
Visual robot navigation incorporating causal

models in deep reinforcement learning

By:

Nilda Gabriela Xolo Tlapanco

A Dissertation Submitted in partial fulfillment of the requirement

for the degree of

MSc degree in Computer Science

at

Instituto Nacional de Astrofísica,

Óptica y Electrónica

September 2024

Tonantzintla, Puebla, México.

Advisored by:

Eduardo Morales, Ph.D., INAOE

Enrique Sucar, Ph.D., INAOE

Ernesto Goméz-Balderas, Ph.D., GipsaLab UGA

©INAOE 2024

the author grant INAOE permission to

make partial or total copies of this work and

distribute them, provided that the source is

mentioned.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Justification . 2

1.3 Objectives . 2

1.4 Problem Statement . 3

1.5 Methodology . 5

1.6 Structure . 5

2 Theoretical Framework 6

2.1 Unmanned Aerial Vehicle . 6

2.2 Visual Navigation . 7

2.3 Markov decision process . 8

2.4 Deep Reinforcement learning . 9

2.5 Deep Q-learning . 10

3

2.6 Causal Discovery . 12

2.6.1 Causal Bayesian Network . 13

2.6.2 Hill Climbing Search . 14

2.6.3 BIC score . 14

2.7 Causal Reinforcement Learning . 15

2.8 Simulation tools . 16

2.9 The real drone . 17

2.10 Summary . 19

3 Related Work 20

3.1 Deep reinforcement learning . 20

3.2 Causal Modeling . 21

3.3 Causal Reinforcement Learning . 22

3.4 Summary . 23

4 Methodology 24

4.1 Deep Q-Learning . 24

4.2 State Representation . 25

4.3 Causal Bayesian Network . 30

4.4 Learning Causal Bayesian Network 31

4.5 Use the CBN for DQN . 32

4.6 Summary . 33

4

5 Experiments and Results 37

5.1 Deep Q-Learning Setting . 37

5.2 Experiments and Results . 39

6 Conclusions and Future Work 46

6.1 Conclusions . 46

6.2 Future Work . 46

A Appendix 48

A.1 Defined Causal Bayesian Network . 48

A.2 Learning Causal Bayesian Network 50

References . 50

5

List of Figures

2.1 Parrot Bebop 2 uses in the simulated environment. 17

2.2 Aerial view of all the environment simulated. 18

2.3 Initial position of the drone in the simulation environment, where the

goal is in front of the agent, to reach it needs to avoid a obstacle. . . 18

2.4 Tello DJI drone uses for testing the algorithm in the real world. . . . 19

2.5 Examples of Depth map estimation from the Deeper Depth prediction

with fully convolutional residual network. In the original article, they

compare the performance of the network with others in the state of

the art, the input is an RGB image and the output is the estimation

of the depth map. 19

4.1 Diagram for the methodology following in the learning and use of

the Causal Bayesian Network in the Reinforcement Learning context.

The elements added are the Dataset and CBN blocks. 25

4.2 Sections used to obtain distances, in order: 1 (center), 2 (top left), 3

(top right), 4 (bottom left), 5 (bottom right). 27

6

4.3 Examples of the dataset used to recognize the heliport signal, on the

left side are the images for the real world, and the right side are the

images taken in the simulated environment. 28

4.4 Testing results of the YOLOV8 model to detect the goal in simulated

and real-world scenarios after 50 epochs 29

4.5 An example of the goal that is used in the simulation environment. . 29

4.6 Measurement of angle and distance to the goal when is detected with

the YOLOv8 model. 29

4.7 CBNs relating relational state variables at consecutive time steps (t)

and (t + 1) for actions ascend, forward, and turn left showing the

discrete value of the state (t) with higher probability to reach the

state (t+1). 31

5.1 Prediction and Target Network used in the DQN algorithm with a sin-

gle image like input and eight values for the output, which correspond

to the qValue of each action. 40

5.2 Prediction and Target Network used in the DQN algorithm of the

second experiment, with the image and the 9 values of the state rep-

resentation like input. 40

5.3 Episode reward obtained after 700 episodes in the learning and use

of the CBN in the DQN algorithm with k equals to 100, 200, 400,

and 600. The vertical lines indicate from which episode the CBN

is learned and subsequently used and updated. We utilize a moving

average of size 20. 41

7

5.4 Episode reward obtained after 700 episodes with base DQN, DQN

with the CBN defined, CBN-DQN PN, CBN-DQN P, and CBN-DQN

V2 with k=200, with a moving average of 50. 42

5.5 Comparison of the first and last Causal Bayesian Network for forward 45

5.6 Comparison of the first and last Causal Bayesian Network for right . 45

A.1 CBNs relating relational state variables at consecutive time steps (t)

and (t + 1) for actions descend, backward, and turn right showing

the discrete value of the state (t) with higher probability to reach the

state (t+1). 48

A.2 CBNs relating relational state variables at consecutive time steps (t)

and (t + 1) for actions move right and move left showing the discrete

value of the state (t) with higher probability to reach the state (t+1). 49

A.3 Comparison of the first and last Causal Bayesian Network for ascend-

ing action, in this network we can note something interesting between

the altitude and the values for the distance of sections 4 and 5, be-

cause these sections can indicate the distance between the ground,

aspects important when the ascend action is taking. 50

A.4 Comparison of the first and last Causal Bayesian Network for descend-

ing action, compared to their action complement (ascend) in this case

the altitude is more important for the reward taking into account

when the altitude is too near to the ground is consideration like the

drone crash. 50

A.5 Comparison of the first and last Causal Bayesian Network for back-

ward action . 51

A.6 Comparison of the first and last Causal Bayesian Network for left action 51

8

A.7 Comparison of the first and last Causal Bayesian Network for rotate

left action . 51

A.8 Comparison of the first and last Causal Bayesian Network for rotate

right action . 52

9

Acknowledgements

I want to express my sincere gratitude to my advisors Dr. Eduardo Morales, Dr.

Enrique Sucar, and Dr. Ernesto Gómez-Balderas, and to the review committee

members.

To Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), for allow-

ing me to use their facilities and financial support.

To Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT),

since this research project was possible thanks to financial support (823574).

To the Embassy of France in Mexico for the financial support (140440T) and

help in the stance in France during the second year of this master.

To my partner Raul Romero, for the support and love in my life and during

my studies.

To my father Gabino Xolo Gozcon, my mother Maria Antonia Tlapanco Perez,

and my sister Lizbeth Xolo Tlapanco for loving me and supporting me all the time.

To all my friends and people in INAOE and UGA who have helped me to

continue and end my studies.

11

Abstract

The use of UAVs or drones has been applied for different domains and an inter-

est in common of them is the development of an autonomous pilot, Reinforcement

Learning (RL) can be used for visual navigation in drones but needs substantial

computational resources, long training times, and issues like sample efficiency, ro-

bustness, and interpretability. A field that combines RL with causal models called

Causal Reinforcement Learning promises to reduce the time for exploration and im-

prove adaptation to novel situations or environments but is not proven yet in robotics

tasks, for this reasons we propose adapting an RL algorithm to learn and use knowl-

edge of a causal model to improve the action selection in the visual-based navigation.

We present our results with the use of a Causal Bayesian Network defined and the

learning of it in the RL training phase to use in a real-world drone.

12

Resumen

El uso de UAVs o drones se ha aplicado en diferentes dominios y un interés en

común entre ellos es el desarrollo de un piloto autónomo. El aprendizaje por refuerzo

(RL) se puede utilizar para la navegación visual en drones pero necesita importantes

recursos computacionales, largos tiempos de entrenamiento y presenta problemas

como eficiencia de las muestras, robustez e interpretabilidad. Un campo que combina

RL con modelos causales llamado Aprendizaje por Refuerzo Causal promete reducir

el tiempo de exploración y mejorar la adaptación a situaciones o entornos novedosos

pero aún no ha sido probado en tareas de robótica, por estas razones proponemos

adaptar un algoritmo de RL para aprender y utilizar el conocimiento de un modelo

causal para mejorar la selección de acciones en la navegación basada en imágenes.

Presentamos nuestros resultados con el uso de una Red Causal Bayesiana definida y

su aprendizaje en la fase de entrenamiento de RL para su uso en un dron del mundo

real.

