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Abstract

Solving sequential decision-making problems with artificial agents, and delegating

boring and dangerous chores to embodied agents, has the capacity to significantly

improve the life quality and safety in the workplace of people. In Reinforcement

Learning (RL), decision-making problems can be modeled and solved with weak su-

pervision by interacting with the environment, however, learning robust behaviors

for complex tasks usually takes RL agents a large amount of interactions. To miti-

gate data costs, Lifelong Learning agents leverage experience from previous tasks to

learn better/faster, and save knowledge for potential reuse in future problems. In

scenarios where the agent can significantly change (e.g., robot with different mor-

phology), being able to identify shared characteristics across tasks is crucial to avoid

negative transfer and overcome the data scarcity RL suffers in robotics. Thus, in this

dissertation, we propose a similarity-based approach to address the lifelong cross-

domain RL problem. By estimating the relatedness between tasks based on their

reward and transition dynamics, our system selects the most similar task (in the

agent’s knowledge base), which may or may not share the state-action space. Then,

the policy from the selected source task is transferred (through a set of learned map-

ping functions) to the target task, to accelerate the exploration and learning process.

The proposed lifelong learning system is evaluated in a wide variety of control tasks,

showing its ability to deal with sequences of diverse problems, and autonomously

make an effective use of its experiences.

Keywords: Lifelong Learning, Reinforcement Learning, Transfer Learning,

Cross Domain Problem.
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Resumen

Resolver problemas de toma de decisiones secuenciales con agentes artificiales, y del-

egar tareas aburridas y peligrosas a agentes f́ısicos, tiene la capacidad de mejorar

significativamente la calidad de vida y la seguridad en el lugar de trabajo de las per-

sonas. En el Aprendizaje por Refuerzo (RL, por sus siglas en inglés), los problemas

de toma de decisiones pueden ser modelados y resueltos con supervisión débil medi-

ante la interacción con el entorno; sin embargo, aprender comportamientos robustos

para tareas complejas generalmente requiere una gran cantidad de interacciones por

parte de los agentes RL. Para mitigar los costos de datos, los agentes de Aprendizaje

Permanente aprovechan la experiencia de tareas anteriores para aprender mejor y

más rápido, y guardar el conocimiento para una posible reutilización en proble-

mas futuros. En escenarios donde el agente puede cambiar significativamente (por

ejemplo, un robot con morfoloǵıa diferente), ser capaz de identificar caracteŕısticas

compartidas entre tareas es crucial para evitar la transferencia negativa y superar la

escasez de datos que sufre el RL en robótica. Por lo tanto, en esta disertación, pro-

ponemos un enfoque basado en la similitud para abordar el problema de RL continuo

y entre dominios. Al estimar la relación entre tareas basándose en sus dinámicas de

recompensa y transición, nuestro sistema selecciona la tarea más similar (almace-

nada en la base de conocimientos del agente), que puede o no compartir el espacio

de estado-acción. Luego, la poĺıtica de la tarea fuente seleccionada se transfiere (a

través de un conjunto de funciones de mapeo aprendidas) a la tarea objetivo, para

acelerar el proceso de exploración y aprendizaje. El sistema de aprendizaje perma-

nente propuesto se evalúa en una amplia variedad de tareas de control, demostrando

su capacidad para manejar secuencias de problemas diversos y utilizar de manera

efectiva sus experiencias de manera autónoma.

Palabras clave: Aprendizaje Permanente, Aprendizaje por Refuerzo, Apren-

dizaje por Transferencia, Problema Entre Dominios.
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Chapter 1

Introduction

Thanks to the ability of computers to perform complex calculations with high effi-

ciency, consistency and precision (in comparison to human performance), automat-

ing the ability to make decisions with artificial agents has the potential to improve

people’s safety in the workplace and life quality. Some examples of chores being del-

egated to robots include performing repetitive labor-intensive chores [Bogue, 2016],

taking care of the elder [Tanioka, 2019], or exploring dangerous environments (e.g.,

outer space [Gao and Chien, 2017], radioactive zones [Nagatani et al., 2013], deep

sea [Li et al., 2023a]). Nevertheless, learning in a data-efficient way is critical re-

quirement for robots to be a feasible solution.

By modeling the aspects of the environment the agent perceives, the things it

can do, and how its actions change the environment, reinforcement learning (RL)

provides a framework to solve sequential decision-making problems. With a weak

supervision, in the form of a reward signal, RL agents can learn complex behaviors

from their interactions with the environment [Mnih et al., 2015, Andrychowicz et al.,

2020]. However, one of the main drawbacks of learning in a trial-and-error way is

that it requires a large number of interactions (i.e., data), rendering RL methods too

data costly for most robotics applications because of the curse of real-world samples

[Kober et al., 2013], which refers to the physical wear and tear suffered by robots as

a consequence of interacting with the real world.

To extend the applicability of robust RL agents, recent progress in simulators

with realistic physics engines have mitigated the data cost of training such agents

[Todorov et al., 2012, Makoviychuk et al., 2021]. However, for RL problems that

1
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have not been modeled with a high-precision simulator, transfer learning presents a

feasible alternative to reduce training costs through the reuse of knowledge acquired

in a different but related problem [Bone, 2008, Taylor and Stone, 2009a, Lazaric,

2012a]. Moreover, if an agent is expected to sequentially solve multiple tasks over

its lifetime (e.g., general purpose robots [Zucker et al., 2015]), adopting a lifelong

learning approach [Parisi et al., 2019, Khetarpal et al., 2022] allows the agent to

exploit previous experiences to solve a new (but related) situation faster, as people

seem to do [Carbonell, 1983].

In order to learn faster/better in the current task (compared to learning from

scratch), by reusing previously acquired knowledge, the source of knowledge has

to be related to the current problem. Depending on how much the environment

can change across tasks, being able to select and adapt related knowledge from

the lifelong learning agent’s growing knowledge base may become crucial to avoid

negative transfer [Taylor and Stone, 2009a], as changes may range from dynamics

shifts (e.g., different friction factors between a walking robot and the floor) to major

modifications in the agent’s observation-action representation (e.g., unexpected limb

malfunctions). Furthermore, to perform both processes in a task-diverse setting such

as a lifelong learning robot in an uncontrolled environment would require a high

degree of adaptability and autonomy.

That is why, in this thesis, a lifelong learning system for a range of tasks that

may not share the state-action representation is proposed. The system uses an inter-

task similarity function to estimate the relatedness of pairs of tasks (based on their

dynamics), and select the most related candidate from the set of available learned

tasks. Then, a knowledge transfer method adapts the policy, from the selected

source, to use it in the target task and speed the learning process up. The proposed

system is evaluated in a wide variety of control tasks, showing its ability to deal with

sequences of diverse problems, and autonomously make an effective use of its past

experiences.

1.1 Justification

The following problems reported in the literature, which are related to transfer

learning and lifelong reinforcement learning, will be addressed in this research.
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1. Large Sample Complexity: This problem refers to the large amount of data

samples reinforcement learning agents usually require to learn to solve a task

[Taylor and Stone, 2009a]. The goal of transfer learning methods is to decrease

the sample complexity by reusing auxiliary knowledge, acquired from a related

task.

2. Negative Transfer: This phenomenon refers to the decrease in the performance

of a learning agent in a target task, as a consequence of using knowledge

transferred from a source task [Zhu et al., 2023, Glatt et al., 2016]. The goal is

to endow transfer learning systems with the ability to select knowledge sources,

from a set of options, that will benefit the learner, or identify that it is a better

alternative to learn from scratch.

3. Catastrophic Forgetting: This problem refers to the situation in which a life-

long learning agent decreases its performance in old tasks (i.e., forgets) as a

consequence of learning to solve new tasks [Robins, 1995].

1.2 Problem Statement

To consecutively learn a finite sequence (of unknown length) of RL tasks with differ-

ent representations with a lifelong learning approach is difficult for several reasons.

The challenges a lifelong RL agent must face in this scenario are the following:

1. The agent must be able to compare tasks, that do not share state-action spaces,

in order to identify in which of the previously solved tasks there may be pieces

of reusable knowledge.

2. The system must transfer knowledge in a way that improves the performance

of the learning agent, whether it is by requiring fewer interactions with the

environment, or achieving a larger accumulated reward.

3. Knowledge of previous tasks should not only be used to speed up the process

of learning of new tasks, but also to solve the tasks from which it was learned.

Thus, the agent should avoid forgetting how to solve previous tasks after new

tasks are learned.
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Formally: Let a task Ti = ⟨Si, Ai, Ei, ti⟩ be defined by a pair of (finite or

infinite) sets Si and Ai that contain the states and actions the agent can adopt

and perform, a function Ei : Si × Ai → Si × R that models the dynamics of the

environment, and a threshold performance ti ∈ R that indicates when a task has

been learned. Also, let (T1, ..., Ti, ..., TN) be a finite sequence of cross-domain RL

tasks (i.e.,, if i ̸= j then Si ̸= Sj and Ai ̸= Aj), DL be a lifelong RL agent, DR be a

regular RL agent, and Pi(DL, Tj) be the performance of agent DL on task Tj after

DL learned to solve task Ti, where j < i ≤ N . Hence, this research will address

the problem of a lifelong cross-domain RL agent DL transferring knowledge between

{T1, ..., Ti−1} and Ti, such that ∀i ∈ [1, N ]:

• DL learns task Ti at least as fast (requires fewer data queries of Ei to achieve a

performance equal or higher than ti) or as good (achieves a larger asymptotic

performance) as DR

• ∀j ∈ [1, i− 1], Pi(DL, Tj) = Pi−1(DL, Tj)

1.3 Research Questions

The main questions of this research are the following:

1. How can similarity between tasks that do not share state-action spaces be

measured, in a way that helps determining if positive knowledge transfer can

be performed between them?

2. What form of knowledge and how can it be transferred between tasks that

do not share state-action spaces in a way that produces a positive knowledge

transfer?

1.4 Hypothesis

Given a finite sequence of reinforcement learning tasks and a lifelong reinforcement

learning agent, by measuring inter-task similarity between tasks that do not share

state-action spaces it is possible to learn tasks faster, than learning from scratch, by

transferring knowledge from previously related tasks have been learned.
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1.5 General Objective

To design and develop a transfer learning methodology, for a lifelong cross-domain

reinforcement learning agent, that is capable of performing positive knowledge trans-

fer across tasks that do not share state-action spaces.

1.5.1 Specific Objectives

1. To design and develop an inter-task similarity measure that can be applied to

heterogeneous RL tasks, such that selects source tasks that produce positive

knowledge transfer.

2. To design and develop a transfer learning algorithm for heterogeneous RL

tasks that learns better than a scratch learner: requires less data to achieve a

threshold performance, or achieves a larger asymptotic performance.

3. To integrate the similarity measure and knowledge transfer method to develop

a lifelong reinforcement learning algorithm that can be evaluated in the cross-

domain setting, such that the agent: learns better than a scratch learner and

does not forget how to solve previous tasks.

1.6 Scope and Limitations

• Lifelong Setting: The agent does not have knowledge nor control over the

order in which the sequence of tasks is presented to it.

• Unlabeled Tasks: The agent can not identify tasks.

• Episodic Tasks: Tasks have a maximum number of steps that can be taken

before the episode ends and the environment state resets to an initial state.

• Fully Observable State: Observations completely describe the environment’s

state, thus, observation = state.

• Stationary Dynamics: Reward and transition models do not change over time.
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• Continuous and Discrete Spaces: State and action spaces can consist of the

cross product of a set of continuous variables or finite countable sets.

• Bounded Actions and Observations: Each action, state, and reward variable

is bounded, thus their lower and upper limits are known a priori for all tasks.

• Dense/Rich Rewards: tasks with reward models that are a dense function of

their state-action space, where a dense reward function provides feedback at

every step of the agent’s training process [Zhong Hong, 2024].

• Non-image Representations: Reinforcement learning tasks whose observations

are images are out of the scope of this research.

1.7 Contributions

The main contributions made in this research are following:

1. A systematic review of knowledge transfer methods focused on the cross-

domain reinforcement learning setting.

2. A model-based similarity measure for source selection purposes in cross-domain

reinforcement learning.

3. A knowledge transfer method for cross-domain reinforcement learning.

4. A lifelong cross-domain reinforcement learning system.

In this document we present two similarity functions and knowledge transfer

methods, for tasks with discrete and continuous state-action spaces in Chapter 4

and Chapter 5, respectively. For the discrete-space case, the inter-task similarity is

defined over the action-value functions, and transfer action values to accelerate the

target agent’s learning, whereas in the continuous-space scenario tasks are matched

via an inter-task mapping that allows comparing states and actions from different

domains, as well as to transfer policies. Furthermore, for the lifelong learning prob-

lem (see Chapter 6), the transfer method for tasks with continuous spaces is adapted

to address this sequential setting.
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1.8 Publications

As a product of this research, two conference articles have been accepted for pub-

lication and presented, and two journal articles are currently being reviewed for

publication:

• Knowledge Transfer for Cross-Domain Reinforcement Learning: A Systematic

Review [Serrano et al., 2024]: a journal article has been accepted for publica-

tion in IEEE Access. This article covers a wide variety of knowledge transfer

methods for the cross-domain setting, which is an extended revision of the one

presented in Section 3.2.

• Similarity-based Knowledge Transfer for Cross-Domain Reinforcement Learn-

ing [Serrano et al., 2023]: a journal article submitted to Machine Learning.

This article presents the similarity measure and knowledge transfer results,

summarized in Chapter 5. The article was initially submitted in December,

2023 and is currently at a 2nd review stage.

• Inter-Task Similarity Measure for Heterogeneous Tasks [Serrano et al., 2021a]:

a regular paper in the 24th RoboCup International Symposium 2021.

• Inter-Task Similarity for Lifelong Reinforcement Learning in Heterogeneous

Tasks [Serrano, 2021]: an extended abstract in the International Joint Confer-

ence on Artificial Intelligence (IJCAI) 2021 Doctoral Consortium.

1.9 Thesis Outline

The remaining of this document is structured as follows: Chapter 2 presents the

main concepts of reinforcement learning, lifelong learning and similarity functions,

Chapter 3 covers the works that address problems that are closely related to lifelong

cross-domain reinforcement learning. In Chapter 4 a transfer knowledge method

based on a performance-based similarity measure is introduced, while Chapter 5

presents a similar method that employs a model-based similarity function [Garćıa

et al., 2022], both evaluated in the cross-domain setting. Chapter 6 introduces a

lifelong agent based on the developments presented in Chapter 5. Finally, Chapter
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7 presents the final remarks of this research, as well as ideas of future directions to

explore.



Chapter 2

Theoretical Framework

In this chapter, background theory relevant to this research is introduced. First,

basic definitions of reinforcement learning and Markov decision processes are covered,

followed by concepts on transfer learning, lifelong learning and similarity functions.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a subarea of machine learning that addresses se-

quential decision-making problems. The main objective of an RL algorithm is to

learn a satisfactory behavior, through a trial-and-error interaction of the learning

agent with the environment (see Fig. 2.1). According to [Sutton and Barto, 2018],

RL is a machine learning paradigm on its own since it holds important differences

with supervised learning and unsupervised learning.

• Supervised Learning: The main difference with RL lies in the source of knowl-

edge from which the system learns. In supervised learning, an external entity

(e.g., a machine learning engineer) provides pairs of scenario examples (i.e.,

input) and the correct action to perform in that situation (i.e., label). Con-

versely, an RL agent learns from its own experience, as it interacts with the

environment.

• Unsupervised Learning: Although unsupervised learning and RL have in com-

mon that labeled data is not required, the main difference between them is the

9
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learning objective. While in unsupervised learning the system strives to find

structure in a collection of unlabeled data, an RL system will try to maximize

a reward signal.

Additionally, the RL problem is formalized as finding the optimal control (or

policy) for a partially-known Markov Decision Process. That is, the goal is to

find/learn a policy (i.e., a function that maps observations to actions) whose actions

maximize the expected return (see Eq. 2.1) in the case of tasks of finite duration

(i.e., episodic tasks), or the expected discounted return (Eq. 2.2) for tasks that go

on continually without a time limit (i.e., infinite-horizon problems):

G =
T∑
t=0

Rt (2.1)

G =
∞∑
t=0

γtRt+1 (2.2)

where Rt is the reward observed by the agent at time t, T is the duration of the

episode and γ ∈ [0, 1) is a discount factor, that weighs the present value of future

rewards (see Section 2.2 for more details) [Sutton and Barto, 2018]. Thus, any

technique that is capable of solving this class of problem is considered to be an RL

method.

