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Abstract

Quantum computing uses superposition and parallelism properties to address differ-
ent computational problems, decreasing time and storage requirements. Thus, quantum
transforms have demonstrated their capabilities for developing powerful algorithms and
solving complex problems. Quantum wavelet transforms play a fundamental role in in-
formation processing applications such as data hiding and cryptography, reducing com-
putational complexities but limiting their capabilities due to the small set of quantum
transforms, constraints of quantum representation formats, and challenges of quantum
computing. Therefore, we propose a new class of one-dimensional quantum wavelet
transforms based on the lifting scheme. We develop the quantum integer version of the
Haar, CDF(2,2), and Daubechies-4 (DB4) wavelets. We design quantum circuits, avoid-
ing nonlinearities and giving polynomial complexities. Also, we present the unitary and
algorithmic definitions of the transformations. We define the new Quantum Block Rep-
resentation by Basis States (QBRBS), facilitating signal manipulation. Additionally, we
propose a hybrid quantum-classical lossless compression scheme based on wavelet de-
composition and fixed-length coding, decreasing time complexity. Finally, we perform a
set of analyses, including wavelet simulations, quantum complexities, comparative de-
scriptions of wavelet transforms, features and limitations of quantum representation for-
mats, and compression properties, showing the feasibility and applicability of the pro-
posed quantum wavelet transforms.
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Resumen

La computación cuántica utiliza las propiedades de superposición y paralelismo para
abordar distintos problemas computacionales, disminuyendo los requisitos de tiempo
y almacenamiento. Ası́, las transformadas cuánticas han demostrado sus capacidades
para desarrollar potentes algoritmos y resolver problemas complejos. Las transformadas
cuánticas wavelet juegan un papel fundamental en aplicaciones de procesamiento de
información como el ocultación de información y la criptografı́a, reduciendo las com-
plejidades computacionales pero limitando sus capacidades debido al pequeño conjunto
de transformadas cuánticas, las restricciones de los formatos de representación cuántica
y los retos de la computación cuántica. Por lo tanto, proponemos una nueva clase de
transformadas wavelet cuánticas unidimensionales basadas en el esquema lifting. De-
sarrollamos la versión cuántica entera de las wavelets Haar, CDF(2,2) y Daubechies-
4 (DB4). Diseñamos los circuitos cuánticos, evitando las no linealidades y proporcio-
nando complejidades polinómicas. También presentamos las definiciones unitarias y
algorı́tmicas de las transformaciones. Definimos una nueva Representación Cuántica
de Bloques por Estados Base (QBRBS), facilitando la manipulación de señales. Además,
proponemos un esquema de compresión sin pérdidas hı́brido cuántico-clásico basado
en la descomposición wavelet y la codificación de longitud fija, disminuyendo la com-
plejidad en tiempo. Por último, realizamos una serie de análisis, que incluyen simu-
laciones wavelets, complejidades cuánticas, descripciones comparativas de las transfor-
madas wavelet, caracterı́sticas y limitaciones de los formatos de representación cuántica,
y propiedades de compresión, demostrando la viabilidad y aplicabilidad de las transfor-
madas wavelet cuánticas propuestas.
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1
Introduction

Quantum Computing (QC) enables the storage and manipulation of information using
quantum superposition, entanglement, and interference properties, leading to reduced
computational costs and memory requirements compared to classical computing [1, 2].
This efficiency has been demonstrated in various application areas such as cryptography,
information hiding, information processing, machine learning, and optimization [3–5]

Furthermore, research in quantum information storage and quantum transforms
has demonstrated the potential of QC for solving complex problems. Quantum repre-
sentation formats, for instance, enable an exponential decrease in information storage
in the quantum realm, making use of the entanglement and superposition of quantum
states [6–8]. In addition, the Quantum Fourier Transform (QFT) serves as the basis for
robust quantum algorithms like Integer Prime Factoring (Shor’s algorithm) and Phase Es-
timation [9]. As a result, the Quantum Cosine (QCT) and Wavelet Transforms (QWTs)
have been developed, increasing the impact of the quantum computing field [10–12].

Specifically, QWTs are essential tools in compression, watermarking, cryptogra-
phy, coding, signal analysis, filtering, and denoising processes [11, 13]. However, it is
worth noting that only quantum versions of the Haar and Daubechies-4 (DB4) wavelet



1. Introduction

transforms have been developed, which focus on the real-valued transformation, thereby
reducing computational complexity compared to classical versions [10, 14, 15]. Never-
theless, they still need to be improved in comparison to the extensive range of clas-
sical wavelet transforms, which incorporate integer-to-integer transforms and various
wavelet bases.

Integer transforms facilitate an integer-to-integer mapping without loss of infor-
mation between input values and decomposition elements, and are fundamental in appli-
cations in which recovery of the initial data is critical, such as signal analysis, banking,
military operations, medical diagnostics, and data hiding [16, 17]. Therefore, the de-
velopment of quantum versions of integer wavelet transforms holds potential value for
quantum information processing, lossless applications, and the expansion of available
quantum transforms.

On the other hand, the development of quantum integer wavelet transforms (QI-
WTs) involves various challenges due to the quantum constraints and features [1, 18–20].
Consequently, classical operators must be defined in terms of quantum gates to ensure
QIWTs are unitary and have polynomial quantum complexity [20, 21]. Furthermore,
certain operations may or may not be applicable, depending on the representation for-
mat used [11]. The probabilistic nature of quantum information poses a hindrance to the
measurement process, making it highly complex to observe stored data [1, 20]. Thus, the
development of this class of quantum transformations requires a clever solution.

This research aims to design quantum integer versions of the Haar, CDF(2,2), and
Daubechies-4 (DB4) wavelet transform based on the lifting scheme. We present a com-
prehensive quantum description for each wavelet, including quantum circuits and com-
plexity analysis, unitary definitions, algorithmic descriptions, and simulation experi-
ments. The computational complexity of all three wavelet transforms is significantly
reduced in comparison to their classical counterparts, achieving polynomial quantum
complexity. The unitary and algorithmic definitions enhance the applicability and usabil-
ity of the proposed transforms. Also, we introduce the Quantum Block Representation

2
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by Basis States (QBRBS), a novel quantum representation format that facilitates the de-
composition process and enhances the applicability of the proposed quantum transforms.
Furthermore, we propose a hybrid quantum-classical lossless compression scheme based
on wavelet decomposition and fixed-length coding, decreasing time complexity. Finally,
we perform a set of analyses, including wavelet simulations, quantum complexities, com-
parative descriptions of wavelet transforms, features and limitations of quantum repre-
sentation formats, and compression properties, showing the feasibility and applicability
of the proposed quantum wavelet transforms.

1.1 Problem Statement

Quantum computing uses quantum superposition, entanglement, and interference prop-
erties to solve problems in different areas, decreasing computational times. However, to
our knowledge, there are no quantum versions of integer-to-integer transforms, which
could be valuable for quantum research and the development of lossless quantum appli-
cations. Therefore, this research addresses the problem of developing a quantum version
of the one-dimensional integer-to-integer wavelet transform for the Haar, CDF(2,2), and
Daubechies-4 (DB4) kernels with an application to quantum lossless compression. Thus,
we consider the following specific issues:

• Find and select a quantum one-dimensional signal representation to apply the
quantum integer wavelet transform.

• Manipulate the quantum states to achieve successful decomposition results for the
proposed approach.

• Construct and factorize the unitary operators used in the proposed transform.
• Design quantum algorithms to signal decomposition and lossless compression.
• Improve the performance of the integer wavelet transforms based on the develop-

ment of a quantum lifting scheme.

3
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1.1.1 Problem Definition

Given a classical description of the one-dimensional wavelet transform, how do we de-
velop a one-dimensional quantum integer wavelet transform based on the lifting scheme?
(To quantum signal decomposition and quantum lossless compression).

Classical Wavelet Transform (WT)

We define the classical WT as

W (j)
m ST → (A0

1, D
0
1, D

1
1, D

1
2, . . . , D

j
i−1, D

j
i ) = (A, D) (1.1)

where S = (s1, s2, . . . , sm) is the input signal, W (j)
m is the matrix form of the WT for

a signal of length m = 2n at the j-th decomposition level with j ∈ [0, l − 1], being l
the maximum decomposition level. A = A0

1 is the approximation coefficient at the zero
level, and Dj

i is the i-th detail coefficient at the j-th level, that is,

D =
l−1∑
j=0

2j∑
i=1

Dj
i (1.2)

where l is the maximum decomposition level.

Quantum WT

Based on (1.1) and (1.2), we define a quantum representation for the integer wavelet
transform by

U j
Wm

|S⟩ →
∣∣A0

〉
⊗

l−1∑
j=0

∣∣Dj
〉
= |A,D⟩ (1.3)

where |S⟩ is the signal vector encoded in a quantum format, ⊗ the tensor product,
U j
Wm

the matrix operator for the quantum WT for a signal of length m = 2n with l-
decomposition levels, |A0⟩ = |A⟩ the approximation coefficient at the zero level, and
|D⟩ = |Dj⟩ the detail coefficient at j-th level, given by

∣∣Dj
〉
=

2j∑
i=1

∣∣dji〉 (1.4)

where |dji ⟩ is the i-th detail coefficient at j-th level.

4
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Factorization

We require to find and implement the QWT operator, which we will reduce to the prob-
lem of factoring the UWm operator. Our approach is to factor the classical operator for
this transform into products, and sums of smaller unitary operators. We will consider the
permutation matrices and some other unitary matrices as the basis of the development.
The key is to exploit the specific structure of each unitary operator to find an efficient
representation to implement it.

Given the UWm operator for the QWT, we will select subsets of unitary operators
that efficiently perform the QWT for Haar, CDF(2,2), and DB4 kernels.

UWm = (U0 ◦ U1 ◦ . . . ◦ Un−1) (1.5)

WhereUi are unitary operators, and (◦) can be any of the following operators: the tensor
product, (⊗), the direct sum, (⊕), and/or the dot product, (Ui · Uj).

1.2 Research Questions

The main questions that guide this research are:

1. Which unitary operators allow us to extend the one-dimensional integer wavelet
transform to the quantum domain?

2. How can one-dimensional signals be represented, using the existing quantum for-
mat techniques, to improve the signal decomposition results of the proposed quan-
tum integer wavelet transform?

3. How can a lossless compression algorithm be designed using the proposed quan-
tum transform?

5
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1.3 Hypothesis

Based on unitary operator factorization through permutation matrices’ it is possible to

develop a quantum approach to the one-dimensional integer wavelet transform for Haar,

Daubechies-4, and CDF(2,2) kernels.

A quantum representation based on the existing quantum formats, using basis states

to store information, improves the signal decomposition of the proposed quantum transform

compared to the classical counterpart.

A neighborhood and redundancy relationship among signal elements allows us to

design a lossless compression algorithm based on the proposed quantum transform.

1.4 General Objective

Propose a quantum approach for the one-dimensional integer wavelet transform for
Haar, Daubechies-4, and CDF(2,2) kernels and design algorithms for quantum signal de-
composition and quantum lossless compression.

1.4.1 Specific Objectives

In order to accomplish the general objective, the following specific objectives must be
completed:

1. To identify the factorization matrices that characterize the unitary operators for
the one-dimensional quantum integer wavelet transform.

2. To analyze and select a quantum format to represent one-dimensional signals that
allows and improves signal decomposition.

6
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3. To develop a quantum algorithm for one-dimensional signal decomposition using
the proposed quantum transform.

4. To develop a quantum lossless compression algorithm based on the proposed quan-
tum integer wavelet transform.

1.5 Research Scope

This work is limited by the following conditions:

• This research is concerned to the one-dimensional quantum integer wavelet trans-
form.

• Quantum lossless compression is considered the main application.
• Simulation environments are used as a means of verification.
• Noisy environments are out of the scope of this research.

1.6 Contributions

The main contributions in the area of computer sciences from this doctoral research are
the following:

1. A quantum approach for a subset of wavelet kernels (Haar, CDF(2,2), and Daubechies-
4).

2. Three quantum integer wavelet transforms with an improvement in computational
cost over the classical counterpart.

3. Quantum algorithms to one-dimensional signal decomposition using the quantum
integer wavelet transforms.

7
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1.8 Thesis Outline

Chapter 2 introduces the background about quantum computing, and wavelet trans-
forms. Chapter 3 presents the related work. Chapter 4 describes the proposed quan-
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tum solution for the integer wavelet transforms and lossless compression application.
Chapter 5 shows the simulation results. Finally, Chapter 6 draws conclusions and future
work.
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2
Background

This chapter provides definitions of quantum computing, wavelet transforms, and com-
pression. First, we outline the fundamental concepts of quantum computing, such as
representation, manipulation, and algorithms in the quantum domain. Then, we exam-
ine the classical wavelet transform, emphasizing its classes and implementations. Finally,
we introduce general data compression, including its lossless model.

2.1 Quantum Computing

Quantum computing leverages properties of quantum mechanics that are unavailable in
classical computing, including superposition, entanglement, and interference, to solve
different problems in innovative ways [20, 22]. As a result, the development of quantum
computing has centered around three main areas: encoding data in the quantum do-
main, manipulating quantum information, creating quantum algorithms, and measuring
to extract expected results [20, 22].



2. Background Quantum Computing

2.1.1 Quantum Information Representation

Quantum computers use quantum systems such as atomic energy levels, nuclear spin, or
photon polarization to store and process information. The main characteristic of quan-
tum computing is its probabilistic nature, where we can only obtain a particular result
with a certain probability [9, 20, 22].

