓 = 4.
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SG vs FG

To close this section, we present a short direct comparison between both apodization func-

tions. In Figures 5.37 we contrast their relative peak axial intensities, both show oscillations

for their first order after the standard Gaussian beam, the main difference at the intensity

amplitude which is higher for the SG beam. But the disparity is evident in Figures 5.38

where we increased both parameters to 10. Some small oscillations are still found in Figure

5.38a while the curve in the case of an FG beam shows little to no oscillations. However, as

we concluded before this reduction in oscillations is at the expense of energy loss which is

due to the shape of the FG beam.

Figure 5.39 shows the profiles of SG beam, the FG beam, the standard Gaussian beam,

and the Bessel beam to help visualize the differences between the apodization functions,

which impact in their transmission and consequently the oscillations, peak intensity, and

positions 𝑧𝑝 as we have observed through all this section. Notice how the edges of the SG

are sharper which causes major diffraction effects, but the waist 𝑤𝐹𝐺 is narrowed which

means the energy entering the system is lower.

Lastly, the comparison of the 2D output is presented in Figure 5.40 at the point of

maximum intensity for each beam for specific values of m and N. We calculated the ratio

𝑟1(apodized)/𝑟1(input) = 𝛼1 between the radius of the focused beam with an apodization

function at 𝑧𝑝 and the radius of the Table 5.1, and we observed that for 𝑓 = 2 the SG and

FG beams have an 𝛼1 = 1 for 𝑚 = 10 and 𝑁 = 10. For 𝑓 = 4, the value 𝛼1 = 1.5 for both

beams is obtained for 𝑚 = 2 and 𝑁 = 10, which is why we illustrate these four cases in Figure

5.40. Thus, it is possible to use any of the apodization functions and maintain the size of the

center lobe or increase it, but as we have emphasized throughout this section, these results

are at the expense of energy.

In summary, when using Parseval’s theorem to ensure energy conservation we can obtain

the values of the waist 𝑤𝑆𝐺 and 𝑤𝐹𝐺 for the apodization functions. The function SG showed

to be able to focus the Bessel beam while reaching a peak in intensity of the same magnitude

as the case without apodization and for 𝑓 > 2 the oscillations caused are greatly reduced for

𝑚 > 1, and the spot size of the center lobe is maintained for 𝑚 = 10 in the case of 𝑓 = 2. For
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(a)

(b)

Figure 5.37: Comparison of the evolution of the axial intensity of the apertured
Bessel beam apodized by (A) a Super Gaussian function and (B) a Flattened
Gaussian function, for the first order after the standard Gaussian beam.

its part, the FG beam reduces the oscillations far better than the SG, for the focal length of

2 it can do it for 𝑁 ≥ 25, and for the other focal lengths when 𝑁 > 0. However, the peak

intensities reached are never higher than 32% for 𝑓 ≥ 4. Similarly to the SG beam, it is

possible to keep the size of the center lobe for 𝑓 = 2 when 𝑁 = 10.
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(a)

(b)

Figure 5.38: Comparison of the evolution of the axial intensity of the apertured
Bessel beam apodized by (A) a Super Gaussian function and (B) a Flattened
Gaussian function, for the tenth order.
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Figure 5.39: Transverse profiles of the Bessel beam, the standard Gaussian
beam, and the two apodization functions: SG beam and FG beam.

Figure 5.40: Comparison of the 2D output profiles of the focused Bessel beam
apodized where the center lobe is of the same size.
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5.4.7 Geometrical Approximation

For the final section, we revisit the method employed in Section 5.4.5 to calculate the trans-

verse magnification at the "pseudo-focal" plane of the focused Bessel beam.

In the section where we calculated the transverse wave vector of the Bessel beam trans-

mitted through a lens and found it is described by:

𝑘2𝑟 = 𝑘2 sin 𝛽 = 𝑘 sin 𝛽 (5.113)

when the medium behind and ahead of the lens is the same, this value is obtained at the

"pseudo-focal" point, and as we mentioned we can find the value of 𝑘2𝑟 for each point along

the axis.

