

Biblioteca de Espectros Estelares de MEGARA: Muestra 2

por

Marco Antonio Lira Franco

Tesis sometida como requisito parcial para obtener el grado de

MAESTRO EN CIENCIAS en la especialidad de ASTROFÍSICA

en el

Instituto Nacional de Astrofísica, Óptica y Electrónica

Tonantzintla, Puebla

Supervisada por:

Dra. Bertha Esperanza Carrasco Licea Investigadora - INAOE

©INAOE 2024 Derechos reservados El autor otorga al INAOE el permiso de reproducir y distribuir copias de esta tesis en su totalidad o en partes mencionando la fuente

Índice general

A	bstra	ct		III
R	esum	en		v
1.	Intr	oducci	ión	1
2.	Cat	álogo (de la Muestra 2	7
3.	Obs	ervaci	ones de la Muestra 2	13
4.	Red	ucción	de los espectros	17
	4.1.	Prepa	ración del entorno de trabajo	18
	4.2.	Organ	ización y creación de la estructura de reducción	19
		4.2.1.	Nivel superior: carpeta del objeto	20
		4.2.2.	Archivo de control control.yaml	20
		4.2.3.	Carpeta de calibraciones	23
		4.2.4.	Subcarpeta del objeto	27
		4.2.5.	Extracción de información del archivo de control de calidad	28
	4.3.	Identit	ficadores y estructura de archivos de recetas	28
		4.3.1.	Receta bias	29
		4.3.2.	Ejecución de la receta	30
		4.3.3.	Generación y uso de carpetas resultantes	30
		4.3.4.	Receta TraceMap	31
		4.3.5.	Ejecución de la receta	32
		4.3.6.	Generación y uso de carpetas resultantes	32

		4.3.7. Receta ModelMap	33
		4.3.8. Ejecución de la receta	34
		4.3.9. Generación y uso de carpetas resultantes	34
		4.3.10. Parámetro extraction_offset	34
		4.3.11. Receta WaveCalib	35
		4.3.12. Ejecución de la receta	36
		4.3.13. Generación y uso de carpetas resultantes	37
		4.3.14. Receta FiberFlat	37
		4.3.15. Ejecución de la receta	38
		4.3.16. Generación y uso de carpetas resultantes	38
	4.4.	Calibración en flujo	39
		4.4.1. Receta LcbAcquisition	39
	4.5.	Procesamiento de la estrella estándar	40
	4.6.	Aplicación de calibraciones a la estrella estándar	42
	4.7.	Aplicación de calibraciones a las estrellas observadas	43
	4.8.	Visualización y extracción de espectros con MEGARA QLA	44
	4.9.	Semiautomatización del proceso de reducción de datos	47
5.	Res	ultados	51
	5.1.	Variaciones en las líneas espectrales $H\alpha$, triplete de Ca II y las bandas	
		moleculares en función del tipo espectral	52
	5.2.	Rectificación de los espectros	61
	5.3.	Corrección por velocidad radial	61
	5.4.	Obtención de los parámetros estelares	63
6.	Con	clusiones	65
Ín	dice	de figuras	67
Ín	dice	de cuadros	71
Bi	bliog	rafía	73

Abstract

MEGARA is a fiber-fed spectrograph offering integral field and multi-object spectroscopy in the visible range. Installed at the 10.4-meter Gran Telescopio Canarias, It provides medium to high spectral resolutions of $R_{FWHM} \approx 6000$ and $R_{FWHM} \approx 12000$, covering a wavelength range from 3650 to 9700 Å, and $R_{FWHM} \approx 20000$ in the HR-R spectral configuration, centered at the H α line (6420 - 6790 Å), and HR-I, centered at the Ca II triplet (8370 - 8885 Å).

MEGASTAR is an empirical stellar spectral library, created through observations with MEGARA, required for the correct interpretation of spectra of star clusters and galaxies obtained with this instrument. The library spectra and the stellar parameters derived from them will be used to compute stellar population synthesis models. In its first public release, MEGASTAR included spectra of 414 stars observed with $R_{FWHM} \approx 20000$ in the spectral configurations HR-R, centered on H α (6420-6790 Å), and HR-I, centered on the CaII triplet (8370-8885 Å).

This work presents 1988 spectra from a set of 994 stars, namely Sample 2, observed in HR-R and HR-I after the first MEGASTAR release. The distributions of spectral types and stellar parameters for this new set of stars, obtained from the library's database, are described. I summarize the observations from *filler* mode over seven semesters, covering a total of 334 hours of observation. Additionally, the data reduction process and the development of a new semi-automatic method that improves the speed of this process are presented. An atlas with HR-R and HR-I spectra for each star in Sample 2 is also included. In addition to the 1988 spectra, there are 12 spectra corresponding to six stars observed twice, as well as the spectra of seven stars observed in only one spectral configuration, resulting in a total of 2007 spectra. _____

Resumen

MEGARA es un espectrógrafo alimentado por fibras ópticas que ofrece espectroscopía de campo integral y multiobjeto en el rango visible. Instalado en el Gran Telescopio Canarias de 10.4 metros, proporciona resoluciones espectrales de medias a altas de $R_{FWHM} \approx 6000$ y $R_{FWHM} \approx 12000$, que cubren un rango de longitud de onda entre 3650 a 9700 Å, y de $R_{FWHM} \approx 20000$ en las configuraciones espectrales HR-R, centrada en la línea de H α (6420 - 6790 Å), y HR-I, centrada en el triplete de Ca II (8370 - 8885 Å).

MEGASTAR es una biblioteca empírica de espectros estelares, creada a partir de observaciones realizadas con MEGARA, y es de gran importancia para la correcta interpretación de los espectros de los cúmulos estelares y galaxias obtenidos con este instrumento. Los espectros de la biblioteca y los parámetros estelares derivados de ellos se utilizarán para calcular modelos de síntesis de poblaciones estelares. En su primera emisión pública, MEGASTAR incluyó espectros de 414 estrellas observadas con $R_{\rm FWHM} \approx 20000$.

Este trabajo presenta 1988 espectros de un conjunto de 994 estrellas, al que denominamos Muestra 2, observadas en HR-R y HR-I después de la primera emisión de MEGASTAR. Se describen las distribuciones de los tipos espectrales y los parámetros estelares de este nuevo conjunto de estrellas, obtenidos de la base de datos de la biblioteca. Se resumen las observaciones en modo *filler* de siete semestres, que cubrieron un total de 334 horas de observación. Asimismo, se presenta el proceso de reducción de datos y el desarrollo de un nuevo proceso semiautomático que mejora la velocidad de dicho proceso. Adicionalmente, se incluye un atlas con los espectros en HR-R y HR-I de cada estrella de la Muestra 2. Además de los 1988 espectros, hay 12 espectros correspondientes a seis estrellas observadas dos veces, así como los espectros de siete estrellas que fueron observadas en un sola configuración espectral, lo que se traduce en un total de 2007 espectros.

Capítulo 1 Introducción

MEGARA, acrónimo de Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía, es un espectrógrafo óptico de campo integral y multiobjeto diseñado para el Gran Telescopio Canarias (GTC) de 10.4 metros, ubicado en La Palma, Islas Canarias, España. Este instrumento cubre todo el intervalo visible desde 3650 Å hasta 9700 Å.

El desarrollo de MEGARA fue liderado por la Universidad Complutense de Madrid, en colaboración con el Instituto Nacional de Astrofísica, Óptica y Electrónica, el Instituto de Astrofísica de Andalucía y la Universidad Politécnica de Madrid. También contó con la participación de la empresa española FRACTAL SLNE, encargada de la gestión del proyecto y la ingeniería de sistemas, entre otras empresas.

MEGARA destaca por su versatilidad, ya que permite realizar espectroscopía en dos modos: bidimensional, mediante una unidad de campo integral, IFU¹, y multiobjeto, MOS^2 , por medio de 92 posicionadores robóticos. La IFU proporciona un campo de visión de 12.5 x 11.3 segundos de arco cuadrados y cuenta con ocho mini-IFUs adicionales para la sustracción simultánea del cielo. Por otro lado, el modo MOS cubre un campo de 3.5 x 3.5 minutos de arco cuadrados. Posibilita la observación de hasta 92 objetos de forma simultánea, mediante 92 robots posicionadores. Cada robot alberga un conjunto de 7 fibras, formando una mini-IFU. En la figura 1.1, se muestra la disposición de la IFU y el MOS.

Una descripción detallada del instrumento y su validación científica se presenta en Carrasco et al. (2018) y Gil de Paz et al. (2018). En el cuadro 1.1 se muestran

¹IFU: integral field unit, por sus siglas en inglés.

²MOS: multi-object spectroscopy, por sus siglas en inglés.

las características principales de MEGARA. Ofrece resolución espectral de $R_{FWHM} \approx 6000 \ (LR^1)$, mediante 6 configuraciones, donde cada configuración corresponde a una rejilla de difracción holográfica², cubriendo el rango espectral de 3650 a 9700 Å. En resolución media, $R_{FWHM} \approx 12000 \ (MR^3)$, se cubre el mismo intervalo espectral mediante 10 configuraciones, cada una con su respectiva VPH, que abarcan distintos subrangos del espectro. Finalmente, en alta resolución (HR^4) , $R_{FWHM} \approx 20000$, se utilizan dos configuraciones espectrales: HR-R, que abarca el intervalo de 6420 a 6790 Å, centrada en H α , y HR-I, que cubre el intervalo de 8370 a 8885 Å, centrada en el triplete de Ca II, cada una con su correspondiente VPH. La integración y el comisionado de MEGARA en el GTC se completaron con éxito en agosto de 2017, y se ofreció a la comunidad científica en el segundo semestre de 2018.

Figura 1.1: En el plano focal de MEGARA se encuentran la IFU y el MOS. Panel (a): esquema de la IFU y el MOS. La IFU se ubica en el centro del campo, alrededor se ilustran las áreas de patrullaje de los 92 robots posicionadores del MOS, representadas por hexágonos en beige, junto con las posiciones de los ocho mini-IFUs para la sustracción del cielo mostrados en color naranja. Panel (b): fotografía de la IFU y el MOS. La información e imágenes fueron extraídas de Carrasco et al. (2018).

Una biblioteca espectral estelar es un conjunto de espectros de estrellas que comparten un rango específico de longitud de onda y resolución espectral. Estos espectros

Departamento de Astrofísica

¹LR: low resolution, por sus siglas en inglés.

²VPH: volume phase holographic grating, por sus siglas en inglés.

³MR: medium resolution, por sus siglas en inglés.

⁴HR: high resolution, por sus siglas en inglés.

Cuadro 1.1:	$Caracter{\rm isticas}$	principales	de	MEGARA	en el	GTC.
-------------	-------------------------	-------------	---------------	--------	-------	------

Parámetro		Valor
Características de la IFU		
Campo de visión (segundos de arco \times segundos	de arco)	12.5×11.3
Multiplexación (+fibras de cielo)		$623\;(+56)$
Características de MOS		
Campo de visión (minutos de arco \times minutos d	e arco)	3.5×3.5
Multiplexación		644
Tamaño del spaxel		
${ m IFU/MOS}$ (segundos de arco)		0.62
Poder de resolución (R _{FWHM})		
LR (6 configuraciones)		6000
MR (10 configuraciones)		12000
$\operatorname{HR}(2 \operatorname{ configuraciones})$		20000
Intervalos de longitud de onda (Å)		
LR		3650 - 9700
MR		3650 - 9700
HR	HR-R	6420 - 6790
	HR-I	8370 - 8885

varían en función de parámetros físicos como la temperatura efectiva, T_{eff} , que se define como la temperatura de un cuerpo negro que irradia con la misma densidad de flujo total que la estrella. Otro parámetro es la gravedad superficial, $\log(g)$, que describe la fuerza gravitacional por unidad de masa que experimenta un objeto en la superficie de una estrella y se calcula con la fórmula $g = \frac{GM}{R^2}$, donde G es la constante de gravitación universal, M es la masa de la estrella y R su radio. Finalmente, la metalicidad, [M/H], mide la proporción de elementos más pesados que el helio en una estrella. Esta se expresa comúnmente como la abundancia relativa de hierro respecto al hidrógeno en comparación con el Sol, utilizando la relación:

$$[\mathrm{Fe}/\mathrm{H}] = \log_{10} \left(\frac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}\right)_{\mathrm{est\,rella}} - \log_{10} \left(\frac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}\right)_{\mathrm{Sol}}$$

donde $N_{\rm Fe}$ y $N_{\rm H}$ son las abundancias de hierro e hidrógeno, respectivamente. Las bibliotecas estelares son fundamentales para el estudio de las poblaciones estelares, ya

que constituyen uno de los componentes clave en los códigos de síntesis de poblaciones estelares.

Un modelo de síntesis de población estelar utiliza una biblioteca espectral, junto con un conjunto de isocronas estelares y una función inicial de masa, para generar un espectro modelo representativo de toda una población estelar. Para reproducir los espectros observados con la mayor precisión posible, es ideal disponer de una biblioteca estelar espectral obtenida con el mismo instrumento con el que se observan y que además cubra el espacio completo de parámetros deseados en términos de T_{eff} , log(g) y [M/H].

El proyecto MEGASTAR tiene como objetivo principal la creación de un atlas espectral que se utilizará como base para los modelos POPSTAR (e.g. Mollá et al. (2009); Martín-Manjón et al. (2010); García-Vargas et al. (2013)). Este atlas es fundamental para generar plantillas sintéticas que permitan interpretar las observaciones realizadas con MEGARA utilizando la misma configuración instrumental. La atención se ha centrado en las configuraciones espectrales HR-R y HR-I, con una resolución de aproximadamente 20000, centradas en H α y en la línea más intensa del triplete de Ca II, respectivamente, debido a la ausencia de catálogos teóricos o empíricos publicados con estas resoluciones e intervalos espectrales, como se detalla en García-Vargas et al. (2020).

