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Abstract

Recently, there has been an increasing interest in studying the mass accretion from

filaments to clumps and cores within molecular clouds, and their effects on the star

formation efficiency (SFE). A common parameter used to characterize the SFE is

the star formation efficiency per free-fall time (ϵff ), defined as the fraction of gas

converted into stars over a free-fall time (τff ). Here we present simplified simulations

of the gravitational collapse of an isolated core, varying the initial number density

(n0 = 100 and 1000 cm−3) and considering open/closed boundary conditions (BCs)

to allow/disallow accretion onto the numerical box. We define the core as the gas

above some density threshold. The simulations start with a slight overdensity at the

center of the numerical box and develop a power-low density profile, n ∝ r−p (with

p ∼ 1.7), as a consequence of gravitational collapse, forming eventually a sink particle

at the center of the core.

Our results show that both, the BCs and the core definition, can affect the mea-

sured physical properties of the core and, consequently, the values of the SFE. We

find that simulations with low mean densities (n0 ∼100 cm−3) are more sensitive to

the changes in the BCs (with the open boundaries allowing more accretion in the

cores than the closed boundaries), while simulations with n0 ∼1000 cm−3 maintain

similar accretion rates onto the core and sink particles regardless of the boundaries.

We also notice a constancy of ϵff in space and time, as suggested by recent observa-

tions. This can be interpreted as a consequence of the result that a collapsing region

with a stationary density profile r−2 has a value of ϵff that is independent of radius

and time.

[i]
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Resumen

Recientemente, ha habido un mayor interés en estudiar el acrecimiento de masa desde

filamentos a núcleos dentro de nubes moleculares, y sus efectos en la eficiencia de for-

mación estelar (SFE). Un parámetro comúnmente utilizado para caracterizar la SFE

es la eficiencia de formación estelar por tiempo de cáıda libre (ϵff ), definida como la

fracción de gas convertida en estrellas durante un tiempo de cáıda libre (τff ). En este

trabajo presentamos simulaciones simplificadas de colapso gravitacional de un núcleo

aislado, variando la densidad inicial (n0 = 100 y 1000 cm−3) y considerando condi-

ciones de frontera abiertas/cerradas (BCs) para permitir/denegar el acrecimiento den-

tro del dominio numérico. Definimos el núcleo como el gas por encima de cierto umbral

de densidad. Las simulaciones comienzan con una ligera sobredensidad en el centro

de la caja numérica y desarrollan un perfil de densidad de ley de potencias, n ∝ r−p

(con p ∼ 1.7), como consecuencia del colapso gravitacional, formando finalmente una

part́ıcula sink en el centro del núcleo.

Nuestros resultados muestran que tanto las BCs como la definición del núcleo

pueden afectar las propiedades f́ısicas medidas del núcleo y, por tanto, los valores de la

SFE. Encontramos que las simulaciones con densidades medias bajas (n0 ∼100 cm−3)

son más sensibles a los cambios en las BCs (las abiertas permitiendo un mayor acrec-

imiento en los núcleos que las cerradas), mientras que las simulaciones con n0 ∼1000

cm−3 mantienen tasas de acrecimiento similares hacia el núcleo y las part́ıculas sink

independiente de las fronteras. También observamos una constancia de ϵff en el es-

pacio y el tiempo, como sugieren observaciones recientes. Esto puede interpretarse

como una consecuencia del resultado de que una región en colapso con un perfil de

densidad estacionario r−2 tiene un valor de ϵff que es independiente del radio y el

tiempo.

[iii]
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Chapter 1

Introduction

The interstellar medium (ISM) is the vast and complex space between stars. It is

composed of several components, including gas and dust particles, magnetic fields,

and cosmic rays. The ISM contains the raw material from which new stars can be

formed, so its understanding is crucial to gain insight into the processes that shape

the formation and evolution of galaxies, stars, and planets and about the universe’s

overall structure and evolution.

Important aspects to study about the ISM, and the main focus in this work, are

the star formation rate (SFR) and the star formation efficiency (SFE), which are the

velocity and efficiency with which stars form in the ISM. A better understanding

of these concepts provides insight into the physical processes that drive local star

formation (such as the influence of gas dynamics, selfgravity, feedback, etc), and

the process in which the star formation regulates itself, since the newborn stars can

disperse the parent cloud by feedback processes, preventing the formation of a new

generation of stars.

Because this work is mainly focused on the early stages of star formation, a brief

explanation of the interstellar gas, with focus on molecular clouds in our galaxy will

be given in the following sections.

1.1 Interstellar Gas

The interstellar gas is a crucial component of the ISM (being roughly the 10% of the

total mass of the Milky Way). It is primarily composed of hydrogen and helium, with

other elements less abundant such as carbon, nitrogen, and oxygen (Ferrière, 2001).

[1]
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Phases
Cold Warm Hot

Subphases
Parameters

CNM MC WNM DIG HIM

n (cm−3) 20 − 50 102 − 106 0.2 − 0.5 0.2 − 0.5 10−4 − 10−2

T (K) 50 − 100 10 − 20 6000 − 10000 ∼ 8000 ∼ 106

%V 1 − 4 1 − 2 10 − 20 20 − 50 40 − 70

M(109 M⊙) ∼ 1.5 ∼ 2 ∼ 1.5 ∼ 1 ∼ 0.1

Table 1.1: Characteristics of the ISM gas subphases within the Milky Way, adapted
from Draine (2011). From left to right, each subphase corresponds to cold neutral
medium (CNM), molecular clouds (MC), warm neutral medium (WNM), diffuse ion-
ized gas (DIG) and hot ionized medium (HM). From top to bottom, the physical
parameters showed are: number density (n), temperature (T ), volume percentage of
the galaxy (%V ) and total mass (M).

This gas is most commonly characterized in three phases: the cold phase which

is made up of molecular and atomic hydrogen gas as well as dust; the warm phase

which consists of both atomic and ionized hydrogen gas; and the hot phase which

contains shocked gas from supernova explosions and coronal gas. Table 1.1 presents

more specific physical parameters and characteristics about these phases.

The ISM has other components besides gas, such as dust, magnetic fields and

cosmic rays. The dust corresponds to nearly 1% of the ISM mass (with gas being

the 99% left), it has typical sizes of ∼ 0.1 mm, is composed mostly by silicates and

graphite, and is the main responsible for the interstellar extinction. The magnetic

fields are present in every phase of the ISM, and, because of the magnetic structure

they provide to the gas and dust, seem to be responsible for reducing the SFR (in a

factor of ∼ 2−3) and shaping the interstellar gas. Finally, cosmic rays consist of high

energy particles that work as a heating mechanism in the ISM, especially in denser

regions within molecular clouds (Estalella & Anglada (1999), Federrath (2015)).

Since in this work we are interested on the process of star formation, we will focus

in the following section on the cold phase of the ISM, specifically on the molecular

component.
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1.2 Molecular Clouds 3

1.2 Molecular Clouds

The molecular gas in the ISM (i.e., the gas composed primarily of molecular hydrogen,

H2, with traces of other molecules) is mainly concentrated in high density clouds.

These clouds are called molecular clouds (MCs) and are the places where the star

formation process takes place as a result of the gravitational collapse of their densest

regions (e.g., Shu et al., 1987).

The average physical properties of MCs are present in Table 1.1. However, MCs

are not regular and well-defined entities, instead they have complex substructures

often described as filamentary, hierarchical or fractal (e.g., Falgarone et al., 1991).

1.2.1 Substructures of MCs: filaments, clumps, and cores.

In the astrophysics community, there is a consensus on the morphological and physical

properties of MCs. Here, we will focus on the more common: filaments, clumps and

cores.

Filaments are elongated structures with an aspect ratio larger than 5, and signif-

icantly overdense compared to their surroundings (∼ 2 orders of magnitude). These

structures are observed typically in CO molecular line emission or dust extinction as a

network of filamentary structures. Observational evidence suggest that the formation

of these structures precedes the star formation itself in inner substructures (clumps

and cores; see, e.g., André et al., 2014, and references therein).

Inside these filaments, other nested structures are defined: clumps and dense cores,

both being individual fragments or local overdensities which correspond to local min-

ima in the gravitational potential field of a molecular cloud. In general, a clump and

a core are characterized by their physical properties, as a clump presents average

number densities of n ∼ 103 − 104 cm−3 and sizes of L ∼ 0.1− 2 pc, while the cores

have number densities of n ≥ 104 cm−3 and sizes of L ≤ 0.1 pc (e.g., Chevance et al.,

2022, and Table 1.2), these latter objects usually show radial density profiles with the

form n ∝ r−p where p ∼ 2 with some deviations (see Figure 1.1 and Section 2.2.3).