2.2 Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework used to model

sequential decision-making problems for dynamic systems, i.e., systems in which the

state changes over time [Puterman, 2014]. An MDP is formally specified by a tuple

⟨S,A,Φ, R, γ⟩, where

• S: Set of states in which the agent can be found.

• A: Set of actions the agent can perform.

• Φ: The transition function Φ : S × A × S → [0, 1] specifies a probability

distribution for every state-action pair (s, a), such that Φ(s, a, s′) is the proba-
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bility of the agent transiting to s′ after executing action a from state s, where

s, s′ ∈ S and a ∈ A.

• R: The reward function R : S × A → R specifies a scalar value for every

state-action pair (s, a), such that R(s, a) is the immediate reward signal the

agent will perceive after executing action a in state s, where s ∈ S and a ∈ A.

• γ: The discount factor γ ∈ [0, 1) weights the present value of future rewards.

The purpose of specifying an MDP is to formally describe the setting in which

an agent can interact with the environment. The transition function (Φ) represents

the stochastic effects of the actions in the state of the system, whereas the reward

function (R) represents (in an implicit form) the desired behavior for the agent.

That is, in the reward function one should assign positive large values to pairs (s, a)

such that executing a from s is desirable. On the other hand, one should penalize

undesirable state-actions pairs by assigning large negative values.

Moreover, the MDP is a particular instance of the more general partially ob-

servable Markov decision process (POMDP) setting, in which the agent updates a

state belief, based on actions and observations (see Fig. 2.1). Defined by a tuple

⟨S,A,Φ, R, γ, O,Ω, B0⟩ where o ∈ O is the set of observations the agent can per-

ceive, Ω : S×A×O → [0, 1] the observation function that models the probability of

perceiving an observation given an action and the current state, and B0 : S → [0, 1]

the initial state belief [Kaelbling et al., 1998, Serrano et al., 2021b].

2.2.1 Policy

In the context of MDPs, a policy π : S → A is a function that returns an action

a for every state s. In order to solve a decision-making problem, actions must be

carefully selected, in such way that the criterion of what is considered a desirable

behavior is fulfilled, as shown in Fig. 2.1.

Thus, an optimal policy π∗ (Eq. 2.5) will select, for every state, the action

that maximizes the expected reward, i.e., the best possible action. The expected

reward (weighted by discount factor γ, where 0 ≤ γ < 1) of an agent that follows

actions drawn by a policy π is represented by the state value function (Eq. 2.3),
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Figure 2.1: In an MDP setting, every time the agent executes an action (a) it will receive
in return a reward signal (r) associated to the performed action and the current state (s)
of the world (also called system or environment). Then, the agent consults its policy to
perform the best action given the new state of the world.

which can be optimized (see Eq. 2.4) to learn the optimal policy π∗ [Watkins and

Dayan, 1992, Bellman and Dreyfus, 2015].

V π(s) = R(s, π(s)) + γ
∑
s′∈S

Φ(s, π(s), s′)V π(s′) (2.3)

V π∗
(s) = maxa

{
R(s, a) + γ

∑
s′∈S

Φ(s, a, s′)V π∗
(s′)

}
(2.4)

π∗(s) = argmaxa

{
R(s, a) + γ

∑
s∈S

Φ(s, a, s′)V π∗
(s′)

}
(2.5)

In order to compute π∗ for a fully specified MDP, an iterative algorithm is

capable of finding such policy. For instance, value iteration is an algorithm that starts

by assigning every state with a value of 0, and through an iterative process the value

of every state is updated using Eq. 2.6. The algorithm stops once |Vt(s)−Vt−1(s)| < ϵ
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is satisfied for every state in S, given a margin of error ϵ [Sucar, 2015].

Vt(s) = maxa

{
R(s, a) + γ

∑
s′∈S

Φ(s, a, s′)Vt−1(s
′)

}
(2.6)

Alternatively, some algorithms employ the action value function Q(s, a) (see

Eq. 2.7), which represents the expected discounted reward for taking action a in

state s and then follow a policy π [Watkins and Dayan, 1992]:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

Φ(s, π(s), s′)V π(s′) (2.7)

2.2.2 Learning Approaches

The way an MDP policy can be computed greatly depends on how much information

about the environment is available. That is, the more information the agent has, the

easier it will be to compute a good policy. According to [Taylor and Stone, 2009a],

there are many ways in which a policy can be obtained, from which we present three

of the most common approaches:

1. Dynamic programming: Value iteration and policy iteration are examples of

algorithms of this type of approach, in which the algorithm assumes that a

fully specified MDP is available (i.e., ⟨S,A,Φ, R⟩). Therefore, as the system

has a full model of the environment (which is also assumed to be correct), no

interaction is required.

2. Model-based: These methods relax the assumption dynamic programming

approaches make on the availability of the full MDP, as they interact with the

environment in order to estimate an approximated model of it, i.e., Φ and R.

This approach is mostly used in environments where the model is stationary

but unknown, hence, once the model is estimated it can be reused.

3. Temporal difference (TD): Methods that learn an action-value function Q :

S × A → R by backing up all the rewards that have been perceived through

time. For a pair (s, a), Q(s, a) represents the expected return when a is exe-

cuted from s. At any time, the best current policy is equivalent to select the
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highest valued action form the current state, i.e., argmax
a

Q(s, a). Q-learning

[Watkins and Dayan, 1992] and Sarsa [Rummery and Niranjan, 1994] are ex-

amples of TD algorithms.

4. Monte Carlo methods: Contrary to dynamic programming methods, that

learn a value function or policy from a completely described MDP, Monte

Carlo methods learn from experiences. Monte Carlo methods use sequences of

states, actions and rewards from real or simulated interactions. After sampling

multiple sequences of interactions by a policy πt, the cumulative discounted

rewards are averaged over the sequences to estimate the expected return, and

approximate the state value function Vt(s) (i.e., Policy Evaluation). Then, the

policy is updated to πt+1 by greedily selecting actions from Vt(s) (i.e., Policy

Improvement). The policy evaluation and improvement steps are alternated

until the policy reaches an optimal performance [Sutton and Barto, 2018].

Additionally, according to [Li, 2017], deep RL results from using a deep neural

network (i.e., a neural network with two or more layers) to approximate an RL

component, such as a value function, a policy, a transition model or a reward model.

The parameters that describe these components consist of the weight and bias values

in the neural network. Deep Q-Network [Mnih et al., 2015] and A3C [Mnih et al.,

2016] are some examples of deep RL algorithms.

2.3 Latent Spaces

A latent space (also known as hidden variable space) is a multidimensional space

defined by a set of variables that do not (necessarily) represent real world phenom-

ena, and are used to model important features of input data for some particular

process. Latent spaces can be used to model the probability density of some phe-

nomenon with less independent parameters compared to using observable variables

only, which requires fewer data [Bishop, 1998]. Similarly, whether it is by find-

ing a more discriminant space with principal component analysis (PCA), or with

convolutional neural networks ((CNN)) [Guo et al., 2017], latent spaces can be a

powerful tool for enhancing pattern recognition or classification in high-dimensional

data spaces.
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Latent Space / CodeEncoders Decoders

Figure 2.2: Pair of autoencoders setting used in [Gupta et al., 2017]. The encoders f, g
map states sS, sT from a source and target state space, respectively, to a latent space in
which the image of states can be compared to each other. The decoders map any data point
from the latent space to their respective state space. That is, with the following function
compositions states can be mapped across state spaces: Decg ◦ f(sS) and Decf ◦ g(sT ).

On the other hand, latent spaces have been recently used in RL for knowledge

transfer applications, particularly for cross-domain settings (i.e., where the source

and target task have different state/action representations). In this scenario, latent

spaces are learned (usually with autoencoder settings [Tschannen et al., 2018]) to

bridge the state and/or action spaces of the two tasks, while satisfying some criterion.

For instance, [Gupta et al., 2017] train a pair of autoencoders so that the pairs states

from different state spaces (see Section 2.2 for a definition of state space) that are

known to be similar to each other are mapped near to each other in the latent space.

2.4 Transfer Learning

The purpose of transfer learning (TL) is to improve the performance of machine

learning methods by means of transferring knowledge between tasks [Lazaric, 2012b].

Furthermore, according to [Taylor and Stone, 2009a], the main insight that motivates

the use of TL methods is that knowledge generalization might occur across tasks,

and not only within them. Although several taxonomies have been proposed for TL
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Figure 2.3: Classification of transfer learning settings based on the availability of source
(orange) and target (blue) tasks at the moment knowledge needs to be transferred, as well
on the order in which tasks must be learned. Solid arrows indicate the direction in which
knowledge is transferred, whereas dashed arrows indicate that it is up to the TL system to
decide whether to transfer knowledge in that direction. In the multiple target setting, tasks
can behave both as a source and target task.

methods (e.g., based on the availability of labeled data [Pan and Yang, 2009] or the

goal in a multi-agent setting [Da Silva and Costa, 2019]), we present a taxonomy

based on the availability of tasks and the order in which they must be learned (see

Fig. 2.3). Additionally, the performance of a TL method applied to RL tasks can

be measured in multiple ways (see Fig. 2.4).

• Jumpstart: The performance of a learning agent at the beginning of the train-

ing process. This metric can potentially be improved if knowledge is transferred

from a source task before the training begins in the target task.

• Asymptotic Performance: The final performance of a learning agent.

• Total Reward: The total reward accumulated by the agent. Visually, the area

under the learning curve represents this metric.

• Transfer Ratio: This metric is equivalent to the ratio of the total reward

accumulated by the transfer learning method and the total reward accumulated

by the non-transfer learner.
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Figure 2.4: Example of improvement in the jumpstart, asymptotic performance, total re-
ward (i.e., the area under the performance curve) and time to threshold as a result of
transferring knowledge.

• Time to Threshold: The time required by a learning agent to achieve a pre-

specified performance level.

Hence, TL methods can help an RL agent to reduce the time to the threshold (learn

faster) and to raise its total reward and asymptotic performance (learn better). In

RL, the learning time is known as sample complexity, which is the amount of data

required by an algorithm to learn. When a TL method harms the performance

of a learning agent in a target task (i.e., increases sample complexity or decreases

the jumpstart, asymptotic performance, or total reward) is called negative transfer,

whereas if an improvement is achieved then it is called positive transfer [Taylor and

Stone, 2009a].

2.4.1 Cross-Domain Transfer Reinforcement Learning

In RL, there is a particular form of the TL problem in which state and/or action

spaces may be different, called cross-domain transfer reinforcement learning [Ammar

et al., 2015b]. One of the main challenges of cross-domain TRL is that states/actions

from different spaces are not directly comparable. Thus, there are certain strategies

that cross-domain TRL methods adopt to overcome the representation mismatch

challenge, which include using inter-task mappings, latent spaces (see Section 2.3)
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and similarity functions.

• Inter-Task Mapping: An inter-task mapping is a function that maps states/actions

from one task’s state/action space to the other [Taylor and Stone, 2009b]. This

mapping allows transferring knowledge in the form of (state, action, next state)

tuples [Ammar et al., 2015b], or to compare the transition/reward functions

of tasks defined over different spaces [Serrano et al., 2023].

• Latent Space: Latent spaces are often used as a common representational

space to which states/actions from different tasks are mapped. Although latent

spaces can be used as midpoint in the process of mapping elements across tasks

[Serrano et al., 2023], they are also employed to compare how similar/different

states/actions are to bias the behavior of a learning agent through reward

shaping [Gupta et al., 2017, Hu and Montana, 2019].

• Similarity Function: Instead of explicitly learning inter-task mappings, or la-

tent spaces, to compare states/actions from different tasks, some works employ

functions that map task-dependent elements to task-invariant features. For

instance, comparing the action value functions [Serrano et al., 2021a], or the

state-visitation distributions of two tasks [Fickinger et al., 2021].

2.5 Lifelong Reinforcement Learning

Lifelong Learning (LL) is a continual learning process in which, at any time, the

learning system has learned to perform a sequence of N tasks (tasks can be from

different domains). When the (N+1)-th task is encountered, the learning model can

exploit past experiences (stored in its knowledge base) to aid the learning process in

the current task [Chen and Liu, 2018] (see Fig. 2.5).

In the context of RL, tasks are represented by MDPs, while the learning system

can be modeled in a variety of ways. According to [Mendez and Eaton, 2020], lifelong

RL systems can be classified in two categories, depending on how parameters are

shared among the learned tasks:

• Single-model: In this approach, a single set of parameters is responsible for

storing the knowledge acquired by the entire sequence of tasks. Such methods
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Figure 2.5: Lifelong reinforcement learning (LRL) system. The system learns to solve
tasks sequentially. When it encounters with a new task, the learning model learns by
interacting with the environment and using auxiliary knowledge acquired in previous tasks
(i.e., Knowledge Transfer). After a task is learned, the recently acquired information is
stored in the knowledge base (i.e., Knowledge Consolidation), so that the agent can reuse
it to learn future tasks in a sample efficient way.

are usually employed when on of the following assumption is true: the sequence

of tasks are similar to each other, or the model is over-parameterized which

allows it to learn the diversity present among the sequence of tasks.

• Multi-model: The multi-model approach consists of a learning system consti-

tuted by a set of parameters that are shared among all tasks, and a collection

of task-specific parameters. The set of shared parameters enables transferring

knowledge across tasks, while the task-specific parameters are responsible for

capturing the particularities tasks may have.

2.6 Distance and Similarity Functions

According to [Tversky, 1977], the concepts of similarity and distance are important

for artificial intelligence in general as they provide a way to organize, classify, and
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generalize over some class of objects. Despite distance and similarity functions being

widely explored for propositional representations (i.e., feature vectors), they can also

be employed to assess the similarity of objects from a graph-based representation

(e.g., an MDP).

Distance and similarity functions can be seen as a complement to each other.

Distance functions assign larger values to pairs of objects that are more dissimilar,

whereas similarity functions associate larger values to pairs of objects that are more

similar, or closer, with respect to some criterion. Definitions for distance metric and

similarity function [Ontañón, 2020] are provided below.

Definition 1 (distance metric) A distance metric d over objects in a set X is a

function d : X ×X → [0,∞) such that, for each x, y, z ∈ X the following properties

are satisfied:

• d(x, y) ≥ 0 (Non-negativity)

• d(x, y) = 0 ⇐⇒ x = y (Identity)

• d(x, y) = d(y, x) (Symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

Definition 2 (similarity function) A similarity function s over objects in a set X

is a function s : X × X → [0, u], where u is an upper bound, and where for each

x, y ∈ X the following properties are satisfied:

• s(x, y) ≥ 0 (Non-negativity)

• s(x, y) ≤ u (Boundedness)

• s(x, y) = u ⇐⇒ x = y (Identity)

• s(x, y) = s(y, x) (Symmetry)
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2.6.1 Pseudometric and Semi-metric

A pseudometric space and semi-metric space are generalizations of a metric space

(i.e., a set and metric distance tuple) in which not every property of a metric space

is satisfied. In a pseudometric space, the distance between different elements can

be zero (i.e., the identity property is not satisfied as elements are not necessarily

distinguishable) [Howes, 2012]. On the other hand, in a semi-metric space, the

triangle inequality property is not satisfied [Wilson, 1931]. Formally, pseudometrics

and semi-metrics are defined in Definition 3 and Definition 4, respectively.

Definition 3 (Pseudometric) A distance pseudometric d over objects in a set X is a

function d : X ×X → [0,∞) such that, for each x, y, z ∈ X the following properties

are satisfied:

• d(x, y) ≥ 0 (Non-negativity)

• d(x, y) = d(y, x) (Symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

Definition 4 (Semi-metric) A distance semi-metric d over objects in a set X is a

function d : X × X → [0,∞) such that, for each x, y ∈ X the following properties

are satisfied:

• d(x, y) ≥ 0 (Non-negativity)

• d(x, y) = 0 ⇐⇒ x = y (Identity)

• d(x, y) = d(y, x) (Symmetry)

2.6.2 Kantorovich Metric

The Kantorovich metric allows measuring the distance between two distributions,

given that there exists a ground distance d : S × S → R between the elements

that constitute the support S of the distributions. For instance, if S = {0, 5, 10} is
the set of possible grades a robot chef can receive in a pie contest, then d(x, y) =
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|x − y|∀x, y ∈ S could be used to measure the distance between two pie-grade

probability distributions, allowing us to evaluate how far two robots are in terms of

their culinary abilities [Deng and Du, 2009].