The qubit (quantum bit) is the basic information unit in quantum computing, sim-
ilar to the classical bits. However, qubits can be simultaneously in different states or
entangled with other qubits, giving new properties and storing more information than
classical bits [9, 20]. Qubits could be described as single elements into the computational
basis

|0⟩ =

1
0

 , |1⟩ =
0
1

 (2.1)

Also, it could describe a superposition of different states as

|ψ⟩ =
N−1∑
i=0

αi|ai⟩, N = 2n (2.2)

where |ai⟩ are the states, and αi are the coefficients associated to the probability of ob-
serving a given state, P (|ai⟩) = |αi|2. The qubit register |ψ⟩ is in all the |ai⟩ states
simultaneously [9, 20, 22]. Additionally, qubits could be entangled, defining a strong
correlation between different elements that share information. For example, a Bell state
describing two entangled qubits is

|Φ+⟩ = |q1q0⟩ =
1√
2
(|00⟩+ |11⟩) (2.3)

where measuring the qubit |q1⟩ or |q0⟩ gives information about the other state, that is,
if measurement yields |q0⟩ = |0⟩, we are sure that |q1⟩ = |0⟩. This property helps to
develop quantum representation formats, algorithms, and communication protocols with
improved computational time [20, 22, 23].

On the other hand, by combining the properties of superposition and entangle-
ment, we could define quantum representation formats to encode and manipulate
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large amounts of information efficiently. Thus, quantum formats allow storing image,
audio, or video information using amplitudes, phases, and basis states to perform differ-
ent processing operations [24, 25]. The idea is to capture information about signal values
and position coordinates in a quantum register. For example, Quantum Basis States (QBS)
representations are described by

|S⟩ = 1√
N

N−1∑
i=0

|Xi⟩|fi⟩ (2.4)

where |Xi⟩ is the n-dimensional coordinate position, |fi⟩ are the signal values, and N is
the signal length [25]. These formats require n + q qubits. Figure 2.1 shows a one- and
two-dimensional signals in QBS, where two-dimensional sum is split to describe rows
and columns.

Figure 2.1: QBS representation of one and two-dimensional signals, respectively.

Finally, quantum formats exponentially decrease storage requirements compared
to classical methods. However, some operations are easy to implement, and others have
a high quantum complexity depending on the quantum representation model [11].

2.1.2 Quantum Information Manipulation

Quantum operators (gates) enable the manipulation of information into the quantum
domain through unitary transformations, guaranteeing the linearity and reversibility of
the processes. Thus, complex networks of quantum circuits are the basis of quantum

12
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algorithms solving different problems, where each proposed quantum operation must
have a polynomial quantum complexity [20, 22, 26].

A useful quantum set includes single-qubit operators such as the NOT (X), V
and V †, Hadamard (H), and two-qubit Conditional-NOT (CNOT) gate, which performs a
NOT operation on qubit two if the first qubit is in state |1⟩.

X :

0 1

1 0

 ;X |0⟩ → |1⟩ , X |1⟩ → |0⟩ (2.5)

V :

 1 −i

−i 1

 ; V |0⟩ → 1 + i

2
(|0⟩ − i|1⟩), V |1⟩ → 1 + i

2
(−i|0⟩+ |1⟩)

V † :

1 i

i 1

 ; V † |0⟩ → 1− i

2
(|0⟩+ i|1⟩), V †|1⟩ → 1− i

2
(i|0⟩+ |1⟩)

(2.6)

H :
1√
2

1 1

1 −1

 ;H |0⟩ → 1√
2
(|0⟩+ |1⟩), H |1⟩ → 1√

2
(|0⟩ − |1⟩) (2.7)

CNOT :


1 0 0 0

1 1 0 0

1 0 0 1

1 0 1 0

 ; CNOT |00⟩ → |00⟩ , CNOT |01⟩ → |01⟩

CNOT |10⟩ → |11⟩ , CNOT |11⟩ → |10⟩

(2.8)

Additionally, quantum algorithms require complexity analysis to ensure the fea-
sibility and applicability of the solutions. Therefore, different metrics can be used, such
as [20, 22, 26]:

• Gate set: base assembly with the class of gates used in the circuit.
• Gate cost: number of single -or two-qubit quantum gates.
• Depth: number of layers containing parallel gates.
• Qubit cost: number of qubits to implement the quantum circuit.

13
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• Ancillary qubits: additional qubits (auxiliary) required at the beginning of the
circuit to obtain the expected result.

• Garbage qubits: any output qubit that does not store useful values.

The above metrics allow characterizing quantum algorithms, providing a quantum
complexity analysis. However, further analysis elements must be considered depending
on actual implementations or noise considerations [26, 27].

2.1.3 Quantum Measurement

Quantum measurement is an active and irreversible process to obtain the expected re-
sults at the end of quantum algorithms, where the output values are stored into classical
bits. However, due to the probabilistic nature of the quantum domain, measuring or
observing a quantum element destroys any kind of superposition or entanglement prop-
erty [20, 22, 28, 29]. For example, perform a measurement, M , on a superposed state,
|a⟩ = α0|a0⟩ + α1|a1⟩, yields state |a0⟩ with a probability |α0|2 or |a1⟩ with probability
|α1|2 on the computational basis, so that at the end we can only get one of the values in
superposition. Therefore, at least N = 2n measurements are needed to observe all the
values of a superposed or entangled state.

2.2 Wavelet Transform

The Wavelet transform is a processing tool utilized for signal analysis. It decomposes in-
put values into approximation (low-frequency) and detail (high-frequency) components
to fully describe all the information content of the input signal in a new representation.
This approach enables the analysis of various signal features, including trends, disconti-
nuities, variations, breakpoints, correlations, and frequency responses [30–32].

14
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Figure 2.2: General wavelet decomposition process. The wavelet kernel is shifted and

scaled to cover the entire signal.

Wavelet analysis employs a sliding window technique of varying sizes to decom-
pose signals with different base waveform (kernels). The process involves selecting a
wavelet function within a limited domain and indicating similarities between various
parts of the input signal using scaled and shifted wavelet kernels that generate the ap-
proximation and detail coefficients [30–32]. Figure 2.2 outlines the overall process, wherein
compressed wavelets represent the high-frequency features (details) of the signal, and
stretched shapes correspond to the low-frequency components (approximation).

The above described process can achieve up to n levels of decomposition on a 2n

signal. This is done by taking the obtained approximation coefficients and performing
the wavelet transform successively. The choice of an appropriate wavelet kernel is de-
termined by the application and the problem’s characteristics. In general, wavelets are
effective in preserving time-frequency information, performing local analysis, and iden-
tifying variations at different scales [32].

The wavelet transform can be classified as either continuous, where it considers all
scales and shifts of the domain, or discrete, using only subsets of the domain elements
for analysis [30–32]. The wavelet coefficients can also be in a real or integer-valued
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domain. However, continuous transforms are limited by the finite precision of the com-
puter, which can cause information loss when the input data are real values. In contrast,
the integer domain transform is reversible finite precision, which is useful in multimedia
applications where information retrieval is crucial [16, 17, 33].

2.2.1 Wavelet Lifting Definition

The wavelet transform can be implemented using different approaches, either with time-
based or frequency-based analysis employing lifting steps or filter banks, respectively.
However, both methods describe the same process, and time-based lifting has an equiv-
alent representation in frequency [16, 17, 33].

The lifting method takes advantage of the characteristics of the data values, in-
volving a series of prediction and update steps for the decomposition process. Each step
performs distinct operations to preserve particular features of the input signal, such as
the mean value or the first moment [16, 17, 33]. Therefore, below are the descriptions of
three primary wavelets.

1. Haar: This transformation splits an input signal, S, into non-overlapping elements
of odd and even samples, s2i+1 and s2i. It applies prediction and update operators,
assuming a strong correlation between adjacent values while preserving the sig-
nal’s mean value [16, 17, 33]. Therefore, the detail coefficients at the j-th decom-
position level, Dj

i , are given by the prediction operator P (·):

P (S) = s2i (2.9)

Dj
i = s2i+1 − P (S) = s2i+1 − s2i (2.10)

where j ∈ [0, l − 1], and l the maximum decomposition level. Then, the approxi-
mation coefficients, Aj

i , are calculated by the update W (·):

W (D) =
Dj

i

2
(2.11)
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Aj
i = ⌊s2i +W (D)⌋ =

⌊
s2i + s2i+1

2

⌋
(2.12)

The floor function guarantees the integer and lossless transformation. Figure 2.3
shows the one-level prediction and update scheme (lifting scheme) over the signal.
Additionally, l-decomposition levels can be achieved by operating again over the
resulting approximation coefficients.

Figure 2.3: Classical lifting Haar scheme.

2. CDF (2,2): The Cohen–Daubechies–Feauveau (CDF) wavelet assumes a piecewise
linear input signal to define the lifting operators, preserving the first moment of the
data values. Furthermore, the transform is biorthogonal, meaning it is symmetric
and has a linear phase [16, 17, 33]. Thus, the detail element, Dj

i , is predicted using
P (·):

P (S) =
1

2
[s2i + s2i+2] (2.13)

Dj
i = s2i+1 − ⌊P (S)⌋ (2.14)

and the approximation, Aj
i , by means of W (·):

W (D) =
1

4

[
Dj

i−1 +Dj
i

]
(2.15)

Aj
i = s2i + ⌊W (D)⌋ (2.16)

Figure 2.4 presents the lifting scheme for the CDF (2,2) transform.

3. DB4: The Daubechies-4 (DB4) uses multiple prediction and update steps in the
lifting scheme to decompose signals. This transformation is based on classical Eu-
clidean factorization, and does not require any signal assumptions. It is an orthog-
onal transformation that possesses favorable frequency properties [16, 17, 33]. The
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Figure 2.4: Classical lifting CDF scheme.

detail, Dj
i , and approximation coefficient, Aj

i , are described by the operators P (·)
and W (·):

P (S) =
√
3s2i (2.17)

W (D′) =
√
3D′

i + (
√
3− 2)D′

i−1 (2.18)

as

D′
i = s2i+1 − ⌊P (S)⌋ (2.19)

Aj
i = s2i +

⌊
1

4
W (D′)

⌋
(2.20)

Dj
i = D′

i + Aj
i+1 (2.21)

where D′
i is an auxiliary element, and Aj

i+1 the approximation coefficient at next
iteration. Fig 2.5 depicts the DB4 lifting scheme.

Figure 2.5: Classical lifting DB4 scheme.
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2.3 Compression

Data compression enables the representation of information in a condensed format, uti-
lizing the structure of the signals, correlations between values, and redundancies in data.
The aim is to reduce the number of bits required for storing and transmitting information
[16, 34].

Typically, statistical structures such as repetitive patterns or probabilities of data
occurrence are utilized for compression. However, applying domain transformations
such as Fourier or Wavelet techniques can aid in identifying and modifying distinct signal
components, thus improving data compression. Moreover, human perceptual limitations
can be exploited to achieve high compression levels [16, 34].

Finally, based on the reconstruction requirements, compression could be divided
into Lossless Compression, which preserve the original information and enables recov-
ering all the initial data, and Lossy Compression, where the original data is disturbed,
losing information but providing high compression ratios [16, 34].

2.3.1 Lossless Compression

This type of compression involves no information loss and allows recovery of all original
values from the compressed data, which is useful for applications where information
retrieval is critical, such as medical imaging, military tasks and banking transactions
[34]. In addition, lossless schemes are evaluated in terms of time and implementation
complexity, compression ratio, and information recovery [16, 34].

Data compression could be described in two stages: first, the structure of the input
signal is modeled by extracting information about patterns, redundancies or correlation
between values. Then, the original data is transformed into a new representation by
assigning codes or using different transforms [16, 34]. For example, an input signal, Si =
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{8, 10, 10, 10, 13, 12, 14, 16, 15, 16}, requires five bits per sample to be transmitted or
stored. However, the signal could be described with fewer bits by exploiting its internal
structure as follows:

• Construct a model of the data as

S1
i = {i+ 8 | i ∈ [0, 9]} (2.22)

• Calculate the difference between the model and the input signal

ei = S1
i − Si ={(8− 8), (9− 10), (10− 10), (11− 10), (12− 13),

(13− 12), (14− 14), (15− 16), (16− 15), (17− 16)}

={0,−1, 0, 1,−1, 1, 0,−1, 1, 1}

(2.23)

• Assign a code to the residual values, ei,

−1 → 00

0 → 01

1 → 10

(2.24)

where only two bits per sample are required.
• Transmit (or store) the modelS1

i and the residual values, ei, obtaining a compressed
representation.

The previous description shows a basic compression scheme, where the structure of the
data is used and the original signal, Si, can be recovered from the model, S1

i , and the
residual values, ei, resulting in a lossless process [16, 34].

Finally, using tools such as Fourier or Wavelet transforms helps to exploit the struc-
ture of the signals by decomposing the data into different components. Each component
can then be analyzed and manipulated separately, providing new views of the informa-
tion. Therefore, more robust and ad hoc schemes are developed [16, 34].
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2.3.2 Quantum Compression

In classical compression, the goal is to compress information data for transmission (in-
creasing channel capacity) and/or storage (reducing the number of bits) by simplifying
or condensing the information of a given input signal [35–37]. Thus, quantum com-
pression involves reducing the number of qubits used for storage, limiting the quantum
resources (number of quantum gates) to carry the information into the quantum domain,
and minimizing the number of measurements at the end of a process. Lossless and lossy
techniques, similar to classical methods, are also employed in quantum compression [38–
40, 40–42].

