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Abstract

Practice of Yoga has seen increased popularity in recent years as it provides several health benefits

through physical, mental, and spiritual practices. While several online resources are available for

people to perform yoga at home without requiring an instructor, unsupervised training can increase

risk of injury, as users are not provided suggestions on how to improve. This thesis project proposes

a system, hosted on an NVIDIA Jetson Nano, to evaluate user performance of yoga poses in real

time. The MediaPipe Pose framework was enabled to perform pose detection to estimate the 3D

location of several joints of the human body, which subsequently allowed to perform pose evaluation.

Pose evaluation was performed by estimating several joint angles of a particular user and comparing

them with a reference pose. The poses applied to this work were Goddess, Warrior II and Tree,

which can be considered easy to perform and have been applied to other works in the literature.

This work involved the implementation of both single camera and stereo vision systems, using one

and two cameras, respectively, to evaluate their respective performances for human pose estimation

and evaluation. Similarly, two methods to estimate body joint angles were implemented, the vector

dot product and a procedure based on Inverse Kinematics. The estimated joint angles allowed to

design and implement a protocol to assess users in real time while performing yoga. Through a

Graphical User Interface, the proposed system provides users with a score ranging from 0 to 100,

which is based on the percentage error between user angles and the reference pose. Additionally,

the system enables a color scale system that visually indicates practitioners how to improve as

they perform a pose. Pose detection and angle estimation results of the implemented frameworks

were validated with the aid of a Kinect V1 device. Results prove that Stereo Vision outperforms

the single camera system in terms of accuracy for 3D pose detection and angle estimation and

is, therefore, more reliable for providing correct feedback. The proposed system will be of aid to

individuals that practice yoga as it will minimize injury risk while improving physical and mental

health.

Keywords: Yoga, Pose evaluation, MediaPipe, Kinect, Stereo Vision, Jetson Nano, Body Angles
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Chapter 1

Introduction

Yoga is a popular and ancient discipline that combines physical, mental, and spiritual practices to

provide harmony between body and mind. It offers several benefits, such as improved flexibility,

muscle strength, cardiovascular health, as well as mental and psychological health [9], [10]. Recent

years have seen an increment of open access online resources that have allowed individuals to prac-

tice yoga at home without requiring an instructor. However, practicing yoga without supervision

can result in injury, as users are not provided with improvement suggestions. Yoga-related injuries

include muscle strain and sprain, as well as general pain [11].

Numerous studies have explored systems and models for classification and identification of

yoga poses [12] [13]. However, as human health and welfare have gained prominence in the field

of artificial intelligence, more recent works have pivoted towards evaluation of yoga poses. Various

studies, for instance, incorporate wearable devices [14], while others have implemented computer

vision systems for the identification and assessment of yoga poses. Said systems make use of

devices such as the Microsoft Kinect, webcams and even mobile applications [15], [16], [17], [18].

Furthermore, the incorporation of Machine Learning algorithms, as well as Deep Learning models

holds promise for improving performance of these systems, potentially enabling greater accuracy

and robustness [19].

In particular, Machine Learning approaches involve several algorithms, such as Random

Forests (RF), Support Vector Machines (SVM) and Logistic Regression classifiers [13], [20]. Simi-

larly, Deep Learning methods have incorporated several pre-trained Neural Networks (NNs), such

as the ResNet and MobileNet, as well a custom-built Convolutional Neural Networks (CNN) [12],

[21], [22], [23]. Additionally, some works have even implemented hybrid systems that combine
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Neural Networks for feature extraction, which then are used to train Machine Learning models to

perform classification and evaluation of Yoga [24], [25], [26].

More recently, newer approaches have incorporated human pose estimation frameworks,

such as MediaPipe Pose, OpenPose and PoseNet. In general, these frameworks are capable of

detecting and providing coordinates for several joints or keypoints of the body. These keypoints

coordinates have allowed to design and implement systems for classification and evaluation of Yoga

poses [27], [28], [29], [30].

The goal of this thesis project consisted in proposing, implementing and validating a Machine

Learning-based system for evaluation of yoga poses. In terms of user engagement, the system should

be user-friendly, such that individuals find it easy to interact with. Similarly, the system should

provide correct and accurate feedback that is clear for the user to understand so that they can

easily improve their performance.

In terms of performance, the system should be able of correctly capturing the shape of the

human body, therefore, it must be accurate and robust in terms of pose estimation. In addition to

pose estimation accuracy, the system must prove similar or improved performance with respect to

state of the art studies. To achieve this, a validation procedure should be implemented. Addition-

ally, the system should be able to operate in real time, while maintaining low power consumption.

The yoga poses applied to this work consisted in Goddess, Warrior II and Tree. These poses

were chosen since they have already been applied to other works in the literature and are considered

easy to perform. This work made use of the MediaPipe Pose Machine Learning solution, which

is a state-of-the-art pipeline capable of detecting and tracking human joint locations in real time.

Through MediaPipe Pose, several joint angles were proposed such that the angles of a particular

user can be compared with a set of reference angles to determine the accuracy with which the user

performs a particular Yoga pose.

The system was hosted on an NVIDIA Jetson Nano, a small but powerful computer, which

incorporates an NVIDIA graphics processing unit (GPU) that makes it suitable for running multiple

neural networks in parallel. Recent years have seen the Jetson Nano become widely popular for

Artificial Intelligence and Internet of Things (IoT) applications.



1.1 Organization of the thesis

This thesis project involved several stages. Chapter 2 presents and discusses the necessary concepts

that were applied to this work, such as devices and pose estimation frameworks. Similarly, an

explanation is provided regarding Stereo Vision for depth estimation, as well as the implemented

methods to estimate joint angles.

Chapter 3 provides an overview on several Pose Estimation frameworks. Similarly, a review

is given regarding several works that focus on evaluation and assessment of yoga poses using

Pose Estimation Frameworks. Chapter 4 describes the proposed methodology, which explains

the computer vision system used in this work and the implemented angle estimation methods.

Additionally, the chapter explains how a Kinect device was used for results validation and, lastly,

the proposed pose evaluation methodology.

Chapter 5 details how a set of tests were carried out with a group of volunteers, as well as

the results obtained. Results focus on the obtained angles for the yoga poses applied to this work

(i.e. Goddess, Warrior II, Tree). Similarly, the complete system, powered by the Jetson Nano, is

presented.

Finally, chapter 6 discusses the results obtained in this work, as well as what future work

should focus on.





Chapter 2

Theoretical framework

The current chapter discusses several concepts and topics necessary to the development of the cur-

rent work. Initially, an insight into the hardware used during this project is given (i.e. NVIDIA

Jetson Nano and Microsoft Kinect). Additionally, the pose estimation frameworks, such as Me-

diaPipe Pose and the Kinect’s Skeletal tracker, are briefly explained. Also, a description is given

regarding the Stereo Vision setup implemented for depth estimation. Finally, two methods for the

estimation of angles are presented, those being the vector dot product and an inverse-kinematics-

based procedure.

2.1 Hardware

2.1.1 NVIDIA Jetson Nano

NVIDIA Jetson is a family of development boards and kits produced by NVIDIA, suitable for several

tasks such as Software Development, Robotics, Machine Learning and Embedded Applications. In

particular, the Jetson Nano is one of the smaller members of the family, but quite powerful and

suitable for Machine Learning applications [31].

With an integrated 128-core Maxwell GPU, the Jetson Nano is capable of running multiple

neural networks in parallel and enable several tasks such as image classification, image segmenta-

tion, object detection and speech recognition and processing [31]. The Jetson Nano has a Quad-core

ARM A57 CPU, a 4 GB 64-bit LPDDR4 memory, two MIPI CSI-2 DPHY interfaces, as well as

Ethernet, HDMI, Display and several USB 3.0 ports [1]. Additionally, the Jetson Nano can be
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powered via Micro-USB or a 5V 4A DC power supply [32].

Figure 2.1: Jetson Nano Developer Kit [1]

2.1.2 Microsoft Kinect

The Kinect is a motion sensing device manufactured by Microsoft and presented in 2010 as an

accessory for the Xbox 360. The device includes several sensors such as an RGB camera, an

infrarred (IR) emitter and IR depth sensor, a multi-array microphone capable of recording sound

and identify the source and direction of audio waves [33]. The Kinect devices also includes a 3-axis

accelerometer, as seen in Fig. 2.2. Among other characteristics, the Kinect V1 device has a 57°

horizontal field of view (FOV), works at a video resolution of 30 Frames-per-Second (FPS) for the

depth and color streams, and includes a tilt motor [4].

Figure 2.2: Kinect V1 schematic [Microsoft Library]



2.2 Pose estimation frameworks

2.2.1 Mediapipe Pose

MediaPipe is an open-source framework developed by Google, which allows the development of

Machine-Learning-based applications [34]. Examples of use cases include pose estimation, face

detection and tracking, hand gesture recognition, object detection and segmentation, as well as

audio and speech recognition [35]. Specifically, the MediaPipe Pose Landmarker, which is based

on Google’s BlazePose model and keypoints topology, allows for real-time Pose Estimation, as it

enables human body landmarks detection and tracking from both image and video sources. This

framework outputs the location of 33 human body keypoints, listed in Fig. 2.3, in terms of both

image pixel coordinates as well as 3D world coordinates [2].