Cores are typically detected as the immediate vicinity of a local maximum in

observed column density maps. Transitions of some molecules are used to trace dense

gas, some examples are the 13CO, NH3 or N2H
+ molecules (Pillai et al. (2006), André

Effect of the Accretion and Core definition on the Star Formation Rate per Free Fall Time



4 1. Introduction

MCs Substructures
Physical Parameters
n [cm−3] L [pc] T [K]

Clump 103 − 104 0.1− 2 ∼ 10

Low-density Core 104 − 105 ≤ 0.1 ∼ 10

High-density Core ≥ 105 ≤ 0.1 ∼ 10

Table 1.2: Physical parameters of some substructures defined within molecular clouds
(André et al. (2014), Chevance et al. (2022)), where n is the number density, L is the
size, and T is the temperature.

et al. (2014)). In numerical models, on the other hand, a threshold in mass density

is commonly used, and depending on the value of this threshold density, filaments,

clumps or cores can be defined within the 3D density field in the numerical domain in

accordance with the observational data (see for example, the methodology in Camacho

et al. (2020)).

It is important to note that each molecular tracer is excited at different densities

and temperatures and therefore delineates structures with different extents. As a

result, there is no single tracer or threshold density that can be used to distinguish all

different substructures within MCs. The criteria used to define some of these regions

(filaments, clumps, and cores) are therefore conventional but ambiguous. In reality,

MCs are a density continuum, where certain substructures defined by the chosen

observed tracer are separated for convenience (although these substructures are not

real objects). Study these regions with numerical simulations allow us to analyze their

evolution during the early states up to the time of star formation.

1.3 Star Formation Efficiency

The SFE is an observable that models and simulations try to explain and is influ-

enced by both spatial and temporal factors. Traditionally, SFE assumes that a MC is

a particular and finite gas reservoir with a well-defined lifespan and mass. However,

recent studies from observations and theoretical models indicate that these assump-

tions may not always be true. Instead, MCs can accrete fresh gas from an atomic

envelope (Molinari et al., 2014). This situation makes the understanding of the SFE

Astrophysics Department Instituto Nacional de Astrof́ısica, Óptica y Electrónica
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Figure 1.1: Histogram of different observational data from dense cores undergoing
star formation, showing the distribution of slopes (p) of the density profile (n ∝ r−p).
The blue histogram shows low-mass cores (with typical sample sizes of 0.002-0.2 pc)
and the red histogram show high-mass cores (with typical sample sizes of 0.1-1 pc).
Thin curves are Gaussian fits. Finally, the position of the peak µp and the standard
deviation σp are annotated. Image taken from Gómez et al. (2021).

as an elusive concept, as the gas accreted by stars comes from large distances1 to

reach the sites of star formation.

1.3.1 Instantaneous Star Formation Efficiency

The Instantaneous Star Formation Efficiency (SFE, for the purposes of this work) is

the mass fraction of gas that is converted into stars at a given time t, so

SFE(t) =
M⋆

Mc +M⋆

, (1.3.1)

where M⋆ is the mass in stars within the region of study and Mc the cloud mass.

Because this value evolves in time through the lifetime of the region, it is expected

that SFE → 1 in evolved regions where the all the gas is consumed in forming

1The core accretes its mass from the filament surrounding it. In a dynamical scenario, this material
comes from large distances throughout the filament Gómez & Vázquez-Semadeni (2014).

Effect of the Accretion and Core definition on the Star Formation Rate per Free Fall Time



6 1. Introduction

stars. Although, newborn stars ionize and disperse the parent cloud preventing high

efficiencies (e.g., Grudić et al., 2019).

Also, the SFE value depends on the scale of the studied object. Observations show

that at scale of the whole GMC SFE∼2% (e.g., Myers et al., 1986), whereas in dense

(massive star forming) cores SFE∼30-50% (e.g., Lada & Lada, 2003).

1.3.2 Star Formation Efficiency per Free-Fall Time

The star formation efficiency per free-fall time (ϵff , also commonly named star for-

mation rate per free-fall time) is the fraction of a GMC (or any substructure) that is

turned into stars in a free-fall time. This parameter was first introduced by Krumholz

& McKee (2005), and is defined as

ϵff =
Ṁ⋆

Mc

⟨τff⟩, (1.3.2)

where Ṁ⋆ is the SFR, and ⟨τff⟩ is the mean free-fall time (see Section 2.2.1). It has

been suggested that for a structure in gravitational free-fall collapse, a value of ϵff ≈ 1

is expected (e.g., Krumholz et al., 2019).

The measurement of this parameter in observations has some constrains that may

affect its value. For example, the most reliable approach for the estimation of ϵff in

resolved (closed) MCs computes the SFR by counting young stellar objects (YSOs);

this method is limited by the sensibility of the telescopes (e.g. Spitzer) and is only

available for the solar neighborhood (farther regions must make a correction for the

unseen part of the Initial Mass Function). The gas mass and mass density (needed

to calculate the free-fall time) is estimated from the column density map, assuming

that the third dimension along the line of sight is comparable in size with the two

observed in the sky plane (e.g., Ochsendorf et al., 2017; Pokhrel et al., 2021).

In general, there is consensus in a canonical value of ϵff ≃ 0.006 − 0.026 for

regions ≳ 1 pc, but with dispersion of at least one order of magnitude above and

below this range (see a recent review by Krumholz et al., 2019). The left panel in

Figure 1.2 shows a compilation of different works that illustrate this consensus in

molecular objects with different densities (from MCs as whole to dense cores). The

right panel shows a constant ϵff behavior in observations around 0.026 for a sample

Astrophysics Department Instituto Nacional de Astrof́ısica, Óptica y Electrónica
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Figure 1.2: Left panel : Plot of ϵff (SFRff in this figure) versus the characteristic
density of a given region nH . Every data comes from different observational and
numerical works, referenced in the image itself. The filled squares with error bars are
observational estimates, open diamonds are from turbulent numerical simulations,
and the horizontal bar is the analytic prediction by Krumholz & McKee (2005, ϵff ∼
0.01−0.02). Figure taken from Krumholz & Tan (2007). Right panel : Variation of ϵff
with the surface density for a sample of nearby clouds. The dashed line corresponds
to the median of ϵff ∼ 0.026. Figure taken from Pokhrel et al. (2021).

of nearby MCs, where each cloud has a different evolutionary state, and still, they

all have similar ϵff values; also, the range of surface densities (Σgas) within a given

cloud can be interpreted as a range in size of the contours used to calculate Σgas, and

in every cloud the ϵff remains mostly constant throughout this horizontal axis (Σgas

or size).

As this is a surprisingly low value, different theoretical models try to explain it.

Turbulent numerical simulations, with self-gravity and magnetic fields, find reasonable

values (ϵff ∼ 0.04) only when feedback processes (outflows) are taken into account

(see, e.g., Federrath, 2015) when considering unrealistic large levels of turbulence

(e.g., Padoan et al., 2012; Kim et al., 2021). Other models, where turbulence decays

and gravity drives the evolution collapsing the cloud and forming stars, produce

reasonable values of ϵff considering feedback effects (such as outflows and ionizing

radiation) (e.g., Grudić et al., 2018). However, measurements of these parameters

from numerical simulations must be interpreted with caution, as they are measured

from the raw simulation data, rather than from synthetic observations. This can lead

to inaccuracies, as the raw data may not fully capture the effects of observational

Effect of the Accretion and Core definition on the Star Formation Rate per Free Fall Time



8 1. Introduction

biases.

Finally, note that there is no systematic observations or numerical studies to date

that explore the ϵff at scales of dense cores, except for the observational work by

Louvet et al. (2014) where they quantified ϵff ∼ 0.1 − 1 in dense cores of a mini-

starburst ridge.

Nowadays, the physical nature of this parameter is highly discussed. The main

objective of this work is to study its origin and evolution by performing numerical

simulations of a simplified spherical gravitational collapse in order to understand the

basic physics (gravity) that could be affecting the behavior of this parameter at scales

of dense cores.

.
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Chapter 2

Gravitational Collapse of dense

cores

There are two main models of star formation with opposing assumptions. The turbu-

lent model assumes that clouds are turbulent and long-lived, and only overdensities at

small scales (dense cores) manage to collapse, thus maintaining the low SFE observed

(e.g., Mac Low & Klessen, 2004). On the other hand, the global hierarchical collapse

(GHC) scenario assumes that clouds can be in a state of global collapse, with the

overdensities (cores) collapsing faster than the cloud as a whole and the SFE being

regulated by feedback processes (e.g., Vázquez-Semadeni et al., 2019). In any event,

in both models, the dense cores contract gravitationally and our results can be valid

regardless of the scenario of star formation.

Gravitational collapse occurs when the gravitational energy overwhelms the coun-

teracting processes that tend to keep stable the system (thermal, magnetic, rotational,

and turbulent energies), leading to the collapse and accretion of mass.

This chapter delves into the intricacies of gravitational collapse of dense cores,

exploring its theoretical foundations and examining various analytical treatments

used to study this phenomenon. In this work we will assume cores with spherical

symmetry, which is a good first approximation but not entirely true as observations

show that the cores are slightly elongated (see, e.g., Francesco et al., 2006).

[9]



10 2. Gravitational Collapse of dense cores

2.1 Equilibrium and stability

2.1.1 Jeans Analysis

Here we deduce the Jeans Length and Jeans Mass using the virial theorem (Landau

& Lifshits, 2003), which gives us a very close result to the perturbative analysis

originally made by Jeans (1902). We must notice that the calculation presented here

is a first-order approximation, because we are considering a uniform sphere instead

of a sphere with a density profile.