On the other hand, there are challenges and issues related to achieving compression
in the quantum domain due to the properties and physical limitations of the quantum
world [20, 39, 42, 43]. For example, the variable length (non-orthogonality) of codewords
in some compression schemes, such as Huffman and Arithmetic coding, cannot be used
in the same sense, because quantum non-orthogonality involves non-differentiability of
states, that is, given two elements X and Y with codewords X = |1⟩ and Y = |0⟩+ |1⟩,
there is no measurement operator that can perfectly distinguish between both states
[9, 43]. Also, if we want to recover all the information stored in the quantum domain, we
need many copies of the input signal and perform several (exponential) measurements
on the states to get all the values, thus obscuring the possible benefits of quantum com-
pression [1, 28, 29]. Additionally, the early stage of quantum noise and error correction
techniques has limitations on lossless compression applications [27].

2.4 Summary

This chapter has introduced some notions about quantum computing, including the rep-
resentation, manipulation, and measurement of quantum information. The qubit (quan-
tum bit) is the basic information unit, which can be in superposed or entangled states,
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allowing quantum representation formats to be defined. Quantum operators (gates) are
the means to manipulate quantum information through unitary transformations, and
quantum measurement allows the recovery of some of the possible computational val-
ues. Additionally, we have given the ideas behind wavelet transforms, defining the lifting
forms of Haar, CDF(2,2), and Daubechies-4 (DB4) wavelets. Finally, we have presented
the basic concepts of classical compression (lossless compression) and the goals of a gen-
eral quantum compression scheme.
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3
Literature Review

This chapter describes work related to this research, including quantum wavelet develop-
ment, applications of quantum wavelet transforms, and different quantum compression
schemes.

3.1 Quantum Wavelet Transforms

Research on quantum wavelet transforms (QWTs) has included Haar and DB4 kernels
for single and multilevel decomposition. Additionally, quantum versions for multidi-
mensional (1D, 2D, 3D) and packet analyses have been developed. Hoyer [44] proposed
quantum networks for one-dimensional Haar and DB4 using the generalized Kronecker
product with time complexity O(n). Fijany [45] used permutation matrices to devise
quantum circuits for the Haar and DB4 kernels utilizing the 1D packet and pyramid algo-
rithm, resulting in a complexity ofO(n2) . Klappenecker [46] demonstrated a decrease in
time complexity compared to the classical method by executing a 1D periodized quantum
wavelet packet withO(log2(n)) operations. Gosal and Lawton [47] formulated quantum
algorithms for the multilevel Haar transform. Nevertheless, the current complexity of
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the aforementioned quantum definitions isO(n3), and differs from the complexities pre-
sented in the respective papers, as demonstrated by Li et al. [14]. Furthermore, Li et al.
[48] presented iteration equations for direct and inverse QWTs using generalized ten-
sor product, achieving a complexity of O(n3) utilizing the generalized tensor product
and permutation matrices. Li et al. [14] constructed multilevel 2D quantum transforms
with a time complexity of O(n3). Li et al. [15] proposed a quantum wavelet packet
using generalized tensor products, permutation matrices, and periodization extension
for multidimensional (1D, 2D, 3D) and multilevel systems, resulting in a quantum com-
plexity of O(n3). Li et al. [10] also developed multilevel 3D quantum Haar and DB4
wavelet transforms with a complexity of O(n3). To the best of our knowledge, there are
no quantum definitions available for other wavelet bases or integer versions of wavelet
transforms. Table 3.1 shows the characteristics of the quantum wavelets in the literature
and the proposed transforms, including the transform domain, implementation method,
signal dimension, transform class, and complexity for a signal of size N = 2d×n, where
d denotes the signal dimension.

Table 3.1: QWTs development for the literature review and the proposed solutions.

Literature

[10, 14, 15, 44–48] (1997-2023)
Proposed

Wavelet Haar DB4 Haar CDF DB4

Domain Real-Valued Real-Valued Integer Integer Integer

Method Filter Filter Lifting Lifting Lifting

Dimension 1D, 2D, 3D 1D, 2D, 3D 1D 1D 1D

Class Orthogonal Orthogonal Orthogonal Bi-orthogonal Orthogonal

Complexity O(n3) O(n3) O(qn) O(qn) O(q2n)
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3.2 Quantum Wavelet and Compression Applications

Applications of quantum wavelet include watermarking, encryption, compression, and
denoising. Song et al. [49] developed a dynamic watermarking scheme based on quan-
tum DB4 wavelet transform, controlling the embedding strength by a dynamic vector.
Heidari et al. [50] proposed a watermarking based on quantum wavelet transform, in-
cluding a scrambling step to enhance the security. Hu et al. [51] designed a quantum
image watermarking based on Haar wavelet, using the diagonal coefficients to insert the
watermark information in the frequency domain. Yu et al. [52] presented an adaptive
LSB quantum image watermarking using Haar wavelet transform in the frequency do-
main. Wang et al. [53] implemented a quantum image encryption based on quantum DB4
wavelet and diffusion method using chaotic maps. Wang et al. [54] developed an adaptive
quantum image encryption scheme by encrypting the low frequency information into the
quantum DB4 wavelet coefficients. Li et al. [55] presented a lossy compression scheme
based on thresholding and quantum Haar transform using NASS quantum representa-
tion. Chakraborty et al. [13] proposed an image denoising scheme based on quantum
DB4 wavelet transform and thresholding technique including hard and soft thresholds.
Figure 3.2 presents the different applications using real-valued quantum Haar and DB4
wavelet transforms.

Table 3.2: QWTs applications

Application
Watermarking

[49–52]

Encryption

[53, 54]

Compression

[55]

Denoising

[13]

Wavelet DB4, Haar DB4 Haar DB4

On the other hand, research on quantum compression involves different methods
to decrease the number of qubits, gates and measurements. Haque et. al [56] presented
a new quantum representation to reduce the number of qubits and quantum gates. In
addition, a lossy method based on Block Truncation Coding (BTC) is described. Ma
et al. [36] used Quantum Haar Transform (QHT) and Quantum Fibonacci Transform
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(FibT) with the Generalized Quantum Image Representation (GQIR), reaching compres-
sion by a measurement matrix. Haque et al. [35] decreased the number of image oper-
ations to prepare a quantum image, combining the classical Discrete Cosine Transform
(DCT) with Quantum Storage (QS). Zhou et. al [57] used the Discrete Quantum Wavelet
Transform (DQWT) for encrytion and compression. Pang et. al [38] developed a lossy
quantum compression scheme based on quantum DCT and Grover Algorithm (GA) with
a quantization method. Li et. al [41] presented a compression model based on Quan-
tum Cosine Transform (QCT) and Zig-Zag Encoding (ZZE). Jiang et. al [40] designed
a hybrid compression scheme using classical DCT and storing the coefficients into the
quantum domain. Jiang et. al [37] developed a lossy compression to reduce the prepara-
tion complexity to store information into the quantum domain by classical Differential
Pulse Code Modulation (DPCM) and Quantum Point Cloud (QPC). Li et. al [58] imple-
mented a lossless compression based on Run-Length-Encoding (RLE), decreasing qubit
complexity. Rogers et. al [39] defined a lossless compression using Indeterminate Length
States (ILS) to define new codewords for each signal element. Table 3.3 shows the char-
acteristics of compression models in the literature and the proposed scheme based on
Fixed-Length Coding (FLC) and Quantum Wavelt Transform (QWT), including scheme
type, compression method, and domain area.

3.3 Summary

In this chapter, we have presented the related work on the definition of quantum versions
of the wavelet Haar and Daubechies-4 (DB4) transforms, including a comparative analy-
sis of the characteristics of the literature and the proposed versions. The proposed quan-
tum transforms include the CDF(2,2) wavelet, which is the first quantum Bio-orthogonal
wavelet transforms. Additionally, the integer quantum wavelets decrease time complex-
ity compared to real-valued transforms. Also, we have described applications of quantum
wavelet to watermarking, encryption, compression, and denoising, being information
hiding the main application. Furthermore, we have discussed different quantum com-
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Table 3.3: Quantum compression schemes.

Reference Scheme Method Domain

Proposed Lossless FLC, QWT Hybrid

[56] (2023) Lossy BTC Quantum

[36] (2023) Lossless QHT, FibT, GQIR Quantum

[35] (2023) Lossy DCT, QS Hybrid

[57] (2020) Lossy DQWT Quantum

[38] (2019) Lossy QDCT, GA Quantum

[41] (2018) Lossless QCT, ZZE Quantum

[40] (2018) Lossy DCT Hybrid

[37] (2017) Lossy DPCM Hybrid

[58] (2013) Lossless RLE Quantum

[39] (2011) Lossless ILS Quantum

pression models, showing the scheme type, the compression method, and the domain
area compared to the proposed scheme, where we use the proposed quantum transforms
with a Fixed-Length Coding to develop a hybrid compression scheme.
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Proposed Solution

This chapter presents quantum wavelet definitions of the Haar, CDF, and DB4 trans-
forms, along with circuit designs for addition, subtraction, multiplication, halving, and
rounding operations. It also includes a quantum storage definition for representing one-
or two-dimensional signals as block components, as well as unitary descriptions and al-
gorithmic formulations of the proposed wavelet transforms. Finally, it discusses their
applications in lossless compression by developing a hybrid scheme based on quantum
wavelet transforms and Fixed-Length Coding.

4.1 Quantum Circuit Design

Given the classical descriptions of the lifting wavelet transforms (Chapter 2), we design
quantum circuits for the addition, subtraction, swap, halving, rounding, cyclic shift, and
multiplication operations involved in the quantum versions of the Haar, DB4, and CDF
transforms. In addition, we develop two new operations, U√

3 and U√
3−2, for the DB4

transform. All the previous operations ensure the linearity and reversibility of the de-
composition process. Furthermore, each operation has polynomial quantum complexity.
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4.1.1 Quantum Addition

Quantum full addition operation of two binary numbers, |a⟩ = |aq−1, . . . , a1, a0⟩ and
|b⟩ = |bq−1, . . . , b1, b0⟩, is given by

Ua|0 . . . 0⟩|b⟩|a⟩ = |carry, aq−1 + bq−1, . . . , a1 + b1, a0 + b0⟩|b⟩|a⟩ (4.1)

where Ua is the adder operator, q is the bit precision, and |0 . . . 0⟩ is an auxiliary register
to store the addition results and the carry bit [59]. Fig 4.1 presents the quantum circuit
for adding two binary numbers.

X X X X

X X X X

X X X

X X X

Figure 4.1: Quantum addition circuit for two binary numbers, |a+ b⟩ = |a1a0 + b1b0⟩.

4.1.2 Quantum Conditional Addition

A quantum conditional adder performs an addition operation on two binary registers |a⟩
and |b⟩ only if a control qubit, |c⟩, is in the state |1⟩, defined as

CUa|00⟩|b⟩|a⟩|c⟩ =

|00⟩|b⟩|a⟩|0⟩ , |c⟩ = |0⟩

|0, carry⟩|aq−1 + bq−1, . . . , a0 + b0⟩|a⟩|1⟩ , |c⟩ = |1⟩
(4.2)
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where CUa is the conditional operator, |c⟩ is the control bit, the addition results are
stored in |b⟩, and the carry bit in the auxiliary register [60]. Figure 4.2 illustrates the
quantum circuit for adding two binary numbers with bit precision q = 3.

Figure 4.2: Quantum conditional addition circuit of two binary numbers, CUa|ab⟩ =

|a2a1a0 + b2b1b0⟩.

4.1.3 Quantum Subtraction

Quantum full subtraction is described by

Us|0 . . . 0⟩|b⟩|a⟩ = |borrow, . . . , garbage⟩|bq−1 − aq−1, . . . , b1 − a1, b0 − a0⟩|a⟩ (4.3)

where Us is the subtractor operator, |b⟩ stores the binary subtraction, and the auxiliary
register contains garbage data and the borrow bit [61]. Fig 4.3 shows the quantum circuit,
where the part B must be cascaded to subtract more than two bits (q > 2).
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X X X

X X X X

X

X

Figure 4.3: Quantum subtraction of two binary numbers, Us|ba⟩ = |b1b0 − a1a0⟩.

4.1.4 Quantum Swap

The quantum swap operation moves the information value from one qubit register to
another as

Uswap|ai+1⟩|ai⟩ = |ai⟩|ai+1⟩ (4.4)

where Uswap is the swap operator. In addition, it can move the bit values in a register
by applying the Uswap operator multiple times [20]. Figure 4.4 illustrates the quantum
circuit, where both implementations are equivalent [20].

4.1.5 Quantum Halving

Quantum halving operation on a register |a⟩ = |aq−1, . . . , a1, a0⟩ is defined by

Uh|0⟩|a⟩ = |0⟩|aq−1, . . . , a2, a1⟩|a0⟩ = |a/2⟩|a0⟩ (4.5)

where the qubit |a0⟩ is discarded, and |0⟩|aq−1, . . . , a2, a1⟩ is the halved register. Fig 4.5
depicts the quantum halving circuit by identity gates.
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Figure 4.4: Quantum swap circuit, Uswap|a3a2a1a0⟩ = |a0a3a2a1⟩.