Figure 5.41: Zoom in on the Figure 5.14, we show the tangents of the converging
waves at one arbitrary point along the axis as pink lines.

The paraxial approximation tan 𝜑 = sin 𝜑 is required here because we only examine points

close to the z -axis. From Figures 5.14 and 5.41 we note that for each point on the axis, the

exact value of the angle formed between the tangent of each point and the z-axis is described

by

sin𝛼𝑖 =
𝜌√︁

𝜌2 + ( 𝑓 − 𝑧𝑖)2
(5.114)
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and according to Eq.(5.113), but also from Figure 5.41, we have that the value of the trans-

verse wave vector for each point on the axis 𝑘𝑟 (𝑧𝑖) is given by

𝑘𝑟 (𝑧𝑖) = 𝑘 sin𝛼𝑖 (5.115)

So substituting Eq.(5.114) into Eq.(5.115) we obtain

𝑘𝑟 (𝑧𝑖) =
𝑘𝜌√︁

𝜌2 + ( 𝑓 − 𝑧𝑖)2
(5.116)

To write the last equation in terms of the incident Bessel beam, whose intensity is propor-

tional to |𝐽0(𝑘1𝑟𝑟) |2 we notice from Figure 5.18 that under the paraxial approximation, the

radius of the focal ring can be written as:

𝜌 = 𝑓 sin 𝜑 = 𝑓
𝑘1𝑟

𝑘
(5.117)

Substituting Eq.(5.117) into Eq.(5.116) yields the geometrical approximation of the trans-

verse wave vector we were looking for

𝑘𝑟 (𝑧𝑖) =
𝑓 𝑘1𝑟√︁

𝜌2 + ( 𝑓 − 𝑧𝑖)2
(5.118)

Eq.(5.118) is used to simulate numerically the evolution of a focused Bessel beam when

substituted in the argument of the Bessel function 𝐽0(𝑘𝑟 (𝑧𝑖𝑟)).

We also need a function that modulates the axial intensity and for that, we use the Eq.

(5.94) that we know describes the propagation on-axis of the Bessel beam, that is:

𝐼 (𝑧𝑖) =
𝑓 2

(𝑧𝑖 − 𝑓 )2
(5.119)

Still, additionally, we require a windowing function written in geometrical parameters as

𝑘𝑟 (𝑧𝑖) to simulate the light funnel, i.e. to transversally limit the beam. But first, we need a

geometrical approximation for the waist 𝑊 (𝑧𝑖) of the windowing function for each point on

the axis in terms of the radius of the lens R.
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First, we calculate tan 𝛽 in terms of 𝑧𝑖

tan 𝛽 =
𝑊 (𝑧𝑖)
𝑧 − 𝑧𝑖

(5.120)

and from Figure 5.18, we notice under the paraxial approximations tan 𝛽 = 𝑅/𝑧1, thus the

radius of the windowing function is

𝑊𝑖 (𝑧𝑖) = (𝑧1 − 𝑧𝑖)
𝑅

𝑧1
(5.121)

Eq.(5.121) is necessary because it acts as the waist of the windowing function that is going

to avoid the Bessel beam extents in all the transversal space, we use here the super-Gaussian

function or Flattened Gaussian profiles to modulate the propagation of the Bessel beam.

For the SG function, we have

𝑈𝑆𝐺 (𝑟, 𝑧𝑖) = exp

[
−

(
𝑟

𝑊 (𝑧𝑖)

)2𝑚]
(5.122)

and for the Flattened Gaussian function the expression takes the form

𝑈𝐹𝐺 (𝑟, 𝑧𝑖) = exp

[
−

(
𝑟

𝑊 (𝑧𝑖)

)2] 𝑗=𝑁∑︁
𝑗=0

1

𝑗 !