The Virial Theorem states that

1

2

d2I

dt2
− 2K =

(
2U −

∮
S

Px · dS
)
+

(
M+

∮
S

x ·T · dS
)
+W, (2.1.1)

where I is the moment of inertia, K is the kinetic energy, U is the internal energy, P

is the pressure, M is the magnetic energy, T is the Maxwell’s magnetic stress tensor

andW is the gravitational energy. By searching for a state of equilibrium between the

internal and gravitational energy, we can neglect the terms related to other forces,

and we assume virial equilibrium, i.e., d
2I
dt2

= 0. We then obtain that the total internal

energy is equal to minus half of the total gravitational energy

U = −1

2
W. (2.1.2)

The gravitational energy for a spherical cloud with uniform density can be ex-

pressed as

W = −3

5

GM2

R
, (2.1.3)

where G is the gravitational constant, M and R the cloud mass and radius, respec-

tively.

On the other hand, the internal energy can be approximated as

U =
3

2
NkBT, (2.1.4)

where N is the total number of particles (atoms or molecules) in the cloud, kB is

Astrophysics Department Instituto Nacional de Astrof́ısica, Óptica y Electrónica



2.1 Equilibrium and stability 11

the Boltzmann constant, and T is the temperature of the gas. For simplicity in the

further analysis, N is substituted by M
µmH

, where the expression µmH corresponds to

the average mass per particle.

The cloud mass can also be expressed in terms of its density and radius, so

M =
4

3
GπR3ρ0. (2.1.5)

These expressions are used in equation 2.1.2 to get the following relation for the

radius

R2 =
15

4π

kBT

µmHGρ0
. (2.1.6)

Now, the sound speed (cs) is introduced for an isothermal gas,

c2s =
kT

µmH

. (2.1.7)

Then it is finally obtained

R =

√
15

4π

c2s
Gρ0

≡ LJ . (2.1.8)

This expression represents the Jeans length (LJ). It is the characteristic size of

a given cloud that determines its stability against gravitational collapse. Structures

with scales larger than LJ are unstable to gravitational collapse, whereas smaller

scales are gravitationally stable.

On the other hand, a characteristic value of mass required to induce a collapse

can be defined, similarly to LJ . By replacing the Jeans length in equation 2.1.5, we

obtain

MJ =
5

2

c3s

G3/2ρ
1/2
0

√
15

π
. (2.1.9)

Thus, a cloud is gravitationally unstable if its mass is greater than this Jeans mass

(MJ).

Effect of the Accretion and Core definition on the Star Formation Rate per Free Fall Time



12 2. Gravitational Collapse of dense cores

2.1.2 Bonnor-Ebert Analysis

The Bonnor-Ebert sphere is a theoretical model that describes a self-gravitating,

isothermal gas cloud in hydrostatic equilibrium. It provides insights into the stability

and structure of molecular clouds, especially those that are marginally stable and on

the verge of collapse (Ebert (1955), Bonnor (1956)).

In the Bonnor-Ebert model, the gas cloud is assumed to be spherically symmet-

ric and in hydrostatic equilibrium, meaning that it is balanced between the inward

gravitational force and the outward force due to pressure gradient. This condition is

mathematically expressed as

dP (r)

dr
= −Gρ(r)

r2
, (2.1.10)

where P (r)is the pressure, ρ(r) is the density, and r the radial distance.

In the context of the Bonnor-Ebert spheres, we can solve the equation above using

the expression (Clarke & Carswell, 2007)

1

ξ2
d

dξ

(
ξ2
dψ

dξ

)
= e−ψ, (2.1.11)

where ψ is a non-dimensional variable related to the density as

ψ ≡ − ln

(
ρ

ρ0

)
, (2.1.12)

and ξ is a non-dimensional variable related to the radius as

ξ ≡
(
4πGρ0
c2s

)1/2

r. (2.1.13)

The density profiles of these spheres vary according to the value of the radius: for

small r, the profile seems nearly flat, and for larger distances from the center, the

profile approximates to ρ ∝ r−2, known as the Singular Isothermal Solution (SIS),

ρ(r) =
c2s

2πGr2
. (2.1.14)

An example of a collapse driven initially from a marginally unstable Bonnor-Ebert

sphere is shown in the right panel of Figure 2.1. More analysis regarding the SIS as
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2.2 Gravitational Collapse 13

well as some examples of classical solutions will be explored in Section 2.2.2.

2.2 Gravitational Collapse

2.2.1 Free-fall Time

Understanding the free-fall time is important, as it provides a good approximation

of the timescale on which a system will collapse due to selfgravitaty. Its derivation

begins by assuming the most simple case of collapse, a spherical mass distribution

with uniform density and radius R. The sphere is subject only to the gravitational

pull of the mass interior to R, and no other forces are taken into account.

We begin by taking the equation of motion,

−1

2

du2

dr
=
GM

r2
, (2.2.1)

where, again,M is the cloud mass (which will remain constant), and the negative sing

in the acceleration is because the velocity u points inward during the collapse. We can

integrate this equation with the initial conditions r(t = 0) = R and u(t = 0) = 0, and

defining M(R) = M0 and ρ(t = 0) = ρ0 as the initial mass and density respectively,

to obtain

u = −
[
2GM0

(
1

r
− 1

R

)]1/2
, (2.2.2)

because u(t) = dr/dt, we can rewrite the previous expression as

dt = − dr[
2GM0

R

(
R
r
− 1

)]1/2 . (2.2.3)

At this point, we define the non-dimensional variable ζ = r/R, and noticing that

M0 =
4
3
πρ0R

3,

dt = −
(
8πGρ0

3

)−1/2(
ζ

1− ζ

)1/2

dζ. (2.2.4)

By integrating this from r = R to r = 0, we obtain the final expression

Effect of the Accretion and Core definition on the Star Formation Rate per Free Fall Time



14 2. Gravitational Collapse of dense cores

τff =

√
3π

32Gρ0
, (2.2.5)

which corresponds to the gravitational free-fall time, i.e., the time it takes for the

sphere to collapse completely from a radius R.

Notice how this parameter only has dependence in density, so all the material

would collapse at the same time regardless of the radius. This case is known as

homologous collapse, and give us a good first approximation of the collapse timescale

(e.g., Binney & Tremaine, 1987).

2.2.2 Singular Isothermal Solution (SIS)

As mentioned in Section 2.1.2, the singular isothermal solution (SIS) represent an

idealized analytical model of gravitational collapse. Although, it does not represent

a realistic approach of the physical conditions observed in MCs, since some ingredi-

ents that are not taken into account in the analysis are present in the process of star

formation, such as turbulence, magnetic fields, etc. However, it is a good instrument

to study the initial conditions for gravitational collapse, obtaining interesting impli-

cations product of this analysis. In this section, we will briefly discuss two famous

and classic solutions of this scenario to better understand the principles of collapse:

The inside-out solution by Shu (1977) and the asymptotic solution by Whitworth &

Summers (1985):

2.2.2.1 Asymptotic solutiom (Whitworth & Summers, 1985)

The authors found three solutions for the dimensionless velocity (ν(ξ) ≡ u(t, r)/cs)

and density (ρ̄(ξ) ≡ 4πGt2ρ(t, r)) based on the condition chosen for the variable ξ

(see equation 2.1.13) but with a time-dependence (so ξ ≡ r
cst
) as a set of Taylor

expansions:

• The settling solution (when ξ → 0−, or t < 0):

v(ξ) =
2ξ

3
+O

(
ξ3
)
, (2.2.6)

ρ̄(ξ) = ρ̄0 +O
(
ξ2
)

(2.2.7)
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• The freefall solution (when ξ → 0+, or t > 0):

v(ξ) = −
(
2m0

ξ

)1/2

+O
(
ξ1/2

)
, (2.2.8)

ρ̄(ξ) =

(
m0

2ξ3

)1/2

+O
(
ξ−1/2

)
(2.2.9)

• The cruising solution (when ξ → ∞):

v(ξ) = v∞ − ρ̄∞ − 2

ξ
+O

(
ξ−2

)
, (2.2.10)

ρ̄(ξ) =
ρ̄∞
ξ2

+O
(
ξ−4

)
(2.2.11)

the parameters introduced in those solutions are the following:

• ρ̄0 is the dimensionless central density.

• m0 is the dimensionless central point mass in the late phase of the collapse.

• v∞ is the dimensionless inflow velocity far from the center.

• ρ̄∞ is the dimensionless density at some large distance from the center.

To better understand these solutions, a timescale is defined and the time t = 0

is chosen to be the time in which a singularity is formed at the center of the sphere

(in terms of a star formation system, it represents the moment when a protostar

is created), so any negative time describes a prestellar stage, and a positive time

describes a protostellar stage.

These solutions describe different stages and regions of the collapse. The first

two (when |ξ|→ 0) represent the inner region of the sphere (as pointed out by the

authors), while the cruising solution represents the outer region. In the same way,

the settling solution corresponds to the prestellar stage, and the freefall solution the

protostellar stage. Figure 2.1 illustrate all these scenarios and the evolution of |ξ| with
v and ρ.