13

CHAPTER 1

INTRODUCTION

The use of Unmanned Aerial Vehicles (UAV) or drones, has recently increased, in

recent years, due to the growth interest in using them for entertainment, but also for

military, agriculture (Radoglou-Grammatikis et al. (2020)), medicine (Balasingam

(2017)), transport (Menouar et al. (2017)), delivery services (Gatteschi et al. (2015)),

construction (Qasim et al. (2022)), and rescue applications (Mario Silvagni and Chi-

aberge (2017)). The principal disadvantage is the need for a human pilot to control

it, multiple research work includes the use of different intelligent artificial techniques

to develop autonomous pilots (Hasan et al. (2020),García et al. (2020), Hanover

et al. (2024)), not only for the cases where the human pilot is not available but also

to improve the human pilot behavior, one of the most popular techniques is Rein-

forcement Learning. Reinforcement Learning has been used to make an autonomous

pilot for collision avoidance and seeking an objective/goal in different environments

(Darwish and Nakhmani (2023), Shin et al. (2019), Çetin et al. (2019), Kersandt

et al. (2018)), autonomous navigation usually needs data from multiple sensors but

in the real world, the easiest, and in many cases the only, sensor to use is the onboard

camera. In addition to this, a large amount of data and long training times are nec-

essary to train the algorithm. A promising alternative is to use Causal Discovery to

construct a causal model of the environment while the agent is trained, which can

help accelerate the training phase.

1

1.1 Motivation

Reinforcement Learning proves to be a good option for visual navigation in drones.

However, it needs a large number of interactions with the environment to learn good

policies. At the same time, Causal Reinforcement Learning is still an emerging field

that promises to reduce the time for training and a good performance in transfer

learning but is not proven in robotics tasks. Their use can boost the development

of several applications in robotics tasks, including autonomous drone navigation.

1.2 Justification

Causal reinforcement learning integrates causal inference into Reinforcement Learn-

ing, aiming to understand and utilize the underlying causal relationships in the

environment. This approach can potentially reduce the number of necessary inter-

actions by enabling the drone to make inferences about unobserved or less frequent

scenarios from its understanding of causal mechanisms, thus speeding up the learn-

ing process. By understanding causal interactions within the environment, drones

can navigate more effectively, avoiding obstacles and optimizing routes more reliably

than with traditional RL methods. Additionally, these advancements can also be

applied to other AI-driven robotic tasks, contributing to the broader field of artificial

intelligence in robotics.

1.3 Objectives

The general objective of this investigation is to incorporate an algorithm of Causal

Discovery into Deep Reinforcement Learning to use the knowledge from the causal

model in the learning of the policy. The specific objectives are:

2

1. Design and implement an algorithm to extract the relevant information from

RGB or RGB-D images to create a causal model of the environment.

2. Design and implement a Deep RL algorithm incorporating the previous algo-

rithm and use this knowledge to enhance the robot’s decision-making process

and optimal policy.

3. To validate and demonstrate the effectiveness of the algorithm for visual navi-

gation in mobile robotics by employing both simulated testing and real-world

trials.

1.4 Problem Statement

Computer vision in robots is used to perceive the environment with the help of visual

sensors, such as cameras that provide rich and detailed information about the robot’s

surroundings. By analyzing visual data, robots aim to perceive and understand

the environment in a manner similar to humans. This perception enables them to

navigate, identify objects, recognize landmarks, make decisions based on visual cues,

detect obstacles in their path, identify and track objects, estimate their positions

and distances, and determine whether they pose a potential collision risk.

The robot can learn to navigate using various strategies, one of which is Re-

inforcement Learning (RL). RL algorithms enable the robot to navigate complex

and uncertain environments, discovering optimal strategies to achieve goals. These

models adapt to changing environments and learn new behaviors through ongo-

ing interaction. They update their policies to accommodate variations, handle new

scenarios, and adjust to different conditions. RL algorithms have the potential to

facilitate autonomous decision-making in dynamic scenarios, allowing the robot to

make real-time decisions and optimal choices without human intervention. One of

the disadvantages is the high-dimensional state and action spaces, as the dimen-

3

sionality increases, the learning process becomes more challenging, and the time

required for convergence may become prohibitive. Most recently the use of Deep RL

involves training artificial agents to learn and make decisions in complex environ-

ments through the integration of deep neural networks and RL algorithms, where

the neural network is updated based on the observed rewards and the agent’s ex-

periences. However, training Deep RL agents can be challenging due to the need

for substantial computational resources, long training times, and issues like sample

efficiency, robustness, and interpretability.

Causal models are used to study cause-and-effect relationships and make pre-

dictions or interventions based on those relationships. They help in understanding

how changes in one part of a system can propagate and affect other parts. These

models are particularly useful for decision-making, planning, and analysis of complex

systems.

Incorporating knowledge from a causal model and their construction into RL

algorithms, e.g., Feliciano-Avelino et al. (2021) Zhu et al. (2023) Méndez-Molina

et al. (2022), can greatly speed up the learning process by reducing the need for

extensive exploration, but their use in robotics task has not been yet proved. In

this research, we show how it can be used to obtain an autonomous pilot enabled to

reach an objective and avoid collisions in a drone.

This research pretends to answer the following research question:

1. How to extract relevant information from RGB or RGB-D images to create a

causal model?

2. How can causal models be integrated into deep reinforcement learning algo-

rithms to improve their efficiency and effectiveness and help in designing safer

navigation policies for mobile robot navigation in diverse environments?

3. How can causal models help in transfer learning scenarios, where a mobile

4

robot trained in one environment needs to adapt and generalize its navigation

skills to novel environments?

1.5 Methodology

The methodology followed in this research was the following:

• To study and implement Deep Reinforcement learning to the visual navigation

in a drone in simulated environments

• To study and implement an algorithm for Causal Discovery to be added to the

DRL algorithm

• Evaluate the DRL agent with a predefined Causal Bayesian Network and a

Causal Bayesian Network created during training

1.6 Structure

The rest of this document is structured as follows. Chapter 2 describes the theo-

retical concepts needed to understand the techniques used in this research, Chapter

3 consists of a review of the most closely related work of state of the art, Chap-

ter 4 describes in detail the methods employed in this research, Chapter 5 presents

the experimental results to validate our proposal. Finally, Chapter 6 presents our

conclusion from the experiments and future research work.

5

CHAPTER 2

THEORETICAL FRAMEWORK

This chapter provides a general overview of the concepts utilized in this work, the

definition of Unmanned Aerial Vehicle, Visual Navigation, and the method of Ma-

chine Learning: Deep Reinforcement learning and their background in the Markov

decision process; the description of Deep Q-Learning the algorithm that we use to

prove the incorporation of the Causal Discovery, the definition of Causal Discov-

ery and the elements needed to obtain it: Causal Bayesian Network, Hill Climbing

Search and BIC score. The definition of the combination of these fields in Causal

Reinforcement Learning, the simulation tools, and the real drone used to prove our

work.

2.1 Unmanned Aerial Vehicle

Unmanned Aerial Vehicles (UAV also known as "drones") are aircraft that operate

without a human pilot onboard. Essentially, a UAV is a flying robot that can be re-

motely controlled or fly autonomously through software-controller flight plans in its

embedded system. UAVs come in various shapes, sizes, and configurations, ranging

from small quadcopters to large fixed-wing aircraft. Based on how its movement is

controlled, it can fly with a human remotely controlling the UAV, or in the most

6

advanced cases, fly itself without any human intervention. They can be equipped

with a variety of sensors, including an Inertia Measurement Unit (IMU), Global Po-

sitioning System (GPS), cameras, and other payloads to perform a wide range of

tasks including aerial photography, videography, search and rescue, infrastructure

inspection, disaster response, surveillance, and reconnaissance (Garg (2021), Man-

agement Association (2019)).

Avoiding collisions and autonomous pilot is a critical aspect of a drone operation to

ensure safety and prevent damage to the drone and surrounding objects or people

and is an important part of the search for a goal or target. We use a UAV or drone

(as we will refer to it in our work), to build a policy to navigate autonomously. To

control the drone’s movements in its environment we will use the technique of Visual

Navigation.

2.2 Visual Navigation

Visual navigation is used in robotics to replicate the human visual system, where

visual information from the environment is used to navigate or guide movements. It

can be divided into binocular (multi-ocular) and monocular according to the number

of sensors used. Compared with monocular, binocular are more costly and slower

in calculating, but more accurate in positioning. Monocular visual navigation only

requires a camera, with a simple structure and convenient and flexible operation,

which makes it suitable for robot navigation in the field environment (Zhai et al.

(2019)).

Autonomous navigation in drones usually uses a variant of different sensors but we

will focus on the use of binocular visual navigation, the data obtained will be used to

train a Reinforcement Learning agent to learn to navigate by receiving visual inputs

from the environment. These elements: the environment where the drone learns to

navigate, the drone, the visual input from the drone cameras, all possible movements

7

that the drone can make and the goal can be modeled into Reinforcement Learning

by a Markov decision process.

2.3 Markov decision process

Reinforcement learning studies sequential decision problems. Mathematically, we

can formalize these problems as Markov decision processes. Markov decision process

(also written MDPs) relies on the notions of state, agent, action, and reward. Are

defined as controlled stochastic processes satisfying the Markov property and assign-

ing reward values to state transitions, formally described by a 5-truple (S,A,T,p,r)

where:

• S is a state space in which the process of evolution takes place.

• A is a set of all possible actions that control the state dynamics.

• T is the set of time steps where decisions need to be made.