(
𝑟

𝑊 (𝑧𝑖)

)2 𝑗
(5.123)

Finally, the expression for the evolution of a focused Bessel beam as a geometrical approxi-

mation is formed by the Eqs. (5.118) , 5.119 , and the (5.121) along one of the windowing

functions. If we use the SG function we obtain

𝐸AproxGeo1(𝑟, 𝑧𝑖) =
𝑓 2

(𝑧𝑖 − 𝑓 )2
𝐽0 (𝑘𝑟 (𝑧𝑖)𝑟) exp

[
−

(
𝑟

𝑊 (𝑧𝑖)

)2𝑚]
(5.124)

and for the FG function, the equation is

𝐸AproxGeo2(𝑟, 𝑧𝑖) =
𝑓 2

(𝑧𝑖 − 𝑓 )2
𝐽0 (𝑘𝑟 (𝑧𝑖)𝑟) exp

[
−

(
𝑟

𝑊 (𝑧𝑖)

)2] 𝑗=𝑁∑︁
𝑗=0

1

𝑗 !

(
𝑟

𝑊 (𝑧𝑖)

)2 𝑗
(5.125)

Both of these geometrical approximations are valid only within the region between the



CHAPTER 5. FOCUSING GAUSSIAN BEAMS AND BESSEL BEAMS 132

Figure 5.42: Evolution of the propagation of a Bessel beam with the SG function
passing through a thin lens using the geometric approximation.

lens and pseudo-focus point, i.e. for 𝑧 ∈ [0, 𝑧1]. In Figure 5.42 we show an example of a

tridimensional profile of a focused Bessel beam obtained using Eq.(5.124) for two values of

m. The case with the Eq.(5.125) is illustrated in Figure 5.43 for two values of N. In both

cases, we assumed a focal length of 4, a lens of radius 𝑅 = 50, and the radial wave vector of

the Bessel beam is 𝑘𝑟 = 4, all of them in normalized coordinates.

The program calculates the value of the pseudo-focal point 𝑧1 using Eq.(5.92) and for

the particular case of the examples shown, the value is 𝑧1 = 3.44. Meanwhile, the peak

intensity the program reports from the geometrical approximation is 𝑧𝑎𝑔1 = 3.45 for both

cases of windowing functions. This approximation predicts correctly that in the 𝑧1 point,

geometrically we find a peak in the axial intensity of the beam.

Additionally, an interesting feature we noticed while working with this program was that

for both, the SG and FG function, we obtained the same value of the pseudo-focal point

and peak axial intensity regardless of the value of 𝑘𝑟 . Further, from Figures 5.42 and5.43 we

notice the parameters m and N only increase the number of side-lobes of the Bessel profile,

this is due to the profile of each windowing function, the FG function is wider than the

SG function as the Figure 5.44 shows, which means the window boundary coincides with a

bigger zero of the Bessel function, that is more energy is transmitted. Notice the profiles of

SG and FG functions are different from the ones shown in Figure 5.39, this is because last
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Figure 5.43: Evolution of the propagation of a Bessel beam with the FG func-
tion passing through a thin lens using the geometric approximation.

section we considered energy conservation for the values of the waists of both functions, and

here not.

From Figure 5.42 and 5.43 we notice the shape of the axial intensity, the peak intensity,

and the value of 𝑧1 remain the same, this is expected because the axial intensity is modulated

by Eq.(5.119), that does not depend on the windowing parameters. However, the peak

intensity does vary for different values of f, the larger f is, the lower the intensity reached,

the explanation for this is the same as we provided last section with Fig. 5.24, the propagation

of distance increases with f, which translates into less energy due to diffraction effects.

Now, we also examine the output intensity profiles for both Eqs. (5.124) and (5.125) at

the point 𝑧𝑎𝑔1, the results are shown in Figure 5.45 where we noticed something interesting.

For 𝑓 ≥ 4 the shape and the approximate radius 𝑟1 of the center lobe do not change for any

of the windowing functions, and no change is observed for different values of m or N either.

But for 𝑓 ≃ 2, the size of the spot varies. For the FG case, as we increase N, the radius of

the center lobes does it too, and as Figure 5.45 illustrates, its shape is rounder too. For its

part, the shape of the peak lobe is only slightly rounder for the SG case, and the radius 𝑟1

also varies with m.

In general, from our observations and numerous tests, we conclude the radius 𝑟1 and

shape of the center peak depend on the propagation distance z, that is, the maximum value
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Figure 5.44: Transverse profiles comparison of the SG, FG, and
Bessel functions.

