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Abstract

We address the problem of questionable content filtering in video platforms, with a

specific focus on identifying and flagging comic mischief. These contents mix ele-

ments such as violence, adult content or sarcasm with humor, which complicates their

detection. Current methodologies rely heavily on attention-based models, promi-

nently featuring Hierarchical Cross-Attention (HCA) to fuse information across dif-

ferent modalities. While HCA has proven to be effective, its optimal applicability in

this context remains uncertain. This work explores an innovative approach termed

Parallel Cross-Attention (ParCA) as an alternative mechanism for enhancing model

in identifying nuanced forms of comic mischief.

Furthermore, we advocate for the integration of Gated Multimodal Units (GMU)

into the framework. GMUs offer a refined method for combining multiple attention

mechanisms, surpassing the traditional concatenation approach by dynamically ad-

justing the importance of modalities at various stages of processing. This hybrid

approach promises to improve the interpretability and performance of the model in

discerning subtle comic elements amidst diverse multimedia content.

Our experimental results substantiate the efficacy of ParCA and GMU integra-

tion, revealing substantial performance enhancements compared to the HCA-based

baseline. Specifically, our approach achieves notable improvements in F1-Score met-

II



ric, demonstrating its capacity to effectively filter and flag comic mischief in video

content. This research underscores the importance of innovative model architec-

tures and multimodal fusion techniques in advancing content filtering capabilities

for evolving digital platforms.
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Resumen

Abordamos el problema del filtrado de contenido cuestionable en plataformas de

video, con un enfoque específico en la identificación y señalización de diferentes

tipos de comedia. Las metodologías actuales dependen en gran medida de modelos

basados en atención, destacando el uso de la Atención Cruzada Jerárquica (HCA)

para fusionar información a través de diferentes modalidades. Aunque HCA ha

demostrado ser eficaz, su aplicabilidad óptima en este contexto sigue siendo incierta.

Este trabajo explora un enfoque innovador denominado Atención Cruzada Paralela

(ParCA) como un mecanismo alternativo para mejorar el modelo en la identificación

de formas sutiles de travesuras cómicas.

Además, abogamos por la integración de Unidades Multimodales por Com-

puertas (GMU) en el marco de trabajo. Las GMU ofrecen un método refinado

para combinar múltiples mecanismos de atención, superando el enfoque tradicional

de concatenación al ajustar dinámicamente la importancia de las modalidades en

diversas etapas del procesamiento. Este enfoque híbrido promete mejorar la inter-

pretabilidad y el rendimiento del modelo en la detección de elementos cómicos sutiles

en medio de contenido multimedia diverso.

Los resultados experimentales obtenidos confirman la eficacia de la integración

de ParCA y GMU, revelando mejoras importantes en el rendimiento en compara-
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ción con el modelo original basado en HCA. Específicamente, nuestro enfoque logra

mejoras notables en F1-Score, demostrando su capacidad para filtrar y señalar efec-

tivamente los tipos de comedia en contenido de video. Este trabajo enfatiza la im-

portancia de arquitecturas de modelos innovadoras y técnicas de fusión multimodal

en el avance de las capacidades de filtrado de contenido para plataformas digitales

en evolución.
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CHAPTER 1

INTRODUCTION

The issue of detecting objectionable content in videos arises in the context of the

exponential growth in the generation and consumption of multimedia content on

online platforms. With the ease of video production and sharing, there has been

growing concern about the presence of inappropriate, violent and hateful content

that can negatively affect users (Huesmann, 2007).

Detecting questionable content in videos has become crucial to ensure the

safety and positive experience of users on online platforms. This type of content can

include violent material, hate speech, extremist propaganda and other content that

violates community policies and standards. Exposure to this type of content can

cause psychological harm, foster misinformation, contribute to the spread of hate

speech, and undermine trust in digital platforms (Solorio et al., 2021).

The problem presents unique challenges that cannot be effectively addressed

with existing methods that focus solely on one type of modality, either text analysis

or image processing. The complex and dynamic nature of videos requires a mul-

timodal approach that combines information from multiple sources, such as visual

content, audio content, and textual context. For example, the exclusive use of text

analysis may miss key visual or auditory cues for the detection of scenes with ex-

plicit violence or hate speech, because avoidance techniques may be employed using
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figurative language, slang, or coded expressions that are difficult to detect using a

single modality.

By combining multiple modalities in a multimodal approach, complementary

signals can be captured and used to improve the detection of questionable content

in videos. Joint analysis of visual and auditory content enables a more complete

and accurate understanding of video context and content. For example, detecting

violent gestures or movements in visual content, combined with hate speech in audio

content, can provide a stronger indication of the presence of questionable content.

In this work, we approach the problem of detecting questionable content in

video with Multimodal Attention Based Models (MABMs). Identifying content

with clear labels offers a more flexible solution than traditional age classification

systems, which commonly use age-based rating systems, such as those by the Mo-

tion Picture Association of America (Baharlouei and Solorio, 2024). This is because

people’s tolerance for questionable content varies based on their age, life experience,

socio-cultural values, and cognitive abilities (Anderson et al., 2003). This work fo-

cuses on the detection of comic mischief content in videos, a subset of questionable

content. In these videos, the problematic content (such as violence, adult mate-

rial, or sarcasm) is presented in a humorous context, making it even more disturb-

ing. Baharlouei and Solorio (2024) have recently shown that MABMs comprise an

effective solution to this task. In particular, the authors showed that a single-head

Hierarchical-Cross-Attention (HCA) based model effectively leverages multimodal

information for predicting comic mischief. While effective, it is unclear whether fu-

sion mechanisms alternative to HCA can perform better for this task. Likewise, the

use of multiple heads in such MABM has not been explored, this method is ideal

for capturing complex multimodal dependencies. Using multiple heads allows the

model to pay attention to different aspects of the inputs simultaneously, improving

the understanding of interactions between the different modalities.
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Due to the nature of the task, humor categories are not mutually exclusive. The

same fragment may contain sarcasm and mature humor, which requires models ca-

pable of dealing with the information and that a category may be treated better with

one modality than with the other. Accordingly, in this paper, we study the effective-

ness of a novel parallel cross-attention (ParCA) mechanism to combine multimodal

information in MAMBs. Additionally, we explore a new way to merge multiple mul-

timodal care mechanisms using multimodal triggered units (GMU) (Arevalo et al.,

2020), exploiting this fusion method at the attention module level to capture the de-

pendencies between modalities and obtain a better representation of each. Moreover,

the performance of these models is explored with single-headed and multi-headed

variants of MABMs, to explore the different representaions as mentioned before.

Summarizing, the main contributions of this work are as follows:

• A comparative study of HCA and the proposed ParCA mechanisms for learning

multimodal cross-attention for comic mischief detection.

• A new way to combine information from multiple multimodal attention mech-

anisms based on GMU for comic mischief detection.

• An experimental evaluation of several variants of MAMBs in terms of attent,

number of heads, and fusion schemas.

• A new way to explore different fusion types for multimodal information using

transformer-based model.

• A comparative study with different tasks an datasets with multimodal learning

for questionable content detection.
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1.1 Problem Statement

Developing accurate models for identifying questionable content presents a substan-

tial challenge in machine learning. Challenges arise from both the complexity of the

task and the scarcity of labeled data available, compounded by the subjective nature

of such content and its cultural diversity. Despite the growing availability of mul-

timodal datasets, many lack the volume necessary to adequately train transformer

models, which have shown potential in diverse applications (Lin et al., 2021). Previ-

ous research employing transformer architectures in this domain has not thoroughly

explored effective methods for integrating different data types.

This thesis aims to develop a tailored machine learning model for detecting

questionable content, addressing the following issues:

• Detecting questionable content in videos can be especially challenging due

to factors like sarcasm, use of language with multiple meanings, and subtle

hints, which traditional methods may struggle to identify. These intricacies

demand a deeper comprehension of context and semantics. Hence, instead of

analyzing modalities separately, integrating them could enhance the capacity

of the model to recognize and classify such content accurately.

• Traditional transformer-based models and attention-based models typically use

a common cross-modal attention mechanism to capture relationships between

different modalities. This approach is effective for understanding connections

and correlations across the data from different sources, such as text and images.

However, most of these models are limited to considering only two modalities.

This limitation can pose challenges when dealing with more than two modali-

ties, as the models may struggle to integrate information from multiple sources

effectively.

Comparing various forms of questionable content through Transformer archi-
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tectures may provide valuable insights into the influence of different modalities on

such tasks, particularly in scenarios where data availability is limited. Exploring

these comparisons could shed light on how factors like image, text, and audio con-

tribute to the overall understanding and detection of questionable content. Fur-

thermore, understanding the interplay between these modalities can offer crucial

guidance for developing more robust and effective detection systems, particularly in

contexts where data resources are constrained.

1.2 Motivation

Facing the task of questionable content detection using transformer architectures

presents an exciting opportunity to delve into the complexities of content detection

in the digital age. This effort is not only intellectually stimulating but also holds

immense practical significance in enhancing the accuracy and reliability of content

moderation systems across diverse platforms.

Moreover, by grappling with the scarcity of data in this domain, we are com-

pelled to innovate and devise novel methodologies that push the boundaries of ma-

chine learning research. Tackling this task requires creativity, perseverance, and a

willingness to confront the inherent uncertainties and ambiguities associated with

detecting nuanced forms of questionable content.

In this context, the use of Gated Multimodal Units (GMU) and multi-headed

architectures can be decisive for the detection of questionable content, since GMUs

efficiently integrate different data modalities by prioritizing the relevant information

in each case, while multiple heads allow capturing different aspects of the content

simultaneously, thus improving the accuracy and the model’s ability to recognize

complex patterns in data-limited contexts.
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1.3 Objectives

In this section we present the general and specific objectives of this thesis.

1.3.1 General Objective

The goal of this work is to develop and evaluate a transformer-based model for

detecting questionable content in videos. The aim is to enhance the precision and

efficiency of content moderation processes.

1.3.2 Specific Objectives

The specific objectives are as follows:

• Selecting a multimodal transformer model that uses a cross-attention mecha-

nism to integrate more than two modalities, enhancing the ability of the model

to combine and understand diverse data types.

• Extracting and encoding essential features, and using representation learning

to capture valuable representations of different modalities.

• Designing and developing a weighting or fusion scheme within existing atten-

tion mechanisms, optimizing the model’s performance by appropriately com-

bining attention weights from different modalities.

1.4 Scope and Limitations

This thesis aims to introduce new approaches for improving the performance of exist-

ing models in questionable content detection. The focus is on creating an innovative

6



model for questionable content detection and to present new insights and sugges-

tions for refining the performance of current models. By addressing these issues, this

study aims to advance the field of machine learning and develop more reliable and

efficient models for questionable content detection.

It is important to acknowledge that this study will face certain limitations due

to factors such as cultural differences, subjective interpretation of questionable con-

tent, and a lack of data, which is a significant challenge. Moreover, the effectiveness

of the proposed methods and strategies may be affected by the volume of available

data. Another limitation arises from potential biases in the training and evaluation

data. Therefore, it is essential to thoroughly evaluate the performance of the model

across various datasets and consider the all possible contexts in which they will be

applied.

1.5 Published Articles

The publications derived from this thesis are listed below.

• Morales, A., Baharlouei, E., Solorio, T., & Escalante, H. J. (2024, June).

Multimodal-Attention Fusion for the Detection of Questionable Content in

Videos. In Mexican Conference on Pattern Recognition (pp. 188-199).

• Morales, A., Baharlouei, E., Solorio, T., & Escalante, H. J. (2024, June). On

the use of Multimodal Attention for Questionable Content Detection in Videos.

In LXAI NAACL Workshop of 2024.

1.6 Thesis Organization

This thesis is organized as follows:
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• Chapter 2: Background: This chapter introduces some definition of trans-

formers and key concepts related to this topic, to aid in comprehending the

proposed solution.

• Chapter 3: Related Work: In this chapter existing state-of-art related to ques-

tionable content detection, and fusing modalities are reviewed. Including an

overview of different approaches employed.

• Chapter 4: Methodology: In this chapter, the proposed method for the detec-

tion of questionable content in presented in detail. The structure of the model

and the dataset we used for classification.

• Chapter 5: Experiments: Here, we explain the expreminents we carried out

to evaluate the performance of the model, an analysis of the results and the

experimental setup.

• Chapter 6: Conclusions and Future Work: This chapter details and summarizes

the main contributions of the presented work, the limitations of the presented

approach and what could be the future research.
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CHAPTER 2

BACKGROUND

The aim of this chapter is to provide a concise overview of the key concepts essential

for understanding the ensuing discussions. First, Section 2.1 deals with "question-

able content" and clarifies the various forms and characteristics that define it as such.

Section 2.2 reviews transformers. A central point is the explanation of how trans-

formers work. Section 2.3 addresses different ways of handling multimodal inputs,

exploring various strategies for effectively merging these inputs.