• Pa(s, s
′) = Pr(St+1 = s′|St = s, At = a) denotes the probability of transition

(at time t) from state s to state s′ under action a.

• Ra(s, s
′) provides the immediate reward after transition from state s to s′ with

action a.

The set T of decision times is a discrete set, which can either be finite or infinite

(then we talk respectively about finite horizon or infinite horizon). A third case

corresponds to the existence of a set of terminal states (or goal states). In this case,

the process stops as soon as one of these states is encountered.

MDPs allow us to model the state evolution dynamics of a stochastic system when

this system is controlled by an agent choosing and applying the actions at at every

time step t. The procedure of choosing such actions is called action policy or strategy

8

and is written as π. A policy can decide deterministically upon the action to apply

or can define a probability distribution over the possible applicable actions. Then

a policy can be based on the whole history ht of the process (it is called history-

dependent) or can only consider the current state st.

Solving a Markov decision problem implies searching a policy in a given set that

optimizes a performance (or optimality) criterion for the considered MDP. This

criterion aims at characterizing the policies that will provide the best sequences of

reward (Sigaud and Buffet (2013)). One way to solve MDPs, particularly when

the state and action spaces are too large for tabular methods is the use of Deep

Reinforcement Learning.

2.4 Deep Reinforcement learning

Deep Reinforcement Learning (DRL) is a combination of deep learning (DL) and

reinforcement learning (RL). DL is a subset of machine learning that uses neural

networks usually with many layers to analyze various types of data. DRL com-

bines the perception capabilities of deep learning with the decision-making capa-

bilities of reinforcement learning. Traditional RL uses tabular methods or simple

function approximators for learning policies, which can struggle with complex or

high-dimensional environments. By using deep neural networks, DRL can handle

more complex scenarios with less engineered feature extraction. One of the most

used Deep RL algorithms is Deep Q-Learning.

9

2.5 Deep Q-learning

Deep Q-Learning is based on Q-Learning from Watkins and Dayan (1992), a model-

free RL algorithm enabling the agent to learn how to act optimally in the environ-

ment by using a value function, that stores and retrieves estimates of the rewards for

different actions in different states. The Q-learning algorithm updates the Q-values

using the Bellman equation;

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
Where:

• Q(s, a) is the state-action value function, representing the expected utility of

taking action a in state s.

• α the learning rate (0 < α ≤ 1) determines to what extent newly acquired

information overrides old information.

• r is the reward received after taking action a.

• maxa′ Q(s′, a′) is the maximum predicted reward obtainable from the next state

s′, over all possible actions a′.

• γ the discount factor (0 ≤ γ < 1). It represents the difference in importance

between future rewards and immediate rewards. A higher γ means the learning

process considers future rewards more strongly.

In traditional Q-Learning, the Q-values are stored and updated into a Q-table

for each state-action pair. However, this approach becomes infeasible for large and

continuous state spaces.

Deep Q-Learning addresses this problem by using a deep neural network to approx-

imate the Q-values. The network takes the state as input and outputs Q-values for

10

each possible action.

A target network is used in Deep Q-Learning (DQN) to stabilize the learning pro-

cess and make it more robust. The primary purpose of the target network is to

provide stable target Q-values during the training process. The target network is

a copy of the Q-network with frozen parameters, which means its weights are not

updated during the training process. The target network is used to calculate the

target Q-values for updating the Q-network, while the Q-network itself is used to

select actions during exploration and exploitation.

The target network is updated periodically by copying the weights from the Q-

network. This update frequency can be set based on a fixed number of iterations or

a specific time interval. By using a separate target network with delayed updates,

the training process becomes more stable.

Experience replay (Sewak (2019)) is employed in DQN to enhance the efficiency

and effectiveness of the learning process by mitigating the correlation between con-

secutive experiences. It involves utilizing a memory to store tuples of information

comprising the action taken at, the state observed st, the received reward rt+1, and

the subsequent state st+1 after the RL agent performs an action in a particular state.

When the memory size reaches a predefined limit, the tuples are randomly sampled.

The target Q-value function is then computed using a separate Target Network.

Subsequently, the Target Network model is trained for one epoch using the sampled

states and the Q-values obtained from the target Q-value function. Finally, the ac-

tion with the highest Q-value output is selected based on the ϵ-greedy methods.

Deep Q-learning often requires a large number of interactions with the environment

to gather sufficient data to train the neural network. All this data be used to aim

the decision action of the algorithm, one alternative to take advantage of them is

the Causal Discovery.

11

2.6 Causal Discovery

Causal Modeling attempts to resolve questions about possible causes by providing

explanations of phenomena (effects) as the result of previous phenomena (causes).

The difficulty inherent in establishing causation among variables can be illustrated

by examining a variety of definitions of causality. Several writers like Lewis-Beck

(1980) and Klecka (1980) specify three conditions that must be met in order to infer

the existence of a causal relationship between two variables X and Y. The first con-

dition states that there must be a concomitant variation or covariation between X

and Y, such that changes in X are associated with changes in Y. This condition can

be visually represented in a graph by a direct arrow from X to Y, indicating that Y

potentially depends on X. The second condition requires a temporary asymmetry or

time ordering between the two, in a graph, this is represented by a directed edge from

X to Y, ensuring that the cause precedes the effect. The third condition requires

the elimination of other possible causal factors that may be producing the observed

relationship between X and Y, this is graphically handled by either showing no direct

connections between Y and these other variables or by introducing additional nodes

and edges that control for these factors, thereby isolating the direct effect of X on

Y (Asher (1976)). This causality could be seen like dependence and independence

relations. A natural way to represent the dependence and independence relations

between a set of variables is using graphs, such that directly dependent variables are

connected, and the independence relations are implicit in this dependency graph.

Causal Bayesian Networks provide a framework for representing the causal rela-

tionships to allow for various kinds of causal inference and prediction based on the

model.

12

2.6.1 Causal Bayesian Network

Bayesian networks (BN) are directed graphical models that represent the joint dis-

tribution of a set of random variables. In the graph, the nodes represent random

variables, and the arcs direct dependencies between variables, unlike Causal Bayesian

network (CBN) where each node represents a variable and the arcs in the graph rep-

resent causal relations; that is, the relation A → B represents some physical mech-

anism such that the value of B is directly affected by the value of A. This relation

can be interpreted in terms of interventions/setting of the value of some variable

or variables by an external agent. Causal networks represent stronger assumptions

than Bayesian networks, as all the relations implied by the network structure should

correspond to causal relations (Sucar (2020)).

In addition to the structure, like a BN the CBN considers a set of local parame-

ters, which are the conditional probabilities for each variable given its parents in the

graph, if there is an arc from A to B (A is a direct cause of B), then A is a parent

of B, and B is a child of A. Given any variable X in a CBN, Pa(X) is the set of all

parents of X. Also, similarly to BNs, when the direct or immediate causes (parents)

of a variable are known, the more remote causes (or ancestors) are irrelevant (Su-

car (2020)). Given a Causal Bayesian network (structure and parameters) we can

answer several probabilistic queries. Learning a BN includes two aspects: learning

the structure and learning the parameters, when the structure is known, parameter

learning consists of estimating the conditional probability tables (CPTs) from data

and using this data to convert the CB into a CBN. For structure learning there are

two main types of methods: global methods based on search and score, and local

methods that use conditional independence tests. We will use a global method: Hill

Climbing Search.

13

2.6.2 Hill Climbing Search

Hill climbing is a method of mathematical optimization that is used in numerical

analysis. It is a member of the family of techniques known as local search. It’s an

iterative method that begins with an arbitrary solution to a problem and then seeks

to discover a better answer by making incremental changes to the initial solution in

order to see whether it leads to a better solution. If the modification results in a

better solution, then another incremental adjustment is made to the new solution,

and so on and so forth, until there are no more improvements that can be identified

(Sabry (2023)). In our case this algorithm will be used to learn the structure of

Bayesian networks, It starts with an optional initial network and iteratively modifies

it by adding, deleting, or reversing edges to find the network structure that has the

best score according to the specified scoring method. The score used in this work to

compare the structure is the BIC score.

2.6.3 BIC score

The Bayesian information criterion (BIC) is a criterion for model selection among

a finite set of models. It’s based on the likelihood function and it’s commonly used

because includes a penalty term, the BIC is defined as:

BIC = log(P (D | ΘG, Gi))−
d

2
logN

Where d is the number of parameters in the BN, N is the number of cases

in the data, Gi is the candidate structure, and ΘG the corresponding vector of

parameters (probability of each variable given its parents according to the structure).

An advantage of this metric is that it does not require a prior probability specification

and has a compromise between the precision and complexity of the model. However,

given the high penalty on the complexity of the model, it tends to choose structures

that are too simple (Sucar (2020)).

14

Once we have the structure of our Causal Bayesian Network and the method of

learning it from raw data, we can incorporate it into the Q-learning algorithm, this

process is called Causal Reinforcement Learning.