Figure 2.3: MediaPipe Pose landmarks topology [2]

The Machine Learning Solution consists of two stages, which involve a detector and a sub-

sequent tracker model [2]. A simple process diagram can be seen in Fig. 2.4. With the detector

model, the pipeline initially detects the person’s region-of-interest (ROI) within the frame. Subse-

quently, the tracker locates the person’s landmarks within the previously detected ROI [36]. For

video use cases, the detector is only used when needed, such as for the very first frame and when

the tracker was not able to find a body in the last frame. For the subsequent frames, the pipeline

only infers the ROI from the pose landmarks inferred in the previous frame [37].



Figure 2.4: MediaPipe inference pipeline [3]

The detector model in fact makes use of the BlazeFace model, which acts as the proxy for the

presence of a person. The detector model provides several parameters, such as person alignment,

the middle point between the person’s hip and the bounding circle circumscribing the person. The

detector model then provides these parameters to the neural network that can be appreciated in

Fig. 2.5 [36]. The neural network makes use of heatmap and offset loss only during training.

The heatmap is discarded during inference, which was found to greatly improve the model’s speed

even on low-capacity devices. The neural network takes inspiration from a Stacked Hourglass

architecture, but instead makes use of a small encoder-decoder heatmap network (middle, left on

Fig. 2.5), and a subsequent regression encoder (right on Fig. 2.5) with several skip connections

that balance high- and low-level features [37].

Figure 2.5: BlazePose network architecture [3]

Two BlazePose models were trained, full and lite versions, with 3.5 million and 1.3 million

neural network parameters, respectively, and compared with the OpenPose Pose Estimation frame-

work for reference. OpenPose demonstrated slightly better performance than both BlazePose mod-



els, obtaining a PCK@0.2 score of 87.8 on a custom-designed dataset by Google, while BlazePose

models obtained 84.1 and 79.6, respectively. However, BlazePose models showed significantly bet-

ter speed performance than OpenPose, achieving resolutions of 31 and 10 FPS, respectively, on a

single core of a Pixel 2 device, compared to 0.4 FPS achieved by OpenPose on a 20-core desktop

CPU (Intel i9-7900X).

2.2.2 Microsoft Kinect Skeletal Tracking

The Kinect gaming platform’s pose estimation algorithm, Skeletal Tracker, was built on top of the

work developed by [38] Shotton et al. The Kinect’s joint detection algorithm is inspired by works

based on object recognition which divide objects into parts [39] [40]. The proposed method uses

single depth-images to predict 3D positions of body joints in real time and without having to rely

on temporal information.

Figure 2.6: Kinect skeletal tracking process [4]

The Kinect uses an algorithm to match the incoming raw data, provided by the depth sensor,

with sample training data, which is labeled such that it is associated with a particular body part.

Consequently, a Decision Forest model segments the matched depth data in order to identify and

propose the location for each body joint. Lastly, the 3D views of the proposed location of the body

parts are calculated, which enables skeleton tracking [4]. This procedure is summarized in Fig. 2.6.

The Kinect Windows Software Development Kit (SDK) allows to access 20 skeleton joints,

as well as their respective x, y and z coordinates. Fig. 2.7 illustrates the joints that are provided

by the SDK.



Figure 2.7: Kinect SDK skeleton tracking joints [4]

2.3 Stereo Vision

Stereo Vision systems incorporate two or more cameras oriented towards the same object [41]. The

aim of a Stereo Vision System is to capture an object in the real world and estimate its depth [42].

Specifically, the goal consists in identifying the same pixel in both camera frames with the aim

of obtaining a disparity between the images, which will be further used to estimate the depth of

the object of interest. Fig. 2.8 depicts a simple stereo vision system [5] in which the cameras are

parallel to each other. For convenience, both cameras should have the same parameters, that is,

pixel resolution and focal length. As shown in Fig. 2.8, the cameras are separated by a baseline

b, f represents the focal length of the cameras, P represents a point in the real world defined by

(x, y, z) coordinates, and UL and UR represent the projections (in pixels) of point P in the left and

right image frames, respectively (i.e. horizontal pixel coordinates).



Figure 2.8: Simple Stereo Vision System. Retrieved from National Instruments [5]

It is important to mention that Fig. 2.8 assumes that the two cameras have the same focal

distance, that the cameras are parallel between each other, which means there is only a horizontal

disparity and not a vertical one, and that the X-axes of both cameras are collinear with the baseline

axis. Equations 2.1 and 2.2 are used to obtain the projections (i.e. horizontal coordinates) for point

P in the left and right camera images, respectively [41].

UL = f
XA

ZA
(2.1)

UR = f
XA − b

ZA
(2.2)

ZA represents the optical axis of a camera, which, in this case where both cameras are

parallel, represents the axis along which the depth of point P is sought to be estimated. The

disparity between the projections of point P in both images frames can be calculated using Eq.

2.3.

d = (UL − UR) = f
b

ZA
(2.3)

From Eq. 2.3 we can obtain ZA, that is, the depth of point P .

ZA = f
b

(UL − UR)
(2.4)



2.4 Angle estimation methods

2.4.1 The Vector Dot Product

Also known as the "scalar product", the vector dot product consists in a operation that is performed

between two vectors of equal dimension, which yields a scalar [43]. Let u and v be two vectors of

N dimensions. The dot product between u and v is defined as

u · v = uT v =

∞∑
i=1

uivi (2.5)

When v is a unit vector, denoted as v̂, performing the dot product between u and v yields

the projection of u along the direction of v̂, which means the result depends on the length of u and

the cosine of the angle between u and v [44]. Let ||u|| and ||v|| represent the Euclidean norm of

u and v, respectively; the dot product, along with the Euclidean norm, can be used to obtain the

cosine of the angle between u and v

cosθ =
u · v

||u|| · ||v||
= û · v̂ (2.6)

Geometrically, the dot product represents the projection of one vector onto another, that is,

how much of one vector is pointing in the direction of another vector. From Eq. 2.6, we can easily

solve for the value of the angle between vectors u and v.

2.4.2 Inverse Kinematics

In the common context of robotics and even animation, Forward Kinematics involves obtaining the

values for the position and movement of a robot’s end-effector (e.g. gripper, tool), taking as inputs

the know values of the angle or position of each individual joint [45]. It is a relatively simple task

and can be solved analytically. In particular, the following transformation is set to be implemented,

which converts a set of values from joint space to cartesian space

θ1θ2...θN → xEE , yEE , zEE (2.7)

Inverse Kinematics is the inverse process: given the cartesian coordinates for the position

of the end-effector, the specific angles for each joint are to be obtained [46]. In this context, the

following transformation is sought to be implemented



xEE , yEE , zEE → θ1θ2...θN (2.8)

Take for instance the robotic arm depicted in Fig. 2.9. Given that the end-effector of

the robot arm has desired x and y coordinates, using an Inverse Kinematics approach based on

geometry, for example, one can find the appropriate angle configuration for each joint (q1, q2, q3,

q4) that would place the end-effector in the desired location.

Figure 2.9: Configuration of the joint locations of a Robot Arm using Forward or Inverse Kinematics [6]

A geometric approach to solve Inverse Kinematics would consist of finding and using the

geometric relationships between the links and joints of a robot arm or kinematic chain, such as

the ones shown in Fig. 2.10. It can be quite straightforward and rather simple for certain types

of robot manipulators, in particular simpler robots with few degrees of freedom and kinematic

links. Additionally, if the coordinate values for each joint are known, this could lead to a closed-

form solution, that is, an exact mathematical solution that directly calculates the joints of the

robot, without needing to apply iterative methods and complex matrix operations [7]. Important

geometric relationships involve the Law of Cosines and the Vector Dot Product. These can be used

to obtain, for instance, the values of θ2 and θ3, respectively.



Figure 2.10: Example of a two-link manipulator with its corresponding angles [7]

Solving Inverse Kinematics using geometry offers several advantages over numerical methods,

such as computational efficiency and simplicity, as it relies on geometrical relationships, rather

than implementing complex and iterative mathematical and matrix computations. Additionally,

geometrical approaches to solve Inverse Kinematics offer good visualization and understanding of

the mechanics behind the task that is trying to be solved [47]. Similarly, geometric approaches can,

in some cases, avoid singularities and indeterminate results [48].

As stated above, there is a relationship between Forward and Inverse Kinematics, which can

be observed in Fig. 2.11. Forward Kinematics aims to convert from joint space to cartesian space,

while Inverse Kinematics consists of the opposite procedure.

Figure 2.11: Relationship between Forward and Inverse Kinematics [8]

Inverse Kinematics, unlike Forward Kinematics, is generally not straightforward and very

few analytical and numerical solutions exist. In some cases, there can be many solutions, or

even no solutions at all [49]. In general, the solution of an inverse kinematics problem can be

computationally expensive and require long time. Moreover, the problem’s complexity increases

due to singularities and nonlinearities [50]. Therefore, analytical solutions only exist for a specific

set of scenarios.



Chapter 3

Related work

There are several works in the literature that implement algorithms and frameworks for the iden-

tification and classification of yoga poses, mainly through Convolutional Neural Networks (CNNs)

and classification models such as Support Vector Machines (SVMs) and Decision Trees [12] [13].

More recently, focus has shifted towards the development of yoga posture correction and evaluation

systems. This chapter makes an overview on several Pose Estimation frameworks that have been

applied to develop systems to evaluate yoga performance.