2.1 Questionable Content

This section aims to explain the concept of questionable content, delving into its

definition and scope. The goal is to assist readers in comprehending the significance

of these terms within their respective domains.

2.1.1 What is Questionable Content?

There is not a single, universally accepted formal definition of “questionable content”

provided by a specific institution. The interpretation of what constitutes question-

able content often varies across different platforms, cultures, and societies. Ques-
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tionable content typically refers to material, such as text, images, or videos, that

raises doubts about its appropriateness, accuracy, or ethical standards (Weidinger

et al., 2021). It can encompass a wide range of content that may be considered

controversial, offensive, or unreliable. The evaluation of what is questionable often

depends on cultural, social, and individual perspectives.

Questionable content encompasses politically or ideologically motivated online

disinformation, fake news, hate speech, online misinformation, misreporting, and

misconstrued satire, potentially influencing individuals and the population collec-

tively by shaping consumer attitudes (Chang et al., 2021).

2.1.2 Questionable Content in Videos

With the widespread availability of online platforms, individuals across various age

groups increasingly engage in online content consumption as a prevalent form of

entertainment. The content featured on these platforms may frequently contain ma-

terial that parents deem inappropriate for their children. Furthermore, researchers in

psychology have conducted studies revealing the potential adverse impacts of certain

online videos on young viewers (Wilson, 2008; Chang and Bushman, 2019; Bridges

et al., 2010; Bushman and Anderson, 2009; Dillon and Bushman, 2017).

The prevalent types of content often categorized as “questionable” within these

formats encompass Violence, Hate Speech, and Sexual Themes—whether implicit

or explicit. Nevertheless, it’s essential to recognize that a diverse array of content

falls under the umbrella of “questionable” across the various modalities offered by

videos (Solorio et al., 2021). This broad classification underscores the importance

of considering a spectrum of factors when evaluating content, including cultural

nuances, context, and evolving societal standards, Figure 2.1 shows an example of

this content.
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Figure 2.1: A scene from YouTube Kids video showing Mickey Mouse in a pool of blood while

Minnie Mouse looks on, an example of the type of implied violence content (Maheshwari, 2017).

2.1.3 Comic Mischief

Comic mischief content can be difficult to define clearly due to its ambiguous nature.

What is considered mischievous and humorous in one context may be seen as inap-

propriate or offensive in another. The subjectivity of humor and cultural context

play a crucial role in interpretation, complicating the creation of accurate models.

To address the subjectivity of the task, each instance was reviewed by three evalu-

ators and the final label assigned to each segment is determined by the majority of

votes among the annotators. To measure the quality of the annotations, the Inter-

Annotator Agreement (IAA) using Cohen’s Kappa (κ) was calculated, comparing

the annotations of each evaluator with the majority vote. According to the IAA

values obtained, substantial agreement was found (κ = 0.70).

Detecting the appropriate context in which the comic mischief content occurs is

essential for models, especially as they struggle to differentiate between serious and

funny content. In addition, videos contain images, sound and text, so it is necessary

11



Figure 2.2: A scene from an animated program, in which the duck is blown up to get a laugh and

win the show.

to pay attention to all these modalities to capture the mood (Yang et al., 2023).

Figure 2.2 shows an example of this type of content.

Providing accurate classification and clear labels allows users to choose content

that aligns with their personal preferences, thus enhancing their experience in virtual

environments. Ensuring content that does not cause harm or discomfort to your

users. Detecting and correctly classifying comic mischief content ensures that the

sensitivities of different audiences are properly managed.

2.2 Transformers

This section gives a look at how transformers are set up in the common encoder and

decoder architectures and how the attention mechanism works.

2.2.1 Attention Mechanism

The first attention mechanism introduced by Bahdanau et al. (2014), revolutionized

neural machine translation by introducing a dynamic attentional mechanism. Tra-

ditional sequence-to-sequence models often struggled with fixed-size context vectors,

especially when dealing with lengthy input sequences. Bahdanau attention addressed

this limitation by allowing the model to adaptively focus on different parts of the in-
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put sequence during decoding. At each step, attention weights are computed based

on the alignment between the current decoding position and each element in the

input sequence. In this context, the attention mechanism gained notable attention

for its effectiveness in addressing alignment problems and handling variable-length

input and output sequences.

2.2.2 Attention in Transformers

The attention mechanism in transformers was introduced by Vaswani et al. (2017).

The key idea is to allow the model to weigh the importance of different parts of

the input sequence when producing each element of the output sequence as shown

in Figure 2.3. This attention mechanism is self-attention or scaled dot-product

attention.

Figure 2.3: Scaled Dot-Product attention from Vaswani et al. (2017) transformer architecture.

The scaled dot-product attention (see Figure 2.3) uses three type of vectors as

an input. The queries, Q, the keys, K, and the values, V . Each of them are linear
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projections, Queries are used to determine how much attention each element in the

sequence should pay to the others. In the context of transformers, each element in

the input sequence is associated with a query, key and value vector; Keys are used

to represent the relationships between different elements. The attention mechanism

computes the similarity or affinity between the queries and keys to determine the

attention weights; Values are the vectors that will be combined based on the attention

weights to produce the output. The scaled dot-product attention is explained in

detail below.

1. Given an input sequence X := [x1, . . . , xN ]
⊤ ∈ RN×Dx of N feature vectors,

is transformed into Q, K and V matrices via linear transformations, Eq 2.1.

Q = XW⊤
Q ; K = XW⊤

K ; V = XW⊤
V (2.1)

where WQ, WK ∈ RDk×Dx , and WV ∈ RDv×Dx are the weight matrices. Denoting

Q := [q1, . . . , qN ]
⊤, K := [k1, . . . , kN ]

⊤, V := [v1, . . . , vN ]
⊤ and qi, ki, vi are the

query, key and value vectors, respectively, see Figure 2.4a for an illustrative form.

2. The attention mechanism calculates attention scores, Equation 2.2, by tak-

ing the dot product of Q with K⊤. Each element of the resulting matrix represents

the attention score between a pair of elements in the sequence.

Attention Scores = QK⊤ (2.2)

3. To stabilize the learning process, the attention scores in Equation 2.2 are

scaled by the square root of the dimension of the key vectors, Equation 2.3. This

scaling factor, often denoted as 1√
Dk

, is the dimension of the key vectors, prevents

the gradients from becoming too small or too large during training.

Scaled Attention Scores =
QK⊤
√
Dk

(2.3)

4. The scaled attention scores in Equation 2.3 are passed through the softmax

function to obtain normalized weights, see 2.4. The softmax operation converts the
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scores into probabilities, ensuring that the weights of each vector sum to 1. Finally,

the attention weights are then used to compute a weighted sum of the value vectors

(V ) as in Equation 2.5 and Figure 2.4b. This weighted sum represents the context

vector for each position in the sequence.

Attention Weights = softmax
(
QK⊤
√
Dk

)
(2.4)

Attention(Q,K, V ) = softmax
(
QK⊤
√
Dk

)
V (2.5)

In the vector form, Equation 2.5 can be written as follows:

Attentioni(Q,K, V ) =
N∑
j=1

softmax
(
qi · kj√
Dk

)
vj (2.6)

The key innovation here is the dynamic nature of attention. Instead of relying

on a fixed context for the entire decoding process, the model can selectively attend

to different parts of the input sequence based on their relevance to the current

decoding step. This flexibility allows the model to handle long-range dependencies

more effectively, making it particularly beneficial for tasks like machine translation

where the alignment between words in the source and target languages is crucial.

Scaled Dot-Product Attention is pivotal in neural network architectures, par-

ticularly exemplified in models like transformers, for several compelling reasons. Its

ability to capture long-range dependencies stands out, allowing the model to discern

relationships between elements across the entire sequence(Bahdanau et al., 2014;

Vaswani et al., 2017; Kim et al., 2016), a feat challenging for traditional sequential

architectures.

2.2.3 Different types of Attention

There are several types of attention mechanisms used in the models. The objective

of these attention mechanisms cater to different requirements in different tasks and
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(a) Calculation of Query, Key and Value

matrices from step 1.

(b) Scaled Dot-Product Attention calculation

in matrix form.

Figure 2.4: The Scaled Dot-Product Attention, an illustrative way to understand it. (Alammar,

2018b).

contribute to the adaptability and effectiveness of transformers models in capturing

dependencies within sequential data. There are three which are the most common

explained below.

Scaled Dot-Product Attention

This method, also called Self-Attention, as explained in Sec. 2.2.2, takes the same

source vectors X and transform them into queries, keys and values matrices. The key

idea behind the attention mechanism in transformers is to allow the model to weigh

the importance of different parts of the input sequence when producing each element

of the output sequence, see Figure 2.3. Self-attention mechanisms have proven crucial

in various natural language processing (NLP) and sequence-based tasks such as text

summarization task (See et al., 2017), question answering (Kenton and Toutanova,

2019), language modelling (OpenAI et al., 2023; Kenton and Toutanova, 2019) and

machine translation (Lewis et al., 2020; Vaswani et al., 2018)
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Cross-Attention

Cross-attention is a specialized mechanism employed in sequence-to-sequence mod-

els, notably in tasks like machine translation but recently also used in multimodal

tasks. Unlike self-attention where each position in the sequence attends to itself,

cross-attention enables the model to selectively focus on relevant segments of the

source sequence while generating individual elements of the target sequence, Fig-

ure 2.5 shows a scheme of this mechanism. This mechanism enhances the capacity

of the model to align and capture dependencies between the input and output se-

quences. As the decoder progresses in generating the target sequence, it employs

both self-attention to consider previously generated elements and cross-attention to

attend to distinct parts of the source sequence. This dynamic attention to relevant

information during the decoding process contributes to the improved performance of

the model in tasks requiring a comprehensive understanding of the global context,

such as machine translation (Vaswani et al., 2017) but also in multimodal tasks (Sun

et al., 2019; Tan and Bansal, 2019; Li et al., 2019; Lu et al., 2019)

(a) Cross-Attention calculation for the

original machine translation task.

(b) Cross-Attention calculation for multi-

modal tasks (audio and text).

Figure 2.5: Cross-Attention mechanism for translation task and for multimodal tasks.

17



Multihead-Attention

Multi-head attention, as shown in Figure 2.6, is a variant of the attention mecha-

nism in transformer architectures that enhances the ability of the model to capture

diverse relationships within input sequences simultaneously. In this mechanism, in-

put vectors, including queries, keys, and values, undergo multiple linear projections

using different learned weight matrices for each attention head (Equation 2.5). Each

attention head independently computes attention scores, applies softmax, and gen-

erates context vectors. The resulting context vectors from all attention heads are

concatenated and linearly projected to produce the final output, see Equation 2.7.

By allowing the model to attend to different parts of the input sequence in parallel,

multi-head attention promotes the learning of nuanced patterns and dependencies,

contributing to the expressive power and effectiveness of transformer models in var-

ious natural language processing tasks.

MultiHead
(
{Q,K, V }Hi=1

)
= Concat (head1, . . . , headH)W

O (2.7)

Where H is the number of heads, WO ∈ RHDv×HDv is the projection matrix and

headi = Attention(Q,K, V ) is the self-attention.

Figure 2.6: An illustration of the multihead-attention mechanism.
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2.2.4 Transformer Architecture

The Transformer architecture, first introduced by Vaswani et al. (2017), revolution-

ized neural network-based sequence-to-sequence tasks. Its core innovation lies in the

self-attention mechanism (Sec. 2.2.2), which enables the model to weigh different

elements of an input sequence dynamically, capturing long-range dependencies effi-

ciently. Comprising an encoder-decoder structure, the Transformer employs multi-

ple layers, each featuring multi-head self-attention and feedforward sub-layers. The

encoder processes input sequences in parallel, while the decoder, with additional

masked self-attention and encoder-decoder attention mechanisms, generates output

sequences. Residual connections and layer normalization stabilize training. Widely

adopted in natural language processing and beyond, the Transformer architecture’s

parallelization and ability to capture intricate relationships between sequence ele-

ments have made it a cornerstone in various machine learning applications. Even

though the Vanswani transformer is based on encoder-decoder architecture, there

are some that are based only in encoder or decoder architectures. Each one of them

explained below.

Transformer Encoder

The encoder, Figure 2.7, is responsible for processing the input sequence and ex-

tracting relevant features, which are then used by the decoder for generating the

output sequence. The encoder consists of multiple identical layers, and each layer

has two main sub-layers: the multi-head self-attention (MHSA) mechanism and the

position-wise feedforward network (PFFN).

To account for the sequential nature of the input, positional encodings are

added to the input embeddings before feeding them into the encoder. These encod-

ings provide information about the position of each token in the sequence, allowing

the model to understand the order of the elements. There are many choices of
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positional encodings, learned and fixed (Gehring et al., 2017). Equation 2.8 and

Equation 2.9 shows the fixed positional encodings.