2.7 Causal Reinforcement Learning

As we already mentioned, the combination of Reinforcement Learning and Causal

Modeling is a relatively new field called Causal Reinforcement Learning (CRL).

CRL is a suite of algorithms that incorporate additional assumptions or prior causal

knowledge into RL to analyze and understand the causal mechanisms underlying ac-

tions and their consequences, enabling agents to make more informed and effective

decisions for more effective model learning, policy evaluation, or policy optimization

(Deng et al. (2023)). It is formalized as a tuple (M, G), where M represents an RL

model setting, e.g., MDP, POMDP, MAB, etc., and G stands for the causal-based

information regarding an environment or task, e.g., causal structure, causal repre-

sentation or features, etc.

It is generally divided into two categories, the first category is based on the prior

causal information, where such methods typically assume the causal structure re-

garding to the environment or task is given a prior from the experts, while the

second category is based on the unknown causal information, where the relative

causal information has to be learned for the policy (Zeng et al. (2023)). Our work

belongs to the second category, we built an algorithm to learn the causal information

from the interactions of the RL agent with the environment to later use it in policy

construction.

15

2.8 Simulation tools

To simulate the environment needed for the training phase of our mobile robot, we

select ROS and Gazebo tools.

ROS, or Robot Operating System, is an open-source middleware framework specif-

ically designed for robotics applications. It provides a collection of tools, libraries,

and conventions that aim to simplify the development of complex robot software

(Quigley et al. (2009)). ROS offers a flexible and modular architecture that allows

the creation and integration of various components such as drivers, algorithms, and

sensors into a cohesive robotic system.

One of the key features of ROS is its communication infrastructure, which enables

different parts of a robotic system to communicate with each other seamlessly. This

communication is typically done using a publish-subscribe messaging model, where

nodes (software modules) can publish data to topics and subscribe to topics to re-

ceive data from other nodes. ROS is available under an open-source BSD license,

allowing the ROS community to consistently offer open-source modules for others to

employ.

Gazebo is a powerful open-source robotics simulation software that provides a re-

alistic and flexible environment for simulating robots, environments, and sensors.

Gazebo simulates the physical interactions between objects in the simulated envi-

ronment, including gravity, friction, collisions, and dynamics. This enables realistic

modeling of robot behaviors and interactions with the environment. Provides sup-

port for simulating various sensors commonly used in robotics, such as cameras,

LiDAR, GPS, IMU (Inertial Measurement Unit), sonar sensors, and depth cameras.

Gazebo is integrated with ROS, allowing one to control and interact with simulated

robots using ROS messages and services. The simulated drone can interact with the

virtual world environments in 3D (Koenig and Howard (2004)).

We select the Parrot Bebop 2 drone like our mobile robot (Figure 2.1). We use the

rotors simulator package from Furrer et al. (2016) which facilitates the development,

16

testing, and evaluation of algorithms and software for multirotor UAVs within the

ROS framework in simulation environments. The package includes pre-built models

of multirotor UAVs, such as quadcopters, hexacopters, and octocopters, and sup-

ports the simulation of various sensors commonly used on UAVs, including cameras,

LiDAR, GPS, IMU (Inertial Measurement Unit), and sonar sensors, the package al-

lows us to communicate with it using ROS topics, services, and actions. This enables

to send commands to control the drone’s flight, receive telemetry data, and stream

video from its onboard camera.

,

Figure 2.1: Parrot Bebop 2 uses in the simulated environment.

We used Ubuntu 20.04.05 LTS as the operating system and the Robotic Op-

erating Systems (ROS) in its Noetic Ninjemys version.

For the environment, we selected an open environment represented in Figures 2.2

and 2.3 where the drone can navigate more easily. The goal is in the drone’s view

and avoiding an obstacle is required to reach the goal.

2.9 The real drone

For the case to prove the algorithm in the real world, we implement the algorithm

in the Tello DJI drone (Figure 2.4), which is a small and lightweight drone designed

for recreational and educational purposes. It is known for its ease of use, affordabil-

ity, and programmability. DJI provides a Python software development kit (SDK)

specifically tailored for Tello. This SDK allows to communicate with the Tello drone

using Python scripts (DJI (2018)).

17

,

Figure 2.2: Aerial view of all the environment simulated.

,

Figure 2.3: Initial position of the drone in the simulation environment, where the goal is in front

of the agent, to reach it needs to avoid a obstacle.

The drone is equipped with an RGB camera, but it does not have a depth

camera. To mimic the capabilities of the simulated drone, we use the algorithm

of Deeper Depth prediction with fully convolutional residual network (Laina et al.

(2016)) to estimate the depth map of a scene given a single RGB image, it runs in

real-time on images or videos. In the evaluation, the model contains fewer parameters

and requires fewer training data while outperforming the depth and time estimation.

18

,

Figure 2.4: Tello DJI drone uses for testing the algorithm in the real world.

Examples of their results are shown in Figure 2.5,

,

Figure 2.5: Examples of Depth map estimation from the Deeper Depth prediction with fully con-

volutional residual network. In the original article, they compare the performance of the network

with others in the state of the art, the input is an RGB image and the output is the estimation of the

depth map.

2.10 Summary

This chapter provides the principal aspects needed to understand the algorithm

proposed in this work, as well as the tools needed to prove their functionality in

simulated and real-world environments.

19

CHAPTER 3

RELATED WORK

This chapter provides a general overview of the state of the art in the field of Deep

Reinforcement learning with drones, Causal Modeling, and the combinations of both

fields Causal Reinforcement Learning.

3.1 Deep reinforcement learning

The ability to navigate autonomously is an important problem of mobile robots,

we will aboard the problem in Unmanned aerial vehicles (UAVs or drones). Since

the rise of the use of drones in different fields, many strategies with Deep RL have

been used to develop an autonomous pilot for different tasks, independently of the

task the ability to fly without collision with obstacles and achieve goals is an impor-

tant aspect of it, Darwish and Nakhmani (2023) utilize a self-supervised model-free

DRL approach using only a forward-facing depth-RGB camera, outperforms state-

of-the-art deep Q-network algorithms in terms of learning policies and effectively

intercept targets specified as a set coordinates. Shin et al. (2019) present a compre-

hensive study in which a drone adeptly navigates through a variety of 3D obstacles

by plotting a path within a realistically simulated 3D landscape, employing deep

reinforcement learning techniques. The study compares the racing performance of

20

the drone against human participants using a suite of deep RL algorithms, including

Deep Q-Network (DQN), Double DQN, Dueling DQN, and Double Dueling DQN

(DD-DQN). The drone utilizes two primary inputs: an RGB camera providing a

first-person view of the landscape, and a depth map that offers detailed 3D environ-

mental data. This dual-input system enhances the drone’s navigational capabilities,

allowing for precise and efficient pathfinding in complex terrains. Çetin et al. (2019)

proposes a deep reinforcement learning (DRL) architecture to make drones behave

autonomously inside a suburb neighborhood environment, where the depth image,

the distance to the geo-fence (a virtual barrier on the environment), angle to goal

and elevation angle between the goal and the drone are part of the state. Another

similar approach where the state is built from the depth image captured at each step

by the stereo-camera of the drone and the heading towards the goal is used to train

three different DRL algorithms based on Q-learning is proposed by Kersandt et al.

(2018). Their principal problem in training the agent in the Reinforcement Learning

is the time and amount of episodes and steps needed to reach a stable policy, in

addition, at the same time a lot of information that could be useful is wasted, this

information between the agent and their interactions with the environment at each

episode could be used to build Causal Models that can help in the transfer of task,

interpretability, and explanation of the policy.

3.2 Causal Modeling

In the other hand, Causal Modeling (CM) needs rigorous data collection and expert

knowledge. In Machine Learning has been mostly used to generate explainability

with the collected data, Shi et al. (2022) introduce a model for interpreting causal

relationships in a temporal-spatial context, capturing the causal connections be-

tween consecutive observations and decisions made by an RL agent. Ho and Wang

(2021) proposes a system that leverages Human-Centered AI for using explainable

21

knowledge to construct the ethical causality in a simulated game theory. In Heyn

and Knauss (2022) uses structural causal models to make human insight in causal

relations explicit for uses this knowledge during AI system development. The causal

information is often used to bring interpretability, Çetin et al. (2023) use the causal

information to explain why the agent realizes a specific action based on the gen-

eration of a saliency map to identify the critical regions in an input image which

influences the predictions made by the DQN agent by evaluating the gradients of

the model’s output with respect to the image and scalar inputs. Diehl and Ramirez-

Amaro (2022) learn a causal Bayesian network from simulation data to learn a

cause-effect model of the environment, generating causal explanations based on the

obtained model.