Carrasco et al. (2020) presenta la primera liberación pública (DR1¹) de MEGAS-TAR. Dicha liberación está compuesta por espectros de 414 estrellas observadas con MEGARA, en las configuraciones de alta resolución HR-R y HR-I. Los espectros cubren los intervalos espectrales de 6420–6790 Å y 8370–8885 Å, respectivamente, y fueron obtenidos con una relación señal/ruido promedio de alrededor de 260. En el artículo se detalla la muestra de estrellas, incluyendo la variedad de tipos espectrales y los parámetros físicos, T_{eff} , log(g), [M/H] obtenidos de la literatura, entre otros aspectos. También se describe el proceso de observación, las condiciones bajo las cuales se realizaron y el procedimiento de reducción de datos denominado ME-GARA DRP². El atlas completo, que contiene los espectros reducidos y calibrados en flujo, está disponible para la comunidad científica a través de la base de datos de

Departamento de Astrofísica

¹DR1: data release 1.

²DRP: data reduction pipeline.

MEGASTAR³.

En el tercer artículo de la biblioteca de espectros estelares de MEGARA Mollá et al. (2022) los autores usan los espectros de MEGASTAR para estimar los parámetros estelares T_{eff} , $\log(g)$, [M/H], y sus errores asociados para una muestra de 351 miembros de MEGASTAR con tipos espectrales más tempranos que B2, aplicando la técnica de χ^2 al comparar los modelos de MEGASTAR con modelos teóricos. Para aquellas estrellas con parámetros estelares de la literatura obtienen valores similares. Adicionalmente, proveen los espectros rectificados, donde el continuo de cada espectro fue ajustado mediante el método de mínimos cuadrados generalizados descrito por Cardiel (2009), el cual se describe con mayor detalle en la sección 5.2. Además de la rectificación del continuo, los autores calculan las velocidades radiales e índices estelares para esta muestra de estrellas. Se tiene planeado usar los espectros de MEGASTAR y los parámetros estelares derivados de ellos para calcular modelos de síntesis evolutiva de poblaciones estelares.

Mi trabajo de tesis se inscribe en este proyecto de gran envergadura, el cual amplía el número de espectros estelares observados con MEGARA. Este trabajo presenta los espectros de un conjunto de 994 estrellas, denominada Muestra 2, observadas en HR-R y HR-I. Se describe la distribución de los tipos espectrales y los parámetros estelares, obtenidos de la base de datos de MEGASTAR. Se resumen las observaciones en modo *filler* de siete semestres, que cubrieron un total de 334 horas de observación. Asimismo, se presenta el proceso de reducción de datos y el desarrollo de un nuevo proceso semiautomático que mejora la velocidad de dicho proceso. Adicionalmente, se incluye un atlas con los espectros en HR-R y HR-I de cada estrella de la Muestra 2. Además de los 1988 espectros, hay 12 espectros correspondientes a seis estrellas observadas dos veces, así como los espectros de siete estrellas que fueron observadas en un sola configuración espectral, lo que se traduce en un total de 2007 espectros.

El catálogo de la Muestra 2 se describe en el capítulo 2. En el capítulo 3 se presentan las observaciones. El capítulo 4 se enfoca en la reducción de datos así como en el desarrollo de un proceso de semiautomatización para optimizar el tiempo de dicha reducción. Los resultados obtenidos se discuten en el capítulo 5 y las conclusiones se exponen en el capítulo 6. Además, se incluye un apéndice con un atlas que contiene

 $^{^{3}\}rm https://www.fractal-es.com/megaragtc-stellarlibrary/private/home con usuario: public, contraseña: Q50ybAZm$

los 2007 espectros reducidos, que constituyen el núcleo del trabajo de esta tesis.

Capítulo 2 Catálogo de la Muestra 2

El catálogo de MEGASTAR consta de 2983 estrellas, que se eligieron de otras bibliotecas bajo los siguientes criterios: de que se hubieran observado con resoluciones espectrales similares a las de MEGARA, que se pudieran observar desde GTC y que hubiera una buena cobertura en los parámetros físicos (T_{eff} , log(g), [M/H]), entre otros criterios (Rodríguez Berlanas (2014)).

Para el manejo de datos se creó una base de datos pública donde está el catálogo de MEGASTAR. Para cada estrella se incluyen las coordenadas, las magnitudes en distintos filtros, la biblioteca de donde fue seleccionada, el tipo espectral, los parámetros estelares y datos relevantes de las observaciones. Recientemente se agregó el identificador de Gaia DR3. Una descripción detallada de la base de datos se puede ver en Carrasco et al. (2020).

Para poner en contexto el trabajo realizado en esta tesis, a continuación se muestra la distribución de tipos espectrales y los parámetros estelares de las estrellas de la DR1, de las estrellas de la Muestra 2 (994), y de la suma de DR1 + Muestra 2, que conformarán la segunda emisión pública de MEGASTAR o DR2, es decir, de todas las estrellas de la biblioteca observadas hasta ahora.

En la figura 2.1 se muestra la distribución de los tipos espectrales extraídos de la base de datos de SIMBAD-CDS¹. Las barras rojas representan las estrellas del catálogo completo de MEGASTAR, distribuidas de la siguiente manera: 14 de tipo WR, 51 O, 316 B, 365 A, 604 F, 768 G, 673 K, 154 M, 7 S, 3 L, 1 Flat, 18 C, 1 D y 8 Indef (indefinido), sumando un total de 2983 estrellas. En (a) la distribución de los tipos espectrales de DR1, en (b) de la Muestra 2 y en (c) de DR2. En el cuadro 2.1

¹https://simbad.u-strasbg.fr/simbad/

se presentan los valores correspondientes a cada tipo espectral. Podemos observar un incremento considerable en la cantidad de estrellas en los distintos tipos espectrales de la Muestra 2 respecto a la DR1.

Figura 2.1: Distribución de los tipos espectrales obtenidos de SIMBAD-CDS. En rojo se muestran los tipos espectrales del catálogo completo de la biblioteca. Panel (a): en verde, las 414 estrellas de DR1. Panel (b): en azul, las 994 estrellas de la Muestra 2. Panel (c): en amarillo, el histograma de los tipos espectrales de DR2 (i.e., DR1 + muestra 2). El número total de estrellas se denota como N_{tot} .

En la figura 2.2 se presenta el log(g) vs. $\Theta = 5040/T_{eff}$. La líneas grises representan las isocronas de Padova (Bertelli et al., 1994; Marigo et al., 2008), ya que son las que se usan en los modelos de síntesis evolutiva de poblaciones estelares POPSTAR (ver Mollá et al. (2009)), que se usaran en combinación con nuestra biblioteca para tener un conjunto de espectros orientados a MEGARA. Los puntos de color azul claro corresponden al catálogo completo de estrellas de MEGASTAR con parámetros estelares (c.p.e). Los puntos de color azul oscuro, los cuadrados verdes y los triángulos rojos corresponden a los intervalos de metalicidad de $[M/H] <-0.5, -0.5 \leq [M/H] <0.2$ y $[M/H] \geq 0.2$, respectivamente. En (a) se muestran las estrellas de DR1, en (b) de la Muestra 2, y en (c) de DR2.

En las figuras 2.3, 2.4 y 2.5 se muestran las distribuciones de la temperatura efectiva, de la gravedad superficial y de la metalicidad, respectivamente. Nótese que el número de estrellas Ntot_{est} es menor que el número de estrellas de cada muestra porque no todas ellas tienen parámetros de la literatura. En (a) para DR1, en (b) para la Muestra 2 y en (c) para la DR2. En los cuadros 2.2, 2.3 y 2.4 se presentan los cuartiles de esas distribuciones.

8

Figura 2.2: En las tres imágenes, en el eje y se muestra el logaritmo de la gravedad superficial, mientras que en el eje x se presenta $\Theta = 5040/T_{\text{eff}}$. La región gris representa las isocronas de Padova. Los puntos de color azul claro corresponden al catálogo completo de estrellas de MEGASTAR con parámetros estelares (c.p.e). Los puntos de color azul oscuro, los cuadrados verdes y los triángulos rojos corresponden a los diferentes intervalos de metalicidad indicados. En (a) se muestran las estrellas de la primera emisión, en (b) las estrellas de la Muestra 2, y en (c) las estrellas de la DR2. Datos de la literatura disponibles en MEGASTAR.

Figura 2.3: Histograma del logaritmo de la temperatura efectiva. Ntot_{est} denota el número total de estrellas. En (a), se muestran las estrellas de la DR1. En (b), las estrellas de esta tesis. En (c), las estrellas de la DR2. Datos de la literatura disponibles en MEGASTAR.

Figura 2.4: Histograma del logaritmo de la gravedad superficial. N_{tot} representa el número total de estrellas. En (a) aparecen las estrellas de la DR1. En (b) se encuentran las estrellas de la Muestra 2. En (c) se observan las estrellas de la DR2. Datos de la literatura disponibles en MEGASTAR.

Figura 2.5: Histograma de la distribución de la metalicidad, indicada como [M/H]. El eje x muestra los valores de metalicidad [M/H], el eje y representa el conteo de estrellas. Ntot_{est} indica el número total de estrellas. En (a) se presentan las estrellas de la DR1. En (b) están las estrellas de la Muestra 2. En (c) se observan las estrellas de la DR2. Datos de la literatura disponibles en MEGASTAR.

Tipo Espectral	DR1 (a)	Muestra 2 (b)	DR2 (c)	MEGASTAR
WR	7	7	14	14
0	28	16	44	51
В	101	93	194	316
A	34	149	183	365
F	77	150	227	604
G	111	259	370	768
K	42	237	279	673
M	11	65	76	154
S	1	2	3	7
	0	0	0	3
Flat	0	0	0	1
C	2	11	13	18
D	0	0	0	1
Indefinido	0	5	5	8
Total	414	994	1408	2983

Cuadro 2.1: Distribución de tipos espectrales en las diferentes muestras y en el catálogo completo de MEGASTAR.

Cuadro 2.2: Cuartiles de $\log(T_{eff})$.

	Q1	Mediana	Q3
DR1 (a)	3.75	3.79	4.10
Muestra 2 (b)	3.66	3.72	3.84
DR2 (c)	3.68	3.76	3.89

	Q1	Mediana	Q3
DR1 (a)	3.60	4.00	4.30
Muestra 2 (b)	2.10	3.10	4.10
DR2 (c)	2.40	3.70	4.10

Cuadro 2.4: Cuartiles de [Fe/H].

	Q1	Mediana	Q3
DR1 (a)	-0.44	-0.13	0.08
Muestra 2 (b)	-0.40	-0.13	0.04
DR2 (c)	-0.40	-0.13	0.06

2. Catálogo de la Muestra 2

Capítulo 3 Observaciones de la Muestra 2

Para este proyecto se ha concedido tiempo de observación en el GTC en modo *filler* a lo largo de diez semestres. El cuadro 3.1 presenta el tiempo solicitado, el otorgado y el observado. El total de horas solicitadas fue de 775, de las cuales se concedieron 700, lo que representa un 90.32 % del tiempo solicitado. El total de horas observadas fue de 487 (excluyendo el semestre 2020B, donde no se concedió tiempo), esto equivale al 69.57 % del tiempo concedido.

En particular, para la Muestra 2 las observaciones, que corresponden a los programas GTC19-20A, GTC14-21A, GTC7-21B, GTC41-22A, GTC71-22B, GTC63-23A y GTC91-23B, se solicitaron 525 horas, se otorgaron 525 y se observaron 334, lo que representa una eficiencia de 63.62%. Se observaron 994 estrellas, además seis de ellas fueron observadas dos veces, resultando en 1000 observaciones en las configuraciones espectrales HR-R y HR-I, lo que produjo un total de 2000 espectros. Adicionalmente, se obtuvieron 7 espectros en una única configuración, resultando en un total de 2007 espectros presentados en el apéndice de esta tesis.

En el modo *filler* las observaciones se llevan a cabo con condiciones de *seeing* generalmente superiores a 1.5 segundos de arco, en cualquier tipo de noche, especialmente brillante, y con cualquier calidad de cielo, siendo el criterio más importante el mal *seeing*. En la figura 3.1 se muestra el histograma del *seeing* para las observaciones de las estrellas de DR1 en (a), la muestra 2 en (b) y de la DR2 en (c). Ntot_{esp} denota el número total de espectros. En el cuadro 3.2 se aprecia que la mediana del *seeing* es muy similar para las tres muestras. Para la Muestra 2 los valores del primer cuartil, la mediana y el tercer cuartil son: 1.6, 1.95 y 2.4, respectivamente. No obstante, la gran ventaja de hacer una biblioteca estelar usando un instrumento con una IFU es

semestre	horas solicitadas	horas concedidas	horas observadas	estrellas observadas
2018B	50	50	64	176
$2019 \mathrm{A}$	50	50	12	32
2019B	75	75	77	206
2020 A	75	75	10	28
2020B	75	0		
2021A	75	75	38	122
2021B	75	75	39	112
2022A	75	75	80	245
2022B	75	75	72	217
2023A	75	75	63	188
2023B	75	75	32	82
total	775	700	487	1408

Cuadro 3.1: Horas de observación solicitadas, concedidas y observadas por semestre.

que la resolución espectral se conserva, ya que el tamaño de la rendija es constante porque está determinada por el tamaño de las fibras. En el caso de la configuración HR-R, centrada en H α (6420 – 6790 Å), la dispersión es de 0.098 Å/pixel, mientras que en la configuración HR-I, centrada en el triplete de Ca II (8370 – 8885 Å), la dispersión es de 0.130 Å/pixel, esta información se encuentra en Carrasco et al. (2018). Para asegurar que se recupera el flujo en todos los casos siempre sumamos 37 spaxels centrados en la fibra con el mayor flujo en la imagen que se reconstruye de la IFU. El telescopio proporciona una estrella estándar por bloque de observación (OB) para la calibración de flujo y la corrección de la respuesta del instrumento, ver García-Vargas et al. (2020); Carrasco et al. (2020).

Cuadro 3.2: Cuartiles del seeing reportado para diferentes conjuntos de datos.

Panel	Q1	Mediana	Q3
(a) DR1(b) Muestra 2(c) DR2	$1.50 \\ 1.60 \\ 1.50$	$1.80 \\ 1.95 \\ 1.90$	2.00 2.40 2.30

Figura 3.1: Histograma del *seeing* reportado en segundos de arco. Ntot_{esp} denota el número total de espectros. En panel (a), se presentan las estrellas de la DR1. En panel (b), se encuentran las estrellas de la Muestra 2. En panel (c), se observan las estrellas de la DR2.