Effect of the Accretion and Core definition on the Star Formation Rate per Free Fall Time



16 2. Gravitational Collapse of dense cores

Figure 2.1: Scenarios of the asymptotic solution. In both panels, the white area rep-
resents the inner region, and the shaded area represents the outer region (see the
text). The dashdotted line approximately separates the prestellar stage from the pro-
tostellar stage. The solid lines indicate the settling solution, the dotted lines indicate
the freefall solution, and finally, the dashed lines indicate the cruising solution. The
left panel shows a case with a finite infall speed at infinity, v∞ < 0, corresponding
to a global collapse; and the right panel shows a case with vanishing infall speed at
large distances, v∞ = 0, corresponding to local collapse. Image taken from Vazquez-
Semadeni, in prep.

2.2.2.2 Inside-out solution (Shu, 1977)

This solution assumes that a fully dynamical collapse should start from near-

equilibrium configurations, very close to unstable Bonnor-Ebert spheres (see Section

2.1.2). Some arguments given by the author to support the analysis are:

• The r−2 profile is an indicator of hydrostatic equilibrium at all radii, as it shows

balance between self-gravity and thermal pressure.

• The sound waves are responsible for adjusting the pressure in the region.

• Solutions that imply flows with supersonic velocity connecting smoothly to sub-

sonic velocities are considered unrealistic and unstable configurations.

• Hence, the collapse occurs subsonically everywhere in the sphere.

In general, this solution presents itself as an initial condition for the collapse for

the cruising solution, specifically when t→ 0 and v∞ = 0. Some important situations
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must be mentioned about this solution:

• This scenario corresponds exclusively to the protostellar stage, since the author

assumes the prestellar stage occurs quasistatically.

• At t = 0 the central object (the future star) has M = 0, even though there is a

density diverging in that position.

• At t > 0, the mass of the star increases linearly with time as

M∗ =
c3sm0

G
t, (2.2.12)

so the star would have a constant mass accretion rate as

Ṁ∗ =
c3sm0

G
(2.2.13)

2.2.3 Evolution of the density profile

An interesting analysis about the evolution of the density profile during the prestellar

stages was developed by Gómez et al. (2021). By assuming that the density profile

has the form r−p(t), with 0 < p < 3, they obtain an expression for the temporal rate

of change of the parameter p(t) as

dp

dt
=

(
3− 3p

2

)[
4πGρ0f

2

3− p

]1/2
(r/r0)

−p/2

− ln(r/r0)
, (2.2.14)

where ρ0 is the region initial density, r0 is the Jeans Length corresponding to ρ0, and

f is a constant that relates the radial flow velocity with the infall speed in the form

vr = −fvff .
Since the authors showed that the prestellar collapse proceeds from the outside-in,

they only consider the scenario when r < r0, so the behavior of the parameter (i.e.

the sign of the expression) is determined for the expression
(
3− 3p

2

)
. Hence, when

p > 2, the slope decreases, while in p < 2 increases at all radii. This shows the nature

of the value p = 2 as an attractor for other slopes, and the stationary state and radius

independence of this scenario.
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18 2. Gravitational Collapse of dense cores

A scenario with p ≫ 2 can be neglected, as the p ∼ 2 profile is considered a

natural result of the scale-free gravitational collapse (e.g., Li, 2018), and observations

shows that there is highly unlikely to find a core with slope p > 2.8 (see Figure 1.1

from Gómez et al., 2021).

The previous analysis means that, with a regular gravitational collapse starting

with a density profile characterized with p ≥ 0, the evolution will lead the slope

towards a p = 2 behavior.
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Chapter 3

Numerical Methods

3.1 Hydrodynamic equations

Since the gas in the ISM behaves as a fluid, we can use the hydrodynamic equations

as a good approximation to understand its dynamics.

For this work, because there are no diffusive effects taken into account, it is easier

to study the hydrodynamics by using the Euler equations (Dyson & Williams (1980),

Landau & Lifshits (2003)):

• Continuity equation: this expresses the conservation of mass of a fluid element

(or gas parcel),
∂ρ

∂t
+∇ · (ρu) = 0, (3.1.1)

where ρ and u are the density and velocity of the fluid element, respectively.

• Momentum equation: This relates the rate of change of the fluid velocity to the

forces acting on it,
∂u

∂t
+ u · ∇u = −1

ρ
∇p, (3.1.2)

where p is the fluid pressure. Notice that the expression u · ∇u is an advective

term due to the gas parcel is moving with velocity u.

As we will simulate dense structures, which are nearly isothermal, we do not

need to solve the energy conservation equation. This is a good approximation as

the radiative cooling finds equilibrium with the heating processes in densities greater

than 102 cm−3, so they approach to a nearly isothermal behavior (Myers (1978),

[19]
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Wolfire et al. (1995)). Different methods have been developed in order to approximate

a solution for this set of equations. In this work we use a mesh-based method to

discretize the space into a finite number of cells or elements assigning them dynamic

and thermodynamic properties to evolve the system (Girault & Raviart, 2012).

3.2 FLASH Code

For our numerical models, we use the Eurelian adaptive mesh refinement (AMR)

FLASH v4.3 code (Fryxell et al., 2000b; Dubey et al., 2009). 1 In order to integrate

the hydrodynamic equations, we use a finite-volume method, referred as MUSCL-

Hancock Scheme (Waagan, 2009). For the evolution and analysis of the model, two

modules were the mostly used and are described in the following sections.

3.2.1 Self-gravity module

To compute the gravitational forces between the cells within the simulation, it is

needed an efficient numerical method to solve the gravitational Poisson equation,

∇2ϕ(r) = 4πGρ(r). (3.2.1)

Once we determine the gravitational potential (ϕ) the gravitational acceleration (⃗a)

is then obtained by differentiating the potential, i.e., a⃗ = −∇ϕ.
We use the Tree based solver algorithm for the self-gravity presented in Wünsch

et al. (2018), which is mostly based on the Barnes & Hut (1986) method for N-body

simulations (Salmon & Warren, 1994; Springel, 2005). While others schemes scales

as N2 (where N corresponds to the resolution elements) using a direct summation,

a Tree based solver scales with N logN , making it more efficient maintaining good

precision (Clark et al., 2011).

This method consists of a global octal tree organized in nodes (or branches), in

which the whole computational box is the root node and the individual cells are the

leaves. A tree walk is done and only the tree nodes are needed for the calculation of

the potential. There are four main parts in the algorithm of the tree solver:

1https://flash.rochester.edu/site/index.shtml

Astrophysics Department Instituto Nacional de Astrof́ısica, Óptica y Electrónica
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3.2 FLASH Code 21

1.- Communication of block properties. It consists in exchanging information about

the properties of each block between processors, such as the position, size, and

level of refinement. This part is only needed if the AMR grid changes.

2.- Building the tree. This part involves constructing a hierarchical octree structure

over the entire computational domain, starting from the top-level AMR grid

down to individual cells. This is done by recursively dividing each block into

eight child blocks until a minimum block size is reached.

3.- Communication of the tree. The next step is to distribute the tree across mul-

tiple processors and ensuring that each processor has access to the part of the

tree that it needs for calculations.

4.- Tree walk. Finally, each node is evaluated in the tree to determine whether it

should be used for calculations or if its children should be opened for further

evaluation (below we describe this criterion). This process is performed for each

grid cell, and the result is a list of active nodes that contribute to the solution.

The contributions of all active nodes are then integrated during the tree walk

to obtain the final solution.

The criterion to determine if a given node is opened to consider their subnodes

for the calculation of the potential is through the opening angle θtol (θtol ∼ 0.5 rad is

enough to generate errors ≤ 1%; Clark et al., 2011).

To walk the tree, the nodes are opened, and the algorithm checks the angle θ

subtended by the children nodes from the cell of interest; if θ < θtol the measurement

is made using the child node properties (mass, position and center of mass), but if

θ > θtol, then the child node opened and the process is repeated until a new angle

smaller than the opening angle appears.

3.2.2 Sink particle module

The FLASH code is an adaptive mesh refinement (AMR) code, which means that

it can dynamically refine the mesh in regions of interest. This is done according to

the Jeans criterion, which prevents artificial fragmentation by ensuring that the local

Jeans length (λJ) is well resolved with at least nJ grid cells (usually nJ = 4 is enough
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to prevent spurious fragmentation in simulations without magnetic fields; Truelove

et al., 1997). Once we reach the maximum refinement level allowed, we can create a

sink particle in cells that reach the critical density defined as

ρsink =
πc2s
Gλ2J

=
πc2s

G(nJ∆x)2
, (3.2.2)

where cs corresponds to the sound speed in the gas, and ∆x is the size of the smallest

cell on the grid. For the purpose of this work, we will refer to the critical density

in cm−3 units, applying the conversion nsink = ρsink
µmH

, where µ is the mean molecular

weight and mH the hydrogen molecule mass.