3.3 Causal Reinforcement Learning

As we mentioned before Causal Reinforcement Learning in mainly divided into two

categories. In the first category based on the prior causal information, we can find the

work of Feliciano-Avelino et al. (2021) which demonstrates a better performance even

with partial and spurious relationships in the causal graphical model in Q-Learning

algorithms in light switch control tasks. Zhu et al. (2023) use Deep Q-Learning in

the Emotional Pendulum and Windy Pendulum tasks. Gonzalez-Soto et al. (2018)

introduced a decision-making approach for agents operating in environments charac-

terized by uncertainty and underlying causal dynamics. This approach enabled the

agent to form and continually update beliefs about the causal environment based

on interactive outcomes. In their experimental setup, it was presupposed that the

agent had prior knowledge of the causal framework governing the environment.

For the second category, where the causal information could be learning of the policy,

we found the work of Méndez-Molina et al. (2022) where a Causal Dynamic Bayesian

Network is learned for each of the agent actions and uses those models to improve

22

the action selection process in the coffee-task. For the same author Méndez-Molina

et al. (2023) developed a framework for simultaneously learning and using causal

models to speed up the policy learning in the online Markov decision process (MDP)

proved in the Taxi-driver and Taxi Atari task. Pitis et al. (2022) applies a learned

locally factored dynamics model to an augmented distribution of states and actions

to generate counterfactual transitions for RL, and is used to train an offline RL agent

to solve an out-of-distribution robotics manipulation task.

3.4 Summary

In this review of the state of the art, we can observe how the use of Causal knowledge

can help deal with some problems inherent in the Reinforcement Learning, but the

knowledge of the task or environment is not easy to obtain, when it’s defined by

an expert, its necessary to be careful that it is not too specific that it prevents its

generalization. While learning causal knowledge online has been proven in differ-

ent tasks, not been proven yet in a robotic task like visual navigation, due to this

we propose a method to learn the causal model of the environment with a partial

continuous environment.

23

CHAPTER 4

METHODOLOGY

Following the idea of the second category of Causal Reinforcement Learning where

the relative causal information has to be learned for the policy, we will build the

basic idea shown in the diagram of Figure 4.1, where the collection of the data

recollected by the agent will be used to learn the Causal Bayesian Network to use

it in the action selection in the context of Reinforcement Learning. In this chapter,

we will describe the algorithm of Deep Q-learning (DQN) a Reinforcement Learning

algorithm chosen to implement our work, the state representation used in the DQN

state space, the definition of the Causal Bayesian Network, their learning and use in

DQN.

4.1 Deep Q-Learning

We select Deep Q-Learning (DQN) as the algorithm of DRL to implement the visual

navigation in the drone. As previously described, it is a reinforcement learning

algorithm that combines Q-Learning with deep neural networks. The key idea behind

Q-Learning is to estimate the value of each state-action pair (Q-value) in order to

make optimal decisions. The action with the highest Q-value output is selected

based on the ϵ-greedy method. The algorithm is described in Algorithm 1, the

24

,

Figure 4.1: Diagram for the methodology following in the learning and use of the Causal Bayesian

Network in the Reinforcement Learning context. The elements added are the Dataset and CBN

blocks.

modifications on DQN are lines 7-9, where the Causal Bayesian Network is learned,

and lines 10 and 18, where the Causal Bayesian Network is used, both are described

later in this chapter.

4.2 State Representation

To represent the information needed for the construction of the Causal Bayesian

Network, we decided to use 9 values: distance of five defined sections of the image

(center, top left, top right, bottom left, and bottom right), a boolean value if the

goal is in the field of view, distance and angle to the goal, and altitude of the drone.

To obtain these values we need three sensors: an RGB camera to process the image

to detect the goal, a Depth Camera to obtain the distances, and a barometer or

similar to obtain the altitude of the drone.

The values for the distances are obtained by dividing the image into five sections, in

each section we select a number specific of random points (is recommended at least

20 points), taking the smallest distance as the overall distance of the drone from the

objects in this section. The sections are shown in Figure 4.2.

25

Algorithm 1 Deep Q-Learning Algorithm
1: Initialize replay memory D to capacity N

2: Initialize action-value function Q with random weights θ

3: Initialize target action-value function Q̂ with weights θ− = θ

4: for episode = 1,M do

5: Initialize sequence s1 = {x1} and preprocessed sequence ϕ1 = ϕ(s1)

6: for t = 1, T do

7: if step % k == 0 then

8: Learn the Causal Bayesian Network

9: Set the probability of each action to reach a negative and positive reward with

the evidence of the state t

10: rand = random number

11: if rand < explorationRate then

12: action at = random action

13: else

14: action at = MaxIndex(qValues)

15: Use of the Causal Bayesian Network

16: Execute action at in emulator and observe reward rt and image xt+1

17: Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)

18: Store transition (ϕt, at, rt, ϕt+1) in D

19: Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1) from D

20: Set yj = rj if episode terminates at step j + 1

21: otherwise set yj = rj + γmaxa′ Q̂(ϕj+1, a
′; θ−)

22: Perform a gradient descent step on (yj −Q(ϕj, aj; θ))
2 with respect to θ

23: Every C steps reset Q̂ = Q by setting θ− = θ

26

,

Figure 4.2: Sections used to obtain distances, in order: 1 (center), 2 (top left), 3 (top right), 4

(bottom left), 5 (bottom right).

The goal is an object defined previously, for this case, we select the signal of

"Heliport" shown in Figure 4.5. Usually, in DRL algorithms the goal is defined with

a set of coordinates, but we try not to depend on the agent seeing the goal all the

time, and in real cases, access to the real coordinates requires the help of GPS or

other sensors more difficult to access.

To enable the drone to recognize the goal, we trained a personalized YOLOv8 model

(Redmon et al. (2016)). YOLO (You Only Look Once) is a popular series of object

detection algorithms known for their speed and efficiency and permits training a

new model from scratch to detect a specific series of objects. For goal recognition,

we created a dataset combining images of the goal in the simulation environment

labeled manually and images from the real world previously labeled of a dataset

from the Roboflow’s platform (Demiral (2023)) achieving 1070 images, examples of

the dataset are shown in the Figure 4.3 and example of the testing results are shown

in 4.4.

We trained the model for 50 epochs and obtained a precision of 0.943 and a

27

,

Figure 4.3: Examples of the dataset used to recognize the heliport signal, on the left side are the

images for the real world, and the right side are the images taken in the simulated environment.

recall of 0.902 for goal detection. The YOLO model returns a list of detected objects,

and each detection includes:

• Bounding Box Coordinates: these are the coordinates of the bounding box

that encloses a detected object.

• Score: the confidence score of the detection, representing the probability that

the detected object belongs to a particular class. It reflects the model’s confi-

dence in its prediction.

We put a threshold from the confidence score of the detection of 0.7, if the confidence

score is bigger than the threshold value, the boolean value of the goal is set to True.

Once the model detects the object and the bounding box coordinates are obtained the

distance is calculated in the same way that the sections: with the depth image taking

the bounded box of the goal to calculate the distance of the goal. We also establish

an angle between the center of the image and the center of the goal (calculated with

the bounding box coordinates), we can observe this in Figure 4.6. These values will

be important to evaluate the reward function in the DRL algorithm.

28

,

Figure 4.4: Testing results of the YOLOV8 model to detect the goal in simulated and real-world

scenarios after 50 epochs

,

Figure 4.5: An example of the goal that is used in the simulation environment.

,

Figure 4.6: Measurement of angle and distance to the goal when is detected with the YOLOv8

model.

29

4.3 Causal Bayesian Network

For experimental purposes we construct the Causal Bayesian Network of the task

to use in the reinforcement learning algorithm, taking into account the 9 values

obtained from the RGB and depth image. To simplify and reduce the observation

space we discretized the values as follows.

Distances from 5 sections (center, top right, top left, bottom right, bottom left) and

to the goal:

distance =

 close if x ≤ 0.5

far if x > 0.5

goal in sight =

 1 if the goal is recognized for the camera

0 the goal is not recognized for the camera

Angle to the goal =

good if − 15 ≤ x ≤ 15

far left if x > 15

far right if x < −15

Altitude =

good if 0.5 ≤ x ≤ 1.5

close ground if x < 0.5

far ground if x > 1.5

We first create manually an initial approximation of the Causal Bayesian Net-

work to test how to incorporate it into the system. The learning of this CBN is

part of the algorithms described later. We created a CBN for each action of the

action set, we show the Causal Bayesian Network for the action ascend, forward,

and turn left in Figure 4.7, the other CBNs for the missing actions can be found in

the Appendix A.1. For simplicity, we do not show the variables in the state that do

not change with the action. In all cases, knowing if the goal is in sight is important

for the reward value and consequently is important to know the distance and the

angle to the goal. When the goal is not in sight, the objective is to avoid obstacles,

30

in this case, the distance of the sections in the image is important to decide which

action to take.

,

Figure 4.7: CBNs relating relational state variables at consecutive time steps (t) and (t + 1)

for actions ascend, forward, and turn left showing the discrete value of the state (t) with higher

probability to reach the state (t+1).