3. Observaciones de la Muestra 2

Capítulo 4 Reducción de los espectros

El proceso de reducción de los espectros comprende varias etapas, que incluyen la preparación del entorno de trabajo, la calibración de los datos y la aplicación de dichas calibraciones a los espectros de las estrellas. A continuación cada una de estas etapas se detalla para asegurar la reproducibilidad en los resultados.

En la sección 4.3.1 se detalla el procesamiento de las imágenes de bias, se combinan para obtener la mediana y así generar el **master bias**, que posteriormente se resta de las imágenes científicas, eliminando el ruido electrónico.

La receta tracemap, descrita en la sección 4.3.4, se encarga de identificar la posición exacta de cada fibra en el detector, ajustando su trayectoria mediante un polinomio de grado 5. Esto permite extraer correctamente la luz capturada por cada fibra durante las observaciones.

En la sección 4.3.7 se presenta la receta que produce el mapa del modelo de trazado, cuyo objetivo es modelar la interferencia entre fibras adyacentes en el detector (cross talk). Esta interferencia ocurre cuando la luz de una fibra afecta ligeramente a las fibras vecinas debido a su proximidad. La receta MegaraModelMap genera un mapa que corrige este efecto, produciendo el archivo master_model.json.

La calibración de longitud de onda, descrita en la sección 4.3.11, permite asociar cada pixel del detector con una longitud de onda específica. Para ello, se utilizan imágenes de lámparas de arco que emiten líneas de emisión conocidas, ajustando un modelo que relaciona las posiciones de los pixeles con las longitudes de onda observadas.

En la sección 4.3.14 se detalla la corrección de campos planos, que ajusta las diferencias de sensibilidad entre las fibras y las variaciones de sensibilidad dentro de

cada una. Las imágenes de campos planos proporcionan una iluminación uniforme, lo que permite corregir estas variaciones.

La receta LcbAcquisition, descrita en la sección 4.4.1, se utiliza para centrar y posicionar correctamente el objeto astronómico en el campo de visión de la IFU.

En la sección 4.5 se incluye la calibración de flujo, cuyo objetivo es convertir los espectros de unidades relativas (cuentas) a unidades absolutas de flujo Jy . Esto se logra observando una estrella estándar, lo que permite generar una curva de sensibilidad aplicada a las estrellas observadas.

Finalmente, en la sección 4.7 se describe la reducción de las estrellas observadas, que aplica todas las correcciones obtenidas de las recetas mencionadas previamente.

4.1. Preparación del entorno de trabajo

En la reducción de datos se empleó como guía el *MEGARA Data Reduction Cook*book versión 1H, (ver África Castillo-Morales et al. (2020)). No obstante, se hicieron modificaciones en los nombres de las recetas y se añadieron comandos específicos en su ejecución. El procedimiento detallado se presenta a continuación.

- Instalación del sistema operativo Ubuntu 22.04.4 LTS.
- Actualización de todas las librerías del sistema utilizando:
 - sudo apt update
- Instalación de la versión conda 24.5.0.

Con Anaconda instalada, se creó un entorno específico denominado megara, configurado para utilizar Python 3. En este entorno se instaló el *MEGARA Data Reduction Pipeline* o DRP (Pascual et al., 2024).

El *MEGARA DRP* se configuró dentro del entorno **megara** con el siguiente comando:

conda install --name megara -c conda-forge megaradrp

Durante la instalación, se solicitó una confirmación, la cual se realizó ingresando la letra "y". Una vez completada la instalación, se activó el entorno **megara** con:

conda activate megara

Con el propósito de verificar el correcto funcionamiento del entorno y del MEGA-RA DRP, se ejecutó el comando:

numina

confirmando la versión instalada:

INFO: Numina simple recipe runner version 0.32.3.

finalmente, se actualizó el entorno vía:

conda update megaradrp

4.2. Organización y creación de la estructura de reducción

Los datos obtenidos con la IFU se organizaron en carpetas etiquetadas con la fecha de observación. Cada carpeta de la noche de observación contiene todas las estrellas observadas en esa fecha. Las subcarpetas dentro de estas carpetas están nombradas con el bloque de observación correspondiente a cada estrella.

El proceso de reducción es el mismo para todas las estrellas; sin embargo, para ejemplificarlo, se considerará el caso del bloque de observación OBO149 que corresponde a la estrella HD210424 en ambas configuraciones HR-R y HR-I. Los objetos observados se almacenan en archivos comprimidos con la nomenclatura GTC41-22A.OBO149.tar.gz. Esta nomenclatura se desglosa de la siguiente manera: GTC41-22A representa el ID del programa, OBO149 corresponde al bloque de observación y .tar.gz indica que es un archivo comprimido en formato tar.gz.

Al descomprimir los archivos, se genera una estructura de carpetas con el nombre del programa, conteniendo subcarpetas con los nombres de los objetos observados, por ejemplo, OB0001, OB0010, OB0031, etcétera. Dentro de cada carpeta de objeto, se encuentra un archivo de control de calidad en formato .txt y cinco subcarpetas: arc, bias, flat, object y stds, las cuales contienen los archivos .fits necesarios durante la reducción de datos.

4.2.1. Nivel superior: carpeta del objeto

La carpeta principal se nombra según el primer objeto de la noche de observación. En este caso, la carpeta principal se llama OB0149. Dentro de esta carpeta, se crea una subcarpeta llamada MEGARA. A su vez, dentro de la carpeta MEGARA, se encuentran tres elementos: otra subcarpeta llamada MEGARA, una subcarpeta con el nombre del objeto (OB0149) y el archivo de control control.yaml. La estructura de carpetas es la siguiente:

OB0149 MEGARA MEGARA OB0149 control.yaml

4.2.2. Archivo de control control.yaml

El archivo de control control.yaml contiene la siguiente estructura:

```
version: 1
rootdir: /home/senua/Escritorio/OB0149/MEGARA
products:
  MEGARA:
   - {id: 2, type: 'ReferenceExtinctionTable', tags: {}, content: '
   \hookrightarrow extinction_LP.txt'}
requirements:
  MEGARA:
    default:
       MegaraArcCalibration:
       - {name: nlines, tags: {vph: LR-U, speclamp: ThAr, insmode:
   \hookrightarrow LCB}, content: [25,25]}
       - {name: nlines, tags: {vph: LR-U, speclamp: ThAr, insmode:
   \hookrightarrow MOS}, content: [25,25]}
       - {name: nlines, tags: {vph: LR-B, speclamp: ThAr, insmode:
   \hookrightarrow LCB}, content: [10,10,15,5]}
       - {name: nlines, tags: {vph: LR-B, speclamp: ThAr, insmode:
   \hookrightarrow MOS}, content: [10,10,15,5]}
       - {name: nlines, tags: {vph: LR-V, speclamp: ThAr, insmode:
   \hookrightarrow LCB}, content: [15,5,10,7]}
```

```
- {name: nlines, tags: {vph: LR-V, speclamp: ThAr, insmode:
\hookrightarrow MOS}, content: [15,5,10,7]}
   - {name: nlines, tags: {vph: LR-R, speclamp: ThAr, insmode:
\hookrightarrow LCB}, content: [14,7]}
   - {name: nlines, tags: {vph: LR-R, speclamp: ThAr, insmode:
\hookrightarrow MOS}, content: [14,7]}
   - {name: nlines, tags: {vph: LR-I, speclamp: ThAr, insmode:
\hookrightarrow LCB}, content: [14]}
   - {name: nlines, tags: {vph: LR-I, speclamp: ThAr, insmode:
\hookrightarrow MOS}, content: [14]}
   - {name: nlines, tags: {vph: LR-Z, speclamp: ThNe, insmode:
\hookrightarrow LCB}, content: [14,9]}
   - {name: nlines, tags: {vph: LR-Z, speclamp: ThNe, insmode:
\hookrightarrow MOS}, content: [14,9]}
   - {name: nlines, tags: {vph: MR-U, speclamp: ThAr, insmode:
\hookrightarrow LCB}, content: [8,10]}
   - {name: nlines, tags: {vph: MR-U, speclamp: ThAr, insmode:
\hookrightarrow MOS}, content: [8,10]}
   - {name: nlines, tags: {vph: MR-UB, speclamp: ThAr, insmode:
\hookrightarrow LCB}, content: [20]}
   - {name: nlines, tags: {vph: MR-UB, speclamp: ThAr, insmode:
\hookrightarrow MOS}, content: [20]}
   - {name: nlines, tags: {vph: MR-B, speclamp: ThAr, insmode:
\hookrightarrow LCB}, content: [11]}
   - {name: nlines, tags: {vph: MR-B, speclamp: ThAr, insmode:
\hookrightarrow MOS}, content: [11]}
   - {name: nlines, tags: {vph: MR-G, speclamp: ThAr, insmode:
\hookrightarrow LCB}, content: [10,10,8]}
   - {name: nlines, tags: {vph: MR-G, speclamp: ThAr, insmode:
\hookrightarrow MOS}, content: [10,10,8]}
   - {name: nlines, tags: {vph: MR-V, speclamp: ThAr, insmode:
\hookrightarrow LCB}, content: [13,8]}
   - {name: nlines, tags: {vph: MR-V, speclamp: ThAr, insmode:
\hookrightarrow MOS}, content: [13,8]}
   - {name: nlines, tags: {vph: MR-VR, speclamp: ThNe, insmode:
\hookrightarrow LCB}, content: [14]}
   - {name: nlines, tags: {vph: MR-VR, speclamp: ThNe, insmode:
\hookrightarrow MOS}, content: [14]}
   - {name: nlines, tags: {vph: MR-R, speclamp: ThNe, insmode:
```

```
\hookrightarrow LCB}, content: [9]}
   - {name: nlines, tags: {vph: MR-R, speclamp: ThNe, insmode:
\hookrightarrow MOS}, content: [9]}
   - {name: nlines, tags: {vph: MR-RI, speclamp: ThNe, insmode:
\hookrightarrow LCB}, content: [7]}
   - {name: nlines, tags: {vph: MR-RI, speclamp: ThNe, insmode:
\hookrightarrow MOS}, content: [7]}
   - {name: nlines, tags: {vph: MR-I, speclamp: ThNe, insmode:
\hookrightarrow LCB}, content: [5,5,5]}
   - {name: nlines, tags: {vph: MR-I, speclamp: ThNe, insmode:
\hookrightarrow MOS}, content: [5,5,5]}
   - {name: nlines, tags: {vph: MR-Z, speclamp: ThNe, insmode:
\hookrightarrow LCB}, content: [4,5,3]}
   - {name: nlines, tags: {vph: MR-Z, speclamp: ThNe, insmode:
\hookrightarrow MOS}, content: [4,5,3]
   - {name: nlines, tags: {vph: HR-R, speclamp: ThNe, insmode:
\hookrightarrow LCB}, content: [5]}
   - {name: nlines, tags: {vph: HR-R, speclamp: ThNe, insmode:
\hookrightarrow MOS}, content: [5]}
   - {name: nlines, tags: {vph: HR-I, speclamp: ThNe, insmode:
\hookrightarrow LCB}, content: [10]}
   - {name: nlines, tags: {vph: HR-I, speclamp: ThNe, insmode:
\hookrightarrow MOS}, content: [10]}
   - {name: polynomial_degree, tags: {vph: LR-U, speclamp: ThAr},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: LR-B, speclamp: ThAr},
\hookrightarrow content: [5,5]}
   - {name: polynomial_degree, tags: {vph: LR-V, speclamp: ThAr},
\hookrightarrow content: [5,5]}
   - {name: polynomial_degree, tags: {vph: LR-R, speclamp: ThAr},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: LR-I, speclamp: ThAr},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: LR-Z, speclamp: ThNe},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: MR-U, speclamp: ThAr},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: MR-UB, speclamp: ThAr
\hookrightarrow }, content: [3,5]}
```

```
- {name: polynomial_degree, tags: {vph: MR-B, speclamp: ThAr},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: MR-G, speclamp: ThAr},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: MR-V, speclamp: ThAr},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: MR-VR, speclamp: ThNe
\hookrightarrow }, content: [3,5]}
   - {name: polynomial_degree, tags: {vph: MR-R, speclamp: ThNe},
\hookrightarrow content: [3,3]}
   - {name: polynomial_degree, tags: {vph: MR-RI, speclamp: ThNe
\hookrightarrow }, content: [3,3]}
   - {name: polynomial_degree, tags: {vph: MR-I, speclamp: ThNe},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: MR-Z, speclamp: ThNe},
\hookrightarrow content: [3,3]}
   - {name: polynomial_degree, tags: {vph: HR-R, speclamp: ThNe},
\hookrightarrow content: [3,5]}
   - {name: polynomial_degree, tags: {vph: HR-I, speclamp: ThNe},
   content: [3,5]}
\hookrightarrow
```

El campo **rootdir** contiene la dirección donde se encuentra la carpeta con todas las calibraciones.

4.2.3. Carpeta de calibraciones

Dentro de la subcarpeta MEGARA, se encuentra una carpeta con un identificador único, ca3558e3-e50d-4bbc-86bd-da50a0998a48, que contiene diversas subcarpetas con diferentes tipos de calibraciones.

MEGARA

_____ ca3558e3-e50d-4bbc-86bd-da50a0998a48

Esta carpeta de calibraciones incluye varias subcarpetas específicas para cada tipo de archivo de calibración necesario en el proceso de reducción de datos.

