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Abstract

This thesis addresses different aspects of Depot-Free Multiple Traveling Salesperson

Problems (DFmTSPs), which generalize the Multiple Traveling Salesperson Problem

(mTSP). Unlike traditional mTSPs, DFmTSPs do not require the depot concept. Thus,

they pose unique challenges that need to be addressed. This research primarily focuses

on developing and analyzing mathematical models and algorithms for DFmTSPs.

This document introduces innovative and novel integer programs that depend

on the dummy depot concept. These integer programs show theoretical and practi-

cal advantages since they are general enough to be useful for the main variants of

DFmTSPs.

Additionally, a two-phase constructive heuristic and a memetic algorithm are

proposed to tackle large graph instances where exact methods are impractical. For the

two-phase constructive heuristic, the cluster-first route-second technique is used. In the

clustering phase, a heuristic for the Capacitated Vertex k-Center Problem is proposed.

This heuristic is based on a relationship with the Minimum Capacitated Dominating

Set. Afterward, for the routing phase, the farthest-first heuristic and Lin-Kernighan

heuristic were used, the latter is one of the best-known heuristics for the classical

Traveling Salesperson Problem (TSP) in the state-of-the-art.

For the memetic algorithm, a deep study of the diversity of solutions is performed.

Thus, diversity management techniques and novel genetic components are designed

and analyzed. The performance of these algorithms is rigorously tested on various

benchmark instances, demonstrating significant improvements in the quality of the

returned solutions. The results underline the practical viability of the proposed models

and algorithms, paving the way for future research in related optimization problems.
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Resumen

Esta tesis aborda diferentes aspectos de los Problemas de Múltiples Agentes Viajeros

sin almacenes (DFmTSPs, por sus siglas en inglés), los cuales generalizan el Problema

de Múltiples Agentes Viajeros (mTSP). A diferencia del mTSP tradicional, los DFmTSPs

no consideran el concepto de almacén. Por lo tanto, presentan retos únicos y específicos

que deben ser considerados para su resolución. Esta investigación se centra en el

desarrollo y análisis de modelos matemáticos y algoritmos para los DFmTSPs.

Esta investigación propone formulaciones de programación entera que son inno-

vadoras, novedosas, y que explotan el concepto de almacenes ficticios. Estas formula-

ciones ofrecen ventajas teóricas y prácticas, ya que son lo suficientemente generales

para abordar las principales variantes de los DFmTSPs.

Además, se proponen una heurística constructiva de dos fases y un algoritmo

memético para abordar instancias más grandes del estado del arte, en donde los

métodos exactos resultan ser poco prácticos. Para la heurística constructiva de dos fases,

se utiliza la técnica de cluster-first route-second (agrupar primero, enrutar después). En

la fase de agrupamiento, se propone una heurística para el Problema de Localización

de k Instalaciones Capacitadas (Capacitated Vertex k-center Problem), que se basa

en una relación con el Conjunto Dominante Mínimo con Capacidades (Minimum

Capacitated Dominating Set). Posteriormente, para la fase de enrutamiento se emplea

la heurísticas farthest-first y la heurística Lin-Kernighan, la cual es considerada una de

las mejores en el estado del arte para el problema clásico del Agente Viajero (TSP, por

sus siglas en inglés).

En cuanto al algoritmo memético, se realiza un estudio a profundidad de la diversi-

dad de las soluciones. Para ello, se diseñan y analizan técnicas de gestión de diversidad

explícita y operadores genéticos novedosos. El rendimiento de estos algoritmos es

probado rigurosamente en diversas instancias del estado del arte, mostrando mejoras

significativas en la calidad de las soluciones encontradas. Los resultados demuestran

la viabilidad práctica de los modelos y de los algoritmos propuestos, además de sentar

las bases para futuras investigaciones en problemas de optimización relacionados.
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Chapter 1

Introduction

Understanding and solving real-world problems is one of the ultimate goals of com-

puter science. Among many others, mathematical modeling, discrete mathematics,

graph theory, mathematical programming, and algorithm design are the main scientific

tools for achieving such goals. This document approaches a fundamental problem from

the aforementioned research fields: a relatively new variant of the classical NP-hard

Multiple Traveling Salesperson Problem (mTSP), the Depot-Free mTSP (DFmTSP).

Along with the popular Traveling Salesperson Problem (TSP), the mTSP and DFmTSP

are at the core of real-world logistics problems.

From complexity theory, it is well-established that many real-world problems are

difficult to solve. In detail, they belong to complexity categories like NP-hard. Thus,

there are no efficient algorithms for solving them unless P = NP [2]. Although the P

vs NP question remains open, namely, we do not know whether P = NP or P ̸= NP,

the scientific community is vastly inclined to the P ̸= NP conjecture [3]. Thus, it is

doubtful that NP-hard real-world problems can be solved efficiently. Of course, this

includes the DFmTSP.

In simple and general terms, the mTSP consists of finding an optimal collection of

routes followed by a set of salespersons. This collection of routes is usually constrained

by the presence of depots, i.e., special facilities from where salespersons depart and

arrive. Since not all real-world logistics problems require the depot concept, it is

important to model and solve the DFmTSP and its main variants, which include

load-balance (a.k.a. bounding constraints) and different objective functions.

Given the difficulty of DFmTSP, different algorithmic approaches can be used

depending on the desired goals. For instance, if optimal solutions are required and the

problem instance is relatively small, generic exact algorithms or black-box optimization

solvers can be used. If near-optimal solutions are good enough and the instance is

relatively large, then heuristics and metaheuristics have proven to be better options.

Like many other combinatorial optimization problems, DFmTSP is relatively simple

1



2 Hypothesis

to state but difficult to model and solve. It belongs to the NP-hard class, and for the

first 2.5 years of this thesis’ development, no mathematical model was available in the

literature. Originally, one of this thesis’ objectives was to present the first mathematical

model of the problem. However, researchers from Turkey got ahead of us in May

2021 [4]. Nevertheless, Chapter 4 introduces novel models that are more general and

proved advantageous under certain circumstances. Besides, Chapter 5 introduces new

heuristics and metaheuristics with clear advantages over the state-of-the-art.

1.1 Problem statement

The DFmTSP receives a complete weighted graph G = (V ,E,w) and three positive

integers m,L,U ∈ Z+ as input. Its goal is to find a set of m disjoint paths (See Equations

(1.1) and (1.2)) with the following constraints: the set of paths must cover all vertices

in G (Equation (1.3)) and must be load-balanced (Equation (1.4)). Finally, there are two

classical objective functions to consider. The first one is the minsum function, which

aims to minimize the sum of the cost of the salespersons’ paths (Equation (1.5)). The

second one is the minmax function, which consists of minimizing the longest path

among the salespersons (Equation (1.6)).

find P = {p1,p2, ...,pm} (1.1)

subject to (s.t.) V(pi)∩ V(pj) = ∅ ∀i, j ∈ [1,m] and i ̸= j (1.2)
m∑
i=1

|V(pi)| = |V(G)| (1.3)

L ⩽ |V(pi)| ⩽ U ∀i ∈ [1,m] (1.4)

Common objective functions:

min
m∑
i=1

c(pi) minsum function (1.5)

min max{c(p1), c(p2), · · · , c(pm)} minmax function (1.6)

1.2 Hypothesis

• Using dummy vertices, it is possible to model Depot-Free Multiple Traveling

Salesperson Problems with bounding constraints (DFmTSPs) by exploiting its

relationship with other NP-hard problems such as the Traveling Salesperson

INAOE Computer Science Department



Introduction 3

Problem (TSP) and the Fixed-Destination Multiple-Depots Multiple Traveling

Salesperson Problem (FD-MmTSP).

• Optimal solutions for relatively small instances of the problems can be obtained

based on the aforementioned models.

• Feasible and near-optimal solutions for larger instances can be obtained using

heuristic-search approaches such as a clustering-routing strategy and evolution-

ary computing algorithms.

1.3 General objective

To propose mathematical models and to design and characterize algorithms to get fea-

sible (optimal or near-optimal) solutions for Depot-Free Multiple Traveling Salesperson

Problems (DFmTSP) with bounding constraints aiming at load balance.

1.4 Particular objectives

1. To explore and implement different state-of-the-art problem-solving techniques

for DFmTSP problems with bounding constraints.

2. To propose mathematical models and integer programs for DFmTSP problems

with bounding constraints.

3. To analyze and compare the proposed mathematical models against the state-of-

the-art models for DFmTSP problems.

4. To design and characterize a two-phase constructive heuristic that uses the

clustering-routing strategy and evolutionary computing algorithms for DFmTSP

problems with bounding constraints.

5. To compare the proposed heuristic-search algorithms against state-of-the-art

algorithms for DFmTSP problems by using the classic objective functions from

the literature.

1.5 Methodology

The methodology used in this research project consists of studying the problem from

two different perspectives: mathematical modeling and heuristics. Within each of these

Models and Algorithms for Depot-Free Multiple Traveling Salesperson

Problems



4 Contributions

big boxes, there is a series of tasks that is necessary to achieve the stated objectives

and validate the proposed hypothesis.

Start

Study state-of-
the-art of 
mTSP 

problems

Implementation of 
problem-solving 
techniques for 

DFmTSP

Models and 
integer programs 

for DFmTSP

Optimal or near-
optimal solutions 

for small 
instances

End

Comparative 
study of 

DFmTSP 
problems

Constructive 
heuristic (based 

on CVKP)

Metaheuristics 
(evolutionary 
algorithms)

Heuristics (Chapter 5)

Analysis and 
comparison 

against state-of-
the-art models 

Near-optimal 
solutions for larger 

instances

Analysis and 
comparison 

against state-of-
the-art heuristc-

search techniques 

Mathematical modeling (Chapter 4)

Figure 1.1: Followed methodology.

1.6 Contributions

Some of the contributions of this thesis have been already published in peer-reviewed

journals:

• A series of mathematical models for the DFmTSP are proposed. They consider

open and closed paths, load balance, and a hybrid case that considers the

presence of a few depots. These results are related to particular objectives 2 and

3.

– Cornejo-Acosta, J.A.; García-Díaz, J.; Pérez-Sansalvador, J.C.; Segura, C.

Compact Integer Programs for Depot-Free Multiple Traveling Salesper-
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Introduction 5

son Problems. Mathematics 2023, 11, 3014. https://doi.org/10.3390/

math11133014

• A polynomial-time reduction was found from the Capacitated Vertex k-center

Problem (CVKCP) to the Minimum Capacitated Dominating Set Problem (CMDSP).

This result relates to objectives 4 and 5 (See the next bullet).

– Cornejo Acosta, J.A.; García Díaz, J.; Menchaca-Méndez, R.; Menchaca-

Méndez, R. Solving the Capacitated Vertex K-Center Problem through the

Minimum Capacitated Dominating Set Problem. Mathematics 2020, 8, 1551.

https://doi.org/10.3390/math8091551

• A parallel constructive heuristic for CVKCP was introduced. This result is

related to particular objectives 4 and 5 and follows from the results of the

previous bullet.

– Cornejo Acosta, J.A.; García Díaz, J; Pérez Sansalvador J.C.; Rios Mercado,

R.Z.; Pomares Hernández, S.E. A Constructive Heuristic for the Uniform

Capacitated Vertex k-center Problem. ACM Journal of Experimental Algo-

rithmics 2023, 28. https://doi.org/10.1145/3604911

• An update policy called kFLS for cellular evolutionary algorithms is proposed.

It is related to particular objectives 4 and 5 and is used for an in-depth study of

management diversity techniques of evolutionary algorithms for the DFmTSP.

– J. A. Cornejo-Acosta and J. García-Díaz, “A First Approach to Asynchronous-

Synchronous Tradeoff in 1D Cellular Genetic Algorithms,” Research in

Computing Science, vol. 150, no. 12, 2021

• A series of metaheuristic algorithms for DFmTSP. With a particular focus on a

memetic evolutionary algorithm with diversity management. This paper is still

in progress and soon to be submitted. These results are related to particular

objectives 4 and 5.

Preliminary versions of some of the previous papers have been presented at the

following conferences: 53 Congreso Nacional de la Sociedad Matemática Mexicana

2020, IX Congreso Nacional de la Sociedad Mexicana de Investigación de Operaciones

2021, Congreso Internacional CORE 2021, Escuela Latinoamericana de Verano en

Investigación Operativa 2022, XI Congreso de la Sociedad Mexicana de Investigación

de Operaciones 2023, and Congreso Internacional CORE 2024.

Models and Algorithms for Depot-Free Multiple Traveling Salesperson

Problems

https://doi.org/10.3390/math11133014
https://doi.org/10.3390/math11133014
https://doi.org/10.3390/math8091551
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6 Thesis organization

1.7 Thesis organization

The remaining part of this thesis is organized as follows: Chapter 2 presents the

necessary background. It introduces fundamental concepts of the area, such as graph

theory and optimization concepts and techniques. It also introduces combinatorial

optimization problems, specifically location and routing problems. These concepts are

widely used throughout the thesis. Chapter 3 is about the related work and the state-of-

the-art of Multiple Traveling Salesperson Problems (mTSPs). It shows a chronological

history of mTSPs and how they have been approached in the literature, including

mathematical models, exact algorithms, and heuristic approaches, including clustering-

routing. Chapter 4 introduces one of the main contributions of this thesis, novel

mathematical models. These consider the main variants of the DFmTSP, including

closed paths, open paths, bounding constraints, and a mix between DFmTSP and

MmTSP. While the previous chapter focuses on modeling and solving relatively small

instances of the problem, Chapter 5 focuses on novel heuristic and metaheuristic

approaches. It is divided into two main sections. Section 5.1 introduces a clustering-

routing heuristic for the DFmTSP that is based on the Capacitated Vertex k-center

Problem (CVKCP). Section 5.2 introduces a metaheuristic algorithm with an explicit

diversity management technique. Both sections are accompanied by a subsection of

analysis and computational results that show their advantages. Finally, Chapter 6

states this thesis’s conclusions, final remarks, and future research.
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Chapter 2

Background

Although mTSPs have been studied from many different perspectives and research

fields, this chapter focuses on the following:

• Graph theory.

– Gives us the basic definitions, vocabulary, and notation used throughout

this document.

• Mathematical programming.

– Gives us basic definitions for mathematical modeling and algorithm design.

• Operations research.

– Gives us a background for real-world and canonical location and routing

problems.

• Heuristics and metaheuristics.

– Gives us a background for the algorithms introduced in this document.

Since DFmTSP can be easily stated in terms of graphs, some graph theory concepts

are listed. Then, some foundations of mathematical programming, heuristics, meta-

heuristics, and operations research are presented. It is worth mentioning that all these

research areas are strongly intertwined. Therefore, from an appropriate point of view,

any of them can be considered a subfield of the others. Nevertheless, this document

tries to present each of them as independently as possible from the others.

2.1 Graph theory concepts

In 1736, there was a popular game among the citizens of Königsberg (today’s Kalin-

ingrad, Russia): the seven Königsberg bridges. The question was if all parts of the city

7



8 Graph theory concepts

could be visited traversing all bridges once [5]. Although this problem can be solved by

brute force, the answer being negative, it was Leonhard Euler who gave an explanation

for the answer. With this explanation, Euler laid the foundations of graph theory.

Graphs are a popular mathematical tool for modeling and visualizing data. Given

their relative simplicity and flexibility, they have been used in many applications,

including chemistry, bioinformatics, social networks, linguistics, computer vision,

image classification, and logistics problems [6]. Thus, knowing the main definitions of

graph theory gives us a basic vocabulary and mathematical notation for modeling and

tackling different kinds of problems.

Through the years, graph theory has grown, and today is a very extensive field;

however, only the following concepts and terms are necessary for the context of this

thesis. These concepts were obtained mainly from [7] and [8].

Definition 2.1.1. Let [A]k be the set of all k-element subsets of a given set A.

Definition 2.1.2. A graph is an ordered pair G = (V ,E), where V is a set of vertices and
E ⊆ [V]2; namely, the elements of E are pairs of the elements in V and are called edges. The
vertices of V are usually labeled as {v1, v2, . . . , vn}, where n = |V |.

Definition 2.1.3. The set of vertices and edges of a given graph H can be denoted by V(H)

and E(H), respectively.

Notice that a graph is usually referred to in the literature as an undirected simple

graph to emphasize its main characteristics: the edges are undirected and unweighted.

Definition 2.1.4. The order of a graph is its number of vertices. It can be denoted by |V(G)| or
|G|.

Definition 2.1.5. The size of a graph is its number of edges. It can be denoted by |E(G)| or
||G||.

Definition 2.1.6. A graph G = (V ,E) is a complete graph if E = [V]2, i.e., for all pairs of
vertices vi, vj ∈ V , exists an edge {vi, vj} ∈ E.

Definition 2.1.7. A directed graph G = (V ,E) is an ordered pair consisting of a set of vertices
V and a set E of 2-tuples of V . So, an edge (u, v) goes from u to v.

Definition 2.1.8. A weighted graph G = (V ,E,w) is an ordered tuple consisting of a set
of vertices V , a set of edges E, and a function w : E → R. That is, each edge e ∈ E has an
associated cost w(e) ∈ R.
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Definition 2.1.9. Given a graph G = (V ,E), a dominating set is a set D ⊆ V such that for
every vertex v ∈ V \D, there is a vertex u ∈ D such that {v,u} ∈ E.

Definition 2.1.10. A minimum dominating set is a set of minimum cardinality among all the
dominating sets.

Definition 2.1.11. Given a graph G = (V ,E), and a capacity function fcap : V → Z+. A
capacitated dominating set D ⊆ V is a set such that every vertex v ∈ V \D is assigned to some
vertex u ∈ D∩N(v), and the number of vertices assigned to each vertex u ∈ D is not greater
than its capacity fc(u), where N(u) is the open neighborhood of u ∈ V .

Definition 2.1.12. A minimum capacitated dominating set is a set of minimum cardinality
among all the capacitated dominating sets.