𝑧𝑖 takes within the program, which is why for 𝑓 ≃ 2 ("small" focal length) the propagation

distance is short which means less energy is lost and as a consequence the variations in shape

and size of the lobe are more notorious, this is similar to what happened with the oscillations

caused by diffraction when their contrast was higher when more energy was in the system.

And for "large" focal lengths much more energy is lost (see upper right corner of each profile

in Figure 5.45) which translates into no noticeable changes.

Our geometrical approximation is flawed because so far we do not have control of the

energy of the system which means we cannot analyze the relative axial intensity as we did

last section, but the energy is increased as we expected due to the implementation of the

Loretzian approximation (Eq.(5.119)). Moreover, we are also limited by the size of the

matrix we use to run our geometrical approximation in MatLab, which as we can observe

from Figure 5.45 leads to output profiles with a poor quality. Further improvements could

be made to the code to fix these limitations.

Finally, this approximation could be useful when working with Bessel beams experimen-

tally because the expression that describes the propagation of the Bessel beam is written in

measurable and controlled parameters, which could provide an insight into its behavior for

specific parameters and a preliminary prediction of the energy loss the beam will suffer.
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Figure 5.45: Center lobe of the output intensity distribution using the SG and
FG function for different focal lengths.



Chapter 6

Conclusions

This work was fundamentally an expansion of the formalism based on the traveling conical

waves that explain the nature of Bessel beams, we presented an ordered and comprehensive

explanation of the concepts necessary to understand this theory. Furthermore, we presented

a detailed analysis of the focusing properties of a Bessel beam.

We revisited the theory of diffraction and presented a detailed description of the diffrac-

tion integrals which ultimately helped us to give a conscience and clear definition of the

diffraction phenomenon, which states that this phenomenon is the result of an element, be

this an aperture, an obstacle, a film, a crystal, a spatial light modulator, etc., that modifies

the amplitude and/or the phase of a propagating wave.

We analyzed two apodization functions for the Bessel beam, the Super Gaussian beam,

and the Flattened Gaussian beam to reduce the oscillations caused by diffraction and pro-

vided numerical demonstrations. In our analysis, we made use of energy conservation theo-

rems which allowed us to obtain relations between the parameters that modulate the apodiza-

tion functions and the radius of their waist which proved to be very effective in the case of

the Super Gaussian profile because it showed to be able to reduce the contrast of the oscilla-

tions, especially for 𝑓 > 2, and also capable of reaching results similar to the ones obtained

without the apodization function in terms of peak intensity and its position 𝑧1. However,

the Flattened Gaussian beam demonstrated to be in general more effective in smoothing the

axial intensity curve than the SG profile, and it does not require large values of N, especially

for the cases 𝑓 = 4 and 𝑓 = 6, this was achieved at the expense of a bigger loss of energy in

136
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comparison. Finally, both apodization functions can keep the size of the center lobe when

they are of the order of 10th when 𝑓 = 2.

We also explained the behavior of both apodization functions when modulating the prop-

agation of the Bessel beam after it has passed a thin lens in terms of the description of the

Bessel beams as a decomposition into its constituent conical wave components.

Further, we have given a geometrical approximation of the transverse wave vector of the

Bessel beam for each point on the propagating axis, which we used to give two functions

that represent geometrical approximations, that reproduce the evolution of the focusing of

a Bessel beam within the cone-shaped region delimited by the “pseudo-focal” position, and

analyzed their transverse output profiles which showed that for 𝑓 > 2 the size of the center

lobe does not change regardless of the function used and the focal length, this is due to the

loss of energy caused by diffraction of the aperture functions used to form the geometrical

approximation.

Future work that remains to be done involves the study of the propagating and focusing

features of the Bessel beam within a GRIN medium. The challenge that presents going

forward is how the traveling Hankel wave formalism explains the behavior of this beam

when they are propagating in a non-homogeneous medium, so far, we have run numerical

simulations that showed the traveling waves that compose the beam follow the trajectories

determined by the ray equation. Our early results show that the quadratic GRIN medium

behaves as a Fourier lens, and we plan to continue our investigations.
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