4.4 Learning Causal Bayesian Network

In the second part of the experiments, we learn the structure of the Bayesian Network

while training the agent in DRL. The learning of the structure is done with the Hill

Climb Search algorithm and the BIC score. Once we have the structure with the

directed graph, we need to learn the parameters, for this, we calculate the Markov

blanket of the reward node and delete synchronous links in the graph. To perform

the inference with the observable state, we use the Variable elimination algorithm

from Koller and Friedman (2009). The learning of the CBN is described in Algorithm

2, where k is a predefined number of steps to update the Causal Bayesian Network,

31

and numActions is the number of actions in the actions set.

Algorithm 2 Learning Causal Bayesian Network
1: At each step in the QDN algorithm save the state representation at time t, t+1, reward,

and accumulated reward in the variable data

2: if step % k == 0 then

3: for i = 0 to numActions do

4: Check for the previous model

5: if there is a previous model then

6: Start with a pre-defined structure for the Bayesian network

7: else

8: Start with a random initial structure for the Bayesian network

9: model[i]= HillClimbSearch(BIC score, data)

10: Delete synchronous links

11: Calculate the Markov blanket for the node Reward

12: Create/update CPTs

13: inference[i] = VariableElimination(model[i])

14:

4.5 Use the CBN for DQN

If the CBN model is already known, it can be utilized from the onset of the learning

process. However, when the CBN needs to be learned, the reinforcement learning

algorithm must first accumulate sufficient data over k steps. This is necessary to

ensure that the data collected is adequate for learning an accurate approximation of

the true CBN.

Algorithm 3 describes how to use the CBN within DQN. At each step, they

take the state elements present in the Markov blanket of the node reward like filtered

32

evidence, which is used in the inference of reaching each state value, we divide this

inference into two arrays, one to the probability to transition to a positive reward

ProbAct and ProbActNeg with their complement, the probability to transition to

a negative reward. The lines 11-14 describes the normal behavior of DQN, after

that depending of the probability of consulting the Causal Bayesian Network Prob-

CausalModel (lines 16-27) the model consults if the action selection made by the

Q-Values have a high probability (with a threshold ThresholdProb) to reach a neg-

ative reward, if it is greater than the threshold then the action is eliminated like an

option and another is selected randomly (lines 17-22), if not we consult if have a

high probability (with the same threshold) to obtain a positive reward, when the

probability is greater than the threshold the action is executed, if not, the action

with higher probability to transition to a positive reward is selected (lines 23-25).

ProbCausalModel and ThresholdProb are previously predefined like the exploration

rate of the DRL algorithm.

Because the query of the probability of a positive and negative reward is after

the comparison of the learning rate, benefited more from random action than the

consult of the CBN, we define a variant of the Algorithm in 4 replacing from line

10 of the previous algorithm. In this case, the probability of consulting the CBN is

first before the behavior of the normal DQN, once the model consults the CBN if

the probability of the positive reward is less than the threshold we can consult the

probability of the negative reward and eliminate from the possible actions, resorting

to the random action only if the probability of obtaining a negative reward is greater

than the threshold.

4.6 Summary

In the chapter, we have described the methodology to achieve our objectives. Our

main contributions are: (i) the development of an algorithm that simultaneously

33

Algorithm 3 Use of the Causal Bayesian Network for DQN
1: At each step

2: initialize Evidence of the state t

3: for i = 0 to numActions do

4: filter evidence of the Markov blanket of the node reward

5: result = inference[i] for variable reward with filtered evidence

6: ProbActNeg[i]=Probability of the action to obtain a negative reward

7: ProbAct[i]=Probability of the action to obtain a positive reward

8: initialize ProbCausalModel and ThresholdProb

9: rand = random number

10: if rand < explorationRate then

11: action at = random action

12: else

13: action at = MaxIndex(qValues)

14: rand = random number

15: if rand < ProbCausalModel then

16: if ProbActNeg[action at] > ThresholdProb then

17: ActionNegative = action

18: while action at == ActionNegative do

19: action at = random action

20: else

21: if ProbAct[action at] < ThresholdProb then

22: action at = MaxIndex(ProbAct)

34

Algorithm 4 Use of the Causal Bayesian Network for DQN second version
1: At each step

2: rand = random number

3: if rand < ProbCausalModel then

4: action at = MaxIndex(qValues)

5: if ProbAct[action at] < ThresholdProb then

6: if ProbActNeg[action at] > ThresholdProb then

7: ActionNegative = action

8: while action at == ActionNegative do

9: action at = random action

10: else

11: rand = random number

12: if rand < explorationRate then

13: action at = random action

14: else

15: action at = MaxIndex(qValues)

35

learn a policy, using a DRL algorithm, and a Causal Bayesian Network for each

action, (ii) the integration of a CBN into the learning process of DQN to guide

and constrain the possible actions of the RL in two variants, and (iii) the use of

this approach for autonomous navigation task of UAVs, as it will be shown in the

following chapter.

36

CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, we described the experiment setting done (i) in the DQN algorithm,

(ii) to find the better value of k in the Learning Causal Bayesian Network and (iii)

to prove the effectiveness of our algorithm proposed in the DQN training of 700

episodes with image representation, CBN defined, CBN-DQN PN, CBN-DQN P

and CBN-DQN V2. We define the probability of consulting the causal model with

a value of 0.7, and the threshold of the probability with 0.75. In the last part, we

analyze the results comparing the CBN learned in the training to the defined, as

well as the evaluation of the CBN learned through training.

5.1 Deep Q-Learning Setting

For the implementation of the DQN to visual navigation in the drone, we followed

the implementation of Anas et al. (2022) and adapted it to our task and mobile

robot (drone).

State space: The agent’s state spaces consist of:

1. For the base experiment it consists of an image with dimensions 84x84x3 pixels,

this is to evaluate the performance of the base algorithm without causal models.

37

2. For the learning and use of the CBN consists of an image with dimensions

84x84x3 pixels + 9 values of the state.

Action space: the agent can take eight discrete actions namely: move forward, move

backward, turn left, turn right, right, left, ascend and descend. The actions move

forward and move backward move the drone in the y axis, the actions ascend and

descend move the drone in the z axis, the actions right and left move the drone in

the x axis, and the actions turn right and turn left only change the orientation of

the drone in the x axis.

Target: a goal image.

Reward design: calculated from the following formula.

reward =

100−Distance to goal− |angle to goal| if the target is recognized

−9 otherwise
Consists of a negative reward at each step that the goal is not recognized, when

the goal is recognized obtain a reward of 100 minus the distance, and the angle to

encourage these to be the smallest possible. Plus a positive reward of 1000 if reach

the goal or a negative reward of -1000 to crash.

Termination conditions: 1) The agent reaches the goal within 0.2m of distance.

2) The agent collides with an obstacle. 3) The number of steps exceeds 200.

Network Architecture: The Prediction Network and Target Network have the same

structure, as shown in Figure 5.1.

• Input layer: takes a 2D matrix with dimensions 84x84x3 corresponding to an

RGB image of the environment.

• Convolutional Layers: all with activation function ReLU. Layer 1: Convolution

2D with 32 filters, a kernel size of 8x8, a stride of 4. Layer 2: Convolution 2D

with 64 filters, a kernel size of 4x4, a stride of 2. Layer 3: Convolution 2D

with 64 filters, a kernel size of 3x3, a stride of 1.

38

• Flatten layer: Flattens the output of the convolutional layers into a 1D vector.

This is often done before transitioning to fully connected layers

• Dense layer: Dense layer with 512 units, this layer processes the flattened

features from the convolutional layers.

• Output layer: dense layer with a size of 8 nodes which are the eight Q-values

for the eight available actions that can be taken.

• Loss function: Mean Squared Error (MSE).

• Optimizer: RMSprop with a learning rate of 0.00025, a discount factor of 0.9,

and an epsilon value of 0.00000001.

For the experiments on the learning and use of the CBN, we concatenate the 9

discretized values before the dense layer (Figure 5.2) and use these values to learn

the Causal Bayesian Network. We use these values to represent the state to help the

network to identify aspects of the environments that are not explicit in the image,

like the distances obtained from the depth image and the altitude, these information

is important for avoiding collision and the perception of the goal.

5.2 Experiments and Results

We begin our experiments by using the state representation for learning and using

the CBN to determine the optimal value for k. The parameter k dictates the point

at which the CBN learning algorithm starts its learning process. We evaluated its

effectiveness across various k values: 100, 200, 400, and 600. Their performance is

illustrated in Figure 5.3, the vertical axis represents the reward obtained in each

episode after applying a moving average of size 20 to smooth out short-term fluc-

tuations and highlight longer-term trends, rewards range from below -1000 up to

approximately 1500. The horizontal axis tracks the number of episodes, ranging

39

,

Figure 5.1: Prediction and Target Network used in the DQN algorithm with a single image like

input and eight values for the output, which correspond to the qValue of each action.