In subsection 2.2.1 it was discussed how MediaPipe Pose consists of two stages, in which

the first stage consists of a detector that finds the Region-of-Interest (ROI) of an individual, along

with a few keypoints, while the second stage involves a tracker that completes the mapping of

the pose. Besides MediaPipe Pose, there are several other Pose Estimation frameworks that have

been used for pose evaluation, such as OpenPose, PoseNet and MoveNet. In general, these models

have become widely popular for particular applications but differ in their internal structure and

operation. Their respective architecture makes each of them suitable for different contexts as they

offer several advantages and drawbacks.

Launched and enhanced during 2017, OpenPose is a multi-person framework that can detect

up to 135 keypoints, including body, hand, facial and foot, from single images [51]. OpenPose

makes use of several steps to perform Pose Estimation. Initially, the input image is analyzed by

Convolutional Neural Network (CNN) to extract feature maps. The initial CNN consists of the first

10 layers of the VGG-19 network. The extracted feature maps are then processed by a multi-stage

CNN that generates Part Confidence Maps and Part Affinity fields, which help to identify the

possible locations of a particular body part, and its orientation, respectively. In the last step, the
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generated Part Confidence Maps and Part Affinity Fields are processed with a bipartite matching

algorithm that produces the final pose for each person in the image [52].

The TensorFlow.js version of PoseNet was released by Google Creative Lab in 2018. It

allows for single and multi-person pose estimation from image and video sources. For the single

pose version, the PoseNet model resizes the input frame with the aim of obtaining either higher

accuracy or runtime performance. PoseNet processes the image with the aid of a pre-trained

MobileNet model that outputs heatmaps and offset vectors. These are used to obtain confidence

locations for each keypoint in the frame. Lastly, several calculations are performed on the obtained

heatmaps and confidence vectors that return the most likely location for each keypoint [53].

MoveNet was also developed by Google and it consists of an ultra fast model capable of

detecting 17 keypoints. The MoveNet architecture makes use of heatmaps to find the locations of

human joints. The model initially employs a feature extractor model, based on the MobileNet-V2.

Then, it makes use of a set of prediction heads that analyze the extracted features and estimate

several features such as the person center heatmap and person keypoints. Due to not making use

of a detector to identify persons in image frames, MoveNet directly predicts the location of the

keypoints, which allows for greater speed while potentially sacrificing accuracy [54].

Several datasets exist to determine the estimation accuracy of a particular Pose Estimation

model. Among the most popular, there is the Common Objects in Context (COCO) [55] and

MPII [56], along with others, such as HIIT. In general, these datasets contain images of people

performing several activities in different environments and contexts. These images contain an-

notations regarding the location of body joints or keypoints in terms of the image pixels. One

particular metric to evaluate the accuracy and performance of a given model is the mean Average

Precision (mAP), which summarizes the overall performance of an object detection model across

several categories within a specific dataset. It is calculated by averaging all Average Precision

(AP) values obtained for each object class within a dataset [57]. While the Average Precision (AP)

metric focuses on a particular class of a dataset, the mean Average Precision (mAP) provides an

overview of the model’s performance across all of the dataset’s categories.

Table 3.1 represents a brief performance comparison between the aforementioned Pose Esi-

mation benchmarks, highlighting whether they are single or multi-pose, the number of keypoints

they can detect, as well as their coordinates. Additionally, their speed in frames-per-second (FPS)

and estimation accuracy on a particular dataset is provided. In this context, the COCO dataset

makes no distinction between Average Precision (AP) and mean Average Precision (mAP).



Framework Number of Number of Speed [FPS] Accuracy [mAP,

poses keypoints dataset]

MediaPipe Pose [58] Single pose 33, 3D 20-50 FPS 74.0,

(Pixel 3 GPU) HIIT

OpenPose [52] Multi-pose Up to 135, 22 FPS 75.6,

2D and 3D (NVIDIA GTX 1080 Ti) MPII

PoseNet [53] Single and multi- 17, 2D 25 FPS 0.687 (Average

pose (Pixel 5 GPU) Precision),

COCO 2016

MoveNet (Lightning) [59] Single and multi- 17, 2D 40 FPS 66.8,

pose (Pixel 5 GPU) COCO 2017 [60]

MoveNet (Thunder) [59] Single pose 17, 2D 22 FPS 77.8,

(Pixel 5 GPU) COCO 2017 [60]

Table 3.1: Performance comparison between several Pose Estimation benchmarks

Table 3.2 outlines several works that have made use of Pose Estimation frameworks to

develop Yoga pose evaluation systems, mainly MediaPipe Pose, OpenPose, PoseNet and MoveNet.

The table includes columns for the pose estimation framework and computer vision system used,

the method to perform pose evaluation, as well as how feedback is provided to the user. The table

also specifies the platform on which the system was hosted on.



Year Pose estimation Pose evaluation Feedback form Platform Ref

framework method

2019 OpenPose, Joint angles using Red-green color scale, [15]

Single webcam OpenPose keypoints "Perfect" to "Bad" scale

2021 OpenPose, Joint angles and Step by step instructions 4 GB RAM [16]

Single webcam distances machine

2020 OpenPose, Machine Learning Confidence value of Android App [17]

Phone camera Classification Model ML Model

2022 MediaPipe Pose, Joint angles using Step by step instructions via Android App [28]

Phone camera MediaPipe keypoints Google Text-to-speech API

2024 PoseNet, Joint angles using Text, audio messages Web App [29]

Single webcam PoseNet keypoints to correct posture

2023 MediaPipe Pose Body angles using Success/negative 64-bit OS [61]

Single webcam MediaPipe keypoints message

2024 MediaPipe Pose, Joint angles using Suggestions provided [62]

Single webcam MediaPipe keypoints by Neural Network

2020 PoseNet, Joint angles using Correct/Wrong pose message, [63]

Single webcam PoseNet keypoints, more/less/ok message

ML Model for feedback for each joint

2020 PoseNet, Joint angles and "Pose correctly performed" Android App [64]

phone camera distances message

2023 PoseNet, Joint angles using Green/white skeleton Web App [65]

Single webcam PoseNet keypoints drawing for correct/incorrect

pose

2024 MoveNet, Joint angles using Green/white skeleton Web App [66]

Single webcam MoveNet keypoints drawing for correct/incorrect

pose

Table 3.2: Similar works that have developed Yoga evaluation systems using Pose Estimation frameworks



Chapter 4

Proposed methodology

The current chapter discusses the proposed methodology for this work. Initially, an explanation of

the software and hardware behind pose estimation and keypoints detection is presented. Secondly,

the angles that were proposed to define the human body, as well as the mathematical procedures to

estimate them, are explained. Also, the evaluation and feedback protocol to determine the accuracy

of a given pose, are described. Lastly, validation of angle estimation via a Kinect V1 device is also

explained. A flowchart of the overall methodology is presented towards the end of the chapter.

4.1 System block diagram

The proposed system incorporates IMX219 cameras connected to the Jetson Nano via the CSI

interfaces. The system takes as input an image or pair of images. MediaPipe Pose is then enabled

to perform pose estimation, which provides the keypoints coordinates for several body joints. With

these coordinates, several body joints are estimated and then compared with the reference angles

of the pose the user is performing. A score, ranging from 0 to 100 is provided, as well as a color

scale system to visually indicate the user which joints they could improve. The system’s diagram

can be seen in Fig. 4.1.

4.2 Hardware for Computer Vision

Two systems for computer vision were implemented in this work. The first one consisting of a single

IMX219 camera, while the second one incorporated two IMX219 cameras, comprising a Stereo

Vision System. Both IMX219 cameras, acquired from Waveshare, have an 8MP resolution and
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Figure 4.1: Block diagram of the yoga pose evaluation system

incorporate an IMX219 CMOS sensor, manufactured by Sony [67]. Incorporating CSI serial output,

they are compatible with several boards such as Jetson and Raspberry devices. In particular, the

Waveshare cameras incorporated to this work have a diagonal field of view (FOV) of 160°, a focal

length of 3.15 mm and a 6.5mm x 6.5mm lens [68]. The goal of implementing two computer vision

systems consisted in evaluating their respective performance and accuracy for 3D pose detection

and angle estimation. Both computer vision systems were hosted on an NVIDIA Jetson Nano. The

final assembly can be seen in Fig. 4.2.

Figure 4.2: IMX219 cameras hosted on the Jetson Nano



4.3 Framework for Pose Detection

The MediaPipe Pose framework was chosen to enable pose estimation using the Jetson Nano. As

it was discussed in 2.2.1, MediaPipe Pose can provide x, y and z keypoints coordinates for up to 33

keypoints of the human body. Additionally, as it was summarized in Table 3.1, MediaPipe Pose is

capable of running at a superior frame rate compared to other pose estimation frameworks, making

it suitable to be incorporated to a real-time pose evaluation application. While MediaPipe Pose

may not be as accurate as OpenPose and the Thunder version of MoveNet, its lightweight and

efficient design make it the ideal platform for this project.

When working with a single IMX219 camera, all three coordinate values provided by Me-

diaPipe were made use of to perform pose evaluation. When using the Stereo Vision System,

MediaPipe Pose was only tasked with providing x and y landmark coordinates while the Stereo Vi-

sion System, comprised of both IMX219 cameras, was used to perform depth estimation to provide

the z coordinate (in cm), instead of using the one generated by MediaPipe Pose.

4.4 Methods for body angles estimation

This work proposed making use of the keypoints provided by MediaPipe, as well as the estimated

depth values via Stereo Vision, to calculate several joint angles of the human body. These angles

were then used to compare the pose of a user with a set of predefined angles acting as reference,

such as those of a certified yoga instructor. The following subsections discuss two methods to

estimate body angles, the vector dot product, and a procedure based on Inverse Kinematics.