Definition 2.1.13. Given a weighted graph G = (V ,E,w), a bottleneck graph Gr = (V ,Er)

is such that Er consists of all the edges in E with weight less than or equal to r, i.e., Er = {e ∈
E : w(e) ⩽ r}.

Definition 2.1.14. A path in G is a sequence of vertices p = (v1, v2, v3, . . . , vk) is composed
by edges ((v1, v2), (v2, v3), (vk−1, vk)), such that ∀vi ∈ p, vi ∈ V(G) and ∀(vi, vj) ∈ p,
(vi, vj) ∈ E(G).

Definition 2.1.15. The cost of a closed path p in a weighted graph G = (V ,E,w) is given by
Equation (2.1).

c(p) = w
(
(p|p|,p1)

)
+

|p|−1∑
j=1

w
(
(pj,pj+1)

)
(2.1)

From Equation (2.1), |p| is the number of vertices in the path p. The sum represents
cycling through all the vertices of the path. w is defined as w : E → R and w

(
(pj,pj+1)

)
indicates the cost between the jth vertex of the path and the (j+ 1)th vertex in the path. Finally,
w
(
(p|p|,p1)

)
represents the cost from the last vertex of the path to the initial vertex of the path.

Definition 2.1.16. The cost of an open path p in a weighted graph G = (V ,E,w) is similar to
the previous definition but avoids the cost of the last vertex in the path to the first vertex of it.
The cost of an open path is given by Equation (2.2).

c(p) =

|p|−1∑
j=1

w
(
(pj,pj+1)

)
(2.2)

Definition 2.1.17. A path that visits all vertices of a given graph G once is known as a
Hamiltonian path or, equivalently, a Hamilton path.

Models and Algorithms for Depot-Free Multiple Traveling Salesperson
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Definition 2.1.18. A closed path that visits all vertices of a given graph G once and only the
first and last vertices are equal is known as a Hamiltonian cycle or, equivalently, a Hamilton
cycle.

Definition 2.1.19. If a graph G contains a Hamilton cycle, it is known as a Hamiltonian
graph.

2.2 Mathematical programming

Mathematical programming (also known as mathematical optimization and optimization
theory) deals with the modeling and solving of decision problems, which, within this

branch of mathematics, are also known as mathematical programs. It is important to

observe that the term program has a different meaning from the one that predominates

nowadays. The terms are meant to contrast with computer programming, which solves

such problems by implementing algorithms that may be designed specifically for a

given problem [6]. In simpler terms, the word program is used as a synonym for

agenda or schedule. To avoid confusion, equivalent terms for mathematical program are

mathematical model and mathematical formulation.

Complementary to the previous paragraph, one of the pioneers of this research

area defines mathematical programming as follows [9]:

Mathematical programming can be viewed as part of a great revolutionary development that

has given mankind the ability to state general goals and lay out a path of detailed decisions

to be taken in order to “best” achieve these goals when faced with practical situations of

great complexity. The tools for accomplishing this are the models that formulate real-world

problems in detailed mathematical terms, the algorithms that solve the models, and the

software that executes the algorithms on computers based on the mathematical theory.

(George B. Dantzig, 1997)

Naturally, optimization is the most important concept in mathematical programming.

Thus, the next section formally defines this term.

2.2.1 Optimization

In real-life scenarios, we often encounter situations where we need to make decisions

to reach a goal while using the optimal amount of resources. This decision-making

process could involve determining the best configuration for a task. The resources at

our disposal could be time, money, effort, etc. These types of problems, where we
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have a range of possible decisions and we need to select the “best” one, are known as

optimization problems. They are not only practically relevant but also hold theoretical

significance. To define an optimization problem, we first must introduce the concept

of an instance of a problem.

Definition 2.2.1. An instance of an optimization problem is a pair (S, c), where S is the
domain set of all possible solutions for such instance, and c is the cost function defined as:

c : S→ R

and we want to find an s ∈ S for which:

c(s) ⩽ c(y),∀y ∈ S for a minimization problem

c(s) ⩾ c(y),∀y ∈ S for a maximization problem

Such object s is called the global optimum for the given instance (S, c).

Definition 2.2.2. An optimization problem consists of all of its instances.

To define a few other important concepts, let us consider a simple instance of an

optimization problem (S, c) defined by Eq. (2.3) with the cost function c defined by

Figure 2.1.

S : [0, 1] ⊆ R (2.3)

Figure 2.1: A 1-dimensional optimization problem.

Suppose the cost function is to be minimized. In that case, A, B, and D are all local
optimum because each of them is the minimum in its respective neighborhood, but only

B is the global optimum because it is the minimum over the complete domain S.
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In general, the domain S can contain any kind of mathematical object. However,

these are usually numbers or can be modeled by them. Thus, mathematical program-

ming states problems using a series of algebraic expressions, including a set of objective

functions, constraints, and feasible solutions. The general form of an optimization

problem is [10]:

max/min f(x)

s.t. hi(x) = 0 i ∈ {1, 2, . . . ,m}

gj(x) ⩾ 0 j ∈ {1, 2, . . . , r}

where x ∈ S

In this general formulation (or program), x is an n-dimensional vector of variables,

x =


x1
...

xn

, and f, hi, and gj are real-valued functions of the variables x1, x2, . . . , xn.

The set S is a subset of n-dimensional space. The function f is the problem’s objective

function, and the equations, inequalities, and set restrictions define the problem’s

constraints.

Depending on its specific attributes, a mathematical program can be classified

as a Linear Program (LP), an Integer Linear Program (ILP), an Integer Nonlinear

Program (INLP), a Quadratic Integer Program (QIP), a Quadratically-Contrained

Integer Program (QCIP), and so on. From these categories, let us begin by showing the

canonical structure of a LP:

max/min cx

s.t. Ax ⩽ b

x ⩾ 0

In this program, the input data include the row vector c = [c1, · · · , cn], the m×n

matrix A = (aij), and the column vector b =


b1

...

bn

. The column vector x =


x1
...

xn


contains the variables to be optimized. In an LP problem, the n-vector x has real

elements. These problems belong to the complexity class P [9]. Namely, they can be

solved in polynomial time. It is very interesting how a small change to the previous

program leads to a harder problem. Namely, if n-vector x can only take integer values

x ∈ Zn, this vector is said to be integral, and the problem becomes an Integer Linear
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Program (ILP) if the set of constraints is linear too. Integer Linear Programming is

usually known just as Integer Programming. A canonical Integer Program (IP) is of

the following form and belongs to the NP-hard class [11]:

max/min cx

s.t. Ax ⩽ b

x ⩾ 0 integral

If some variables from vector x have to be integers while others can be real numbers,

then the program is mixed. For instance, an ILP where some variables can be real

numbers is known as a Mixed Integer Linear Program (MILP) and has the following

canonical form.

max/min cx + hy

s.t. Ax + Gx ⩽ b

x ⩾ 0 integral

y ⩾ 0

Although many other types of programs exist, most real-world problems can

be modeled as ILPs or MILPs. Notice that IPs seek the “best” solution (the global

optimum) from a finite set. These types of problems are known as combinatorial

optimization problems.

2.2.2 Combinatorial optimization

As mentioned before, combinatorial optimization problems involve finding the “best”

solution (the global optimum) from a finite set. Naturally, they can be modeled as

IPs. In other words, an IP is both a general combinatorial optimization problem and

a modeling tool for other well-defined problems. For instance, the OneMax problem

consists of finding a n-bit string with the maximum number of ones. The optimal

solution for this toy combinatorial optimization problem is setting all variables to

one, and the search space size is 2n. Its corresponding ILP is the following, where

c = [1, . . . , 1] is a row vector of n components, and x =


x1
...

xn

 is the column vector

representing the n-bit string.

Models and Algorithms for Depot-Free Multiple Traveling Salesperson
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max cx

s.t. x ∈ {0, 1}n

Notice that cx is equivalent to
∑n

i=1 xi. In fact, because of their easier readability,

sigma (Σ) and pi (Π) notation are more frequently used in mathematical programs.

Although OneMax can be solved in linear time, a generic combinatorial optimiza-

tion problem and its corresponding IP might belong to the NP-hard class [2]. For

instance, the Minimum Dominating Set problem (MDSP), a classical NP-hard graph

problem, has the following ILP, where aij are constants that codify the input graph

G = (V ,E). Namely, aij = 1 if vi ∈ N(vj); otherwise, aij = 0, where V = {v1, . . . , vn}.

min
∑n

i=1 xi

s.t.
∑n

i=1 ai,jxi ⩾ 1− xj ∀vj ∈ V

xi ∈ {0, 1} ∀vi ∈ V

NP-hard combinatorial optimization problems are unlikely to be solved efficiently

unless P = NP [2, 3]. Nevertheless, generic exact algorithms can be used to find

optimal solutions at the expense of time. Namely, algorithms like branch-and-bound,

cutting planes, branch-and-cut, branch-and-price, among others [12], can be used but

with no guarantee of having a practical termination time. Therefore, integer program-

ming is normally used to tackle relatively small instances of NP-hard combinatorial

optimization problems. Heuristic and metaheuristic computing can be used to balance

the disadvantages of the exact approach; more details are given in Section 2.4.

Many classical combinatorial optimization problems from computer science belong

to a subcategory known as NP-optimization. Formally, an NP-optimization problem

Π consists of a set of valid instances D(Π), where each instance I ∈ D(Π) has a set

of feasible solutions SΠ(I). There is a polynomial time algorithm that, given a pair

(I, s), decides whether s ∈ SΠ(I). Besides, a polynomial time computable objective

function assigns a value to each pair (I, s) [13]. Except from OneMax, all the problems

considered in this thesis are NP-hard NP-optimization combinatorial optimization

problems.

2.3 Operations research

Operations research (a.k.a. operational research and management science) is the scientific

specialty about modeling decision problems and computing feasible, and if possible
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optimal, solutions to them [6]. Its origins come from 1947, when the field of linear

programming, together with its posterior extensions (mathematical programming), was

established as the most widely used tool in the industry for planning and scheduling

[9].

Operations research was born from the combination of two important events:

World War II and the increasing capacities of computers. The military necessity for

programming (scheduling) tasks with optimal resource usage opened the door to

mathematicians and scientists. Soon after, the scope of this area extended beyond

military tasks. Some of the main pioneers of this research area were George B. Dantzig

and John von Newman [9].

Since its birth, operations research has considered mathematical programming its

main scientific tool. Besides, it has always emphasized real-world problems, which can

be categorized as scheduling, location, routing, network flow, logistics, transportation,

and many others [9, 14]. For this thesis’s purposes, location and routing problems are

more relevant. Thus, the following sections focus on them.

2.3.1 Location

Since the first years of operations research and computer science, location problems

have been identified as relevant real-world optimization problems. After a few decades,

they accumulated and grew in complexity. Consequently, around 1960, a whole re-

search field known as location science (a.k.a. location theory) emerged. Nevertheless,

some important location problems had been modeled and studied centuries ago by

characters like Evangelista Torricelli (1608–1647) and Bonaventura Francesco Cavalieri

(1598-1647) [15]. More recently, Alfred Weber introduced important location prob-

lems in 1909 [15]. However, it was not until 1964 that location science gained more

researchers’ interest with a publication by Hakimi (1964), who wanted to locate switch-

ing centers in a communications network and police stations in a highway system

[16].

The core of location science is facility location problems. These consist of deter-

mining the “best” location for one or several facilities or equipment in order to serve

a set of demand points. The meaning of “best” depends on the constraints and the

optimality criteria considered [17]. Naturally, mathematical programming is a suitable

modeling tool for this kind of problem.

There are many prominent and popular location problems, such as Weber’s prob-

lems, k-median, facility location, k-center, etc [17]. Nevertheless, the next section

focuses on vertex k-center problems for this document’s convenience.
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2.3.1.1 Vertex k-center

One of the fundamental location problems that gave rise to many generalizations is

the absolute 1-center problem. Introduced by Hakimi in 1964, this problem models a

situation where the best location for a police station in a highway system has to be

found [16]. This problem aims to minimize the distance from the farthest community

to the police station. In graph theory terms, an absolute 1-center is a location along

any edge that minimizes the distance from the farthest vertex to such location. The

Vertex k-center Problem (VKCP) generalizes the absolute 1-center problem by adding

the following constraint: k ⩾ 1 centers must be located at the vertices of the input

graph.

The VKCP is NP-hard and models real-world problems where k centers need to

attend clients, and a cost metric (e.g. travel time, distance, etc.) from the clients to their

nearest center must be minimized. These centers may be hospitals, schools, police

stations, etc. The first proposed MILP for VKCP is the following [18], where the input

graph G = (V ,E) is complete and weighted, V = {v1, . . . , vn}, n = |V |, and dij is the

distance between vi and vj.

min z (2.4)

s.t.
n∑

i=1

di,jxi,j ⩽ z ∀vj ∈ V (2.5)

n∑
i=1

xi,j = 1 ∀vj ∈ V (2.6)

xi,j ⩽ yi ∀vi, vj ∈ V (2.7)
n∑

i=1

yi ⩽ k (2.8)

xi,j,yi ∈ {0, 1} ∀vi, vj ∈ V (2.9)

The Objective function (2.4) and Constraints (2.5) guarantee that the objective value

is not greater than the maximum of the distances between demand points (all vertices

in V) and the centers they are assigned to. Constraints (2.6) establish that each vertex

is assigned to exactly one center. Constraints (2.7) avoid the assignment of vertices

to other vertices where a center is not located. Constraint (2.8) restricts the number

of centers to k. Nowadays, equivalent mathematical programs with theoretical and

practical advantages are available [19, 20, 21].

Among the many variants of VKCP, the Capacitated Vertex k-center Problem

INAOE Computer Science Department



Background 17

(CVKP) [22] stands out by adding a capacity restriction. Namely, each center can

attend a maximum number of clients. This problem is better suited to real-world

scenarios and can be used as a clustering technique aiming for load-balance in other

problems, including routing ones. In fact, this approach was applied to DFmTSP and

is explained later in this document. In particular, novel IPs and algorithms for CVKCP

are introduced in Section 5.1.

2.3.2 Routing

The main component of logistics problems is routing. Modern logistics can be described

as:

the process of strategically managing the movement or storage of materials, parts and

finished, inventory from suppliers, through the firm and on to the consumers.

(Christopher M., 1985)

Companies ’ business strategies often emphasize the efficient movement of goods

or workers to increase and meet market demands. Distribution costs are estimated

to account for approximately 10% of the firms’ revenues [23]. In some cases, like in

the soft drink industry, they represent approximately 70% of goods’ value-added costs

[24]. In the U.S.A., logistics costs have been estimated at between 15% and 23% of the

gross national product. For individual firms, logistics costs represent approximately

20% of the firm’s net sales [25].

The impact of good routing models and algorithms to solve them is evident. In fact,

some of the two most important and popular combinatorial optimization problems

from computer science belong to this category: the Shortest Path Problem (SPP) and

the Traveling Salesperson Problem (TSP). Generally, the input data for both problems

is modeled through a complete weighted graph. The SPP problem asks for the shortest

path from a given origin and a given destiny. This problem belongs to the P class. If

the origin equals the destiny and an extra constraint of visiting all vertices from the

input graph is included, the problem becomes the TSP, which is part of the NP-hard

class.

It is not an exaggeration to state that the TSP problem is one of the most famous

NP-hard combinatorial optimization problems. In fact, it has been deeply studied

by the pioneers of mathematical programming and operations research since 1954

[26]. Thus, it is strongly related to the progress of computer science. Besides, to some

extent, every routing and logistics problem is rooted in the TSP. There are some other
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important routing problems, like the vehicle routing problem (VRP) and its many

generalizations [27]. However, since the DFmTSP is a generalization of TSP, the next

section focuses on the latter.

2.3.2.1 Traveling salesperson problem

TSP is among the most popular NP-hard combinatorial optimization problems. Its

first explicit appearance in the scientific literature dates from 1954 [26], and its first

mathematical formulations are from 1959 and 1960 [28, 29]. Interestingly, the authors

of these early papers stated the problem using the depot concept, a special vertex

where the salesperson starts and finishes her path. Nevertheless, it is easy to observe

that the depot plays only a symbolic and didactic role, i.e., it is equivalent to stating

that the path must be closed. An ILP for TSP is the following [29], where G = (V ,E)

is an input complete weighted graph and n = |V |. Notice that the input graph is

Hamiltonian because it is complete. Thus, the TSP can be stated as the problem of

finding a minimum weight Hamilton cycle.

min
∑
vi∈V

∑
vj∈V

ci,jxi,j (2.10)

s.t.
∑
vj∈V

xi,j = 1 ∀vi ∈ V (2.11)

∑
vi∈V

xi,j = 1 ∀vj ∈ V (2.12)

ti − tj +nxi,j ⩽ n− 1 ∀vi, vj ∈ V (2.13)

xi,j ∈ {0, 1} ∀vi, vj ∈ V (2.14)

In this model, ci,j is the cost of going from vertex vi to vertex vj. If the solution

includes an edge from vi to vj, then xi,j = 1; otherwise, xi,j = 0. The Objective function

(2.10) minimizes the weight of the solution. Constraints (2.11) and (2.12) guarantee that

each vertex is visited once. Constraints (2.13) avoid the creation of subtours; variables

ti are arbitrary real numbers. This last set of constraints is so relevant that has its own

name: the Miller-Tucker-Zemlin (MTZ) subtour elimination constraints (SECs). Finally,

(2.14) define the decision variables. Some direct generalizations of TSP are the mTSPs,

of which DFmTSP is a member. In Chapter 4, new IPs for the latter are introduced.

Many real-world combinatorial optimization problems studied in operations re-

search belong to the NP-hard class. Although relatively small instances can be solved

optimally using classical algorithms like branch-and-bound, cutting planes, branch-

and-cut, etc., most instances are more difficult to tackle, and other techniques are
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required. These include heuristics, metaheuristics, matheuristics, hyperheuristics, and

simheuristics. The next section focuses on heuristics and metaheuristics.