I

I

I

I

I

I

I

Figure 4.5: Quantum halving circuit, Uh|aq−1, . . . , a1, a0⟩ = |0, aq−1, . . . , a1⟩.
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4.1.6 Quantum Rounding

Quantum rounding uses the halving properties of integers to avoid the nonlinearities in
the operation [18]. Given a = 2m, with m ∈ Z, the rounding operation is expressed as⌊a

2

⌋
=

⌊
2m

2

⌋
= ⌊m⌋ = m (4.6)

On the other hand, when a = 2m+ 1,⌊
2m+ 1

2

⌋
=

⌊
2m

2
+

1

2

⌋
= ⌊m⌋ = m (4.7)

where the additional term, 1/2, does not contribute to the floor function. Therefore, the
rounding operation can be modified by subtracting 1 before the halving operation when
a = 2m+ 1, giving the same result:⌊

a− 1

2

⌋
=

⌊
2m

2

⌋
= m (4.8)

Thus, a quantum rounding operation is defined based on (4.6) and (4.8), giving

Ur|a⟩ = |⌊a⌋⟩ = |⌊a
2
⌋⟩ ↔ a ∈ Z (4.9)

where this operation is implemented by the halving operation in (4.5).

4.1.7 Quantum Cyclic Shift

Quantum cyclic shift cyclically increases (or decreases) the binary representation of a
quantum register by adding (or subtracting) a bit value to the register, given by

Ucs+|aq−1, . . . , a1, a0⟩ = |(aq−1, . . . , a1, a0 + 1) mod 2q⟩ (4.10)

Ucs−|aq−1, . . . , a0, a1⟩ = |(aq−1, . . . , a0, a1 − 1) mod 2q⟩ (4.11)

where q is the bit precision, Ucs+ and Ucs− are the shift operators to the right and left,
respectively [62]. For example, applying Ucs+ on |a⟩ = |001⟩ gives Ucs+|a⟩ = |010⟩.
Figure 4.6 illustrates the quantum circuits for each operation.
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Figure 4.6: Quantum cyclic shift circuits.

4.1.8 Quantum Multiplication

Quantum multiplication returns the product of two binary numbers as

Um|b⟩|0 . . . 0⟩|a⟩ = |b⟩|a× b⟩|a⟩ (4.12)

whereUm is the quantum operator, the product is stored in the |0 . . . 0⟩ register [63]. This
operation uses conditional addition and swap operation to obtain the product results.
Figure 4.7 shows the block quantum circuit, where the |a⟩ register acts as a control bit
for the conditional adder, CUa, which needs (q+ 1) auxiliary qubits, and (q− 1) for the
swap operations.

Figure 4.7: Quantum multiplication circuit of two binary registers, Um|ba⟩ = |a× b⟩.

34



4. Proposed Solution Quantum Representation

4.1.9 Quantum Special Operators

Quantum U√
3 and U√

3−2 are special operators included in the DB4 transform, which
perform the product of

√
3 and

√
3 − 2 in (2.17) and (2.18). These constant values are

approximated by

(
√
3) ≈ 17× (0.1)

(
√
3− 2) ≈ −3× (0.1)

(4.13)

Thus,

U√
3|a⟩ = |(

√
3)a⟩ = |17a× 0.1⟩

U√
3−2|a⟩ = |(

√
3− 2)a⟩ = | − 3a× 0.1⟩

(4.14)

where the operators U√
3 and U√

3−2 are defined by quantum addition, Ua, and multipli-
cation, Um.

4.2 Quantum Representation

The first step in developing quantum solutions is to define the appropriate representation
model to store and then manipulate the information data. Thus, based on the QBS model
(Chapter 2), we define a new quantum representation format called Quantum Block Rep-
resentation by Basis States (QBRBS) to store the signal information in block elements of
arbitrary size, facilitating signal manipulation and avoiding the generation of garbage
information due to some operations [26, 64]. The QBRBS format is defined as

|S⟩ = 1√
k

k−1∑
i=0

[
m−1⊗
j=0

|svj(i)+wj
⟩

]
|Xi⟩ (4.15)

where k is the number of blocks, m is the number of elements per block, |s(·)⟩ are the
signal values, |Xi⟩ is the coordinate position, and the coefficients {vj, wj} determine the
elements for each block. This format requires (mq + ⌈log k⌉) qubits to store a 2n signal
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with q-bit precision [18, 64]. For example, we can store the odd/even components of a
signal by

|S⟩ = 1√
k

k−1∑
i=0

[
1⊗

j=0

|svj(i)+wj
⟩

]
|Xi⟩

=
1√
k

k−1∑
i=0

|sv0(i)+w0⟩|sv1(i)+w1⟩|Xi⟩

=
1√
k

k−1∑
i=0

|s2i+1⟩|s2i⟩|Xi⟩

(4.16)

where m = 2 because only two elements are stored per block. Also, v0 = v1 = 2,
w0 = 1 and w1 = 0 are employed to obtain the odd and even samples of the input signal,
|S⟩, stored at the same position, |Xi⟩. On the other hand, we could store three-or more-
different signals, |S1⟩, |S2⟩ and |S3⟩, sharing the same position coordinate as

|S⟩ = 1√
k

k−1∑
i=0

|S3
i ⟩|S2

i ⟩|S1
i ⟩|Xi⟩ (4.17)

where the QBRBS format allows for simultaneous operations on all the signals. This
is achieved by storing different elements in the same position coordinate, rather than
using separate representations for each component. Such an approach eliminate the
need for additional operations, such as quantum comparators to locate equal positions,
and conditional operators to handle the corresponding elements [64, 65].

4.3 Quantum Wavelet Definitions

Based on the operations in (Sec. 4.1) and the classical descriptions in (Chapter 2), we
present the unitary definitions of the quantum Haar, CDF, and DB4 wavelet transforms
for j ∈ [0, l − 1] decomposition levels, with l the maximum level, as well as the general
block circuits.
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4.3.1 Quantum Haar

Quantum Haar transform uses odd/even elements, |s2i⟩ and |s2i+1⟩, of a input signal,
|S⟩, to get the approximation, |Aj

i ⟩, and detail, |Dj
i ⟩, coefficients. This transform in-

cludes quantum addition, Ua, subtraction, Us, and rounding, Ur, operators. Therefore,
the quantum Haar is defined by

Ur(2)Ua(123)|s2i+1, ϕ0, s2i⟩ → |s2i+1, A
j
i , s2i⟩ (4.18)

Us(12)|s2i+1, s2i⟩ → |Dj
i , s2i⟩ (4.19)

where the numerical subscript in the operators indicates the qubit they operate on,
with the qubit position counted from left to right. Figure 4.8 shows the general cir-
cuit for one decomposition level, using ϕ0 as an auxiliary register |0 . . . 0⟩. Furthermore,
l-decomposition levels can be achieved by operating again over the resulting approxi-
mation coefficients (see Algorithm 1).

Figure 4.8: Quantum block circuit of the Haar transform.

4.3.2 Quantum CDF (2,2)

Quantum CDF decompose an input signal, |S⟩, into approximation, |Aj
i ⟩ and detail, |Dj

i ⟩
coefficients by using the |s2i⟩, |s2i+1⟩ and |s2i+2⟩ signal elements. However, this trans-
form also requires the term |Dj

i−1⟩ in (2.15), but computing |Dj
i−1⟩ needs the |s2i−1⟩ and

|s2i−2⟩ values, which are not defined when i = 0. Therefore, we use zero padding to
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obtain the values at that index1. Finally, the quantum CDF is described by

Us(13)Ur(3)Ua(234)|s2i+1, s2i+2, ϕ0, s2i⟩ → |Dj
i , s2i+2, a

r
0, s2i⟩ (4.20)

Us(13)Ur(3)Ua(234)|s2i−1, s2i−2, ϕ1, s2i⟩ → |Dj
i−1, s2i−2, a

r
1, s2i⟩ (4.21)

Ua(245)U
2
r(2)Ua(123) |Dj

i−1, ϕ2, D
j
i , ϕ3, s2i⟩ → |Dj

i−1, a
2r
2 , D

j
i , A

j
i , s2i⟩ (4.22)

where ϕi are auxiliary registers |0 . . . 0⟩, and ari are the results after rounding operations
(Algorithm 2). Figure 4.9 depicts the general quantum circuit for one decomposition
level.

Figure 4.9: Quantum block circuit of the CDF(2,2) wavelet transform.

4.3.3 Quantum DB4

Quantum DB4 uses signal elements |s2i⟩, |s2i+1⟩, |s2i−2⟩, and |s2i−1⟩ to obtain the de-
composition coefficients, |Aj

i ⟩ and |Dj
i ⟩. This transformation requires two supplemen-

tary values,
√
3 and (

√
3− 2), which are approximated by the operators U√

3 and U√
3−2.

Therefore, we rewrite (2.17) and (2.18) as

P (S) = 17s2i × (0.1) (4.23)

1Other methods exists, but they are beyond the scope of this research [16, 34].
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W (D′) = (17D′
i − 3D′

i−1)× (0.1) (4.24)

Thus, quantum DB4 is given by

Us(12)Ur(2)U√
3(23)|s2i+1, ϕ0, s2i⟩ → |D′

i, a
r
0, s2i⟩ (4.25)

Us(12)Ur(2)U√
3(23)|s2i−1, ϕ1, s2i−2⟩ → |D′

i−1, a
r
1, S2i−2⟩ (4.26)

U2
r(3)Ua(234)U√

3(45)U
√
3−2(12)|D′

i−1, ϕ4, ϕ3, ϕ2, D
′
i⟩ → |D′

i−1, ϕ
′
4, a

2r
2 , ϕ

′
2, D

′
i⟩ (4.27)

Ua(123)|a2r2 , ϕ5, s2i⟩ → |a2r2 , A
j
i , s2i⟩ (4.28)

Ua(123)|D′
i, ϕ6, A

j
i+1⟩ → |D′

i, D
j
i , A

j
i+1⟩ (4.29)

where |ϕ′
2⟩ and |ϕ′

4⟩ are the values after the application of the operators U√
3 and U√

3−2.
In addition, |D′

i⟩ and |D′
i−1⟩ are auxiliary registers, and |Aj

i+1⟩ is the approximation co-
efficient at next step (Algorithm 3). Figure 4.10 illustrates the general circuit of the quan-
tum DB4 for one decomposition level.

Figure 4.10: Quantum block circuit of the DB4 wavelet transform.

4.4 Quantum Decomposition Algorithms

The first step to obtain the decomposition coefficients |Al
i⟩ and |Dl

i⟩ is to store pairs of
elements of an input signal S in the quantum domain using the proposed QBRBS format.
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However, if we want to reach l-decomposition levels, we need to split and store the input
signal in the following way:

• Get the input signal S

S = {s0, s1, . . . , sN−1}, N = 2n

• Split S into N/2 subsets of odd and even elements

{
{s2i, s2i+1}

}
i∈[0,N/2−1]

=
{
{s0, s1}, {s2, s3}, . . . , {sN−2, sN−1}

}

• Generate 2l−1 new subsets from the previous set

S1 =
{
{s0, s1}, {s2l , s2l+1}, {s2(2l), s2(2l)+1}, {s3(2l), s3(2l)+1}, . . .

. . . , {sN−2l , sN−2l+1}
}

=
{
S1
0 , S

1
1 , . . . , S

1
N/2l−1

}
S2 =

{
{s2, s3}, {s2l+2, s2l+3}, {s2(2l)+2, s2(2l)+3}, {s3(2l)+2, s3(2l)+3}, . . .

. . . , {sN−2l+2, sN−2l+3}
}

=
{
S2
0 , S

2
1 , . . . , S

2
N/2l−1

}
S3 =

{
{s4, s5}, {s2l+4, s2l+5}, {s2(2l)+4, s2(2l)+5}, {s3(2l)+4, s3(2l)+5}, . . .

. . . , {sN−2l+4, sN−2l+5}
}

=
{
S3
0 , S

3
1 , . . . , s

3
N/2l−1

}
...

s2
l−1

=
{
{s2l−2, s2l−1}, . . . , {s3(2l)+2l−2, s3(2l)+2l−1}, . . . , {sN−2, sN−1}

}
=
{
S2l−1
0 , S2l−1

1 , . . . , S2l−1
N/2l−1

}
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• Store each subset Sj into the QBRBS format

|F ⟩ = 1√
N/2l

N/2l−1∑
i=0

2l−1⊗
j=1

|Sj
i ⟩

 |Xi⟩

=
1√
N/2l

[
|S1

0⟩|S2
0⟩ . . . |S2l−1

0 ⟩|X0⟩+ |S1
1⟩|S2

1⟩ . . . |S2l−1

1 ⟩|X1⟩+ . . .