Roughly speaking, for two discrete probability distributions P and Q (with

finite supports {x0, ..., xm} and {y0, ..., yn} respectively) minimizing the total cost

in the discrete transportation problem (see Eq. 2.8) is equivalent to finding the

distance between P and Q:

Minimize
m∑
i=0

n∑
j=0

µ(xi, yj)d(xi, yj)

Subject to ∀0 ≤ i ≤ m :
n∑
j=0

µ(xi, yj) = P(xi)

∀0 ≤ j ≤ n :
m∑
i=0

µ(xi, yj) = Q(yj)

∀0 ≤ i ≤ m, 0 ≤ j ≤ n : µ(xi, yj) ≥ 0

(2.8)

where d(xi, yj) is the ground distance between xi and yj, P(xi),Q(yj) are the prob-

abilities of xi and yj (respectively), and
∑m

i=0

∑n
j=0 µ(xi, yj) is the distance between

probability distributions P and Q (after the optimization problem in Eq. 2.8 is

solved).

2.6.3 Hausdorff Distance

Given that (X, d) is a metric space, the Hausdorff Distance provides a way to measure

the distance between every compact subset of X (i.e., subsets that are closed and

bounded) [Rockafellar and Wets, 2009]. To measure the distance between a pair

of finite sets of points X = {x0, ..., xm}, Y = {y0, ..., yn}, the Hausdorff distance is

defined by Eq. 2.9:

H(X, Y ) = max(h(X, Y ), h(Y,X)) (2.9)

h(X, Y ) = max
x∈X

min
y∈Y
∥x− y∥ (2.10)
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where ∥·∥ is a norm for the points inX and Y (e.g., the Euclidean norm), and h(X, Y )

(Eq. 2.10) is called the directed Hausdorff distance from X to Y [Huttenlocher et al.,

1993]. Since h(X, Y ) returns the largest distance between a point inX and its nearest

neighbor in Y , if h(X, Y ) = d then every point in X has a point from Y within a

radius of d. Additionally, given that the Hausdorff distance returns the largest of

the directed Hausdorff distances (computed in both directions), then the Hausdorff

provides the radius within which every point has a neighbor point from the other

set.

2.7 Chapter Summary

In this chapter, the basic theory on reinforcement learning, transfer learning, life-

long learning, distance/similarity functions and latent spaces has been presented.

MDPs provide a basic framework to model sequential decision-making problems,

upon which transfer methods (e.g., lifelong learning) can built on to learn near op-

timal policies with a lower sample complexity. Additionally, basic definitions for

distance and similarity functions and latent spaces have been presented, because a

similarity-based approach is proposed to avoid negative transfer in the lifelong RL

setting, through the alignment of different state-action spaces in a latent represen-

tation.





Chapter 3

Related Work

In order to reuse knowledge from previously learned tasks, the proposed lifelong

learning method employs a cross-domain similarity measure to select the source task

from which knowledge will be transferred. This chapter presents a literature review

of works concerned with measuring similarity in MDPs (Section 3.1), transferring

knowledge across different domains (Section 3.2) and learning a sequence of tasks

(Section 3.3).

3.1 Similarity Measures

The ability to measure how similar two situations are is crucial for the generalization

of knowledge. In the context of sequential decision-making problems (modeled as

an MDP), similarity measures can be categorized in two classes: model-based and

performance-based methods [Garćıa et al., 2022]. Model-based similarity measure

compare elements related to the description of the MDP, i.e., the reward and/or

transition functions. For instance, [Ammar et al., 2014b] train a Restricted Boltz-

mann Machine [Sutskever et al., 2009] to approximate the transition function of a

task, and then use it to see how well it predicts state transitions sampled from an-

other MDP. The smaller the error, the more similar a pair of tasks are. Similarly,

[Narayan and Leong, 2019] assess similarity between state-action pairs by comparing

their state-transition distributions with the Jensen-Shannon distance [Grosse et al.,

2002, Nielsen, 2019]. Similarly, [Tao et al., 2021] and [Gleave et al., 2020] propose

25
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to evaluate the inter-task similarity based on the reward function. While [Tao et al.,

2021] assume reward functions are modeled as a linear combination of shared fea-

tures and estimate similarity as the cosine distance between the weight vectors that

define each reward function, [Gleave et al., 2020] define a pseudometric over reward

functions, which they use to bound the regret of optimal policies over changes in

the initial state distribution and state transition distribution. On the other hand,

[Carroll and Seppi, 2005] define the inter-task similarity based on the immediate

reward of state-action pairs.

In light that both the transition and reward functions hold a great amount of

information about a task, some works include both aspects in their MDP similar-

ity definition. In [Ferns et al., 2004, Ferns et al., 2012] an equivalence class, called

bisimulation, is defined over the state space to group states for abstraction purposes,

based on two semimetrics that measure the transition distributions with the Kan-

torovich metric [Deng and Du, 2009] and the total variation distance [Gibbs and Su,

2002], respectively. In similar fashion, [Wang et al., 2019] propose to measure state

and action similarity, within an MDP, using a graph representation that captures

the behavior of states and actions based on their reward and transition functions.

In [Song et al., 2016], the bisimulation class is extended to composite the state-

similarity of two MDPs, with the Kantorovich and Hausdorff metrics [Henrikson,

1999], to measure MDP similarity. Similarly, [Sorg and Singh, 2009] expand on

the equivalence class of MDP homomorphisms [Ravindran, 2004] by defining a soft-

version of the equivalence class that can be approximated with a data set, instead

of requiring complete knowledge of the MDP. The soft MDP homomorphism allows

learning an inter-MDP mapping that ideally preserves the algebraic structure defined

by the transition and reward functions. Additionally, [Castro et al., 2021] extend

the application of state-similarity methods to large-scale domains (e.g., deep RL) by

providing a distance that is significantly less complex to compute than bisimulation

[Ferns et al., 2004, Ferns et al., 2012], which aids learning faster in complex tasks

such as the Arcade Learning Environment [Bellemare et al., 2013].

On the other hand, performance-based methods assess the inter-similarity by

comparing the performance of policies/value functions in their respective tasks (i.e.,

policy similarity), as well as the effect of transferring knowledge across tasks (i.e.,

transfer gain). For instance, in both [Carroll and Seppi, 2005] and [Zhang et al.,

2024] compare partially learned value functions to determine the similarity between
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a pair of tasks, which provides a simple comparison method that can be directly

applied in any value-based RL setting. Other works, such as [Talvitie and Singh,

2007] and [Heng et al., 2022] compute similarity by testing a policy in the other task,

and use the total reward as a similarity score, where the more similar two tasks are,

the better the expected performance of a policy in the other task is.

The way similarity measures assess the overlap between MDPs address different

settings. However, similarity measures can be sorted based on the aspects consid-

ered to estimate the inter-task similarity. Reward-based similarity measures [Carroll

and Seppi, 2005, Gleave et al., 2020, Tao et al., 2021] compare tasks grounded

over environments with identical dynamics but different criteria of what an optimal

behavior consists of. On the other hand, similarity measures that only compared

state-transition functions [Ammar et al., 2014b, Narayan and Leong, 2019] can be

more flexible, as they measure the differences between two environment dynamics

with identical reward functions. This type of works are helpful to evaluate the effect

of environmental factors that are out of the control of the MDP designer (e.g., a

mobile robot learning to navigate in different terrains). However, works that take

into account both the reward and transition functions in the similarity assessment

offer the greatest flexibility, whether it is by comparing trained policies [Talvitie

and Singh, 2007, Heng et al., 2022], value functions [Carroll and Seppi, 2005, Zhang

et al., 2024] or compositions of behavior-based state similarity scores [Sorg and Singh,

2009, Song et al., 2016, Castro et al., 2021].

In a setting with multiple sources of knowledge available, such as lifelong learn-

ing, being able to effectively select/combine the knowledge that will be transferred

is essential to producing positive transfer. This section covered works that per-

form this selection in a variety of ways, from which only a few can be used in the

cross-domain setting with some considerations [Carroll and Seppi, 2005, Talvitie and

Singh, 2007, Heng et al., 2022, Zhang et al., 2024]. In [Carroll and Seppi, 2005] com-

pare the immediate reward of state-action pairs, while differences in the transition

functions are not measured. In the case of [Talvitie and Singh, 2007] and [Zhang

et al., 2024], an inter-task mapping across state spaces is assumed to be available,

whereas [Heng et al., 2022] assume some high-level commonalities between tasks

(e.g., robots with similar morphology). In contrast, both of the similarity measures

presented in this document, in Chapter 4 and Chapter 5, learn the inter-task map-

pings that match the state-action spaces, and are evaluated in a diverse set tasks.
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3.2 Cross-Domain Knowledge Transfer

In contrast to transferring knowledge among task from the same domain, in the

cross-domain setting it is necessary to overcome the representation mismatch, either

by transferring knowledge that is independent to domains (e.g., weights of a neural

network), or by mapping domain-dependent information to the state-action space of

the target task (e.g., state-transition data sets, policies, value functions). Regarding

the origin of the transferred knowledge, some works focus on exploiting the avail-

ability of a task expert to learn by imitation in a different domain. For instance,

[Kim et al., 2020] learn an inter-task mapping to transfer policies and state-action

demonstrations to the target task, while [Fickinger et al., 2021] use a single state-

action demonstration to guide the learning process of a target policy through reward

shaping [Ng et al., 1999]. In contrast, other works have developed methods to learn

from expert demonstrations, from another domain, that contain only states [Ray-

chaudhuri et al., 2021, Franzmeyer et al., 2022, Zakka et al., 2022, Salhotra et al.,

2023, Li et al., 2023b, Li et al., 2023c]. Although a more challenging setting, the

state-only methods offer greater flexibility, as specifying what actions caused the

state transitions is no longer necessary.

In addition to expert demonstrations, valuable information can also be found

in knowledge acquired by other learning algorithms. Such knowledge can take the

form of demonstrations generated by an expert policy [Ammar et al., 2012, Ammar

et al., 2015b, Shankar et al., 2022, Aktas et al., 2023, Watahiki et al., 2023], or of

the policy itself which can be used to decrease the exploration in the target task

[Soni and Singh, 2006, Cheng et al., 2018, Joshi and Chowdhary, 2018, Zhang et al.,

2021a, Wang et al., 2022, Yang et al., 2023, Gui et al., 2023, Chen et al., 2024].

While another way to reduce the exploration stage of a learning agent is to

guide their behavior through an auxiliary reward [Brys et al., 2015, Gupta et al.,

2017, Hu and Montana, 2019, Hejna et al., 2020], transferring parameters can be an

effective way to transfer knowledge when tasks use the same architecture to model

their solution, whether it is in the form of a value function [Torrey et al., 2006, Taylor

and Stone, 2007a, Taylor et al., 2007a, Taylor and Stone, 2007b, Banerjee and Stone,

2007, Kuhlmann and Stone, 2007, Torrey et al., 2008, Taylor et al., 2008b], or a

function approximator [Taylor et al., 2005, Taylor and Stone, 2005, Taylor et al.,

2007b, Devin et al., 2017, Chen et al., 2019, Zhang et al., 2021b]. In other cases, the
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inductive bias can be in the form of if-then rules that advise actions in the target

task [Torrey et al., 2005], a criterion to select training data [Ammar and Taylor,

2012], adding the pre-activation output of a neural network to another network

[Wan et al., 2020], complementary data to improve the approximation of the target

dynamics [Taylor et al., 2008a], or supervision scores for imperfect data sets [Cao

et al., 2022].

On the other hand, some works develop methods that are able to handle mul-

tiple sources of knowledge. For instance, in [Ammar et al., 2015a, Qian et al., 2020]

policies are represented as a linear combination of a task-specific vector, a domain-

specific basis and an inter-domain shared basis. By following a hierarchical structure,

knowledge is combined and shared among tasks from the same domain through the

domain-specific basis, and across all tasks through the inter-domain basis. In [Liu

et al., 2023] an image encoder, trained with data sampled from different tasks, is

used to provide an alternative representation for the RL to use as the observation

space (instead of the original image space), which significantly speeds up the learning

process. Other works evaluate source policies in the target domain to either weight

the influence of multiple source policies in the target learner [Heng et al., 2022], or

select the best source candidate [Talvitie and Singh, 2007], [Zhang et al., 2024].

The cross-domain knowledge transfer methods reviewed so far cover a wide

range of settings, each of them exploiting the data and knowledge available. For

instance, while the source selection methods [Talvitie and Singh, 2007, Heng et al.,

2022, Zhang et al., 2024] are great for scenarios in which multiple sources of knowl-

edge are available but it is not clear how/when they should be used, cross-domain

imitation learning methods [Kim et al., 2020, Fickinger et al., 2021, Raychaudhuri

et al., 2021, Franzmeyer et al., 2022, Zakka et al., 2022] take advantage of demonstra-

tions of the target task but in a different state-action space. Thus, given the variety

of approaches and objectives these methods pursue, there is no clear-cut criterion to

sort from best to worst, as the impact of a method will depend on the requirements

of the problem.

Considering that the knowledge transfer methods proposed in this document

(see Chapter 4 and Chapter 5) select the most fit source task to transfer knowledge

from, the most similar works to ours are [Ammar et al., 2015a, Qian et al., 2020, Heng

et al., 2022, Talvitie and Singh, 2007, Zhang et al., 2024]. However, the main

difference in our approach is that no external supervision is required in any step of
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the transfer process, nor assumptions are made about the source and target tasks

being related in any form.

3.3 Lifelong Reinforcement Learning

Beyond solving a sequence of independent knowledge transfer problems, in Lifelong

RL the agent is constantly making decisions about how past experiences can aid

learning the current task, as well as how the knowledge acquired in the present

may affect its performance in the future. Two of the core problems in the lifelong

learning setting are avoiding negative transfer and catastrophic forgetting, which

have been dealt with in a variety of ways. For instance, [Lecarpentier et al., 2020]

and [Xie and Finn, 2022] create a separate instance of a policy to solve each task

and focus on performing positive transfer. While [Lecarpentier et al., 2020] exploit

the fact that the optimal action-value function is Lipschitz continuous in the MDP

space to provide a good heuristic to select a source task, [Xie and Finn, 2022] retain

experiences from previous tasks (relabeled with the current task reward function) to

pre-train an initial policy that will later be fine tuned with data from the current

task.

Similarly, [Rusu et al., 2016] and [Liu et al., 2019] instance a neural network, to

act as the policy in each task, and connect the output of middle layers from previous

tasks to transfer knowledge to the most recent network (i.e., lateral connections),

while the weights of previous networks remain frozen. In [Schwarz et al., 2018] the

lateral connection approach is also adopted, however, they restrict the architecture

to only have two neural networks: the first one that is trained to solve the current

task, and the second one to retain the knowledge of every task (as a knowledge

base) and transfer knowledge to the first network, through policy distillation [Rusu

et al., 2015]. Moreover, [Fernando et al., 2017] also present a framework suitable for

lifelong RL that finds an optimal configuration of multiple neural networks (with

genetic algorithms [Lambora et al., 2019]) to transfer knowledge through lateral

connections to another network being trained to solve a different task than the first

one. On the other hand, [Muppidi et al., 2024] address the loss of plasticity over

time (which can cause negative transfer) by treating the LRL problem as a sequence

of convex problems, which motivates the use of online convex optimization methods,

while [Dick et al., 2024] focus on identifying the change in tasks, by comparing



3.3. LIFELONG REINFORCEMENT LEARNING 31

recently gathered data sets with older ones in a latent space using the Wasserstein

distance [Panaretos and Zemel, 2019].

Another way to avoid catastrophic forgetting is to build/learn policies from

a set of reusable skills. For example, [Tessler et al., 2017] propose a hierarchical

architecture in which, after pre-training a set of policies in different skills, learn

a policy to use such skills to solve a variety of tasks. By acting with temporally

extended actions, learning takes significantly fewer interactions in comparison to a

standard RL policy. Similarly, [Tasse et al., 2021] and [Mendez et al., 2022] propose

composing policies from a set of solutions to problems other then the current task.

While [Tasse et al., 2021] use binary vectors to describe relevant objects in each task

and grab knowledge from previous action-value function to compose a policy for the

current task, in similar fashion to [Fernando et al., 2017], in [Mendez et al., 2022] a

search for the optimal configuration is performed in which a set of modules can solve

the current task in zero-shot (if a descriptor of the task is available), or few-shot

learning after interacting with the environment.