2.4 Heuristics and metaheuristics

Ideally, the first step of algorithm design consists of identifying how difficult the

problem is. Thus, if the problem belongs to the P class, an effort to design exact

algorithms should be made. However, if the problem belongs to the NP-hard class, a

compromise between execution time and optimality should be considered. Namely,

we might conform to “good enough” solutions that are found relatively fast. Although

a formal theory of heuristics does not exist, most definitions of heuristic are similar.

A heuristic is a simple procedure that helps find adequate, though often imperfect, answers

to difficult questions [30].

(Daniel Kahneman, 2017)

Heuristics are rules-of-thumb, i.e., simple polynomial-time algorithms. They work quickly

and efficiently. However, the quality of the solution they deliver is another matter altogether

[31].

(Dorit Hochbaum, 1997)

Heuristic, or heuretic, or ars inveniendi was the name of a certain branch of study, not very

clearly circumscribed, belonging to logic, or to philosophy, or to psychology, often outlined,

seldom presented in detail, and as good as forgotten today. The aim of heuristic is to study

the methods and rules of discovery and invention [32].

(George Polya, 1945)

Ethimologically, heuristic originates from the Greek word heurísko, which means to

discover or find out. Thus, heuristics are related to the discipline or art of discovering,

which includes what-if scenarios and trial and error [33]. In computer science, the

word heuristic can be used as an adjective and noun. However, in general, heuristic
and heuristic algorithm can be used interchangeably.

Despite being many different kinds of heuristics, the community usually distin-

guishes between two main different types: constructive and local search methods [34].
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Constructive methods are algorithms that generate solutions by incrementally adding

elements to a partial solution until it is complete. This kind of heuristics tends to

be very fast. However, the returned solutions may be of inferior quality compared

with other algorithms. Within this category are greedy algorithms. The other kind of

heuristics is local search algorithms. These differ in that they start from some initial

solution that can be generated in any way and iteratively try to improve it by explor-

ing the neighborhood of such a solution. Most heuristics are usually deterministic

and thus vulnerable to getting stuck on locally optimal solutions. For instance, the

Lin–Kernighan heuristic (LKH) is one of the best heuristics for the TSP. It is a local

search algorithm that improves an input tour (Hamilton cycle) by exploring its neigh-

borhood. Every time a shorter tour is found, the process is repeated until no better

tour can be found. For this specific heuristic, a neighborhood is defined by considering

the number of edges that are in one tour but not the other.

Opposed to constructive and local search heuristics, which usually get trapped into

local optima, metaheuristics have a larger exploration level that helps find globally

optimal solutions. That is what the prefix meta is meant to emphasize: a metaheuristic

goes “beyond” a heuristic. Fred Glover coined the term in 1986 when he faced problems

that could not be solved by mathematical programming methods and heuristics alone.

Metaheuristics are solution methods that orchestrate an interaction between local improve-

ment procedures and higher level strategies to create a process capable of escaping from local

optima and performing a robust search of a solution space [35].

(Michel Gendreau and Jean-Yves Potvin, 2019)

Metaheuristics are flexible frameworks that can be used to design heuristics for virtually

any combinatorial optimization problem. [...] designing an efficient metaheuristics is an art

requiring a lot of intuition on the part of the metaheuristic designer [36].

(Marc Sevaux et al., 2018)

A metaheuristic is a high-level problem-independent algorithmic framework that provides a

set of guidelines or strategies to develop heuristic optimization algorithms [37].

(Kenneth Sörensen and Fred Glover, 2013)

In summary, a metaheuristic is a general suggestion that guides the search for the

globally optimal solution. They are more complex than heuristics because the latter
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tend to focus on finding locally optimal solutions [38]. Besides, heuristics are particular

to a problem, while metaheuristics are general design frameworks.

Many metaheuristics have been proposed over the years. In fact, many have been

accused of being unnecessarily complicated copies of already-known metaheuristics

[37, 39]. Nevertheless, there are some that have prevailed over the decades and that

rely on clear principles.

• Genetic algorithms (GAs). Formally introduced by John Holland in 1975, this

metaheuristic takes inspiration from the natural selection process and is one of

the most successful global search techniques [40].

• Tabu search (TS). Introduced by Fred Glover in 1986, this metaheuristic relies

on a simple principle: if you want different results, do something different. This is

achieved through the concept of tabu lists [41].

• Greedy randomized adaptive search procedures (GRASP). Introduced by Feo

and Resende in 1989, this metaheuristic randomizes an input constructive deter-

ministic heuristic [42].

• Variable neighborhood search (VNS). Introduced by Nenad Mladenović in 1995,

this metaheuristic exploits the fact that every global optimum is a local optimum.

Therefore, the optimum is eventually reached by applying local search using

many neighborhood structures [43].

Metaheuristics can be considered an area of soft computing (SC) and computational

intelligence (CI). Within these research areas, evolutionary computing (EC) stands out.

For this document’s convenience, the next section focuses on EC, with a particular

emphasis on GAs.

2.4.1 Evolutionary computing

Evolutionary computing is a computer science research field inspired and motivated

by natural evolution. The power of natural evolution is evident in the variety of species

that live in our world, as each is tailored to survive in its own ecosystem. In general,

the process of natural evolution is quite complex since it is influenced by many factors.

For now, let us consider natural evolution in a simpler description: first, a population

of individuals in an environment strives for survival and reproduction. Each of these

individuals has a fitness that is determined by the environment and relates to how

well they are adapted to survive in such an environment. In other words, the better

the adaption, the better the fitness.
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Table 2.1: Analogies used of evolutionary computing between natural evolution and problem-
solving.

Evolution Problem solving

Environment ←→ Problem

Individual ←→ Candidate solution

Fitness ←→ Quality

In the context of computing and problem-solving processes, the individuals repre-

sent a collection of candidate solutions whose quality is determined by how well they

solve the problem (how well they are adapted to the environment). The analogy of

evolutionary computing is shown in Table 2.1.

The idea of applying natural evolution to problem-solving in computer science

dates back to the 1940s when Turing proposed "genetical or evolutionary search". Later,

in 1962, Bremermann worked with optimization through evolution and recombination.

In fact, during the 1960s three similar ideas of evolutionary computing emerged in

different locations. Fogel, Owens, and Walsh introduced evolutionary programming

in the USA [44]. At the same time, Holland worked with similar ideas, but his method

was called genetic algorithms [40]. Meanwhile, Rechenberg and Schwefel proposed

evolution strategies in Germany [45]. For several years afterward, these methods were

worked and developed separately, but it was not until the 1990s that they started being

viewed as a unified field known as evolutionary computing. Later, in the 1990s, a new

flavor of evolutionary computing known as genetic programming arose, proposed by

Koza [46].

Since many combinatorial optimization problems belong to the NP-hard class,

under P ̸= NP no algorithm can solve them in polynomial time. Thus, this is the

main limitation of IP and exact algorithms. So, algorithmic approaches such as

heuristics and metaheuristics have been proposed to find good quality solutions in

feasible running times. Within the metaheuristic proposals, in general, evolutionary

computing stands out as a paradigm to approach this kind of computational problem.

Finally, despite heuristics and metaheuristics (including evolutionary computing)

being considered powerful tools to approach these hard problems, they usually do

not find the optimum in optimization problems. Furthermore, most of them do

not have theoretical guarantees, and their effectiveness has to be proven through

experimentation.
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Chapter 3

Related work and state-of-the-art

This chapter begins with a chronological account of the main results related to mTSPs.

Afterward, independent sections explain some of the most relevant state-of-the-art

models and algorithms in detail.

3.1 Multiple Traveling Salesperson Problems (mTSPs)

Every mTSP generalizes the canonical NP-hard TSP. While the TSP seeks a minimum

closed path that visits all vertices, the input for an mTSP is a weighted complete

graph G = (V ,E) and a positive integer m, and its goal is to find a set of m paths

such that all vertices are visited once by some salesperson [29, 47]. If the input

graph is undirected (resp., directed), the problem is symmetric (resp., asymmetric).

Naturally, the asymmetric version generalizes the symmetric one. An mTSP variant

receives particular labels depending on its characteristics: depot-free (DF), single-depot

(S), multiple-depots (M), closed-paths (CP), open-paths (OP), bounding constraints,

etc. In most cases, the objective function to minimize is the sum of the paths’ costs

(minsum) or the largest path (minmax or makespan); other objective functions might

be considered, such as the cost of the largest edge (bottleneck) [48].

The most widely studied mTSPs are Single-Depot mTSP (SmTSP) and Multiple-

Depots mTSP (MmTSP). Nevertheless, the Depot-Free mTSP (DFmTSP) variant has

received less attention. In SmTSP, all salespersons must start and finish their path at a

specific vertex (the depot), which is part of the input. In the Fixed-Destination Multiple-

Depots mTSP (FD-MmTSP), m depots are part of the input, and each salesperson

must start and finish their path at their respective depot. In the Non-Fixed-Destination

Multiple-Depots mTSP (NFD-MmTSP), each salesperson can finish their path at a

different depot [48]. In DFmTSP, the depot concept is not involved. Therefore, it

seeks a disjoint collection of closed paths that visit all vertices [4]. If the objective

function is minsum and no other constraints are involved, this problem receives the
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Figure 3.1: Optimal solutions for mTSP with closed paths and bounding constraints (m = 2,
L = 3, and U = 5).
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Figure 3.2: Optimal solutions for mTSP with open paths and bounding constraints (m = 2,
L = 3, and U = 5).

name of Hamiltonian p-median problem [49]. Since this document considers many

other constraints, we stick to the name DFmTSP. In all the mentioned mTSPs, every

solution consists of exactly m paths, and the path followed by each salesperson is

closed. However, if the salespersons do not need to return to their depot, the problem

is an open-paths (OP) variant. Figures 3.1 and 3.2 show a set of optimal solutions for

SmTSP, FD-MmTSP, and DFmTSP to clarify these variants’ differences. Notice that,

in all these examples, each path must have between three and five vertices; these are

bounding constraints that aim at preserving load balance.

To date, some surveys on mTSP have been published [48, 50, 51]. However, they

are not structured in chronological order. Thus, one of the papers resulting from this

research presents a historical account of mTSP that sheds light on how DFmTSP has

received very little attention [52]. To avoid repeating information, this document only

summarizes the larger historical account published in the aforementioned paper.
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3.1.1 Historical development

The TSP has been studied since 1954 [26]. Its first mathematical models are from 1959

and 1960 [28, 29]. For instance, see Expressions (2.10) to (2.14) at Chapter 2. Naturally,

mTSP with one salesperson (m = 1 ) is equivalent to TSP; therefore, mTSP is NP-hard

too. In fact, the aforementioned ILP (Expressions (2.10) to (2.14)) can be easily adapted

to the SmTSP with closed paths and minsum objective function by adding the extra

Constraint (3.5), where G = (V ,E) is the input graph, m is the number of salespersons,

V = {v1, . . . , vn}, and v1 is the depot.

min
∑
vi∈V

∑
vj∈V

ci,jxi,j (3.1)

s.t.
∑
vj∈V

xi,j = 1 ∀vi ∈ V (3.2)

∑
vi∈V

xi,j = 1 ∀vj ∈ V (3.3)

ti − tj +nxi,j ⩽ n− 1 ∀vi, vj ∈ V (3.4)
n∑

i=1

xi,1 = m (3.5)

xi,j ∈ {0, 1} ∀vi, vj ∈ V (3.6)

mTSPs gained more attention between 1973 and 1975, and more efficient mathemat-

ical models were introduced [47, 53]. Some of the most remarkable of them are based

on SmTSP being reduced in polynomial time to TSP by adding some extra vertices to

the original graph [53].

Between 1976 and 1995, exact algorithms were proposed; these were mainly based

on Benders decomposition, cutting planes, and branch-and-bound [52]. Besides, some

heuristics for SmTSP were introduced too. By 1995, SmTSP with a minsum objective

function was the most studied mTSP; only the MmTSP with two salespersons (m = 2)

was mentioned and reduced to TSP in 1980 [54]. It was not until 1995 that MmTSP was

reduced to TSP [55]. Only a tabu search metaheuristic was developed in this period

for SmTSP [56].

From 1996 to 2005, MmTSP gained more attention, and some more heuristics

and metaheuristics considering minsum and minmax objective functions for SmTSP,

MmTSP, and DFmTSP were introduced too. The main approaches were neural net-

works, genetic algorithms, particle swarm optimization, evolutionary strategies, and

simulated annealing [52]. In this period, a few authors started paying attention to
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Figure 3.3: Number of published papers for mTSPs.

DFmTSP.

From 2006 to date, the interest in SmTSP, MmTSP, DFmTSP, and their variants

has grown much more. Nevertheless, most of the research was still focused on

SmTSP and the minsum objective function. Many heuristics, exact algorithms, and

IPs were proposed during this period. In fact, it was metaheuristics that dominated

the scene with neural networks, genetic algorithms, clustering strategies, ant colony

optimization, firefly algorithm, ant colony system, market-based algorithms, imperialist

competitive algorithm, tabu search, gravitational emulation local search algorithm,

variable neighborhood search, bee colony optimization, invasive weed optimization,

wolf pack search algorithm, discrete pigeon optimization, reinforcement learning,

evolutionary strategies, hybrid search, memetic search, simulated annealing, and bees

algorithm. As in years before, only a few authors worked on DFmTSP. Remarkably, it

was not until 2017 and 2021 that the first reported IPs for DFmTSP were published

[57, 4]. From them, we could reproduce and validate the IP of Karabulut et al.

[4]. Figure 3.3 summarizes this section’s historical account and lets us observe how

DFmTSP has been scarcely studied through the years. It is worth mentioning that the

Hamiltonian p-median problem was not considered in this chronological account.
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3.1.2 Objective functions

There are two popular objective functions for mTSPs that have been used in the

literature: minsum and minmax [58]. The first one aims to minimize the sum of the

costs of the salespersons’ paths (See Expression (3.7)).

min
m∑
i=1

c(pi) (3.7)

The sum goes from 1 to m, pi represents the path of the ith salesperson, and c(pi)

is the cost of such path. This equation is the same for closed or open paths. The second

objective function, minmax, aims at minimizing the longest path among salespersons.

Expression (3.8) defines the minmax objective function, like minsum, which can be

used for closed or open paths.

min max
1⩽i⩽m

c(pi) (3.8)

Other objective functions have been scarcely considered, such as bottleneck, which

aims to minimize the weight of the highest-weight edge [59]. Nevertheless, minsum is

definitely the most frequently used objective function.

3.2 Integer programs for mTSPs

This section presents the state-of-the-art IPs for the main variants of mTSP, i.e., SmTSP,

MmTSP, and DFmTSP. These IPs are the most recent and complete available in the lit-

erature. They tackle the closed-paths (CP) version and integrate bounding constraints.

3.2.1 Single depot (SmTSP)

This section presents the most general ILP for SmTSP [48]. It uses the minsum Objective

function (3.9) and considers closed paths with bounding constraints. In addition to m,

two positive integers L and U are part of the input. So, each salesperson must visit

between L and U vertices. The input graph G = (V ,E) has vertices V = {v1, . . . , vn},

vd ∈ V is the depot, and ci,j is the cost of traveling from vertex vi to vj. Notice that

ci,j can differ from cj,i. Thus, this ILP models the asymmetric SmTSP, which is a

generalization of the symmetric version.
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min
∑
vi∈V

∑
vj∈V

ci,jxi,j (3.9)

s.t.
∑

vj∈V\{vd}

xd,j = m (3.10)

∑
vj∈V\{vd}

xj,d = m (3.11)

∑
vi∈V

xi,j = 1 ∀vj ∈ V \ {vd} (3.12)

∑
vj∈V

xi,j = 1 ∀vi ∈ V \ {vd} (3.13)

ti + (U− 2)xd,i − xi,d ⩽ U− 1 ∀vi ∈ V \ {vd} (3.14)

ti + xd,i + (2− L)xi,d ⩾ 2 ∀vi ∈ V \ {vd} (3.15)

xd,i + xi,d ⩽ 1 ∀vi ∈ V \ {vd} (3.16)

ti − tj +Uxi,j + (U− 2)xj,i ⩽ U− 1 ∀vi, vj ∈ V \ {vd} : vi ̸= vj (3.17)

xi,j ∈ {0, 1} ∀vi, vj ∈ V : vi ̸= vj (3.18)

where

xi,j =

1, if the kth salesperson visits vertex vj immediately after vertex vi

0, otherwise
(3.19)

ti = visiting rank of node i (3.20)

Constraints (3.10) and (3.11) guarantee that all salespersons depart and arrive at

the depot. Constraints (3.12) and (3.13) guarantee that all vertices are visited once

(except vd). Constraints (3.14) to (3.17) guarantee that all the paths have between L and

U vertices and include subtour elimination. It is worth mentioning that a path must

have at least two vertices in this model and others to come. In other words, isolated

vertices are forbidden as part of a solution.