However, this is just the first step for a sink particle to be created, after which

we define a control sphere (of radius racc = 2.5×∆x) around the cell and a series of

checks must be completed (Federrath et al., 2010):

1.- The control volume must be in the highest level of refinement lmax. This is

necessary because sink particles require a high level of resolution in order to

accurately capture the details of the gas dynamics in the vicinity of the sink

particle.

2.- The gas in the control volume is converging towards the center of the cell, where

the sink particle will be placed. The code computes the divergence of the flow

velocity within the control volume to determine if the flow is converging or

diverging.2

3.- There is a local gravitational potential minimum in the cell of interest.

4.- The gas in the control volume must be Jeans-unstable. This means that the gas

is undergoing gravitational collapse and is likely to form a protostar, according

to the Jeans criterion (see Section 2.1.1):

|W |> 2U, (3.2.3)

where W is the gravitational energy and U is the internal energy.

2A negative divergence indicates that the flow is converging, while a positive divergence indicates
that the flow is diverging.
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5.- The gas in the control volume is gravitationally bound, so that:

W + U +K +M < 0, (3.2.4)

where K is the kinetic energy and M is the magnetic energy. If equation 3.2.4

holds, then is safe to say that the gas will not be dispersed by other forces, such

as magnetic fields or pressure gradients.

6.- The Proximity Check, a new sink particle can not be created within the accretion

radius racc of another sink particle.

If a cell successfully passes all the previous conditions, then a sink particle is

placed at its center. If the Proximity Check fails, instead of creating a sink particle,

we check if the existing sink can accrete the overdensity of the cell.

If a cell with coordinates {i, j, k} within racc has its gas density above ρsink, a mass

increment parameter ∆M is computed as,

∆M =
[
ρ{i,j,k} − ρsink

]
∆V{i,j,k}. (3.2.5)

To determine if this mass increment can be accreted by the sink, the following checks

must be satisfied:

• In case ∆M is within the racc of multiple sink particles, we measured the gravita-

tional binding of ∆M for each of the sinks and select the one with the strongest

bound to be the one accreting the gas.

• The kinetic energy of ∆M is measured and compared to its gravitational binding

energy, so we can check if ∆M is moving toward the sink (i.e. negative radial

velocity).

• If the position of ∆M is within the single central cell in which the sink particle

is located, then the accretion is made without any checks, so numerical issues

can be avoided.

Having completed these tests, the gas is accreted by the sink, conserving mass,

linear and angular momentum, magnetic flux, etc., and the particle is moved towards

the center of mass of the sink-gas system defined prior to the accretion.
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3.3 Numerical model of an idealized gravitational

collapse

In order to understand the basic concepts for the differential collapse of a dense core,

an idealized model is constructed in this work. It consists of a numerical box of size

Lx = Ly = Lz = Lbox = 4 pc, containing cold molecular gas (µ = 2.3) with a

background uniform density ρ0. We place a gaussian overdensity at the center of the

numerical box, so the mass density of a given cell with a position {i, j, k} is given by

ρn,{i,j,k} = ρ0 + ρ0e
−

(r{i,j,k}−r0)
2

2σ2 , (3.3.1)

where r{i,j,k} is the position of the cell, r0 the position of the center, and σ is the width

of the gaussian profile, selected to be in direct relation with the size of the numerical

box, σ = Lbox/5.

Our simulations are isothermal, with T0 = 10 K (resulting in cs = 0.189 km/s),

which is reasonable for dense molecular cores (Ferrière (2001), Table 1.1). A detailed

explanation regarding the main parameters to study and a table characterizing our

numerical experiments are presented in the following sections of this chapter. Note

that our initial conditions are similar to those used in Naranjo-Romero et al. (2015).

3.3.1 Boundary Conditions

In FLASH, the conditions at the boundaries are established in virtual areas called

guardcells or ghostcells located outside the physical domain. To enable code re-

finement and parallelization, the computational domain is divided into several sub-

domains or blocks. Each block is surrounded by a perimeter of guardcells that contain

information from neighboring blocks. If the block is at the boundary of the physi-

cal domain, the guardcells are filled with the appropriate boundary conditions (BCs;

Fryxell et al., 2000a).

In this work, two types of BCs are selected: Open and Closed boundaries.

In FLASH, the first boundary selected is the outflow type. This forces a zero-

gradient boundary, hence setting the values of the fluid variables (e.g., density, veloc-

ity, and pressure) in those boundaries at the same value as the corresponding closest
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cell within the domain. This BC type allows shocks to leave the computational box

and, in contracting systems, inject material (inflow) to prevent empty cells at the

boundaries.

The other BC selected is the diode type. It is similar to the outflow type, except

that it does not allow the gas flow into the domain. If necessary, the normal velocity

components in guard cells are set to zero (Ferziger & Peric, 2001).

For the purpose of this work, the outflow type BC (hereafter OBC, for Open BCs)

is chosen because it mimics a situation when the system in collapse always has a mass

inflow, and the system is considered not-isolated.

On the other hand, the diode BC type (hereafter CBC, for Closed BCs) is chosen

because it will not allow any material to flow into the system. This is equivalent to

an isolated collapse, and the system has a fixed material reservoir to accrete onto the

core and sink.

In the next subsection, we describe the combination of boundary conditions (BCs)

used in our simulations. The specific BCs used are shown in Table 3.1.

3.3.2 Simulation parameters

Four simulations were performed by varying the BCs (as explained in the previous

section) and the values of the initial uniform number density n0,. For this, we select

n0 to be 82.46 cm−3 and 824.65 cm−3, so the mean number density at the start of

the simulation ⟨n⟩, including the gaussian overdensity at the center of the numerical

box, will be approximately 100 cm−3 and 1000 cm−3, respectively. Note that the

Gaussian overdensity (Equation 3.3.1) represents the seed of the collapse. As the

collapse proceeds, number densities greater than 105 cm−3 appear, along with strong

density gradients, on sub-parsec scales. This allows us to study the properties of dense

cores and compare them to their observational counterparts (see Table 1.2).

Table 3.1 shows important parameters from each of the numerical experiments.

In general, the values presented in the table can be divided in three blocks:

• The first three rows are the values related to the mean initial number density

(⟨n⟩), being ⟨τff⟩ the gravitational free-fall time (see Section 2.2.1), which was

calculated as
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⟨τff⟩ =

√
3π

32G(⟨n⟩µmH)
. (3.3.2)

• The next four rows correspond to the resolution parameters and the sinks par-

ticle module (see Section 3.2.2). It is important to recall that since the critical

density nsink depends on the maximum refinement level possible lmax, and this

has to be integers numbers, there is not enough freedom to change nsink to a

specific desired value. The selection of nsink was made so the ratio between nsink

and n0 would be the most similar possible between the four simulations3. The

parameters ∆x and racc corresponds to the minimum cell size and the accretion

radius of the sink, respectively. The racc was calculated as shown in Section

3.2.2, and ∆x is obtained as

∆x =
Lbox

2lmax+2
. (3.3.3)

• The last row shows the boundary condition selected for each simulation, with

Closed referring to Diode type BC, and Open to Outflow type BC. See section

3.3.1 for a more detailed explanation on each BC.

3.3.3 Core Definition

As part of the analysis made for each simulation, a set of density thresholds were

selected to define the core and explore how this definition affects its accretion and

star formation activity.

This is implemented by selecting any cell whose density is greater than the density

threshold nthr. Then, all the identified cells will create a group defined as the core,

and their volume and mass will be used for calculations such as core mass (Mcore),

core density (ρcore), core accretion (Ṁcore), and other related values.

The chosen density thresholds are: nthr = 103 cm−3 to represent a low density

clump, nthr = 104 cm−3 to represent a transition step between a clump and a core,

3Note that the values obtained are consistent with the density range observed in star forming
regions (André et al., 2014, and see Table 1.2)
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Parameters
Simulations

C100 O100 C1000 O1000

n0 [cm−3] ∗ 82.46 824.65

⟨n⟩ [cm−3] 100 1000

⟨τff⟩ [Myr] 3.38859 1.07157

lmax
∗ 6 8

∆x [pc] 0.016 0.0039

racc [pc] 0.039 0.0098

nsink [cm−3] 4.715×104 7.544×106

Boundary ∗
Closed Open Closed Open

Type
∗ Input Parameters.

Table 3.1: Parameters from the four simulations performed in this work. The columns
correspond to specific simulations, and within each row, different important parame-
ters are presented for the characterization of every simulation. In order, n0 corresponds
to the initial uniform density, ⟨n⟩ is the initial mean density, ⟨τff⟩ is the gravitational
free-fall time (Equation 3.3.2), lmax is the highest refinement level possible in the sim-
ulation, ∆x is the minimum cell size in the box, racc is the accretion radius of the
sink particle, nsink is the critical density for a sink to be formed, and the Boundary
Type row tells the chosen BC.

and nthr = 105 cm−3 to represent a high density core. Also, we chose another density

threshold to carry out an intermediate analysis in some cases: nthr = 4× 104 cm−3.

The criterion we use to define our structures can be justified by observations:

different species of molecular gas emit from different regions, depending on the density

and temperature required for them to become collisionally excited and emit radiation

(e.g., Williams et al., 2000).