4. Reducción de los espectros

4.2.3.1. Carpeta LinesCatalog

Dentro de la carpeta de calibraciones ca3558e3-e50d-4bbc-86bd-da50a0998a48, se encuentra la subcarpeta LinesCatalog. Esta subcarpeta contiene listas de líneas espectrales utilizadas en la calibración de longitud de onda. Está organizada en dos subcarpetas, ThAr y ThNe, cada una con sus respectivas configuraciones de diferentes modos de observación (HR-I, HR-R, LR-B, LR-I, LR-R, LR-U, LR-V, LR-Z, MR-B, MR-G, MR-R, MR-RI, MR-U, MR-UB, MR-V):

4.2.3.2. Carpeta MasterBias

Contiene los archivos .fits necesarios en la calibración del sesgo (bias). ca3558e3-e50d-4bbc-86bd-da50a0998a48 MasterBias

4.2.3.3. Carpeta MasterFiberFlat

Contiene archivos .fits para la calibración de la respuesta del flat de fibra, organizados en la carpeta LCB.

```
ca3558e3-e50d-4bbc-86bd-da50a0998a48

MasterFiberFlat

LCB

HR-I

HR-R

Master_fiberflat.fits
```

4.2.3.4. Carpeta MasterSensitivity

Incluye archivos .fits destinado a la calibración de la sensibilidad, distribuidos de manera similar a MasterFiberFlat.

```
ca3558e3-e50d-4bbc-86bd-da50a0998a48

MasterSensitivity

LCB

HR-I

HR-R

Master_sensitivity.fits
```

4.2.3.5. Carpeta ModelMap

Contiene los modelos geométricos utilizados en la calibración, clasificados según el modo de observación.

ca3558e3-e50d-4bbc-86bd-da50a0998a48 ModelMap LCB HR-I master_model.json _HR-R ___master_model.json

4.2.3.6. Carpeta TraceMap

Incluye los archivos . json con los mapas de trazado (trace maps). ca3558e3-e50d-4bbc-86bd-da50a0998a48

```
_ TraceMap

LCB

HR-I

HR-I_master_traces.json

HR-R

HR-R_master_traces.json
```

4.2.3.7. Carpeta WavelengthCalibration

Contiene los archivos .json para la calibración de longitud de onda. ca3558e3-e50d-4bbc-86bd-da50a0998a48

```
WavelengthCalibration
```

LCB HR-I HR-R Master_wlcalib.json master_wlcalib.json

4.2.4. Subcarpeta del objeto

Dentro de la subcarpeta del objeto OB0149, se encuentran varios archivos .yaml. Estos archivos .yaml especifican las configuraciones necesarias para cada etapa de la reducción de datos, incluyendo la calibración del sesgo, el trazado, el modelado geométrico, la calibración de la longitud de onda, la respuesta del flat de fibra y la reducción de la estrella estándar. Además, hay una subcarpeta llamada data que almacena los archivos de datos observacionales y de calibración en estado crudo proporcionados por el GTC.

OB0149 _____0_bias.yaml _____10_objects_LCB.yaml ____1_tracemap_HR-I.yaml

_1_tracemap_HR-R.yaml _2_modelmap_HR-I.yaml 2_modelmap_HR-R.yaml _3_wavecalib_HR-I.yaml _3_wavecalib_HR-R.yaml _4_fiberflat_HR-I.yaml _4_fiberflat_HR-R.yaml _6_Lcbadquisition_HR-I.yaml _6_Lcbadquisition_HR-R.yaml 7_Standardstar_HR-I.yaml _7_Standardstar_HR-R.yaml _8_stdr_reduce_LCB_HR-I.yaml _8_stdr_reduce_LCB_HR-R.yaml _data estandar.dat extinction LP.txt

4.2.5. Extracción de información del archivo de control de calidad

En la reducción de datos, se utiliza la información proporcionada en el archivo de control de calidad GTC41-22A_0149_qc.txt. Este archivo contiene los detalles necesarios para cada una de las recetas que se deben ejecutar.

4.3. Identificadores y estructura de archivos de recetas

Facilitando la comprensión y el contexto de las recetas utilizadas en el proceso de reducción de datos con el espectrógrafo MEGARA, a continuación se describen los identificadores y campos comunes presentes en los archivos de recetas:

- id: este campo define el nombre que se asignará a las carpetas generadas una vez que se haya ejecutado la receta. Por ejemplo, 7_HR-R_0149.
- mode: indica la receta específica que se desea ejecutar. Ejemplos incluyen MegaraArcCalibration, MegaraLcbStdStar y MegaraLcbImage.
- instrument: especifica el instrumento utilizado, que en este caso siempre será MEGARA.
- frames: contiene los nombres de los archivos .fits que se obtienen del control de calidad en el apartado correspondiente (por ejemplo, Arcs o Spectrophotometric standard).
- requirements: incluye requisitos adicionales de la receta. Algunos ejemplos son:
 - extraction_offset: un ajuste necesario para la extracción de datos.
 - store_pdf_with_refined_fits: indica si se debe almacenar un archivo PDF con los ajustes refinados.
 - reference_spectrum: especifica el espectro de referencia utilizado para la calibración en flujo, que se encuentra en un archivo con extensión .dat.
 - reference_extinction: proporciona la tabla de extinción de referencia en formato .txt.
 - Position: define las coordenadas del centroide en mm, que se encuentran en el archivo processing.log.
 - degrade_resolution_method: método utilizado para degradar la resolución, con valores como "auto".
 - enabled: campo que habilita la receta, con valor True.

4.3.1. Receta bias

La primera receta que se debe crear es 0_bias.yaml. El propósito de la receta bias en el proceso de reducción de datos de MEGARA es eliminar el nivel base de señal electrónica que se añade a todas las imágenes del CCD antes de la conversión de analógica a digital. Este procedimiento incluye la corrección del sobreescaneo y el recorte al tamaño físico del detector. Luego, las imágenes se combinan mediante la mediana para crear una imagen maestra de sesgo, que se utiliza posteriormente para corregir todas las imágenes científicas (ver África Castillo-Morales et al. (2020)).

```
id: 0_bias_0149
mode: MegaraBiasImage
```

4.3.2. Ejecución de la receta

Una vez creado el archivo 0_bias.yaml, se debe abrir una terminal y navegar al directorio donde se encuentran todas las recetas, incluyendo 0_bias.yaml. Luego, se activa el entorno megara creado anteriormente:

conda activate megara

es importante mencionar que el entorno solo necesita activarse una vez. Mientras el entorno **megara** esté activado, se puede correr cualquier receta de la MEGARA DRP.

para correr la receta, se utiliza el siguiente comando:

numina -d run 0_bias.yaml -r ../control.yaml

cabe aclarar que el nombre del archivo .yaml puede ser diferente. Si se le asigna otro nombre, por ejemplo, zbias.yaml, el comando sería:

```
numina -d run zbias.yaml -r ../control.yaml
```

4.3.3. Generación y uso de carpetas resultantes

Una vez que la receta se ha ejecutado, se generarán dos carpetas:

- obsid0_bias_0149_results
- obsid0_bias_0149_work

En las carpetas que llevan _work, se guardarán los archivos utilizados para generar las recetas. En la carpeta results, se obtendrá un archivo que debe copiarse a su correspondiente lugar en el árbol de calibración. En este caso, el archivo generado es master_bias.fits, que debe copiarse a la carpeta MasterBias en el árbol de calibración, siendo necesario para correr la siguiente receta.

4.3.4. Receta TraceMap

La receta tracemap se utiliza para identificar y mapear la posición de las fibras iluminadas en el detector de MEGARA. Este paso es fundamental para la correcta extracción de espectros, ya que permite localizar con precisión cada fibra en el CCD. Utilizando imágenes de una lámpara de halógeno, la receta determina la ubicación exacta de cada fibra y almacena esta información en un archivo .json. También genera un archivo de región (.reg) que visualiza las trazas en el detector, asegurando que las fibras estén adecuadamente alineadas para la obtención precisa de datos espectroscópicos (revisar África Castillo-Morales et al. (2020)).

Para proceder con esta receta, se deben crear dos archivos .yaml, uno para HR-R y otro para HR-I, con los siguientes contenidos:

para HR-R:

id: 1_HR-R_0149
mode: MegaraTraceMap
instrument: MEGARA
frames:
- 0003573770-20220815-MEGARA-MegaraTraceMap.fits
- 0003573771-20220815-MEGARA-MegaraTraceMap.fits
- 0003573772-20220815-MEGARA-MegaraTraceMap.fits

Para HR-I:

```
id: 1_HR-I_0149
mode: MegaraTraceMap
```

```
instrument: MEGARA
frames:
    - 0003573786-20220815-MEGARA-MegaraTraceMap.fits
    - 0003573787-20220815-MEGARA-MegaraTraceMap.fits
    - 0003573788-20220815-MEGARA-MegaraTraceMap.fits
```

En los **frames** de estos archivos se deben incluir los nombres correspondientes que se encuentran en el apartado **Flat** del archivo de control de calidad. Es crucial asegurarse de que en la columna del VPH diga HR-R para el archivo HR-R y HR-I para el archivo HR-I.

4.3.5. Ejecución de la receta

Una vez creados los archivos .yaml, se ejecutan las recetas. Cabe mencionar que se puede realizar el proceso para una sola configuración espectral a la vez. Los comandos para ejecutar las recetas son los siguientes:

```
en el caso de HR-R:
```

numina -d run 1_tracemap_HR-R.yaml -r ../control.yaml

en el caso de HR-I:

numina -d run 1_tracemap_HR-I.yaml -r ../control.yaml

4.3.6. Generación y uso de carpetas resultantes

Al finalizar la ejecución de las recetas, en la carpeta results tanto en lo que respecta a HR-R como en HR-I, se encontrará un archivo llamado master_traces.json. Este archivo debe copiarse al árbol de calibración en las siguientes ubicaciones:

en lo que respecta HR-R:

```
ca3558e3-e50d-4bbc-86bd-da50a0998a48/TraceMap/LCB/HR-R
```

en lo que respecta HR-I:

ca3558e3-e50d-4bbc-86bd-da50a0998a48/TraceMap/LCB/HR-I

4.3.7. Receta ModelMap

La receta ModelMap procesa imágenes planas obtenidas en el modo Trace Map para generar información sobre el perfil de las fibras. A partir del archivo master_traces.json, se determina la posición aproximada de las fibras. Luego, cada 100 columnas de la imagen se ajustan a perfiles de fibra, modelados mediante una gaussiana convolucionada con un rectángulo. Los parámetros obtenidos se interpolan a lo largo de todas las columnas utilizando *splines*, y los coeficientes de estos se guardan en master_model.json. Esta información fue extraída de África Castillo-Morales et al. (2020).

Continuando con la reducción de datos, se deben crear los archivos 2_modelmap_HR-I.yaml y 2_modelmap_HR-R.yaml. El contenido de estos archivos es el siguiente:

con respecto HR-R:

```
id: 2_HR-R_0149
mode: MegaraModelMap
instrument: MEGARA
frames:
        - 0003573770-20220815-MEGARA-MegaraTraceMap.fits
        - 0003573771-20220815-MEGARA-MegaraTraceMap.fits
        - 0003573772-20220815-MEGARA-MegaraTraceMap.fits
```

con respecto HR-I:

```
id: 2_HR-I_0149
mode: MegaraModelMap
instrument: MEGARA
frames:
                        0003573786-20220815-MEGARA-MegaraTraceMap.fits
                        0003573787-20220815-MEGARA-MegaraTraceMap.fits
                        0003573788-20220815-MEGARA-MegaraTraceMap.fits
```

4.3.8. Ejecución de la receta

Una vez que se tienen estos archivos, lo siguiente es correr las recetas con los siguientes comandos:

referente a HR-R:

numina -d run 2_modelmap_HR-R.yaml -r ../control.yaml

referente a HR-I:

numina -d run 2_modelmap_HR-I.yaml -r ../control.yaml

4.3.9. Generación y uso de carpetas resultantes

Al finalizar la ejecución de las recetas, se crearán las carpetas results y work. En la carpeta results encontraremos el archivo master_model.json, que se debe copiar al árbol de calibraciones en las siguientes ubicaciones:

en relación con HR-R:

```
ca3558e3-e50d-4bbc-86bd-da50a0998a48/ModelMap/LCB/HR-R
```

en relación con HR-I:

ca3558e3-e50d-4bbc-86bd-da50a0998a48/ModelMap/LCB/HR-I

4.3.10. Parámetro extraction offset

El parámetro extraction_offset se utiliza para corregir posibles desalineamientos entre las trazas calculadas de las fibras y sus posiciones reales en el detector. Este desalineamiento puede ocurrir debido a cambios en las condiciones del telescopio, como variaciones de temperatura.

Para determinar el extraction_offset, se compara la posición de las trazas calculadas previamente, utilizando imágenes de halógeno continuo, con imágenes científicas, como las obtenidas con lámparas de arco. Esta comparación se realiza superponiendo el archivo de regiones ds9_raw.reg sobre la imagen cruda en DS9. Si las trazas están por encima de las fibras reales, se aplica un offset negativo; si están por debajo, se aplica un offset positivo. En la figura 4.1 se muestra un par de ejemplos de imágenes de campos planos que ilustran qué offset colocar. En (a), el *extraction offset* = 0, mientras que en (b), el *extraction offset* = +3.5.

Figura 4.1: Comparación de imágenes de campo plano con diferentes valores del parámetro *extraction_offset*.

4.3.11. Receta WaveCalib

Para continuar con la reducción de datos y proceder con la calibración en longitud de onda, se deben crear los archivos 3_wavecalib_HR-I.yaml y 3_wavecalib_HR-R.yaml. El contenido de estos archivos es el siguiente:

en cuanto a HR-R:

```
en cuanto a HR-I:
```

id: 3_HR-I_0149
mode: MegaraArcCalibration
instrument: MEGARA
frames:
- 0003573790-20220815-MEGARA-MegaraArcCalibration.fits
- 0003573791-20220815-MEGARA-MegaraArcCalibration.fits
- 0003573792-20220815-MEGARA-MegaraArcCalibration.fits
requirements:
extraction_offset: [+0.1]
store_pdf_with_refined_fits: 1

La figura 4.2 muestra las imágenes en crudo obtenidas con las lámparas de arco, sobre las cuales se han superpuesto las regiones calculadas previamente mediante la receta TraceMap, utilizando la herramienta DS9. La imagen (a) corresponde a la configuración espectral HR-R, mientras que la (b) muestra la configuración HR-I. En ambas imágenes, se puede observar la alineación de las trazas con respecto a las posiciones de las fibras, lo cual es fundamental para determinar si es necesario aplicar un *offset* durante la extracción de los espectros.

Figura 4.2: Imágenes en crudo de las lámparas de arco con las regiones calculadas superpuestas en DS9. (a) Configuración HR-R, (b) Configuración HR-I.