3.2.2 Fixed-Destination Multiple depots (FD-MmTSP)

This section presents the more general IP for FD-MmTSP [48]. Namely, there are

m depots as part of the input, and each salesperson must depart and arrive at its

corresponding depot, i.e., it considers closed paths. For clarity, let us assume that the

vertices in G = (V ,E) are labeled as V = {v1, v2, ..., vn}, the set of depots is D ⊆ V such
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that |D| = m, and J is the set of vertices that must be visited by the salespersons, i.e.,

J = V \D. ci,j is the cost of traveling from vi to vj. Notice that ci,j might differ from

cj,i; we are working with the asymmetric version of the problem.

min
∑
vk∈D

∑
vj∈J

(
ck,jxk,j,k + cj,kxj,k,k

)
+

∑
k∈D

∑
i∈J

∑
j∈J

(
ci,jxi,j,k

)
(3.21)

s.t.
∑
vj∈J

xk,j,k = 1 ∀vk ∈ D (3.22)

∑
vk∈D

xk,j,k +
∑
vk∈D

∑
vi∈J

xi,j,k = 1 ∀vj ∈ J (3.23)

xk,j,k +
∑
vi∈J

xi,j,k − xj,k,k −
∑
vi∈J

xj,i,k = 0 ∀vk ∈ D, j ∈ J (3.24)

∑
vj∈J

xk,j,k −
∑
vj∈J

xj,k,k = 0 ∀vk ∈ D (3.25)

ti + (U− 2)
∑
vk∈D

xk,i,k −
∑
vk∈D

xi,k,k ⩽ U− 1 ∀vi ∈ J (3.26)

ti +
∑
vk∈D

xk,i,k + (2− L)
∑
vk∈D

xi,k,k ⩾ 2 ∀vi ∈ J (3.27)

∑
vk∈D

xk,i,k +
∑
vk∈D

xi,k,k ⩽ 1 ∀vi ∈ J (3.28)

ti − tj +U
∑
vk∈D

xi,j,k + (U− 2)
∑
vk∈D

xj,i,k ⩽ U− 1 ∀vi, vj ∈ J (3.29)

xi,j,k ∈ {0, 1} ∀vi, vj ∈ V , vk ∈ D

(3.30)

where

xi,j,k =

1, if the salesperson that departs from the vk dummy depot goes from vi to vj

0, otherwise

(3.31)

ti = time at which vertex i is visited in the path (3.32)

2 ⩽ L ⩽ ⌈|V |/m⌉ ⩽ U ⩽ |V | (3.33)

In this formulation, Expression (3.21) is the minsum objective function for the

CP-FD-MmTSP. Constraints (3.22) guarantee that exactly one salesperson departs from

each depot vk ∈ D. Constraints (3.23) ensure that each vertex is visited exactly once by
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a salesperson (a.k.a. flow constraints). Constraints (3.24) and (3.25) represent the route

continuity for vertices and depots. Constraints (3.26)-(3.27), and (3.33) serve as upper

and lower bound constraints on the number of vertices visited by each salesperson.

That is, ensure that each salesperson visits between L and U vertices in his path. These

constraints are called bounding constraints and are useful for load-balance among

salespersons. Constraints (3.28) prohibit a salesperson from visiting only one vertex

(a.k.a. return trips). Constraints (3.29) are the subtour elimination constraints (SECs)

that avoid the formation of any subtours. Finally, Expressions (3.30)-(3.33) define the

decision variables.

3.2.3 Depot free (DFmTSP)

As far as we know, there is only one IP for the DFmTSP that considers upper bound

constraints, the minsum objective function, and closed paths [4]. As in previous IPs,

each salesperson must visit at least two vertices in her tour.

min
∑
vi∈V

∑
vj∈V :vi ̸=vj

(
ci,j

m∑
k=1

xi,j,k

)
(3.34)

s.t.
∑

vi∈V :vi ̸=vj

m∑
k=1

xi,j,k = 1 ∀vj ∈ V (3.35)

∑
vi∈V :vi ̸=vp

xi,p,k −
∑

vj∈V :vj ̸=vp

xp,j,k = 0 ∀vp ∈ V ,k ∈ [1,m] (3.36)

∑
vi∈V

∑
vj∈V :vi ̸=vj

xi,j,k ⩾ 1 ∀k ∈ [1,m] (3.37)

ti − tj +U

m∑
k=1

xi,j,k ⩽ U− 1+Uzj ∀vi, vj ∈ V : vi ̸= vj (3.38)

1 ⩽ ti ⩽ U ∀vi ∈ V (3.39)∑
vi∈V

zi = m (3.40)

xi,j,k ∈ {0, 1} ∀vi, vj ∈ V : vi ̸= vj,k ∈ [1,m]

(3.41)

zi ∈ {0, 1} ∀vi ∈ V (3.42)

where
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xi,j,k =

1, if the kth salesperson visits vertex vj immediately after vertex vi

0, otherwise

(3.43)

zi =

1, if vertex vi is the starting (origin) vertex in a tour of any salesperson

0, otherwise

(3.44)

ti = visiting rank of node i (3.45)

The Objective function is minsum (See Equation (3.34)), i.e., it is the total cost

of the m tours. Constraints (3.35) ensure that each node is visited exactly once.

Constraints (3.36) are the flow conservation constraints, which guarantee that if a

salesperson visits a specific vertex, such salesperson must also depart from that vertex.

Constraints (3.37) ensure that each salesperson is used in the problem. Constraints

(3.38) and (3.39) represent the subtour elimination constraints (SECs) and the bounding

constraints, where U is the maximum number of vertices that each salesperson can

visit. Constraints (3.40) state that m starting vertices for m tours exist. Constraints

(3.41) and (3.42) define the decision variables.

Although it was not mentioned by Karabulut et al., their IP is easily adapted to the

minmax objective function by replacing Expression (3.34) with Expressions (3.46)-(3.47),

where Pmax is the maximum tour length among the salespersons.

min Pmax (3.46)

Pmax ⩾
n∑

i=1

n∑
j=1:i ̸=j

(
ci,jxi,j,k

)
∀k ∈ [1,m] (3.47)

3.3 Location science in routing problems

Although location and routing problems have their own body of knowledge, they

can be useful to one another. For instance, a common strategy for finding feasible

solutions to routing problems is known as clustering-routing or cluster-first route-second.

It is difficult to establish who first devised such an intuitive strategy. However, one

of the earlier works where it can be found is [60]. In that paper, a heuristic named

MTOUR for the Vehicle Dispatch Problem (VDP) was introduced; this problem seeks

m routes for m vehicles under certain constraints.

Models and Algorithms for Depot-Free Multiple Traveling Salesperson

Problems



32 Location science in routing problems

The idea behind clustering-routing is simple: there are two phases. The first groups

vertices, and the second determines feasible routes for each cluster. Although location

problems do not explicitly group vertices, they can be used to that end.

3.3.1 Clustering-routing for mTSP

Some works where clustering-routing has been used for mTSPs are the following. For

SmTSP, Bolaños et al. [61] proposed heuristic algorithms for the clustering phase, and

then a GA with intra-route heuristics is used to improve the quality of the routes.

Another work that uses the clustering-routing strategy is [62], where a variation of the

k-means algorithm is used at the clustering phase, then a GA is used to build a route

within each cluster. In fact, most works have used variations of the k-means algorithm

for the clustering phase for the mTSP [63, 64, 65]. An interesting point of [65] is that

the authors used a parallel approach to improve the execution times.

Regarding MmTSP the situation is similar, variations of the k-means clustering

have been used in [66, 67]. It is worth noting that, for the second phase, most authors

have used GAs, ant-based algorithms, and hybridizations between them.

3.3.2 Capacitated Vertex k-center as a clustering technique

Along with k-means, k-center problems (See Section 2.3.1.1) are natural clustering

methods. In particular, the capacitated version of VKCP (CVKCP) imposes load-

balance by considering an upper bound on the number of clients each center can attend.

The CVKP has not been used as a clustering strategy for mTSP in the literature. Thus,

part of this project explored its advantages as a clustering technique. The basic MILP

for CVKCP is the following, where G = (V ,E) is the input graph, V = {v1, . . . , vn}, k is

the number of centers, and fc : V →N is a capacity function that specifies how many

vertices can be assigned to each center.
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min z (3.48)

s.t.
n∑

i=1

di,jxi,j ⩽ z ∀vj ∈ V (3.49)

n∑
i=1

xi,j = 1− yi ∀vj ∈ V (3.50)

xi,j ⩽ yi ∀vi, vj ∈ V (3.51)
n∑

i=1

yi ⩽ k (3.52)

n∑
i=1

xi,j ⩽ fc(vj) ∀vj ∈ V (3.53)

xi,j,yi ∈ {0, 1} ∀vi, vj ∈ V (3.54)

In comparison to the MILP for the uncapacitated version (Expressions (2.4) to

(2.9) at Section 2.3.1.1), this MILP only adds Constraints (3.53), which imposes a load

balance given by the input function fc. Besides, Constraints (3.50) avoids a center to be

assigned to itself. Namely, centers do not need to be attended by anyone. Now, notice

that a solution to CVKCP is a set of vertices, not a cluster of vertices. However, such

cluster can be obtained through decision variables xi,j, which indicates which vertices

are assigned to which centers; since there are k of them, k clusters can be inferred. In

Section 5.1, novel IPs for CVKCP are introduced. Afterward, they are used as the basis

for novel clustering-routing heuristics for DFmTSP.

3.4 Heuristics and metaheuristics for mTSP

As previously mentioned, the mTSP is NP-hard. For this reason, in the last years,

many researchers have focused on using heuristic and metaheuristic algorithms for

this problem in order to try to solve relatively big instances in practical amounts of

time [68].

In general, the literature on the mTSPs includes many metaheuristics for the

mTSPs that consider depots as part of the problem. Nevertheless, there are just a few

proposals for the mTSP that consider the specific restrictions that we do in this thesis,

the DFmTSP with bounding constraints. In the literature, evolutionary computing

stands as a good approach that has been capable of finding good-quality solutions for

this studied problem. Such is the case of [69], where a Partheno Genetic Algorithm
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(PGA) for the DFmTSP is proposed, but it only considers lower bound constraints.

That is, each path is constrained to visit a minimum number of vertices but not a

maximum. Despite this, this PGA can be adapted to consider lower-bound constraints

by making the appropriate modifications. Also, [1] proposes a metaheuristic combining

an Ant Colony and a Partheno Genetic Algorithm. This algorithm is called AC-PGA

and considers both lower-bound and upper-bound constraints. In [1], experimentation

is performed to compare the performance between the PGA of [69] and the AC-

PGA, concluding that AC-PGA outperformed it, finding solutions of better quality.

Algorithm 1 shows the pseudocode of the AC-PGA.

Input: A population P, a natural selection ratio γ, a distance matrix D, a

pheromone volatilization rate ρ, the importance of pheromone and

visibility α and β, ACO steps iteration n0, and maximum iteration N0.

Output: The best found solution

1 Initialize |P| pairs of depot sequence and city number sequence, then associate

them with individuals in initial population

2 while ¬StopCondition() do

3 // ACO steps

4 Run ACO-based algorithm

5 // PGA steps

6 Calculate each individual’s fitness function value Retain the individual with

larger fitness value on the ratio of γ

7 Use the retained individuals to produce offspring randomly and each kid’s

gene is composed of a depot sequence and a city number sequence

8 end

9 return best found solution

Algorithm 1: AC-PGA.
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Input: A population P, a distance matrix D, a pheromone volatilization rate ρ,

the importance of pheromone and visibility α and β, ACO steps

iteration n0, and maximum iteration N0.

Output: The best found solution

1 Start from the first individual

2 do

3 Initial pheromone matrix τ and tabu list A

4 do

5 Put an ant on each salesman’s depot. From the first ant, each of them

moves to the next cities in order

6 do

7 Update tabu list A

8 if current ant has finished its tour then

9 Turn to the next ant

10 else

11 Assume that the current ant is at the ith vertex and the

probability of moving to the jth vertex is pi,j . The calculation

formula shows as follows:

12 pi,j =


τ(i,j)αci,j

β∑
k/∈A τ(i,k)αci,k

β , if j /∈ A

0 , otherwise

13 end

14 while |A| ̸= n

15 while The number of iterations reaches n0

16 Get a feasible solution and replace individual’s gene with it

17 while Perform ACO steps on each individual
18 return best found solution

Algorithm 2: ACO-based algorithm.
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Chapter 4

Mathematical models of DFmTSP

This chapter presents new integer programs (IPs) for DFmTSP and its primary variants,

featuring dummy depots as a key characteristic. The section is structured into two

parts. Section 4.2 introduces IPs for the CP and OP variants, incorporating bounding

constraints and both minsum and minmax objective functions. These IPs include

O(n2m) binary variables and are inspired by an existing IP for FD-MmTSP proposed

in [48]. Subsequently, Section 4.3 proposes more compact IPs for the CP and OP

variants with bounding constraints and a minsum objective function. These IPs reduce

the number of binary variables to O(n2).

4.1 Dummy depots

Definition 4.1.1. A dummy depot is a vertex vk ̸∈ V(G), such that ∀vi ∈ V(G), ci,k =

ck,i = 0, where G is the input graph and ca,b is the cost of the edge (va, vb). As the name
suggests, it is a “fake depot”.

4.2 Model 1: based on FD-MmTSP

This section extends a state-of-the-art IP for the FD-MmTSP (See Section 3.2.2) [48].

The connection between FD-MmTSP and DFmTSP comes from the following intuitive

Observation 1.

Observation 1. A solution to CP-DFmTSP defines a partition of vertices. If one vertex
from each partition’s element is known in advance, the problem can be directly modeled as
CP-FD-MmTSP.

Expressions (4.1)-(4.13) define an IP for the minsum CP-DFmTSP with bounding

constraints. This IP will serve as the foundation for the remaining integer programs

in this chapter. Specifically, we will demonstrate how to adapt this model to the

minmax objective function and the OP variant. To begin, let us describe this IP in
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detail. Let V denote the set of vertices in the complete weighted graph G = (V ,E,w),

and let D represent a set of m dummy depots. For generality, assume that the input

graph is directed. For clarity, the vertices in V are labeled as {v1, v2, . . . , vn}, while

the dummy depots in D are labeled as {vn+1, vn+2, . . . , vn+m}, where V ∩D = ∅. The

cost of traveling from vi to vj is denoted as ci,j. Note that ci,j may differ from cj,i,

meaning we are addressing the asymmetric version of the problem, which generalizes

its symmetric counterpart.

min
∑
vi∈V

∑
vj∈V

ci,j
∑
vk∈D

(
xi,j,k + xi,k,kxk,j,k

)
(4.1)

s.t.
∑
vj∈V

xk,j,k = 1 ∀vk ∈ D (4.2)

∑
vk∈D

xk,j,k +
∑
vk∈D

∑
vi∈V

xi,j,k = 1 ∀vj ∈ V (4.3)

xk,j,k +
∑
vi∈V

xi,j,k − xj,k,k −
∑
vi∈V

xj,i,k = 0 ∀vk ∈ D, vj ∈ V (4.4)

∑
vj∈V

xk,j,k −
∑
vj∈V

xj,k,k = 0 ∀vk ∈ D (4.5)

ti + (U− 2)
∑
vk∈D

xk,i,k −
∑
vk∈D

xi,k,k ⩽ U− 1 ∀vi ∈ V (4.6)

ti +
∑
vk∈D

xk,i,k + (2− L)
∑
vk∈D

xi,k,k ⩾ 2 ∀vi ∈ V (4.7)

∑
vk∈D

xk,i,k +
∑
vk∈D

xi,k,k ⩽ 1 ∀vi ∈ V (4.8)

ti − tj +U
∑
vk∈D

xi,j,k + (U− 2)
∑
vk∈D

xj,i,k ⩽ U− 1 ∀vi, vj ∈ V (4.9)

xi,j,k ∈ {0, 1} ∀vi, vj ∈ V ∪D,∀vk ∈ D

(4.10)

where

xi,j,k =

1, if the salesperson at the vk dummy depot goes from vi to vj

0, otherwise
(4.11)

ti = time at which vertex vi is visited in the path (4.12)

2 ⩽ L ⩽ ⌈|V |/m⌉ ⩽ U ⩽ |V | (4.13)

In this IP, Constraints (4.2) ensure that exactly one salesperson departs from each

dummy depot vk ∈ D. Constraints (4.3) ensure that each vertex vj ∈ V is visited

INAOE Computer Science Department



Mathematical models of DFmTSP 39

exactly once from some vertex vi ∈ V ∪D. Constraints (4.4) and (4.5) enforce route

continuity for both vertices and dummy depots. Constraints (4.6), (4.7), and (4.13)

ensure that each salesperson visits between L (lower bound) and U (upper bound)

vertices, collectively referred to as bounding constraints. Constraints (4.8) prevent

a salesperson from visiting only one vertex (a.k.a., a return trip). Constraints (4.9)

are subtour elimination constraints (SECs), ensuring that tj = ti + 1 if and only if

xi,j = 1. Constraints (4.10) define the decision variables. Note that we use the term

time metaphorically, where variables t represent the order in which a salesperson

visits vertices. Finally, the objective function (4.1) minimizes the total cost of all paths

(minsum). The number of binary variables and constraints is O(n2m) and O(n2),

respectively. Note that the objective function contains a quadratic term, making this

program an integer quadratic program (IQP). However, as we will show later, it can be

linearized by introducing additional variables and constraints.

Figure 4.1 illustrates the optimal solution of this IP applied to a small graph with

m = 2, L = 3, and U = 5. In this figure, two salespersons depart from and return to

the dummy depots v9 and v10, respectively. Since traversing a dummy depot incurs

no cost, we must identify the edges (v2, v1) and (v6, v5) and include their costs in the

objective function, as explained in Lemma 1. Regarding the matrices x9 and x10, each

corresponds to a distinct dummy depot and encodes a unique closed path.

Lemma 1. Expression (4.1) is the minsum objective function for CP-DFmTSP.

Proof. Expression (4.1) comes from the following expanded form:

∑
vk∈D

∑
vi∈V

∑
vj∈V

ci,jxi,j,k︸ ︷︷ ︸
first term

+
∑
vk∈D

∑
vi∈V

∑
vj∈V

ci,jxi,k,kxk,j,k︸ ︷︷ ︸
second term

(4.14)

The first term of Expression (4.14) adds up the cost of the traveled edges (solid red and

blue edges in Figure 4.1). The second term adds up the cost ci,j of the edge of each

pair of vertices vi, vj ∈ V adjacent to a dummy depot vk ∈ D (dotted red and blue

edges in Figure 4.1). Let vk be any dummy depot in D, and let vi and vj be any pair

of different vertices in V . If xi,k,k = xk,j,k = 1, then the salesperson associated with

the vk dummy depot goes from vertex vi to vk and then from vertex vk to vj. Thus,

the path is closed if we consider the edge (vi, vj). This way, the cost of edge (vi, vj) is

considered in the objective function because ci,jxi,k,kxk,j,k = ci,j. Finally, the Objective

function (4.14) considers the sum of the paths of all the salespersons. Therefore, it is

the minsum objective function for CP-DFmTSP.
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Figure 4.1: Exact solution of the IP for minsum CP-DFmTSP with bounding constraints. In this
graph instance, V = {v1, v2, v3, v4, v5, v6, v7, v8}, m = 2, L = 3, U = 5, D = {v9, v10},
and the cost of each edge equals the euclidian distance between its vertices (except
edges with some dummy depot). There is a 10× 10 matrix for each dummy depot,
x9 = [xi,j]10×10 and x10 = [xi,j]10×10.