For example, the most common low density tracer for clumps is the 13CO molecule,

which is abundant in regions with high density molecular gas. On the other hand, a

useful high density tracer to identify dense cores is the low-level transitions of NH3

and N2H
+, because they remain detectable at densities were usually other molecules

would have heavily depleted (e.g., Pillai et al., 2006, see Section 1.2.1).
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Chapter 4

Results

A total of four simulations were performed in this work (see Section 3.3.2 for the

initial conditions of each one). In general, all of them are gravitationally unstable and

shows the expected behavior of a spherical local collapse (see Chapter 2, and the right

panel of Figure 2.1), with the mass flowing towards the center of the numerical box

and collapsing from the outside-in, one sink particle appears eventually at the center

of the core during the time interval of study. From now on, we will refer to the O100

and C100 models as the low-mass or low-density models/cores, and the O1000 and

C1000 models as the high-mass or high-density models/cores, with the O referring to

models with OBCs and the C to models with CBCs.

4.1 General evolution

Two snapshots of each simulation are presented in Figures 4.1 and 4.2. These snap-

shots were selected to represent two different evolutionary stages. The first one (left

panels of each figure) shows an early stage, where signatures of gravitational collapse

can barely be appreciated (t1 = 2.2 Myr for C100 and O100, and t1 = 748.7 kyr for

C1000 and O1000). The second one corresponds to the time when the sink particle

appears (t2 = 3.1 Myr for C100 and O100, and t2 = 867.4 kyr for C1000 and O1000).

In terms of the free-fall time, the times mentioned above for C100 and O100 corre-

sponds to t1 = 0.65τff and t2 = 0.92τff , where τff = 3.39 Myr is the free-fall time at

the beginning of the simulation. On the other hand, the times mentioned for C1000

and O1000 correspond to t1 = 0.70τff and t2 = 0.81τff , where τff = 1.07 Myr.

[29]
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(a) C100 simulation.

(b) O100 simulation

Figure 4.1: Number density slices for the simulations with ⟨n⟩ ≈ 100 cm−3 in two
stages of their evolution. The top panels represent the simulation labeled as C100,
while the bottom panels are for the O100 simulation. The left panel is an early stage of
the evolution (t = 2.2 Myr = 0.65τff ) and the right panel is the snapshot immediate
after the creation of the sink (t = 3.1 Myr = 0.92τff ). The blue streamlines show the
inflow velocity of the gas.
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(a) C1000 simulation

(b) O1000 simulation

Figure 4.2: Same as Figure 4.1, but for the simulations with ⟨n⟩ ≈ 1000 cm−3.The
top panels represent the simulation labeled as C1000, while the bottom panels are
for the O1000 simulation. The left panel is an early stage of the evolution (t = 748.7
kyr = 0.70τff ) and the right panel is the snapshot immediate after the creation of
the sink (t = 867.4 Myr = 0.81τff ). The blue streamlines show the inflow velocity of
the gas.
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As expected, the evolution time (the free-fall time; see Table 3.1) is shorter in our

denser models. As seen in Figures 4.1 and 4.2, in the simulations with lower densities

the sink is formed at t⋆ = 0.92τff , and in the simulations with higher densities the

sink is formed at t⋆ = 0.81τff . Thus, the sink particle forms earlier in the models

with higher density (C1000 and O1000). For each simulation, the formation time and

the initial mass of the sink are shown in Table 4.1. Note that the initial mass of the

sink is small (2-3 M⊙), however it acquires most of its mass through mass accretion.

The fact that simulations with higher densities evolve faster than the others is be-

cause the thermal pressure is more important in the simulations with lower densities,

so it provides more resistance (support) against the collapse.

4.2 Evolution of the density profiles

Figure 4.3 presents the evolution of the number density profiles for each simulation,

showing the profiles for five times around the time (snapshot) when the sink is created

(red line in each panel). Also, an r−2 profile is plotted in the figure for reference, along

with a dashed horizontal line representing the value of the threshold density for sink

formation, nsink, for each simulation.

This figure shows a few interesting features. The density profiles get truncated in

models with closed BCs in contrast with models with open BCs, in which the material

is replenished from the faces of our cubic numerical box. Furthermore, the density

profiles of all models exhibit a power-law behavior with a flat slope at early times.

The slope then becomes steeper and saturates at a given value near the time of sink

formation. From Figure 4.3 we compute the saturated slop (in the range of 0.1-1.0

pc) finding values of 1.72± 0.008, 1.67± 0.013, 1.70± 0.01, and 1.71± 0.012 for the

C100, O100, C1000, O1000 models, respectively. Note that these values are consistent

with the values reported in numerical models (e.g., Naranjo-Romero et al., 2015) and

the overall evolution is consistent with the collapse model proposed by Gómez et al.

(2021) (see Section 2.2.3).
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(a) C100 simulation. (b) O100 simulation

(c) C1000 simulation (d) O1000 simulation

Figure 4.3: Density profile for each simulation, showing five different times, the one
immediately after the formation of the sink (red dot-dashed lines), and two before
and two after that time. Also, each panel shows an r−2 profile (solid black line),
and a dashed horizontal line represents the threshold number density value for sink
formation (nsink). The top left panel corresponds to the simulation labeled as C100,
the top right panel to O100, the bottom left panel to the C1000, and the bottom right
panel to the O1000.
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Initial Sink Values
Simulations

C100 O100 C1000 O1000

t0 [Myr] 3.0267 3.0207 0.8641 0.8631

t0 [τff ] 0.92 0.92 0.81 0.81

M0 [M⊙] 2.071 2.026 3.834 3.140

Table 4.1: Values of the time and sink mass (t0 and M0, respectively) computed in
the snapshot when the sink first appears in each simulation.

4.3 The Star Formation Efficiency

As explained in Section 3.3.1, two different cases of boundary conditions (BCs) were

chosen in order to study variations in the accretion from outside into the simula-

tion box. Closed BCs (CBC) represent an isolated system where the material within

the numerical box is the same along its evolution. Open BCs (OBC) represents a

non-isolated system, so as it evolves, more material is being injected into the cubic

numerical box.

In this section, we study the star formation efficiency (SFE), which is affected

by mass accretion into the core and into the formed sink particle. In Figure 4.4

the accretion onto the sink particle (Ṁ⋆,i) can be seen for each simulation, which is

calculated as

Ṁ⋆,i =
M⋆,i −M⋆,i−1

∆t
, (4.3.1)

whereM⋆ is the mass of the sink, the index i denotes the step of the simulation where

the measurement is being made, and ∆t is the time between the snapshots i and i−1.

The first thing to note is that in our high-mass cores (models O1000 and C1000) the

sink accretes roughly at the same rate regardless of the chosen boundary conditions

in contrast with the models O100 and C100, where the mass accretion into the sink

depends crucially on the chosen BCs (see Figure 4.4). The difference in the accretion

rates may be due to the fact that the low-mass cores (models O100 and C100) evolve

further in the collapse, allowing the sink to accrete more of the available mass in the

core.
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Figure 4.4: Evolution of the mass accretion into the sink (Equation 4.3.1) for each
simulation.

Interestingly, in our low-mass models, the sink reaches 300 M⊙ (which is the initial

mass of the box) at t = 1.29τff in the C100 model, and at t = 1.08τff in the O100

model (see, e.g., green lines in Figure 4.5).

On the other hand, the core mass evolution depends on the core definition. Figures

4.5, 4.6, 4.7 and 4.8 show the evolution of the core, sink, and total mass in each of the

four simulations, along with the instantaneous SFE (Equation 1.3.1), when the core is

defined by threshold densities nthr = 103, 104, 4×104, and 105 cm−3, respectively (the

difference between the four figures is the density threshold for the core definition).

The core mass evolution and the resulting SFEs can be summarized as follows:

• In general, the O1000 and C1000 models form more massive cores than the

C100 and C100 models, regardless of the density threshold used to define a core.

Therefore, the SFE is lower in the former models, which is expected according

to Eq. 1.3.1 as the core mass (Mcore) is in the denominator of the expression.

• For cores defined with the lower density threshold (nthr = 103 cm−3; Figure 4.5),

the core mass is decreasing/increasing in time for the models with closed/open

BCs. The sink mass evolves similarly, regardless of the BCs. This leads a lower

SFEs in models with open BCs.

Effect of the Accretion and Core definition on the Star Formation Rate per Free Fall Time



36 4. Results

0.8 0.9 1.0 1.1 1.2
100

101

102

103

104

M
as

a 
(M

)

C100

0.8 0.9 1.0 1.1 1.2
100

101

102

103

104

O100

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Tiempo ( ff)

100

101

102

103

104

M
as

a 
(M

)

C1000

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Tiempo ( ff)

100

101

102

103

104

O1000

0.0

0.2

0.4

0.6

0.8

1.0
2.50 2.75 3.00 3.25 3.50 3.75 4.00

Tiempo (Myr)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

2.50 2.75 3.00 3.25 3.50 3.75 4.00
Tiempo (Myr)

0.0

0.2

0.4

0.6

0.8

1.0
0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

0.7 0.8 0.9 1.0

Core mass Sink mass Gass mass Total mass Efficiency

Figure 4.5: Mass and SFE (or Efficiency) evolution (left and right vertical labels,
respectively) for each simulation. Here, we define the core with nthr = 103 cm−3. The
top left panel corresponds to the simulation labeled as C100, the top right panel to
O100, the bottom left panel to the C1000, and the bottom right panel to the O1000
model. Cyan, green, yellow, purple and red lines represent the core mass, sink mass,
total gas mass, total mass of the system and the SFE (Efficiency), respectively. To
better understand the evolution, both the time in Myr (top x-axis) and in τff units
(bottom x-axis) are shown.