4.3.12. Ejecución de la receta

Una vez colocado el offset, se corren las recetas con los siguientes comandos:

en el caso HR-R:

```
numina -d run 3_wavecalib_HR-R.yaml -r ../control.yaml
```

en el caso HR-I:

numina -d run 3_wavecalib_HR-I.yaml -r ../control.yaml

4.3.13. Generación y uso de carpetas resultantes

Al finalizar la ejecución de las recetas, se obtendrá el archivo master_wlcalib.json, el cual debe copiarse al árbol de calibraciones en las siguientes ubicaciones:

en lo que respecta a HR-R:

```
ca3558e3-e50d-4bbc-86bd-da50a0998a48/WavelengthCalibration/LCB/HR-R
```

en lo que respecta a HR-I:

ca3558e3-e50d-4bbc-86bd-da50a0998a48/WavelengthCalibration/LCB/HR-I

4.3.14. Receta FiberFlat

Para crear los archivos de de calibración de la respuesta de cada fibra óptica, se deben crear los archivos 4_fiberflat_HR-I.yaml y 4_fiberflat_HR-R.yaml. El contenido de estos archivos es el siguiente:

con respecto a HR-R:

```
id: 4_HR-R_0149
mode: MegaraFiberFlatImage
instrument: MEGARA
frames:
        - 0003573770-20220815-MEGARA-MegaraTraceMap.fits
        - 0003573771-20220815-MEGARA-MegaraTraceMap.fits
        - 0003573772-20220815-MEGARA-MegaraTraceMap.fits
    requirements:
    extraction_offset: [0.0]
```

4. Reducción de los espectros

con respecto a HR-I:

4.3.15. Ejecución de la receta

Una vez que se tienen ambos archivos, se corren las recetas con los siguientes comandos:

referente a HR-R:

```
numina -d run 4_fiberflat_HR-R.yaml -r ../control.yaml
```

referente a HR-I:

numina -d run 4_fiberflat_HR-I.yaml -r ../control.yaml

4.3.16. Generación y uso de carpetas resultantes

Al finalizar la ejecución, en las carpetas de **results** se obtendrá el archivo **master_fiberflat.fits**, que se debe copiar a su lugar correspondiente en la carpeta de calibración:

en relación con HR-R:

```
ca3558e3-e50d-4bbc-86bd-da50a0998a48/MasterFiberFlat/LCB/HR-R
```

en relación con HR-I:

ca3558e3-e50d-4bbc-86bd-da50a0998a48/MasterFiberFlat/LCB/HR-I

4.4. Calibración en flujo

Para la calibración en flujo, se observó al menos una estrella estándar para cada noche de observación, de manera que la estrella estándar fue observada en la misma noche que las estrellas objetivo. Los archivos en formato .dat fueron descargados de la página oficial de la ESO¹. Las estrellas estándar utilizadas fueron: mhr153, mhr718, mhr1544, mhr3454, mhr4468, mhr4554, mhr5501, mhr7596, mhr7950 y mhr8634.

4.4.1. Receta LcbAcquisition

Para llevar a cabo la calibración en flujo, es necesario crear los archivos 6_Lcbadquisition_HR-R.yaml y 6_Lcbadquisition_HR-I.yaml. El contenido de estos archivos se presenta a continuación:

```
id: 6_HR-I_0149
mode: MegaraLcbAcquisition
instrument: MEGARA
frames:
        - 0003573763-20220815-MEGARA-MegaraLcbImage.fits
        - 0003573764-20220815-MEGARA-MegaraLcbImage.fits
        - 0003573765-20220815-MEGARA-MegaraLcbImage.fits
    requirements:
        extraction_offset: [+0.1]
```

¹https://ftp.eso.org/pub/usg/standards/.

La figura 4.3 presenta las imágenes crudas de la estrella estándar, sobre las cuales se han superpuesto las regiones calculadas previamente a través de la receta TraceMap empleando DS9. La imagen (a) representa la configuración espectral HR-R, donde el *extraction_offset* es 0, mientras que la imagen (b) corresponde a la configuración HR-I, con un *extraction_offset* de +0.1.

Figura 4.3: Imágenes crudas de la estrella estándar con las regiones calculadas superpuestas en DS9. (a) Configuración HR-R, (b) Configuración HR-I.

Una vez creados ambos archivos, se ejecutan las recetas utilizando los siguientes comandos:

caso HR-R:

```
numina -d run 6_Lcbadquisition_HR-R.yaml -r ../control.yaml
```

caso HR-I:

```
numina -d run 6_Lcbadquisition_HR-I.yaml -r ../control.yaml
```

4.5. Procesamiento de la estrella estándar

En la siguiente receta, se deben generar los archivos 7_Standardstar_HR-I.yaml y 7_Standardstar_HR-R.yaml. El contenido de cada uno es el siguiente:

```
id: 7_HR-R_0149
mode: MegaraLcbStdStar
instrument: MEGARA
frames:
```

```
    0003573756-20220815-MEGARA-MegaraLcbImage.fits
    0003573757-20220815-MEGARA-MegaraLcbImage.fits
    0003573758-20220815-MEGARA-MegaraLcbImage.fits
    requirements:
    extraction_offset: [0.0]
    reference_spectrum: mhr8634.dat
    reference_extinction: extinction_LP.txt
    Position: [-1.8422800351679507, -0.27271842604226365]
    degrade_resolution_method: "auto"
```

En los frames se utilizan los mismos que en la receta previa con el mismo offset. Sin embargo, se debe especificar en Position: [k, k] el valor del centroide en mm, el cual se encuentra en el archivo processing.log dentro de la carpeta results generada en la carpeta previa. Para esto, se debe ir al final del archivo y buscar centroid: en mm, copiar ese valor y agregarlo a Position: [valor, valor].

Una vez obtenidos estos archivos, se ejecuta la receta con los siguientes comandos:

```
Respecto a HR-R
numina -d run 7_Standardstar_HR-R.yaml -r ../control.yaml
```

Respecto a HR-I

numina -d run 7_Standardstar_HR-I.yaml -r ../control.yaml

Después de ejecutar la receta, se debe copiar el archivo generado en la carpeta results, "master_sensitivity.fits", y colocarlo en ca3558e3-e50d-4bbc-86bd-da50a0998a48/MasterSensitivity/LCB/HR-R y ca3558e3-e50d-4bbc-86bd-da50a0998a48/MasterSensitivity/LCB/HR-I, cada uno en su correspondiente ubicación.

4.6. Aplicación de calibraciones a la estrella estándar

En este paso, se aplicarán todas las calibraciones previas a la estrella estándar. Para ello, se deben generar los archivos 8_stdr_reduce_LCB_HR-R.yaml y 8_stdr_reduce_LCB_HR-I.yaml. Su contenido es el siguiente:

```
id: 8_HR-R_SPSTD_HR8634
mode: MegaraLcbImage
instrument: MEGARA
frames:
                        0003573756-20220815-MEGARA-MegaraLcbImage.fits
                        0003573757-20220815-MEGARA-MegaraLcbImage.fits
                        0003573758-20220815-MEGARA-MegaraLcbImage.fits
                        requirements:
                        extraction_offset: [0.0]
                        reference_extinction: extinction_LP.txt
enabled: True
```

```
id: 8_HR-I_SPSTD_HR8634
mode: MegaraLcbImage
instrument: MEGARA
frames:
        - 0003573763-20220815-MEGARA-MegaraLcbImage.fits
        - 0003573764-20220815-MEGARA-MegaraLcbImage.fits
        - 0003573765-20220815-MEGARA-MegaraLcbImage.fits
requirements:
    extraction_offset: [+0.1]
    reference_extinction: extinction_LP.txt
```

enabled: True

Una vez creados ambos archivos, se ejecutan las recetas utilizando los siguientes comandos:

En HR-R

numina -d run 8_stdr_reduce_LCB_HR-R.yaml -r ../control.yaml

En HR-I

numina -d run 8_stdr_reduce_LCB_HR-I.yaml -r ../control.yaml

4.7. Aplicación de calibraciones a las estrellas observadas

Procediendo a aplicar todas las calibraciones a nuestras estrellas, se debe crear un archivo .yaml que se denominará 10_objects_LCB.yaml. En este archivo, se listan todos los objetos a los que se les aplicarán las calibraciones mencionadas tanto en HR-R como en HR-I. El formato es el siguiente:

```
id: 9_HR-R_0149
mode: MegaraLcbImage
instrument: MEGARA
frames:
 - 0003573703-20220815-MEGARA-MegaraLcbImage.fits
 - 0003573704-20220815-MEGARA-MegaraLcbImage.fits
 - 0003573705-20220815-MEGARA-MegaraLcbImage.fits
requirements:
 extraction_offset: [+0.2]
reference_extinction: extinction_LP.txt
enabled: True
_ _ _
id: 9_HR-I_0149
mode: MegaraLcbImage
instrument: MEGARA
frames:
```

```
    - 0003573710-20220815-MEGARA-MegaraLcbImage.fits
    - 0003573711-20220815-MEGARA-MegaraLcbImage.fits
    - 0003573712-20220815-MEGARA-MegaraLcbImage.fits
    requirements:
    extraction_offset: [0.0]
    reference_extinction: extinction_LP.txt
    enabled: True
```

Este formato se puede repetir para tantos objetos como se desee. La única condición es que la separación entre cada objeto sea con --- , y al final del archivo, la última línea debe ser **enabled**: **True** sin la separación --- .

Una vez que se tiene el archivo, se ejecuta con el siguiente comando:

```
numina -d run 10_objects_LCB.yaml -r ../control.yaml
```

Al finalizar, se debe verificar que las reducciones sean correctas. En este caso, se recomienda usar el programa MEGARA QLA.

4.8. Visualización y extracción de espectros con ME-GARA QLA

Finalmente, para visualizar los resultados, utilizamos el programa MEGARA QLA. Este programa reconstruye la imagen bidimennsional de la estrella observada a partir de los espectros obtenidos con la IFU como se muestra en las figuras 4.4 y 4.5.

Para todas las estrellas de la biblioteca se decidió obtener el espectro de 37 spaxels, que corresponde a aproximadamente 0.62 segundos de arco por espaxel. Los 37 espaxeles seleccionados están centrados en el espaxel de mayor flujo. Esta selección se basa en lo establecido en el segundo artículo de esta biblioteca (ver Carrasco et al. (2020)). Guardamos la combinación de esos espectros en un archivo .fits y un .txt con el nombre del objeto, en este caso quedaría como: HD210424-HRR.fits, HD210424-HRR.txt, HD210424-HRI.fits, HD210424-HRI.txt y con eso se concluye el proceso de reducción de una estrella. La figura 4.4 muestra la distribución del flujo de la estrella estándar SPSTD-HR8634, reconstruida en la IFU de MEGARA y visualizada mediante la herramienta QLA (Quick Look Analysis). En la figura se presentan los espectros obtenidos para 37 spaxels seleccionados en cada modo tanto como para HR-R como para HR-I.

Figura 4.4: Distribución del flujo de la imagen reconstruida en la IFU, mostrada en un mapa de color utilizando la herramienta MEGARA QLA para los modos HR-R (a) y HR-I (b), correspondiente a la observación de la estrella estándar SPSTD-HR8634. Los espectros correspondientes a los 37 spaxeles seleccionados se presentan en (c) y (d) para HR-R y HR-I, respectivamente.

La figura 4.5 muestra la distribución del flujo de la imagen reconstruida en la IFU de la estrella HD210424 (OB0149), visualizada con la MEGARA QLA. Se presentan los espectros correspondientes a 37 spaxeles seleccionados en cada configuración, HR-R y HR-I.

Figura 4.5: Distribución del flujo en la imagen reconstruida en la IFU, representada en un mapa de color utilizando la herramienta MEGARA QLA para los modos HR-R (a) y HR-I (b), correspondiente a la observación de la estrella HD210424. Los espectros asociados a los 37 spaxeles seleccionados se muestran en (c) y (d) para HR-R y HR-I, respectivamente.

4.9. Semiautomatización del proceso de reducción de datos

La necesidad de semiautomatizar el proceso de reducción de datos surgió ante el desafío de procesar aproximadamente 1700 espectros. El método tradicional de reducción espectro por espectro resulta extremadamente laborioso y consume una cantidad considerable de tiempo. Para alcanzar los objetivos en el tiempo deseado, se desarrollaron códigos en Python que facilitan el proceso de reducción de datos de la siguiente manera:

Se mantiene la organización de los objetos por noche de observación. Es posible utilizar el código para tantas noches como se requiera, siempre que se disponga de suficiente espacio de memoria. Una vez organizados los objetos científicos por noche, se emplea un primer código que verifica el archivo de control de calidad del primer objeto de observación de esa noche (aunque es importante mencionar que todos los objetos de esa noche tendrán las mismas calibraciones). Este código comprueba que el archivo de control contenga elementos en los campos: IMAGE, Flat, Arcs y Spectrophotometric standard, tanto para HR-R como para HR-I, así como la presencia de elementos en Bias. Además, verifica que no haya tiempos de exposición menores o iguales a cero y que estén presentes las lámparas utilizadas para calibrar. Si todo es correcto en este primer chequeo, se puede proceder al siguiente código.

El segundo código genera la carpeta inicial con la estructura específica mencionada anteriormente en el proceso de reducción. Esta carpeta ya cuenta con la nomenclatura adecuada, y la carpeta principal corresponde al OB del primer objeto de esa noche. Además, incluye el archivo control.yaml con el directorio correcto, la carpeta de calibración en su lugar, y la carpeta data con todos los archivos necesarios, a excepción de la estrella estándar, que debe agregarse manualmente. Las recetas están preparadas con los respectivos frames a utilizar; sin embargo, falta completar el campo extraction_offset.

Para este código, además de organizar los objetos por noche de reducción, se requiere una carpeta denominada MEGARA ESQUELETO, que contiene todas las recetas de calibración con los campos id y frames en blanco. También incluye la carpeta de calibración sin los archivos que se generarán posteriormente y que deberán transferirse a dicho directorio, junto con el archivo **control**.**yaml**. Adicionalmente, se generan dos scripts de **shell** con el código necesario para ejecutar las recetas y copiar los archivos a su correspondiente ubicación en el árbol de calibración.