Although the Objective function (4.1) has a quadratic term, it can be linearized

by noting that, in the second term of Expression (4.14), ci,j is added up if and only

if xi,k,kxk,j,k = 1. So, this product can be replaced by the binary variable yi,j,k (See

Constraints (4.16)-(4.19).) By doing so, the minsum objective function is Eq. (4.15) and

we get an integer linear program (ILP) with O(n2m) binary variables and constraints.

∑
vi∈V

∑
vj∈V

ci,j
∑
vk∈D

(
xi,j,k + yi,j,k

)
(4.15)

where,
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yi,j,k ⩾ xi,k,k + xk,j,k − 1 ∀vi, vj ∈ V , ∀vk ∈ D (4.16)

yi,j,k ⩽ xk,j,k ∀vi, vj ∈ V , ∀vk ∈ D (4.17)

yi,j,k ⩽ xi,k,k ∀vi, vj ∈ V ,∀vk ∈ D (4.18)

yi,j,k ∈ {0, 1} ∀vi, vj ∈ V ,∀vk ∈ D (4.19)

The IP for minsum CP-DFmTSP can be adapted for the minmax objective function

if we replace Expression (4.1) by Expressions (4.20)-(4.21), where Pmax is the longest

path among the salespersons.

min Pmax (4.20)

Pmax ⩾
∑
vi∈V

∑
vj∈V

ci,j
(
xi,j,k + xi,k,kxk,j,k

)
∀vk ∈ D (4.21)

Lemma 2. Expressions (4.20) and (4.21) are the minmax objective function for CP-DFmTSP.

Proof. Expression (4.21) comes from the following expanded form:

Pmax ⩾
∑
vi∈V

∑
vj∈V

ci,jxi,j,k︸ ︷︷ ︸
first term

+
∑
vi∈V

∑
vj∈V

ci,jxi,k,kxk,j,k︸ ︷︷ ︸
second term

∀vk ∈ D (4.22)

Let vk ∈ D be a specific dummy depot and let vi, vj ∈ V be a pair of vertices in its

respective path. Then, the first term of Expression (4.22) adds up the cost of the edges

in the path of the dummy depot vk, and the second term adds the cost ci,j of the edge

(vi, vj) such that the salesperson goes from vi to vk and then from vk to vj. Thus, by

considering the edge (vi, vj) the path is closed; the cost of this edge is considered in the

objective function because ci,jxi,k,kxk,j,k = ci,j. Note that Expression (4.22) computes

the cost of the closed path per each dummy depot vk ∈ D. Besides, variable Pmax

must be greater or equal to each salesperson’s path’s cost and must be minimized. So,

Expressions (4.20) and (4.21) are the minmax objective function for CP-DFmTSP.

As with minsum, the minmax objective function defined by Expressions (4.20)

and (4.21) can be linearized by adding variables yi,j,k = xi,k,kxk,j,k and Constraints

(4.16)-(4.18).

In this thesis, a singleton path (vi) of length 0 is invalid. However, a two-vertices

path (vi, vj) is a valid closed path of length ci,j + cj,i or an open path of length ci,j.
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Therefore, a solution to any variant of DFmTSP must consist of m paths, each with at

least two vertices. Of course, the number of vertices in each path must also be between

the bounding constraints L and U. Lemmas 3 and 4 show that the proposed IPs are

consistent with these considerations.

Lemma 3. Constraints (4.9) guarantee that tb = ta + 1 if and only if xa,b,k = 1 for some
dummy depot vk [48].

Proof. First, let us consider the case of a pair of vertices, va and vb, such that xa,b,k =

xb,a,k = 0 for every dummy depot vk. In this scenario, constraints (4.9) are reduced

to the single constraint ta − tb ⩽ U− 1, which is basically deactivated. Next, let us

consider the case of a pair of vertices va and vb such that xa,b,k = 1 and xb,a,k = 0

for some dummy depot vk. In this scenario, constraints (4.9) become two constraints,

tj ⩾ ti + 1 (with i = a and j = b) and ti ⩽ tj + 1 (with i = b and j = a). Thus,

ta + 1 ⩽ tb ⩽ ta + 1, i.e., tb = ta + 1.

Lemma 4. A solution to the proposed IPs consists of m paths, each having between max{2,L}

and U vertices.

Proof. By constraints (4.8), ∀vi ∈ V ,
∑

vk∈D xk,i,k =
∑

vk∈D xi,k,k = 1 is not allowed;

this case alone avoids singleton paths to occur. Now, let us inspect the three remaining

cases; the consequent of each implication follows from constraints (4.6) and (4.7)

combined:

(i) If
∑

vk∈D xk,i,k =
∑

vk∈D xi,k,k = 0, then 2 ⩽ ti ⩽ U− 1.

• This case corresponds to the vertices non-adjacent to any dummy depot in

any path. In Figure 4.1, these are v3, v4, v7, and v8.

(ii) If
∑

vk∈D xk,i,k = 1 and
∑

vk∈D xi,k,k = 0, then ti = 1.

• This case corresponds to the first vertex visited by each salesperson after

leaving its dummy depot. In Figure 4.1, these are v1 and v3.

(iii) If
∑

vk∈D xk,i,k = 0 and
∑

vk∈D xi,k,k = 1, then L ⩽ ti ⩽ U.

• This case corresponds to the last vertex visited by each salesperson before

returning to its dummy depot. In Figure 4.1, these are v2 and v6.

By Lemma 3, tj = ti + 1 if and only if xi,j = 1. In other words, the variables ti and

tj of adjacent vertices vi and vj in a path must differ by exactly one unit. Thanks to
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this, constraints (4.6) and (4.7) guarantee that each path has between max{2,L} and U

vertices. Finally, since there cannot be empty paths, a solution must have exactly m

paths.

So far, we have introduced and explained the main elements of IPs for CP-DFmTSP

with bounding constraints and minsum and minmax objective functions. Next, we

adapt this formulation to the OP variant. To our knowledge, this is the first reported

mathematical formulation for this variant. Fortunately, all we have to modify is the

objective function. The minsum objective function for the OP variant is:

∑
vi∈V

∑
vj∈V

ci,j

 ∑
vk∈D

xi,j,k

 (4.23)

Lemma 5. Expression (4.23) is the minsum objective function for OP-DFmTSP.

Proof. Expression (4.23) is the first term of expression (4.14). It considers only the cost

of the traveled edges (solid red and blue edges in Figure 4.1). The vertices vi and vj

that makes xi,k,k = 1 and xk,j,k = 1 are in the extremes of the open path; thus, ci,j

needs not to be considered. Finally, the Objective function (4.23) considers the sum of

the path’s length for all salespersons. Therefore, it is the minsum objective function for

OP-DFmTSP.

Next, we show the minmax objective function for the OP variant.

min Pmax (4.24)

Pmax ⩾
∑
vi∈V

∑
vj∈V

ci,jxi,j,k ∀vk ∈ D (4.25)

Lemma 6. Expressions (4.24) and (4.25) are the minmax objective function for OP-DFmTSP.

Proof. Expression (4.25) is the first term of Expression (4.22). It only considers the

cost of the traveled edges. So, the paths are open. Besides, variable Pmax is greater

or equal to each salesperson’s open path length, and Pmax is minimized. Therefore,

Expressions (4.24) and (4.25) are the minmax objective function for OP-DFmTSP.

By Lemmas 2-4, the proposed IPs are valid formulations for DFmTSP and its main

variants: OP, CP, minsum, minmax, and bounding constraints. To finish this section,

notice that all these IPs can be adapted to FD-MmTSP by adding Constraints (4.26);

these force each dummy depot to directly visit a vertex v ∈ R, where R is the input set

of depots, V ∩ R = R, V ∩D = ∅, and |R| = m. Of course, this adaptation is redundant
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because, in the first place, the proposed IPs extend an IP for FD-MmTSP. However, this

adaption becomes useful when |R| < m; in this scenario, we deal with a combination

between FD-MmTSP and DFmTSP where less than m depots are known, but the

solution still consists of m paths. For further illustration, Figure 4.2 shows the optimal

solution for Mexicos city’s town halls graph (cdmx16). We implemented and executed

all the proposed formulations to compute the optimal solutions using off-the-shelf

optimization software [70].

∑
vk∈D

∑
vi∈R

xk,i,k = |R| (4.26)
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Figure 4.2: Optimal solutions for (a) CP-DFmTSP, (b) a combination between CP-DFmTSP
and CP-FD-MmTSP (R = {v9, v13}), and (c) CP-FD-MmTSP (R = {v9, v13, v4}). The
objective function is minsum, the number of salespersons is three (m = 3), L = 4,
U = 10, the cost of each edge equals the euclidian distance between its vertices,
and the depots are marked in green. Subfigures (d), (e), and (f) correspond to the
open-paths (OP) variants.

The following section introduces more compact formulations for the same problems

and most of their variants.
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4.3 Model 2: more compact integer programs

This section introduces more compact IPs for DFmTSP and some of its main variants.

The main IP of this section has O(n2) binary variables, O(n2) constraints, and require

m dummy depots. Expressions (4.27)-(4.37) define an IP for minsum CP-DFmTSP;

we will use this IP as the basis for the rest of this section’s IPs. For clarity, let us

assume that the vertices in V are labeled as {v1, v2, ..., vn}, the m dummy depots in D

are labeled as {vn+1, vn+2, ..., vn+m}, and V ′ = V ∪D, where G = (V ,E) is the input

graph. Notice that V ∩D = ∅.

min
∑

vi∈V ′

∑
vj∈V ′

ci,j

(
xi,j + xn+m,jxi,n+1

+
∑

vk∈D\{vn+m}

xk,jxi,k+1

)
(4.27)

s.t.
∑

vj∈V ′\{vi}

xi,j = 1 ∀vi ∈ V ′ (4.28)

∑
vi∈V ′\{vj}

xi,j = 1 ∀vj ∈ V ′ (4.29)

tn+1 = 0 (4.30)

tk+1 − tk ⩾ 3 ∀vk ∈ D \ {vn+m} (4.31)

|V ′|− tn+m ⩾ 3 (4.32)

1 ⩽ ti ⩽ |V ′|− 1 ∀vi ∈ V ′ \ {vn+1} (4.33)

ti − tj + xi,j|V
′| ⩽ |V ′|− 1 ∀vi, vj ∈ V ′ \ {vn+1} (4.34)

xi,j ∈ {0, 1} ∀vi, vj ∈ V ′ (4.35)

where

xi,j =

1, if a salesperson travels from vi to vj

0, otherwise
(4.36)

ti = time at which vertex vi is visited in the path (4.37)

The Objective function (4.27) has a quadratic term. Therefore, this formulation

is an IQP. Later, we will show how to linearize the objective function; but before, let

us explain this formulation. The solution to this formulation is a closed path that

visits all vertices once, similar to TSP. From this single path, all m paths are inferred.

Constraints (4.28) and (4.29) are flow constraints; they guarantee that there is a single
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closed path that visits all vertices once. Constraints (4.30)-(4.32) are depot ordering

constraints; they have two goals, to avoid singleton paths and to force to visit the

dummy depots in order, i.e, tn+1 < tn+2 < · · · < tn+m. Constraints (4.33) and (4.34)

are the classical Miller-Tucker-Zemlin SECs [?]. Expressions (4.35)-(4.37) define the

decision variables. The Objective function (4.27) is minsum (See Lemma 7.) Notice

that this IP has only one bounding constraint, i.e., each path must have more than two

vertices. However, to extend this IP to the more general case, we can add Constraints

(4.38)-(4.42) and remove Constraints (4.31) and (4.32). In this manner, each path must

have between L and U vertices.

tk+1 − tk ⩽ U+ 1 ∀vk ∈ D \ {vn+m} (4.38)

tk+1 − tk ⩾ L+ 1 ∀vk ∈ D \ {vn+m} (4.39)

|V ′|− tn+m ⩽ U+ 1 (4.40)

|V ′|− tn+m ⩾ L+ 1 (4.41)

2 ⩽ L ⩽ ⌈|V |/m⌉ ⩽ U ⩽ |V | (4.42)

Figure 4.3 shows the optimal solution of this IP over a small graph with m = 2,

L = 3, and U = 5. In this figure, two paths are codified into one path that departs

from dummy depot v9, travels through every other vertex, including dummy depot

v10, and returns to v9. Since traveling through a dummy depot does not incur any

cost, we must identify the edges (v1, v2) and (v8, v7) and add their cost to the objective

function. This is explained in Lemma 7. Notice that one matrix is enough to codify all

m paths.

Lemma 7. Expression (4.27) is the minsum objective function for CP-DFmTSP.

Proof. Expression (4.27) comes from the following expanded form:

∑
vi∈V ′

∑
vj∈V ′

ci,jxi,j︸ ︷︷ ︸
first term

+
∑

vi∈V ′

∑
vj∈V ′

ci,j

xn+m,jxi,n+1 +
∑

vk∈D\{vn+m}

xk,jxi,k+1


︸ ︷︷ ︸

second term

(4.43)

The first term of Expression (4.43) adds up the cost of the traveled edges (solid

red and blue edges in Figure 4.3). The second term adds up the cost ci,j of the edge

of each pair of vertices vi, vj ∈ V adjacent to a pair of consecutive dummy depots

(dotted red and blue edges in Figure 4.3). Let vk and vk+1 be a pair of consecutive

dummy depots in D \ {vn+m} and let vi and vj be any pair of different vertices in
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Figure 4.3: Exact solution of the IP for minsum CP-DFmTSP with bounding constraints. In this
graph instance, V = {v1, v2, v3, v4, v5, v6, v7, v8}, m = 2, L = 3, U = 5, D = {v9, v10},
and the cost of each edge equals the euclidian distance between its vertices (except
edges with some dummy depot). There is only one matrix, x = [xi,j]10×10.

V . If xk,j = 1 and xi,k+1 = 1, then the salesperson associated with the vk dummy

depot goes from vertex vi to vj (notice that vn+1 is the consecutive dummy depot of

vn+m.) Thus, the path is closed if we consider the edge (vi, vj). Thanks to the flow

Constraints (4.28)-(4.29), and the depot ordering Constraints (4.30)-(4.32), the inner

sum xn+m,jxi,n+1 +
∑

vk∈D\{vn+m} xk,jxi,k+1 can only take values in {0, 1}. Therefore,

Expression (4.27) is the minsum objective function for CP-DFmTSP.

Although the Objective function (4.27) has a quadratic term, it can be linearized

by noting that, in the second term of Expression (4.43), ci,j is added up if and only if

there is a pair of consecutive dummy depots, vk and vk+1, such that xk,jxi,k+1 = 1. So,

this product can be replaced by the binary variable yi,j (See Constraints (4.45)-(4.49)).

By doing so, the minsum objective function is Eq. (4.44) and we get an ILP with O(n2)

binary variables and O(n2m) constraints. Notice that vn+1 is the consecutive dummy

depot of vn+m.

∑
vi∈V ′

∑
vj∈V ′

ci,j
(
xi,j + yi,j

)
(4.44)

where,
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yi,j ⩾ xk,j + xi,k+1 − 1 ∀vi, vj ∈ V ,∀vk ∈ D \ {vn+m} (4.45)

yi,j ⩾ xn+m,j + xi,n+1 − 1 ∀vi, vj ∈ V (4.46)

yi,j ⩽
∑
vk∈D

xi,k ∀vi, vj ∈ V (4.47)

yi,j ⩽
∑
vk∈D

xk,j ∀vi, vj ∈ V (4.48)

yi,j ∈ {0, 1} ∀vi, vj ∈ V (4.49)

Adapting these IPs to the OP variant is straightforward. We only have to replace

the Objective function (4.27) by (4.50), and omit variables yi,j with their respective

constraints. This way, the dotted lines from Figure 4.3 are not considered.

∑
vi∈V ′

∑
vj∈V ′

ci,jxi,j (4.50)

To finish this section, notice that this section’s IPs can be adapted to FD-MmTSP

with CP, OP, minsum, and bounding constraints. We must include Constraints (4.51),

which force each dummy depot to go directly to one depot from the input set R of

actual depots. Figure 4.4 serves as an example for R = {v2, v4}. As the previous

section’s IPs, this adaptation is advantageous too when |R| < m (See Figure 4.2.)

∑
vk∈D

xk,i = 1 ∀vi ∈ R (4.51)

4.4 Analysis and empirical evaluation

Models 1 and 2 consist of a series of novel IPs for DFmTSP. These include IQPs and

ILPs for the main variants of the problem: CP, OP, with bounding constraints, and for

the minsum and minmax objective function. Tables 4.1 and 4.2 summarize the main

features and scope of the proposed IPs.
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Figure 4.4: Exact solution of the IP for minsum CP-FD-MmTSP with bounding constraints
(Section 4.3.) In this graph instance, V = {v1, v2, v3, v4, v5, v6, v7, v8}, m = 2, L = 3,
U = 5, R = {v2, v4}, D = {v9, v10}, and the cost of each edge equals the euclidian
distance between its vertices (except edges with some dummy depot). There is only
one matrix, x = [xi,j]10×10.

Table 4.1: IPs’ variables and constraints.

IP Model objective function binary variables constraints

IQP1

Model 1

quadratic O(n2m) O(n2)

ILP1 linear O(n2m) O(n2m)

IQP2

Model 2

quadratic O(n2) O(n2)

ILP2 linear O(n2) O(n2m)

Table 4.2: IPs’ features and scope.