PE(pos, 2i) = sin

(
pos

1000
2i

dmodel

)
(2.8)

PE(pos, 2i+ 1) = cos

(
pos

1000
2i

dmodel

)
(2.9)

where “pos” is the position, i is the dimension and dmodel = Dx is the same dimension

of the source embeddings.

The next step after positional encoding is to apply multi-head self-attention

sub-layer, as explained in Sec. 2.2.3, this sub-layer involves running the self-attention

mechanism multiple times in parallel, each with different learned linear projections.

After this, the ouput passes through a position-wise feedforward network. This

network consists of fully connected layers applied independently to each position in

the sequence. It helps capture complex, non-linear relationships between elements

in the sequence.

Layer normalization (Ba et al., 2016) is applied after each sub-layer, and a

residual connection (He et al., 2016) is used to add the input of the sub-layer to its

output. This helps stabilize training by preventing the vanishing gradient problem

and allows the model to learn identity mappings, facilitating the flow of information

through the network.

Transformer Decoder

The decoder is responsible for generating an output sequence. It also consists of

multiple identical layers, each with three main sub-layers: the masked multi-head

self-attention mechanism, the multi-head encoder-decoder attention mechanism, and

the position-wise feedforward network.

Similar to the encoder, the decoder employs a masked MHSA mechanism, it
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MHSA

Add & Norm

PFFN

Add & Norm

Q K V

+Encoder

Ex

Ex

Source embeddings

Contextualized embeddings

Figure 2.7: Encoder transformer used in the original transformer architecture, (Vaswani et al.,

2017).

uses a mask to prevent attending to future positions in the sequence. This ensures

that each position can only attend to its preceding positions, avoiding information

leakage from the future. The latter two-sublayers are the same for both, encoder and

decoder mechanisms, and layer normalization and residual connections are applied

after each sub-layer. Figure 2.8 shows a visual representation of decoder mechanism.

2.2.5 Main appplications

Architectures that only use encoders or decoders typically serve different purposes

and are designed for specific types of tasks.

Encoder-only architectures are often used for tasks where the input is pro-

cessed, and the goal is to extract meaningful representations or embeddings of the

input data. These representations can be used for downstream tasks such as classi-

fication, clustering, or feature extraction. While Decoder-only architectures are less
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Figure 2.8: Transformer decoder architecture featuring a Masked MHSA module.

common but can be found in certain generative models. The primary purpose is to

generate output sequences or samples based on learned representations or conditions.

Autoregressive models, such as language models like GPT (Generative Pre-trained

Transformer) (Brown et al., 2020; OpenAI et al., 2023), primarily use decoders.

They generate sequences one element at a time, with each element depending on the

previously generated ones.

The principal tasks of these two architectures are image or speech recognition

and text classification for Encoder-only, where meaningful representations are cru-

cial. Decoder-only architectures are prevalent in tasks like text generation, machine

translation, and image synthesis.

It is worth noting that many successful models, especially in natural language

processing, use both encoders and decoders in an encoder-decoder architecture. This

design is powerful for tasks that involve both understanding and generating se-
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quences, such as machine translation or summarization.

2.3 Multimodal Learning

In recent times, numerous transformers have undergone thorough examination for

diverse multimodal tasks, demonstrating compatibility with various modalities in

both discriminative and generative tasks. This section will delve into an exploration

of the fundamental techniques and designs employed in existing multimodal trans-

former models, specifically focusing on self-attention variants.

2.3.1 Gated Multimodal Unit (GMU)

The GMU module, see Figure 2.9, proposed by Arevalo et al. (2020) allows the model

to learn different representation by combining different inputs or modalities, where

the module learn to decide the contribution of each input, focusing only in the most

relevant aspects.

This method, inspired by recurrent units such as LSTM and GRU (Gated

Recurrent Unit), employs gating mechanisms to control the flow of information, and

it measures the activation function for constructing the output.

The general formulation for the model is as shown in Equation 2.10 and in

Figure 2.9a. Wi and Yi are learnable parameters, xi is the feature vector modality

i, σ is the sigmoid activation function and [., .] stands for concatenation.

hi = tanh (Wi · xi)

zi = σ (Yi · [x1, . . . , xk])

h =
k∑

i=1

zi ∗ hi

(2.10)
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Figure 2.9: (a) Gated Multimodal Unit (GMU) for more than two modalities. (b) Simplification

for bimodal approach (Arevalo et al., 2020).

In the bimodal approach, the formulation is shown in Equation 2.11, where

W1, W2 and Wz are learnable parameters, x1 and x2 are modality feature vectors, σ

is the sigmoid activation function and [., .] stands for concatenation.

h1 = tanh (W1 · x1), h2 = tanh (W2 · x2)

z = σ (Wz · [x1, x2])

h = z ∗ h1 + (1− z) ∗ h2

(2.11)

2.3.2 Self-Attention in Multimodal Context

Multimodal fusion is a key aspect of these transformers, referring to the methods em-

ployed to combine information from different modalities. Several fusion techniques

have been developed to facilitate effective integration of modalities, each with its

unique approach, including (1) early summation, (2) early concatenation, (3) hi-

erarchical attention (Xu et al., 2023). Thus, we will review these main modelling

practices of transformers.
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Early Summation

Early summation (Gavrilyuk et al., 2020; Xu and Zhu, 2021) takes the information

from different modalities and combine them by sum at each token position, illus-

trated in Figure 2.10a, often before feeding the data into the neural network model.

One of its main advantages is that id does not increase computational complex-

ity, however, it assumes that all modalities contribute equally to the task, and it

might not capture complex relationships between modalities as effectively as more

sophisticated fusion methods.

Early concatenation

Concatenation (Guo et al., 2020; Sun et al., 2019; Shi et al., 2021; Zheng et al.,

2021), creates a single unified representation that encompasses information from all

modalities, as seen in Figure 2.10b. The combined representation is then fed into

subsequent layers, allowing the model to learn and capture the interdependencies

between the different modalities. During the training process, the model refines the

weights assigned to each modality, adapting to the task at hand. Early concatenation

is also termed “all-attention” or “Co-Transformer” (Zhan et al., 2021; Xu et al., 2023)

Hierarchical Attention

In this type of fusion there are two principal ways to apply hierarchical attention,

multi-stream to one-stream and one-stream to multi-stream.

Multi-Stream to One-Stream. A normal way to use hierarchical attention is that

all modalities inputs are encoded by an independent layer and their outputs are

concatenated and fused by another transformer, such as Li et al. (2021) did, depicted

in Figure 2.10c.
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One-Stream to Multi-Stream. Unlike the Multi to One-Stream, this practice first

applies concatenation, as shown in Figure 2.10d, the output is encoded by a single-

stream transformer, followed by two separated streams maintaining the uni-modal

representations with the advantage of taking global information. InterBERT (Lin

et al., 2020) is one example of this attention.

(a) Early Summation. (b) Eearly Concatenation.

(c) Hierarchical Attention (d) Hierarchical Attention

Figure 2.10: Transformer-based cross-modal interactions: (a) Early Summation, (b) Early Con-

catenation, (c) Hierarchical Attention (multi-stream to one-stream), (d) Hierarchical Attention

(one-stream to multi-stream). “Q”: Query embedding; “K”: Key embedding; “V”: Value em-

bedding. “TL”: Transformer Layer.

2.4 Discussion

Multimodal transformers offer a promising approach to questionable content clas-

sification due to their ability to integrate and analyze multiple data types simul-

taneously. However, it is crucial to address and mitigate shortcomings related to

computational overhead, modality imbalance, inherent biases, lack of interpretabil-

ity, and scalability challenges. As research and technology advance, it is expected
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that these challenges will be addressed, enabling more effective and responsible use

of multimodal transformers in questionable content classification.

The above-mentioned self-attention variants for multimodal interactions are

generic in modality and can be applied in flexible strategies for tasks of different

levels of granularity. In particular, these interactions can be flexibly combined and

nested. For example, multiple cross-flow attention streams are used in a hierarchical

approach (from one-stream to multi-stream) as compared to a decoupled two-stream

model. Furthermore, these variants can be extended to include more than three

modalities (≥ 3). An example is TriBERT (Rahman et al., 2021), which implements

a trimodal cross-attention (co-attention) for vision, pose, and audio, where the Query

embedding is combined with the Key and Value embeddings of the other modalities.

This type of cross-attention through concatenation is applied to three modalities

(speech, video, and audio) by Tsai et al. (2019).
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CHAPTER 3

RELATED WORK

This chapter focuses on the topic of questionable content detecion and explores vari-

ous related works. Section 3.1 discusses some datasets that are collected for different

tasks but focusing in multimodality, while Section 3.2 delves into the attempts at

solving the problem using different Multimodal Attention Based Models (MABMs).

Section 3.3 highlights the techniques that use Multimodal Transformers to better

merge different modalities.

3.1 Multimodal Datasets for Video Analysis

Multimodal datasets represent a rich and diverse form of data that incorporates

multiple modalities, such as text, images, audio, and video. These datasets are de-

signed to capture the complexity and richness of real-world information, enabling

a more comprehensive understanding of a given task or problem. By combining

various modalities it is possible to leverage the strengths of each data type, leading

to more robust models. The integration of multimodal information is particularly

beneficial in fields like computer vision, speech recognition, and human-computer in-

teraction, where a broader range of sensory inputs enhances the overall performance

and applicability of machine learning algorithms.
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At the inception of multimodal datasets, some were collected for different tasks,

for instance, Castro et al. (2019) proposed MUStARD, which stands as a multimodal

video corpus tailored for automated sarcasm discovery research. Comprising audio-

visual utterances, MUStARD is uniquely annotated with sarcasm labels. Another

is CMU-MOSI, collected by Zadeh et al. (2016), this dataset contains 2,199 opinion

video clips, meticulously annotated with labels for subjectivity, sentiment inten-

sity, per-frame and per-opinion visual features, and per-millisecond annotated audio

features. CMU-MOSEI (Bagher Zadeh et al., 2018) encompass online videos for

sentiment analysis and the identification of nine discrete emotions (angry, excited,

fear, sad, surprised, frustrated, happy, disappointed, and neutral). Moreover, UR-

FUNNY dataset (Hasan et al., 2019) was proposed and it is a multimodal dataset

of humor detection in human speech involving the effective use of words (text), ac-

companying gestures (visual), and prosodic cues (acoustic). Arevalo et al. (2020)

introduced a multimodal dataset for genre prediction on movies by collecting genre,

poster, and plot information for each movie. Kinetics-400 (Kay et al., 2017) is a

multimodal dataset that contains video clips covering a diverse range of 400 human

action classes, with at least 400 video clips for each action.

3.1.1 Datasets for Questionable Content and Video Analysis

Multimodal datasets are essential for enhancing questionable content detection by

providing comprehensive contextual information. By combining different modal-

ities, models can discern subtleties and improve differentiation between different

content types. Some datasets have been collected for this task, for example, XD-

Violence (Wu et al., 2020) is a large-scale dataset that provides simultaneous visual

and audio data capturing instances of violent events. It encompasses a total of

4757 videos, equivalent to 217 hours of content, covering six distinct types of vio-

lent events. Another instance is the UCF-Crime dataset proposed by Sultani et al.
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(2018), it consists of long untrimmed surveillance videos which cover 13 real world

anomalies, including Abuse, Arrest, Arson, Assault, Road Accident, Burglary, Ex-

plosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, and Vandalism. These

anomalies are selected because they have a significant impact on public safety. Con-

cerned about the detection of fights in surveillance footage, Degardin and Proença

(2020) mined 1,000 videos (collected from Youtube and LiveLeak): 784 containing

normal events, and the remaining 216 containing some fight segment. This dataset,

named UBI-Fights, was manually annotated at the frame-level. In the field of online

content Baharlouei and Solorio (2024) introduced the Comic Mischief dataset. Such

dataset contains 1-minute clips obtained from YouTube videos that were crawled,

segmented, and manually labeled. By curating a diverse range of videos that encom-

pass these distinct forms of comedic expression, the comic mischief dataset provides

a valuable resource for studying and analyzing the multifaceted nature of humor in

online content. Table 3.1 summarizes each dataset in the modalities they use and

the number of instances, also the type of task.

Table 3.1: Multimodal datasets proposed in multimodal representation learning. The input modal-

ities are ℓ: language, υ: video, a: audio, i: image and o: optical flow.

Dataset Modalities Num. of Samples Prediction Task

MUStArd {ℓ, υ, a} 690 sarcasm

UBI-Fights {υ, a} 1000 violence

CMU-MOSI {ℓ, υ, a} 2,199 sentiment

Comic Mischief {ℓ, υ, a} 3,604 humor

XD-Violence {υ, a} 4,757 violence

UR-FUNNY {ℓ, υ, a} 16,514 humor

CMU-MOSEI {ℓ, υ, a} 22,777 sentiment, emotions

MM-IMDB {ℓ, i} 25,959 movie genre

Kinetics-400 {υ, a, o} 306,245 sentiment, emotions
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We focus specifically on Comic mischief detection, which is a significant chal-

lenge in the field of artificial intelligence and multimedia media processing for several

reasons. Unlike datasets that explore humor tasks, this specific one encompasses two

main tasks: a binary task and a multi-label classification task, in which four dis-

tinct categories of humor are identified: sarcasm, gory humor, slapstick humor, and

mature humor. In addition, three input modalities are used: audio, text, and video,

which adds an additional layer of complexity and richness to the task. This is why

we focus primarily on the detection of this task and also on this dataset.