4.4.1 Dot product

Previously, it was described how the dot product can be used to obtain the angle between two n-

dimensional vectors. For this work, the dot product formula was used to obtain the angles between

several links of the human body, which were treated as 3-dimensional vectors. This was achieved

using the following formula, which solves for the cosine of the angle between vectors u and v

cos θ =
u · v

||u|| · ||v||
(4.1)

Fig. 4.3 depicts how Eq. 4.1 was used. A, B and C represent particular joints of the human

body, whose 3-dimensional coordinates were provided by the previously described pose estimation

frameworks.



Figure 4.3: Intended use of the dot product formula

Table 4.1 lists all angles that were implemented using this methodology. And Fig. 4.4

portrays the same angles.

Joint Joint

1 Left Shoulder 7 Left Knee

2 Right Shoulder 8 Right Knee

3 Left Elbow 9 Left Shoulder 2

4 Right Elbow 10 Right Shoulder 2

5 Left Hip 11 Left Hip 2

6 Right Hip 12 Right Hip 2

Table 4.1: List of angles implemented using the dot product procedure

Note that in Fig. 4.4, only half of the angles are shown (e.g. Left Shoulder (1) is depicted

while Right Shoulder (2) is not, Right Elbow (4) is shown while Left Elbow (3) is not)

Figure 4.4: Dot Product angles drawn on the human body



4.4.2 Inverse kinematics

As it was previously described, inverse kinematics consists in obtaining the angle configuration that

would yield the cartesian coordinates of the end effector of a kinematic chain (e.g. robotic arm,

animated character’s limb). For a geometry-based approach, the process could begin by obtaining

the angle of the first link of the kinematic chain with respect to a reference plane (e.g. ground

plane to which a robotic arm is attached). Then, it is necessary to obtain the angle of the second

link with respect to the projection of the first link. This second step can then be repeated until

the end effector (the end of the kinematic chain) is reached.

In order to apply the previous methodology to this work, it was first necessary to define two

components:

1. The reference plane

2. The kinematic chains of the human body

The coronal or frontal plane, which is the plane that divides the body into front and back

sections, as seen in Fig. 4.5, was proposed to serve as the reference frame for all the kinematic

chains subsequently defined. A plane can be defined by three points; in this case, it was proposed

that the plane was defined by the coordinates of the left shoulder, right shoulder and center hip.

MediaPipe Pose does not provide coordinates for the center hip, therefore, the left and right hip

coordinate values were averaged to obtain an approximation of the center hip.

Figure 4.5: Frontal plane (green) of the human body to serve as reference plane

The next step consisted in defining all the kinematic chains that will compose the human



body. This work proposed using both arms and both legs. For the case of the arms, the chain

would begin with a link ranging from the shoulder to the elbow, and a second link going from the

elbow to the wrist. On the other hand, for the legs, the kinematic chain would begin with a link

going from a hip (e.g. left, right) to a knee, and a second link ranging from the knee to the ankle.

The above described definition yields four kinematic chains overall. The reference plane, as well as

kinematic chains, are illustrated in Fig. 4.6.

Figure 4.6: Proposed reference plane and kinematic chains

Once both the reference plane and the kinematic chains were defined, we can describe the

procedure to obtain the body angles based on the inverse kinematics methodology. Initially, it was

necessary to obtain the angle between a particular kinematic chain link and the reference plane.

An example is provided in Fig. 4.7.

Figure 4.7: Example of angle with respect to reference plane

In order to obtain the angle between a particular link, that is, a vector defined by two points,



and the reference plane, we can make use of the dot product formula between the kinematic chain’s

link and a vector perpendicular to the reference plane. We can then solve for the cosine of the

angle between both vectors. Normally, we would solve for the angle by taking the inverse cosine to

the result, however, we can instead apply the inverse sine, since we are trying to obtain the angle

with respect to the plane. In order to obtain the vector perpendicular to the plane, we simply need

to perform the cross product between two vectors within the plane. To achieve that, we can use

the aforementioned points, i.e. left shoulder, right shoulder and center hip, to obtain two vectors

and compute the cross product.

In mathematical terms, the procedure is as follows. First, two vectors within the reference

plane are defined using the coordinates of the left shoulder, right shoulder and center hip. Both

vectors will have their origin at the hip. Let P1 represent the left shoulder, P2 the center hip and

P3 the right shoulder, the vectors within the plane are defined as

v1 = {P2x − P1x;P2y − P1y;P2z − P1z} (4.2)

v2 = {P2x − P3x;P2y − P3y;P2z − P3z} (4.3)

Once v1 and v2 have been defined, we can compute the cross product between them to

obtain a vector perpendicular to the plane. This yields a vector vp

vp = {A,B,C} (4.4)

Let L represent a particular kinematic chain link, that is, a vector with coefficients

L = {l,m, n} (4.5)

We can make use of the dot product formula, solve for the the angle between vp and L but

instead apply the inverse sine to the result to obtain the angle between L and the reference plane

sin ρ =
|A · l +B ·m+ C · n|√

A2 +B2 + C2
√
l2 +m2 + n2

(4.6)

As it was described earlier, the inverse kinematic methodology implemented in this work

made use of four kinematic chains, each consisting of two links. For the first link of each kinematic



chain (i.e. the link attached to the reference plane), the angle that they projected onto the reference

plane was obtained, this provided four initial angles. Similarly, the same process was repeated for

the second link for each of the four kinematic chains, providing four additional angles. This process

is illustrated in Fig. 4.8.

Figure 4.8: Angle with respect to plane for each link

Additionally, for each kinematic chain, the angle that the second link projects onto the

first link was obtained. This was achieved by making use of the dot product formula. This is

shown in Fig. 4.9. This procedure provided four additional angles, giving a total 12 angles for the

inverse-kinematics-based procedure.

Figure 4.9: Additional angles for the inverse kinematics methodology

4.5 Validation of Angles Estimation with a Kinect V1 Device

A Kinect V1 device was enabled to validate the results obtained by both the single camera and

Stereo Vision systems. The justification of using the Kinect was that it consists of a patented

product and, at some point, was considered state of the art in terms of pose estimation. The

Kinect was programmed to perform angle estimation using both previously described methodolo-

gies. It is important to mention that the Kinect, single camera, and Stereo Vision systems operated



simultaneously but independently while estimating joint angles during testing with volunteers.

4.6 Proposed pose evaluation protocol

After enabling both pose detection, as well as angle estimation, it was necessary to design a protocol

to determine the accuracy with which a user performs a certain pose. A point-scoring system was

proposed in which the user is awarded points as they are performing a pose. The flowchart of the

evaluation protocol is presented in Fig. 4.10.

Figure 4.10: Flowchart of the point-scoring protocol

Each estimated angle is compared with the reference angle, such that a number of points is

awarded, which is a function of the magnitude of the percent error between the estimated and the

reference angle. Once all angles are compared, the total awarded points is divided by the maximum

amount of points the user could have obtained and a total score is obtained. Also, it was proposed

the user should be able to choose between several difficulty levels, where each level would mean a

different complexity in terms of correctly performing a pose.



4.6.1 Definition of Reference Angles for Each Yoga Pose

In order to obtain the values of the reference angles for each pose, several images were downloaded

from an open access dataset available online, on the Kaggle platform. The dataset contained

several images of people performing the Yoga poses applied to this work, such as Goddess, Warrior

II and Tree. With the retrieved images, both proposed angle estimation methods (i.e. Vector Dot

Product and Inverse Kinematics) were applied to all images using the MediaPipe Pose framework.

It is important to mention that for this procedure, no depth estimation was implemented via the

Stereo System, nor was the Kinect device enabled, as all keypoints coordinates values provided by

MediaPipe Pose were used. Once all images for a particular pose were processed with MediaPipe

Pose, several values for the angles were obtained. These values were then averaged in order to

obtain the reference angles for each pose. The angles obtained were validated by visual inspection

to verify they were accurate for each joint and pose.

4.6.2 Score System for Pose Evaluation

As it was mentioned earlier, in order to determine the accuracy with which a user is performing a

particular pose, a certain amount of points is awarded. This amount depends on the magnitude of

the error between the angles of the user and the previously described reference angles. Eq. 4.7 was

used to obtain the value of the percentage error, where vE represents the estimated angle and vR

stands for its corresponding reference angle.

%Error =
vE − vR

vR
· 100% (4.7)



Figure 4.11: Depiction of the point-scoring system [Arm drawing image taken from Vecteezy]

An example is provided in Fig. 4.11 in which the measured angle (θ) subjected to evaluation

is the one that represents the elbow. If the error is relatively small, the user is awarded the highest

possible amount of points. The amount of points awarded reduces as the percentage error increases,

that is, if the real angle being performed by the user differs significantly from the reference value.

This process is performed for each and every one of the angles that were previously defined and

for both procedures, dot product and inverse kinematics. Furthermore, three difficulty levels were

defined, being easy, intermediate and hard. As the difficulty level increases, the error tolerance

decreases. Table 4.2 summarizes the error value thresholds and the amount of points awarded, as

a function of the difficulty level.