+|S1
N/2l−1⟩|S

2
N/2l−1⟩ . . . |S

2l−1

N/2l−1⟩|XN/2l−1⟩
]

(4.30)

Previous description outlines how to store the signal components to achieve l-levels of
decomposition using the proposed quantum transforms, where the operations are per-
formed to pairs of elements from left to right. For example, given a signal, S, of size
N = 16 with two decomposition levels, l = {1, 0}, and UWT a “wavelet operator” acting
on pairs of elements, we have

|F ⟩ = 1√
4

3∑
i=0

[
2⊗

j=1

|Sj
i ⟩

]
|Xi⟩

=
1

2

[
|S1

0⟩|S2
0⟩|X0⟩+ |S1

1⟩|S2
1⟩|X1⟩+ |S1

2⟩|S2
2⟩|X2⟩+ |S1

3⟩|S2
3⟩|X3⟩

]
Then, replace the values for each Sj

i to get the odd and even components of the signal

|F ⟩ =1

2

[
|s0s1⟩|s2s3⟩|X0⟩+ |s4s5⟩|s6s7⟩|X1⟩+

+ |s8s9⟩|s10s11⟩|X2⟩+ |s12s13⟩|s14s15⟩|X3⟩
]

Now apply the operator UWT to each pair of registers from left to right to reach a first
decomposition level, |F 1⟩

|F 1⟩ = UWT |F ⟩ =
1

2

[
UWT |s0s1⟩UWT |s2s3⟩|X0⟩+ UWT |s4s5⟩UWT |s6s7⟩|X1⟩+

+ UWT |s8s9⟩UWT |s10s11⟩|X2⟩+ |s12s13⟩UWT |s14s15⟩|X3⟩
]

=
1

2

[
|C1

0⟩|C1
1⟩|X0⟩+ |C1

2⟩|C1
3⟩|X1⟩+ |C1

4⟩|C1
5⟩|X2⟩+ |C1

6⟩|C1
7⟩|X3⟩

]
where |C l

j⟩ = UWT |s2js2j+1⟩ are the decomposition coefficients of the first level l = 1.
Finally, perform the UWT operator again on the new pairs of elements to obtain the
second decomposition level, |F 0⟩

|F 0⟩ = UWT |F 1⟩ =1

2

[
UWT |C1

0C
1
1⟩|X0⟩+ UWT |C1

2C
1
3⟩|X1⟩+
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+ UWT |C1
4C

1
5⟩|X2⟩+ UWT |C1

6C
1
7⟩|X3⟩

]
=
1

2

[
|C0

0⟩|X0⟩+ |C0
1⟩|X1⟩+ |C0

2⟩|X2⟩+ |C0
3⟩|X3⟩

]

where |C l
k⟩ = UWT |C1

2kC
1
2k+1⟩ are the coefficients at the second level l = 0. Figure 4.11

illustrates the whole process, where we can only operate on pairs of elements in the same
qubit position, |Xi⟩.

Finally, the quantum decomposition algorithms for each wavelet transform (Haar,
CDF, DB4) are presented below, where we need to repeat the process on the approxima-
tion coefficients, |Aj

i ⟩, to get l-decomposition levels, with l ≤ n.

Figure 4.11: Quantum general decomposition process using the QBRBS format. The

elements C l
k do not share the same coordinate position, therefore, we cannot reach further

levels of decomposition.
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Algorithm 1 : Quantum Haar Transform - Approximation Coefficients

1: ▷ Input: One-dimensional signal |S⟩ of 2n.

2: ▷Output: Decomposition coefficients |Aj
i ⟩ and |Dj

i ⟩. ▷ With j ≤ l

3: procedure

4: Step 1: State initialization

5: |0 . . . 0⟩ = |s2i+1, s2i⟩

6: |0 . . . 0⟩ = |ϕ0⟩ ▷ Auxiliary qubits

7: Step 2: Generate a qubit register

8: |s2i+1, ϕ0, s2i⟩

9: ▷ Step 2.1: Apply the addition and rounding operator Ur(2)Ua(123)

10: These operations produce the state,

11: |s2i+1, A
j
i , s2i⟩

12: Step 3: Generate a second qubit register

13: |s2i+1, s2i⟩

14: ▷ Step 3.1: Apply the subtraction operator Us(12)

15: This gives,

16: |Dj
i , s2i⟩

17: Step 4: Extract the decomposition coefficients |Aj
i ⟩ and |Dj

i ⟩

18: ▷ Repeat on |Aj
i ⟩ to get l-decomposition levels.

19: end procedure
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Algorithm 2 : Quantum CDF Transform - Decomposition Process

1: ▷ Input: One-dimensional signal |S⟩ of 2n + 1.

2: ▷Output: Decomposition coefficients |Aj
i ⟩ and |Dj

i ⟩. ▷ With j ≤ l

3: procedure

4: Step 1: State initialization

5: |0 . . . 0⟩ = |s2i−1, s2i−2, s2i+1, s2i+2, s2i⟩

6: |0 . . . 0⟩ = |ϕ3, ϕ2, ϕ1, ϕ0⟩ ▷ Auxiliary qubits

7: Step 2: Select the first block of elements

8: |s2i+1, s2i+2, ϕ0, s2i⟩

9: ▷ Step 2.1: Apply the addition operator Ua(234)

10: ▷ Step 2.2: Apply the rounding operator on qubit three Ur(3)

11: ▷ Step 2.3: Apply the subtraction operator Us(13)

12: These operations produce the state,

13: |Dj
i , s2i+2, a

r
0, s2i⟩ ▷ ari are the addition results after rounding

14: Step 3: Select the next block of elements

15: |s2i−1, s2i−2, ϕ1, s2i⟩

16: ▷ Step 3.1: Apply addition operator Ua(234)

17: ▷ Step 3.2: Apply rounding operator on qubit three Ur(3)

18: ▷ Step 3.3: Apply the subtraction operator Us(13)

19: This gives,

20: |Dj
i−1, s2i−2, a

r
1, s2i⟩

21: Step 4: Select the last block of qubits

22: |Dj
i−1, ϕ2, D

j
i , ϕ3, s2i⟩

23: ▷ Step 4.1: Apply the addition operator Ua(123)

24: ▷ Step 4.2: Apply the rounding operator two-times in qubit four Ur(2)
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25: ▷ Quantum CDF Transform - Last Part

26: ▷ Step 4.3: Apply the subtraction operator Ua(245)

27: This produces the final state,

28: |Dj
i−1, a

2R
2 , Dj

i , A
j
i , s2i⟩

29: Step 5: Extract the decomposition coefficients |Aj
i ⟩ and |Dj

i ⟩

30: ▷ Repeat on |Aj
i ⟩ to get l-decomposition levels.

31: end procedure

Algorithm 3 : Quantum DB4 Transform - Decomposition Process

1: ▷ Input: One-dimensional signal |S⟩ of 2n.

2: ▷Output: Decomposition coefficients |Aj
i ⟩ and |Dj

i ⟩. ▷ With j ≤ l

3: procedure

4: Step 1: State initialization

5: |0 . . . 0⟩ = |s2i−1, s2i−2, s2i+1, s2i⟩

6: |0 . . . 0⟩ = |ϕ6, ϕ5, ϕ4, ϕ3, ϕ2, ϕ1, ϕ0⟩ ▷ Auxiliary qubits

7: Step 2: Select the first block of elements

8: |s2i+1, ϕ0, s2i⟩

9: ▷ Step 2.1: Apply the operator U√
3(23)

10: ▷ Step 2.2: Apply the rounding operator on qubit two Ur(2)

11: ▷ Step 2.3: Apply the subtraction operator Us(12)

12: These operations produce the state,

13: |D′
i, a

r
0, s2i⟩ ▷ ari are the addition results after rounding

14: Step 3: Select the second block of elements

15: |s2i−1, ϕ1, s2i−2⟩

16: ▷ Step 3.1: Apply the operator U√
3(23)
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17: ▷ Quantum DB4 Transform - Last Part

18: ▷ Step 3.2: Apply the rounding operator on qubit two Ur(2)

19: ▷ Step 3.3: Apply the subtraction operator Us(12)

20: This gives,

21: |D′
i−1, a

r
1, s2i−2⟩

22: Step 4: Select the third block of qubits

23: |D′
i−1, ϕ4, ϕ3, ϕ2, D

′
i⟩

24: ▷ Step 4.1: Apply the operator U√
3−2(12)

25: ▷ Step 4.2: Apply the operator U√
3(45)

26: ▷ Step 4.3: Apply the addition operator Ua(234)

27: ▷ Step 4.4: Apply the rounding operator two times on qubit three U2
r(3)

28: This produces the state,

29: |D′
i−1, ϕ

′
4a

2r
2 , ϕ

′
2, D

′
i⟩

30: Step 5: Select the next block of qubits

31: |a2r2 , ϕ5, s2i⟩

32: ▷ Step 5.1: Apply the addition operator Ua(123)

33: This produces,

34: |a2r2 , A
j
i , s2i⟩

35: Step 6: Select the last block of qubits

36: |D′
i, ϕ6, A

j
i+1⟩

37: ▷ Step 6.1: Apply the addition operator Ua(123)

38: This produces,

39: |D′
i, D

j
i , A

j
i+1⟩

40: Step 7: Extract the decomposition coefficients |Aj
i ⟩ and |Dj

i ⟩

41: ▷ Repeat on |Aj
i ⟩ to get l-decomposition levels.

42: end procedure
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4.5 Quantum Compression

Quantum compression involves reducing the number of qubits, quantum gates, and mea-
surements on a quantum process. Thus, based on the features of the proposed represen-
tation (QBRBS), we achieve quantum compression in two different ways:

1. The QBRBS uses superposition and entanglement to reduce the number of elements
needed to store information in the quantum domain, providing an exponential im-
provement over classical methods (Sec. 4.2). Consequently, the proposed format
requires (q + n) qubits for storing a 2n signal, while classical representation em-
ploys (q × 2n) bits, with q-bit precision.

2. The proposed representation format eliminates the requirement for multiple copies
of the initial signal to reach l-decomposition levels. This is achieved by splitting
and storing the input signal as dictated by the QBRBS format in (4.30). This guar-
antees an iterative decomposition process without the need for repeated measure-
ments at the end of each level.

On the other hand, from a classical perspective of compression schemes, we achieve
lossless compression by combining classical and quantum features to obtain a hybrid ap-
proach. Thus, the proposed method uses fixed-length coding to decrease the number of
qubits required for signal storage or transmission. The process is outlined below.

1. Classical procedure

• Get an input signal, S = {si}i=0,1,2,...,N−1.
• Perform the classical Integer Wavelet Transform (IWT) to obtain the decom-

position coefficients, Al = {Al
i}i=0,1,2,... and Dl = {Dl

i}i=0,1,2,..., up to l-
levels.
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• Identify the different values of the coefficient elements, that is, obtain the
subsets:

V = {Al
i | Al

i ̸= Al
j}i=0,1,2,...

W = {Dl
i | Dl

i ̸= Dl
j}i=0,1,2,...

• Generate two new sets with the codewords for each element in V and W .

Tcv = {C(Vi) | Vi ∈ V, C(Vi) = i}i=0,1,2,...

Tcw = {C(Wi) | Wi ∈ W, C(Wi) = i}i=0,1,2,...

where C(·) defines the fixed-length codeword for each element of V and W .

2. Quantum procedure

• Store the input signal into the quantum domain by the QBRBS format (4.15).
• Apply some of the proposed QIWT to achieve a lossless signal transforma-

tion, giving the |Al⟩ and |Dl⟩ coefficients.
• Define two quantum operators based on Tcx and Tcy.

Uqcv =

|Vi|−1∑
i=0

|Vi⟩⟨Vi| ⊗ |C(Vi)⟩⟨0 . . . 0|

Uqcw =

|Wi|−1∑
i=0

|Wi⟩⟨Wi| ⊗ |C(Wi)⟩⟨0 . . . 0|

where these operators acts over superposed states, and the register |0 . . . 0⟩
stores the codewords.

• Perform the Uqcv and Uqcw operators on |Al⟩ and |Dl⟩, respectively. Thus,
all the elements |Al

i⟩ = |Al
j⟩ and |Dl

i⟩ = |Dl
j⟩ are modified by an unique

application of the quantum operators.
• Obtain the compressed coefficients |Al⟩c and |Dl⟩c. Figure 4.12 illustrates the

general hybrid compression scheme.

The above description shows how to compress an input signal using a hybrid ap-
proach, where we take advantage of quantum parallelism to assign a codeword to all
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Figure 4.12: General hybrid compression scheme.

identical elements simultaneously. For example, giving a input signal, S, of size N = 8

with decomposition level l = 1, we have

1. Classical procedure

• Input signal
S = {1, 3, 8, 1, 2, 3, 1, 3}

• Apply the integer transform, IWT , and get the decomposition coefficients

A1 = {0, 2, 4, 0}

D1 = {1, 2, 0, 1}

• Get the subsets V and W

V = {0, 2, 4}

W = {1, 2, 0}

• Generate Tcv and Tcw

Tcv = {C(V0), C(V1), C(V2)}

= {C(0), C(2), C(4)} = {0, 1, 2}

Tcw = {C(W0), C(W1), C(W2)}
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= {C(1), C(2), C(0)} = {0, 1, 2}

2. Quantum procedure

• Store S using the QBRBS format

|S⟩ = |s2i⟩|s2i+1⟩|Xi⟩ =
1

2

[
|1⟩|3⟩|X0⟩+|8⟩|1⟩|X1⟩+|2⟩|3⟩|X2⟩+|1⟩|7⟩|X3⟩

]
where the elements are stored in odd/even pairs.