IP dummy depots CP OP minsum minmax L U FD-M+DF

IQP1 m ✓ ✓ ✓ ✓ ✓ ✓

ILP1 m ✓ ✓ ✓ ✓ ✓ ✓ ✓

IQP2 m ✓ ✓ ✓ ✓ ✓

ILP2 m ✓ ✓ ✓ ✓ ✓ ✓

To test the empirical performance of the proposed IPs, we ran some experiments

using off-the-shelf optimization software and some of the classical TSPLIB graph
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instances [71]. From the literature, we could reproduce and validate the IP of Karabulut

et al. [4]; so, we used this IP for comparison purposes. In all the experiments, we

set the lower bounding constraint to two (L = 2) because the IP of Karabulut et al. is

limited to such a value.

All the IPs were implemented using Gurobi 9.5.1 [70] through its Python interface.

This off-the-shelf optimization software executes optimization techniques such as

simplex, branch-and-bound, branch-and-cut, cutting planes, parallelism, and heuris-

tics to find optimal solutions to mathematical formulations with linear or quadratic

constraints. In all the experiments, we set Gurobi’s Presolve parameter to 2. All the

experiments were executed on a desktop Windows 11 Pro computer with an Intel Core

i7-9700 processor. All the executions were set to a maximum of 12 GB of RAM and a 2

hours time limit.

Tables 4.3 and 4.4 show the results obtained by all the proposed IPs and the IP

of Karabulut et al. [4] for the minsum CP-DFmTSP. We only experimented with this

problem variant because it is the only one modeled by all the presented IPs, including

the IP of Karabulut et al. In these tables, f stands for the reported value of the objective

function, t(s) for the time in seconds to find such objective function value, and g for the

gap reported by the Gurobi software. A dash "-" character means no feasible solution

was found within two hours. For convenience, we refer to the IPs from Section 4.2

with quadratic objective function as IQP1, and to the IPs from the same section with

linear objective function as ILP1. Similarly, we refer to the IPs from Section 4.3 as IQP2

and ILP2.

Table 4.3 shows the results for the minsum CP-DFmTSP with tight bounding

constraints, namely, the upper bound U is set to ⌈n/m⌉. On the one hand, we

can observe that only IQP1 and ILP2 could find feasible solutions for all the cases,

suggesting they may be better suited for this specific variant of the problem. Besides,

IQP1 found the best solutions in more cases than others. On the other hand, the IP

of Karabulut et al. could not find feasible solutions in three cases within the two

hours time limit. Figure 4.5 shows the convergence of the IPs reported by the Gurobi

software for one of the used instances. From this figure, we can observe two facts.

Firstly, from Figure 4.5a (m = 3), we can see that for some IPs it may not make sense

to let them run for a long time since most of the IPs reach their best-found solution in

much less time than the limit setup. Secondly, from Figure 4.5b (m = 5), we observe

cases where the IPs may require more time to find feasible solutions. For instance,

IQP1, IQP2, ILP1, and ILP2 needed 546s, 1565s, 2209s, and 3070s, respectively, to find

the first feasible solution (the IP of Karabulut et al. did not find any feasible solution.)
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These figures suggest that, as expected, the problems with a bigger value of m may be

considerably challenging. Similar results were obtained for the other graph instances

(See Figures 4.6 and 4.7.)
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Figure 4.5: Convergence time reported by Gurobi for the instance gr48 for the minsum CP-
DFmTSP with L = 2. Subfigures (a)-(b) correspond to tight bounding constraints,
i.e., U = ⌈n/m⌉. Subfigures (c)-(d) correspond to loose bounding constraints, i.e.,
U = n.

The experimentation reported in Table 4.4 is similar to that presented in Table 4.3.

The only difference is that in Table 4.4, the upper bound constraint U is set to n. From

this table, we observe that all of the IPs found feasible solutions for all of the cases,

and the IP of Karabulut et al., IQP1, and IQP2 found the best solutions among all the

IPs; even the optimality of some of them was proved because a value of g = 0 was

reported. Furthermore, we can see that the reported gaps are considerably lower than

those reported in Table 4.3. This suggests that CP-DFmTSP variant with bounding
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constraints may be harder to solve when the number of vertices per salesperson is

tight.

Figures 4.5c and 4.5d show the convergence time reported by Gurobi for the

presented IPs for one of the used instances with loose bounding constraints. This

figure shows that most IPs quickly found good-quality solutions, considering the

relatively small reported gaps. This suggests that for this variant of the problem,

setting long running times may not be necessary since the first few seconds (< 100s)

are enough to get the most significant improvements in their found solutions. This

supports the observation that tight bounding constraints make the instances harder to

solve. Similar results were obtained for the other graph instances (See Figures 4.8 and

4.9.)
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Table 4.3: IPs’ comparison for minsum CP-DFmTSP with L = 2 and tight bounding constraints. The best-found solutions are bold.

instance n m U
Karabulut et al. [4] IQP1 ILP1 IQP1 ILP2

f t(s) g f t(s) g f t(s) g f t(s) g f t(s) g

dantzig42 42 3 14 748 320 18% 772 2914 24% 739 3934 21% 772 1125 24% 739 6823 21%
5 9 754 5559 21% 787 1843 34% 786 2639 34% 879 4030 43% 1055 1763 52%

swiss42 42 3 14 1410 5682 17% 1407 1155 21% 1629 6377 33% 1430 1043 24% 1616 107 33%
5 9 1397 886 19% 1603 4673 38% 1394 1741 26% 1470 1493 37% 1787 246 48%

att48 48 3 16 12557 7200 25% 10941 859 17% 12339 777 26% 12683 6329 31% 12432 668 28%
5 10 - - - 11149 2272 27% 11505 1884 28% 11748 4602 33% 16160 7129 52%

gr48 48 3 16 5337 4452 13% 5213 2881 15% 5478 528 21% 5423 1724 23% 6030 5921 30%
5 10 - - - 7009 6895 45% 5530 7184 30% 6696 2286 44% 7060 4639 47%

hk48 48 3 16 11999 1656 9% 12620 663 20% 12568 6956 19% 13576 643 26% 12456 4357 20%
5 10 - - - 13546 5583 33% - - - - - - 15316 6864 42%

Table 4.4: IPs’ comparison for minsum CP-DFmTSP with L = 2 and loose bounding constraints. The best-found solutions are bold.

instance n m U
Karabulut et al. [4] IQP1 ILP1 IQP2 ILP2

f t(s) g f t(s) g f t(s) g f t(s) g f t(s) g

dantzig42 42 3 42 633 74 0% 633 206 5.69% 633 91 7.11% 633 100 3.95% 633 40 3.79%
5 42 604 84 0% 604 36 4.64% 604 38 14.07% 604 135 15.07% 605 83 13.22%

swiss42 42 3 42 1208 188 0% 1208 89 2.15% 1208 27 1.57% 1208 203 9.11% 1208 27 9.27%
5 42 1155 50 1.47% 1155 413 5.11% 1155 812 5.63% 1167 2200 19.37% 1155 60 17.49%

att48 48 3 48 9946 442 4.25% 9946 11 5.81% 9946 85 4.83% 9946 51 7.57% 9946 26 7.51%
5 48 9448 43 2.64% 9448 182 13.52% 9448 400 13.79% 9448 85 15.81% 9448 2000 14.73%

gr48 48 3 48 4761 201 1.70% 4761 96 3.91% 4761 27 6.87% 4761 1369 8.36% 4761 227 8.25%
5 48 4544 113 0% 4544 207 8.78% 4558 71 7.79% 4735 171 18.59% 4558 2829 14.26%

hk48 48 3 48 11101 115 0% 11101 335 2.08% 11101 206 2.20% 11332 3037 10.98% 11134 1950 8.45%
5 48 10834 164 0% 10834 919 6.98% 10834 786 7.30% 10888 1524 17.20% 10967 127 17.42%
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Figure 4.6: Convergence time reported by Gurobi for the minsum CP-DFmTSP with L = 2 and
tight bounding constraints (Part 1).
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Figure 4.7: Convergence time reported by Gurobi for the minsum CP-DFmTSP with L = 2 and
tight bounding constraints (Part 2).
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Figure 4.8: Convergence time reported by Gurobi for the minsum CP-DFmTSP with L = 2 and
loose bounding constraints (Part 1).
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Figure 4.9: Convergence time reported by Gurobi for the minsum CP-DFmTSP with L = 2 and
loose bounding constraints (Part 2).

Models and Algorithms for Depot-Free Multiple Traveling Salesperson

Problems





Chapter 5

Heuristics and metaheuristics for DFmTSP

The first part of this chapter introduces a clustering-routing heuristic for DFmTSP

with an upper bounding constraint. The second part presents a Memetic Algorithm

(MA) with explicit diversity management for DFmTSP with lower and upper bounding

constraints. Thanks to being a global-search technique, this metaheuristic outperformed

the previous heuristics and the state-of-the-art metaheuristics for DFmTSP.

5.1 A Two-Phase Constructive Heuristic

This section is divided into four parts. Section 5.1.1 shows how CVKCP can be reduced

to a series of MCDSPs. Section 5.1.2 introduces a heuristic for CVKCP modeled as

a series of MCDSPs. Section 5.1.3 explains a heuristic for the routing phase of the

clustering-routing constructive heuristic. Finally, Section 5.1.4 integrates the clustering

and routing phases and tests the resulting heuristic over some de-facto benchmark

datasets for routing problems.

5.1.1 Capacitated Vertex k-center as a series of simpler subproblems

In the paper [72], the relationship between the CVKCP and the MCDSP is explored. In

a nutshell, if the size of the optimal solution (OPT ) for CVKCP is known in advance,

solving the CVKCP is equivalent to solving the MCDSP. Formally,

Theorem 5.1.1. The minimum capacitated dominating set over the bottleneck graph GOPT =

(V ,EOPT ) is the optimal solution to the CVKCP over the original input graph G = (V ,E,w),
where OPT is the value of the optimal solution to the latter problem.

The theorems’ proofs in this section are not included to avoid repeated information.

However, can be consulted at [72]. From an intuitive point of view, Theorem 5.1.1

relies on the fact that the bottleneck graph contains only the edges that suffice to

compute an optimal solution. Theoretically, this reduction is not very useful because
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the subproblems to solve are NP-hard, too. However, from a practical point of view, it

is usually easier to solve the MCDSP than the CVKCP. For completeness, let us show

an ILP for CVKCP with known OPT as a MCDSP, where G = (V ,E,w) is the input

weighted graph, V = {v1, . . . , vn}, fc : V →N+ is the capacity function, and ai,j = 1 if

w({vi, vj}) ⩽ OPT and vi ̸= vj; otherwise, ai,j = 0. Namely, ai,j codifies the bottleneck

graph.

min
n∑

i=1

yi (5.1)

s.t.
n∑

j=1

ai,jxi,j = 1− yi ∀vi ∈ V (5.2)

n∑
i=1

xi,j ⩽ fc(vj) ∀vj ∈ V (5.3)

xi,j ⩽ yj ∀vi, vj ∈ V (5.4)

xi,j,yi ∈ {0, 1} ∀vi, vj ∈ V (5.5)

Variables yi are used to decide which vertices are part of the MCDS, and variables

xi,j decide if a vertex vi is assigned to a center vj. The Objective function (5.1) aims to

minimize the MCDS’s cardinality. Constraints (5.2) guarantee that each vertex outside

of the MCDS is assigned to exactly one vertex into the MCDS. Constraints (5.3) are

the capacity constraints. Finally, Constraints (5.4) guarantee that vertices are assigned

only to vertices in the MCDS. Compared to the MILP for the CVKCP (See Expressions

(3.48) to (3.54) at Section 3.3.2), this ILP is simpler.

Nevertheless, this reduction has a “problem”: OPT must be known in advance.

To solve this issue, a binary search is performed over the ordered set of possible

sizes (See Algorithm 3). Algorithm 3 receives as input the complete weighted graph

G = (V ,E,w), the capacity function fc, and the ordered set of possible values of

OPT . Then, it performs a binary search over such a list, solving the MCDSP over the

bottleneck graph every time. The returned solution consists of a set of centers C and its

corresponding partition PC, where each vertex is assigned to exactly one center. At the

end of the binary search, the last returned MCDS has |C| ⩽ k, and its corresponding

partition consists of, at most, k clusters of vertices that respect the capacity function fc.

The intuition behind the correctness of Algorithm 3 is that OPT will be eventually

found by exploring all of its possible values; the binary search helps reduce the number

of subproblems from O(n2) to O(logn), where n = |V |.
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Input: A complete weighted graph G = (V ,E), a positive integer k, a capacity

function fc : V → Z+, and an ordered list of the |E| edge weights of G:

w(e1),w(e2), ...,w(e|E|) where w(ei) ⩽ w(ei+1)

Output: A set of vertices C ⊆ V , |C| ⩽ k, and an assignment function

PC : V \C→ C

1 high← |E|

2 low← 1

3 (C,PC)← (∅, ∅)
4 while low ⩽ high do

5 mid← ⌊(high+ low)/2⌋
6 (C ′,PC ′)← A minimum capacitated dominating set (D,PD) over Gw(emid)

7 if |C ′| ⩽ k then

8 (C,PC)← (C ′,PC ′)

9 high← mid− 1

10 else

11 low← mid+ 1

12 end

13 end

14 return (C,PC)

Algorithm 3: The CVKCP as a series of MCDSPs.

5.1.2 k-center-based clustering

By Theorem 5.1.1 and Algorithm 3, CVCKP can be reduced to a series of MCDSPs.

However, these subproblems are NP-hard. Therefore, we must appeal to heuristics

to achieve good enough feasible solutions in polynomial time. Algorithm 4 shows

the proposed heuristic, which depends on GreedyAssignment (See Algorithm 5) and

DistanceBasedSelection (See Algorithm 6).

The main cycle of OHFF (lines 4 to 15 of Algorithm 4) performs a binary search

over the possible values of the size of the optimal solution. This way, at some point, a

value w(emid) that is near-optimal will be explored. With such a value, the complete

weighted input graph is pruned and turned into a simple graph. Thus, this algorithm

seeks feasible capacitated dominating sets. Since the returned solution might have

less than k vertices, the next cycles (lines 16 to 20 and 21 to 27) aim at completing it.

Notice that the returned solutions consist of a set C of k vertices and a partition PC

(a clustering). The most important part of this algorithm is line 6, which performs a

GreedyAssignment (Algorithm 5).
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Input: A complete graph G = (V ,E), two positive integers k and U, and a

non-decreasing list of the m edge weights of G, i.e.,

w(e1),w(e2), ...,w(em), where w(ei) ⩽ w(ei+1)

Output: A set of vertices C ⊆ V , such that |C| = k,

and an assignment PC : V \C→ C

1 high← m

2 low← 1

3 (C,PC)← (∅, ∅)
4 while low ⩽ high do

5 mid← ⌊(high+ low)/2⌋
6 (C ′,PC ′)← GreedyAssignment (G,k,w(emid),U)

7 if r(C ′,PC ′) ⩽ r(C,PC) then

8 (C,PC)← (C ′,PC ′)

9 end

10 if r(C,PC) ⩽ w(emid) then

11 high← mid− 1

12 else

13 low← mid+ 1

14 end

15 end

16 while |C| < k do

17 v← arg max {d (u,PC (u)) : u ∈ V \C}

18 PC ← PC \ {(v,PC (v))}

19 C← C∪ {v}
20 end

21 foreach ci ∈ C do

22 X← dom (Pci
)∪ {ci}

23 cj ← arg min {max{d(u, v) : v ∈ X} : u ∈ X}

24 PC ← PC \ Pci

25 Pcj
← {(v, cj) : X \ {cj}}

26 PC ← PC ∪ Pcj

27 end

28 return (C,PC)

Algorithm 4: One-hop farthest-first (OHFF)
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Input: A complete graph G = (V ,E,w), a positive integer k, a covering radius

r, and a capacity U

Output: A set of vertices C ⊆ V , and an assignment PC : V \C→ C

1 C← ∅
2 PC ← ∅
3 S← copy(V)

4 Gr ← BottleneckGraph(G, r)

5 foreach v ∈ V do

6 score(v)← |NGr
(v)|

7 end

8 for i← 1 to k and S ̸= ∅ do

9 vf ← arg max {d(v,C) : v ∈ S}

10 if ∃v ∈ NGr
[vf]∩ S : score(v) > U then

11 (ci, fci
)← DistanceBasedSelection(G,Gr, vf,C,U,S)

12 else

13 ci ← arg max {score(u) : u ∈ NGr
[vf]∩ S}

14 Pci
← {(u, ci) : u ∈ NGr

(ci)∩ S }

15 end

16 C← C∪ {ci}
17 PC ← PC ∪ Pci

18 foreach v ∈ dom (Pci
)∪ {ci} do

19 S← S \ {v}

20 foreach u ∈ NGr
(v) do

21 score(u)← score(u) − 1

22 end

23 end

24 end

25 while S ̸= ∅ do

26 v← any vertex in S

27 cj ← arg min {d(ci, v) : ci ∈ C ∧ |Pci
| < U}

28 PC ← PC ∪
{(

v, cj
)}

29 S← S \ {v}

30 end

31 return (C, fC)

Algorithm 5: GreedyAssignment
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Input: A complete graph G = (V ,E), a bottleneck graph Gr = (V ,Er), a vertex

vf ∈ V , a set of centers C, a positive integer U, and the set of unvisited

vertices S

Output: A center c ′ and an assignment Pc ′ : V ′ → {c ′}, where V ′ ⊆ V \C

1 (c ′,Pc ′)← null

2 d∗ ← +∞
3 foreach v ∈ NGr

[vf]∩ S : score(v) > U do

4 vref ← arg max {d (u,C∪ {v}) : u ∈ S}

5 Pv ← {(u, v) : u ∈ FU} , where FU is the set of the U farthest vertices in

NGr
(v)∩ S to vref

6 u← the (U+ 1)th farthest vertex in NGr
(v)∩ S to vref

7 if d(vref,u) < d∗ then

8 d∗ ← d(vref,u)

9 (c ′,Pc ′)← (v,Pv)

10 end

11 end

12 return (c ′,Pc ′)

Algorithm 6: DistanceBasedSelection

The general idea of Algorithm 5 is to integrate different heuristic rules. First, each

vertex is assigned a score(vi) (line 5), which reflects how many unassigned vertices

are adjacent to vi. Then, k vertices are selected iteratively (lines 7 to 23). A vertex can

be selected if it is in the neighborhood of the farthest vertex from the partial solution

(NGr
[vf] at line 9). The intuition behind this heuristic is that the farthest vertex is

critical, i.e., it is what defines the size of a feasible solution. Therefore, it must be

assigned to some center as soon as possible. Afterward, the vertex with the higher

score is added to the solution. However, if many vertices are capable of covering L or

more vertices (line 9) DistanceBasedSelection (Algorithm 6) is executed. Finally, an extra

heuristic consists of executing OHFF |V(G)| times with a different initial vertex every

time; we refer to this as OHFF+.