Easy Medium Hard

Error Points

magnitude awarded

20 or lower 5

20 to 35 3

35 to 60 1

60 or higher 0

Error Points

magnitude awarded

10 or lower 5

10 to 25 3

25 to 40 1

40 or higher 0

Error Points

magnitude awarded

5 or lower 5

5 to 15 3

15 to 30 1

30 or higher 0

Table 4.2: Points system as a function of difficulty level

As the error increases, the points obtained decreases. Once the previous procedure has been

applied to all angles for a particular image frame, a global score is calculated dividing the amount

of points the user was awarded by the hypothetical maximum amount of points they could have

obtained. Since this whole procedure is continuously being carried out, the global score value is

constantly being recorded (once for every time an image frame is processed) such that the overall

score is the average of all the recorded values for the global score.

4.6.3 Color Scale System for Feedback

Following the procedure of Fig. 4.11, a color scale system was implemented in which colored circles

are drawn on top of a stick figure, which mimics the pose of the user. The goal of implementing

the color scale is to visually indicate the user which joints are being correctly performed and which

should be corrected, and how much. The color of a particular circle also depends on the magnitude

of the percentage error. The stick figure is drawn using the x and y keypoints coordinates provided



by MediaPipe Pose and is displayed next to the live video feed on the graphical user interface,

which will be presented ahead. An example of the stick figure is shown in Fig. 4.12.

Figure 4.12: Example of the stick figure and color scale system

4.7 System flowchart

Fig. 4.13 depicts the flow diagram of the complete methodology. To achieve higher video feed FPS

resolution, two threads were implemented such that they ran concurrently. This was achieved via

the threading library available in Python. Thread 1 displays the live video feed from either of the

IMX219 cameras, while Thread 2 periodically retrieves a frame, or pair of frames, from Thread 1

to perform pose evaluation (i.e. Fig. 4.10). Once the yoga exercise is completed, both threads are

terminated.

Figure 4.13: Flowchart of the complete methodology process



Chapter 5

Results

The current chapter presents the results obtained for this work. Initially, an explanation is given

regarding how tests with a set of volunteers were carried out. The goal of the tests consisted of both

estimating angles of several people of different body shapes, as well as evaluating the estimation

accuracy of both computer vision systems (i.e. single camera and Stereo Vision) using both angle

estimation methods (i.e. Dot Product and Inverse Kinematics) and also comparing them with the

reference angles that were obtained for each pose. The conducted tests allowed to obtain several

plots of the angles that were obtained making use of the three computer vision systems and the two

implemented angle estimation methods. It is important to restate that the Microsoft Kinect’s role

was to act as the ground truth for the estimations obtained with the single camera and Stereo Vision

systems. After the tests section is explained, the results obtained using each angle estimation are

shown, first, using the Dot Product, and then via Inverse Kinematics. Additionally, a numerical

comparison is presented, in the form of a table, in which the obtained results are expressed in terms

of the root mean square error (RMSE) with respect to the Kinect. Lastly, the designed Graphical

User Interface (GUI) is presented.

5.1 Tests with a group of volunteers

A set of tests was carried out with four volunteers. Each volunteer was asked to perform each pose

(i.e. Goddess, Warrior II and Tree) once for a few seconds while both the Kinect, as well as the

Jetson Nano were enabled and recording live data. The Kinect was programmed to estimate angles

using both methods and record the obtained values on a .csv file. Meanwhile, the Jetson Nano

was configured to save pictures, using both cameras connected to it, every time a key was pressed.

31



This means that every time the "save" key was pressed, two images were recorded. These images

were then processed using both angle estimation methods and the remaining two computer vision

systems (Stereo Vision, using two images, and single webcam, using one of the images only).

5.2 Dot Product Results

This section of the chapter presents the results of the estimated angles using the Vector Dot Product

method. Initially, the results for the Goddess pose are presented, followed by the Warrior II pose,

as well as the Tree pose.

5.2.1 Goddess Pose

A test example is shown on Fig. 5.1 where a particular volunteer is performing the Goddess Pose

while both the Kinect as well as the Jetson Nano are recording data.

Figure 5.1: First volunteer performing Goddess Pose

The results of the estimated angles for the Goddess Pose are presented in the form a radar

chart, in Fig. 5.2, where the chart axis represents the value of the angle in degrees and each variable

represents a particular joint. For this figure in particular, the data represents the results obtained

using the Kinect device



Figure 5.2: Kinect results of Goddess Pose, using Dot Product

Similarly, it was possible to obtain the results of the estimated angles, using the same chart

type, via the Stereo Vision system, which are shown in Fig. 5.3

Figure 5.3: Stereo Vision system results of Goddess Pose, using Dot Product

Lastly, the results obtained using a single camera to compute angles via the Dot Product is

shown in Fig. 5.4



Figure 5.4: Single camera results of Goddess Pose, using Dot Product

Additionally, the results previously shown are integrated in Fig. 5.5 in order to evaluate the

accuracy of both the Stereo Vision and Single camera systems and directly compare them with the

results of the Kinect device.

Figure 5.5: Results of the three computer vision systems, for the Goddess pose, using dot product

Lastly, based on the procedure used to obtain the values for the reference angles for each

pose (Sec. 4.6.1), it is possible to plot them alongside the results obtained for each computer vision

method. This can be seen in Fig. 5.6 which now incorporates the reference angles for the Goddess

pose using the dot product method.



Figure 5.6: Results of the three computer vision systems, for the Goddess pose, alongside the obtained

reference angles, using dot product

In Fig. 5.6, taking the reference angles plot as a starting point, we can clearly appreciate

the similarity between it and the kinect and stereo vision results. This is not the case, however, for

the single camera system, in which the keypoints coordinates information (x, y and z) provided by

MediaPipe Pose alone were used to estimate joint angles.



5.2.2 Warrior II Pose

Another test example is shown in Fig. 5.7 where another volunteer is performing the Warrior II

Pose.

Figure 5.7: Second volunteer performing the Warrior II Pose

As it was done for the Goddess Pose, it was possible to generate a radar chart, shown in Fig.

5.8, integrating the results obtained using the three computer vision systems. This also allowed to

visually evaluate the performance of the Stereo Vision and Single Camera systems, whilst taking

the Kinect as reference. The plot also incorporates the reference angles obtained for the Warrior

II pose.



Figure 5.8: Results of the three computer vision systems, alongside the reference angles, for the Warrior II

Pose, using dot product

Note that, for this particular pose and contrary to the results of the Goddess pose, there

is a disparity between the plot of the reference angles and the rest of the systems (Kinect, Stereo

Vision and Single camera). This could be due to a number of factors, for instance, because the rest

of the systems failed to correctly estimate the pose and joint angles of the users. Also, because the

reference angles were incorrectly calculated or, lastly, because the users failed to correctly perform

the pose. It is suggested that the latter is the case, due to the similarity between the plots of

the kinect and stereo vision systems. Similarly, there is a greater difference between the results

obtained via the single camera and the rest of the systems.



5.2.3 Tree Pose

Lastly, the results obtained for the Tree Pose are presented as another volunteer performs said pose

on Fig. 5.9

Figure 5.9: Third volunteer performing the Tree pose

Finally, the results of estimated angles, via the Dot Product, for the Tree Pose, including

the obtained reference angles, are condensed in Fig. 5.10.

Figure 5.10: Results of the three computer vision systems, for the Tree pose, using Dot product



A similar situation to the previous pose happens as there is a disparity between the reference

angles and the three computer vision systems used, however, as it was explained for the previous

pose, this could be due to the users in general not fully correctly performing the pose. As before,

the results obtained using the single camera system deviate greatly from the rest and, in particular,

the reference angles.

5.3 Inverse Kinematics

The current section presents the results of the estimated angles of all three poses using the proposed

Inverse Kinematics methodology. As it was done in the previous section, initially, the results for

the Goddess pose are shown, followed by the Warrior II pose, and finally, the Tree pose. Results

for all computer vision systems are presented.

5.3.1 Goddess Pose

Fig. 5.11 joins the results obtained by the three computer vision systems, for the Goddess pose,

including the obtained reference angles for this methodology.

Figure 5.11: Results of the three computer vision systems, for the Goddess pose, using Inverse Kinematics



5.3.2 Warrior II Pose

Similarly, Fig. 5.12 presents the results of the computed angles for the Warrior II pose. Like before,

a disparity is noted between the plot of the reference angles and the computer vision systems.

Figure 5.12: Results of the three computer vision systems, for the Warrior II pose, using Inverse Kinematics



5.3.3 Tree Pose

Lastly, the results for the Tree pose are depicted in Fig. 5.13, including the plot for the reference

angles.

Figure 5.13: Results of the three computer vision systems, for the Tree pose, using Inverse Kinematics

Figures 5.11, 5.12 and 5.13 allow to appreciate the similarity of the results that were obtained

via the kinect and stereo vision systems when compared with the reference angles for each pose. As

it was the case for the Dot Product methodology, in general, the results obtained using the single

camera system deviate notably from the rest and, in particular, from the reference angles.



5.4 Numerical Comparison of Angle Estimation Results

A summary is presented in Table 5.1 outlining the results obtained with each computer vision

system and angle estimation method. The table expresses the results in terms of the root mean

square error (RMSE) with respect to the Kinect. The RMSE is a useful evaluation metric that

indicates the measure of differences between predicted or estimated values by a model and actual

observed values [69]. The formula for the RMSE is shown in Eq. 5.1, where N indicates the

amount of observations. By applying the square root to the quotient of the summation of squared

differences and the amount of observed values, the RMSE expresses its results in the same units as

the observed phenomenon.

RMSE =

√√√√√√
N∑
i=1

(predictedi − actuali)
2

N
(5.1)

The procedure to obtain the RMSE values consisted of several steps. Initially, the angle

results for each Yoga pose, computer vision system and angle estimation method were averaged.