3.2 Questionable Content Detection

The detection of questionable content is vital to create a safe online environment,

like YouTube in which more than 500 hours of video are uploaded per minute. Sev-

eral studies have already addressed this issue, for instance, Shafaei et al. (2021)

propose a scheme based on multimodal deep learning that addresses the problem

of classifying questionable content in movie trailers utilizing LSTMs and contex-

tual attention. A GMU was used to combine multimodal information from video

clips. Also Rodríguez Bribiesca et al. (2021) use MABMs to learn information from

different modalities for movie genre classification task, using GMU for final fusion.

Similarly, Pang et al. (2021) focuses on violence detection in videos using visual

and audio information. They use Multimodal Attention Based Models (MABMs)

with standard cross-attention in pairs. Liu et al. (2023) propose a MABM for real-

time anomaly detection in videos implementing a two-stage process. Only the video

modality is considered in this work. Wei et al. (2022) proposes a MABM based on

label refinement and multimodal fusion for violence detection in videos. Audio and

video modalities were considered with a pairwise cross-attention mechanism. Xiao

et al. (2023) focus on violence detection in videos, they employ a MABM to fuse

RGB, optical flow and auditory features. Rendón-Segador et al. (2023) use a MABM
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to detect violent activity using model based on vision transformer and neural struc-

tured learning. Yang et al. (2022) propose multimodal action recognition method

using visual and audio information. Recently Baharlouei and Solorio (2024) describe

a MABM implementing a three-modal hierarchical variant of cross-attention (HCA)

for comic mischief detection. Authors show that multimodal information combined

with HCA resulted in better performance than baselines, and state-of-the-art models

including recent MABMS/Transformers.

Discussion: These works have highlighted the importance of detecting different

types of online content, especially videos, using multimodal approaches. Among the

advantages of these approaches is the ability to fuse diverse sources of information

(such as visual, auditory, textual, optical flow among others) using multimodal at-

tention models (MABMs), which has been shown to significantly improve detection

performance compared to other methods. However, these models present consider-

able challenges, such as computational complexity, for example, Rodríguez Bribiesca

et al. (2021) take into account two transformers per modality applying a cross-

attention module, increasing the computational cost. In addition, some of the work

has focused on the use of bimodal models, which may limit the use of the available

information. Therefore, there is still work to be done in broadening the spectrum of

questionable content types that these models can detect, as well as in optimizing the

models for use in real time and in scenarios with limited computational resources.

3.3 Multimodal Transformers

This section aims to explore different techniques for fusing multimodal information,

as well as those models that focus on the analysis of attention head weighting.
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3.3.1 Multimodal cross-attention

Multimodal representation learning and fusion aim to generate a unified representa-

tion of multiple modalities that facilitates automatic analysis tasks by constructing

classifiers or other models. In the context of attention-based models, multimodal

attention mechanisms associated to different modalities are combined, expecting

that the fusion captures information about the interaction of modalities. A basic

approach is to concatenate individual representations features to obtain a final repre-

sentation (Anwar et al., 2022; Kiela and Bottou, 2014; Pei et al., 2013; Suk and Shen,

2013). Although this is a straightforward strategy, given that the nature of the data

for each modality is different, their statistical properties are generally not shared

across modalities (Srivastava and Salakhutdinov, 2012), requiring the predictor to

model complex interactions between them.

Instead, other leverage on cross-attention to have a contextualized representa-

tion of each modality given the information of the others. Zaidi et al. (2023) proposed

a multimodal transformer with dual attention, where they used co-attention to cap-

ture complex dependencies across different modalities. In the same way, Yoon et al.

(2022) use a co-attention module to capture the relationship across modalities, and

generate a more comprehensive representation. Moreover, the hierarchical cross-

attention has been explored (Chen et al., 2022, 2021; Dutta and Ganapathy, 2023;

Zhang et al., 2022) in order to capture hierarchical intra- and inter-modal correla-

tion. Despite the effectiveness of these methods, they consider only two modalities,

which are not appropriate tasks involving more modalities.

To the best of our knowledge, the only work considering cross-attention of

more than two modalities is that of Baharlouei and Solorio (2024). There, authors

apply three times HCA that is later combined via concatenation. While effective,

it is not clear if HCA is the best way to combine multimodal information, as the

modalities are processed sequentially, meaning that information from one modality

33



is incorporated before the next modality is processed. This can result in significant

information loss. In addition, since each cross-attention layer relies on the outputs

of previous layers, any errors or noise in one modality can propagate and amplify

through subsequent layers. Likewise, it remains unexplored the use of alternative

ways to combine the outputs of these attention mechanisms.

3.3.2 Multimodal Attention-Head Fusion

Multi-head attention was shown to make more efficient use of the Transformer ca-

pacity. While the model has gained widespread acceptance and recent attempts

to investigate the kinds of information learned by attention heads (Raganato and

Tiedemann, 2018), the analysis of multi-head attention is challenging. Previous stud-

ies examining the formulation of representations by multi-head attention mechanism

concentrated on either the mean or the peak attention weights across all heads (Voita

et al., 2018; Tang et al., 2018).

In this way, some works have studied gated attention which allows the model

to selectively emphasize or de-emphasize different parts of the input sequence when

computing the self-attention scores. Huang et al. (2019) propose attention on at-

tention model, which extends the conventional attention mechanisms to determine

the relevance between attention results and queries. Ahmed et al. (2017) propose

weighted transformer, which replace the multi-head attention by multiple self-attention

branches that the model learns to combine during the training process. Transformer

with weighted forced attention is proposed by Okamoto et al. (2020), where each

modality is weighted during training. Kim et al. (2020) introduce T-SGA, whose at-

tention weights are attenuated according to the distance between target and context

symbols.

Recently, it has been shown that those attention matrices lie on a low-dimensional

manifold and, thus, are redundant (Bhojanapalli et al., 2021). Thus, Nguyen et al.
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(2022) introduce FishFormer, a class of efficient and flexible transformers that allow

the sharing of attention matrices between attention heads. Voita et al. (2019) focus

their studies on the importance of each attention head by applying a soft pruning.

Instead, Michel et al. (2019) follow the same principle, but applying hard pruning,

Table 3.2 summarizes the previous works.

Table 3.2: Self-attention variants for multimodal interaction/fusion. α, β, w and g denote weight-

ings. C: Concatenation. L: Linear transform. G: Gaussian matrix. S: Score matrix. Q: Query

matrix. K: Key matrix. V : Value matrix. σ: Sigmoid activation function.

Method Type of attention Level Formulations

AoANet (Huang et al., 2019) Gated SA Z← σ
(
L1

(
Z(A)

))
⊙
(
L2

(
Z(A)

))
T-SGA (Kim et al., 2020) Gated/Kernel SA Z← SoftMax (G⊙ S)V

FishFormer(Nguyen et al., 2022) Regression SA

MBA (Ahmed et al., 2017) Weighted MHSA Z←
∑n

i=1

(
αi · Z(i) · βi

)
Forced Attention (Okamoto et al., 2020) Weighted MHSA

Z(A) ← (1− w)MHSA (QB,KA,VA)

Z(B) ← (1− w)MHSA (QA,KB,VB)

Soft Pruning (Voita et al., 2019) Weighted MHSA Z← C
(
g · Z(i=1,...,n)

)
Hard Pruning (Michel et al., 2019) Weighted MHSA Z← C

(
{0, 1} · Z(i=1,...,n)

)

Discussion: The aforementioned works propose different approaches to improve

attention mechanisms. Methods such as gated attention and weighted transformers

seek to improve accuracy and efficiency by emphasizing relevant parts of the input

sequence or by combining self-attention branches. However, some of these appear to

be equivalent, as is the case with MBA and pruning methods.

In addition, as Voita et al. (2019) demonstrated, some attention matrices learn

redundant information, which has led to the development of pruning techniques that

remove less relevant heads, and models such as FishFormer, which optimize efficiency

by sharing attention matrices among heads. Although these methods achieve greater

efficiency, they may oversimplify the model in some contexts. In this sense, the

proposal of a new GMU-based method may be justified, as it offers a more effective

combination of multimodal information.
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3.4 Discussion

In this chapter, we review various approaches to deal with classification tasks using

multimodal information. So far no other model has tested with only two modalities

in the comic mischief dataset, however, Baharlouei and Solorio (2024) performed

bimodal experiments, showing that the use of three modalities leads to better results.

Although some of previous methodologies have proven to be effective, their limitation

to the use of only two modalities may not be sufficient in certain cases. For example,

the T-SGA model has shown effectiveness and its concept can be applied to several

tasks, but it is restricted to a single modality. Or some other methods that use

a single weighing for the different representations at both the multi-head and self-

attention level.

We address these problems by using more than two modalities for classification

problems, and exploit the correlation between them by means of cross-attention

modules. In addition, we propose a weighting method for each modality to obtain

a better representation, focusing on the most relevant aspects of each modality for

the classification task.

As for the datasets, although some offer three modalities, which is ideal for

our proposal, they tend to focus on tasks such as sentiment analysis or emotion

classification. Therefore, we decided to focus on the comic mischief dataset, which,

as mentioned in Section 3.1.1, provides three modalities and focuses on detecting

questionable content, specifically detecting comic mischief in videos. This dataset

presents a classification challenge due to its multi-label nature and the inherent

subjectivity in its classification, leading to further challenges, such as the fact that

a modality may better classify a category, giving it greater weight or relevance.
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CHAPTER 4

PROPOSED METHOD

This chapter introduces a transformer-based model that utilizes a novel approach for

combining different modalities, both at the self-attention level and at the multi-head

attention level. It is organized into three sections, each concentrating on a particular

element. The first section outlines the proposed method. The second section explains

the feature extraction process for each of the three modalities involved in the task.

Finally, the third section presents our strategy for detecting questionable content,

detailing its general description and implementation specifics.

4.1 Overview

The widespread of multimodal information throughout diverse platforms and apps

has boosted the amounts of multimodal data being generated. This represents a

potential risk to users which can be exposed to inappropriate or harmful content.

Therefore, methods for the identification of this type of content are highly needed.

The proposed method addresses the challenge of detecting comic mischief using a

transformer-based model. It leverages the sequential nature of inputs, focusing on

three modalities: text, audio, and video. Pretrained models are also used to extract

relevant features from the data.
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This study introduces a novel approach to integrate the three modalities to

achieve a contextualized representation. The comic mischief detection task com-

prehends both binary and multi-task aspects, with the latter involving five distinct

target values, each representing a different class of comic mischief. This approach

has several benefits, such as better generalization to different types of data and

better adaptation to content variability. However, it also faces limitations, such as

additional computational complexity and the need for large amounts of labeled data

to efficiently train the models.

4.2 Feature Extraction

Pre-trained models have become a popular tool for feature extraction in machine

learning and data analysis tasks. There are several reasons why these models are

preferred for this task. First, pre-trained models offer low computational cost. Train-

ing a model from scratch can require a significant amount of computational resources

and time, especially when dealing with deep neural networks. By using a pre-trained

model, already optimized models are leveraged, thus reducing the computational cost

associated with feature extraction.

Another reason is the size of the data sets, pre-trained models have often been

trained on large datasets, which allows them to learn robust and general represen-

tations of the data. These models can capture essential features that are useful

in a variety of tasks, even when the input data are limited or come from different

domains than the original dataset. In addition, pre-trained models are available in

many machine learning libraries and platforms, making them easy to implement and

use.

As for the ways to do feature extraction, these can vary according to the needs

and available data. A common way is the direct use of a pre-trained model. In this
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approach, features are extracted directly from the intermediate layers of the model,

allowing to capture information from different levels of abstraction in the data.

Another option is fine-tuning, where the pre-trained model is tuned on the specific

new dataset, allowing the model to learn features more relevant to the particular

task and thus improving performance.

The following are the pre-trained models used in this work for feature coding.

4.2.1 Textual Feature Extraction

Within the domain of textual data, we used BERT (Kenton and Toutanova, 2019)

model, Figure 4.1, to extract textual embeddings. This model is a natural language

processing architecture that uses a bidirectional approach to understand the con-

text of words in a sentence, enabling better understanding of meaning compared

to unidirectional models. It leverages deep learning techniques and transformers to

pre-train on large amounts of text and then adjust to specific tasks such as classifica-

tion, translation and question answering, achieving outstanding results in a variety

of natural language processing applications.

The use of BERT for textual feature extraction is very beneficial. As men-

tioned, BERT is bidirectional, which means that it can analyze the full context of

a word in a sentence, thus capturing the contextualized meaning of each word and

providing richer and more accurate features.