DistanceBasedSelection (Algorithm 6) explores a set of candidate vertices {v ∈ V(Gr) :

v ∈ NGr
[vf]∧ score(v) > L}. Since all of them are equally capable of covering L vertices,

an extra heuristic must be implemented. In a nutshell, this extra heuristic seeks the

vertex that minimizes the distance to the next farthest vertex. Thus, this procedure has

to actually select each candidate vertex, compute the hypothetical farthest vertex (line

4), and then keep the vertex that minimizes the aforementioned distance (lines 6 to 10).

Since the exploration of each vertex is independent of the others, this procedure was
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parallelized using the multiple instruction multiple data model (MIMD). According to

experimental results, this heuristic is very efficient and competitive when compared to

state-of-the-art heuristics. In fact, it found near-optimal solutions for graph instances

with up to 5000 vertices and k = 40 in less than 30 seconds [72]. by the way, the name

of these heuristics come from the heuristic rules they implement: one-hop farthest-first.

Namely, to explore the neighborhood (one-hop) of the farthest vertices.

Input: A weighted graph G = (V ,E,w), and two positive integers m and U

Output: A set of salespersons tours p = {p1,p2, · · · ,pm}

1 p← ∅
2 (C,PC)← k− center(G,m,U)

3 foreach ci ∈ C do

4 X← dom (Pci
)∪ {ci}

5 pi ← Farthest− Insertion(G[X])

6 p← p∪ {pi}

7 end

8 return pi

Algorithm 7: Two-Phase constructive heuristic.

5.1.3 Farthest-insertion for routing

In the routing literature, many algorithms have been proposed for the classical TSP.

Among these proposals, there are some exact algorithms that guarantee to find the

optimal solution. However, since TSP is NP-hard, such algorithms may have an

important limitation. Other proposals are approximation algorithms that do not

guarantee finding an optimal solution but a solution inside a ratio of the optimal one.

Likewise, heuristics do not guarantee optimality but are fast and very effective in

finding near-optimal solutions. Metaheuristics are more elaborated procedures that use

exploration and exploitation components to escape from local optimals during search.

Among all these proposals, approximation algorithms and heuristics are preferred

when running time is an important issue since both run in polynomial time.

Many approximation algorithms and heuristics have been proposed for routing

problems. Among the route constructive procedures, there is a specific category called

insertion procedures, which consists of constructing a route by iteratively choosing a

vertex and inserting it in the route. Some classical heuristics that have been proposed

are: nearest-insertion, cheapest-insertion, and farthest-insertion [73, 74]. From these,

the farthest-insertion (a.k.a. furthest-point insertion) has shown to be more effective

compared with the others. Besides, by using farthest-insertion, the TSP can be approx-
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imated within an approximation factor of logn [75]. To the best of our knowledge,

this bound has not been proven to be tight. The general idea of farthest-insertion is

the following: the algorithm may start by choosing the vertices in the longest edge as

the initial partial path. Then, the farthest vertex from the partial path is chosen and

inserted inside the path in the position that increases the lowest possible value. The

procedure is repeated until all the vertices are in the partial tour. This simple idea has

proven practical, as solutions found by it are typically only 5% to 10% longer than

optimal in some cases [76].

Input: A complete weighted graph G = (V ,E,w)

Output: A salesperson tour pi that contains all the vertices in V(G)

1 pi ← max arg{w(e) : e ∈ E(G)}

2 while V(G) ̸= V(pi) do

3 v← max arg
{
d
(
v,V(pi)

)
: v ∈ V(G) \ V(pi)

}
4 insert v in pi at the position that adds the smallest cost

5 end

6 return pi

Algorithm 8: farthest-insertion algorithm [73].

5.1.4 Computational experimentation and results

By using OHFF and OHFF+ at the clustering phase [77] and the farthest-insertion

heuristic at the routing phase [73, 78], we were able to obtain a two-phase constructive

procedure for the DFmTSP that considers upper bound constraints. We analyzed and

compared this proposal against the state-of-the-art metaheuristic AC-PGA [1]. We

tested the algorithms over some instances of TSPLIB benchmark [71]. Figures 5.1 and

5.2 show the obtained results over the instances kroA100 and kroA200, respectively, for

different values of k. According to the experimentation performed, in some cases, our

two-phase constructive proposal was able to obtain better solutions. At some times, the

simpler version of the k-center-based heuristic (OHFF) was capable of getting better

solutions than the AC-PGA metaheuristic. This supports the conjecture that using the

cluster-first route-second approach for the DFmTSP can have practical advantages.

5.2 Metaheuristic algorithms for DFmTSP

This section introduces a metaheuristic algorithm for DFmTSPs with bounding con-

straints. Specifically, we perform a deep study of evolutionary algorithms and the

behavior and importance of diversity of solutions during the solving process. We
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Convergence reported by algorithms OHFF, OHFF+ and AC-PGA for instance
kroA100 for the minsum CP-DFmTSP.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Convergence reported by algorithms OHFF, OHFF+ and AC-PGA for instance
kroA200 for the minsum CP-DFmTSP.
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stated the conjecture and the hypothesis that evolutionary computing algorithms for

the DFmTSP can perform well if the diversity of the solutions is appropriately handled

during the evolution process. For this purpose, we start the section by briefly introduc-

ing the concept of diversity in evolutionary algorithms and describing a state-of-the-art

technique called Best Non-Penalized. Then, we introduce in detail the design of

the proposed Memetic Algorithm (MA) for the DFmTSP. Finally, we performed an

empirical evaluation of the proposed MA that proves the effectiveness of our proposal.

5.2.1 Diversity in evolutionary algorithms

Evolutionary algorithms are general problem-solving techniques usually used for

search and optimization. These techniques are inspired by Darwin’s evolution theory

of species and natural selection. There are many types of evolutionary algorithms, such

as Genetic/Memetic Algorithms, Genetic Programming, Evolutionary Programming,

among others [79]. In general, evolutionary algorithms are part of a more extensive

research field called metaheuristics, whose purpose is the study of algorithms for

hard search/optimization problems that cannot be solved efficiently with conventional

approaches. The study of evolutionary algorithms involves the design of mechanisms

such as selection, crossover, mutation, and replacement. Such components are known

as genetic operators, and their importance lies in the fact that they radically influence

the effectiveness of evolutionary algorithms from a practical point of view. Besides,

when designing evolutionary algorithms, it is essential to have a good balance of

exploitation and exploration [80]. In this context, exploitation refers to improving and

intensifying the candidate solutions, whereas exploration refers to how many solutions

and in what way they are visited. Among the genetic operators of evolutionary

algorithms, replacement is a crucial operator since it defines which candidate solutions

survive for the next generation given the parents and offspring populations. In the

literature, the classical replacement operators are generational, where offspring directly

replace the parents’ population, and truncation, which has a more significant selection

pressure with the aim of a faster convergence. However, these replacement operators

do not have proper diversity handling among the candidate solutions. Diversity

handling techniques are usually used to keep a good balance of exploration during

the evolution process. Maintaining proper diversity management in the evolution

process may help to avoid early local optima because it tries to keep the diversity

of the candidate solutions that are being explored and intensified. In the literature,

proper diversity management has proven to be important in multi-objective and

single-objective evolutionary algorithms [81], for continuous optimization [82], and
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combinatorial optimization [83, 84].

Among the handling diversity techniques in the literature, there are two categories:

implicit and explicit [84]. On the one hand, implicit techniques refer to evolutionary

algorithms that work with structured populations, such as island-based and cellular

schemes. Researchers have studied that these approaches have important implicit

effects on diversity preservation, since at these models, the candidate solutions can only

interact with other candidate solutions in a defined neighborhood in the structured

population. This usually may delay the convergence. On the other hand, explicit

techniques refer to explicitly controlling the diversity among the candidate solutions.

Explicit diversity techniques have some advantages. We can properly control the

balance of exploration and exploitation during the evolution process, as well as the

decrease and increase of diversity.

One of the explicit diversity techniques that has proven effective is the the Best-

Non-Penalized (BNP) [81, 84]. Overall, the BNP is the survivor replacement operator

that aims to have proper diversity handling by choosing candidate solutions that are

not close enough for the next generation. This is achieved by using a distance metric

among the candidate solutions. At each generation, the BNP tries to select for the

next generation, candidate solutions that are at least a certain distance away D, then D

linearly decreases as the evolution process goes. In this way, the BNP ensures that at

the beginning, no very close solutions are selected to survive. Thus, proper diversity is

maintained and early local optima try to be avoided.

Algorithm 9 shows the pseudocode of the BNP. The notation is the following:

• f(s) fitness value of a candidate solution s.

• Given a candidate solutions set P and a candidate solution s /∈ P, d(s,P) is the

distance from s to its closest solution in P, i.e., d(s,P) = min{d(s,k) : k ∈ P}.

• Dinit is the initial expected diversity, and it can be initialized as the average

diversity of the population.

• state ∈ [0, 1] is the current state of the evolutionary algorithm running. It can be

defined as elapsed time
total time or current generation

total generations .

Given a population of parents P and the offspring population O, the BNP keeps

the best candidate solution for the next generation. Then, it looks to select candidate

solutions at a certain distance D, which linearly decreases as the evolutionary algorithm

runs. In this way, the algorithm avoids selecting identical candidate solutions that may
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cause the loss of diversity in the population. Therefore other issues may arise, like

getting stuck in local optima.

Input: Parents population P, offspring population O, and state of running

Output: New population P ′

1 A← P ∪O
2 s← best solution in A

3 P ′ ← {s}

4 A← A \ {s}

5 D← Dinit −Dinit · state
6 while |P ′| ̸= |P| do

7 s←any solution in A

8 foreach k ∈ A do

9 if d(s,P ′) < D then

10 if d(k,P ′) > d(s,P ′) or
(
d(k,P ′) = d(s,P ′) and f(k) < f(s)

)
then

11 s← k

12 end

13 else

14 if d(k,P ′) ⩾ D then

15 if f(k) < f(s) or
(
f(k) = f(s) and d(k,P ′) > d(s,P ′)

)
then

16 s← k

17 end

18 end

19 end

20 end

21 P ′ ← P ′ ∪ {s}
22 A← A \ {s}

23 end

24 return P ′

Algorithm 9: Best Non-Penalized (BNP).

5.2.2 Memetic algorithm

Our proposal consists of a Memetic Algorithm (MA) with specifically designed com-

ponents such as a crossover operator, a replacement operator, and an intensification

phase that uses the Lin-Kernighan metaheuristic. One of the main novelties of our

proposal is that the MA treats the DFmTSP just as an assignment problem, although

it is a routing problem. That is, the MA looks only for the proper assignment of the
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vertices to the routes without taking care of the order in which vertices are visited.

Then, the intensification phase becomes relevant because it determines the order in

which vertices should be visited in the paths. Thus, the evaluation of the quality of

the paths is also determined in the intensification phase. We intend our presented

results to be reproducible. Thus, we describe the details of the main components of

our proposal, in addition to providing the source code of our implementations.

Now, we show the overall notation of the pseudocodes presented in the next

subsections.

• s = {s1, s2, · · · , sm} candidate solution composed by m salespersons paths.

• si a salesperson path (a sequence of vertices) of a candidate solution s.

• V(si) set of vertices of the salesperson path si.

• s
p
i subpath (subsequence of vertices) of length p of a salesperson path si.

• f(s) fitness value of a candidate solution s.

• c(si) cost of a salesperson path si.

Algorithm 10 shows the general template of the proposed MA. The MA receives a

feasible initial population randomly generated. In line 1, the received population is

intensified and evaluated. This phase aims to define the order in which the vertices

are traversed in the paths of the salespersons. The details of this intensification and

evaluation phase is described later. In line 2, the best solution is saved as s∗. Then,

while a stop condition is not met, the following actions take place:

First, given the population P, a selection operator is applied to choose the parents

P ′ in line 4. The selection operators used are described later. In line 5, the offspring

is created from the selected parents P ′. Then, the offspring is created in line 5. Since

we are working with bounding constraints, the offspring may violate such constraints.

Thus, in line 6, a balancing method is applied to repair the offspring. Then, in line 7,

the intensification and evaluation phase is executed again over the offspring population.

Then, the survivor selection phase is executed in line 8. The BNP (Algorithm 9) is used

for this purpose. Lines 9-12 keep track of the best found solution.
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Input: A population of candidate solutions P

Output: Best found solution s∗

1 IntensifyAndEvaluation(P)

2 s∗ ← best solution in P

3 while ¬StopCondition() do

4 P ′ ← SelectParents(P)

5 O← Recombination(P ′)

6 Balancing(O)

7 IntensifyAndEvaluation(O)

8 P ← Replacement(P,O)

9 s← best solution in P

10 if f(s) < f(s∗) then

11 s∗ ← s

12 end

13 end

14 return s∗

Algorithm 10: Memetic algorithm template.

5.2.3 Intensification phase with Lin-Kernighan

The intensification and evaluation phase (Algorithm 11) is an important component of

our proposal. It uses the Lin-Kernighan heuristic and works as follows. Overall, this

phase consists of two different ideas. On the one hand, the first idea is that segments

of paths are interchanged among the salesperson paths. The motivation behind this

idea is exploring solutions since new paths with different vertices are created. On the

other hand, the second idea is about intensification/exploitation. The latter uses the

Lin-Kernighan heuristic to improve the paths of the salespersons. Now, let us describe

in more detail this intensification and evaluation phase.

First, the intensification is executed for a certain time tmax. This is ensured by the

while loop of line 2. Then, the boolean function callLKH ensures that the runLKH (

the Lin-Kernighan heuristic) is called exactly nLKH − 1 times during the execution of

the algorithm to intensify and evaluate the solution s. Note that one call of runLKH is

performed after the while ends so that runLKH is called exactly nLKH times. Then,

the exploration phase starts. First, in line 6 a segment size p is selected. In lines 7 and

8 two salesperson paths of s are chosen randomly and copied. In lines 9-12, random

subpaths are extracted from the selected paths and inserted into each other using the

cheapest insertion heuristic. The cheapest insertion heuristic inserts a vertex in a path
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in a specific position with the lowest cost increase. Then, in lines 13-15, if the cost of

the new paths is improved, they become part of the solution s.

In summary, Algorithm 11 uses an exploration approach that interchanges segments

of paths, and also, each certain time the paths are improved and intensified using the

Lin-Kernighan heuristic. Note that runLKH executes the Lin-Kernighan heuristic over

each si ∈ S for a running time tLKH. Be aware that using the Lin-Kernighan heuristic

may be heavy. Thus, a small value of nLKH ⩾ 2 is recommended.

Input: A feasible solution s, time limit for intensification tmax, number of LKH

calls to be applied to s during the intensification phase nLKH, time limit

for each LKH call tLKH

Output: The intensified solution s

1 telap ← elapsed time of intensification (initially 0)

2 while telap < tmax do

3 if callLKH(telap, tmax) then

4 runLKH(s, tLKH)

5 end

6 p← choose segment size to be exchanged among the chosen paths

7 si, sj ← choose two different random paths in s

8 ki,kj ← Copy(si),Copy(sj)

9 k
p
i ← extract random subpath of length p from ki

10 kj ← insert vertices in k
p
i to kj by cheapest insertion

11 k
p
j ← extract random subpath of length p from kj

12 ki ← insert vertices in k
p
j to ki by cheapest insertion

13 if c(ki) + c(kj) < c(si) + c(sj) then

14 si, sj ← ki,kj
15 end

16 end

17 runLKH(s, tLKH)

18 return s

Algorithm 11: Intensify and Evaluation.

5.2.4 Genetic operators

The next important component of our proposal is the recombination operator. The

recombination step consists of taking two parents and recombining them to create a new

candidate solution that combines the features of the two parents. This is performed

through a novel crossover operator used in the literature for other combinatorial

INAOE Computer Science Department



Heuristics and metaheuristics for DFmTSP 75

optimization problems that work with partitions. The operator is the Hungarian Based

Crossover (HBX). This operator aims to maximize the number of vertices in the same

partitions of both parents and offspring.

Algorithm 12 shows the pseudocode of the HBX. Now, let us describe it in more

detail. First, line 1 starts by creating a complete weighted bipartite graph through

Algorithm 13, where the vertices are the paths of the salespersons and the weights

are the number of common vertices between such paths. Then, a maximum weighted

matching M is obtained in line 2. This can be performed through the Hungarian

algorithm that solves the assignment problem in polynomial time. The HBX uses the

edges of M to create an offspring of the solutions s and k by prioritizing creating

paths with vertices that are part of the same paths in the parents. The purpose is that

paths of good quality are kept in the offspring. Each path of the offspring must be

composed of exactly m intersections of the bipartite graph G. Besides, each edge of

M can be used only once. Thus, to avoid repetitions, B (line 3) is used to track the

used edges in the recombination process. S and K (lines 4-5) store eligible vertices

that will be used to ensure that each offspring path will be composed of exact m

intersections. o (line 6) is the created offspring from the recombination process. Then,

each iteration of the for-loop of line 7 will select the vertices that compose the ith path

of the offspring. Inside this for-loop, the following actions take place. At line 8 an edge

in {si,kj} ∈M (maximum weighted matching) is taken and removed from it, and in

line 9 the ith path is initialized as the empty set. Then, lines 11-19 will be executed on

even iterations, whereas lines 21-29 are executed in odd iterations. In even iterations,

endpoint si is fixed, and all adjacent unused edges of si are used to compose the ith

path (lines 12-15). Finally, if less than m edges were available to compose the ith path,

lines 16-19 will ensure that the missing edges are considered to form the ith path. This

is performed by taking endpoint kj are considering all its unused adjacent edges to

eligible vertices in S. In odd iterations (lines 21-29) run the same steps but fix endpoint

kj.