El primer script de shell ejecuta las 0_bias.yaml, recetas 1_tracemap_HR-I.yaml y 1_tracemap_HR-R.yaml. Con estas recetas se obtienen los ds9_raw tanto para HR-R como para HR-I. Tras ejecutar este script, se obtienen las regiones necesarias para definir el extraction_offset requerido en cualquier receta posterior. Una vez definido este offset, como se explicó en la sección correspondiente, se ejecuta el segundo script de **shell**, que corre las recetas desde 2_modelmap_HR-I.yaml, 2_modelmap_HR-R.yaml hasta 10_objects_LCB.yaml. Esto permite proceder a revisar el objeto científico reducido con todas las calibraciones aplicadas.

Esta metodología reduce considerablemente el tiempo de reducción en comparación con el proceso manual anteriormente utilizado. Este código estará disponible para el público en general en una futura publicación.

Por último, para evaluar la calidad de los espectros en la figura 4.6 reportamos la distribución de la relación señal/ruido (S/R) para la Muestra 2. El panel (a) muestra el correspondiente la configuración HR-I, con un valor promedio de $\langle S/R \rangle_{HR-I} = 215.84 \pm 149.81$. El panel (b) presenta el histograma para la configuración HR-R, con un valor promedio de $\langle S/R \rangle_{HR-R} = 214.64 \pm 150.22$. Las dos gráficas son similares porque la mayoría de las observaciones incluyen las dos configuraciones espectrales en el mismo OB que se ejecutan en secuencia. La distribución de la naturaleza de un programa *filler* de GTC, ya que no garantiza ningunas condiciones de observación específicas. Al contrario, estas observaciones se llevan a cabo al azar fuera del calendario estándar, cuando ningún otro programa se puede realizar. Esto sucede normalmente cuando las condiciones de observación son malas.

Figura 4.6: Histogramas de la relación señal/ruido (S/R) de la Muestra 2 de ME-GASTAR. El panel (a) muestra el histograma para HR-I con un valor promedio de $\langle S/R \rangle_{HR-I} = 215.84 \pm 149.81$, mientras que el panel (b) presenta el histograma para HR-R con un valor promedio de $\langle S/R \rangle_{HR-R} = 214.64 \pm 150.22$.

4. Reducción de los espectros

Capítulo 5 Resultados

En el Apéndice A se presentan 2007 espectros de MEGASTAR, calibrados en flujo (Janskys), usando la estrella estándar para cada bloque de observación proporcionada por el GTC. De estos, 1988 corresponden a las 994 estrellas de la Muestra 2 observadas en HR-R y HR-I, 12 espectros a seis estrellas de esta muestra que se observaron dos veces en ambas configuraciones y siete espectros de estrellas observadas en una sola configuración. Estas últimas no forman parte de la Muestra 2, pero se han incluido en esta tesis porque son parte del trabajo realizado.

Siguiendo con la estrella HD210424 elegida para ejemplificar el proceso de reducción de datos descrito en el capítulo 4 la figura 5.1 muestra sus espectros en HR-R a la izquierda y HR-I a la derecha. El tipo espectral se indica en la parte superior derecha de cada panel.

Figura 5.1: Espectros de HD210424. A la izquierda se muestra la configuración HR-R, mientras que a la derecha se presenta la configuración HR-I. El tipo espectral se indica en la parte superior derecha. Espectros no corregidos por velocidad radial.

La figura 5.2 presenta una selección de espectros extraídos del atlas de la Muestra 2. Cada fila contiene espectros de dos estrellas diferentes en las configuraciones HR-R y HR-I. Los colores corresponden al tipo espectral de cada estrella de acuerdo a la siguiente nomenclatura: WR, púrpura; O, azul; B, cian; A, verde; F, naranja; G, rojo; K, magenta; M, granate; L, marrón; S, gris; D, oliva; C, dorado; y Flat, negro.

5.1. Variaciones en las líneas espectrales H∝, triplete de Ca II y las bandas moleculares en función del tipo espectral

En la figura 5.3 se presenta una secuencia de espectros correspondientes a estrellas de diferentes tipos espectrales. Los paneles de la izquierda muestran los espectros obtenidos con la configuración HR-R, mientras que los de la derecha corresponden a la configuración HR-I. Los nombres de las estrellas están situados a la izquierda de cada espectro, y sus respectivos tipos espectrales se encuentran a la derecha. Esta comparación permite visualizar los cambios en las líneas espectrales H α y en el triplete de Ca II, sobre el que están centradas las dos VPHs de alta resolución de MEGARA. Además, se aprecia la aparición de bandas moleculares conforme varía la temperatura efectiva.

La línea H α , visible en 6562.8 Å, alcanza su máxima intensidad en las estrellas de tipo A y se mantiene fuerte en las estrellas de tipo F, como se observa en los espectros de las estrellas A0V a F5V en la figura. En las estrellas más calientes de tipo O y B, como O6.5II y B1Ia, la línea H α aparece más débil debido a la ionización del hidrógeno, aunque en la figura esta diferencia no es visible, ya que el flujo se presenta en unidades arbitrarias. En algunos casos, como en las estrellas con vientos estelares, como WC8+OB, la línea aparece en emisión. Conforme se avanza en la secuencia espectral hacia estrellas más frías, como G5V y K5V, la línea H α se debilita aún más, hasta volverse prácticamente imperceptible en las estrellas de tipo M0V y M5V.

El triplete de Ca II, con longitudes de onda en reposo de 8498 Å, 8542 Å y 8662 Å, es visible con mayor intensidad en estrellas de tipo G, K y M, como se observa en los espectros de G0V, K0IV y M0V, este triplete es más evidente conforme disminuye la

temperatura. En contraste, en las estrellas más calientes de tipo O y B, este triplete es prácticamente inexistente, como se observa en los espectros de O9.2IVnn, B1Ia y WC8+OB, ya que las altas temperaturas ionizan completamente el calcio, impidiendo la formación de estas líneas.

En las estrellas más frías de tipo K y M, se detectan bandas moleculares, principalmente de TiO y VO. Estas bandas son visibles en los espectros de estrellas como M0V y M5V, donde predominan, especialmente en las longitudes de onda entre 8400 a 8700 Å. En las estrellas más calientes estas bandas no están presentes, ya que las temperaturas más elevadas disocian las moléculas en las atmósferas estelares.

Figura 5.2: Espectros extraídos del atlas de la muestra 2 de MEGASTAR. Las columnas 1 y 2 corresponden a la misma estrella en las configuraciones HR-R y HR-I, las columnas 3 y 4 también representan una misma estrella en HR-R y HR-I, es decir, cada fila tiene dos estrellas diferentes. Los colores corresponden a un tipo espectral específico: púrpura, WR; azul, O; cian, B; verde, A; naranja, F; rojo, G; magenta, K; granate, M; marrón, L; gris, S; oliva, D; dorado, C; negro, Flat. Espectros no corregidos por velocidad radial.

Departamento de Astrofísica

5.1 Variaciones en las líneas espectrales HA, triplete de Ca II y las bandas moleculares en función 55

Figura 5.3: Espectros de diversas estrellas. La columna de la izquierda presenta espectros obtenidos en la configuración HR-R, mientras que la columna de la derecha muestra espectros en la configuración HR-I. Las abscisas representan la longitud de onda en angstroms (Å) y las ordenadas indican el flujo en unidades arbitrarias. Los nombres de las estrellas se encuentran a la izquierda de cada espectro y sus respectivos tipos espectrales a la derecha. Los colores de los espectros se asignan según el tipo espectral, tal como se menciona en la Figura 5.2. Espectros no corregidos por velocidad radial.

En el apéndice A se muestra el atlas de los espectros de la Muestra 2 de MEGAS-TAR, que consiste en 2000 espectros correspondiente a 994 estrellas más los espectros de seis de ellas observadas dos veces. En cada figura del apéndice se presentan los espectros de 12 estrellas en las dos configuraciones espectrales HR-R y HR-I. En el cuadro 5.1, se presenta la lista de las estrellas ordenada alfabéticamente. De la columna 2 a la 6 están los nombres de las estrellas cuyos espectros se presentan en la figura indicada en la columna 1. 5.1~ Variaciones en las líneas espectrales HA, triplete de Ca II y las bandas moleculares en función del tipo espectral \$57

Cuadro 5.1: Lista de las 994 estrellas de la Muestra 2 de MEGASTAR, donde se incluyen 6 estrellas observadas dos veces. Los espectros de estas estrellas se presentan en el apéndice A. La primera columna indica el número de la figura en la que se despliegan los espectros de las estrellas que se muestran en las otras seis columnas. Las estrellas están ordenadas alfabéticamente según se muestran en las figuras del apéndice.

Figura	Estrellas					
1	BD + 012916	BD+053080	BD+062986	BD+092860	BD+112998	$BD\!+\!151305$
	BD + 172473	BD+182890	BD+182976	BD + 233130	BD + 251981	${ m BD}\!+\!252436$
2	${ m BD}\!+\!252479$	BD+252497	BD + 262276	BD+272057	BD + 272096	${ m BD}\!+\!272126$
	${ m BD}{+}282079$	BD+292091	BD+292231	BD + 292290	BD + 292294	BD + 302431
	BD + 302611	BD+302931	BD+312356	BD + 312360	BD + 321561	BD + 342371
3	BD + 342476	BD + 362165	BD + 362219	BD + 362303	BD + 363168	BD + 371458
	BD + 371665	BD+372312	BD+372319	BD+392554	BD + 394926	BD + 412695
4	${ m BD}\!+\!413306$	BD + 422667	BD + 451668	BD + 452247	BD + 461635	BD + 463471
5	${ m BD}\!+\!473458$	BD-185550	G115-58	G156-031	G169-28	G192-43
0	G63-26	GJ1111	GJ1245A	GJ1245B	HD001400	HD001918
6	HD002126	HD002628	HD002796	HD002857	HD002952	HD003574
0	$\mathrm{HD003765}$	HD003817	HD004778	HD004963	HD005294	HD005516
7	HD006961	HD008574	HD010975	HD011749	HD013825	HD014489
1	HD018078	HD018769	HD019510	HD020041	HD020468	HD023183
0	HD023194	HD023607	HD023924	HD024496	HD025291	HD025329
0	HD025532	HD025621	HD025893	HD026322	HD026462	HD026574
0	HD026736	HD026923	HD027382	HD027561	HD027697	HD027819
9	HD027887	HD027962	HD028100	HD028307	HD028343	HD028527
10	$\mathrm{HD028546}$	HD028946	HD028978	HD029150	HD029574	HD029697
10	HD030034	HD030210	HD030504	HD030834	HD030959	HD031236
11	HD031295	HD031412	HD031966	HD032259	HD032655	HD032736
11	HD032923	HD033299	HD033959	HD034334	HD034578	HD034878
10	HD035620	HD035770	HD036215	HD036389	HD036667	HD036673
12	HD036861	HD037124	HD037216	HD037536	HD037788	HD038145
12	HD038237	HD038247	HD038270	HD038309	HD038528	HD038545
10	$\mathrm{HD038656}$	HD038751	HD038798	HD039003	HD039082	HD039118
14	HD039225	HD039681	HD039882	HD039949	HD039970	HD040111
1.1	HD040183	HD040239	HD040259	HD040335	HD040372	HD040446
15	HD040460	HD040573	HD040650	HD040996	HD041079	HD041142
10	HD041307	HD041361	HD041433	HD041460	HD041593	HD041636
16	$\rm HD041640$	HD041712	HD042089	HD042092	HD042111	HD042143
10	HD042182	HD042217	HD042256	HD042299	HD042454	HD042474
17	HD042475	HD042548	HD042618	HD042773	HD042787	HD042995
11	HD043021	HD043039	HD043083	HD043188	HD043247	HD043338
18	HD043358	HD043378	HD043380	HD043384	HD043523	HD043587
	HD043856	HD043856-2	HD043947	HD044030	HD044033	HD044195
19	HD044333	HD044478	HD044515	HD044602	HD044638	HD044770
10	HD044867	HD044889	HD044947	HD044985	HD045152	HD045205
20	HD045317	HD045355	HD045412	HD045431	HD045507	HD045514
	HD045759	HD046122	HD046199	HD046454	HD046687	HD046784

Figura	Estrellas						
I Igui u	HD047072 HD047105 HD047129 HD047731 HD047914 HD048099						
21	HD048144	HD048329	HD048433	HD048565	HD048568	HD048682B	
	HD048737	HD048781	HD048948	HD040000	HD040000	HD040002D	
22	HD049368	HD049520	HD040540	HD049739	HD049178	HD050277	
	HD050420	HD050554	HD050692	HD050794	HD051419	HD051440	
23	HD050420	HD052073	HD053027	HD054217	HD054322	HD054357	
	HD054710	HD055052	HD055383	HD056350	HD056986	HD054357	
24	HD057275	HD057660	HD055585	HD058072	HD058207	HD057204	
	HD057275	HD057009	HD057727	HD058072	HD058207	HD058595	
25	HD050701	HD0601791	HD058925	HD059058	HD059574	HD059881	
	HD060111	HD060178J	HD060319	HD060408	HD060522	HD061295	
26	HD061603	HD061913	HD062345	HD062346	HD062437	HD062721	
	HD063333	HD063352	HD063410	HD063433	HD063791	HD064488	
27	HD064630	HD065372	HD065714	HD065804	HD065900	HD066011	
	HD066090	HD066444	HD067228	HD067390	HD068988	HD070272	
28	HD070458	HD070757	HD071030	HD071155	HD071262	HD071515	
	HD071557	HD071952	HD072097	HD072324	HD072505	HD072660	
29	HD072722	HD072945	HD073226	HD073394	HD073593	HD073665	
	HD073667	HD073710	HD074011	HD074442	HD074462	HD074721	
30	HD074739	HD075332	HD075933	HD076219	HD076221	HD076291	
	HD076292	HD076351	HD076508	HD076572	HD076752	HD076780	
31	HD076944	HD077093	HD077350	HD077601	HD077729	HD077818	
	HD077912	HD078234	HD078316	HD078479	HD079158	HD079283	
32	HD079469	HD079555	HD079633	HD080390	HD080715	HD081029	
	HD081146	HD081192	HD082210	HD082395	HD082635	HD082741	
33	HD083632	HD083787	HD083805	HD084347	HD084441	HD084453	
	HD084748	HD084937	HD084971	HD085235	HD086322	HD086873	
34	HD087140	HD087141	HD087344	HD087646	HD087696	HD087737	
	HD087822	HD087901	HD088072	HD088230	HD088355	HD088986	
35	HD089251	HD089389	HD089449	HD089484	HD089758	HD089822	
	HD090250	HD090277	HD090343	HD090361	HD090507	HD090508	
36	HD090862	HD091190	HD091204	HD091316	HD091347	HD091752	
	HD092125	HD092127	HD092769	HD093329	HD093430	HD093487	
37	HD093765	HD094264	HD094587	HD094600	HD094601	HD094669	
	HD094672	HD094705	HD095418	HD095735	HD096360	HD096833	
3.8	$\mathrm{HD097603}$	HD097633	HD097711	HD097778	HD097907	HD098262	
50	HD098468	HD098744	HD098824	HD098839	HD098839-2	HD099329	
30	$\mathrm{HD099505}$	HD099648	HD100006	HD100284	HD100470	HD101013	
- 35	HD101484	HD101676	HD102224	HD102328	HD102780	HD103095	
40	HD103578	HD103877	HD104783	HD105262	HD105546	HD105740	
40	HD105755	HD105944	HD106210	HD106252	HD106365	HD106591	
4.1	HD106714	HD107276	HD107383	HD107513	HD107700	HD107705	
41	HD107752	HD107950	HD108076	HD108225	HD108381	HD108678	
40	HD108915	HD108945	HD108954	HD108956	HD108985	HD108986	
42	HD109303	HD109307	HD109317	HD109345	HD110184	HD110679	
4.9	HD110833	HD110885	HD110930	HD111028	HD111154	HD111398	
43	HD111515	HD111591	HD111812	HD112030	HD112127	HD112300	

Cuadro 5.1: (continuación).