In addition, BERT has pre-training on large text corpora, such as Wikipedia

and books. This allows it to learn complex language patterns and high-level semantic

representations, making it capable of capturing features from a wide variety of texts.

In addition, BERT is versatile and can be adapted to different NLP tasks, such as

text classification, named entity recognition and sentiment analysis, making it a

popular choice for many natural language processing projects.
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Figure 4.1: Feature extraction from BERT. The selection of which one we should use depends on

the task. (Alammar, 2018a).

The feature extraction process starts with the preparation of the input data.

Texts are tokenized using BERT’s specific tokenizer and special tokens are added,

such as ’[CLS]’ at the beginning and ’[SEP]’ at the end of each input. Then, a

pre-trained version of BERT is loaded, which can be the base model or a specific

variant depending on the needs of the task. The tokenized texts are passed through

the BERT model, which processes the text sequences and produces a feature output

for each token.

Another advantage is the use of the WordPiece algorithm, which splits words

into sub-words for an even more detailed representation. This is useful for capturing

words that are not in the vocabulary.

4.2.2 Audio Feature Extraction

Audio feature extraction consists of converting an audio signal into a more manage-

able representation containing information relevant to the desired purpose. Common

techniques for extracting audio features include converting the signal into a spec-
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trogram, which shows the amplitude of frequencies over time, and calculating mel

frequency cepstral coefficients (MFCCs), which capture information about the tim-

bre of the sound based on the mel scale, a perceptual scale of tones.

Other important features include RMS (Root Mean Square) energy and Zero

Crossing Ratio (ZCR), which provide information about the loudness and frequency

of the audio, respectively. Harmonic features such as chromatic features, which

represent how musical notes are present in an audio file, can also be extracted. In

addition, temporal features such as signal energy over time are considered.

In our particular case, as we want to process sound effects, ambient sounds (e.g.

explosions) and dialogues (speech) we use the pretrained VGGish network (Hershey

et al., 2017), because it is useful for extracting generalized audio features, such

as music, sound effects, and ambient noise, etc. as opposed to other models that

focus on specific tasks such as speech recognition. Morover, as the video instances

have a long duration, they were divided into samples of 60 seconds to facilitate the

work. VGGish network is one of the most widely used for extracting audio features

because it combines the robustness of convolution, pooling, and fully connected

layers to capture high and low (MFCCs) frequency patterns in audio data. Thanks

to its design, VGGish can extract audio features from different levels of abstraction,

making it versatile for different audio processing tasks.

Furtheremore, VGGish has a pre-trained model on large audio datasets, giving

a solid foundation for feature recognition on different types of audio and saving time

and resources on training models from scratch.

4.2.3 Video Feature Extraction

Video feature extraction is an essential process for visual content analysis, as it allows

to identify and understand various aspects of videos such as objects, movements,
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actions and contexts. There are several ways to extract video features, among them:

Frame-based extraction processes video frames individually, similar to how

still images are processed. Computer vision techniques such as object detection,

face recognition and image classification are used to extract relevant features from

each frame. However, this method may not capture the continuity and temporality

of the video.

Another technique is optical flow-based extraction, which analyzes motion be-

tween consecutive frames of a video. This analysis allows the extraction of motion

features in the video, which is useful for tasks such as action detection and activity

recognition.

Recurrent neural networks (RNNs) are capable of processing temporal se-

quences of data, such as video, by maintaining an internal state that captures tempo-

ral dependencies. However, RNNs can have efficiency problems and limited capture

of visual information.

Figure 4.2: Overview of the input pre-processing step, showing tokenization and embedding strat-

egy.

In our case, as mentioned previously, we divided video segments into intervals

of 60 seconds, so each interval can be processed. In this way 3D convolutional models

apply 3D convolutional neural networks (CNNs) to data cubes instead of individual

images, see Figure 4.2. These models process video as a 3D volume, considering

both spatial and temporal dimensions, to extract features more accurately.
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The i3D (Inflated 3D Convolutional Network) (Carreira and Zisserman, 2017)

architecture is one of the most widely used for video feature extraction due to its

efficient and effective design. i3D converts 2D operations, such as convolutions, into

3D to process the video in its entirety (both spatially and temporally). In addition,

it can pre-train on large 2D image datasets, such as ImageNet, and then adapt the

model to 3D for videos, which has been shown to improve performance on video

tasks.

i3D combines the ability to capture complex visual features of 2D CNN mod-

els with the temporal analysis of 3D models. This architecture has proven useful

in a variety of applications such as action recognition, event detection and scene

understanding in videos, and is a popular choice for video feature extraction.

4.3 Transformer for Questionable Content Detection

This section describes the proposed cross-attention mechanisms and the usage of a

GMU for combining them. Before that, we describe the base multimodal attention-

based model (MABM) for comic mischief detection that we consider.

4.3.1 Reference model

As a base model, we consider a simplified version of the model proposed by Bahar-

louei and Solorio (2024), a generic diagram is shown in Figure 4.3. We describe this

simplified model with both approaches, binary classification task, and multi-task

model.

The so-called, HIerarchical Cross-attention model with CAPtions (HICCAP)

implements a hierarchical cross-attention (HCA) to combine embeddings of multiple

modalities. It is divided in several stages that are described next.
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Figure 4.3: (a) HICCAP general architecture. (b) The hierarchical attention model implemented

by Baharlouei and Solorio (2024)

Hierachical Cross-Attention (HCA) mechanism

Once the involved modalities have been encoded with descriptors, a hierarchical

cross-attention (HCA) mechanism is adopted (Figure 4.3b). Three HCA modules

are incorporated into HICCAP, each performing cross-attention at multiple levels

to harness the attention across all three modalities, rather than solely focusing on

pairwise attention. HCA facilitates the exploration of complex relationships and

dependencies within the multimodal data, ultimately enhancing the overall fusion

and understanding of the combined modalities. The model concatenates the contex-

tualized outputs of the three HCA mechanisms before classification.

Pretraining and classification

For the classification stage, following the original method, two tasks are considered:

binary and multi-label classification. In the binary task, the objective is to deter-

mine whether a video clip contains comic mischief or not. To accomplish this, a

multilayer perceptron (MLP) model is adopted. On the other hand, the multi-label

classification aims to classify clips into four distinct categories of comic mischief. To
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tackle this task, a separate MLP is employed for each class, implementing a multi-

task learning approach (Crawshaw, 2020). This allows the model to simultaneously

learn and classify the different categories of comic mischief, leveraging the shared

information across tasks to enhance the overall performance.

The HICCAP was pretrained using contrastive learning and multimodal match-

ing tasks. For this work we decided to evaluate the performance of the model when

trained from scratch, this is to reduce the number of factors that may have an impact

on the modeling process.

4.3.2 Parallel cross-attention

The proposed ParCA mechanism, depicted in Figure 4.4a, replaces the HCA module

and aims to enhance the representation of each modality concerning the two other

modalities. This enhancement is performed with two multimodal cross-attention

mechanisms that are then fused, see Figure 4.4a. ParCA comprises two sub-blocks:

cross-attention and self-attention. Cross-attention calculates the attention in parallel

for modality m1 taking modalities m2 and m3 (Equation 4.1).

x2
m1

= softmax
(
Qm1K

⊤
m2√

dk

)
Vm2 , x3

m1
= softmax

(
Qm1K

⊤
m3√

dk

)
Vm3 (4.1)

In Equation 4.1, x2
m1

is the representation of modality m1 based on m2, and

x3
m1

the representation based on m3. Then we employ a residual connection around

the first sub-block, followed by layer normalization for both outputs. The last sub-

block takes the outputs and passes them through standard self-attention to further

enhance the representation of the modality and make it more suitable for classifi-

cation. The outputs of these enhanced attention mechanisms are combined with a

fusion technique.
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(a) Parallel Cross-Attention (b) Gated Multimodal Unit (GMU)

Figure 4.4: a) The proposed ParCA mechanism, consists of two sub-blocks: cross-attention and

self-attention. b) The model of GMU for more than two modalities.

For the fusion we adopted the classical concatenation and sum techniques.

Additionally, we propose the use of a GMU (Arevalo et al., 2020) for learning the

relevance from each of the paths of cross-attention (mote that at this stage, only

x2
m1

and x3
m1

are merged to obtain a final representation of modality m1, since

ParCA replaces HCA module). A GMU learns the importance of the information

from each modality and aims to fuse only the most relevant aspects. Using a GMU

involves the derivation of an intermediate representation by amalgamating data from

diverse modalities. Figure 4.4b illustrates the architecture of a GMU, where each

xi denotes a feature vector linked to modality i. Each feature vector is input to a

neuron with a tanh activation function, aiming to encode an internal representation

feature specific to the modality. For every input modality, xi, there exists a gate

neuron (σ), responsible for regulating the impact of the feature computed from xi

(represented as z) on the overall output of the unit. Upon receiving a new sample,

the gate neuron associated with modality i processes input feature vectors from all

modalities to determine the contribution of the modality i to the internal encoding

of the given input sample.

This weighting mechanism acknowledges that not all modalities contribute

equally, as there may be instances where the audio does not correspond to the visual
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elements or the dialogue in a video. Such discrepancies between modalities can lead

to conflicts or inconsistencies in the information they provide. We repeat this process

to obtain the representations for modalities m2 and m3, respectively, and concate-

nate them at the end, as in the reference model. ParCA is finally incorporated into

the reference model replacing the HCA mechanism.

4.3.3 Transformer model

Different from the HICCAP base model, which contains only one depth level per

modality, as part of our proposed method, we extend the model to a transformer-

based one, increasing the number of both HCA and ParCA modules and structuring

it around encoders, this can offer several significant advantages that improve its

ability to handle and understand multimodal content.

First, transformers and their multiple attention heads are ideal for capturing

complex multimodal dependencies. Using multiple attention heads allows the model

to pay attention to different aspects of the inputs simultaneously, improving the

understanding of interactions between text, audio and video. By increasing the

number of modules, as seen in Figure4.5, this functionality can be emulated, allowing

the model to process information in a more robust and diversified way.

Figure 4.5: Multihead modules for three different modalities.
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In our proposal, we address three different approaches for merging the output

information from each head into a multi-head model. The first approach is con-

catenation, which is the classical and widely used method for combining the output

information from each head.

The second approach is the use of Gated Multimodal Unit (GMU). Inspired by

the ParCA module, we propose the implementation of GMU for merging the outputs

of the heads. The GMU allows learning the contribution of each head adaptively,

differentiating between those that contribute more significantly to the task at hand.

The third approach is head pruning. Following the ideas presented by Voita

et al. (2019), we implemented a head pruning method to weight each head differently,

where each head has a different weight along the different encoders, and each weight

is learned during training. This approach allows discerning the relevance of each

head through a selection process, in which less important heads are eliminated.

Figure 4.6: Transformer-based model for multimodality

Moreover, we increase the structure to one based on encoders, as in Figure4.6.

This structure provides scalability and flexibility to the model. In this way, input

sequences can be processed in parallel. In addition, the modularity of the encoders

makes it easy to extend the model by adding more layers as needed to capture deeper
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and more complex features.
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CHAPTER 5

EXPERIMENTS

This section offers an intricate breakdown of the experiments carried out in the

study, along with an analysis of the outcomes. It also outlines the setups employed,

encompassing a depiction of the dataset and thorough information regarding the

architectural elements of the models.

5.1 Comic Mischief Dataset

For our experimental evaluation we relied on a subset, due to privacy policies, of

the comic mischief dataset introduced by Baharlouei and Solorio (2024). Such a

dataset contains 1-minute clips obtained from YouTube videos that were crawled,

segmented, and manually labeled. By curating a diverse range of videos that encom-

pass these distinct forms of comedic expression, the comic mischief dataset provides

a valuable resource for studying and analyzing the multifaceted nature of humor in

online content. The dataset is labeled according to the following categories:

• Gory humour: it is centered around gruesome or macabre elements. It often

includes exaggerated violence, blood, or graphic imagery for comedic effect.

• Slapstick humour: it is characterized by physical comedy, often involving ex-
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(a) Gory humor (b) Slapstick humor

(c) Mature humor (d) Sarcasm humor

Figure 5.1: Examples of the considered comic mischief categories in cartoons

aggerated and humorous physical actions, gestures, or mishaps. It relies on

visual gags, pratfalls, and absurd or exaggerated physical movements to gen-

erate laughter.

• Mature humour: it is comedy that contains content or themes intended for

mature audiences. It often includes jokes or references that touch upon taboo

subjects, such as sexuality, politics, social issues, or dark humor.

• Sarcasm: it is a form of humour that involves the use of irony, mocking, or

taunting remarks to convey humor or to express a contradictory meaning. It

relies on the delivery of statements that are opposite to what is actually meant,

often with a dry or sharp tone.