• Apply the one-level QWT on |S⟩ and get the coefficients

|A1⟩ = |0⟩|X0⟩+ |2⟩|X1⟩+ |4⟩|X2⟩+ |0⟩|X3⟩

= |A1
i ⟩|Xi⟩

|D1⟩ = |1⟩|X0⟩+ |2⟩|X1⟩+ |0⟩|X2⟩+ |1⟩|X3⟩

= |D1
i ⟩|Xi⟩

• Initialize an auxiliary register |0 . . . 0⟩ and distribute the tensor product with
the previous coefficients

|A1⟩|0 . . . 0⟩ = |0⟩|0 . . . 0⟩|X0⟩+ |2⟩|0 . . . 0⟩|X1⟩

+ |4⟩|0 . . . 0⟩|X2⟩+ |0⟩|0 . . . 0⟩|X3⟩

|D1⟩|0 . . . 0⟩ = |1⟩|0 . . . 0⟩|X0⟩+ |2⟩|0 . . . 0⟩|X1⟩

+ |0⟩|0 . . . 0⟩|X2⟩+ |1⟩|0 . . . 0⟩|X3⟩

• Define the quantum codeword operators

Uqcv = |V0⟩⟨V0| ⊗ |C(V0)⟩⟨0 . . . 0|+ |V1⟩⟨V1| ⊗ |C(V1)⟩⟨0 . . . 0|

+ |V2⟩⟨V2| ⊗ |C(V2)⟩⟨0 . . . 0|

= |0⟩⟨0| ⊗ |0⟩⟨0 . . . 0|+ |2⟩⟨2| ⊗ |1⟩⟨0 . . . 0|

+ |4⟩⟨4| ⊗ |2⟩⟨0 . . . 0|

Uqcw = |W0⟩⟨W0| ⊗ |C(W0)⟩⟨0 . . . 0|+ |W1⟩⟨W1| ⊗ |C(W1)⟩⟨0 . . . 0|
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+ |W2⟩⟨W2| ⊗ |C(W2)⟩⟨0 . . . 0|

= |1⟩⟨1| ⊗ |0⟩⟨0 . . . 0|+ |2⟩⟨2| ⊗ |1⟩⟨0 . . . 0|

+ |0⟩⟨0| ⊗ |2⟩⟨0 . . . 0|

• Perform the previous operators on |Al⟩|0 . . . 0⟩ and |Dl⟩|0 . . . 0⟩

Uqcv|A1⟩|0 . . . 0⟩ = Uqcv(|0⟩|0 . . . 0⟩)|X0⟩+ Uqcv(|2⟩|0 . . . 0⟩)|X1⟩

+ Uqcv(|4⟩|0 . . . 0⟩)|X2⟩+ Uqcv(|0⟩|0 . . . 0⟩)|X3⟩

= (|0⟩⟨0|0⟩ ⊗ |0⟩⟨0 . . . 0|0 . . . 0⟩)|X0⟩

+ (|2⟩⟨2|2⟩ ⊗ |1⟩⟨0 . . . 0|0 . . . 0⟩)|X1⟩

+ (|4⟩⟨4|4⟩ ⊗ |2⟩⟨0 . . . 0|0 . . . 0⟩)|X2⟩

+ (|0⟩⟨0|0⟩ ⊗ |0⟩⟨0 . . . 0|0 . . . 0⟩)|X3⟩

= |0⟩|0⟩|X0⟩+ |2⟩|1⟩|X1⟩

+ |4⟩|2⟩|X2⟩+ |0⟩|0⟩|X3⟩

Uqcw|D1⟩|0 . . . 0⟩ = Uqcw(|1⟩|0 . . . 0⟩)|X0⟩+ Uqcw(|2⟩|0 . . . 0⟩)|X1⟩

+ Uqcw(|0⟩|0 . . . 0⟩)|X2⟩+ Uqcw(|1⟩|0 . . . 0⟩)|X3⟩

= (|1⟩⟨1|1⟩ ⊗ |0⟩⟨0 . . . 0|0 . . . 0⟩)|X0⟩

+ (|2⟩⟨2|2⟩ ⊗ |1⟩⟨0 . . . 0|0 . . . 0⟩)|X1⟩

+ (|0⟩⟨0|0⟩ ⊗ |2⟩⟨0 . . . 0|0 . . . 0⟩)|X2⟩

+ (|1⟩⟨1|1⟩ ⊗ |0⟩⟨0 . . . 0|0 . . . 0⟩)|X3⟩

= |1⟩|0⟩|X0⟩+ |2⟩|1⟩|X1⟩

+ |0⟩|2⟩|X2⟩+ |1⟩|0⟩|X3⟩

where Uqcv and Uqcw act on element values and not on the position register
|Xi⟩. The red values are the new signal representation by the codewords and
the blue ones are the original values.

• Get the compressed coefficients |Al⟩c and |Dl⟩c, which are stored in the aux-
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iliary register

|A1⟩c = |0⟩|X0⟩+ |1⟩|X1⟩+ |2⟩|X2⟩+ |0⟩|X3⟩

|D1⟩c = |0⟩|X0⟩+ |1⟩|X1⟩+ |2⟩|X2⟩+ |0⟩|X3⟩

where the original |A1⟩ requires three qubits and |A1⟩c uses two qubits to
store the element values. However, |D1⟩ and |D1⟩c uses the same number of
qubits.

The above example shows the steps for the proposed hybrid compression scheme, where
we decrease the number of qubits to represent the coefficient values of the decomposed
signal. Figure 4.13 depicts the implementation circuit for the quantum codeword process,
assuming the sets of classical codewords Tcv and Tcw are given.

Figure 4.13: Quantum codeword circuit. Dashed boxes define the quantum codeword

operators, where each sub-block describes the code assignment process.

4.6 Summary

In this chapter, we have defined the quantum circuits for the addition, subtraction, swap-
ping, halving, rounding, cyclic shift, multiplication, and special operations on the quan-
tum versions of the Haar, CDF, and Daubechies-4 (DB4) wavelet transform based on the
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lifting scheme. We have generalized the traditional Quantum Basis States (QBS) rep-
resentation to the Quantum Block Representation by Basis States (QBRBS) to facilitate
signal manipulation and avoid garbage information. Then, we have presented the uni-
tary and algorithmic definitions of the Haar, CDF, and DB4 wavelet transforms. Finally,
we detailed the quantum compression model using a hybrid Fixed-Length Coding (FLC)
scheme.
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Results

This chapter presents the analysis and experimental results of the quantum wavelet de-
composition process, including simulations in the IBM Qiskit quantum toolkit and com-
plexity evaluations. The comparative analysis of the quantum and classical versions of
the wavelet transform is also described, as well as the comparative analysis of the pro-
posed quantum representation with the QBS representation format. Finally, quantum
compression results and evaluation metrics are provided.

We use a Intel(R) Core(TM) i5-9300H CPU 2.40GHz, 16RAM with GTX 1650. Python
3.9 with IBM Qiskit toolkit 1.1. The input signal for the experiments are random one-
dimensional integer signals.

5.1 Quantum Wavelet Simulations

The proposed one-dimensional quantum wavelet transforms operate in integer space,
that is, the transformation is integer-to-integer mapping. Thus, given a one-dimensional
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integer signal of N = 26 for the Haar and DB4 transforms, and N = 26 + 1 for the
CDF(2,2) wavelet, we apply the quantum and classical transforms for three decomposi-
tion levels; resulting in one approximation and three detail coefficients (Figures 5.1, 5.2
and 5.3).

Figure 5.1: Quantum and classical decomposition by the Haar transform on a one-

dimensional integer signal. The dot points are the integer values of the signals.

Figures 5.1, 5.2 and 5.3 depict the decomposition results of the quantum and classi-
cal transforms, where the error between the quantum and classical coefficients for each
wavelet pair is zero, verifying the applicability and correctness of the quantum trans-
forms.
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Figure 5.2: Quantum and classical decomposition by the CDF(2,2) transform on a one-

dimensional integer signal. The dot points are the integer values of the signals.
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Figure 5.3: Quantum and classical decomposition by the DB4 transform on a one-

dimensional integer signal. The dot points are the integer values of the signals.
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5.2 Complexity Analysis

Based on the quantum operators in the Haar, CDF(2,2), and DB4 wavelet transforms, we
perform a quantum complexity analysis based on the number of quantum gates (QG),
auxiliary (A) and garbage (G) qubits for each defined operation. Table 5.1 shows the
quantum complexity for the quantum operations, given a 2n signal with q-bit precision.
Thus, the complexities of the Haar, CDF and DB4 transform for the maximum decompo-
sition level (lmax = n) are O(qn), O(qn) and O(q2n), respectively.

Table 5.1: Complexity analysis of the quantum operations.

Operation QG A G

Add 7q q + 1 0

Sub 6q − 2 q q − 1

Rounding q + 1 1 0

Product 9q2 − 7q + 1 2q + 1 1

5.3 Comparative Analysis: Quantum Wavelet Transforms

We present a comparative analysis of the quantum and classical Haar, CDF(2,2), and
DB4 wavelet transforms. Table 5.2 shows the transform type, decomposition scheme
and domain, wavelet class, and complexity, where quantum integer versions decrease
the computational complexity.
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Table 5.2 depicts the quantum and classical wavelet transforms, where the inte-
ger type uses the lifting scheme for decomposition and the real-valued type is based
on the traditional filter bank process. The decomposition analysis is performed in the
spatial signal domain. Also, the proposed transforms belong to the orthogonal and bi-
orthogonal class, with the CDF(2,2) being the first bi-orthogonal quantum wavelet trans-
form. Finally, the developed quantum wavelets significantly decrease the computational
complexity compared to the classical versions, providing an exponential time speed-up.

5.4 Comparative Analysis: Quantum Representations

We perform a comparative analysis between the traditional QBS representation and the
proposed QBRBS format. We analyze the features of the quantum formats, including the
number of qubits, quantum storage, gate complexity, the generation of garbage informa-
tion, and compatibility with iterative processes.

5.4.1 Quantum Qubit Complexity

Quantum qubit complexity measures the numbers of qubits to store an input signal in
the quantum domain. Table 5.3 presents the qubit complexity to store a one- or two-
dimensional signal with the QBS and the QBRBS format, where q is the bit precision and
N = 2n the signal length. In addition, the number of elements per block for the QBRBS
is m = 1 and the number of blocks k = 2n/m.

Table 5.3 shows the qubit complexity for the QBS and QBRBS representation for-
mat. Both models have the same qubit complexity for storing one- and two-dimensional
signals since the QBRBS model generalizes the traditional QBS format and behaves sim-
ilarly for simple signals when no element blocks are provided.
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Table 5.3: Qubit Complexity for a 2n signal with m = 1 and k = 2n/m.

Format Qubit Complexity

QBS n+ q

QBRBS mq + ⌈log k⌉

5.4.2 Quantum Storage, Gates, and Garbage Information

The proposed Quantum Integer Wavelet transforms (QIWTs) require the information of
neighboring elements from the input signal to obtain the decomposition values. There-
fore, we describe the process for storing and operating on adjacent elements using the
QBS and the QBRBS format. Additionally, we highlight the issues of dealing with super-
posed states in generating garbage information. Finally, we show the shortcomings of
iterative processes in both representation formats.

The QBS format allows for the storage of individual input signals without sharing
information with other elements, as they are in superposition. Therefore, when operat-
ing with neighboring values, it is necessary to initialize the input signal multiple times,
equal to the number of required neighbors. For instance, to access the right-neighboring
elements in a one-dimensional signal of size N , we need to initialize the input signal
twice, |S⟩0 and |S⟩1, and then apply a cyclic shift operator, Ucs, to the position values
|xj⟩ of |S⟩1, moving the elements to the same position as their neighbors as follows:

• Initialize twice the same input signal

|S⟩0 = |xi⟩|si⟩

= |x0⟩|s0⟩+ |x1⟩|s1⟩+ |x2⟩|s2⟩+ |x3⟩|s3⟩

|S⟩1 = |xj⟩|sj⟩

= |x0⟩|s0⟩+ |x1⟩|s1⟩+ |x2⟩|s2⟩+ |x3⟩|s3⟩
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• Apply the cyclic operator, Ucs(j−1), on the position coordinate register of |S⟩1

Ucs(j−1)|S⟩1 = (Ucs|xj⟩)|sj⟩

= |x(j−1) mod N⟩|sj⟩N−1
j=0

= |x0⟩|s1⟩+ |x1⟩|s2⟩+ |x2⟩|s3⟩+ |x3⟩|s0⟩

where Ucs(j−1) moves the position coordinate |xj⟩ to |x(j−1) mod N−1⟩.
• Get the input signal, |S⟩0, and the signal, |S⟩1, with the right-neighboring elements

of |S⟩0

|S⟩0 = |x0⟩|s0⟩+ |x1⟩|s1⟩+ |x2⟩|s2⟩+ |x3⟩|s3⟩

|S⟩1 = |x0⟩|s1⟩+ |x1⟩|s2⟩+ |x2⟩|s3⟩+ |x3⟩|s0⟩
(5.1)

where elements with the same position coordinate share the neighboring informa-
tion of the signal.

Now, if we want to apply an operation on neighboring values, we must follow these
steps:

• Add two auxiliary registers to the tensor product of |S⟩1|S⟩0

|d⟩|c⟩|S⟩1|S⟩0 = |0 . . . 0⟩|0⟩|xk⟩|sj⟩|xi⟩|si⟩

where k = (j − 1) mod (N − 1).
• Perform a comparator operation, Uc, on register |c⟩|S⟩1|S⟩0 to identify when the

position coordinates of both signals are equal, and then change the auxiliary qubit
to |c⟩ = |1⟩

|d⟩(Uc|c⟩|S⟩1|S⟩0) = (|0 . . . 0⟩|1⟩|xk⟩|sj⟩|xi⟩|si⟩)k=i

+ (|0 . . . 0⟩|0⟩|xk⟩|sj⟩|xi⟩|si⟩)k ̸=i

= |0 . . . 0⟩|1⟩|x0⟩|s1⟩|x0⟩|s0⟩
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+ |0 . . . 0⟩|1⟩|x1⟩|s2⟩|x1⟩|s1⟩

+ |0 . . . 0⟩|1⟩|x2⟩|s3⟩|x2⟩|s2⟩

+ |0 . . . 0⟩|1⟩|x3⟩|s0⟩|x3⟩|s3⟩

+ (|0 . . . 0⟩|0⟩|xk⟩|sj⟩|xi⟩|si⟩)k ̸=i

where only four registers share the same position coordinates with the neighboring
information.