5.1~ Variaciones en las líneas espectrales HA, triplete de Ca II y las bandas moleculares en función del tipo espectral \$59

Figura	Estrellas					
44 -	HD112413	HD113022	HD113095	HD113226	HD113285	HD113319
	HD113436	HD113515	HD113847	HD113848	HD113996	HD114092
45 -	HD114174	HD114256	HD114357	HD115004	HD115268	HD115274
	HD115404	HD115444	HD115539	HD115604	HD116442	HD116443
46 -	HD116515	HD116842	HD117858	HD117876	HD118022	HD118096
	HD118266	HD118905	HD119228	HD119288	HD119516	HD119550
477	HD119802	HD119850	$\mathrm{HD120066}$	HD120164	HD120315	HD120348
47	HD120933	HD121370	$\mathrm{HD}121560$	HD121934	HD122120	HD122408
18	HD122563	HD122742	$\mathrm{HD}122796$	HD123657	HD123821	HD123977
40	HD124186	HD124320	$\mathrm{HD}125451$	HD126031	HD126053	HD126141
10	HD126246	HD126327	$\mathrm{HD126661}$	HD126778	HD127243	HD127334
-15	HD127506	HD127665	HD128000	HD128165	HD128661	HD128750
50	HD128801	HD129132	$\mathrm{HD129312}$	HD129814	HD129956	HD129972
50	HD130025	HD130087	$\mathrm{HD}130109$	HD130705	HD130817	HD130948
51	HD131042	HD131156A-2	$\mathrm{HD}132254$	HD132933	HD133124	HD133165
51	HD133208	HD134044	HD134063	HD134169	HD134190	HD134474
59	HD135148	HD135485	$\mathrm{HD}135599$	HD135722	$\mathrm{HD136202}$	HD136512
52	HD136514	HD136923	$\mathrm{HD}137071$	HD137471	HD137510	HD137704
53	HD137909	HD138279	$\mathrm{HD}138290$	HD138481	HD139195	HD139323
	HD139324	HD139341	$\mathrm{HD139641}$	HD139798	HD140027	HD140160
54	$\mathrm{HD140232}$	HD140233	$\mathrm{HD}140573$	HD141003	HD141680	HD141714
04	HD141795	HD142093	$\mathrm{HD}142373$	HD142575	HD142908	HD142980
55	HD143107	HD143213	$\mathrm{HD}143393$	HD143666	HD143761	HD144287
	HD144579	HD144872	HD145328	HD145502	HD145675	HD145729
56	HD145976	HD147550	$\mathrm{HD}147923$	HD148112	HD148184	HD148856
	HD148897	HD149009	HD149382	HD149419	HD149750	HD149757
57	HD150012	HD150449	$\mathrm{HD}150680$	HD150997	HD151044	HD151203
	HD151288	HD151877	$\mathrm{HD152614}$	HD152792	HD152815	HD152830
58	HD153286	HD153808	HD153882	HD154278	HD154345	HD154431
	HD154660	HD154733	$\mathrm{HD154931}$	HD154931-2	HD155514	HD156164
50	HD156283	HD156729	$\mathrm{HD}157198$	HD157214	$\mathrm{HD157373}$	$\mathrm{HD}157466$
	HD157857	HD157910	HD158148	HD158261	HD158414	HD158899
60	HD159062	HD159139	HD159181	HD159222	HD159332	HD159482
00	HD159909	HD160054	$\mathrm{HD160365}$	HD160693	HD160910	HD161056
61	HD161074	HD161149	$\mathrm{HD161239}$	HD161573	HD161603	HD161677
01	HD161695	HD161796	HD161797A	HD161817	HD161941	HD162028
62	HD162211	HD162555	$\mathrm{HD162570}$	HD162753	HD162954	HD163506
02	HD163588	HD163641	$\mathrm{HD163990}$	HD163993	HD164136	HD164349
63	HD164432	HD164557	HD164922	HD165195	HD165645	HD165887
	HD166014	HD166207	HD166208	HD166229	HD166620	HD166734
64	HD166958	HD167006	HD167042	HD167392	HD167588	HD167771
r.	HD168009	HD168322	HD168608	HD168720	HD168775	HD168797
65	HD169027	HD169305	HD169414	HD169931	HD170009	HD170737
	HD170739	HD170756	HD170780	HD170783	HD170973	HD171301
66	HD171406	HD171995	HD172380	HD172488	HD172816	HD172958
	HD173034	HD173158	HD173329	HD173399	HD173650	HD173667

Cuadro 5.1: (continuación).

Figura	Estrellas						
	HD173673	HD173701	HD173780	HD173799	HD173819	HD173936	
67	HD174069	HD174512	HD174567	HD174701	HD174884	HD174959	
68	HD175037	HD175100	HD175156	HD175306	HD175376	HD175426	
	HD175588	HD175640	HD175786	HD175865	HD175865-2	HD176301	
69	HD176318	HD176582	HD176630	HD176819	HD177196	HD177282	
	HD177880	HD178187	HD178287	HD178329	HD178359	HD178717	
	HD179104	HD179315	HD179406	HD179761	HD180006	HD180029	
70	HD180124	HD180163	HD180610	HD180928	HD181096	HD181276	
71	HD181440	HD181470	HD181475	HD181655	HD181751	HD182272	
11	HD182293	HD182488	HD182568	HD182736	HD182761	HD183915	
70	HD184385	HD184499	HD184786	HD184875	HD184927	HD185351	
12	HD185657	HD185859	HD186307	HD186377	HD186379	HD186412	
72	HD186486	HD186619	HD186675	HD186980	HD187013	HD187111	
10	HD187216	HD187282	HD187459	HD187811	HD187921	HD187929	
74	HD187983	HD188056	HD188260	HD188326	HD188485	HD188650	
74	HD188947	HD189479	HD190073	HD190864	HD191046	HD191615	
75	HD191692	HD191765	HD192103	HD192163	HD192281	HD192577	
10	HD192641	HD192909	HD192944	HD193077	HD193322	HD193576	
76	HD194093	HD194244	HD195324	HD195506	HD195729	HD196662	
10	HD196725	HD196777	HD197345	HD197572	HD197812	HD197912	
77	HD197989	HD198345	HD199191	HD199799	HD199870	$\mathrm{HD200527}$	
11	HD200905	HD201091	HD201626	HD201889	HD202109	HD202124	
78	$\mathrm{HD202573}$	HD202671	HD203344	$\mathrm{HD204543}$	$\mathrm{HD204642}$	$\mathrm{HD204754}$	
10	HD204771	HD204867	HD205021	HD205331	$\mathrm{HD205512}$	HD206267	
79	HD206778	HD206859	HD207076	HD207134	HD207330	$\mathrm{HD207673}$	
	HD210424	HD210745	HD210839	HD210889	HD211075	HD212061	
80	HD212496	HD212571	HD213470	HD214994	HD215373	HD215665	
	HD216143	HD216174	HD216672	HD217382	HD217476	HD217906	
81	HD218031	HD218329	HD218915	HD218935	HD219734	HD219945	
01	HD219962	HD219978	HD220575	HD221170	HD221345	HD222107	
82	HD223047	HD223165	HD223385	HD223869	HD224458	HD232078	
02	HD232979	HD233666	HD233891	HD234677	HD237903	HD250792	
83	HD251611	HD277559	HD281679	HD284248	HD338529	HR5511	
	KIR4	NGC2420-140	NGC2682-156	NGC2682-55	NGP29129	NGP29129-2	
84	TYC3015-1951-1	VBNVul	VGKCom	VIWCom			
04							

Cuadro 5.1: (continuación).

El presente trabajo se centra en la reducción de los datos observacionales obtenidos con MEGARA. La estimación de los parámetros estelares T_{eff} , log(g), [M/H], será realizada en una etapa posterior, utilizando el método descrito en el tercer artículo de MEGASTAR Mollá et al. (2022).

5.2. Rectificación de los espectros

El método de mínimos cuadrados generalizados descrito por Cardiel (2009) se utiliza para ajustar el continuo de cada espectro. Este procedimiento automatiza la determinación del continuo sin necesidad de identificar manualmente regiones libres de absorción. El ajuste se realiza mediante funciones límite, que pueden ser polinomios simples o *splines*. A través de un ajuste inicial por mínimos cuadrados ordinarios, se asignan pesos asimétricos a los puntos de datos, de modo que los puntos por debajo del ajuste reciben un peso menor que los puntos por encima. Tras varias iteraciones, el ajuste se desplaza hacia el límite superior del espectro, proporcionando una estimación del continuo. Finalmente, el flujo se normaliza al continuo ajustado.

En la figura 5.4 se muestra un ejemplo del método aplicado a la estrella HD115136, obtenido de Mollá et al. (2022). La primera fila corresponde al espectro HR-R y la segunda fila al espectro HR-I. En la primera columna, el espectro original de la estrella se presenta en color azul claro, mientras que el espectro suavizado con un filtro de mediana de 5 pixeles se muestra en color gris . En color naranja se muestra el ajuste mediante *splines* al continuo del espectro filtrado. La segunda columna presenta únicamente el espectro original junto con el ajuste, y en la tercera columna se muestra el espectro rectificado, con el flujo normalizado al continuo ajustado.

5.3. Corrección por velocidad radial

El método presentado en Mollá et al. (2022) para corregir los espectros de ME-GASTAR por velocidad radial se basa en la comparación entre los espectros observados y los modelos estelares de Munari et al. (2005, en adelante MUN05), los cuales también tienen que ser rectificados siguiendo el procedimiento descrito en la sección anterior. MUN05 presentó una biblioteca de espectros sintéticos basados en el código de Kurucz, que cubre el rango de 2500 a 10500 Å.

Los modelos considerados cubren diversas combinaciones de parámetros estelares. La temperatura efectiva abarca el rango $3500 \text{ K} \leq T_{\text{eff}} \leq 47500 \text{ K}$, con incrementos de 250 K hasta 10000 K y pasos progresivamente mayores para temperaturas superiores. La gravedad superficial está definida en el intervalo $0.0 \leq \log(g) \leq 5.0$, mientras que

Figura 5.4: Se presenta un ejemplo de los ajustes utilizados para rectificar automáticamente los espectros MEGASTAR de la estrella HD115136. Cada fila ilustra el procedimiento seguido para los espectros HR-R [paneles (a), (b) y (c)] y HR-I [paneles (d), (e) y (f)]. En la primera columna [paneles (a) y (d)], se muestran los espectros originales antes del ajuste (líneas en azul claro), el resultado de aplicar un filtro tomando la mediana de cinco pixeles (líneas en gris oscuro), y los ajustes de splines aplicados a los datos filtrados (líneas en naranja, con los nudos representados como puntos). La segunda columna [(b) y (e)] presenta los ajustes finales (líneas en negro) superpuestos sobre los espectros originales (líneas en azul claro) para facilitar la evaluación visual. La tercera columna [(c) y (f)] exhibe los espectros rectificados obtenidos en cada caso. Imagen e información extraída de Mollá et al. (2022).

la metalicidad toma valores dentro del rango $-2.5 \le [M/H] \le 0.5$. Las abundancias de $[\alpha/Fe]$ están disponibles para dos valores: 0.0 y +0.4. Además, los modelos incluyen tres valores para la velocidad de microturbulencia ($\xi = 1, 2 \text{ y } 4 \text{ km s}^{-1}$) y consideran rotaciones estelares en el intervalo $0 \le V_{\text{rot}} \le 500 \text{ km s}^{-1}$.

En el análisis de los autores, se seleccionaron únicamente los modelos con abundancias $[\alpha/\text{Fe}] = 0.0$, una velocidad de microturbulencia de $\xi = 2 \text{ km s}^{-1}$ y rotación estelar $V_{\text{rot}} = 0 \text{ km s}^{-1}$, limitando además el conjunto de temperaturas a $T_{\text{eff}} \leq 25\,000 \text{ K}$.

En ese trabajo, utilizaron modelos con una resolución de $R = 20\,000$, que es adecuada para MEGASTAR.

La corrección por velocidad radial se realiza mediante la técnica de correlación

cruzada. Esta técnica compara el espectro observado de MEGASTAR con los espectros modelados y corregidos de MUN05, desplazándolos gradualmente en longitud de onda. En cada paso, se calcula el coeficiente de correlación entre ambos espectros. El desplazamiento en longitud de onda que maximiza la correlación corresponde a la velocidad radial de la estrella.

La correlación cruzada se aplicó de manera individual para cada espectro disponible, correspondiente a las configuraciones HR-R o HR-I.