Figure 5.1 shows screenshots from clips associated with the considered humor

categories. The dataset is challenging for several reasons, including the multi-faceted

nature of comedic expression across categories and the fact that different categories

can be expressed/distinguished by different information modalities (e.g., for detect-

ing Sarcasm and Mature, language, audio information is often more useful than

the visual one; while for detecting Slapstick humor, visual information tend to be

more useful). The working hypothesis of our work and previous approaches is that
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by effectively leveraging multimodal information (image, audio, and text) one can

develop competitive solutions for this task.

Table 5.1 shows the number of samples available for each of the categories and

for different partitions for developing and evaluating our methods and Table 5.2

provides an overview of the class-level statistics for the video segments. Please note

that this is a multi-label classification task, that is, each clip may contain humor

from more than one category. Also, please note that in previous work the binary

classification task of distinguishing a video containing any comic mischief category

or not has been studied. Accordingly, in this work, we perform experiments for both

classification tasks.

Table 5.1: Samples per partition and per

category: Mature Humour (MH), Slapstick

Humour (SH), Gory Humour (GH) and Sar-

casm (S).

MH SH GH S None All

Train 222 166 86 374 307 1007

Validation 24 18 6 48 31 113

Test 35 19 11 41 30 113

Table 5.2: Statistics for video segments. C0

and C1 stand for class 0 and class 1, respec-

tively.

Max Min Avg Med

C0 C1 C0 C1 C0 C1 C0 C1

# Words 259 266 0 0 106 118 111 125

V/A Length 64.9 71.9 0.1 9.4 54.7 58.6 60.1 60.5

# Frames 1836 2157 1 108 538 658 460 478

We used a subset of the Comic Mischief dataset. Unlike the original method,

we split this subset into three partitions: train (80 %), validation (10 %) and test

(10 %), due to the limitation of the data.

5.1.1 Experimental Setup

To ensure fair comparisons, we used the same metrics used in the reference work: F1-

measure of the positive (comic mischief) in the binary task and macro F1-measure

for the multilabel task.
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The training of models involves the utilization of the Adam optimizer with

a learning rate set at 2e − 5 and a batch size of 16. In this study, we employed

5 distinct random weight initialization choices for all experiments, and the mean

performance based on these random initializations is presented in the results of all

subsequent sections. The model was subjected to 25 epochs for binary tasks and 40

epochs for multi-task scenarios, as it was observed that the validation performance

reaches saturation within these epoch limits.

5.2 Multihead Attention-based Model

Initially, we varied the number of heads from 2 to 12 for a 1-level modal, a range that

is standard in traditional architectures, using the original HCA module. In Figure 5.2

we show the results for the binary task in three different types of combination,

including traditional concatenation, pruning (Voita et al., 2019; Michel et al., 2019)

and GMU, evidencing how the variation in the number of heads significantly affects

the performance of the model. This analysis highlights the importance of optimizing

the number of heads to better capture multimodal correlations.

From this figure we can observe that the concatenation method (green) appears

to have a consistent and somewhat variable trend compared to the other two meth-

ods, as its shaded area is less pronounced. On the other hand, the pruning method

(purple) shows greater variability across the different head number configurations,

which is reflected in its wider shaded area. The GMU method (yellow) appears to

have lower variability, with some fluctuations but not as pronounced as prunning or

concatenation.

In terms of performance, at first glance there does not appear to be a drastic

difference in the average performance of the three methods, as the lines of all three

are relatively close to each other across the graph. However, in the range of 7 to 9
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Figure 5.2: Results varying number of heads from 2 to 12 in Binary Task for each HCA module.

there is similar performance among the three and less variability, indicating that the

appropriate number of heads may be the midpoint.

A similar analysis was conducted with multilabel task, Figure 5.3, using the

same HCA module. Each graphic corresponds to one category in dataset, and the

F1 result in that category varying the number of heads in same range. The same

three methods of fusion are compared.

From this figure, we can observe that the upper left graph (Mature), concate-

nation and GMU maintains steady performance with little fluctuation, while pruning

shows high variability. In the upper right graph (Gory), concatenation has notable

variability with peaks, pruning shows high variability and GMU has significant peaks

and valleys. In the lower left graph (Slpastick), concatenation shows stability in the

central part, pruning is highly variable and GMU has lower variability than pruning

but is not as stable. In the lower right graph (Sarcasm), concatenation is constant
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Figure 5.3: Results varying number of heads from 2 to 12 in Multi Task for each HCA module.

with lower variability, pruning shows high variability and GMU is more stable than

pruning. Overall, concatenation appears to be the most consistent method across

the different classes.

These results suggest that an intermediate number of heads, around 8 to 10,

seems to offer a good balance between performance and stability. Again, the mid-

point may be the right number of heads.
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5.3 Evaluation of Detection Performance

Tables 5.3 and 5.4 show the results obtained by the different variants we tried for

the binary and multilabel tasks, respectively. In both tables we compare the perfor-

mance of the reference model implementing the standard HCA with 1 (first row and

baseline) and 8 (second row) heads with alternatives of the HICCAP model imple-

menting our ParCA mechanism (rows 3 and on). The latter variants use different

fusion strategies for ParCa, namely: concatenation (ParCACon), sum (ParCASum),

and the proposed fusion based on GMU (ParCAGMU). Also, we report the perfor-

mance of models using a single attention head as in the reference model and multi

head models with 8 heads (we tried other numbers of heads but results did not vary

considerably).

Table 5.3: Binary classification results. F1-Score is reported.

F1-Score Binary-Task

Method Num.Heads F1

HICCAP (Baseline) 1 0.7978

HICCAP 8 0.8126

HICCAP - ParCACon 1 0.7874

HICCAP - ParCASum 1 0.8009

HICCAP - ParCAGMU 1 0.8335

HICCAP – ParCACon 8 0.8012

HICCAP – ParCASum 8 0.7898

HICCAP – ParCAGMU 8 0.8146

From Table 5.3, it can be seen that overall the reference model with ParCA

mechanism outperformed the standard HICCAP (baseline) by 3.21% (absolute) in

terms of F1 measure when using the GMU fusion in the binary task. This shows
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the effectiveness of the proposed mechanism in modeling multimodal interaction.

There are only two results out of 6 that did not improve the reference model. In

terms of the fusion strategy, GMU obtained consistently better results than sum

and concatenation. Interestingly, adding multiple attention heads into the baseline

model improved its performance by almost 2%, but adding more layers to the models

based on ParCA did not result in a consistent improvement.

Table 5.4: Multi-class classification results. F1-Score for each class and Average Macro-F1 across

all classes are reported.

F1-Score Multi-Task

Method Num. Heads Mature Gory Slasptick Sarcasm Macro

HICCAP (Baseline) 1 0.6191 0.1769 0.3853 0.7411 0.4806

HICCAP 8 0.5910 0.1831 0.4859 0.7388 0.4997

HICCAP - ParCACon 1 0.6197 0.1917 0.3957 0.7455 0.4882

HICCAP - ParCASum 1 0.6480 0.2814 0.1118 0.1400 0.2953

HICCAP - ParCAGMU 1 0.5790 0.2829 0.3152 0.7486 0.4814

HICCAP – ParCACon 8 0.5717 0.2942 0.3611 0.7391 0.4915

HICCAP – ParCASum 8 0.6250 0.2095 0.3828 0.7395 0.4892

HICCAP – ParCAGMU 8 0.5677 0.3190 0.4797 0.7147 0.5203

Regarding the multilabel task, Table 5.4 shows that this time better results in

Macro F1 were obtained with the multi-head version of the HICCAP with ParCA

mechanism. This result suggests that multimodal interactions are more complex for

this problem, requiring of more attention heads to better model the problem. Also,

please note that different variants obtained the best results in each class.
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5.3.1 Fusion Heads

In this section, we evaluate the effectiveness of the head weighting methods presented

in Section 4.3.3 (Figure 4.5). Three different methods were implemented for the com-

bination of attention heads: Concatenation, Pruning, and GMU. Each modality was

tested with the above methods: HICCAP - HCA1, HICCAP - ParCACon, HICCAP

- ParCASum, and HICCAP - ParCAGMU.

Table 5.5 shows the F1 scores in binary task for three different ways of weight-

ing heads, with the number of heads set to 8. The table compares the performance

of different methods (HICCAP - HCA, HICCAP - ParCACon, HICCAP - ParCA-

Sum, HICCAP - ParCAGMU) under three head fusion approaches: Concatenation,

Pruning and GMU.

With the concatenation method, it is observed that the HICCAP - ParCAGMU

method obtains the highest F1 score. This suggests that, for the concatenation

technique, the ParCAGMU approach has a slight superior performance compared to

the other methods.

In the GMU technique, it stands out that the HICCAP - ParCASum method

achieves the highest F1 score in the whole table. The pure HICCAP method has

the lowest score in this section. This suggests that, under the GMU technique, the

ParCA-based methods significantly outperform the unmodified HICCAP method.

However, the use of pruning is where the lowest results are obtained in general,

highlighting the results obtained in the original study (Voita et al., 2019), where it

is found that the method is more effective when training with all the heads and in

the fine-tuning process it is better to pruning.

Although the effectiveness of the methods varies considerably depending on the
1It is important to mention that HICCAP - HCA is using the baseline module HCA, not the model, the

module was increased by eight times for this experiments. Also the ParCA modules.
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Table 5.5: F1-Score in binary task for three different ways of weighting heads. Number of heads

was set to 8.

Fusion Heads Method F1

Concatenation

HICCAP 0.8126

HICCAP - ParCACon 0.8012

HICCAP - ParCASum 0.7898

HICCAP - ParCAGMU 0.8146

Pruning

HICCAP 0.7720

HICCAP - ParCACon 0.7629

HICCAP - ParCASum 0.7645

HICCAP - ParCAGMU 0.6948

GMU

HICCAP 0.7937

HICCAP - ParCACon 0.8247

HICCAP - ParCASum 0.8286

HICCAP - ParCAGMU 0.8228

head fusion technique used. The GMU technique appears to be the most promis-

ing in terms of achieving the highest F1 score, especially when combined with the

ParCASum method.

Table 5.6 shows the F1 scores in multi-task task for the same three ways of

weighting heads, with the number of heads set to 8. The methods compared are the

same as in the previous task evaluated in four categories (Mature, Gory, Slapstick,

Sarcasm) and an overall Macro-F1.

In the concatenation method, the HICCAP - ParCASum method excels in

the Mature category, while HICCAP - ParCAGMU leads in Gory. HICCAP -

ParCAGMU also obtains the best score in Slapstick. In terms of the Macro-F1
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Table 5.6: F1-Score in multi-task for three different ways of weighting heads. Number of heads

was set to 8.

Fusion Heads Method Mature Gory Slapstick Sarcasm Macro-F1

Concatenation

HICCAP 0.5910 0.1831 0.4859 0.7388 0.4997

HICCAP - ParCACon 0.5717 0.2942 0.3611 0.7391 0.4915

HICCAP - ParCASum 0.6520 0.2095 0.3828 0.7395 0.4892

HICCAP - ParCAGMU 0.5677 0.3190 0.4797 0.7147 0.5203

Pruning

HICCAP 0.6215 0.1467 0.3787 0.7290 0.4690

HICCAP - ParCACon 0.5128 0.1478 0.3347 0.6665 0.4155

HICCAP - ParCASum 0.5369 0.2345 0.4128 0.6985 0.4708

HICCAP - ParCAGMU 0.4450 0.0814 0.2882 0.6262 0.3602

GMU

HICCAP 0.5718 0.2701 0.4331 0.7429 0.5045

HICCAP - ParCACon 0.2726 0.1746 0.2410 0.4551 0.2858

HICCAP - ParCASum 0.4705 0.1895 0.3312 0.6321 0.4058

HICCAP - ParCAGMU 0.5457 0.2838 0.4578 0.7036 0.4977

score, HICCAP - ParCAGMU is the highest, suggesting that for the concatenation

technique, this method is the most effective overall.

From this table we can see the trend of pruning not having an improvement over

the other fusion methods, however, it obtains results not so far from the baseline.

In the GMU technique, HICCAP scores the highest in the Sarcasm category.

This suggests that the pure HICCAP method is quite robust in the GMU technique,

especially in categories where sarcasm and slapstick are prominent.

Analyzing the data globally, it is observed that the performance of HICCAP -

ParCAGMU is superior in the concatenation technique against the GMU technique,

showing the best overall Macro-F1. This may be due to different reasons, our hy-

pothesis is that when implementing the ParCAGMU module it already contains the

necessary information and, not being a deep model, concatenation offers a simple
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fusion unlike GMU which may have an overload of parameters, leading to lower

performance.

5.3.2 Transformer-based Models

On the other hand, we performed experiments on a deep model, following the archi-

tecture of Section 4.3.3 (Figure 4.6). The experiments were performed on the same

dataset and with the same evaluation metrics in both tasks. The evaluation was

performed using a configuration with 8 attention heads as well as 1 and 5 encoders,

ensuring good performance at different depth levels while varying head weighting

techniques.