,

Figure 5.2: Prediction and Target Network used in the DQN algorithm of the second experiment,

with the image and the 9 values of the state representation like input.

from 0 to 700. Here, k is critical as it defines the number of steps necessary to

update the CBM, before the first k steps the behavior algorithm is the DQN, after

k steps the algorithm has the first version of the CBN that can be consulted, with

40

little k the algorithm have a CBN from very early episodes which is updated each k

steps.

k=100 presents the worst performance as it is unable to reach high rewards,

k=200 shows a mix of moderate and high peaks and seems to perform somewhat

consistently in the mid-range, while k=400 and k=600 show more pronounced fluc-

tuations with very high peaks suggesting periods of high rewards but also significant

drops. Lower k values seem to have more stability compared to higher k values

(remember that after k steps the CBN is updated), which exhibit more dramatic

ups and downs. This could indicate that lower k values provide a more consistent

learning experience or adaptation, whereas higher k values, while capable of achiev-

ing higher peaks, might introduce volatility. This may also be due to the number of

episodes used in training, needing to carry out longer experiments but due to time

constraints, we will take these as a starting point. For this reason, we select the

value of 200 for k to compare with the other algorithms.

,

Figure 5.3: Episode reward obtained after 700 episodes in the learning and use of the CBN in the

DQN algorithm with k equals to 100, 200, 400, and 600. The vertical lines indicate from which

episode the CBN is learned and subsequently used and updated. We utilize a moving average of

size 20.

41

To evaluate the performance of our algorithm, we compared the DQN algorithm

as baseline (only image) with the proposed algorithm that adds the discrete state

representation, using: (i) the defined Causal Bayesian Network (ii) learning the CBN

(CBN-DQN P) (iii) a variant of the algorithm considering the probability of receiving

a positive and negative reward from the CBN to decide which actions to take versus

considering only the probability of positive rewards for the first version (CBN-DQN

PN) and (iv) learning the CBN in the second version of the algorithm (CBN-DQN

V2), all with k=200

,

Figure 5.4: Episode reward obtained after 700 episodes with base DQN, DQN with the CBN

defined, CBN-DQN PN, CBN-DQN P, and CBN-DQN V2 with k=200, with a moving average of

50.

Their performance is illustrated in Figure 5.4, the vertical axis represents the

reward obtained in each episode after applying a moving average of size 50. The best

behavior is when the Causal Bayes Network is manually defined in advance because

it is used from the beginning of the learning process and the CBN is more accurate.

Using only the image as state representation has not adequate information to reach

the goal and the network learns to "do nothing" to obtain a better reward compared

to realizing actions without reaching the goal. In comparison, the CBN-DQN V2

is the closest to the behavior of the BCN defined compared to the use only the

42

action with a higher probability of carrying a positive reward (CBN-DQN P) and

using both (CBN-DQN PN), this could be because the first version of the algorithm

benefits more from performing random actions at the first episodes depending of

the exploration rate, so might it requires more training episodes for better behavior

compare to the version two of the algorithm where the probability of consulting the

CBN is more dominated that the exploration rate.

Once we have the behavior of the algorithm, we can compare the number of

common edges in the CBN learned at the beginning and the end of the training of

the CNB-DQN V2 algorithm against the Causal Bayesian Network defined for each

action, this can be observed in the Table 5.1. As can be observed the number of total

edges at the beginning and in the end increases for all the CBNs, at the same the

number of edges in common with the CBN defined, still, it’s not a good number of

edges in common, this can be because we want to build the CBN to obtain the best

reward from only successful episodes which are not guaranteed when the algorithm

is learning, especially in the first epochs of the algorithm, as a result, the CBN finds

connections we didn’t expect because of the mistakes it makes but they are useful

for learning the CBN, our error is the possible the early network learning when the

data for a good reward is not enough to make connections to our node of interest.

As additional information we can analyze the behavior of the CBN learning,

we can observe the evolution of the CBN for CBN-DQN V2, for the action forward

in Figure 5.5 they begin with 4 connections between the time t and time t+1 but for

the end, it has 7, some interesting to note is the dependence between the reward that

depended of angle for the same t+ 1 but this depends of see goal and angle goal for

the previous time, when we define this relation with reward more directly. Another

example is for action right in Figure 5.6 when begins only with 2 connections and

ends with 8, in this case, the relation for the previous actions is repeated, here the

altitude takes more relevance with more connections with the distance of the sections

43

Action Total Edges Edges in common with Edges in common with Percentage of

given CBN the first CBN learning the last CBN learning best similarity

/Total of edges /Total of edges

Ascend 14 1/9 2/12 0.14

Descend 14 2/8 2/14 0.14

Forward 14 1/7 2/13 0.14

Backward 14 1/9 2/12 0.14

Left 17 2/9 1/16 0.05

Right 17 2/7 2/13 0.117

Rotate left 16 2/9 3/15 0.187

Rotate right 17 1/8 3/13 0.176

Table 5.1: Comparison between the number of common edges in the CBN defined, the first and

the last obtained in the training CBN-DQN V2 with the total of edges for each action and their

percentage of similarity.

4, see the goal and the previous altitude. This behavior between the learning Causal

Bayesian Networks helps us to note more dependencies that we don’t take into

account in the definition of the network and the lack of direct connections to the

reward node can indicate there is not sufficient information relevant that involves

seeing the goal and consequently to the angle and distance to the goal. The learning

Causal Bayesian Network for the other’s actions can be found in the Appendix A.2.

From the experiments we can conclude the following:

• A Causal Bayesian Network (given or learned) can be used to improve the

performance of a reinforcement learning agent in robotic tasks with a partial

continuous space state

• A Causal Bayesian Network can be learned from data obtained during the

44

Figure 5.5: Comparison of the first and last Causal Bayesian Network for forward

Figure 5.6: Comparison of the first and last Causal Bayesian Network for right

reinforcement learning process but needs more episodes to obtain a good model

45

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this work, we build two algorithms: one that learns a Causal Bayesian Network

of the task and environment during the training of the DQN algorithm and another

one (with two variants) that uses a CBN to guide the selection of actions in the

DQN algorithm. We tested the algorithms in the task of autonomous navigation of

a drone in a simulated environment. The results show that it is possible to learn

partial CBNs, while learning a policy, but needs more episodes to reach a good

number of common edges with the defined CBN and stability.

6.2 Future Work

During the development of this research, we struggle to have access to modern com-

puters with powerful GPUs. As future work, we need to train our algorithms for

more episodes to prove the stability of the algorithm and know if the Causal Bayesian

Network reaches the accuracy of the model with the network previously defined. We

also need to perform more tests on different environments to assess the generality

of the proposed approach. We would also like to include an exploration strategy, in

46

case the objective is out of sight. Finally, we believe that the learned CBNs can be

transferred to other, although similar, domains where the causal relationships are

still valid. We would like to test this in other drone tasks.

47

APPENDIX A

APPENDIX

A.1 Defined Causal Bayesian Network

,

Figure A.1: CBNs relating relational state variables at consecutive time steps (t) and (t + 1) for

actions descend, backward, and turn right showing the discrete value of the state (t) with higher

probability to reach the state (t+1).

48

,

Figure A.2: CBNs relating relational state variables at consecutive time steps (t) and (t + 1) for

actions move right and move left showing the discrete value of the state (t) with higher probability

to reach the state (t+1).

49

A.2 Learning Causal Bayesian Network

Figure A.3: Comparison of the first and last Causal Bayesian Network for ascending action, in

this network we can note something interesting between the altitude and the values for the distance

of sections 4 and 5, because these sections can indicate the distance between the ground, aspects

important when the ascend action is taking.

Figure A.4: Comparison of the first and last Causal Bayesian Network for descending action,

compared to their action complement (ascend) in this case the altitude is more important for the

reward taking into account when the altitude is too near to the ground is consideration like the

drone crash.

50

Figure A.5: Comparison of the first and last Causal Bayesian Network for backward action

Figure A.6: Comparison of the first and last Causal Bayesian Network for left action

Figure A.7: Comparison of the first and last Causal Bayesian Network for rotate left action

51

Figure A.8: Comparison of the first and last Causal Bayesian Network for rotate right action

52

Bibliography

Anas, H., Ong, W. H., and Malik, O. A. (2022). Comparison of deep q-learning,

q-learning and sarsa reinforced learning for robot local navigation. In Kim, J.,

Englot, B., Park, H.-W., Choi, H.-L., Myung, H., Kim, J., and Kim, J.-H., editors,

Robot Intelligence Technology and Applications 6, pages 443–454, Cham. Springer

International Publishing.

Asher, H. (1976). Causal Modeling. Sage University papers. SAGE Publications, 2

edition.

Balasingam, M. (2017). Drones in medicine-the rise of the machines. International

Journal of Clinical Practice, 71(9):e12989.

Çetin, E., Barrado, C., Muñoz, G., Macias, M., and Pastor, E. (2019). Drone

navigation and avoidance of obstacles through deep reinforcement learning. In

2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), pages 1–7.