• Apply a conditional operator, CU , on |sj⟩|si⟩ when |c⟩ = |1⟩, and store the result
on |d⟩

CU |d⟩|c⟩|S⟩1|S⟩0 = CU(|0 . . . 0⟩|1⟩|xk⟩|sj⟩|xi⟩|si⟩)k=i

+ (|0 . . . 0⟩|0⟩|xk⟩|sj⟩|xi⟩|si⟩)k ̸=i

= |r0⟩|1⟩|x0⟩|s1⟩|x0⟩|s0⟩

+ |r1⟩|1⟩|x1⟩|s2⟩|x1⟩|s1⟩

+ |r2⟩|1⟩|x2⟩|s3⟩|x2⟩|s2⟩

+ |r3⟩|1⟩|x3⟩|s0⟩|x3⟩|s3⟩

+ (|0 . . . 0⟩|0⟩|xk⟩|sj⟩|xi⟩|si⟩)k ̸=i

where |ri⟩ is the result after the CU operation.

Finally, we extract the results after the conditional operation, CU , as follows:

• Apply an measurement operator, M , on register |d⟩

M |d⟩ ∈ {|r0⟩, |r1⟩, |r2⟩, |r3⟩, |0 . . . 0⟩}

where each |ri⟩ has a probability of P (ri) = 1/16, and the register |0 . . . 0⟩ a
probability of P (0 . . . 0) = 12/16. However, only measure the register |d⟩ does
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not give information about the position coordinate of the results. Therefore, we
also need to measure registers |xk⟩|xi⟩:

M |d⟩|xk⟩|xi⟩ ∈{|r0⟩|x0⟩|x0⟩, |r1⟩|x1⟩|x1⟩, |r2⟩|x2⟩|x2⟩,

|r3⟩|x3⟩|x3⟩, |0 . . . 0⟩|xk⟩|xi⟩k ̸=i}

where the number of measurable registers is increased, but the probabilities remain
the same as before.

The previous description shows how to access and operate on neighboring values of an
input signal |S⟩0, where elements at the same position coordinate hold the neighbor-
ing information of the signal. However, we need as many copies of the input signal as
neighbors are required in the process, increasing storage requirements. Moreover, the
measurement complexity increases because of additional (garbage) states, |0 . . . 0⟩, that
do not provide any useful information about the process. These garbage data are gener-
ated by the tensor product of superposed states, which describes a Cartesian product of
all possible states. Additionally, neighboring processing with QBS requires cyclic shifts,
comparators, and conditional operations to obtain the results, increasing quantum gate
complexity. Figure 5.4 illustrates the general process using QBS representation, where
|Sk⟩k ̸=0 = |xjsj⟩ are the copied signals, Ucs(j±h) the cyclic operator, Uc the comparator,
and CU the conditional operator.

Figure 5.4: General storage and manipulation process by QBS representation.

64



5. Experimental and Analysis ResultsComparative Analysis: Quantum Representations

On the other hand, the QBRBS format enables the storage of groups of signal values
to share information between different elements in the same position coordinate. This
eliminates the need to initialize the input signal multiple times to access neighboring val-
ues. For example, to process the right-neighboring elements of a one-dimensional signal,
we must store each neighboring value at the same position coordinate |xi⟩, facilitating
manipulation as follows:

• Get the input signal

|S⟩0 = |xi⟩|si⟩

= |x0⟩|s0⟩+ |x1⟩|s1⟩+ |x2⟩|s2⟩+ |x3⟩|s3⟩

• Store in the QBRBS with the neighboring information

|S⟩ = |xi⟩|si⟩|s(j+1) mod N⟩N−1
j=i=0

= |x0⟩|s0⟩|s1⟩+ |x1⟩|s1⟩|s2⟩+ |x2⟩|s2⟩|s3⟩+ |x3⟩|s3⟩|e0⟩

where |e0⟩ = 0 is a zero padding element, which solves the issue of non-adjacent
values for the boundary element |s3⟩.

• Add an auxiliary register

|d⟩|S⟩ = |0 . . . 0⟩|x0⟩|s0⟩|s1⟩+ |0 . . . 0⟩|x1⟩|s1⟩|s2⟩

+ |0 . . . 0⟩|x2⟩|s2⟩|s3⟩+ |0 . . . 0⟩|x3⟩|s3⟩|e0⟩

• Apply a non-conditional operator, U , on adjacent values and store in register |d⟩

U |d⟩|S⟩ = U(|0 . . . 0⟩|x0⟩|s0⟩|s1⟩) + U(|0 . . . 0⟩|x1⟩|s1⟩|s2⟩)

+ U(|0 . . . 0⟩|x2⟩|s2⟩|s3⟩) + U(|0 . . . 0⟩|x3⟩|s3⟩|e0⟩)

= |r0⟩|x0⟩|s0⟩|s1⟩+ |r1⟩|x1⟩|s1⟩|s2⟩

+ |r2⟩|x2⟩|s2⟩|s3⟩+ |r3⟩|x3⟩|s3⟩|e0⟩

where |ri⟩ store the result after the U operation.
• Perform a measurement operator, M , to get the results

M |d⟩|xi⟩ ∈ {|r0⟩|x0⟩, |r1⟩|x1⟩, |r2⟩|x2⟩, |r3⟩|x3⟩}
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where the measurement process only gives the expected results with probability
P (ri) = 1/4, without additional (garbage) states.

The above process describes how to store and manipulate neighboring information us-
ing the QBRBS format, where adjacent values share the same position coordinate. This
format decreases storage requirements because it is unnecessary to initialize multiple
copies of the input signal, as in the QBS model. Also, QBRBS simplifies signal manipula-
tion by avoiding comparators and conditional operators, which decreases the quantum
gate complexity. Additionally, processing information in QBRBS representation does
not generate additional (garbage) states after operations on adjacent elements, unlike
the QBS format, which createsN× (N−1) garbage data. However, storing neighboring
information in the QBRBS model requires an additional classical pre-processing step that
defines the elements to be stored, i.e., it is necessary to know the neighbors of each signal
component before quantum storage. Figure 5.5 shows the general process using QBRBS
format, where the “Classc.” block defines the classical pre-processing to get the neigh-
boring values, each |s(j±hj)⟩ is the corresponding neighboring element in some direction
(j ± hj), and U any non-conditional quantum operator.

-

Figure 5.5: General storage and manipulation process by QBRBS representation.
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5.4.3 Quantum Iterative Processes

Iterative processes define the repeatability of algorithmic steps and operations based on
previous results, allowing outputs to be used as new inputs. This feature is relevant to the
development of quantum transforms because each iteration describes a level of decom-
position or transformation. Therefore, the proposed quantum integer wavelet transforms
are expected to reach any decomposition level. The steps and issues of iterative processes
for QBS representation are shown below.

1. Store an input signal in a superposed state using the QBS format, |S⟩0.

2. Initialize the input signal several times with the neighboring information, |S⟩i.

3. Apply the cyclic shift operation to get the neighbors, |S ′⟩i = Ucs|S⟩i.

4. Perform a conditional operation between the input and neighboring signals,
CU |S ′⟩i|S⟩0.

5. Obtain the results into a superposition of states, |R⟩0 = |ri⟩.

6. Use the results as the new input signal, |S⟩0 = |R⟩0.

7. Initialize the new input signal multiple times, |R⟩i.

8. Repeat steps from 3 to 8.

The previous description outlines the general process for operating on neighboring el-
ements in QBS representation. However, initializing the new input signal |S⟩0 = |R⟩0
multiples times (step 7) has a limitation: the register |R⟩0 is in a superposition of dif-
ferent states, where the values of the quantum state are unknown. Therefore, it is only
possible to initialize the signal several times by a high-complex measurement process,
increasing the quantum and storage complexity.

On the other hand, using the QBRBS format allows iterative processes by storing
explicit neighboring information. The key idea is to perform a classical pre-processing
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step to obtain the neighboring information for each iteration and store adjacent elements
in the same position coordinate. For instance, to perform one and two iterations with a
right-adjacent element in a one-dimensional signal, we have:

• Input registers for one iteration

|S⟩0 = |x0⟩|s0⟩+ |x1⟩|s1⟩+ |x2⟩|s2⟩+ |x3⟩|s3⟩

|d0⟩ = |0 . . . 0⟩

where |S⟩0 the input signal, and |d0⟩ an auxiliary register.
• Store the right-adjacent elements in the QBRBS format

|S⟩ = |d0⟩ (|x0⟩|s0s1⟩+ |x1⟩|s1s2⟩+ |x2⟩|s2s3⟩+ |x3⟩|s3e0⟩)

where |e0⟩ is the zero padding condition, |e0⟩ = |0⟩.
• Perform an operation, U , on neighboring elements |sisi+1⟩ and store in |d0⟩

U |S⟩ = |r0⟩|x0⟩|s0s1⟩+ |r1⟩|x1⟩|s1s2⟩+ |r2⟩|x2⟩|s2s3⟩+ |r3⟩|x3⟩|s3e0⟩

where |ri⟩ is the result for one iteration level.

Now, to achieve two iteration levels, we need:

• Input register for two iterations

|S⟩0 = |x0⟩|s0⟩+ |x1⟩|s1⟩+ |x2⟩|s2⟩+ |x3⟩|s3⟩

|d0⟩ = |0 . . . 0⟩

|d1⟩ = |0 . . . 0⟩

|d2⟩ = |0 . . . 0⟩

• Store the right-neighboring elements in QBRBS for two iterations

|S⟩ = |d2d1d0⟩(|x0⟩|s0s1s2⟩+ |x1⟩|s1s2s3⟩+ |x2⟩|s2s3e0⟩+ |x3⟩|s3e0e1⟩)

where the boundary condition is |ei⟩ = |0⟩.
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• Apply an U operator to the leftmost elements |sisi+1⟩ and store the result in |d0⟩

|S ′⟩ = U |S⟩ = |d2d1⟩U(|d0⟩|x0⟩|s0s1⟩)|s2⟩+ |d2d1⟩U(|d0⟩|x1⟩|s1s2⟩)|s3⟩

+ |d2d1⟩U(|d0⟩|x2⟩|s2s3⟩)|e0⟩+ |d2d1⟩U(|d0⟩|x3⟩|s3e0⟩)|e1⟩

= |d2d1⟩|r0⟩|x0⟩|s0s1s2⟩+ |d2d1⟩|r1⟩|x1⟩|s1s2s3⟩

+ |d2d1⟩|r2⟩|x2⟩|s2s3e0⟩+ |d2d1⟩|r3⟩|x3⟩|s3e0e1⟩

where |ri⟩ is the result after U operation.
• Apply U on the rightmost elements |sjsj+1⟩ and store in |d1⟩

|S ′′⟩ = U |S ′⟩ = |d2⟩|r0⟩|s0⟩U(|d1⟩|x0⟩|s1s2⟩) + |d2⟩|r1⟩|s1⟩U(|d1⟩|x1⟩|s2s3⟩)

+ |d2⟩|r2⟩|s2⟩U(|d1⟩|x2⟩|s3e0⟩) + |d2⟩|r3⟩|s3⟩U(|d1⟩|x3⟩|e0e1⟩)

= |d2⟩|r0⟩|s0⟩|r1⟩|x0⟩|s1s2⟩+ |d2⟩|r1⟩|s1⟩|r2⟩|x1⟩|s2s3⟩

+ |d2⟩|r2⟩|s2⟩|r3⟩|x2⟩|s3e0⟩+ |d2⟩|r3⟩|s3⟩|e2⟩|x3⟩|e0e1⟩

• Perform the U operation on the results |riri+1⟩ and store in |d2⟩

U |S ′′⟩ = U(|d2⟩|r0⟩|r1⟩)|x0⟩|s0s1s2⟩+ U(|d2⟩|r1⟩|r2⟩)|x1⟩|s1s2s3⟩

+ U(|d2⟩|r2⟩|r3⟩)|x2⟩|s2s3e0⟩+ U(|d2⟩|r3⟩|e2⟩)|x3⟩|s3e0e1⟩

= |r′0⟩|r0⟩|r1⟩|x0⟩|s0s1s2⟩+ |r′1⟩|r1⟩|r2⟩|x1⟩|s1s2s3⟩

+ |r′2⟩|r2⟩|r3⟩|x2⟩|s2s3e0⟩+ |r′3⟩|r3⟩|e2⟩|x3⟩|s3e0e1⟩

where |r′i⟩ is the results for the second iteration level.

The previous examples describe the process for obtaining one and two iteration levels
using the QBRBS representation. For two levels, not only the current adjacent value but
also the neighbors for the first iteration are stored at the same position coordinate. Figure
5.6 and 5.7 depicts the storage and manipulation process with a right-neighbor value for
one and two iteration levels, respectively. Adjacent elements are stored at the same
position coordinate, |xi⟩, preserving the neighborhood relationships. Dashed rectangles
holds the elements at the same position, and solid lines define the values selected for
each step.
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Figure 5.6: Quantum storage and manipulation for one iteration level. Elements |sisi+1⟩

share the same position coordinate |xi⟩, and the U operator acts on pairs of values in the

same position.

Figure 5.7: Quantum storage and manipulation for two iteration levels. Elements

|sisi+1si+2⟩ share the same position coordinate |xi⟩, and the U operator acts on pairs

of values in the same position.
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Finally, Table 5.4 presents the comparative characteristics of the QBS and QBRBS
formats, including qubit complexity (Q), type of operations (O), garbage information (G),
iteration levels (I) and additional steps (A). The signal length isN = 2n, and k is the num-
ber of neighboring values for each signal element. The operations in QBRBS do not use
any conditional operators, decreasing quantum complexity. On the other hand, the QBS
model generates (N2 − N) garbage information, increasing measurement complexity.
However, QBRBS generates no garbage information, keeping measurement complex-
ity low. Furthermore, the QBRBS format allows for multiple iteration steps, making it
more applicable than the QBS format, which is limited to a single process. The proposed
QBRBS format also requires a classical pre-processing step (Classc.) to access and store
neighboring information. It is important to note that all neighborhood information must
be known before quantum storage in the representation format. Thus, neighboring val-
ues can be stored at the same position coordinate, facilitating signal manipulation.