• For the cores defined with the higher density threshold (nthr = 105 cm−3; Figure

4.8), the sink mass dominates the system. The sink mass is similar in models

with open or closed BCs, resulting in a similar star formation efficiency (SFE).
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Overall, the SFE depends on both the BCs and the core definition. However, this

dependence is less evident in cores defined with a high density threshold. Although

the SFE approaches 1 in the low-mass cores (models C100 and O100), this is not

realistic according to observations, as they show values of SFE < 50% Lada & Lada

(2003). Therefore, these models should be interpreted with caution, and the analysis

should be considered valid only for times when the SFE is less than 0.5 (for t < tff ).

4.4 The Star Formation Efficiency per Free-Fall

time (ϵff)

We now quantify the ϵff (Equation 1.3.2) for all our models. For this we need the SFR

(Ṁ∗ in Equation 4.3.1), the mean free-fall time (Equation 3.3.2), and the core mass,

which we measure using different thresholds number densities (nthr; see Figures 4.5

to 4.8). In this work we calculate the time evolution of ϵff for a given nthr and also its

radial profile for a given time. Figure 4.9 shows the evolution of ϵff for each simulation

with different core definitions. To illustrate the evolution of the ϵff profile, Figure 4.10

shows different times for each simulation, including the time of sink formation. The

results for the ϵff , in the time range of realistic SFEs (< 0.5; see red lines of Figures

4.5 to 4.8), can be summarized as:

• Figure 4.9 shows that the ϵff is nearly constant.

• We find similar values of the ϵff in our models, regardless of the chosen BCs

(although there is a slight difference in the core defined with the lower number

density threshold, nthr = 103 cm−3).

• As the cores are defined with higher nthr, the values of ϵff are slightly higher.

• Interestingly, the ϵff is higher in our low-mass cores (models O100 and C100).

This is unexpected, as one might naively expect that ϵff would be higher in

more massive cores, where there is more gas available to form stars.
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Figure 4.6: Mass and SFE (or Efficiency) evolution (left and right vertical labels,
respectivelly) for each simulation. Here, we define the core with nthr = 104 cm−3. The
top left panel corresponds to the simulation labeled as C100, the top right panel to
O100, the bottom left panel to the C1000, and the bottom right panel to the O1000
model. Cyan, green, yellow, purple and red lines represent the core mass, sink mass,
total gas mass, total mass of the system and the SFE (Efficiency), respectivelly. To
better understand the evolution, both the time in Myr (top x-axis) and in τff units
(bottom x-axis) are shown.

• The ϵff profiles shown in Figure 4.10, are nearly constant in space (radius).

Also, the curves for different times after the formation of the sink all have

similar values of ϵff , implying that this parameter is nearly constant in time.

Astrophysics Department Instituto Nacional de Astrof́ısica, Óptica y Electrónica
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So our models exhibit a nearly constant ϵff in time and space. In the next section,

we provide a plausible explanation for the behavior of the ϵff described here.

4.5 Discussion

In this section we discuss the previous results considering the general overview of the

simulations and their evolution, and then the SFE and ϵff .

The results and measurements using the higher density thresholds to define the

core must be taken carefully, since the core boundary could approach the sink accre-

tion radius (racc) and the core properties can be affected by the numerical implemen-

tation of the accretion process. In Figure 4.11 (see Section 4.5.1) we compare the core

size (rcore) with racc and we consider that the core properties we quantify are free of

resolution issues when rcore > 4×racc. This figure tells us that practically all the cores

are well-resolved (except for some points in the two smaller cores in C100 and O100)

so we can discard numerical artifacts. This also tells us that the simulations with the

higher initial densities are better resolved than the other two.

The first thing to note is that the identified density profiles saturate to values

that are consistent with observations (see Figure 1.1). This suggests that most star-

forming cores are dominated by self-gravity, as are our models. However, the slope

of our density profiles saturates at p ⪅ 1.71, which means that gravity alone cannot

explain steeper slopes. Other physical ingredients, such as magnetic fields, must be

taken into account.

Additionally, as nthr increases, the SFE increases due to the cores being smaller

and containing less mass. This effect is more noticeable in the C1000 and O1000

simulations because the sink mass grows more rapidly than the core mass (compare,

for example, the green and cyan lines in Figure 4.8). This means that the sink mass

is accreting matter at a faster rate than the core. Furthermore, when the density

profile of the core reaches a power-law slope of 2 (i.e., nthr ∝ r−2), the core reaches

a stationary state (Gómez et al., 2021). This means that the accretion rate is the

same throughout the core, so all the mass that is accreted is transferred to the sink,

maintaining the core mass roughly constant. This effect is more noticeable in our

models with open boundary conditions (see, cyan lines in Figures 4.5 to 4.8).
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Figure 4.7: Mass and SFE (or Efficiency) evolution (left and right vertical labels,
respectively) for each simulation. Here, we define the core with nthr = 4× 104 cm−3.
The top left panel corresponds to the simulation labeled as C100, the top right panel
to O100, the bottom left panel to the C1000, and the bottom right panel to the O1000
model. Cyan, green, yellow, purple and red lines represent the core mass, sink mass,
total gas mass, total mass of the system and the SFE (Efficiency), respectively. To
better understand the evolution, both the time in Myr (top x-axis) and in τff units
(bottom x-axis) are shown.

On the other hand, Figure 4.4 shows how the accretion towards the sink in the

C1000 and O1000 models have practically no variations between them, while in C100

the sink accretion is not as efficient as it is in O100. The difference between C100 and

O100 happens because of the different BCs, as the open BCs allow the injection of
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material in the numerical box, so the sink has an increasing reservoir of mass to ac-

crete. However, the star formation efficiency (SFE) of these simulations grows rapidly,

so its value is unrealistic after approximately one free-fall time. On the contrary, this

difference in the sink accretion history is not observed between the C1000 and O1000

simulations because they evolve a lot quicker and have more gas available since the

beginning, so they are less likely to be affected by the variations in the accretion (i.e.

the boundary conditions).

Also, Figure 4.5 gives us some information about the difference in the SFE (Eq.

1.3.1) of the simulations. In general, the simulations with closed BCs have higher

efficiencies than the ones with OBC (so the efficiency in C100 is higher than in O100,

and in C1000 is higher than in O1000); this happens because the closed boundaries

have less material available for the core to accrete, but the sink maintains an accretion

rate similar between them (this effect can be more appreciable in the C100 and O100

simulations), causing the SFE of CBC models to approach 100%. However, this effect

becomes less noticeable as we increase the number density threshold (nthr) used to

define the core, as seen in Figures 4.5, 4.6, 4.7 and 4.8. These figures show the core and

sink mass as well as the SFE for nthr = 103, 104, 4× 104, and 105 cm−3, respectively.

Regarding the SFE and ϵff , the first situation we notice in Figure 4.9 is the

high values measured of ϵff , as the expected mean value for star-forming regions is

ϵff ≈ 0.01 within an order of magnitude (e.g., Krumholz et al., 2019), and we obtain

values from 0.1 to even 100 in the smaller cores. This discrepancy could be explained

with the following arguments:

• Resolved observations to date are at the scale of molecular clouds (e.g., Lada

et al., 2010; Pokhrel et al., 2021), and there is not yet a direct measure of the

efficiency in single cores that can be used as a reference. Note however that

the values we found for the efficiency are consistent with the value reported by

Louvet et al. (2014) for a mini-starburst (ϵff ∼ 0.1− 1).

• Our measurements of the efficiency come from the raw 3D data, whereas the

observational determinations come from 2D column density maps, so we are not

capturing the observational biases (Pokhrel et al., 2021).
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Figure 4.8: Mass and SFE (or Efficiency) evolution (left and right vertical labels,
respectivelly) for each simulation. Here, we define the core with nthr = 105 cm−3. The
top left panel corresponds to the simulation labeled as C100, the top right panel to
O100, the bottom left panel to the C1000, and the bottom right panel to the O1000
model. Cyan, green, yellow, purple and red lines represent the core mass, sink mass,
total gas mass, total mass of the system and the SFE (Efficiency), respectively. To
better understand the evolution, both the time in Myr (top x-axis) and in τff units
(bottom x-axis) are shown.
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• We use the instantaneous star formation rate (SFR), which is increasing (accel-

erating) in time, whereas in observations the SFR is the average over some star

formation timescale (e.g., Lada et al., 2010; Pokhrel et al., 2021), producing

thus lower values of real SFRs, which increase on time (e.g., Stahler & Palla,

2005).