Table 5.7 presents the F1-Score results on the binary task using an encoder-

based model with the three head weighting methods: Concatenation, Pruning and

GMU.

In the Concatenation method, it is observed that the HICCAP - ParCA-

Con method achieves the highest F1-Score, outperforming both HICCAP and the

other ParCA variants. While in the Pruning and GMU methods the HICCAP -

ParCAGMU method achieves the best result in both cases. This suggests that the

ParCAGMU method is more effective in combining heads compared to the other two

methods.

Overall, the Pruning with HICCAP - ParCAGMU strategy emerges as the

most effective, this can be attributed to the reduction of redundancy and an effective

combination of selected heads of care.

In Table 5.8 we can see the results using 5 encoders, with the same head merging

techniques. From this table we can see that the results vary from the previous table.

Mainly, the HICCAP - ParCAGMU method is the one that obtains worse
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Table 5.7: F1-Score in binary task for three different ways of weighting heads using encoder-based

model

Fusion Heads Method Num. Heads/Encs F1

Concatenation

HICCAP 8/1 0.8069

HICCAP - ParCACon 8/1 0.8152

HICCAP - ParCASum 8/1 0.8124

HICCAP - ParCAGMU 8/1 0.7634

Pruning

HICCAP 8/1 0.8140

HICCAP - ParCACon 8/1 0.8114

HICCAP - ParCASum 8/1 0.8009

HICCAP - ParCAGMU 8/1 0.8187

GMU

HICCAP 8/1 0.8102

HICCAP - ParCACon 8/1 0.8093

HICCAP - ParCASum 8/1 0.7853

HICCAP - ParCAGMU 8/1 0.8096

results in Pruning and GMU techniques, while with the HICCAP - ParCASum

Concatenation technique is the one that obtained the best performance in general.

This improvement can be attributed to a number of factors including a higher

representation capacity thanks to the use of 5 encoders, a deeper and more diversified

attention, the effectiveness of the concatenation fusion technique, and the specific

improvements introduced by the HICCAP - ParCASum method. While the decline

of the HICCAP - ParCAGMU method may be due to a combination of increased

complexity, incompatibility of GMU with complex environments, negative impacts of

pruning on feature representation, and challenges in multimodal information fusion.

Regarding the Multi-Task classification, Tables 5.9 and 5.10 present the F1-
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Table 5.8: F1-Score in binary task for three different ways of weighting heads using encoder-based

model

Fusion Heads Method Num. Heads/Encs F1

Concatenation

HICCAP 8/5 0.8037

HICCAP - ParCACon 8/5 0.8274

HICCAP - ParCASum 8/5 0.8453

HICCAP - ParCAGMU 8/5 0.7302

Pruning

HICCAP 8/5 —-

HICCAP - ParCACon 8/5 0.8158

HICCAP - ParCASum 8/5 0.6299

HICCAP - ParCAGMU 8/5 0.5918

GMU

HICCAP 8/5 0.8045

HICCAP - ParCACon 8/5 0.8078

HICCAP - ParCASum 8/5 0.8056

HICCAP - ParCAGMU 8/5 0.7985

Score results using an encoder-based model. Table 5.9 shows the results obtained

with a single encoder, while Table 5.10 presents the results with five encoders. The

categories evaluated are Mature, Gory, Slapstick, Sarcasm, as well as Macro-F1, and

different methods and configurations are compared.

From Table 5.9, we can see that there is no one method that is better in all

categories, or at least in most of them, however, in the Pruning technique it is the

HICCAP - ParCACon method that obtains the best average results (Macro-F1).

Although this method did not obtain the best results per class, it is competitive

with respect to the others, suggesting that the pruning method may be effective in

deep models.
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Table 5.9: F1-Score in multi-task for three different ways of weighting heads using encoder-based

model.

Fusion Heads Method Num. Heads/Encs Mature Gory Slapstick Sarcasm Macro-F1

Concatenation

HICCAP 8/1 0.6317 0.1073 0.4508 0.7405 0.4828

HICCAP - ParCACon 8/1 0.6038 0.2407 0.3621 0.7548 0.4904

HICCAP - ParCASum 8/1 0.5921 0.2550 0.4226 0.7467 0.5041

HICCAP - ParCAGMU 8/1 0.5988 0.1615 0.3914 0.7222 0.4685

Pruning

HICCAP 8/1 0.6105 0.1450 0.4030 0.7291 0.4719

HICCAP - ParCACon 8/1 0.6168 0.2627 0.4479 0.7539 0.5203

HICCAP - ParCASum 8/1 0.5988 0.2484 0.4567 0.7559 0.5124

HICCAP - ParCAGMU 8/1 0.6055 0.2418 0.3279 0.7209 0.4740

GMU

HICCAP 8/1 0.6230 0.1888 0.4102 0.7262 0.4871

HICCAP - ParCACon 8/1 0.6260 0.1433 0.3838 0.7217 0.4687

HICCAP - ParCASum 8/1 0.5986 0.2126 0.4878 0.7136 0.5032

HICCAP - ParCAGMU 8/1 0.6088 0.1901 0.4148 0.7323 0.4865

In Table 5.10, with five encoders, the results show improvements in a couple

of categories over the previous table.

For example, an improvement is obtained in Gory using the ParCASum method

with the GMU fusion method, while in Mature an improvement was obtained using

the HCA method and the GMU technique. The rest did not obtain improvements

but remain close to the previous results. It is noteworthy that the improvement was

obtained using the GMU fusion technique with the ParCASum method.

In general, the results indicate that the use of multiple encoders tends to im-

prove performance in some of the categories, obtaining a better result on average.

However, the encoder-based model significantly increases the computational cost,

increasing the processing time by up to 8 hours compared to the base model that

only uses a single layer. For example, when using 8 heads compared to the base

model, the processing time increases by approximately four hours. Despite this con-

siderable increase in time and resources required, the cost/benefit is favorable. This
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Table 5.10: F1-Score in multi-task for three different ways of weighting heads using encoder-

based model.

Fusion Heads Method Num. Heads/Encs Mature Gory Slapstick Sarcasm Macro-F1

Concatenation

HICCAP 8/5 0.3648 0.0500 0.1719 0.3528 0.2349

HICCAP - ParCACon 8/5 0.5973 0.2587 0.3489 0.7525 0.4893

HICCAP - ParCASum 8/5 0.6022 0.3546 0.3435 0.7178 0.5030

HICCAP - ParCAGMU 8/5 0.5717 0.3540 0.3569 0.6747 0.4893

Pruning

HICCAP 8/5 0.3648 0.0500 0.1719 0.3528 0.2349

HICCAP - ParCACon 8/5 0.5701 0.2054 0.3506 0.7512 0.4693

HICCAP - ParCASum 8/5 0.5714 0.1961 0.3846 0.7097 0.4654

HICCAP - ParCAGMU 8/5 0.5580 0.3091 0.3679 0.6048 0.4825

GMU

HICCAP 8/5 0.6416 0.1519 0.3474 0.7454 0.4716

HICCAP - ParCACon 8/5 0.5712 0.1884 0.3434 0.7295 0.4581

HICCAP - ParCASum 8/5 0.6167 0.4443 0.3762 0.6944 0.5342

HICCAP - ParCAGMU 8/5 0.5907 0.3201 0.3746 0.7089 0.5074

increase in computational cost translates into more accurate performance, improving

the model’s ability to generalize and adapt to different contexts and data.

5.3.3 Analysis of results

In this section, we present a detailed analysis of the results obtained by applying

different configurations and head fusion techniques for a binary and multi-task. The

results varied significantly depending on the number of modules, the use of encoders

and the fusion techniques employed. Also, as comic mischief dataset. Furthermore,

as the comic mischief dataset has only been tested with the HICCAP model we

limited ourselves to direct comparison, although in the original method they were

compared with other multimodal approaches, HICCAP was able to improve perfor-

mance over the rest.
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Binary Task:

Table 5.11 shows the summarized results for the binary task of all the previous

experiments. We can notice that the use of a single ParCAGMU module without

encoders shows a high F1-Score. The simplicity of this configuration can be bene-

ficial to avoid overcomplication of the model, which can sometimes lead to better

performance on specific tasks.

Table 5.11: The best results for each of the different models for binary task. None is specified

when that attribute does not apply.

Method Multi-head Fusion Type Num. Heads/Encs. F1

HICCAP - ParCAGMU None 1/None 0.8335

HICCAP - ParCASum GMU 8/None 0.8286

HICCAP - ParCAGMU Pruning 8/1 0.8187

HICCAP - ParCASum Concatenation 8/5 0.8334

Using multiple heads and different fusion techniques did not improve the re-

sult significantly compared to using a single head. This could be because simply

adding more heads without encoders does not provide a much richer rendering ca-

pability, and the concatenation technique may not be the most effective technique

for combining information from these multiple heads.

Despite this, when using the encoder-based models, a better result was obtained

in the deeper model using the ParCASum module with the GMU fusion technique.

The use of this configuration probably allowed a better representation and capture

of the relevant features in the data.
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Multi-Task:

In multi-tasking classification, we summarize the results of previous experiments in

Table 5.12. Here, the Macro-F1 results when using different configurations and head

fusion techniques show variations that merit in-depth analysis.

The use of the ParCAGMU module augmented up to eight times obtained equal

performance (on average) to the use of the ParCACon module with the encoder-

based model using the Pruning fusion method. While these results are equal, we can

note that for the former method, although concatenation can combine information

from multiple heads, it does not necessarily optimize the combination of features to

improve overall performance on all tasks.

Table 5.12: The best results in the different models for multi task. None is specified when that

attribute does not apply.

Method Multi-head Fusion Type Num. Heads/Encs. Mature Gory Slapstick Sarcasm Macro

HICCAP - ParCAGMU Concatenation 8/None 0.5677 0.3190 0.4797 0.7147 0.5203

HICCAP - ParCACon Pruning 8/1 0.6168 0.2627 0.4479 0.7549 0.5203

HICCAP - ParCASum GMU 8/5 0.6167 0.4443 0.3762 0.6944 0.5342*2

While in the second configuration, the use of a single encoder, together with

pruning, may not provide a significant advantage in head fusion for this specific

configuration. It is possible that a single encoder may not be sufficient to effectively

capture and combine the relevant information from all heads.

Finally, the GMU head fusion method implemented to the encoder-based model

performed the best of all, as shown in Table 5.12, this can be attributed to better

feature representation and that the GMU technique provides a more sophisticated

and dynamic combination of information from multiple heads.
2Using the Friedman test to evaluate whether there were statistically significant differences between

the models. No significant differences were found, suggesting that the performance of the three models is

comparable.
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Overall, the results indicate that the use of GMU really works and is particu-

larly effective in binary and multi-task classification, because of its ability to combine

different representations in a weighted and dynamic way makes this technique effec-

tive. Not only at the multi-head level, but also within the ParCA module.

5.3.4 Effect of GMU

Here we will perform a detailed analysis on the use of GMU in the classification stage

for the different categories using various modules. This analysis aims to evaluate the

relevance of each of the final representations per modality in the classification of

each category.

In Table 5.13, the average values of the σ gates per modality and category

are presented. These results allow us to observe how GMU assigns different weights

to the modalities depending on the method used. For example, in the "Gory" and

"Slapstick" categories, the HCA module gives less importance to the visual part.

This is somewhat counterintuitive, as the samples in both categories are predomi-

nantly visual. This undervaluation of the visual modality could be the cause of the

poor classification performance of these categories when using the HCA module.

In contrast, the ParCACon module gives greater weight to the visual modality

for the classification of these specific classes. However, for the rest of the categories,

ParCACon maintains a more balanced approach, assigning a more balanced weight

to each modality.

The ParCAGMU module, which obtained the best overall classification results,

shows an interesting trend. For the "Mature" category, ParCAGMU assigns greater

weight to Audio and Image information. This makes sense, since the topics cov-

ered in this class (drugs, sexual topics, alcoholism, etc.) are associated with facial

expressions and tone of voice.
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Table 5.13: Analysis of the use of GMU module for each category at the classification stage

using the four different modules. Best results per category are in bold and best results per row

are in italic. 0.0 and 1.0 values means the lowest and the highest importance for each category,

respectively.

Method Modalities
Value of z

Mature Gory Slapstick Sarcasm

HCA

Text 1.0 1.0 0.6209 1.0

Image 0.0 0.0 0.0 0.6599

Audio 0.8067 0.2508 1.0 0.0

ParCACon

Text 1.0 0.0 0.0 0.8347

Image 0.0 1.0 1.0 1.0

Audio 0.1286 0.6565 0.004 0.0

ParCASum

Text 0.7112 1.0 0.8350 0.0

Image 1.0 0.4118 1.0 1.0

Audio 0.0 0.0 0.0 0.9784

ParCAGMU

Text 0.0 1.0 0.0 0.4207

Image 0.5794 0.0 1.0 1.0

Audio 1.0 0.4356 0.9455 0.0

On the other hand, in the "Gory" and "Slapstick" categories, ParCAGMU

assigns nearly equal weights to each modality. Although this might seem unfavorable,

given that these classes might be dominated by a single modality, this balanced

approach can be beneficial. By avoiding bias toward a single modality, GMU may

be compensating to improve overall model performance across all classifications.