Çetin, E., Barrado, C., and Pastor, E. (2023). Explainability of deep reinforcement

learning method with drones. In 2023 IEEE/AIAA 42nd Digital Avionics Systems

Conference (DASC), pages 1–9.

Darwish, A. A. and Nakhmani, A. (2023). Drone navigation and target interception

53

using deep reinforcement learning: A cascade reward approach. IEEE Journal of

Indoor and Seamless Positioning and Navigation, 1:130–140.

Demiral, I. (2023). H letter2 dataset. https://universe.roboflow.com/

ilknur-demiral-jt5w4/h-letter2. visited on 2024-06-10.

Deng, Z., Jiang, J., Long, G., and Zhang, C. (2023). Causal reinforcement learning:

A survey. Transactions on Machine Learning Research. Survey Certification.

Diehl, M. and Ramirez-Amaro, K. (2022). Why did i fail? a causal-based method

to find explanations for robot failures. IEEE Robotics and Automation Letters,

7(4):8925–8932.

DJI (2018). Tello dji: Programmable mini drone for kids and adults. https://www.

dji.com/tello.

Feliciano-Avelino, I., Méndez-Molina, A., Morales, E. F., and Sucar, L. E. (2021).

Causal based action selection policy for reinforcement learning. In Batyrshin, I.,

Gelbukh, A., and Sidorov, G., editors, Advances in Computational Intelligence,

pages 213–227, Cham. Springer International Publishing.

Furrer, F., Burri, M., Achtelik, M., and Siegwart, R. (2016). Robot Operating System

(ROS): The Complete Reference (Volume 1), chapter RotorS—A Modular Gazebo

MAV Simulator Framework, pages 595–625. Springer International Publishing,

Cham.

García, M., Caballero, R., González, F., Viguria, A., and Ollero, A. (2020). Au-

tonomous drone with ability to track and capture an aerial target. In 2020 Inter-

national Conference on Unmanned Aircraft Systems (ICUAS), pages 32–40.

Garg, P. (2021). Unmanned Aerial Vehicles: An Introduction. Mercury Learning

and Information.

54

 https://universe.roboflow.com/ilknur-demiral-jt5w4/h-letter2
 https://universe.roboflow.com/ilknur-demiral-jt5w4/h-letter2
https://www.dji.com/tello
https://www.dji.com/tello

Gatteschi, V., Lamberti, F., Paravati, G., Sanna, A., Demartini, C., Lisanti, A., and

Venezia, G. (2015). New frontiers of delivery services using drones: A prototype

system exploiting a quadcopter for autonomous drug shipments. In 2015 IEEE

39th Annual Computer Software and Applications Conference, volume 2, pages

920–927.

Gonzalez-Soto, M., Sucar, L. E., and Escalante, H. J. (2018). Playing against nature:

causal discovery for decision making under uncertainty.

Hanover, D., Loquercio, A., Bauersfeld, L., Romero, A., Penicka, R., Song, Y.,

Cioffi, G., Kaufmann, E., and Scaramuzza, D. (2024). Autonomous drone racing:

A survey. IEEE Transactions on Robotics, 40:3044–3067.

Hasan, K. M., Abdullah-Al-Nahid, Alim, M. A., Maniruzzaman, M., Atiqur Ra-

haman, G. M., Ahsan, M. S., and Newaz, S. S. (2020). Design and development

of an aircraft type multi-functional autonomous drone. In 2020 IEEE Region 10

Symposium (TENSYMP), pages 734–737.

Heyn, H.-M. and Knauss, E. (2022). Structural causal models as boundary objects

in ai system development. In 2022 IEEE/ACM 1st International Conference on

AI Engineering – Software Engineering for AI (CAIN), pages 43–45.

Ho, J. and Wang, C.-M. (2021). Human-centered ai using ethical causality and

learning representation for multi-agent deep reinforcement learning. In 2021 IEEE

2nd International Conference on Human-Machine Systems (ICHMS), pages 1–6.

Kersandt, K., Muñoz, G., and Barrado, C. (2018). Self-training by reinforcement

learning for full-autonomous drones of the future. In 2018 IEEE/AIAA 37th

Digital Avionics Systems Conference (DASC), pages 1–10.

Klecka, W. (1980). Discriminant Analysis. Quantitative Applications in the Social

Sciences. SAGE Publications.

55

Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-

source multi-robot simulator. In 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3,

pages 2149–2154 vol.3.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and

Techniques - Adaptive Computation and Machine Learning. The MIT Press.

Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., and Navab, N. (2016). Deeper

depth prediction with fully convolutional residual networks. In 3D Vision (3DV),

2016 Fourth International Conference on, pages 239–248. IEEE.

Lewis-Beck, M. (1980). Applied Regression. SAGE Publications, Inc.

Management Association, I. (2019). Unmanned Aerial Vehicles: Breakthroughs in

Research and Practice: Breakthroughs in Research and Practice. IGI Global.

Mario Silvagni, Andrea Tonoli, E. Z. and Chiaberge, M. (2017). Multipurpose uav

for search and rescue operations in mountain avalanche events. Geomatics, Natural

Hazards and Risk, 8(1):18–33.

Méndez-Molina, A., F. Morales, E., and Sucar, L. E. (2022). Causal discovery and

reinforcement learning: A synergistic integration. In Salmerón, A. and Rumí, R.,

editors, Proceedings of The 11th International Conference on Probabilistic Graph-

ical Models, volume 186 of Proceedings of Machine Learning Research, pages 421–

432. PMLR.

Méndez-Molina, A., Morales, E. F., and Sucar, L. E. (2023). Carl: A synergistic

framework for causal reinforcement learning. IEEE Access, 11:126462–126481.

Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A. S., Kadri, A., and Tuncer, A.

(2017). Uav-enabled intelligent transportation systems for the smart city: Appli-

cations and challenges. IEEE Communications Magazine, 55(3):22–28.

56

Pitis, S., Creager, E., Mandlekar, A., and Garg, A. (2022). Mocoda: Model-based

counterfactual data augmentation.

Qasim, A., El Refae, G. A., and Etter, S. E. (2022). Utilizing drones in long-term

construction projects: the impact on cash flow management. In 2022 International

Arab Conference on Information Technology (ACIT), pages 1–4.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,

and Ng, A. Y. (2009). Ros: an open-source robot operating system. In ICRA

Workshop on Open Source Software.

Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., and Moscholios, I. (2020).

A compilation of uav applications for precision agriculture. Computer Networks,

172:107148.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:

Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 779–788.

Sabry, F. (2023). Hill Climbing: Fundamentals and Applications. Artificial Intelli-

gence. One Billion Knowledgeable.

Sewak, M. (2019). Deep Reinforcement Learning. Springer Singapore.

Shi, W., Huang, G., Song, S., and Wu, C. (2022). Temporal-spatial causal inter-

pretations for vision-based reinforcement learning. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 44(12):10222–10235.

Shin, S.-Y., Kang, Y.-W., and Kim, Y.-G. (2019). Automatic drone navigation in

realistic 3d landscapes using deep reinforcement learning. In 2019 6th Interna-

tional Conference on Control, Decision and Information Technologies (CoDIT),

pages 1072–1077.

57

Sigaud, O. and Buffet, O. (2013). Markov Decision Processes in Artificial Intelli-

gence. ISTE. Wiley.

Sucar, L. E. (2020). Probabilistic graphical models. Advances in computer vision and

pattern recognition. Springer Nature, Cham, Switzerland, 2 edition.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–

292.

Zeng, Y., Cai, R., Sun, F., Huang, L., and Hao, Z. (2023). A survey on causal

reinforcement learning.

Zhai, G., Zhou, J., An, P., and Yang, X. (2019). Digital TV and Multimedia Com-

munication: 15th International Forum, IFTC 2018, Shanghai, China, September

20–21, 2018, Revised Selected Papers. Communications in Computer and Infor-

mation Science. Springer Nature Singapore.

Zhu, W., Yu, C., and Zhang, Q. (2023). Causal deep reinforcement learning using

observational data.

58

	Introduction
	Motivation
	Justification
	Objectives
	Problem Statement
	Methodology
	Structure

	Theoretical Framework
	Unmanned Aerial Vehicle
	Visual Navigation
	Markov decision process
	Deep Reinforcement learning
	Deep Q-learning
	Causal Discovery
	Causal Bayesian Network
	Hill Climbing Search
	BIC score

	Causal Reinforcement Learning
	Simulation tools
	The real drone
	Summary

	Related Work
	Deep reinforcement learning
	Causal Modeling
	Causal Reinforcement Learning
	Summary

	Methodology
	Deep Q-Learning
	State Representation
	Causal Bayesian Network
	Learning Causal Bayesian Network
	Use the CBN for DQN
	Summary

	Experiments and Results
	Deep Q-Learning Setting
	Experiments and Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Defined Causal Bayesian Network
	Learning Causal Bayesian Network
	References