Concerned with the memory efficiency of lifelong learning systems, some works

propose sharing some the parameters across policies. For instance, [Ammar et al.,

2014a, Ammar et al., 2015a, Mendez et al., 2018, Mendez and Eaton, 2020] propose

representing the parameters to each task solution as a linear combination of task-

specific and shared factors. In [Ammar et al., 2014a, Mendez and Eaton, 2020],

policy gradient methods are used to update a shared latent basis and a task-specific

sparse vector, whose product models the task-specific policy weights. This linear

factorization is extended in [Ammar et al., 2015a] to include an additional factor

between the shared basis and task-specific vectors, which is shared across tasks

from the same domain. Additionally, [Mendez et al., 2018] showcase how the linear

factorization approach can be used to model reward functions for the lifelong inverse

RL setting.

On the other hand, some works devise methods to learn as many tasks as

possible with a fixed set of parameters. For instance, [Kirkpatrick et al., 2017]

mitigate catastrophic forgetting in a neural network by slowing down the changes in

weights that are relevant for previous tasks (according to their Fisher information

matrix). Instead, less relevant weights are the ones responsible for storing newer

knowledge, such that the performance in older tasks is only harmed due to blackout

catastrophe (i.e., when the neural network’s capacity is saturated). Furthermore,
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[Isele and Cosgun, 2018] also exploit the storing capacity of a single neural network

by adopting a strategy that replays experiences, from the replay buffer [Mnih et al.,

2015], in order to not forget previously learned skills.

In lifelong learning, the learning agent is deployed to perform on a variety of

tasks, during which there is no external supervision (excluding the reward signal) in

the loop. To ensure that the agent will perform well despite the lack of supervision,

it is necessary to endow it with methods that prevent negative transfer, as settings

with more task diversity are addressed. Each of the methods reviewed in this sec-

tion address a different set of challenges present in the LRL setting (e.g., storing

knowledge in a memory-efficient way, avoiding negative transfer, catastrophic for-

getting), which makes sorting them from best to worst difficult. However, [Ammar

et al., 2015a] are the only ones that address the cross-domain setting. Thus, in order

to study the generalization capabilities of lifelong learning systems, the architecture

proposed in this document (see Chapter 6) considers the problem of negative transfer

in a cross-domain lifelong learning setting, which employs a model-based similarity

function [Garćıa et al., 2022] to select the best source task from a progressively

growing library of options.

3.4 Chapter Summary

In this chapter the most relevant works in the areas of MDP similarity, cross-domain

knowledge transfer and lifelong reinforcement learning were covered. Although there

are few similarity measures and lifelong learning systems that address the cross-

domain RL setting, there is a growing interest in transferring knowledge across

domains. Some of the works presented in Section 3.2 that transfer knowledge from

multiple source can be extended to lifelong learning agents, as the selection of source

of knowledge is a core step in positive transfer, thus, potentially providing a starting

point to tackle lifelong cross-domain RL. However, the main difference between our

proposal and the most related works is that the our method not only transfers

knowledge across tasks from different domains, but it selects from which task it

should transfer knowledge, without any special data requirements or supervision.



Chapter 4

Similarity for Knowledge Transfer in
Discrete Spaces

In order to accelerate learning via transfer learning, the source and target tasks must

be similar. Moreover, in scenarios when multiple sources of knowledge are available

(e.g., lifelong learning), being able to select knowledge related to the target task

becomes a critical skill. In this chapter, a similarity function for RL tasks with

discrete, but different, state-action spaces (based on their action value functions) is

presented in Section 4.1. Additionally, a knowledge transfer method based on the

similarity function is introduced in Section 4.2, whereas the experimental evaluation

of both methods and discussion are detailed in Section 4.3.

4.1 Value-based Inter-Task Similarity Measure

To measure the similarity between two tasks with discrete state-action spaces, the

proposed method compares their action-value functions, also known as Q functions.

The main idea is to use a partially learned Q function (from the target task) to find

the source task with a completely learned Q function that is the closest to the target

counterpart. Given that the similarity measure presented in this section considers

tasks with discrete spaces, each task is represented by a matrix that models its Q

function. That is, a matrix containing the expected discounted return after executing

an action a from a state s, and then follow a policy π (see Eq. 4.1) [Watkins and

33
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Dayan, 1992], for every state-action pair.

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

{
Φ(s, π(s), s′)V π(s′)

}
(4.1)

where R(s, a) is the immediate reward observed after executing action a in state

s, Φ(s, π(s), s′) is the probability for the state of the agent to transit from s to s′

after executing the action selected by the policy π in state s, and V π(s′) is the value

function that represents the expected discounted return if policy π is followed from

state s′ (see Sections 2.2 and 2.2.1 for more details).

Computing the similarity between two tasks, based on their Q functions, re-

quires carrying out four main steps:

1. Clustering Q-values (Section 4.1.1): Group q-values row wise and column wise

to build a domain-agnostic representation so that Q functions can be compared

despite belonging to tasks with different state-action spaces.

2. Determining Cluster Distributions (Section 4.1.2): Model the size of each

cluster’ size as histograms.

3. Comparing Cluster Distributions (Section 4.1.3): Measure the similarity of

cluster size distributions with the intersection between their respective his-

tograms (see Eq. 4.6).

4. Compute the Inter-task Similarity (Section 4.1.4): After computing the inter-

section scores between multiple histograms, they are stored into a matrix, from

which inter-task similarity is computed in as the mean value of such matrix.

The overall process of computing the intersection matrices is shown in Fig. 4.1,

whereas the details of each of the steps above are presented in the following sections.

4.1.1 Clustering Q-values

Let Q ∈ R|S|×|A| be a real-valued matrix, where Qi,j represents the q-value Q(si, aj)

(see Eq. 4.1) of state si ∈ S and action a ∈ A. After applying a clustering process

within each row of matrix Q, matrix L ∈ R|S|×|A| will contain the cluster ID/label

assigned to each q-value by the clustering algorithm (see Fig. 4.2):
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Figure 4.1: Computation of the intersection matrices IA and IS for a pair of action-value
function matrices Q and Q′. Matrices L and C contain the labels assigned to the elements
of the Q matrix if they were clustered row-wise (red dotted ovals) and column-wise (blue
dotted ovals), respectively. Each row in matrix F is a histogram for the label frequency of
each column in L, whereas in matrix G rows count the label frequency of each row in C.
The elements of matrices IA and IS represent the intersection value between the rows of
matrices F, F ′ and G,G′, respectively. (Best seen in color.)

Li,j = argmin
k
|Centroid(Qi,∗, k)−Qi,j| (4.2)

where Centroid(Li,∗, k) ∈ R is the centroid of the k -th cluster in the i -th row

Qi,∗ ∈ R|A| of Q. Similarly, we define the matrix C ∈ R|S|×|A| that will contain

the labels assigned by a clustering algorithm to the elements of Q within the same

column, that is:

Ci,j = argmin
k
|Centroid(Q∗,j, k)−Qi,j| (4.3)

In other words, the labels in L represent how the q-values of every action are

distributed with respect each state, whereas C models the q-value distribution of

every state over each action. Additionally, before assigning values to matrices L and

C, the centroid IDs are sorted in ascending order. That is, the following expression

is true for any pair of centroids:
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Figure 4.2: Clustering process of Q values. The Q values of a row are clustered into k
groups, where the label assigned to the Q values in each group are shown in the same row-
column position in matrix L (this process is applied to each row of matrix Q). Similarly,
the same process is performed with every column of matrix Q to produce matrix C.

Centroid(Qi,∗, k) ≤ Centroid(Qi,∗, l) ∀i
Centroid(Q∗,j, k) ≤ Centroid(Q∗,j, l) ∀j
such that k < l

where by sorting the centroid IDs it is possible to interpret them as clusters of higher

expected returns the higher the ID is. Sorting cluster labels so that this interpre-

tation is true is what enables the comparison of state-action pairs from different

spaces possible, as their similarity is defined on how their Q value compares to those

of other state-action pairs from their same space.

Moreover, Section 4.1.2 describes how the cluster distribution is computed and

modeled as histograms.

4.1.2 Determining Cluster Distributions

After clustering states and actions, according to their value with respect actions and

states, their label occurrences are counted from matrices L and C (see Fig. 4.3). Let

F ∈ R|A|×k and G ∈ R|S|×k be a pair of matrices that in each row will contain the
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label-count histogram of each action and state (respectively), where k is the number

of clusters used in the row/column clustering process (see Eq. 4.2 and Eq. 4.3). The

i -th row of F , Fi,∗ ∈ Rk, contains a normalized histogram of the labels in the i -th

column of L, as described by Eq. 4.4:

Fi,l =
1

|S|

|S|−1∑
j=0

[l = Lj,i] (4.4)

where [·] is the Iverson bracket, which returns 1 if the condition within the brackets

is satisfied and 0 otherwise [Gehr et al., 2016]. Similarly, Eq. 4.5 describes how the

normalized histograms of state labels occurrences are computed:

Gi,l =
1

|A|

|A|−1∑
j=0

[l = Ci,j] (4.5)

Each row in F describes the distribution of labels an action received in the row

clustering processes, while the rows in G model the label assignment distribution

of each state across the action clustering processes. In other words, given that the

centroid IDs are sorted in ascending order (with respect to their centroids), each

row in F can be interpreted as a distribution of how preferred its respective action

is from the set of states. Similarly, each row in G can be interpreted to model the

distribution of how preferable they are to take actions from.

Furthermore, in Section 4.1.3 the process to estimate the similarity between

states and actions, through the comparison of their label occurrence histograms, is

explained.

4.1.3 Comparing Cluster Distributions

The action and state label histograms of a Q function model the role actions and

states have (within the task partially/completely learned) in terms of how they

contribute to achieving long-term cumulative rewards (i.e., the goal of RL agents).

Thus, to determine the similarity between states/actions from different tasks, we

propose a domain-agnostic method to compare their roles within their respective

tasks that consists of computing the intersection of their label occurrences histograms
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Figure 4.3: An action-label histogram is built by counting the number of occurrences of
each label in a column of matrix L (this process is repeated for each column). Similarly,
a state-label histogram is built counting the label occurrences in each row of matrix C.
Action-label and state-label histograms are stored as rows in matrices F and G, respec-
tively.

(see Fig. 4.4).

Let Q ∈ R|S|×|A| and Q′ ∈ R|S′|×|A′| be two matrices that represent the Q

function of two MDPs with state-action spaces of different dimensions (i.e., |S×A| ≠
|S ′ ×A′|), and F ∈ R|A|×k, G ∈ R|S|×k and F ′ ∈ R|A′|×k, G′ ∈ R|S′|×k be the matrices

containing the label occurrences histograms for Q and Q′, respectively. Then, we

define matrices IA ∈ R|A|×|A′| and IS ∈ R|S|×|S′| to hold the intersection values (see

Eq. 4.6) between rows from F,G and F ′, G′, respectively.

Intersection(u, v) =
∑
i

min(ui, vi)

where u, v ∈ Rk

(4.6)

Specifically, the computation of values in IA and IS is described by Eq. 4.7

and Eq. 4.8:
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Figure 4.4: After the action-label and state-label histograms have been built for two Q
tables, their similarity is computed as the intersection between histograms (see Eq. 4.6)
and stored in matrices IA and IS . Then, the mean values of IA and IS are computed to
yield the action-based and state-based similarity scores, respectively.

IAi,j = Intersection(Fi,∗, F
′
j,∗) (4.7)

ISi,j = Intersection(Gi,∗, G
′
j,∗) (4.8)

That is, each element of IA describes how much the role of a pair of actions

within their respective tasks overlaps, where the higher the score the more similar

they are, and an intersection value of 1 represents a perfect match. Analogously, the

elements in IS model the similarity between states of the pair of tasks.

Additionally, in Section 4.1.4 the process to compute the overall similarity

across tasks is described.

4.1.4 Computing Inter-Task Similarity

Considering that each element in matrices IA, IS represents the similarity between

individual elements (either between states or actions), in order to assess the similarity

between two tasks, we propose to use the mean operator (Eq. 4.9) [Golub and

Van Loan, 2013] on both matrices.

M̄ =
1

m · n
m∑
i

n∑
j

Mi,j (4.9)

Although the mean operator satisfies the four properties necessary to be con-

sidered a similarity function (see Section 2.6), we propose to evaluate this operation

based on its ability to work as a source-selection heuristic.
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In Section 4.2, the proposed method to transfer knowledge, based on the sim-

ilarity definitions described in this section, across tasks with different state-action

spaces is presented.

4.2 Knowledge Transfer

After selecting the most similar source task Q function Q to the partially learned Q

function Q′, using one of the following scores ĪA, ĪS, knowledge is transferred in the

form of q-values from Q to Q′ (see Fig. 4.5). To transfer q-values from Q to Q′, the

following steps are performed for every state-action pair in the target task, that is,

∀(s′i, a′j) ∈ S ′ × A′:

1. Find the state from the source task s ∈ S that is the most similar to the target

task state s′i ∈ S ′:

s = argmax
sk∈S

ISk,i

2. Find the action from the source task a ∈ A that is the most similar to the

target task action a′j ∈ A′:

a = argmax
ak∈A

IAk,j

3. Transfer the q-value of the most similar source state-action pair Q(s, a) to be

the q-value of the target state-action pair (s′i, a
′
j) in Q′, that is:

Q′(s′i, a
′
j)← Q(s, a)

After performing steps 1-3 for every state-action pair in the target task, we

let the RL algorithm run its course. The main motivation to transfer knowledge in

this way is to accelerate learning by assigning the completely learned q-value to its

partially learned counter part in the target task Q function, under the assumption

that partially learned Q function is directed towards a solution that is similar to the

selected source Q function.

In Section 4.3 a series of experiments that evaluate the ability of the similarity

measure presented in Section 4.1 to select useful sources of knowledge, and the

knowledge transfer method from this section to improve learning are detailed and
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Figure 4.5: Example of an action-value transfer using the action-value function and inter-
section matrices form Fig. 4.1. To transfer from Q to Q′(s′2, a

′
3) the state s ∈ S and action

a ∈ A with the largest intersection value to s′2 ∈ S ′ and a′3 ∈ A′ are selected. In this
example, a1 ∈ A is the most similar action to a′3 ∈ A′, whereas state s2 ∈ S is the most
similar to s′2 ∈ S ′. Therefore, the action value Q(s2, a1) is transferred to Q′(s′2, a

′
3).

discussed.
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4.3 Experiments

4.3.1 Experimental Setting

To evaluate the proposed similarity measure and knowledge transfer method, six

environments from the OpenAI Gym suite [Brockman et al., 2016] (now Gymnasium

[Towers et al., 2023]) were used: Frozen Lake (FL), Frozen Lake 8 × 8 (F8), Taxi

Domain (TA) [Dietterich, 2000], Acrobot (AC) [Sutton, 1995], Mountain Car (MC)

[Moore, 1990] and Pendulum (PE). Considering the proposed methods are applicable

to RL tasks with discrete spaces, the state and action spaces of AC, MC and PE

were discretized (see Table 4.1 for the dimensions of each task’s space). In the

set of evaluation tasks, FL and F8 are significantly more similar than to any other

tasks, and we would like to evaluate if the proposed knowledge transfer method

is able to exploit such structural similarities if no state and action mappings are

available. Additionally, the other tasks were included to provide a larger scope of how

the similarity measure behaves when non-related tasks are available for knowledge

transfer purposes.

The objective of the present experiments is to evaluate:

1. The order in which the similarity measure ranks source tasks for each target

task,

2. The benefit of transferring knowledge, and

3. The data (sampled from the target task) required to estimate a low-error sim-

ilarity score

In order to learn a Q function in every environment, the Q-learning algorithm

was employed as the base learning method. To completely learn a Q function in

every environment, the agent was trained for 300,000 episodes, interleaved with 10

evaluation episodes (which are reported in Fig. 4.7) every 100 training episodes.

Additionally, the following parameters were used:

• Learning from scratch: both the learning rate and exploration probability were

initialized with 0.95 and linearly decreased to a final value of 0.01.
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(a) FL (b) F8 (c) TA

(d) AC (e) MC (f) PE

Figure 4.6: Set of evaluation tasks. In Frozen Lake (FL) and Frozen Lake 8 × 8 (F8) the
goal is achieved when the elf navigates (with stochastic actions) to the treasure location
(without falling into the fishing holes). The Taxi Domain (TA) presents a navigation
problem in which the taxi-driver agent must pick up the passenger and drop it in a specific
location. In Acrobot (AC), Mountain Car (MC) and Pendulum (PE) the RL agent must
learn to apply small forces to balance the poles and car (in the case of MC) to reach certain
position that is out of reach if force is constantly being applied.

• Learning with transferred knowledge: After initializing the target task Q func-

tion (using the method from Section 4.2 and a Q function completely learned

from scratch for the target task), the learning rate linearly decreased from 0.5

to 0.01, while the exploration probability decreased from 0.25 to 0.01.