Figure 5.4 shows the heatmaps by category of the ParCAGMU module. These

heat maps provide a clearer view of how GMU determines the relevance of each
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modality in the classification process.

(a) Mature humor (b) Gory humor

(c) Slapstick humor (d) Sarcasm humor

Figure 5.4: Heat-maps of the relevance of each modality in the classification stage for each cat-

egory using the GMU fusion in Parallel Cross-Attention module (ParCAGMU). Each map has

values from 0 to 756 which is the dimension of each input vector.

By looking at these heat maps, we can notice the different values that each

σ input takes on and how these values influence the importance that GMU assigns

to each modality. The heat maps reveal specific patterns, highlighting the most

essential parts for each category. This allows us to better understand how GMU

tailors its approach depending on the category and modality, optimizing the ranking

process by focusing on the most relevant elements.
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Example of z values

Here, we present a specific example involving gory and slapstick humor that is in

comic mischief dataset. Figure 5.5a shows a frame extracted from a clip showing

kicks or punches, and the frame shown is a policeman sprayed with pepper spray.

(a) An example of gory humor in comic

mischief dataset.

(b) Heatmap of each module in the HIC-

CAP model for this specific example.

Figure 5.5: Heatmap of the relevance of each modality in the classification stage for each module

in HICCAP model.

Figure 5.5b shows σ values for each modulea at the classification stage. We

can notices that these σ values vary significantly between different modules and

modalities, and as this is clip contains more visual elements image modality could

have more weight. For instance, with ParCASum module audio modality has more

weight than the others, and GMU is able to dynamically adjust the importance of

each modality according to the unique characteristics of this instance, as GMU works

at an instance level.

In summary, these results demonstrate ability of GMU to dynamically adapt

to the relevance of each modality according to the specific needs of each category,

thus optimizing the multimodal classification process.
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5.4 Results in Additional Datasets

In this section we will analyze the effectiveness of using different evaluated modules

on different datasets, as well as on various tasks. It is important to examine how these

modules behave in different scenarios to understand their versatility and robustness.

In addition, these datasets contain multimodal information, which is the central

purpose of this work.

For this study we used a tool called MultiBench. MultiBench offers features of

multimodal datasets previously collected and pre-processed from different datasets

to be able to work with them independently or with vanilla models that it also offers.

In our case, we specifically worked with the CMU-MOSI and CMU-MOSEI datasets

as they offer text, audio and video modalities.

These datasets are benchmarks commonly used to evaluate various methods.

They consist of opinion videos extracted from YouTube, and the main task associated

with this data is sentiment analysis. Each video is evaluated on a scale of [-3, 3],

where each value indicates a different emotion. As baselines we used the model

proposed by Hazarika et al. (2020) (MISA) and the model proposed by Tsai et al.

(2019) (MulT).

Both MOSI and MOSEI are primarily regression tasks using the mean absolute

error (MAE). In addition, the benchmark also includes classification scores covering

seven-class accuracy (Acc-7) with a range of -3 to 3, binary accuracy (Acc-2) and

F-Score. For binary accuracy scores, two different approaches have been consid-

ered in the past. The first is negative/non-negative classification, where labels for

non-negatives are based on scores ≥ 0 (Zadeh et al., 2018a). In recent work, bi-

nary accuracy is calculated using a more precise negative/positive class formulation,

where negative and positive classes are assigned for sentiment scores < 0 and > 0,

respectively (Tsai et al., 2019). We report results on both metrics using the seg-
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mentation marker -/-, where the score on the left-hand side is for the neg./non-neg.

classification, while the score on the right-hand side is for the neg./pos. classification.

In addition, a pre-training was performed on other MultiBench datasets, UR-

FUNNY (Hasan et al., 2019) and MUStARD (Castro et al., 2019), using the match-

ing tasks method in Figure 4.3. In these results, pre-training was performed on both

datasets and subsequently fine-tuning was performed on the corresponding dataset.

Table 5.14 presents the results obtained for the CMU-MOSI dataset. In this

particular case, we employed an encoder-based model with an 8-head configuration

and a single encoder. In addition, we used the GMU technique for the fusion of

the different modules. Due to the number of instances contained in the CMU-MOSI

dataset, we considered that this configuration would be the most suitable to handle

the volume of data.

Table 5.14: Results for CMU-MOSI dataset using Mean Absolute Error (MAE), Accuracy top 2,

Accuracy top 7 and F1 Score metrics. ⊗ from Tsai et al. (2019).

Fusion Heads Method Num. Heads/Encs. Pre-Trained MAE (↓) Acc-2 (↑) F1 (↑) Acc-7 (↑)

GMU

HCA 8/1 No 0.8154 0.8000 / 0.8174 0.7999 / 0.8180 0.4084

HCA 8/1 Yes 0.8065 0.7991 / 0.8159 0.7992 / 0.8165 0.4131

ParCACon 8/1 No 0.8093 0.8020 / 0.8216 0.8019 / 0.8222 0.4087

ParCACon 8/1 Yes 0.8223 0.7950 / 0.8116 0.7949 / 0.8121 0.4050

ParCASum 8/1 No 0.8084 0.8085 / 0.8259 0.8083 / 0.8264 0.4134

ParCASum 8/1 Yes 0.8166 0.7986 / 0.8152 0.7984 / 0.8157 0.4114

ParCAGMU 8/1 No 0.8090 0.8067 / 0.8238 0.8067 / 0.8243 0.4076

ParCAGMU 8/1 Yes 0.8245 0.8038 / 0.8219 0.8035 / 0.8223 0.4044

MFM⊗ (Tsai et al., 2018) 0.951 0.7810 / - 0.7810 / - 0.3620

RAVEN⊗ (Wang et al., 2019) 0.9150 0.780 / - 0.7660 / - 0.3220

RMFN⊗ (Liang et al., 2018) 0.9220 0.7840 / - 0.780 / - 0.3830

MCTN⊗ (Pham et al., 2019) 0.9090 0.7930 / - 0.7910 / - 0.3560

MulT (Tsai et al., 2019) 0.8710 - / 0.830 - / 0.8280 0.40

MISA (Hazarika et al., 2020) 0.7830 0.8180 / 0.8340 0.8170 / 0.8360 0.4230

From the results obtained, we can observe that the use of the pre-trained model
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actually led to worse results compared to the results obtained by training the model

from scratch. This suggests that, in this particular case, the pre-trained model did

not provide significant advantages and, in fact, may have limited the performance

of the system.

However, when analyzing the results of the ParCASum module, we can see

that this module obtains good results when trained from scratch, outperforming the

rest of the methods evaluated in this study. This indicates that ParCASum has

significant potential when allowed to learn and adapt from scratch.

Table 5.15 presents the results obtained for the CMU-MOSEI dataset with a

similar configuration as in the previous table, just changing the number of ecnoders

from one to five for this dataset due to the number of instances in it.

Table 5.15: Results for CMU-MOSEI dataset using Mean Absolute Error (MAE), Accuracy top

2, Accuracy top 7 and F1 Score metrics. ⊗ from Tsai et al. (2019).

Fusion Heads Method Num. Heads/Encs. Pre-Trained MAE (↓) Acc-2 (↑) F1 (↑) Acc-7 (↑)

GMU

HCA 8/5 No 0.5476 0.8099 / 0.8533 0.8159 / 0.8536 0.5215

HCA 8/5 Yes 0.5425 0.8131 / 0.8577 0.8190 / 0.8580 0.5240

ParCACon 8/5 No 0.5446 0.8075 / 0.8517 0.8138 / 0.8522 0.5206

ParCACon 8/5 Yes 0.5439 0.8075 / 0.8526 0.8138 / 0.8531 0.5231

ParCASum 8/5 No 0.5432 0.8072 / 0.8518 0.8135 / 0.8523 0.5215

ParCASum 8/5 Yes 0.5434 0.8092 / 0.8534 0.8154 / 0.8538 0.5201

ParCAGMU 8/5 No 0.5430 0.8112 / 0.8546 0.8172 / 0.8549 0.5261

ParCAGMU 8/5 Yes 0.5479 0.8084 / 0.8510 0.8145 / 0.8514 0.5197

RAVEN⊗ (Wang et al., 2019) 0.6140 0.7910 / - 0.7950 / - 0.50

MCTN⊗ (Pham et al., 2019) 0.6090 0.7980 / - 0.8060 / - 0.4960

Graph-MFN⊗ (Zadeh et al., 2018b) 0.710 0.7690 / - 0.770 / - 0.450

MulT (Tsai et al., 2019) 0.580 - / 0.8250 - / 0.8230 0.5180

MISA (Hazarika et al., 2020) 0.5550 0.8360 / 0.8550 0.8380 / 0.8530 0.5220

From the results obtained, we can observe that, in this particular case, the use

of the pre-trained model led to good results compared to the results obtained by

training the model from scratch. This improvement is especially noticeable when

74



using the HCA module. The results suggest that the pre-trained model offers signif-

icant advantages in terms of performance when integrated with this specific module.

In fact, when comparing the results with the baseline MISA, a noticeable im-

provement is observed in the MSE and Acc-7 metrics. In addition, when analyzing

the Acc-7 and F1 Score metrics in the binary classification of positive/negative (right

side), the best improvements were also obtained. These improvements indicate that

the use of the pre-trained model has not only optimized the accuracy of the system,

but also increased its ability to correctly classify in more challenging and diverse

scenarios.

On the other hand, these similar results between MISA and HICCAP-HCA

models can be attributed to the way both of them process the information. While

MISA takes modality-invariant and -specific sub-spaces to process the modalities and

to obtain six different representations (two per modality), HICCAP-HCA focus on

process each modality jointly with the other two obtaining one final representation

per modality, leading to a less complex sub-spaces.

Despite these results, it is important to note that this is not completely conclu-

sive. There are methods in the state of the art that still show superior performance,

such as the baseline MISA method for the CMU-MOSI dataset. Nevertheless, our

model stills competitive and open to exploration and optimization to reach or even

surpass the performance levels of the different methods in the state of the art.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this study, we addressed the problem of detecting questionable content in videos

using multimodal information. We focused specifically on the detection of humorous

pranks, a crucial task because these jokes may cross the line into inappropriate

or dangerous behaviors. The diverse and complex nature of questionable content

requires a detailed analysis of multiple modalities such as audio, text and images,

allowing us a more complete and accurate representation of the videos. For this,

we developed an innovative module called Parallel Cross-Attention (ParCA), which

simultaneously handles three modalities and allows for parallel and equal integration,

capturing details that could be missed if analyzed in isolation.

Our proposal represents a significant advance over previous methods such as

Hierarchical Cross-Attention (HCA), as ParCA operates in a more coordinated and

simultaneous manner. This improves efficiency and accuracy in detecting question-

able content by reducing information loss and improving consistency in content in-

terpretation. In addition, we introduced a new way of combining multimodal in-

formation, tailored to improve this detection by dynamically adjusting the weights

of each modality according to the context of the video. This approach not only

improves the identification of comical pranks, but also of other types of questionable

content, providing a useful tool for video moderation on various platforms.
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Moreover, we explored transformer-based architectures to evaluate several vari-

ants of Multihead Attention-Based Models (MAMBs) in terms of depth, number of

heads, and fusion schemes. The results revealed that ParCA significantly outper-

formed HCA in detection, highlighting its ability to capture complex interactions

between modalities. GMU adoption also proved to be more effective than conven-

tional multimodal fusion approaches.

The encoder-based model demonstrated general effectiveness, although its per-

formance may vary depending on the depth and specific architecture required for each

task. We evaluated our approach on several MultiBench datasets, identifying both

strengths and potential areas for improvement over the current state of the art.

The conclusions of this contribution are as follows:

• ParCA outperformed HCA in the detection of comic mischief, suggesting our

proposed mechanism better captures the interaction across modalities.

• The use of a GMU outperformed the standard concatenation for the fusion of

multimodal attention mechanisms.

• The ParCA module adapts well to different tasks and datasets with competitive

results.

• The GMU module actually captures different dependencies from different modal-

ities.

• The usefulness of adding multiple encoders into the reference model was not

clear in the different datasets.

• The usefulness of pre-training approach is not clear for encoder-based models.

• The relevance of each modality is important when classifying the type of humor,

since in certain instances one modality may predominate more than another.
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As future work, we plan to extend our testing to datasets that address other

types of questionable content, such as hate speech and violence detection, in both

binary classification and multi-task classification tasks. We also intend to conduct

a more detailed comparison with leading state-of-the-art models that handle more

than two modalities, trying to further improve our approach to achieve even better

and generalizable performance. In addition, we would like to develop explainable

models for the detection of different types of questionable content.
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