For instance, the angle results that were obtained when all volunteers performed the Goddess Pose

and when the Stereo Vision System and Dot Product method were used, were averaged. The same

was done for the remaining poses, computer vision systems and angle estimation methods. For

both Stereo Vision and Single Camera, the angle results for a particular pose and angle estimation

method were compared with those obtained by the Kinect device by making use of Eq. 5.1. In this

case, the N variable stands for the amount of angles that were compared, which is 12, regardless

of the estimation method. Once this procedure was completed, the obtained RMSE values were

averaged for every computer vision system and angle estimation method. For instance, three RMSE

values were obtained for the Stereo Vision system and Dot product methods, as there were three

yoga poses that were evaluated. These three RMSE values were averaged and the obtained value

was placed in the corresponding cell in Table 5.1.

Single Stereo

camera Vision

Dot product 32.88° 8.84°

Inverse Kinematics 32.84° 7.06°

Table 5.1: RSME for each computer vision system and angle estimation method with respect to the Kinect



The values shown in Table 5.1 indicate the average difference that each computer vision

system and angle estimation method yield with respect to the Kinect. For example, on average,

when using the Dot Product method, the Stereo Vision System estimates angles with an absolute

error of 8.84° with respect to the Kinect.

5.5 Graphical User Interface

A graphical interface was designed to allow users to interact with the system. The GUI was designed

and programmed using the Tkinter package included in the Tk Python package. It is an easy and

friendly library for the development of graphical interfaces [70]. As seen in Fig. 5.14, the UI allows

users to select the exercise, amount of time, and the difficulty level, such as "Easy", "Medium"

and "Hard". The UI also incorporates a "Start" button, as well as an "End" button, which can be

triggered at any point during an exercise, before running time ends.

Figure 5.14: Graphical User Interface

At the right of the UI, users are provided with their score, updated in real time. Additionally,

they are able to see the stick figure and color scale system, such as the example provided in Fig.

4.12, providing feedback regarding which joints should be corrected. Prior to the beginning of the

exercise, the interface displays a reference image indicating how the user should perform the pose

they’ve selected.

Once the exercise begins, the reference image is replaced by the live video feed. On top of

the feed, the user is able to visualize a countdown displaying the remaining time, which is shown

on the top-right corner of the image.



Figure 5.15: Graphical User Interface while a volunteer is performing the Goddess pose

Additionally, once the exercise ends, a window pops up, displaying a radar chart. The radar

chart plots the reference angles of the exercise, as well as the averaged angles the user obtained

during the exercise. The aim of the radar chart is to provide the user with additional feedback,

such that they can learn overall which joints could be improved and by how much.

Figure 5.16: Example of the performance plot

The chart displays exclamation marks, highlighted in red, for each joint angle that could

be improved. An exclamation is displayed if the percent error between the reference value and



the user’s value exceeds a certain threshold. The specific value of the threshold depends on the

difficulty level that the user selected. If the user chose the "Easy" level, the threshold is 35%, for

the "Medium" level, 25%, and "Hard", 15%.



5.6 Full System Hosted on the Jetson Nano

Lastly, the complete system was assembled as it is shown in Fig. 5.17. The two IMX219 cameras

are connected to the Jetson Nano. The Jetson Nano lays inside the black case, which was acquired

from Waveshare. For ease of use, the system incorporates a 7-inch touch screen. The touch screen

allows user to interact without the need for a mouse and keyboard.

Figure 5.17: Full system hosted on the Jetson Nano

The Python program’s performance was analyzed by keeping track of the video feed reso-

lution in frames per second (fps). It was observed that the Jetson Nano was able to achieve an

average resolution of 50 fps while displaying feed from either of the IMX219 cameras. The Jetson

Nano’s performance was monitored using libraries for monitoring and control of several statistics

of the Jetson, such as CPU, GPU, and Memory. In particular, the jetson-stats tool allowed to

monitor the Jetson Nano while hosting both computer vision system, as well as performing both

angle estimation methods. It was observed that memory consumption peaked when using Stereo

Vision, regardless of the angle estimation method, as it maintained an average memory usage of

>400 MB’s. Similarly, memory consumption was observed to be lower when using a single camera,

as it remained at around 350-400 MB’s.



Chapter 6

Discussion and future work

In this work, a system for real-time evaluation of Yoga poses was developed. This work involved

several stages, such as enabling MediaPipe Pose for pose estimation, acquiring and implementing

the hardware necessary for Computer Vision, defining angle estimation methods, and designing a

protocol to evaluate user pose in order to provide feedback. Lastly, the full system was embedded

on a portable but powerful device, such as the Jetson Nano, which also allowed user interaction in

real time via a touchscreen and graphical interface.

Two systems for computer vision were implemented in order to evaluate and compare their

respective performances for pose detection and angle estimation, such as a single camera and a

stereo vision system. Similarly, two methods for angle estimation were implemented. On one hand,

this work implemented the Vector Dot Product, as it can be used to obtain the angle between two

N-dimensional vectors, such as the 3D vectors defined in this work. On the other hand, Inverse

Kinematics is popular in the context of Robotics to determine the necessary angle configuration of

a kinematic chain. In this case, the Inverse Kinematics-based procedure made use of a geometric

approach to obtain the angle between several joints of the body. One of the main advantages of

implementing an approach based on geometry is its computational efficiency and simplicity.

With the aid of the Kinect device, it was possible to verify that the Stereo Vision System

is capable of accurate estimation of several 3D joint angles of the human body, using both angle

estimation methods described. The Kinect device allowed to corroborate that Stereo Vision is more

suitable for depth and angle estimation of real-world objects, instead of single camera methods such

as the depth estimations provided by MediaPipe Pose. This can be seen in Figs. 5.6, 5.8, 5.10,

5.11, 5.12, and 5.13, as well as Table 5.1, in which the results obtained via the Kinect device were
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taken as the reference and, thus, represent the desired values to be obtained by the Stereo Vision

and single camera systems. As it can be seen, the Stereo Vision System managed to obtain more

similar results to those of the Kinect. Results prove the Stereo Vision System is capable of accurate

3D pose detection, and, therefore, reliable for providing the correct feedback and perform precise

pose evaluation.

This work represents great relevance in the field of pose estimation and pose evaluation. As

seen in the results, the combination of 2D pose detection with depth estimation via Stereo Vision

allowed to perform accurate 3D human pose estimation. This is highly relevant in the context

of pose evaluation, as the pose detection system needs to be able to accurately estimate human

pose in order to provide correct feedback. Several works in the literature have implemented pose

evaluation systems by making use of pose estimation frameworks such as OpenPose, PoseNet and

MoveNet. However, these systems only take into consideration 2D information, which can result in

inaccurate pose estimation and, therefore, evaluation [15], [16], [17], [29], [63], [64], [65]. Performing

pose estimation and evaluation using 2D information only can limit the use cases of the system, as

it may become inaccurate when the user is not facing front towards the camera [66], however, taking

into account 3D information represents a more robust system and, ideally, makes it insensible to

user orientation with respect to the camera, which is the case for this work. Similarly, while other

works have made use of MediaPipe Pose, they either consider only x and y keypoints coordinates

or rely on the depth estimations that it provides [28], [61], [62]. The implemented Stereo Vision

System in this work allows for improved pose estimation and evaluation, as it performs accurate

depth estimation, which represents a more reliable system that is correctly capturing the shape

and pose of the person. The above is condensed in Table 6.1, which outlines several works that

implement similar techniques to evaluate yoga exercises, along with their main advantages and

limitations, as well as this work, thus highlighting the relevance of this thesis project within the

state of the art.



Year, Pose estimation Evaluation Feedback form Advantages Limitations

[ref] framework method (Platform)

2019 OpenPose, 2D Joint Red-green color scale, Intuitive Limited to 2D

[15] Single webcam angles "Perfect" to "Bad" scale feedback pixel coordinates

2021 OpenPose, 2D Joint Step by step instructions Guides users Limited to 2D

[16] Single webcam angles (4 GB RAM machine) step by step pixel coordinates

2024 PoseNet, 2D Joint Text, audio messages Specific and Internet connection

[29] Single webcam angles to correct posture detailed audio-based required, limited to

(Web App) feedback 2D coordinates

2023 MediaPipe Pose 2D Joint Success/negative Requires a Feedback is not

[61] Single webcam angles message (64-bit OS) lightweight platform joint-specific

2020 PoseNet, 2D Joint Correct/Wrong message, Feedback is Difficult to read

[63] Single webcam angles more/less/ok message joint-specific feedback for

for each joint each joint

2024 MoveNet, 2D Joint Green/white skeleton Simple yet Requires the user

[66] Single webcam angles drawing for correct/incorrect intuitive to face front

pose (Web App) feedback towards the camera

2024, MediaPipe Pose, *3D* Joint Red to green color scale, Joint-specific Does not guide

[This Single camera/ angles live 0-100 score intuitive feedback, user step by

work] Stereo Vision (NVIDIA Jetson Nano) estimation accuracy step

validated by kinect

Table 6.1: Comparison between this work and the state of the art

A Graphical User Interface was designed for users to interact with the system. The GUI

allowed to configure several exercise parameters and provided the user with real-time feedback

to improve performance. Via the GUI, users can select the desired exercise, difficulty level and

execution time. The GUI provides real-time feedback in the form of a 0-100 score, as well as a

color-scale system to visually indicate improvement opportunities. Additionally, after finishing an

exercise, the GUI displays a radar chart with the average angle values and indicates which should

the user pay more attention to in order to improve.