• Clustering q-values: In order to cluster q-values, to compute matrices L,C as

part of the similarity measurement (see Section 4.1.1), the K-means algorithm

[Jain and Dubes, 1988] was used, with a number of clusters of k = 3, as it is

the largest number of clusters that can be used in every state/action space of

the the task presented in Table 4.1.
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Table 4.1: Collection of test environments. Columns present (left to right): the name of
the environment, the size of the state space, and the size of the action space.

Environment |S| |A|
Frozen Lake (FL) 16 4
Frozen Lake 8x8 (F8) 64 4
Taxi (TA) 500 6
Acrobot (AC) 6400 3
Mt. Car (MC) 400 3
Pendulum (PE) 640 20

4.3.2 Results

In Table 4.2 the similarity scores ĪS and ĪA between each pair of tasks are shown. It

is worth noting that among the complete set of task pairs, most tasks obtained the

highest similarity score when compared to another copy of them, for both similarity

functions. Additionally, In the case of the action-based similarity function (i.e., ĪA),

when a task obtained the highest score with a copy of itself, the similarity score was

above 0.84. On the other hand, Table 4.3 shows the order in which the set of tasks

would be ranked as option to transfer knowledge from for every target task, based

on the similarity scores reported in Table 4.2.

In terms of learning improvement, as a consequence of using the knowledge

transfer method described in Section 4.2, Table 4.4 shows the transfer learning per-

formance to learning from scratch performance ratio (i.e., a measure of how positive

was the transferred knowledge in the target agent in comparison to learning from

scratch) given knowledge was transferred to every (target) task from every tasks

that is different. Additionally, Fig. 4.7 shows:

• The performance of the learning agent (i.e., green graph),

• The similarity score between two completely learned Q functions of the same

task (i.e., solid lines), and

• The similarity score between the Q function being learned (by the learning

agent) and a completely learned Q function of the same task (i.e., dashed

lines).

In other words, Fig. 4.7 shows how good the similarity estimation between a par-
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Table 4.2: Inter-task similarity scores based on the mean value of matrices IS and IA.
The larger the value, the more similar the tasks. Values in the main diagonal that are the
largest value in its row and column are in bold. The similarity scores in the lower triangle
of each similarity table are omitted since similarity matrices are symmetrical.

ĪS ĪA

FL F8 TA AC MC PE FL F8 TA AC MC PE
FL 0.49 0.46 0.48 0.13 0.35 0.24 0.78 0.76 0.62 0.58 0.79 0.76
F8 – 0.51 0.48 0.13 0.42 0.25 – 0.85 0.64 0.50 0.80 0.71
TA – – 0.51 0.16 0.40 0.27 – – 0.62 0.50 0.62 0.57
AC – – – 0.81 0.37 0.56 – – – 0.98 0.61 0.77
MC – – – – 0.46 0.38 – – – – 0.89 0.80
PE – – – – – 0.45 – – – – – 0.88

Table 4.3: Ranking of source tasks for a target task based on the inter-task similarity
measures ĪS and ĪA. Each row shows, from left to right, the acronyms of the target task,
the source tasks ranked from most to least similar using the ĪS score, followed by the
source tasks ranked from most to least similar using the ĪA score.

Target
task

Source task ranking
ĪS ĪA

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th
FL FL TA F8 MC PE AC MC FL F8 PE TA AC
F8 F8 TA FL MC PE AC F8 MC FL PE TA AC
TA TA F8 FL MC PE AC F8 MC TA FL PE AC
AC AC PE MC TA FL F8 AC PE MC FL F8 TA
MC MC F8 TA PE AC FL MC F8 PE FL TA AC
PE AC PE MC TA F8 FL PE MC AC FL F8 TA

tially and completely learned Q functions is with respect on the number of training

episodes.

4.3.3 Discussion

Regarding the first evaluation objective of the experiments (i.e., the similarity-based

rankings of source tasks), Table 4.3 shows that in most of the cases, a target task

would select its source twin as the most similar among the set of source tasks,

with both similarity functions (i.e., ĪS and ĪA). In the case of the state-based

similarity function (i.e., ĪS), the correct source task was ranked among the top-

2 most similar tasks. These results provide evidence that the similarity functions
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Table 4.4: Transfer learning performance to learning from scratch performance ratio.
Columns present the task from which knowledge was transferred, while rows present the
task in which the agent trained with the additional knowledge. Values above 1 represent
a performance improvement in comparison to learning from scratch, while those below
1 represent a performance deterioration. The values from the main diagonal are omitted
because knowledge was transferred across different tasks only.

Target task Source task
FL F8 TA AC MC PE

FL – 1.67 0.35 0.001 0 0
F8 1.27 – 0.05 0.0002 0.0006 0
TA 0.99 0.99 – 1.01 1.01 -23.96
AC 1.15 1.16 1.17 – 1.17 1.18
MC 1.08 1.08 1.08 1.08 – 1.08
PE 1.32 1.31 1.32 1.31 1.31 –

have the ability to autonomously select (in most cases) a source task that would

benefit the target learner. Moreover, being able to identify task-relevant similarity

with out labels is a crucial requirement for the development of autonomous agents

capable of transferring knowledge. By identifying that a very similar task has already

been learned, the agent could learn a near-optimal policy with the help of auxiliary

knowledge transferred from the selected source task.

Regarding the second evaluation objective (i.e., the benefit of transferring

knowledge), Table 4.4 shows the transfer learning performance to learning from

scratch performance ratios obtained by transferring to each target task from every

source task but itself. It is worth noting that the knowledge transfer method is able

to exploit the structural similarity between Frozen Lake (FL) and Frozen Lake 8

(F8), given that the state space of F8 is a super set of FL, which is shown as both

tasks benefit from transferring knowledge from each other. Additionally, the signif-

icant differences between FL, F8 and the control-based tasks (i.e., AC, MC, PE)

also affect negatively transferring from AC, MC and PE to Fl, and F8. Consider-

ing that the state spaces of the control-based tasks (see Table 4.1) are significantly

larger than FL and F8’s, there are more state-action pairs form which to choose,

thus, increasing the opportunities for the knowledge transfer method to transfer an

action value that does not actually relate to the target state-action pair. However,

if a system were to use the state-based similarity function (i.e., ĪS), the knowledge

transfer method would ensure a positive transfer for every target task, even for the

Pendulum (PE), which ranked Acrobot as the most similar task (see Table 4.3) and
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Figure 4.7: Progression of similarity scores between a partially learned Q function and
completely learned Q function of the same task (i.e., red and blue dashed lines for ĪS

and ĪA respectively) with respect to the learning agent’s performance (i.e., green graph).
The horizontal axis shows the training episodes while the left and right vertical axes show
the agents accumulated reward and similarity scores, respectively. The solid red and blue
lines show the best possible similarity scores for reference.



48CHAPTER 4. SIMILARITY FOR KNOWLEDGE TRANSFER IN DISCRETE SPACES

obtained a transfer learning performance to learning from scratch performance ratio

of 1.31 (see Table 4.4).

Concerning the third (and last) evaluation objective (i.e., the data cost of com-

puting good estimations of the inter-task similarity), Fig. 4.7 shows the evolution of

the similarity scores between the partially learned and completely learned Q func-

tions of the same task through the learning process of an RL agent (i.e., dashed

lines). In the case of Frozen Lake (FL), Frozen Lake 8× 8 (F8) and Taxi (TA), the

similarity scores get near to the best possible similarity score (i.e., solid lines) only

until the agent increases its performance, whereas in Acrobot (AC), Mountain Car

(MC) and Pendulum (PE), a good estimation of the similarity score is obtained at

an early stage of the training process. In order to exploit the knowledge transfer

method, it is necessary to develop similarity measures that require fewer data to

produce good estimations, regardless of the task at hand.

Ideally, a similarity measuring function should be able to select sources of

knowledge that a knowledge transfer method can exploit to accelerate the learning

process of a learning agent. Additionally, both of these process (i.e., knowledge

selection and adaptation) must require an amount of interactions with the target

task environment (i.e., data) that is lower than what learning from scratch. The

ranking order of the source tasks in Table 4.3 and transfer learning performance

to learning from scratch performance ratios in Table 4.4 suggest that the proposed

state-based similarity function (i.e., ĪS) and knowledge transfer method (see Section

4.2) can produce a positive transfer (i.e., transfer learning performance to learning

from scratch performance ratio greater than 1.0). However, the data cost of obtaining

a reliable similarity score showed to be largely variable, shown in Fig. 4.7, as for half

of the tasks the similarity function obtained a good estimation when the learning

agent showed an improvement in its performance. In other words, although the

similarity functions shows an ability to select sources of knowledge that provide a

positive transfer, it still needs a lower sample complexity (i.e., data cost) for it to be

employed in online reinforcement learning problems. Future work on this end could

focus on estimating the commonalities between the reward and transition models

separately, which may be less data costly to approximate, in comparison to learning

the value function.
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4.4 Chapter Summary

An inter-task similarity function and a knowledge transfer method for tasks with

discrete state-action spaces were presented this chapter. The similarity function

compares the action-value function of two MDPs to determine their compatibility

for transfer purposes (i.e., a performance-based similarity measure [Garćıa et al.,

2022]). Then, the knowledge transfer method transfer q values, among the most

similar state-action pairs across tasks, to accelerate the learning process in the target

task. Although the similarity function and transfer method showed an ability to

produce positive transfer in variety of the target tasks, it is too data expensive for

online reinforcement learning.





Chapter 5

Model-based Similarity for
Cross-Domain Knowledge Transfer

Every time a lifelong learning agent encounters a new task, it has the option to

reuse knowledge acquired by any of the previously learned tasks. To avoid negative

transfer, it is important that the agent transfers knowledge only from sources that are

related to the target task. That is, when multiple sources of knowledge are available,

the processes of selection and adaptation of knowledge are equally important to

produce a performance improvement in the target task. However, if the source

and target tasks are defined over different state-action spaces (i.e., cross domain),

measuring their similarity by directly comparing their transition/reward function

(i.e., model-based similarity [Garćıa et al., 2022]) is not possible due to the space

mismatch.

Therefore, in order to transfer from multiple source tasks to a task with differ-

ent state-action space, in this chapter a model-based similarity measure and knowl-

edge transfer method are presented. As shown in Fig. 5.1, the main steps performed

to transfer knowledge in this setting are the following:

1. State-Action Spaces Alignment (Section 5.1): In order to compare the reward

and transition functions of two tasks from different domains, a reward-based

alignment of their state-action spaces is performed. This process results in

learning a set of functions (modeled as neural networks) that map states and

actions across domains.

51
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Figure 5.1: Overview of the similarity-based knowledge transfer method. Given a data set
sampled from the target task (DY ), and a set of source data sets (DX), a set of alignment
mappings is learned (fi, gi) for every source-target pair (see Section 5.1), followed by
an evaluation of their similarity to the target task (Simi), with the help of approximated
transition (Φ̂X) and reward models (R̂X , R̂Y ) (see Section 5.2). Then, the mappings from
the most similar source task are used to transfer its policy (πksrc) to the target task to
accelerate the learning process (see Section 5.3).

2. Dynamics-based Similarity Measurement (Section 5.2): With the mapping

functions learned in the previous step, the similarity between two tasks is

computed by comparing how similar their transition and reward function (i.e.,

approximated from data) predictions are.

3. Similarity-based Knowledge Transfer (Section 5.3): After measuring the simi-

larity between the target task and every source task, the policy learned in the

most similar source task is transferred (through the mappings learned in step

1) to take actions in the target task and alleviate the exploration required to

learn.

5.1 Reward-based Alignment

In order to align the state-action spaces of two different domains, we propose an

immediate reward alignment criterion, where the main idea is that matching state-

action pairs that produce similar rewards can help transferring optimal behaviors. To

learn the state and action mapping functions, we take inspiration from the unsuper-

vised alignment method proposed in [Wang and Mahadevan, 2009]. In the method

proposed by [Wang and Mahadevan, 2009], given data sets X = {xi|xi ∈ Rp} and
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Y = {yj|yj ∈ Rq}, a pair of spaces are aligned in an m-dimensional latent space

(see Section 2.3 for a definition of latent space), by minimizing the cost function

described in Eq. 5.1:

C(α, β) = µ
∑

xi∈X,yj∈Y

(αTxi − βTyj)
2Wi,j + 0.5

∑
xi,xj∈X

(αTxi − αTxj)
2WX

i,j

+ 0.5
∑

yi,yj∈Y

(βTyi − βTyj)
2W Y

i,j

(5.1)

where µ ∈ R is coefficient that weighs the importance of the inter-domain alignment

term, α ∈ Rp×m and β ∈ Rq×m are matrices that are use to linearly map data points

from X and Y to the latent space, and W ∈ R|X|×|Y |,WX ∈ R|X|×|X|,W Y ∈ R|Y |×|Y |

are matrices that hold the similarity between points from different spaces (i.e., inter-

domain similarity in W ) and between points from the same space (i.e., intra-domain

similarity in WX ,W Y ). Thus, to minimize Eq. 5.1, α, β must map near in the latent

space the data points that have high similarity values in W,WX ,W Y .

To compute the similarity between points, [Wang and Mahadevan, 2009] com-

pare how the nearest neighbors of each point are distributed around it. A local

neighborhood of a data point xi is represented by a square matrix of dimensions

Rxi ∈ R(K+1)×(K+1), where the first row and column of Rxi correspond to xi, while

the other K rows and columns correspond to the K-nearest neighbors of xi (in as-

cending order with respect to their distance to xi). Considering that Rxi
j,k

1 represents

the Euclidean distance between the data points that correspond to the j-th row and

k-th column (respectively), Rxi describes the local structure of a space surrounding

data point xi. Then, the local patterns Rxi , Ryj of two points xi, yj are compared

by a distance function dist : R(K+1)×(K+1) × R(K+1)×(K+1) → R (see Section 3.2 in

[Wang and Mahadevan, 2009]) that evaluates how well the patterns of neighbors

around xi and yj match each other (the better the match, the smaller dist(Rxi , Ryj)

is). Finally, the similarity values are computed from the distance between patterns

with a kernel: Wi,j = e−dist(R
xi ,Ryj ),WX

i,j = e−dist(R
xi ,Rxj ),W Y

i,j = e−dist(R
yi ,Ryj ).

In Eq. 5.1, matricesW,Wx,Wy are computed a priori, and describe how similar

inter-domain (i.e., xi, yj) and intra-domain (i.e., xi, xj and yi, yj) pairs are. In other

1Single elements of a matrix A are indicated by sub indexes (e.g., Ai,j), while single elements of a vector
a are accessed with brackets (e.g., a[i]).
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words, the objective of the cost function is to map data points near to each other

in the latent space if they are similar in their original spaces (i.e., X, Y ) or to a

data point from the other domain. However, given that the purpose of aligning RL

state-action spaces is to transfer policies that maintain optimal behaviors, the cost

function from Eq. 5.1 does not meet our needs in the following aspects:

• Equation 5.1 was devised to train linear mappings. If non-linear function

approximators (e.g., neural networks) were used to align tasks with arbitrarily

complex structures, training such models with Eq. 5.1 may result in degenerate

solutions where every data point is mapped to a narrow neighborhood of the

latent space.

• The inter-domain similarity (i.e., the similarity between xi and yj) is based

on how similar the local neighborhood structures of xi and yj. Since we can

not ensure RL tasks will have spaces with similar structures, we propose using

the immediate rewards as alignment criterion, which have an identical meaning

across all RL tasks (i.e., the how preferable actions are within a 1-step horizon).

Therefore, to overcome the restrictions imposed by the alignment method in

a cross-domain RL setting, we present a reward-based alignment loss function that

encourages mapping states-action pairs close to each other if they produce similar

rewards, while preserving the geometrical structure present in the original state-

action spaces (e.g., if two states are far from each other in their original space, then

they should be mapped far away in the latent space, and vice versa).