Table 5.4: Comparative analysis between the QBS and QBRBS formats, where N = 2n.

Representation Comparative Elements

Format Q O G I A

QBS kn+ kq Condt. N2 −N 1 None

QBRBS n+ kq NCondt. 0 n Classc.

5.5 Quantum Lossless Compression: Analysis and Re-

sults

Compressing quantum information, like classical data compression methods, is a very
complex task due to the constraints and limitations of quantum computing. Entangled
and superposed states cannot be manipulated independently without increasing process
complexity. Furthermore, the probabilistic nature of quantum states limits information
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recovery due to measurement constraints. Therefore, common classical lossless methods,
such as bit precision reduction and coding assignment, cannot be directly applied to
quantum data. The issues in processing quantum information from the previous classical
methods are detailed below.

• Bit Precision Reduction: this model takes advantage of the separability and inde-
pendence of classical bits to change the bit precision of individual signal elements,
it is, given an input signal, S = {si}, modify the bit precision, q, for each value
{si}, such that

S = {s0, s1, s2, . . . , sN−1}; N = 2n

= {{0, 1}q, {0, 1}q, {0, 1}q, . . . , {0, 1}q}

where each signal value is given by {si} ∈ {0, 1}q. Then, individual bit precision
can be modified as

SM = {{0, 1}q−b0 , {0, 1}q−b1 , {0, 1}q−b2 , . . . , {0, 1}q−bN−1}

where bi ∈ Z+ defines the change in the precision value of each element. How-
ever, reducing the number of bits in quantum data for an individual element in
superposition is an intricate process, as quantum superposition is described by a
unique qubit register rather than multiple free bits. For instance, giving a super-
posed register

|x⟩|a2a1a0⟩ = |x0⟩|001⟩+ |x1⟩|011⟩+ |x2⟩|101⟩+ |x3⟩|110⟩

where elements |001⟩ and |011⟩ could be described by reduced states |001⟩ = |1⟩
and |011⟩ = |11⟩ with bit precision (q− 2) and (q− 1), respectively. Nevertheless,
as all elements are defined by the same quantum register, |a2a1a0⟩, removing a bit
is equivalent to discarding some qubit |ai⟩. Therefore, if |a0⟩ is removed, then

|x⟩|a2a1��a0⟩ = |x0⟩|00�1⟩+ |x1⟩|01�1⟩+ |x2⟩|10�1⟩+ |x3⟩|11�0⟩

= |x0⟩|00⟩+ |x1⟩|01⟩+ |x2⟩|10⟩+ |x3⟩|11⟩ = |x⟩|a2a1⟩
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where the bit reduction process modifies all elements in superposition, resulting
in a signal that differs from the initial signal.

• Coding Assignment: this method involves creating new codewords for the ele-
ments of an input signal. The codes can be either fixed-length, based on the num-
ber of different elements, or variable-length, based on occurrence frequency. For
instance, an input signal, S, can be represented as

S = {12, 20, 12, 25, 20, 33, 20, 44, 16, 37, 44, 20, 33, 44, 59}

where (6× 15 = 90) bits are required to store the signal.
Fixed-length coding

Cf ={12 → 000, 16 → 001, 20 → 010, 25 → 011,

33 → 100, 37 → 101, 44 → 110, 59 → 111}

Sc ={000, 010, 000, 011, 010, 100, 010, 110, 001, 101, 110, 010, 100, 110, 111}

whereCf contains the codewords, and Sc is the coded signal with 45 bits. The fixed
coding scheme assigns a new bit representation to each signal element, decreasing
storage requirements.
Variable-length coding

Cv ={12 → 010, 16 → 1010, 20 → 11, 25 → 1011,

33 → 011, 37 → 1000, 44 → 00, 59 → 1001}

Sc ={010, 11, 010, 1011, 11, 011, 11, 00, 1010, 1000, 00, 11, 011, 00, 1001}

where Cv contains the codewords, and Sc is the coded signal with 42 bits. The
variable coding model changes the bit representation based on the occurrence fre-
quency of each element, assigning shorter codes to more likely values and longer
codes to less likely ones. Generally, variable-length coding significantly reduces
storage requirements compared to fixed-length coding.
On the other hand, quantum code assignment faces several problems that limit its
applicability. For example, generating the sets of codewords, Cf and Cv, requires
knowledge of the values of the signal, which in some cases can only be accessed
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Wavelet

Compression
Input signal

Compression
MSE

Haar CDF DB4

Coefficients 1.75 1.68 2.02 1.40 0

by a measurement process, increasing quantum complexity. Additionally, vari-
able coding exploits the non-orthogonality of codewords to improve compression
results, but the quantum non-orthogonality of elements implies a non-perfect dis-
crimination of states, restricting information retrieval.

5.5.1 Compression Results

The proposed quantum compression method uses a hybrid approach that combines clas-
sical and quantum processing in a fixed-length coding scheme. The classical compo-
nent generates codewords for the input signal, and the quantum component assigns each
codeword, reducing computational time while maintaining the compression character-
istics of the fixed-length scheme. Figures 5.8, 5.9 and 5.10 display a one-dimensional
input signal and its decomposition coefficients for each proposed transform on the left
side. The lossless compression results for the input signal and coefficients are shown on
the right side, including the compression ratio, CR = input bits

output bits , and Mean-Square Er-
ror (MSE) between the original and the recovered signal. The input signal is a random
sequence between [−20, 20] of size N = 64.

Figures 5.8, 5.9, and 5.10 depict the compression results for a one-dimensional sig-
nal with three decomposition coefficients. The compression ratio for the coefficients is
lower than the compressed signal because the wavelet transforms reduces the dynamic
range of the signal at each decomposition level, resulting in improved compression. Also,
the MSE values reflect the lossless features of the compression scheme. Additionally,
Table 5.5 compares the classical and quantum codeword assignment by the number of
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queries and operations required to map the codes. The input signal of size N = 2n has a
value range, vr, between 0 and 255, giving a codeword table of LT = 256 different codes.

Table 5.5 presents a comparative analysis of classical and quantum codeword as-
signment. The classical process uses the same number of queries and operations as the
signal size N . In contrast, the quantum process requires as many queries and uses
as many operations as the length of the codeword table LT , being independent of the
signal size N . Consequently, quantum coding reduces computational time, query pro-
cesses, and number of assignment operations, enhancing the compression process using
a hybrid fixed-length coding. Finally, due to the inherent characteristics and limitations
of quantum elements, the maximum compression ratio is determined by the maximum
codeword length.

Table 5.5: Comparative analysis between classical and quantum codeword assignment.

Domain Queries Operations

Classical N N

Quantum LT LT
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Figure 5.8: Quantum Compression results for the input signal and Haar wavelet coeffi-

cients.

76



5. Experimental and Analysis ResultsQuantum Lossless Compression: Analysis and Results

Figure 5.9: Quantum Compression results for the input signal and CDF wavelet coeffi-

cients.
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Figure 5.10: Quantum Compression results for the input signal and DB4 wavelet coeffi-

cients.

5.6 Summary

In this chapter, we have presented experimental and analytical results of the proposed
quantum wavelet transforms and quantum lossless compression scheme. First, we have
shown wavelet simulations of the quantum and classical Haar, CDF and DB4 transforms,
The quantum versions of these transforms reproduce the classical decomposition be-
haviour, verifying the applicability and correctness of the quantum transforms. Subse-
quently, the complexity analysis demonstrated that each transform exhibited polynomial
complexity. Additionally, a comparative analysis of the classical and quantum wavelets
was conducted, wherein the proposed transforms significantly decrease computational
complexity compared to their classical counterparts.
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On the other hand, we have analyzed the features of the QBS and the proposed
QBRBS quantum format. Consequently, the two representation formats exhibit the same
qubit complexity when no element blocks are provided. Nevertheless, the QBRBS re-
duces the storage requirements when operated on neighboring values, eliminates garbage
information, and simplifies signal manipulation by avoiding complex operations. Addi-
tionally, the QBRBS format allows for iterative processes with an additional classical
pre-processing step.

Finally, we have presented the results of the hybrid lossless compression scheme,
where the compression of the decomposition coefficients improves the compression rate
compared to the compressed input signal. Furthermore, the quantum codeword assign-
ment reduces the computational time, query processes, and number of assignments com-
pared to the classical procedure, enhancing the compression process.
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6.1 Conclusions

In this research, we presented the quantum definitions of three classes of integer-to-
integer wavelet transforms based on the lifting scheme. These include the two orthog-
onal Haar and Daubechies-4 (DB4) wavelets, and the bi-orthogonal CDF(2,2) transform.
Also, we defined the new Quantum Block Representation by Basis States (QBRBS) to
facilitate signal manipulation. Furthermore, we developed a hybrid quantum-classical
lossless compression scheme based on wavelet decomposition and fixed-length coding.
Additionally, we performed a series of analyses, including wavelet simulations, quantum
complexities, comparative descriptions of wavelet transforms, features and limitations
of quantum representation formats, and compression properties.

We designed the quantum circuits for the one-dimensional versions of the inte-
ger wavelet transforms, including addition, subtraction, halving, rounding, shifting, and
multiplication operations, allowing for polynomial quantum complexitiesO(qn),O(qn),
andO(q2n) for the Haar, CDF, and DB4, respectively. The nonlinearities of rounding op-
erations on the lifting schemes were avoided by exploiting the features of the transforms,
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where the halving operation implements the quantum linear rounding. We provided the
unitary and algorithmic descriptions of the transformations, facilitating both mathemat-
ical and computational manipulation. Thus, we fulfill objectives one and three, where
we need to define the unitary operators and develop the algorithmic descriptions of the
proposed integer wavelet transforms.

Also, we presented the results of the wavelet decomposition simulation in an in-
teger one-dimensional signal, applying the quantum and classical Haar, CDF, and DB4
transforms at three decomposition levels. The error between the coefficients was zero,
demonstrating the practical feasibility and applicability of the proposed quantum trans-
forms. Furthermore, we conducted a comparative analysis between the quantum and
classical versions of the wavelet transforms, including the type of transformation, the
decomposition scheme and domain, the class of wavelet, and their complexities. The
analysis showed that the proposed quantum integer transforms significantly decrease
the computational complexity compared to their real-valued quantum and integer clas-
sical counterparts.

We developed a new Quantum Block Representation by Basis states (QRBBS), which
uses basis states to store signal information in superposed and entangled quantum regis-
ters. This format allows the storage of signal elements in block components of any size by
concatenating different or neighboring elements in the same position coordinate, facili-
tating signal transformation. The proposed QBRBS has a qubit complexity (mq+⌈log k⌉),
decreasing storage requirements compared to classical storage. Moreover, a comparative
analysis between the traditional Quantum Basis States (QBS) format and QBRBS demon-
strates the advantages of the proposed format by facilitating neighboring manipulation,
decreasing qubit and gate complexities, eliminating garbage data, and allowing for iter-
ative processes by including a pre-processing classical step. Therefore, we met objective
two by developing the QBRBS format to improve signal decomposition.

We derived a lossless compression method employing a hybrid quantum-classical
scheme based on wavelet decomposition and fixed-length coding. The compression ra-
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tio for the wavelet coefficients is lower than the compressed input signal because the
wavelet transforms reduces the dynamic range at each decomposition level, giving an
improved compression. However, the fixed-length quantum scheme produces the same
compression characteristics as a classical one since the compression model is the same.
Nevertheless, the comparative analysis shows that the proposed method significantly de-
creases the number of queries and operations, being independent of the signal size, and
reducing the computational time. Accordingly, we achieve objective four by developing
a lossless quantum compression algorithm using fixed-length coding with the proposed
quantum transforms.

Finally, we have fulfilled the general objective with the proposed quantum ap-
proaches for the one-dimensional integer Haar, CDF, and DB4 wavelet transform based
on the lifting scheme, and the design of the algorithmic descriptions for the quantum sig-
nal decomposition and the hybrid quantum-classical lossless compression scheme. Addi-
tionally, the hypotheses have been validated by designing the unitary operators for devel-
oping the proposed transforms, defining a representation format using basis states, and
constructing a lossless compression scheme based on the proposed transforms. More-
over, the proposed quantum wavelet transforms expand the quantum information pro-
cessing toolkit and its application areas, enabling lossless quantum schemes such as com-
pression, watermarking, steganography, cryptography, and filtering processes. Thus, we
proved the applicability and feasibility of the developed quantum integer transforms.

6.2 Future Work

Quantum information processing requires different processing tools to manipulate and
extract information from input signals in different application areas. Thus, developing
new classes of wavelet transforms would expand the set of processing tools, facilitate
feature extraction, and allow the exploration of new application areas.

Specifically, the Daubechies and CDF wavelet transform variants are widely used
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in information processing areas, such as compression and information hiding. Therefore,
the quantum definition of such transformations plays an essential role in advancing the
field of quantum computing.

Additionally, the proposed transforms could serve as a basis for other application
areas, such as cryptography, watermarking, steganography, and machine learning, by
allowing the decomposition and extraction of features from different types of signals.

Finally, this research only considers one-dimensional versions of the Haar, CDF,
and DB4 wavelet transforms. However, they could be applied to higher-dimensional
signals by decomposing the dimensional space into their basis vectors. Nevertheless, 2D
and 3D quantum integer wavelet transforms need to be explored to extend the quantum
toolkit and application areas.
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