Lastly, in terms of pose evaluation, this work proposed a protocol to assess the performance

of yoga poses in real time. The developed system and evaluation methodology will be of aid to users

when performing Yoga, as it has proven to be capable of accurate pose detection, and, therefore,



correct pose evaluation. The system proved to be able to provide correct feedback in real time

without the need of a certified instructor. The implementation of a visual color scale and point-

scoring system allows for intuitive feedback that is clear for the user to understand. This will

reduce injury risk and instead help improve mental and physical health of individuals.

Future work

Future work should focus on adding more exercises for users to choose from. Additionally, the pose

evaluation protocol designed in this work could be applied to further disciplines such as weight

training and physiotherapy. Moreover, while this work focused on static exercises, in which a

person is only required to hold a pose for a certain amount of time, it can be extended to exercises

in which body pose varies over time. In particular, the Dynamic Time Warping (DTW) algorithm,

as well as the Long Short-Term Memory (LSTM) network could prove useful to enable evaluation

of dynamic exercises. The DTW algorithm provides a method to compare two time series similar

in shape and behaviour but at differing times [71]. On the other hand, LSTMs are capable of

remembering time-dependent information, making them suitable for handling and predicting data

sequences that vary over time [72].
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Abstract—Yoga has become increasingly popular in recent
years as it offers several benefits through physical, mental,
and spiritual practices. Although online resources offer the
possibility of self-training at home without the need for an
instructor, unsupervised training can result in injury, as users
are not provided suggestions on how to improve. In this work,
a Stereo Vision System, hosted on an NVIDIA Jetson Nano, was
developed to evaluate Yoga poses in real time. The MediaPipe
Pose framework and Stereo Vision System were enabled to
perform 3D angle estimation of several joints of the human body.
These angles were used to design and implement a methodology
to evaluate user performance and provide them with feedback.
The proposed method provides a 0-100 score, as well as a color
scale system to visually indicate how a user can improve as they
are performing a pose. Results prove the Stereo Vision System can
perform accurate 3D Pose Detection and Angle Estimation, and
is, therefore, reliable for providing accurate and correct feedback
in real time. The proposed system will aid in minimizing injury
risk while improving physical and mental health of individuals
that practice Yoga.

Keywords—Yoga, MediaPipe, Stereo Vision, Jetson Nano, Pose
Evaluation, Body Angles

I. INTRODUCTION

Yoga is a popular and ancient discipline that combines
physical, mental, and spiritual practices to provide harmony
between body and mind. Additionally, it offers several benefits
in the form of improved flexibility, muscle strength, cardiovas-
cular health, as well as mental and psychological health [1],
[2]. The growing amount of open access online resources, such
as video tutorials, have allowed individuals to practice Yoga
at home without the need for an instructor. However, practice
of Yoga without aid and supervision can increase injury risk,
as personalized feedback and improvement suggestions are not
provided to users. Yoga-related injuries mainly include muscle
sprain and strain, as well as general pain [3].

While many works have implemented systems and algo-
rithms for classification tasks [4], recent works have shifted
focus towards evaluation of Yoga poses. Several studies have
made use of wearable devices to monitor user performance
[5]. Other works have implemented computer vision systems
for Yoga poses identification and assessment. Such systems
include Kinect devices, as well as Webcams and even mobile
applications [6], [7], [8], [9], [10]. Moreover, the addition of
Machine Learning algorithms could offer new possibilities and
allow for more robust and accurate systems [8].

In this work, a Stereo Vision System for the evaluation
of three Yoga poses in real time was developed. The poses
applied to this work consist in Goddess, Warrior II and Tree.
The system, comprised of two IMX219 cameras, was hosted
on an NVIDIA Jetson Nano, a small but powerful computer,
suitable for running multiple neural networks in parallel. The
Stereo Vision System allowed to implement a methodology to
assess user performance of Yoga poses to reduce injury risk
while improving health.

II. RELATED WORK

Several works have focused on the implementation of al-
gorithms for the identification of Yoga poses, mainly through
Convolutional Neural Networks, as well as learning algorithms
such as Support Vector Machines and Decision Trees. Recent
works have focused on the development of algorithms for
the evaluation and correction of Yoga poses. In [6], a Yoga
pose assessment methodology for self-learning was developed.
Using OpenPose for keypoints detection, and a single PC
camera, the proposed method calculates several 2D angles
of a user’s body in order to compare them with those of
an instructor. The system classifies the Yoga pose into four
levels depending on the average angle difference, which allows
learners to understand the evaluation results.

In [7], a novel yoga pose validation system was developed.
Using computer vision techniques, the system guides users
through a series of steps necessary to correctly perform a
particular Yoga exercise. Similarly, their work makes use of
OpenPose to obtain x and y coordinates of several joints
in order to calculate various angles and joint distances. The
obtained angles and distances are compared with those of the
current step the user is performing, once the user correctly
performs the current step, they are allowed to continue on to
the next one.

In [8], a Yoga coaching system, based on transfer learning,
was developed. The system allows users to select from 14
different Yoga poses on an interactive graphical interface.
A MobileNet model was trained on a custom-made dataset
consisting of images collected from volunteers. The MobileNet
model was able to achieve an 98.43% accuracy. Additionally,
the system provides feedback in the form of a ”Correct” or
”Incorrect” message, as well as instructions to correct the pose.
Feedback is based on several joint angles calculated using the
MediaPipe Pose framework.979-8-3315-4070-8/24/$31.00 ©2024 IEEE



In [9], a Yoga posture detection and correction system was
developed. The system is capable of detecting six different
poses and provide feedback using a mobile application. Two
pose detection models were tested, using OpenPose and a
Mask RCNN model, respectively. Both models were used for
the detection of keypoints, which were fitted to a prediction
model for the identification of the Yoga posture the user is
currently attempting to perform. The result is then streamed
to the mobile application. It was found that the OpenPose
model produced better results, however, it had difficulty dif-
ferentiating between similar poses.

In [10], Trejo and Yuan presented an interactive system
using the Kinect V2 device for the recognition and monitoring
of Yoga poses. The system is able to track and recognize
six Yoga poses and enables voice commands for the user to
interact with the system, allowing them to correct their posture
in real time. Using the Adaboost algorithm, a robust database
was built for the detection of poses, which achieved an overall
confidence value of 92%.

III. PROPOSED YOGA POSE EVALUATION SYSTEM

Fig. 1: Block diagram of the Yoga pose evaluation system

The proposed method, of which the block diagram can be
seen in Fig. 1, makes use of a Stereo Vision System, powered
by a Jetson Nano. The system takes as input two images of a
user performing a particular Yoga pose. With the input images,
MediaPipe Pose is used to perform pose estimation to obtain x
and y image pixel coordinates for several body joints. Through
the Stereo Vision System, depth estimation is performed to
obtain the z coordinate for each detected keypoint. With the x,
y and z coordinates of each joint, the system calculates several
joint angles of the user’s body. Once all necessary angles
are estimated, they are compared with the ideal reference
angles for the particular pose the user is performing. A point-
scoring system was proposed to determine the accuracy and
correctness with which the user performs the pose. The user
is provided real-time feedback in the form of a 0-100 score.
Additionally, a color scale, ranging from Green (Excellent)
to Red (Very bad) was implemented, in which several colored
circles are drawn on the video feed, to indicate which joints are
being correctly performed, and which are not. Users are able

to interact with a Graphical Interface (GUI) which allows them
to select the desired Yoga pose and the amount of time they’d
like to perform it. Additionally, a validation procedure was
implemented to verify the Stereo Vision System’s accuracy for
pose detection and angle estimation. The validation procedure
consisted in programming a Kinect V1 device to estimate
the same angles as the Stereo Vision System, such that their
respective results could be compared.

A. Stereo Vision System

A Stereo Vision system consists of two cameras oriented
towards the same object, with the aim of estimating its depth.
Fig. 2 depicts the Stereo Vision System implemented in this
work. The goal of the Stereo System consists in identifying the
same pixel on both camera frames, with the aim of obtaining
a horizontal disparity which is used to estimate the depth of
the object on interest [11]. For this particular work, the pixel
in question consists of a particular keypoint (e.g. left wrist,
right elbow), obtained via MediaPipe Pose.

Fig. 2: Stereo Vision System implemented in this work

Fig. 3 represents the schematic for a simple Stereo Vision
system. The goal is to find the z coordinate of the real-world
point P . The two cameras have a focal length f and are
separated by a baseline b. UL and UR represent the horizontal
projection of P in the left and right image frames, respectively.

Fig. 3: Stereo Vision System Schematic [Retrieved from
National Instruments]



Based on triangulation, there’s a simple relationship be-
tween object P ’s depth and the disparity between UL and UR

[12]. Using Eq. 1, it was possible to obtain the depth z for
each keypoint detected by MediaPipe.

z = f
b

(UL − UR)
(1)

B. Pose Detection and Angles Estimation

The task of pose estimation was carried out with the use
of the MediaPipe Pose framework. MediaPipe Pose allows to
perform Pose Estimation in real time by detecting and tracking
body landmarks from images and video sources [13]. It pro-
vides the vertical and horizontal location of 33 body keypoints,
i.e., x and y coordinates. MediaPipe can also estimate and
provide the z coordinate for each keypoint, however, it was
found that, for Yoga poses in particular, MediaPipe was not
able to accurately estimate keypoints’ depth. Therefore, to
accurately perform this task, the Stereo Vision System was
employed.