Let fθ : Rp → Rm and gω : Rq → Rm be a pair of functions parametrized by

trainable parameters θ, ω respectively (e.g., neural networks), and Dx, Dy a pair of

training data sets made of normalized data, defined as follows:

DX = {(xi, rxi)|xi ∈ Rp, rxi ∈ [0, 1], xi[k] ∈ [0, 1] for k = 1, ..., p}
DY = {(yj, ryj)|yj ∈ Rq, ryj ∈ [0, 1], yj[k] ∈ [0, 1] for k = 1, ..., q}

where xi, yj are normalized vectors from different spaces, and ryj , ryj are the normal-

ized rewards associated to xi, yj, respectively. Then, the alignment loss is computed

by Eq. 5.2:

LA =
∑

(xi,rxi )∈DX ,(yj ,r
yj )∈DY

−Cos(fθ(xi), gω(yj))W (rxi , ryj) (5.2)
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W (rxi , ryj) = exp

(−|rxi − ryj |
δ2

)
(5.3)

where Cos(·, ·) is the cosine similarity which measures the angle between fθ(xi) and

gω(yj), W (·, ·) a function that computes the similarity coefficient given a pair of

rewards, and δ a constant that controls how steep the similarity is with respect

to the reward difference. Considering that non-linear function approximators (e.g.,

neural networks) are capable of mapping a wide variety of input vectors to a narrow

region of the latent space (contrary to linear mappings that are restricted to their

linear nature), instead of using the Euclidean norm such as in Eq. 5.1, Eq. 5.2

employs the cosine similarity to measure differences between latent vectors since it

can not be minimized with arbitrary vectors of small magnitude.

To preserve the local neighborhood relations (that are present in the original

spaces) in the latent space, we use the geometry preserving loss, described in Eq.

5.4:

LG =
∑

(xi,rxi ),(xj ,r
xj )∈DX

[Cosd(xi, xj)− Cos(fθ(xi), fθ(xj))]
2

|DX |2 − |DX |
+

∑
(yi,ryi ),(yj ,r

yj )∈DY

[Cosd(yi, yj)− Cos(gω(yi), gω(yj))]
2

|DY |2 − |DY |

(5.4)

Cosd(a, b) =− 2 · d(a, b) + 1 (5.5)

d(a, b) =

√∑N
i (a[i]− b[i])2
√
N

(5.6)

where N is the dimensionality of vectors a, b ∈ RN , d(·, ·) is the normalized Euclidean

distance between two vectors, and Cosd(·, ·) : [0, 1] → [−1, 1] is a linear mapping

from the normalized Euclidean distance to the range of the Cosine similarity. Given

that Eq. 5.5 provides a direct mapping from the Euclidean distance between nor-

malized vectors to the Cosine similarity, it is employed in Eq. 5.4 as a reference of

how far two vectors mapped to the latent space should be, depending on how far

they are from each other in their original space.

Additionally, to measure similarity and transfer policies across tasks, it is nec-

essary to map states and actions across domains. Therefore, we train functions fθ, gω
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along with functions f−1
ϕ : Rm → Rp, g−1

ψ : Rm → Rq, which are trained to decode

the latent vectors, that the encoders fθ, gω yield, back to the domains of fθ, gω.

To maintain the consistency between the latent space and each original space (i.e.,

X, Y ) we minimize the reconstruction loss (see Eq. 5.7), while the cycle-consistency

loss (see Eq. 5.8) encourages consistency across spaces X and Y , as described below:

LRX
=

(
x− f−1

ϕ ◦ fθ(x)
)2

LRY
=

(
y − g−1

ψ ◦ gω(y)
)2 (5.7)

LCX
=

(
x− f−1

ϕ ◦ gω ◦ g−1
ψ ◦ fθ(x)

)2
LCY

=
(
y − g−1

ψ ◦ fθ ◦ f−1
ϕ ◦ gω(y)

)2 (5.8)

where ◦ is the function composition operator. In other words, Eq. 5.7 trains the

encoder functions that map data points to the latent space (i.e., fθ, gω) and their

respective decoders (i.e. f−1
ϕ , g−1

ψ ) to reconstruct vectors back from their latent

mapping. On the other hand, Eq. 5.8 trains both encoders and decoders (i.e.,

fθ, gω, f
−1
ϕ , g−1

ψ ) to reconstruct vectors back from their image to the other domain.

Thus, the Reward-Based Alignment (ReBA) loss is described by Eq. 5.9:

LReBA = λ1 · LA + λ2 · LG + λ3 · (LRX
+ LRY

)

+ λ4 · (LCX
+ LCY

) + λ5 · (∥fθ(x)∥2 + ∥gω(y)∥2)
(5.9)

where λ1, λ2, λ3, λ4, λ5 are constant coefficients that weight how important each loss

term is during training, while ∥fθ(x)∥2+∥gω(y)∥2 is the L2-norm of the latent vectors,

used to promote small-magnitude latent vectors and enhance the stability of the

training process. From Eq. 5.9, the alignment loss (LA) and geometry-preserving

loss (LG) are original contributions, whereas the reconstruction loss (LRX
, LRY

) and

cycle-consistency loss (LCX
, LCY

) have been widely used before in the auto-encoders

literature before [Zhao et al., 2017, Hoffman et al., 2018, Dwibedi et al., 2019, Bank

et al., 2023].
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5.1.1 Alignment Learning

To align the state-action spaces of two RL domains, the alignment of the pair of state

spaces is performed independently of the alignment of the actions spaces. In each of

these processes, two encoders and two decoders are trained to minimize Eq. 5.9 (see

in Fig. 5.2). Regarding the training data, let DX = {(sxt , axt , rxt )|(sxt , axt , rxt , sxt+1) ∼
MDPX}, DY = {(syt , ayt , ryt )|(syt , ayt , ryt , syt+1) ∼ MDPY } be a pair of normalized

data sets sampled from MDPX and MDPY , where rxt ∈ R is the immediate reward

observed after executing action axt ∈ Rp from state sxt ∈ Rq in MDPX , and the same

meaning applies for syt ∈ Rm, ayt ∈ Rn, ryt ∈ R in MDPY . Then, the data sets used to

train alignment of the state and action spaces (DSx, DSy and DAx, DAy respectively)

are defined as follows:

DSx = {(xi, rxi) | xi = sxi , r
xi = rxi , (s

x
i , a

x
i , r

x
i ) ∈ DX , i = 1, ..., |DX |}

DSy = {(yj, ryj) | yj = syj , r
yj = ryj , (s

y
j , a

y
j , r

y
j ) ∈ DY , j = 1, ..., |DY |}

DAx = {(xi, rxi) | xi = axi , r
xi = rxi , (s

x
i , a

x
i , r

x
i ) ∈ DX , i = 1, ..., |DX |}

DAy = {(yj, ryj) | yj = ayj , r
yj = ryj , (s

y
j , a

y
j , r

y
j ) ∈ DY , j = 1, ..., |DY |}

That is, although the mapping functions that align the state and action spaces are

trained separately, the reward associated with each state-action pair is the same in

both processes.

5.1.2 Similarity-based Data Pair Matching

Computing the alignment loss function, as described in Eq. 5.9, requires evaluating

|Dx| · |Dy| instances for each learning update of the encoder models. This can

become a practical limitation when using large data sets. Thus, to make the learning

method more flexible in terms of computational processing time, we present an

approximation of Eq. 5.2 in Eq. 5.10:

LA ≊L̃A =
∑

(x,rx,y,ry)∈D(Dx,Dy)

−Cos(fθ(x), gω(y))W (rx, ry) (5.10)
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Domain X Encoder and Decoder

Domain Y Encoder and Decoder

Loss Functions

Feedforward Connections

Gradients

Figure 5.2: The pair of encoder neural networks (fθ, gω) are trained to align the input
spaces (X, Y ) with the minimization of Eq. 5.9, as well as the regularization terms. On
the other hand, the reconstruction and cycle-consistency losses encourage both pairs of
encoder-decoders (fθ, f−1

ϕ and gω, g
−1
ψ ) to retrieve the inputs (x, y) back from the latent

space (i.e., Eq. 5.7) and from the other domain (i.e., Eq. 5.8), respectively.

D(Dx, Dy) ={(x, rx, y, ry) | ∀(x, rx) ∈ Dx, (y, r
y) = argmax

(yi,ryi )∈Dy

W (rx, ryi)} ∪

{(x, rx, y, ry) | ∀(y, ry) ∈ Dy, (x, r
x) = argmax

(xi,rxi )∈Dx

W (rxi , ry)}

where W (rx, ry) is the similarity coefficient (Eq. 5.3) and D(·, ·) a function that

returns a subset of the training data set Dx×Dy, in which every data point x ∈ Dx

is paired with the data point y ∈ Dy that has the most similar reward ry to that

of x (i.e., rx). And vice versa, every data point y ∈ Dy is paired to the data point

x ∈ Dx with the most similar reward. By pairing points by checking their most

similar match (based on their rewards), the inclusion of every data point is ensured.

That is, since the alignment loss function returns the largest values when very

similar data pairs are mapped near to each other in the latent space, the approxi-

mation in Eq. 5.10 prioritizes evaluating only the closest pair for every data point

in the original data sets.

5.1.3 Geometry Preserving Neighborhood Selection

In addition to the approximation introduced in Section 5.1.2, the geometry pre-

serving loss function is also approximated to alleviate the computational burden of
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computing it in its original form (see Eq. 5.4). Instead of evaluating the distance in

the latent space of every data point mapped from the same domain, each instance

is evaluated against its k-nearest neighbors, as described in Eq. 5.11:

LG ≊ L̃G =
∑

(xi,rxi )∈Dx

∑
(xj ,r

xj )∈K(xi,Dx,k)

[Cosd(xi, xj)− Cos(fθ(xi), fθ(xj))]
2

|Dx| · k
+

∑
(yi,ryi )∈Dy

∑
(yj ,r

yj )∈K(yi,Dy ,k)

[Cosd(yi, yj)− Cos(gω(yi), gω(yj))]
2

|Dy| · k

(5.11)

where Cosd(·, ·) is defined in Eq. 5.5, k the number of neighbors to include in

each data point’s geometry preserving computation, and K(x,D, k) a function that

returns the k nearest neighbors [Fix, 1985] (using the Euclidean distance) of a vector

x from data set D.

5.2 Dynamics-based Inter-Task Similarity Measure

Once the mapping functions that align the state and action spaces of a pair of tasks

have been learned, they are used to evaluate the similarity between those tasks

(under the assumption that their reward functions are dense, rich and normalized).

Let DX the data set recollected while learning a policy πX for the source task TX =

⟨SX , AX , DX , πX⟩, DY be a data set sampled by interacting with the environment

EY from the target task TY = ⟨SY , AY , EY ⟩, and (fS, fA, gS, gA), (f
−1
S , f−1

A , g−1
S , g−1

A )

the encoders and decoders that align their state and action spaces, respectively. The

following approximate models are trained (with data sets DX , DY ) to predict the

immediate reward in the source and target task:

R̂X : SX × AX → R

R̂Y : SY × AY → R

whereas Φ̂X : SX × AX → SX is trained with DX to predict the next state in the

source task. Then, the inter-task similarity between tasks TX and TY is given by
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Eq. 5.12:

Sim(TX , TY ) = 1−
∑

sy ,ay ,s′y ,ry∈DY

∑
a′x∈Ax,a′y∈Ay

|R̂X(s
′
x, a

′
x)− R̂Y (s

′
y, a

′
y)|

|DY | · |Ax|

s′x = Φ̂X(f
−1
S ◦ gS(sy), f−1

A ◦ gA(ay))
Ay ∼ U(AY )

Ax = f−1
A ◦ gA(Ay)

(5.12)

where s′x is the next-state prediction according to domain X’s transition model,

given a state and action mapped from domain Y , Ay a set of domain Y actions

sampled from a uniform distribution U(·), and Ax their mapping to domain X’s

action space. In other words, Eq. 5.12 evaluates how similar the reward distributions

are between the states reached from equivalent state-action pairs, according to the

learned mapping functions (see Fig. 5.3).
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Figure 5.3: Interactions between the knowledge transfer method main stages. Once
learned, the alignment mapping functions (f, g), target task data set (DY ) and re-
ward/transition approximation models (Φ̂X , R̂X , R̂Y ) are used to compute the inter-task
similarity. Finally, an off-policy data set (i.e., data that will be used for learning purposes
by a policy different than the one that generated the data) is sampled from the target do-
main with the policy from the most similar source task, by mapping target states (to the
source domain) so they are fed to the source policy πksrc and mapping the selected action
back to the target domain.

5.3 Similarity-based Knowledge Transfer

To transfer knoweldge between tasks from different domains, the Similarity-based

Knowledge Transfer (SimKnoT) method is presented in Algorithm 1.

Algorithm 1 starts by performing standard RL exploration in the target task for

a fixed number of steps and stores the sampled data in a buffer B (lines 1-5). Then,

the sampled data is used to learn the alignment mapping functions, and measure

similarity, between the target task and each source task, with their respective data

sets (lines 6-11). A data set is sampled (line 12), in the target domain, with the

policy from the most similar source task with Algorithm 2 and stored in buffer B. In

order to assimilate the knowledge transferred by the source policy, the target policy

updates its parameters for a fixed number of steps, without adding new data to the

buffer B. Finally, the target policy finishes its training process following a standard
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RL setting.
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Algorithm 1 SimKnoT : Similarity-based Knowledge Transfer

Input: Tsrc = {T 1
src, ..., T

N
src}, Ttgt = ⟨Stgt, Atgt, Etgt⟩

Output: πtgt
▷ Train in RL setting and sample data

1: D ← {}, B ← {}, πtgt ← InitPolicy()
2: for i← 1 to IpreTL do
3: Sample transition (s, a, s′, r) with (πtgt, Etgt) and add it to B and D
4: Optimize RL objective of πtgt with respect to B
5: end for

▷ Learn alignment and measure similarity
6: Sim← [ ], Models← [ ]
7: for i← 1 to N do
8: Optimize Eq. 5.9 with (D,GetData(T i

src)) and add the alignment
models to Models

9: Compute similarity (Eq. 5.12) with (D,GetData(T i
src)) and add the

similarity score to Sim
10: end for
11: Get index of most similar task from Sim and store it in simID

▷ Sample data with transferred policy and update target policy
12: πtgt, B ← TransferPolicy(Tsrc,Models, simID, πtgt, B,Etgt)

▷ Update πtgt without adding data to the replay buffer
13: for i← 1 to E do
14: Optimize RL objective of πtgt with respect to B
15: end for

▷ Train in RL setting
16: for i← 1 to IposTL do
17: Sample transitions (s, a, s′, r) with (πtgt, Etgt) and add it to B

Optimize RL objective of πtgt with respect to B
18: end for
19: return πtgt
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Algorithm 2 Source Policy Transfer to Target Domain
Input: Tsrc,Models, simID, πtgt, B,Etgt

Output: πtgt, B
1: function TRANSFERPOLICY(Tsrc,Models, simID, πtgt, B,Etgt)

▷ Source policy and alignment models
2: πsrc ← GetPolicy(T simID

src )
3: ϕSsrc, θ

S
tgt, ϕ

A
tgt, θ

A
src ← GetAlignmentModels(Models[simID])

▷ Perform off-policy RL with source policy
4: for i← 1 to ITL do
5: Sample (s, atgt, s

′, r) from Etgt, where asrc = πsrc(ϕ
S
src ◦ θStgt(stgt))

atgt = ϕAtgt ◦ θAsrc(asrc), and add it to B
6: Optimize RL objective of πtgt with respect to B
7: end for
8: return πtgt, B
9: end function
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5.4 Experiments

5.4.1 Experimental Setting

The objective of the present experiments is to evaluate the SimKnoT algorithm

regarding the following questions:

1. Can the similarity measure identify inter-task similarity in the cross-domain

setting?

2. Can SimKnoT perform positive transfer among tasks with no semantic rela-

tion?

3. Does the transferred knowledge impact the target learner’s performance?

To evaluate SimKnoT, six control-based tasks with different state-action spaces,

and significant morphological differences among some tasks, were selected from the

Gymnasium Suite [Todorov et al., 2012, Towers et al., 2023]: Half cheetah, hop-

per, inverted double pendulum, inverted pendulum, swimmer and walker-2D (see

Fig. 5.4). The purpose of using a set of evaluation tasks with considerably differ-

ent morphology is to test the ability of SimKnoT to autonomously select a source

of knowledge that will benefit the target learner, despite some of the available op-

tions may hurt the target agent if selected (i.e., avoid negative transfer). Moreover,

given that the problem setting addressed by this research is focused on tasks with

rich/dense reward functions (see Section 1.6), the original reward function in the

inverted pendulum task (which is sparse), was replaced by the function described by

Eq. 5.13:

RIP Dense(θ, θ̇) = CAlive − 0.01 · sin(θ)2 − (cos(θ)− 1)2 − 0.005 · θ̇2 (5.13)

where CAlive is a bonus for staying alive, the sin, cos terms penalize the angular

distance between the pole and the perfect vertical position, whereas the last term

penalizes the angular velocity of the pole. The value of the CAlive constant is the

same as in the inverted double pendulum reward.
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(a) Half Cheetah (b) Hopper (c) Inverted Double Pendulum

(d) Inverted Pendulum (e) Swimmer (f) Walker2D

Figure 5.4: Set of evaluation tasks: Half Cheetah, Hopper, Inverted Double Pendulum
(IDP), Inverted Pendulum (IP), Swimmer and Walker2D.