5.4. Obtención de los parámetros estelares

Una vez que los espectros han sido corregidos en el continuo, normalizados en flujo y corregidos por la velocidad radial, se comparan con los modelos de MUN05 utilizando una técnica de ajuste basada en el método del χ^2 , descrita en Mollá et al. (2022). Esta comparación la realizan para estrellas en el intervalo de temperatura $3500 \leq T_{eff} \leq 25\,000$ K.

La técnica del χ^2 consiste en minimizar la función:

$$\chi^2 = \sum_{i=1}^{n} \frac{\left(F_{\text{obs}}(\lambda_i) - F_{\text{mod}}(\lambda_i)\right)^2}{\sigma^2(\lambda_i)}$$

donde $F_{obs}(\lambda_i)$ es el flujo observado en la longitud de onda λ_i , $F_{mod}(\lambda_i)$ es el flujo del modelo en la misma longitud de onda, $\sigma(\lambda_i)$ es la incertidumbre asociada al flujo observado y n es el número de intervalos de longitud de onda.

El ajuste permite identificar qué modelo MUN05 ofrece el mejor ajuste para cada espectro observado, obteniendo los parámetros estelares T_{eff} , log(g), [M/H].
Capítulo 6 Conclusiones

MEGASTAR es una biblioteca empírica de espectros estelares, creada a partir de observaciones realizadas con MEGARA, que es requerida para contribuir a la interpretación adecuada de las observaciones de cúmulos estelares y galaxias observadas con dicho instrumento. Los espectros de la biblioteca y los parámetros estelares derivados de ellos se utilizarán para calcular modelos de síntesis de poblaciones estelares. En su primera emisión pública, MEGASTAR incluyó espectros de 414 estrellas observadas con $R_{FWHM} \approx 20000$ en las configuraciones espectrales de HR-R centrada en H α (6420-6790 Å) y HR-I centrada en el triplete de CaII (8370-8885 Å).

En esta tesis se presentan 1988 espectros de un conjunto de 994 estrellas, al que denominamos Muestra 2, observadas en HR-R y HR-I después de la DR1. Se describen las distribuciones de los tipos espectrales, de la temperatura efectiva, la gravedad superficial y la metalicidad de las estrellas de la Muestra 2, de las estrellas de DR1 y de la muestra formada por DR1 + Muestra 2. Este análisis evidencia que las observaciones correspondientes a la Muestra 2 contribuyen significativamente a la cobertura de parámetros estelares.

Se describen las observaciones en modo *filler* de siete semestres, que cubrieron un total de 334 horas de observación. Adicionalmente, se presenta en detalle el proceso de reducción de datos y en particular, un nuevo proceso semiautomático que desarrollé para optimizar dicho proceso de reducción en vista del gran número de espectros (1700) a reducir. Tengo planeado publicar este código, para ponerlo a disposición de la comunidad científica como parte de *MEGARA tools*.

Elaboré un atlas de 2007 espectros reducidos y calibrados en flujo. De éstos, 1988 corresponden a 994 estrellas de la Muestra 2 observadas en HR-R y HR-I, 12 a seis

estrellas de la misma muestra observadas en dos ocasiones en ambas configuraciones espectrales. Adicionalmente, se incluyen los espectros de siete estrellas observadas en una sola configuración. Dicho atlas se presenta en el apéndice A. Con los espectros de la Muestra 2 se triplica el número de estrellas de MEGASTAR en relación a las publicadas en la DR1.

Este trabajo forma parte de un proyecto más amplio, que ya cuenta con tres artículos publicados y se espera que continúe ampliándose. Se tiene programado hacer una nueva emisión pública con los espectros de la DR1 más los 2000 espectros que he contribuido con mi trabajo de tesis.

El trabajo inmediato sería la determinación de los parámetros estelares T_{eff} , log(g), [M/H], siguiendo el método presentado por Mollá et al. (2022) para las estrellas más frías que B2, ya que uno de los objetivos es la determinación de los parámetros estelares de todas las estrellas de la biblioteca siguiendo el mismo método.

Índice de figuras

 $\mathbf{2}$

8

9

- 1.1. En el plano focal de MEGARA se encuentran la IFU y el MOS. Panel (a): esquema de la IFU y el MOS. La IFU se ubica en el centro del campo, alrededor se ilustran las áreas de patrullaje de los 92 robots posicionadores del MOS, representadas por hexágonos en beige, junto con las posiciones de los ocho mini-IFUs para la sustracción del cielo mostrados en color naranja. Panel (b): fotografía de la IFU y el MOS. La información e imágenes fueron extraídas de Carrasco et al. (2018).
- 2.1. Distribución de los tipos espectrales obtenidos de SIMBAD-CDS. En rojo se muestran los tipos espectrales del catálogo completo de la biblioteca. Panel (a): en verde, las 414 estrellas de DR1. Panel (b): en azul, las 994 estrellas de la Muestra 2. Panel (c): en amarillo, el histograma de los tipos espectrales de DR2 (i.e., DR1 + muestra 2). El número total de estrellas se denota como N_{tot}.
- 2.2. En las tres imágenes, en el eje y se muestra el logaritmo de la gravedad superficial, mientras que en el eje x se presenta $\Theta = 5040/T_{\text{eff}}$. La región gris representa las isocronas de Padova. Los puntos de color azul claro corresponden al catálogo completo de estrellas de MEGASTAR con parámetros estelares (c.p.e). Los puntos de color azul oscuro, los cuadrados verdes y los triángulos rojos corresponden a los diferentes intervalos de metalicidad indicados. En (a) se muestran las estrellas de la primera emisión, en (b) las estrellas de la Muestra 2, y en (c) las estrellas de la DR2. Datos de la literatura disponibles en MEGASTAR.

2.3.	Histograma del logaritmo de la temperatura efectiva. Ntot _{est} denota el número total de estrellas. En (a), se muestran las estrellas de la DR1. En (b), las estrellas de esta tesis. En (c), las estrellas de la DR2. Datos de la literatura disponibles en MEGASTAR. $\dots \dots \dots \dots$	9
2.4.	Histograma del logaritmo de la gravedad superficial. N _{tot} representa el número total de estrellas. En (a) aparecen las estrellas de la DR1. En (b) se encuentran las estrellas de la Muestra 2. En (c) se observan las estrellas de la DR2. Datos de la literatura disponibles en MEGASTAR.	10
2.5.	Histograma de la distribución de la metalicidad, indicada como $[M/H]$. El eje x muestra los valores de metalicidad $[M/H]$, el eje y representa el conteo de estrellas. Ntot _{est} indica el número total de estrellas. En (a) se presentan las estrellas de la DR1. En (b) están las estrellas de la Muestra 2. En (c) se observan las estrellas de la DR2. Datos de la literatura disponibles en MEGASTAR.	10
3.1.	Histograma del <i>seeing</i> reportado en segundos de arco. $Ntot_{esp}$ denota el número total de espectros. En panel (a), se presentan las estrellas de la DR1. En panel (b), se encuentran las estrellas de la Muestra 2. En panel (c), se observan las estrellas de la DR2	15
4.1.	Comparación de imágenes de campo plano con diferentes valores del parámetro <i>extraction_offset</i> .	35
4.2.	Imágenes en crudo de las lámparas de arco con las regiones calculadas superpuestas en DS9. (a) Configuración HR-R, (b) Configuración HR-I.	36
4.3.	Imágenes crudas de la estrella estándar con las regiones calculadas superpuestas en DS9. (a) Configuración HR-R, (b) Configuración HR-I.	40
4.4.	Distribución del flujo de la imagen reconstruida en la IFU, mostrada en un mapa de color utilizando la herramienta MEGARA QLA para los modos HR-R (a) y HR-I (b), correspondiente a la observación de la estrella estándar SPSTD-HR8634. Los espectros correspondientes a los 37 spaxeles seleccionados se presentan en (c) y (d) para HR-R y	
	HR-I, respectivamente.	45

- 4.5. Distribución del flujo en la imagen reconstruida en la IFU, representada en un mapa de color utilizando la herramienta MEGARA QLA para los modos HR-R (a) y HR-I (b), correspondiente a la observación de la estrella HD210424. Los espectros asociados a los 37 spaxeles seleccionados se muestran en (c) y (d) para HR-R y HR-I, respectivamente. 46
- 5.1. Espectros de HD210424. A la izquierda se muestra la configuración HR-R, mientras que a la derecha se presenta la configuración HR-I. El tipo espectral se indica en la parte superior derecha. Espectros no corregidos por velocidad radial.
 51
- 5.2. Espectros extraídos del atlas de la muestra 2 de MEGASTAR. Las columnas 1 y 2 corresponden a la misma estrella en las configuraciones HR-R y HR-I, las columnas 3 y 4 también representan una misma estrella en HR-R y HR-I, es decir, cada fila tiene dos estrellas diferentes. Los colores corresponden a un tipo espectral específico: púrpura, WR; azul, O; cian, B; verde, A; naranja, F; rojo, G; magenta, K; granate, M; marrón, L; gris, S; oliva, D; dorado, C; negro, Flat. Espectros no corregidos por velocidad radial.
- 5.3. Espectros de diversas estrellas. La columna de la izquierda presenta espectros obtenidos en la configuración HR-R, mientras que la columna de la derecha muestra espectros en la configuración HR-I. Las abscisas representan la longitud de onda en angstroms (Å) y las ordenadas indican el flujo en unidades arbitrarias. Los nombres de las estrellas se encuentran a la izquierda de cada espectro y sus respectivos tipos espectrales a la derecha. Los colores de los espectros se asignan según el tipo espectral, tal como se menciona en la Figura 5.2. Espectros no corregidos por velocidad radial.

54

55

5.4. Se presenta un ejemplo de los ajustes utilizados para rectificar automáticamente los espectros MEGASTAR de la estrella HD115136. Cada fila ilustra el procedimiento seguido para los espectros HR-R [paneles (a), (b) y (c)] y HR-I [paneles (d), (e) y (f)]. En la primera columna [paneles (a) y (d)], se muestran los espectros originales antes del ajuste (líneas en azul claro), el resultado de aplicar un filtro tomando la mediana de cinco pixeles (líneas en gris oscuro), y los ajustes de splines aplicados a los datos filtrados (líneas en naranja, con los nudos representados como puntos). La segunda columna [(b) y (e)] presenta los ajustes finales (líneas en negro) superpuestos sobre los espectros originales (líneas en azul claro) para facilitar la evaluación visual. La tercera columna [(c) y (f)] exhibe los espectros rectificados obtenidos en cada caso. Imagen e información extraída de Mollá et al. (2022).

62

Índice de cuadros

1.1.	Características principales de MEGARA en el GTC	3
2.1.	Distribución de tipos espectrales en las diferentes muestras y en el catálogo completo de MEGASTAR.	11
2.2.	Cuartiles de $\log(T_{eff})$.	11
2.3.	Cuartiles de $\log(g)$	11
2.4.	Cuartiles de [Fe/H]	11
3.1.	Horas de observación solicitadas, concedidas y observadas por semestre.	14
3.2.	Cuartiles del $seeing$ reportado para diferentes conjuntos de datos. $\ .$.	14
5.1.	Lista de las 994 estrellas de la Muestra 2 de MEGASTAR, donde se in- cluyen 6 estrellas observadas dos veces. Los espectros de estas estrellas se presentan en el apéndice A. La primera columna indica el número de la figura en la que se despliegan los espectros de las estrellas que se muestran en las otras seis columnas. Las estrellas están ordenadas	
	alfabéticamente según se muestran en las figuras del apéndice. \ldots .	57

Bibliografía

- África Castillo-Morales Pascual S., de Paz A. G., 2020, MEGARA Data Reduction Cookbook, doi:10.5281/zenodo.3834345, https://doi.org/10.5281/zenodo.3834345
- Bertelli G., Bressan A., Chiosi C., Fagotto F., Nasi E., 1994, A&AS, 106, 275
- Cardiel N., 2009, Monthly Notices of the Royal Astronomical Society, 396, 680
- Carrasco E., et al., 2018, in Evans C. J., Simard L., Takami H., eds, Vol. 10702, Ground-based and Airborne Instrumentation for Astronomy VII. SPIE, p. 1070216, doi:10.1117/12.2313040, https://doi.org/10.1117/12.2313040
- Carrasco E., Mollá M., García-Vargas M. L., Gil de Paz A., Cardiel N., Gómez-Alvarez P., Berlanas S. R., 2020, Monthly Notices of the Royal Astronomical Society, 501, 3568
- García-Vargas M. L., Mollá M., Martín-Manjón M. L., 2013, Monthly Notices of the Royal Astronomical Society, 432, 2746
- García-Vargas M. L., et al., 2020, Monthly Notices of the Royal Astronomical Society, 493, 871
- Gil de Paz A., et al., 2018, in Evans C. J., Simard L., Takami H., eds, Vol. 10702, Ground-based and Airborne Instrumentation for Astronomy VII. SPIE, p. 1070217, doi:10.1117/12.2313299, https://doi.org/10.1117/12.2313299
- Gray R., Corbally C., 2009, Stellar Spectral Classification. Princeton University Press
- Marigo P., Girardi L., Bressan A., Groenewegen M. A. T., Silva L., Granato G. L., 2008, A&A, 482, 883

- Martín-Manjón M. L., García-Vargas M. L., Mollá M., Díaz A. I., 2010, Monthly Notices of the Royal Astronomical Society, 403, 2012
- Mollá M., García-Vargas M. L., Bressan A., 2009, Monthly Notices of the Royal Astronomical Society, 398, 451
- Mollá M., García-Vargas M. L., Millán-Irigoyen I., Cardiel N., Carrasco E., Gil de Paz A., Berlanas S. R., Gómez-Álvarez P., 2022, Monthly Notices of the Royal Astronomical Society, 519, 5472
- Munari U., Sordo R., Castelli F., Zwitter T., 2005, A&A, 442, 1127
- Pascual S., Cardiel N., Castillo-Morales A., Picazo-Sánchez P., Gil de Paz A., 2024, guaix-ucm/megaradrp: Release v0.16, doi:10.5281/zenodo.11072068, https://doi. org/10.5281/zenodo.11072068
- Rodríguez Berlanas S., 2014, Master's thesis, Universidad Complutense de Madrid, Madrid, Spain