The combination of MediaPipe and the Stereo Vision Sys-
tem allowed for accurate estimation of x, y, and z coordinates
for several keypoints of the body. With these coordinates, it
was possible to calculate several joint angles using the vector
dot product (Eq. 2), which allows to obtain the angle between
two n-dimensional vectors.

cosθ =
u · v

||u|| · ||v||
(2)

Table I lists the angles that were defined to be calculated in
this work while Fig. 4 illustrates these angles.

Joint Joint
1 Left Shoulder 7 Left Knee
2 Right Shoulder 8 Right Knee
3 Left Elbow 9 Left Shoulder 2
4 Right Elbow 10 Right Shoulder 2
5 Left Hip 11 Left Hip 2
6 Right Hip 12 Right Hip 2

TABLE I: List of defined angles

Note that, in Fig. 4, only half of the angles from Table I
are shown. For instance, only the left shoulder (1) is drawn,
while the right shoulder (2) is not. Similarly, only the right
knee (8) is drawn, while the left knee (7) is not.

Fig. 4: Body angles

C. Validation of angles estimation with a Kinect

In order to validate the angle estimation accuracy of the
Stereo Vision System, a Kinect V1 device was enabled. The
justification of using the Kinect device was that it consists of
a patented product and, at some point, was considered state
of the art in terms of Pose Estimation. The Kinect device
was programmed to also estimate the 12 previously described
joint angles. It is important to mention that the Kinect device
and Stereo Vision System operated simultaneously but inde-
pendently while calculating joint angles during testing with
volunteers.

D. Point-scoring system for pose evaluation

In order to evaluate pose accuracy, a point-scoring system
was proposed in which the user is awarded points as they are
performing a pose. The amount of points awarded depends
on the magnitude of the percentage error between a particular
joint angle of the user and its corresponding reference angle.
In order to determine the reference angles for each pose,
several Yoga images were downloaded from an open access
dataset available online. Using MediaPipe, angle estimation
was applied to all images in order to obtain average angle
values for each pose, which served as the reference angles the
user is compared to.

Eq. 3, which represents the percentage error, was used to
compare the joint angles of the user with their corresponding
reference angles. vE represents the user’s estimated angle
while vR stands for the reference angle. The magnitude of
this error was used to determine the amount of points the user
is awarded. This comparison is performed each time a pair
of image frames are captured and processed using the Stereo
Vision System.

%Error =
vE − vR

vR
· 100% (3)

Fig. 5 shows an example in which the measured angle (θ)
subjected to evaluation represents the elbow. If the error is rel-
atively small, the user is awarded the highest amount of points.



As the error increases, the amount of points decreases. This
process is performed for all 12 angles previously described.

Fig. 5: Representation of the point-scoring system

Additionally, a color scale was defined in which colored
circles are drawn on top of a stick figure that mimics the
pose of the user. The goal of the color scale is to visually
indicate the user which joints are correctly oriented in terms
of the pose they are performing, and which are not. The
color of a particular circle also depends on the magnitude
of the percentage error, previously described, and follows the
procedure of Fig. 5. The stick figure is drawn using the x and y
keypoints coordinates provided by MediaPipe and is displayed
next to the live video feed, on the Graphical Interface (GUI).
An example is shown in Fig. 6.

Fig. 6: Example of the stick figure and color scale system

Once all angles have been evaluated for a particular pair of
frames, a global score is calculated by dividing the amount
of points the user was awarded by the maximum amount of
points they could have obtained. Since this procedure is con-
stantly being performed, the global score is constantly being
calculated (once for every pair of frames that is processed). A
moving-average-like overall score is obtained by calculating
the average between all global scores obtained for each pair
of frames. The overall score value is also displayed on the
Graphical Interface in order for the user to see it.

Fig. 7 represents the flowchart of the complete system. In
order to achieve a higher video feed FPS count, two threads

were defined to be executed in parallel. The first thread was
used to display the live video feed from one of the cameras of
the Stereo Vision System, while the second thread periodically
retrieves a pair of frames from the first thread to run pose
evaluation. Once the Yoga exercise is completed, both threads
are terminated.

Fig. 7: Flowchart of the complete methodology process

IV. RESULTS

The results of this work focus on corroborating that the
Stereo Vision System is capable of accurately calculating
joints angles. As it was described above, this was done with
aid of the Kinect device. The first part of this section focuses
on the obtained angles with both the Stereo Vision as well
as Kinect systems, for each pose applied to this work. Addi-
tionally, an explanation regarding the designed Graphical User
Interface is given, as well as the full hardware implementation
for this work.

A set of tests was carried out with four volunteers where
each of them was asked to perform each pose (i.e. Goddess,
Warrior II, Tree) once for a few seconds while both the Stereo
Vision System and Kinect were recording data.

As it was mentioned, the set of angles obtained by the
Kinect device were taken as reference. It was observed that
the Stereo Vision System was able to yield results with an
error of 7% with respect to the Kinect.

Fig. 8: First volunteer performing Goddess Pose



A. Goddess Pose

The first section of the testing stage consisted in the
evaluation of the Goddess pose. An example is shown in Fig.
8 in which a volunteer is performing said pose.

The results for the obtained angles, using both the Stereo
Vision and Kinect systems, are shown in Fig. 9 in the form of
a radar chart. The chart’s axis represents the value of the angle
in degrees while each variable represents a particular joint.

Fig. 9: Estimated angles for the Goddess Pose

B. Warrior II Pose

Subsequently, volunteers were asked to perform the Warrior
II pose, as it can be seen in Fig. 10.

Fig. 10: Second volunteer performing Warrior II Pose

Similarly, a radar chart, shown in Fig. 11, was generated
with recorded data from the Stereo Vision System and Kinect.

Fig. 11: Estimated angles for the Warrior II Pose

C. Tree Pose

Lastly, volunteers performed the Tree pose. Another volun-
teer can be seen in Fig. 12.

Fig. 12: Third volunteer performing Tree Pose

The results for the obtained estimated angles can be ob-
served in Fig. 13.

Fig. 13: Estimated angles for the Tree Pose



D. Graphical User Interface

As it was mentioned earlier, a Graphical User Interface was
designed using the Tkinter toolkit for Python. As it can be
observed in Fig. 14, the GUI allows the user to select the
desired exercise, as well as the amount of time they’d like to
perform it. The GUI also allows to select a difficulty level,
”Easy”, ”Medium” and ”Hard”. Depending on the selected
difficulty level, the angle error tolerances, such as those shown
in Fig. 5 are increased or decreased. Additionally, the GUI
integrates a ”Start” button, as well as an ”End” button, which
can be triggered before the running time ends.

Fig. 14: Graphical User Interface

At the right of the GUI, the user is able to visualize their
assigned score, which was previously described. Furthermore,
they are able to see the stick figure and color scale system
providing real-time feedback for the pose they are performing,
such as the example shown in Fig. 6. Lastly, prior to beginning
an exercise, the GUI displays an image of the selected exercise
such that the user is given a reference of the correct way to
perform said pose. Once the exercise begins, the live video
feed from either of the IMX219 cameras is displayed in real
time, instead of the reference image.

E. Full System Hosted on the Jetson Nano

The Jetson Nano Developer Kit is a compact computer man-
ufactured by NVIDIA. It incorporates an NVIDIA GPU, which
makes it the ideal platform to enable Artificial Intelligence,
Robotics and Internet of Things applications [14].

The complete system was assembled as it is shown in Fig.
15. The two IMX219 cameras are connected to the Jetson
Nano. The Jetson Nano lays inside the black case, which was
acquired from Waveshare. For ease of use, a 7-inch touch
screen was incorporated into the system. The touch screen
allows users to interact with the system without the need for
a mouse and keyboard.

Fig. 15: Complete Stereo Vision System

V. DISCUSSION AND FUTURE WORK

A Stereo Vision System was implemented for the detection,
evaluation and feedback of Yoga poses in real time. The
system allows for interaction via a GUI in order to select
the desired exercise, as well as additional parameters such as
execution time and difficulty level. The GUI provides real-time
feedback in the form of a 0-100 score, as well as a color-scale
system to visually indicate how to improve.
With the aid of the Kinect device, it was possible to verify
that the Stereo Vision System is capable of accurate estimation
of several 3D joint angles of the human body, regardless of
the chosen pose, as it can be seen in Figs. 9, 11 and 13.
This demonstrates that the system is capable of accurately
capturing the shape of the human body in terms of the joints
that comprise it. The system is, therefore, capable of providing
correct feedback as it is correctly detecting and estimating the
human body.
This work also represents an improvement with respect to
reviewed literature. While several works for the evaluation of
Yoga poses have been developed, many of them only take
into consideration x and y keypoints coordinates [6], [7], [9].
The developed Stereo Vision System allows for more accurate
pose estimation and evaluation as it takes into account the
depth coordinate for each keypoint.
The developed system will be of aid to users who perform
Yoga, as it will provide accurate and correct feedback without
the need of a certified instructor. This will reduce injury
risk and instead help improve mental and physical health of
individuals. Future work should focus on widening the avail-
able exercises to choose from. Additionally, the methodology
followed in this work could be applied to further disciplines
such as physiotherapy and weight training. Moreover, while
this work focused on static exercises, in which users are only
required to hold a pose for a certain amount of time, it can be
extended to dynamic exercises.
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