To contextualize the proposed knowledge transfer method, we use the Soft-

Actor Critic (SAC) algorithm [Haarnoja et al., 2018] (implemented by MushroomRL

[D’Eramo et al., 2021]), and a modification of SAC in which the agent optimizes with

respect the current data in the replay buffer, without adding new data, for multiple

iterations (as SimKnoT does in Algorithm 1 in lines 13-15), which we refer as SAC

with fixed-buffer optimization (SAC+FBO). To evaluate the impact of the selected

source task, we evaluate two variations of SimKnoT: SimKnoT MSS and SimKnoT

LSS, which select the most similar source and the least similar source, respectively.

Additionally, we compare SimKnoT to our implementation of the Adaptive

Policy Gradient Transfer (APGT) method proposed in [Zhang et al., 2024]. The

APGT method, which is based on the proximal policy optimization (PPO) algorithm

[Schulman et al., 2017], uses target-to-source state mappings (provided by the user)

to feed states from the target task to the critic (i.e., state value estimator) of each

source agent to measure similarity and transfer knowledge to the target agent (see
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Figure 5.5: The APGT method proposed in [Zhang et al., 2024] employs source task se-
lection module to identify the most similar source task based on the value of a sequence of
states seq(sT ), contained the archive A (a FIFO list), which are mapped to the state space
of each source task state space. The source critic that produced the sequence of state-
values with the lowest Euclidean distance to the sequence of state values produced by the
target critic seq(V T ) is selected as the most similar source task. Then, in the knowledge
transfer module, the advantage yielded by the source critic AS is added to the one pro-
duced by the target critic AT to bias the target actor’s θT training process. Throughout the
training process the archive A is updated with the latest trajectories observed by the target
policy, and the similarity measurement and knowledge transfer processes are repeated.

Fig. 5.5 for an overview of APGT). We used the same parameters as in the original

publication [Zhang et al., 2024]. For the state mappings between each task, we hand

coded mappings based on the physical similarity between variables (e.g., mapping

the knee angle of the leg in Hopper to both knee angles in Walker2D). Also, in each

knowledge transfer experiment, APGT has access to all source tasks, including the

same task as in the target domain, whose state variables are mapped by the identity

function.

Also, the average performance of a random policy and a policy trained from

scratch for 10 million environment steps, which serve as bottom and top performance

references.

In each experiment, the source task policies have been trained for 1 million
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(hopper, inverted pendulum, inverted double pendulum) and 3 million (half chee-

tah, swimmer, walker-2D) environment steps, resulting in a trained policy and a

data set of (state, action, nextstate, reward) observations, which is used to train

the transition and reward approximation models (i.e., ϕ̂, R̂X from Section 5.2). On

the other hand, in the target task SAC, SAC+FBO, SimKnoT LSS/MSS (SAC as

base algorithm) and APGT are trained for 950,000 environment steps. Within the

training process, SAC+FBO and SimKnoT perform certain processes that SAC does

not:

• Initial Sampling Period: SimKnoT uses the observations gathered during the

first environment steps (10,000 in IP, IDP and 50,000 in te other tasks) to train

the approximated reward model (R̂Y in Section 5.2), learn the alignment func-

tions and measure the similarity between the target domain and each source

domain.

• Knowledge Transfer Period: SimKnoT transfers actions drawn from the most

similar source task policy to interact with the target environment for the next

10,000 environment steps in IP, IDP, 100,000 environment steps in H. Cheetah

and 25,000 environment steps in the other tasks.

• Fixed-Buffer Optimization: At the end of the knowledge transfer period,

SAC+FBO and SimKnoT perform 4,000 learning updates with respect the

current data in the replay buffer.

To reduce the time required to train the alignment models, the approximations

presented in Sections 5.1.2 and 5.1.3 are incorporated in the original loss to produce

the approximated ReBA loss in Eq. 5.14:

L̃ReBA = λ1 · L̃A + λ2 · L̃G + λ3 · (LRX
+ LRY

)

+ λ4 · (LCX
+ LCY

) + λ5 · (∥fθ(x)∥2 + ∥gω(y)∥2)
(5.14)

where L̃A and L̃G represent the approximations presented in Eq. 5.10 and Eq. 5.11,

respectively. Thus, for every experiment, Eq. 5.9 is replaced by Eq. 5.14 in line

8 of Algorithm 1. For more details on the architectures and parameters used to

train the alignment models, reward/transition approximated models and policies,

see appendix A.
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5.4.2 Results

Figure 5.6 shows the similarity scores obtained after computing Eq. 5.12 between

each pair of source (column) and target (row) task where two tasks (i.e., inverted

pendulum, swimmer) out of six were successfully identified as the most similar with

their source twin. Moreover, although the remaining target tasks (i.e., half cheetah,

hopper, walker-2D, inverted double pendulum) were matched with different task,

their source counterpart was ranked as the second most similar, as shown in the

main diagonal in Fig. 5.6. However, it is worth noting that given that SimKnoT

does not have access to the task IDs/labels (see the research scope and restrictions

in Section 1.6) the matching source and target tasks is done based on the limited

amount of data sampled while training.

In relation to the knowledge transfer results, Fig. 5.7 shows the performance

of SimKnoT MSS, SimKnoT LSS, SAC, SAC+FBO and APGT in each target task,

averaged over 5 independent trials and smoothed with a uniform and symmetrical

centered window of length 15. Similarly, Fig. 5.9 shows the results of transferring

knowledge with SimKnoT MSS to IP and IDP with 50,000 and 100,000 environment

steps in the initial sampling period and the knowledge transfer period, respectively.

Table 5.1 shows the periods (within the training process) during which a method had

the top performance in the target task and also had a statistically significant higher

performance than the other methods, with a confidence of 0.95 (i.e., p-value = 0.05),

using the t-test due to the small samples.

5.4.3 Discussion

Regarding the first question (i.e., Can the similarity measure identify inter-task

similarity in the cross-domain setting? ), the ability to pair similar tasks together is

assessed in terms of how these pairings promote positive transfer. Even though the

similarity measure described in Section 5.2 did not pair every target task with its

source copy, using the most similar task for each target task allowed SimKnoT MSS

to outperform SAC (i.e., learning from scratch) in five out of six transfer experi-

ments. That is, given most of the transfer experiments resulted in positive transfer,

it is safe to say that the similarity measure can detect inter-task similarity for knowl-

edge transfer purposes. Moreover, by comparing the performance of SimKnoT MSS
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Table 5.1: Uninterrupted periods of highest performance and statistically significant supe-
riority (with a p-value = 0.05) of a method over the others. The score on the left side of
the forward slash is the average performance in the period specified by the interval on the
right side of the slash. For methods that were never the top performer on a task (with sta-
tistical significance) a hyphen is shown (i.e., −). The period with the highest performance
in each target task is in bold font.

Method Cumulative Reward ↑+ / Start Env. Steps ×103 ↓+, End Env. Steps ×103
H. Cheetah Hopper IP Swimmer Walker2D IDP

SAC – – – – –
9351.5/
780, 781

SAC+FBO
35.2/
90, 91

182.9/
45, 46

373.6/
16, 21 –

235.2/
50, 53

90.2/
10, 21

APGT –
229.3/
60, 63 – – – –

SimKnoT
LSS

-234.8/
1, 2 – – – – –

SimKnoT
MSS

6531.8/
948, 949

2014.9/
944, 945

9998.6/
302, 303 –

1194.3/
933, 937

9357.1/
229, 230

Figure 5.6: Similarity matrix computed with Eq. 5.12, where the higher the value, the
more similar two tasks are. Rows and columns represent target and source tasks, respec-
tively. The first and second most similar source task to each target task are specified with
a label.
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Figure 5.7: Episodic cumulative reward of SimKnoT MSS/LSS, SAC, SAC+FBO and
APGT in each target task (averaged over 5 trials). The source task selected by SimKnoT
MSS and SimKnoT LSS are shown in blue and magenta in the title of each graph, re-
spectively. The vertical dotted line shows the timestamp at which the initial sampling
period ended and the knowledge transfer period started, while the vertical dashed line
shows when the knowledge transfer period ended and the fixed-buffer optimization was
performed. Top and bottom horizontal lines show the average performance of a policy
trained with 10 million observations and a random policy.
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Figure 5.8: Episodic cumulative reward of SimKnoT MSS/LSS, SAC, SAC+FBO and
APGT in H. Cheetah and Swimmer (averaged over 5 trials). The source task selected by
SimKnoT MSS and SimKnoT LSS are shown in blue and magenta in the title of each
graph, respectively. The vertical dotted line shows the timestamp at which the initial
sampling period ended and the knowledge transfer period started, while the vertical dashed
line shows when the knowledge transfer period ended and the fixed-buffer optimization
was performed. Top and bottom horizontal lines show the average performance of a policy
trained with 10 million observations and a random policy.
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Figure 5.9: Episodic cumulative reward of SimKnoT MSS, SAC and SAC+FBO in IP and
IDP (averaged over 5 trials). The vertical dotted line shows the timestamp at which the
initial sampling period ended and the knowledge transfer period started, while the vertical
dashed line shows when the knowledge transfer period ended and the fixed-buffer opti-
mization was performed. Top and bottom horizontal lines show the average performance
of a policy trained with 10 million observations and a random policy.
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and SimKnoT LSS, it is safe to say that the selecting the most similar task (accord-

ing to Eq. 5.12) affects the outcome of transferring knowledge, as by transferring

knowledge from the least similar task caused a negative transfer in most target tasks.

Additionally, SimKnoT was able to identify a source task and safely transfer

knowledge from it to the target agent, despite the variety of options available. On the

other hand, the APGT method [Zhang et al., 2024] was not able to achieve a similar

result. Even though APGT had at its disposition a trained agent in the same task

as in the target domain, with the identity function mapping state variables from the

target task to the source task, the presence of other source tasks affected its ability

to ignore sources of negative transfer in every target task.

In relation to the second question (i.e., Can SimKnoT perform positive trans-

fer among tasks with no semantic relation? ), in addition to transferring knowledge

across tasks with shared high-level features (e.g., Hopper and Walker2D), by trans-

ferring knowledge from Swimmer (a 3-limb crawling robot) to H. Cheetah (a 9-limb

dog like robot) SimKnoT shows its ability to improve the performance of a target

learner, despite the lack of discernible commonalities as H. Cheetah not only deals

with inertial forces but also with the constant effect of gravity (see the upper-left

graph in Fig. 5.7 and left graph in Fig. 5.8).

Although SimKnoT is not the first work to report positive transfer across tasks

with significantly different structures (e.g., [Raychaudhuri et al., 2021] successfully

transferred knowledge from the Mujoco Ant task to H. Cheetah), to the best of our

knowledge, SimKnoT is the first method to achieve it by autonomously choosing the

source of knowledge from a widely varied set of sources. With such ability, SimKnoT

presents an option to automatically select and transfer knowledge in scenarios where

an expert is not available due to the sheer number of tasks that need to be solved,

e.g., decreasing the sample complexity of solving every instance in a database of RL

tasks [Ramos et al., 2021] by reusing useful data when possible.

Concerning the third question (i.e., Does the transferred knowledge impact

the target learner’s performance? ), by comparing SimKnoT MSS to the SAC+FBO

baseline we can assess the impact of using the transferred policy to explore the target

environment. Considering that Deep RL policies and value functions are modeled

by neural networks, one way to improve the model’s performance is by simply per-

forming more updates on the model’s parameters (i.e., weights in a neural network)

with respect to the available data. Therefore, to assess the impact of the data rec-
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ollected by SimKnoT MSS in the target task, we compare its performance against

SAC+FBO, which is a SAC agent that performs the same number of parameter

updates as SimKnoT MSS, at the same instant during the training process.

As shown in Fig. 5.7 and Table 5.1, SimKnoT MSS achieves a larger cu-

mulative reward in fewer environment steps than SAC+FBO in five out of the six

knowledge transfer experiments (i.e., H. Cheetah, Hopper, IP, IDP and Walker2D).

This result suggests that the increased number of learning updates is not the only

process responsible for outperforming the SAC baseline, but also the data used in

the additional learning updates.

On the other hand, the duration of the initial sampling period and knowledge

transfer period play a critical role in the success of SimKnoT. As shown in Fig. 5.9,

by sampling data and transferring knowledge at a later stage in the training process,

the SAC+FBO outperforms SimKnoT MSS in the IP and IDP tasks. We suspect

that in tasks with simpler dynamics, small sampling and transferring periods provide

a better way to improve th RL base agent, while in more complex tasks longer periods

will be necessary as more data will be likely required to train a good approximation of

the reward and transition models (which are used to measure inter-task similarity).

Moreover, another critical aspect in the success of SimKnoT is that tasks have a

dense and rich reward function. To show the dependence of SimKnoT on rich reward

models we created a copy of each evaluation task with a sparse reward function. In

the case of H. Cheetah, Hopper, Swimmer and Walker2D a +1 is observed if the

agents moves forward, 0 otherwise. For IP and IDP, a +1 is observed if the (upper)

pole is standing upright (within a certain angle limit), 0 otherwise. Figure 5.10

shows the similarity scores between IP and every task (including itself), under the

same setting described in Section 5.4.1 (except the reward function). These results

show how, in the sparse setting, IP no longer is matched with itself as the most

similar, but IDP is ranked as the least similar task by a wide margin, despite it is

the second most similar source task in the dense reward setting.

Additionally, to evaluate the contribution made by each one of the proposed

loss terms (i.e., L̃A in Eq. 5.10 and L̃G in Eq. 5.11), in Table 5.2 the similarity scores

between two instances of the Inverted Double Pendulum task are reported for the

proposed ReBA loss (see Eq. 5.14) and multiple variations. In each experiment, the

source and target data sets had a size of 1 million and 50,000 observations, respec-

tively. It is worth noting that the similarity score slightly declines if the alignment or
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Figure 5.10: Similarity scores between the IP target task and every source task when both
the target and source tasks have a dense/rich (blue) and sparse (orange) reward.

geometry preserving terms are removed from ReBA. However, if both terms are ex-

cluded (i.e., leaving the regularization, reconstruction and cycle-consistency losses

to train the alignment mapping functions), then the similarity score between two

identical tasks plummets. Thus, it is safe to argue that both terms play an essential

role in the unsupervised selection of source tasks, which in turn is the cornerstone

of SimKnoT.
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Table 5.2: Comparison of the alignment training setting (with IDP as source and target
task) used in the transfer experiments (first row) and multiple variations of ReBA without
the alignment (w/o A) and geometry preserving (w/o GP) terms. The rightmost column
shows the similarity score as defined in Eq. 5.12.

Loss Similarity
ReBA 0.9401

ReBA w/o A 0.9024
ReBA w/o GP 0.9305

ReBA w/o A, GP -0.2037

5.5 Chapter Summary

In this chapter, a knowledge transfer method based on inter-task similarity was pre-

sented. Using the immediate reward of two tasks as alignment criterion, SimKnoT is

able to match state-action spaces in a way that allows both selecting and transferring

knowledge across different domains. Although SimKnoT is not the first method to

achieve positive transfer in the cross-domain setting, to the best of our knowledge it

is the first method to achieve it when a varied set of source tasks is available.



Chapter 6

Lifelong Cross-Domain Reinforcement
Learning

In lifelong learning settings, the knowledge that is acquired after learning in a se-

quence of tasks is stored for two main reasons:

1. To remember how to solve previous tasks (i.e., avoid catastrophic forgetting),

and

2. To learn future tasks faster (in comparison than learning from scratch) by

reusing the stored knowledge

Given that the lifelong learning agent does not know how many tasks it must

learn, nor the order in which tasks will be presented to the agent, it is crucial to have

knowledge consolidation and transfer methods capable of producing positive transfer

without forgetting older knowledge. Thus, in this chapter, a lifelong learning agent is

presented for the cross-domain reinforcement learning setting. Section 6.1 describes

a lifelong learning system based on the knowledge transfer method introduced in

Chapter 5, whereas Section 6.2 presents an experimental evaluation of the source

knowledge selection and transfer abilities of the proposed lifelong learning system.
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6.1 Method Description

In order to address the lifelong reinforcement learning setting, we propose adapt-

ing the SimKnoT method (see Section 5.3), that originally works with a fixed set

of source tasks, to progressively add the policy and training data, acquired from

learning in the latest task, to its set of available source tasks, as shown in Fig. 6.1.