• This simulations have only one center of collapse, whereas observations show

that cores contain several fragments or centers of collapse that compete to

accrete mass (see, e,g., Palau et al., 2014).

• As the simulations do not have any stellar feedback nor magnetic fields or

turbulence, there is no mechanism to stop or delay the accretion toward the

core/sink, hence increasing the SFE, the SFR and ϵff . In this work we did not

include these mechanism in order to understand the effect of self-gravity on the

ϵff .

In Figure 4.9 we compare the evolution of ϵff for our simulated cores defined

with different threshold density, and we observe that ϵff takes lower values for the

lower density thresholds. Notice that the cores with lower density thresholds have

more mass to accrete to the sink particle (as they are bigger in size they have more

material available) but the sink accretion rate is the same regardless of the definition

of the core. This effect happens due to ϵff being calculated as the ratio between the

accretion rate of the sink and the mass available (see Equation 1.3.2), then the more

material is left within the core, the lower is the ϵff measured.

This proves how the way we define the core can directly affect the efficiency

measured within a region. This is important because in a star-forming region, the

substructures are not isolated entities but part of a continuum, whose borders are

arbitrarily defined either by observational or numerical biases.

We next study the spatial dependence of ϵff . We notice a similar behavior between

the curve of the ϵff evolution in the four cores, specially in the early times of their

evolution. According to Figure 4.3, in these early times (i.e. the red curve, when the

sink has just been formed), the curves have a tendency to r−2 profiles, while the other

curves are attracted by the r−2 profiles, as predicted in the analysis by Gómez et al.

(2021) (see Section 2.2.3). This scenario has important implications:
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(a) nthr = 103 cm−3 (b) nthr = 104 cm−3

(c) nthr = 4× 104 cm−3 (d) nthr = 105 cm−3

Figure 4.9: Evolution of the star formation rate per free-fall time (ϵff ) for each simu-
lation. In panel (a) the core is defined with the density threshold of nthr = 103 cm−3,
in panel (b) with nthr = 104 cm−3, in panel (c) with nthr = 4×104 cm−3, and in panel
(d) with nthr = 105 cm−3.
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• First, the τff is proportional to r,

ρ ∝ r−2 ⇒ τff ∝ ρ−1/2 ∝ r. (4.5.1)

• We can approximate the mass by assuming a spherical core, thereby it presents

the same proportionality to r,

Mcore =
4πρr3

3
⇒ Mcore ∝ r. (4.5.2)

• Finally, the sink accretion does not depend on the core radius, we notice that

ϵff must be r−independent, i.e.,

ϵff =
Ṁ⋆

Mcore

τff ⇒ ϵff is r − independent. (4.5.3)

To illustrate this first order calculation, in Figure 4.10 the profiles of ϵff are

shown, in which we quantify τff (r), Mcore(r) and, finally, ϵff (r). Here we can see the

r−independent behavior in the curves for three different times, specially in the simu-

lations with closed BCs, when the system is isolated, hence improving the idealization

of the collapse.

The results in these plots can be compared with the observations shown in the

right panel of Figure 1.2, as we present the clouds in different times of it their evolution

and they maintain in similar ϵff , as well as the r-independent behavior mentioned

earlier.

4.5.1 Resolution effects

We perform a sanity check to determine if our cores are well resolved. For this, we

determine if the cores defined in our simulation are large enough to be resolved by

the numerical grid. We do this by comparing the size of the cores to the accretion

radius of the sink (racc, for details about this parameter, see Section 3.2.2). The core

size is calculated by taking the total density (ρcore) and mass (Mcore) of the core at

the time measured, and approximating the core as a sphere, so

Effect of the Accretion and Core definition on the Star Formation Rate per Free Fall Time
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(a) C100 simulation (b) O100 simulation

(c) C1000 simulation (d) O1000 simulation

Figure 4.10: Profiles of the star formation efficiency per free-fall time (ϵff ) for each
simulation. The top left panel corresponds to the simulation labeled as C100, the top
right panel to O100, the bottom left panel to the C1000, and the bottom right panel
to the O1000.

rcore =
3

√
3Mcore

4πρcore
. (4.5.4)

Figure 4.11 shows the evolution of the ratio racc/rcore for all our models and cores

(defined at different threshold densities). Values of this ratio below the horizontal
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line in this figure mean that the core is well resolved, i.e., rcore > 4 × racc
1. From

this figure, we can see that all our cores are well resolved, except for the core defined

with nthr = 105 cm−3 in the C100 model and some points of a couple of other cores).

So in general, our cores are well resolved and we can discard effects related with the

numerical recipe of gas accretion onto the sink (see Section 3.2.2).

4.5.2 Limitations

The main issues faced in this work corresponds to the nature of the simulations.

Because the simulations were not performed with spherical symmetry and the collapse

occurs within a square box, a border effect can be appreciated that is not realistic,

in the context of an idealized spherical gravitational collapse.

One example is the high density cross-like structures formed when the simulations

have evolved some time, as can be barely seen in the right panels of each block in

Figures 4.1 and 4.2, caused because of the geometry of the box. This effect can deviates

slightly the core from the spherical geometry, and can can affect the measurements at

late times. This numerical defect is more noticeable in simulations with OBCs at late

times, because the constant injection of material onto the numerical box can lead to

the accumulation of spurious density structures.

The final limitation in our work is the lack of other physical ingredients needed

to simulate a more realistic core. For example, the magnetic field or the turbulence

cause a delay in the evolution of the MC and the collapse can be delayed (Federrath

& Klessen (2012), Hennebelle & Inutsuka (2019)). Also, the feedback from the star

(radiative and mechanic) compete with the accretion to the point that can completely

stop it, hence reducing significantly the measured SFEs (e.g., Dale, 2017).

Additionally, the dense cores are not isolated throughout the cloud, nor are they in

the center of the collapsing MC, but they are inside filament structures (see Section

1.2.1) and present a hierarchical collapse (Vázquez-Semadeni et al., 2019), so the

properties of a given core could be affected for other cores or the filament itself.

1The value of 4 was chosen to ensure that the total volume of the core would be much greater
than the volume related to the accretion radius, while still allowing for smaller cores to be taken
into account. Note that with a value of 4, the volume of the core would need to be 64 times greater
than the volume related to the accretion radius.
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(a) C100 simulation. (b) O100 simulation

(c) C1000 simulation (d) O1000 simulation

Figure 4.11: Time evolution of the ratio between the sink accretion radius (racc) and
core radius (rcore, defined with different threshold densities) for each simulation. The
top left panel corresponds to the simulation labeled as C100, the top right panel to
O100, the bottom left panel to the C1000, and the bottom right panel to the O1000.
The horizontal line corresponds to a value of racc/rcore = 0.25, so we suggest that
every point above the line can be affected by numerical issues.
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Chapter 5

Conclusions

The main objective of this work is to study how varying the accretion and the defini-

tion of the core would affect the measurements regarding the star formation efficiency

(SFE) and star formation efficiency per free-fall time (ϵff ).

A summary of the results given in the previous chapter is present in the following:

• A discrepancy was observed in the collapse time of simulations with different

densities. The low-density simulations evolve more slowly due to thermal sup-

port providing resistance against collapse.

• Simulations with open boundary conditions (OBC) exhibit a more efficient sink

accretion compared to simulations with closed boundary conditions (CBC) due

to the injection of material into the numerical box and the core1.

• In cores defined with low density thresholds, the BCs affect the values of SFE,

while in cores with higher density thresholds the SFE is similar regardless of

the BCs.

• The high density threshold for defining the core results in higher efficiencies,

indicating that smaller cores have a larger fraction of their mass absorbed by

the sink.

• High values of ϵff are measured compared to the expected values for star-

forming regions, which can be attributed to the idealizations made to quantify

τff and the assumption of a single center of collapse instead of multiple centers.

1This is valid for the numerical box used in this work. However, if the box size is increased, the
effect will start to disappear. For a box with an infinite size Lbox → ∞, there would be no difference
in the sink accretion efficiency.

[49]
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• The evolution of ϵff shows a decreasing trend with lower density thresholds,

indicating the influence of core definition on the measured efficiency.

• The curves of ϵff are nearly constant in space and time.

The previous findings lead to several important conclusions. The measured SFE

of the cores is directly influenced by the chosen density threshold for defining the

core, highlighting the importance of core definition and its impact on the analysis

outcomes. The BCs also play an important role in determining the SFE, with simula-

tions using open BCs giving lower values of these quantities, which is more consistent

with observations.

Our analysis shows that the ϵff is roughly constant in time. Furthermore, a simple

analysis demonstrates that if the density profile follows a profile ρ ∝ r−2, then the

mass and density scale proportionally with radius, then ϵff becomes independent of

radius. Thus, the ϵff remains constant regardless of radius and time, as long as the

core gets a stationary state.

In summary, this study highlights the implications of different scenarios in ac-

cretion and core definition on SFE and ϵff , emphasizing the importance of careful

consideration when selecting substructures within a molecular cloud, as it directly

affects the efficiency measurements. Additionally, it reveals the independent behavior

of ϵff with the BCs and its and its slight dependence on core definition.
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