For better comprehension, Tables 5.1 and 5.2 show an example of two candidate

solutions s and k and the weights of the complete bipartite weighted graph formed by

such solutions. Figure 5.3 shows the maximum weighted matching in bold, and the

execution of iterations of the HBX.
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Input: Two candidate solutions s and k

Output: An offspring candidate solution o

1 G← Create bipartite graph with s and k // Algorithm 13

2 M← maximum weighted matching of G

3 B← ∅ // set of used edges

4 S← ∅ // eligible paths of s

5 K← ∅ // eligible paths of k

6 o← ∅ // offspring solution

7 for i← 1 to m do

8 {si,kj}← extract and remove any edge in M

9 V(oi)← ∅
10 if i ≡ 1 mod 2 then

11 K← K∪ {kj}
12 foreach {si,kt} ∈ E(G) \B do

13 B← B∪
{
{si,kt}

}
14 V(oi)← V(oi)∪ V(si)∩ V(kt)
15 end

16 foreach {st,kj} ∈
{
{st,kj} : st ∈ S

}
\B do

17 B← B∪
{
{st,kj}

}
18 V(oi)← V(oi)∪ V(st)∩ V(kj)
19 end

20 else

21 S← S∪ {si}
22 foreach {st,kj} ∈ E(G) \B do

23 B← B∪
{
{st,kj}

}
24 V(oi)← V(oi)∪ V(st)∩ S(kj)
25 end

26 foreach {si,kt} ∈
{
{si,kt} : kt ∈ K

}
\B do

27 B← B∪
{
{si,kt}

}
28 V(oi)← V(oi)∪ V(si)∩ V(kt)
29 end

30 end

31 o← o∪ {oi}
32 end

33 return o

Algorithm 12: Hungarian Based Crossover (HBX).
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Table 5.1: Two candidate solutions
s = {s1, s2, s3, s4} and
k = {k1,k2,k3,k4} for an
example instance with n = 24

vertices, m = 4 salespersons,
and U = 6.

s1 = (v1, v2, v3, v13, v14, v15)

s2 = (v4, v5, v6, v16, v17, v18)

s3 = (v7, v8, v9, v19, v20, v21)

s4 = (v10, v11, v12, v22, v23, v24)

k1 = (v4, v5, v6, v13, v19, v22)

k2 = (v1, v2, v3, v16, v20, v23)

k3 = (v7, v8, v9, v14, v17, v24)

k4 = (v10, v11, v12, v15, v18, v21)

Table 5.2: Weights of bipartite graph gen-
erated from s and k.

k1 k2 k3 k4

s1 1 3 1 1

s2 3 1 1 1

s3 1 1 3 1

s4 1 1 1 3

Input: Two candidate solutions s and k

Output: A bipartite graph G

1 s← {s1, s2, · · · , sm}

2 k← {k1,k2, · · · ,km}

3 E←
{
{si,kj} : si ∈ s∧ kj ∈ k

}
4 w←

{({
si,kj

}
, |V(si)∩ V(kj)|

)
: {si,kj} ∈ E

}
// w : E→ R

5 G← (s∪ k,E,w) // build complete bipartite graph

6 return G

Algorithm 13: Create bipartite graph.

Input: Two partitions s and k

Output: Distance between s and k

1 n← number of vertices in s

2 G← Create bipartite graph with s and k // Algorithm 13

3 M← maximum weighted matching of G

4 return n−
∑

e∈Mw(e)

Algorithm 14: Partitions distance.
After the recombination process, the generated offspring may violate the bounding

constraints. Thus, a balancing phase is performed through Algorithm 15. This

algorithm verifies if there are paths that violate the upper bound constraints. If so,

a random vertex is extracted from such a path and inserted in a random path with

availability.
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Input: A candidate solution s and the maximum number of vertices allowed

per salesperson U ∈ Z+

Output: The balanced candidate solution s

1 while ∃si ∈ s : |V(si)| > U do

2 si ← any path in {si ∈ s : |V(si)| > U}

3 v← any vertex in V(si)

4 V(si)← V(si) \ {v}

5 sj ← any path in {sj ∈ s : |V(sj)| < U}

6 V(sj)← V(sj)∪ {v}
7 end

8 return s

Algorithm 15: Balancing operator.

5.2.5 Computational experimentation and results

We tested the proposed algorithms over a set of instances from the literature [71]. The

set of instances is made up of instances: kroA100, kroB100, kroC100, kroD100, kroE100,

kroA150, kroB150, kroA200, kroB200, pr226, pr264, pr299, and pr439. The tested values

of m are in {5, 10}. The tested bounding constraints are all tight. That is, the upper

bound is set as U = ⌈|V |/m⌉. All the proposed algorithms were implemented in C++

and executed over a hardware...

5.2.5.1 Parameter setting

We implemented the state-of-the-art ant colony-partheno genetic algorithm (AC-PGA)

[1] and executed it over the used instances for comparison purposes. As far as we know,

the AC-PGA is one of the best metaheuristics for the problem under consideration. The

AC-PGA metaheuristic is a hybrid algorithm that combines an ant colony algorithm

(ACO) with a partheno genetic algorithm (PGA). It was initially proposed for the

minsum CP-DFmTSP with bounding constraints. A detailed description of the AC-

PGA metaheuristic is beyond the scope of this paper. However, such details can be

consulted in [1]. Table 5.5 shows the configuration we used for AC-PGA, which is based

on the configuration recommended by their authors. The AC-PGA was implemented

in C++ and the executions were performed on the already mentioned hardware.

Besides, we tested an implicit diversity mechanism. As mentioned before, cellular

schemes also delay the convergence. Thus, a cellular memetic algorithm (cMA) version

of our proposal was also executed over the tested instances. The cMA is quite similar
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Table 5.3: Parameter setting of the AC-PGA metaheuristic [1].

Parameter Value

Population size 100

AC-PGA iterations adjustable

ACO iterations 100

ρ 0.1

α 2

β 8

γ 0.5

to our MA, with the difference that some operators differ due to the nature of the

cellular approach. The cMA uses a 1D grid, and the neighborhood used for each cell is

the EAST-WEST. The neighborhood is used for the selection procedure in the cMA,

since our MA uses a binary tournament selection, the cMA uses a different mechanism.

The cMA uses an update-policy known as kFLS [85]. In a nutshell, the kFLS is similar

to the update-policy Fixed Line Sweep, which consists of updating a cell in a grid

at each step time of the algorithm. Then, at the next step time, the adjacent cell is

updated, and so on. The kFLS is similar but it updates k adjacent cells in the grid at

each step time. According to the literature [85], this update-policy is able to keep a

good balance between exploration and exploitation, which may delay the convergence

in the algorithm.

5.2.5.2 Analysis of results

Table 5.4 shows the results obtained from the tested methods over the described

instances. µ and σ represent the average and standard deviation of 30 independent

runnings per each method. From this table, we can observe that the BNP outperforms

the other approaches in all the tested cases.
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(a) (b) (c)

(d) (e)

Figure 5.3: (a) is the bipartite complete weighted graph formed by solutions s and k, max-
imum weighted matching is in bold. (b)-(e) correspond to the iterations of the
HBX. At each iteration, the paths of offspring will be composed of the inter-
sections of paths of red edges. Thus, the paths of the offspring are composed
by vertices V(o1) = {v7, v8, v9, v19, v20, v21}, V(o2) = {v4, v5, v6, v17, v13, v22},
V(o3) = {v10, v11, v12, v23, v24, v18}, and V(o4) = {v1, v2, v3, v14, v15, v16}.
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Table 5.4: Results over some instances of the TSPLIB dataset.

instance n m U
BNP TRUNCATION GEN kFLS AC-PGA

µ σ µ σ µ σ µ σ µ σ

kroA100 100 5 20 22824.00 0.00 22829.97 20.35 22829.10 21.52 22824.00 0.00 25160.23 462.14

10 10 24410.00 0.00 24435.40 71.42 24433.60 70.28 24410.00 0.00 26453.73 462.62

kroB100 100 5 20 23557.00 0.00 23561.07 15.22 23571.23 25.80 23559.03 10.95 24643.90 454.43

10 10 24802.00 0.00 24942.87 81.87 24926.83 75.77 24804.80 15.08 27319.33 404.46

kroA150 150 5 30 27663.00 0.00 27734.53 82.41 27742.80 65.06 27677.50 32.42 31438.53 444.93

10 15 28853.00 0.00 29090.77 167.94 29053.70 139.03 28869.07 44.70 33950.93 597.52

kroB150 150 5 30 27022.00 0.00 27109.03 85.71 27118.27 102.28 27029.67 28.69 31241.93 433.97

10 15 28304.00 0.00 28617.03 253.85 28563.13 205.00 28357.67 96.79 33730.37 723.66

kroA200 200 5 40 30271.00 0.00 30506.13 210.86 30491.63 210.65 30282.07 27.12 35766.53 512.47

10 20 31714.07 8.42 31980.77 245.71 32090.20 182.30 31756.63 77.46 39130.67 591.65

kroB200 200 5 40 30665.03 20.97 31075.87 200.47 31022.30 185.49 30713.40 51.95 35776.13 443.86

10 20 31536.37 59.20 32243.53 368.20 32012.43 249.09 31690.13 123.58 38004.83 844.48

pr226 226 5 46 91378.00 0.00 91891.47 761.86 91645.50 524.81 91406.00 84.00 105670.83 1584.06

10 23 95210.00 0.00 96575.13 867.94 97116.10 1325.19 95575.33 331.30 112009.67 2079.92

pr264 264 5 53 52956.00 0.00 53010.77 238.01 53665.37 527.55 52956.00 0.00 58998.27 743.81

10 27 45241.00 91.48 46061.50 489.31 46481.33 296.38 45348.97 240.08 53417.27 914.58

pr299 299 5 60 49366.73 8.23 49637.27 219.90 49495.90 143.07 49380.00 19.93 58404.97 782.82

10 30 50521.43 68.21 51362.73 445.38 51259.50 531.21 50716.60 190.30 63171.87 960.41

pr439 439 5 88 111023.73 19.39 111327.10 497.98 111140.33 149.53 111100.47 102.01 133958.07 1702.51

10 44 113995.57 171.32 117417.53 2082.71 115074.50 1114.00 115691.27 1044.45 143114.73 1242.44
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Table 5.5 shows the results of applying the statistical test Wilcoxon. In this table, we

confirm that the proposal that uses the explicit diversity management technique BNP

obtained the best results, followed by the cellular approach, which uses an implicit

management diversity technique. The proposals that do not use management diversity

techniques obtained the worst scores on this performance test.

Table 5.5: Wilcoxon test.

Algorithm Score

BNP 69

kFLS 42

GEN -13

TRUNCATION -18

AC-PGA -80

Table 5.6 shows the best-found solutions for the tested instances. All of these

solutions were found by the MA that uses the BNP management diversity technique.

Such results intend to be a reference for the best-known solutions under the constraints

for this specific problem studied in this paper.

Figure 5.4 shows the convergence behavior of the tested algorithms for some cases.

From this figure, on the one hand, we observe that the AC-PGA proposal obtained the

worst results. This may be due to the lack of a good balance between exploration and

exploitation, which will be discussed later. On the other hand, we can observe that

proposals that use any management diversity technique obtained the best results. In

particular, the proposal that uses the BNP starts with worse solutions than the other

methods, but after considerable progress in the evolution process, it eventually reaches

and outperforms the others.

Figure 5.5 shows the diversity behavior of the evolution process for the tested

methods. From this figure, we can observe some facts. We observe that diversity is lost

prematurely for the methods that use TRUNCATION and GENERATIONAL, due to

these do not use any management technique. The figure shows that the AC-PGA seems

to have a considerable exploration. Nevertheless, it may cause a lack of exploitation

such that no quality solutions are found by this algorithm in comparison with the

other methods, as mentioned before. The kFLS method has more proper diversity

management since it starts with good diversity and it is decreased among the evolution

progress. However, in some cases, the diversity is lost rapidly and in some cases high

diversity levels are maintained among the complete evolution process thus that it may

affect the sensibility of the algorithm. Lastly, the proposal that uses the BNP starts
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Table 5.6: Best found solutions.

instance n m U
BNP

best

kroA100 100 5 20 22824

10 10 24410

kroB100 100 5 20 23557

10 10 24802

kroA150 150 5 30 27663

10 15 28853

kroB150 150 5 30 27022

10 15 28304

kroA200 200 5 40 30271

10 20 31709

kroB200 200 5 40 30644

10 20 31512

pr226 226 5 46 91378

10 23 95210

pr264 264 5 53 52956

10 27 45178

pr299 299 5 60 49361

10 30 50502

pr439 439 5 88 111017

10 44 113668

pr1002 1002 5 201 261751

10 101 263322

pr2392 2392 5 479 381921

10 240 388300
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with high diversity levels, and it is linearly decreased during the evolution process.

This controlled diversity decrease allows for good exploration at the beginning and

exploitation at the end of the algorithm, which leads to a good balance in finding good

quality solutions.

Figure 5.6 shows the box plots obtained from the 30 independent runnings for

each algorithm. From this figure, we can see similar observations than the previous

ones. The AC-PGA tends to have worse solutions than the proposals. Besides, the

methods that use management diversity techniques, the kFLS and BNP tend to find

better quality solutions. These observations support the stated conjecture that proper

diversity handling matters to approach the depot-free multiple traveling salesperson

problem.
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Figure 5.4: Analysis of fitness convergence.
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Figure 5.5: Analysis of diversity convergence.
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Figure 5.6: Distribution of found solutions by evolutionary algorithms.
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Chapter 6

Conclusions and future work

This thesis studies the Depot-Free Multiple Traveling Salesperson Problem (DFmTSP)

with bounding constraints, a variant of the Multiple Traveling Salesperson Problem

(mTSP), which is an extension of the classical Traveling Salesperson Problem (TSP).

We studied the problem from two different perspectives: mathematical modeling, and

heuristics and metaheuristics.

On the one hand, we proposed mathematical models (IPs) that use the concept

of dummy depots, which are fake vertices added to the input graphs. Using an

optimization solver with classical exact algorithms, the proposed models were useful

for solving relatively small instances. With this observation, we could validate some

of the hypotheses and objectives of this project. On the other hand, we proposed

a constructive heuristic that uses the cluster-first route-second approach. For the

clustering phase, we proposed a heuristic for the CVKCP that exploits the relationship

with the MCDSP. For the routing phase, we used the classical farthest-first heuristic,

which has proven effective for routing problems. The main advantages of this proposal

are practicality and speed. Also, an evolutionary computing approach was also

studied. It consists of a Memetic Algorithm (MA) that uses exploration and exploitation

components. The main difference between this MA and other proposals of the literature

is that it works with the problem from a graph partition perspective and uses a state-

of-the-art heuristic as the exploitation mechanism. The results show that this proposal

outperforms the best metaheuristic in the literature for the specific problems studied

in this thesis.

There are some interesting future directions for this work. For instance, additional

mathematical models that use less than m dummy depots may be worked. Besides,

the model proposed in Section 4.3 might be adapted to the minmax objective function.

This model may be of special interest since it uses only O(n2) binary variables. Besides,

we believe that the ideas explored in this work could also be useful for designing

approximation and exact algorithms for the DFmTSP.
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For the heuristics perspective, additional work concerning the two-phase construc-

tive heuristic may be of interest. In this work, the scope of the two-phase heuristic

proposal does not include lower-bound constraints. This is because the CVKP char-

acteristics consider only an upper-bound in the number of assigned vertices to each

center. Thus, variants of heuristics that consider lower-bound constraints may also be

studied in the future. Finally, other metaheuristic approaches such as GRASP could

be studied [86]. GRASP metaheuristic is of special interest because it stands out as a

good tool for combinatorial optimization problems that involve graphs and greedy

algorithms.
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[78] B. Dezső, A. Jüttner, and P. Kovács, “LEMON − an Open Source C++ Graph

Template Library,” Electronic Notes in Theoretical Computer Science, vol. 264, pp. 23–

45, 07 2011.

[79] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer,

2nd ed., 2015.
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Appendix

Acronyms

• ACO Ant Colony Optimization

• cEA Cellular Evolutionary Algorithm

• CVKCP Capacitated Vertex k-center Problem

• EA Evolutionary Algorithm

• EC Evolutionary Computing

• GA Genetic Algorithm

• GRASP Greedy Randomized Adaptive Search Procedures

• ILP Integer Linear Program

• IP Integer Program

• MA Memetic Algorithm

• MCDSP Minimum Capacitated Dominating Set Problem

• MDSP Minimum Dominating Set Problem

• MILP Mixed Integer Linear Program

• MmTSP Multiple depot Multiple Traveling Salesperson Problem

• mTSP Multiple Traveling Salesperson Problem

• PGA Partheno Genetic Algorithm

• SECs Subtour Elimination Constraints

• SIMD Single-Instruction Multiple-Data

• SmTSP Single depot Multiple Traveling Salesmen Problem

1



2

• TS Tabu Search

• TSP Traveling Salesperson Problem

• VDP Vehicle Dispatch Problem

• VKCP Vertex k-center Problem

• VNS Variable Neighborhood Search
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