Because SimKnoT is a knowledge transfer method that autonomously selects what

it should transfer from a set of options to the target task, it is well suited to be

evaluated in a sequential setting such as lifelong reinforcement learning.

Considering that the SimKnoT-based lifelong learning agent consolidates knowl-

edge in the most naive way (i.e., storing the policy and data without performing a

transformation to them), one would suspect that catastrophic forgetting (i.e., for-

getting how to solve previous tasks) does not represent a threat, as every piece of

knowledge has been stored intact in the knowledge base. However, given that tasks

are not labeled (i.e., the system can not determine if the current task has already

been stored in its knowledge base), being able to find a source task among its contin-

ually growing knowledge base represents a challenge, even if knowledge is stored in

its original form. On the other hand, by consolidating knowledge without perform-

ing any type of compression, the SimKnoT-based lifelong learning agent may not be

a feasible solution for large sequences of tasks, since the training data set must be

saved in the knowledge base for each task in the sequence.

Thus, in Section 6.2 we present a set of experiment that evaluate the perfor-

mance of the SimKnoT-based lifelong reinforcement learning system.
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Figure 6.1: Lifelong reinforcement learning (LRL) system based on the SimKnoT knowl-
edge transfer method (see Section 5.3). Every time the SAC algorithm finishes learning
a task, the learned policy (πtgt) and training data (D) are stored in the knowledge base.
Then, when the next task is presented to the system, SimKnoT transfers the policy adapted
from the most similar source task (π′

src) among all the tasks stored in the continually up-
dated knowledge base.

6.2 Experiments

6.2.1 Experimental Setting

The objective of the present experiments is to evaluate the SimKnoT-based lifelong

reinforcement learning agent in the following aspects:

1. Can the agent select source tasks that help learning faster than learning from

scratch in the agent’s current task, as the number of tasks in the knowledge

base grows?

2. How does the agent perform in sequences of tasks of unknown order?

To evaluate the SimKnoT-based lifelong learning agent, the same set of six

tasks used for the evaluation of SimKnoT will be used (see Fig. 5.4): H. Cheetah,
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Hopper, Inverted Double Pendulum, Inverted Pendulum, Swimmer and Walker2D.

Additionally, the same set of parameters used for the knowledge transfer evaluation

of SimKnoT in Section 5.4.1 are used in these experiments.

Since the source-selection method used by SimKnoT (i.e., the similarity func-

tion from Section 5.2) does not have a way to detect if none of the available source

tasks is similar enough to improve the target task learner, in each experiment the

lifelong learning agent starts with a knowledge base that contains six source tasks,

one instance of each evaluation task (see Fig. 5.4). Then, a sequence of 12 tasks

(two instances per each evaluation task) will be fed to the agent in an unknown

order. The goal of the experiment is to evaluate which source task is selected as the

most similar to each target task.

After the agent selects the most similar source task to the current task, the

policy and data associated to learning the target task are added to the knowledge

base. However, the alignment models (trained with ReBA), the policy and data of

every source task have been learned/sampled a priori. Only the data used sampled

in the target task to measure the similarity with each source task is sampled online

with a SAC agent. A total number of 100 randomly generated permutations are

employed, and the number of times each source task is ranked as the most similar

to each target task is reported.

On the other hand, to evaluate the knowledge transferring performance of the

SimKnoT-based LRL agent, 10 sequences of length 6 in which each evaluation tasks

appears exactly once, were randomly generated and presented to the LRL agent for

it learn in each task. The performance of the LRL agent was measured by the total

reward (i.e., area under the curve) ratio (see Eq. 6.1), as presented in [Taylor and

Stone, 2009a]:

r =
total reward with transfer − total reward without transfer

total reward without transfer
(6.1)

where the total reward with transfer corresponds to SimKnoT MSS’s performance,

while the total reward without transfer corresponds to SAC’s performance. Thus,

values above and below 0.0 for Eq. 6.1 indicate that positive and negative transfer

was produced, respectively. To evaluate the performance of the LRL agent in a

sequence of tasks, the sum of the total reward ratios obtained in each task.
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6.2.2 Results and Discussion

Regarding the first question (i.e., Can the agent select source tasks that help learning

faster than learning from scratch in the agent’s current task, as the number of tasks

in the knowledge base grows? ), through the total number of permutations, the source

task selected for each target task remained constant. That is, regardless of adding

more source tasks to the knowledge base, the similarity function always chose the

same source task as the most similar one for each target task. Table 6.1 shows

the most similar task for each target task in the lifelong learning setting under the

Growing KB column. Additionally, a comparison is made against the most similar

task selections from the knowledge transfer experiments from Chapter 5.

The results from Table 6.1 show that in half of the set of target tasks, the

same source tasks was ranked as the most similar one as in the knowledge trans-

fer experiments. However, regarding the other three target tasks, Inverted Double

Pendulum and Walker2D selected their source counterpart as the most similar task

in the lifelong learning setting. Concerning the consistency of the source task selec-

tion through the set of permutations of target tasks, and the source tasks selected

for each target task, the SimKnoT method shows potential to be part of a lifelong

reinforcement learning system.

In relation to the second question (i.e., How does the agent perform in se-

quences of tasks of unknown order? ), the average sum of total reward ratios (see Eq.

6.1) over the 10 sequences of tasks is 3.062 ± 0.381. Being a score above 0.0 shows

that the overall performance of the SimKnot-based LRL agent was positive, despite

that the agent was not guaranteed to have in its knowledge base a source task that

would benefit the current target task. Additionally, Table 6.2 shows two sequences

used for the evaluation of the agent, while Fig. 6.2 show the individual total reward

ratio (see Eq. 6.1) obtained in each target task. The task sequences shown Table 6.2

and Fig. 6.2 show that despite the overall effect of SimKnoT may be positive, there

are scenarios in which not having learned a task before that is related to the current

task can be significantly harmful (e.g. in sequence A where knowledge is transferred

from Swimmer to IDP, or in sequence B where SimKnoT transfers knowledge from

H. Cheetah to IDP).

Therefore, even though SimKnoT is able to avoid negative transfer in certain

situation (i.e., when there is a source task that is related to the target task), it still
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Table 6.1: Most similar source task for each target task comparison between a static
knowledge base (KB), i.e., the knowledge transfer setting from Section 5.4.1, and the con-
tinually growing knowledge base in a lifelong learning agent. Rows that differ between
the static and growing knowledge base settings are bold. IDP and IP are abbreviations for
inverted double pendulum and inverted pendulum respectively.

Target Task
Most Similar Source Task
Static KB Growing KB

H. Cheetah Swimmer Hopper
Hopper Walker-2D Walker-2D

IDP Walker-2D IDP
IP IP IP

Swimmer Swimmer Swimmer
Walker-2D Hopper Walker-2D

is prone to fail identifying that none of the available sources of knowledge can help

learning better/faster the target task. Moreover, SimKnoT has a scalability problem

regarding two aspects:

1. Memory: Since no knowledge consolidation process is performed, storing every

data instance observed through out the LRL agent’s lifespan is not a feasible

solution, particularly if it is expected to operate for long periods of time.

2. Computational Time: Training the encoder-decoder neural networks respon-

sible for mapping states/actions is slow. Training with a data set of 1 million

observations takes 7.53± 0.48 hours for an epoch (i.e., a single iteration over

the complete data set) to finish.

Thus, future work for the SimKnoT-based LRL include addressing the compu-

tational complexity issues listed above. For the memory problem, training prototype

instances to cover as much information possible from a data set is a viable option

to decrease the memory requirements [Liu et al., 2023]. On the other hand, we

have observed that even with the approximation presented in Section 5.1.3, the gra-

dients for the geometry preserving loss are the most expensive terms to compute.

Hence, future iterations of SimKnoT may involve replacing the effect the geometry

preserving loss has in the mappings with a penalty term that is more efficient to

compute.
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Table 6.2: Examples of lifelong learning sequences (see Fig. 6.2 for their performance).
Each row represents a task sequence, while each columns show the order in which tasks
were presented to the LRL system (from left to right). Each cell shows the source task
from which knowledge was transferred to the target task at the time.

Task
Sequence

Task ID
0 1 2 3 4 5

A Swimmer
Swimmer

to IDP
Swimmer to
Walker2D

Walker2D
to Hopper

Swimmer
to IP

Swimmer to
H. Cheetah

B H. Cheetah
H. Cheetah
to Hopper

Hopper
to IP

H. Cheetah
to Swimmer

H. Cheetah
to IDP

Hopper to
Walker2D

0 1 2 3 4 5
Task ID
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B
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Figure 6.2: Total reward ratio performance in two sample sequences (see Table 6.2 for the
order of tasks and their source task selection) of the lifelong reinforcement learning (LRL)
system based on the SimKnoT method. Each row represents a task sequence, while each
columns show the order in which tasks were presented to the LRL system (from left to
right). The first task from each sequence does not show a score, since it is learned from
scratch without knowledge transfer.
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6.3 Chapter Summary

In this chapter, a lifelong reinforcement learning system was presented and evalu-

ated. After randomly generating multiple task sequences and passing them to the

SimKnoT method (introduced in Section 5.3) system’s robustness regarding the se-

lection source tasks was evaluated. It is worth noting that despite the how varied the

set of evaluation tasks was, the SimKnoT-based lifelong learning agent was able to

consistently select the same source of knowledge for each target task. On the other

hand, through a complete evaluation of SimKnoT-based as a LRL system, it was

shown the ability of the SimKnoT-based system to produce an overall positive effect.

The development of more memory-efficient knowledge consolidation strategies and

time-efficient training methods are left for future work.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In order to successfully transfer knowledge, it is necessary to identify the features in

which tasks are similar so that knowledge can be reused in a different scenario than

the one it was acquired/learned. In the case of tasks with different state-action spaces

(i.e., cross domain), finding equivalent attributes is particularly difficult, since there

is no clear correspondence between states and actions across tasks. Furthermore, if

there are multiple options from which knowledge can be transferred, finding a piece

of knowledge that benefits the learning agent entails an additional challenge.

In this research, we addressed the problem of cross-domain knowledge transfer

in lifelong reinforcement learning. With the development of a similarity measure

and knowledge transfer method (for tasks with discrete but different spaces) we were

able to associate unlabeled tasks, based on the similarity of partially learned action-

value functions. Moreover, we also developed a similarity-based transfer method for

tasks with continuous spaces that compares tasks based on their dynamics. These

knowledge selection and transfer strategies allow taking sequences of tasks defined

over different state and action spaces. The similarity measures were evaluated, in

tandem with their respective knowledge transfer methods, to estimate their ability

to serve as heuristic for the selection of sources of knowledge that accelerate the

learning process in target tasks.

A pair of similarity functions and knowledge transfer methods were developed,
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which address tasks with discrete and continuous state-action spaces. In the case of

discrete-space tasks, the similarity function measures how similar their action-value

functions are by comparing the distributions of states and actions (based on their q

values). In this way, tasks that were highly related to each other (e.g., Frozen Lake

and Frozen Lake 8×8) were matched by the similarity function and positive transfer

was achieved. On the other hand, the similarity function for the continuous-space

scenario compares the reward and state-transition dynamics. By learning a set of

inter-domain mappings, aligned based on the immediate reward, states and actions

from different representations could be directly compared and matched across spaces.

These developments allowed transferring policies across different control-oriented

problems and achieve higher performance with less training data. Thus, the first

and second specific objective have been completed, as the similarity functions and

knowledge transfer have been able to yield learning improvements by measuring

similarity and transferring knowledge across tasks from different domains.

Moreover, the evaluation of the knowledge transfer method (for the continuous-

space case) was performed in multiple sequences of tasks to determine its ability to

select reliable sources of knowledge for transfer purposes, as well as to learn tasks

faster (than learning from scratch) over task sequences. In the lifelong learning set-

ting, the knowledge transfer method consistently selected the same source of knowl-

edge for the target task, regardless of the order in which tasks were presented to the

system, and was able to produce a positive transfer over the task sequences. These

results, in conjunction with the knowledge transfer evaluation, show the method’s

proficiency to select and transfer knowledge despite the number and variety of avail-

able tasks. Therefore, with the knowledge transfer and source-selection for lifelong

learning evaluations the third specific objective, regarding the integration of a simi-

larity function and transfer method for their evaluation in the cross-domain lifelong

learning setting, has been completed.

With the integration and evaluation of the similarity function and knowledge

transfer method in the cross-domain lifelong reinforcement learning setting, the gen-

eral objective of this thesis has been fulfilled. Additionally, through the knowledge

selection and transfer results our hypothesis has been validated, since the knowledge

transfer method has shown its ability to accelerate learning from cross-domain re-

lated tasks, as well as to not forget what has been learned by adopting a store-all

approach. Furthermore, the developments presented in this document represent a

step towards more autonomous systems, where agents are responsible for deciding
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how previous experiences could be reused to accelerate learning when no supervision

is available.

Additionally, the following contributions were made:

• A systematic review of knowledge transfer methods focused on the cross-

domain reinforcement learning setting.

• Amodel-based similarity measure for source selection purposes in cross-domain

reinforcement learning.

• A knowledge transfer method for cross-domain reinforcement learning.

• A lifelong cross-domain reinforcement learning system.

7.2 Future Work

There are multiple directions in which the presented work could be furthered ex-

plored. As lifelong learning systems are expected to operate for an undetermined

number of tasks, having methods that consolidate knowledge in a memory efficient

way is an essential element for its scalability. Developing strategies that exploit re-

dundancy across tasks to save memory space can provide a way to remain memory

efficient while preventing catastrophic forgetting. Similarly, reducing the training

time required to learn the state-action mappings is necessary for the system to op-

erate in real-time task sequences (instead of taking days to train).

On the other hand, adapting the similarity function and knowledge transfer

method for image-based representations could potentially expand its applicability

to real-world scenarios. Given that training robots can require very large amounts

of data, transferring knowledge from image-based policies, or third-person point of

view demonstrations, would significantly widen the range of tasks robots could be

trained to solve, as knowledge transfer methods would be prepared to transfer from

multiple modalities.

Moreover, even though the proposed lifelong learning system is endowed with

the similarity function to select the best source task for the current target task, there

is no way for the agent to determine if none of the source tasks can produce positive
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transfer. Similarly, the agent does not have a method to evaluate the amount of

data needed to learn the mappings and measure similarity, according to the target

task’s complexity. Addressing these limitations could significantly mitigate the risk

of experiencing negative transfer.



Appendix A

Appendix A

In Tables A.1, A.2, and A.3 one will find the parameters used to train the re-

ward/transition approximation models, the alignment encoder-decoders and the

RL agents, respectively. For more detail on our implementation, please refer to

https://github.com/saSerrano/simknot.

Table A.1: Parameters used to train the neural networks that approximate the reward and
transition models, and that are used to measure similarity, as described in Eq. 5.12. |S|
and |Y | are the number of state and action variables, respectively.

Parameter
Value

Reward Model Transition Model
# Output Units 1 |S|

Output Act. Fun. Linear
No. of Hidden Layers 4

No. Units in Hidden Layers 64
Hidden Act. Fun. ReLU

# Input Units |S|+ |A|
Loss Function Mean Squared Error

Optimizer Adam
Batch Size 512

Epochs 300
Learning Rate 0.001

89

https://github.com/saSerrano/simknot


90 APPENDIX A. APPENDIX A

Table A.2: Parameters used to train the encoder-decoder pairs that are used to align the
state and action spaces. |X| and |Y | are the dimensionality of the two spaces that will be
aligned.

Parameter
Value

Encoder Decoder
# Input Units |X| max(|X|, |Y |) + 1

# Output Units max(|X|, |Y |) + 1 |X|
Output Act. Fun. Linear

No. of Hidden Layers 4
No. Units in Hidden Layers 64

Hidden Act. Fun. ReLU
Loss Function Approximated ReBA (Eq. 5.14)
Loss Weights λ1 = 1, λ2 = 1, λ3 = 1, λ4 = 0.5, λ5 = 0.05

δ in LA (Eq. 5.2) 0.25
k in L̃G (Eq. 5.11) 2

Optimizer Adam
Batch Size 512

Epochs 10
Learning Rate 0.01

Clipping Method Adaptive Gradient Clipping (AGC)
AGC Factor 0.01

Table A.3: Parameters used to train the policy in SAC, SAC+FBO and SimKnoT.

Parameter Value
Initial Replay 100

Batch Size 64
No. of Hidden Layers 2

No. Units in Hidden Layers 64
Hidden Act. Function ReLU
Warm up Transitions 100

τ 0.005
Learning Rate 0.001

Learning Rate α 0.001
Discount Factor 0.99

Optimizer Adam
Critic Loss Mean Squared Error
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