
Multi-objective Evolutionary
Algorithms for the

optimization of Deep Neural
Network Architectures

By

Cosijopii García García

A dissertation submitted in partial fulfillment of the requirements for

the degree of:

Doctor of Science in Computer Science
at

Instituto Nacional de Astrofísica, Óptica y
Electrónica

February, 2025

Supervised by:

Dra. Alicia Morales Reyes
Dr. Hugo Jair Escalante Balderas

©INAOE 2025
The author grants INAOE permission to

make partial or total copies of this work and
distribute them, provided that the source is mentioned.

Multi-objective Evolutionary Algorithms for the
optimization of Deep Neural Network Architectures

Computer Science Department

Doctoral thesis

By:

Cosijopii Garcia Garcia

Supervised by:
Dra. Alicia Morales Reyes

Dr. Hugo Jair Escalante Balderas

Instituto Nacional de Astrofísica Óptica y Electrónica

Tonantzintla, Puebla. February 2025

Abstract

Neural Architecture Search (NAS) has emerged as a critical area in deep learning, focus-
ing on automating the design of convolutional neural networks (CNNs) to optimize their
performance across different tasks. Despite advancements, most NAS approaches have
predominantly focused on single-objective optimization, aiming primarily to maximize
accuracy. This approach often overlooks other important factors, such as model com-
plexity, computational time, and generalization capability. In this thesis, we address these
gaps by introducing a multi-objective framework for NAS that leverages evolutionary
algorithms (EAs).

Our contributions include the development of a novel search space representation
for CNNs based on Cartesian genetic programming (CGP), designed to accommodate
both architectural operations and hyperparameters flexibly. This representation enables
a more efficient exploration of potential architectures, capturing a diverse range of high-
performance models. Furthermore, we propose a progressive search strategy that incor-
porates self-supervised learning techniques to guide the evolutionary process more effec-
tively. Additionally, a new performance estimation strategy is developed, based on incre-
mental dataset expansion, to reduce computational costs during the search process.

To validate the proposed framework, extensive experimentswere conducted on bench-
mark image classification tasks, comparing the performance of our multi-objective NAS
approach with state-of-the-art NAS methods. The results demonstrate that our approach
not only achieves competitive accuracy but also offers improved trade-offs betweenmulti-
ple objectives. The findings highlight the potential of evolutionary-based multi-objective
optimization in advancing NAS methodologies, providing a pathway towards more effec-
tive and adaptable deep learning models for real-world applications.

[i]

ii Abstract

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Resumen

La búsqueda de arquitecturas neuronales (NAS) se ha convertido en un área crítica en el
aprendizaje profundo; ésta se enfoca en automatizar el diseño de redes neuronales con-
volucionales (CNNs) para optimizar su rendimiento en diversas tareas. A pesar de los
avances, la mayoría de los enfoques de NAS se han centrado predominantemente en la
optimización de un solo objetivo, buscando principalmente maximizar la precisión. Este
enfoque a menudo pasa por alto otros factores importantes, como la complejidad del mod-
elo, el tiempo computacional y la capacidad de generalización. En esta tesis, abordamos
estas limitaciones introduciendo un enfoque multiobjetivo para NAS que utiliza algorit-
mos evolutivos multiobjetivo (MOEAs). Nuestras contribuciones incluyen el desarrollo
de una nueva representación del espacio de búsqueda para CNNs basada en la Progra-
mación Genética Cartesiana (CGP), diseñada para utilizar operaciones a nivel de capas
como hiperparámetros; todo esto de manera flexible. Esta representación permite una
exploración más eficiente de arquitecturas, capturando un amplio conjunto de modelos
eficientes. Además, proponemos una estrategia de búsqueda progresiva que incorpora
técnicas de aprendizaje autosupervisado para guiar el proceso evolutivo de manera más
efectiva. Adicionalmente, se desarrolla una nueva estrategia de estimación de desempeño
basada en la expansión incremental de conjuntos de datos, con el fin de reducir los costos
computacionales durante el proceso de búsqueda.

Para validar el marco propuesto, se realizaron varios experimentos en tareas de clasi-
ficación de imágenes utilizando diferentes benchmarks, comparando el rendimiento de
nuestro enfoque de NAS multiobjetivo con métodos NAS del estado del arte. Los resul-
tados demuestran que nuestro enfoque no solo logra una precisión competitiva, sino que
también ofrece mejores trade-offs entre múltiples objetivos. Los resultados obtenidos de-
muestran el potencial de la búsqueda basada en algoritmos evolutivos multiobjetivo para
el diseño automatizado de arquitecturas neuronales, proporcionando soluciones que son
tanto efectivas como eficientes en diferentes escenarios del mundo real.

[iii]

iv Resumen

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Dedication

I feel compelled to dedicate this thesis to all those who have glimpsed some-

thing beyond what society considers normal, to those who refuse to conform to

current demands, and who, on a higher level, strive to create something that

benefits others. This dedication is also to life, to love, to friendship, to aptitude,

and to the wisdom found in solitude.

[v]

vi Dedication

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Acknowledgments

I would like to express my deepest gratitude to my advisors, Dr. Alicia Morales Reyes and
Dr. Hugo Jair Escalante Balderas, for their guidance and support throughout these years
of hard work, their insights have been invaluable on this journey. I am also grateful to Dr.
Bilel Derbel and Dr. Zakaria Abdelmoiz Dahi for their advice and mentorship during my
time at INRIA. I would also like to express my sincere thanks to all those who, in one way
or another, directly or indirectly, have contributed to the completion of this thesis.

My thanks go to INAOE for providing me with the necessary tools and facilities to
conduct my research. I would also like to extend my appreciation to my reviewers: Dr. Al-
fonso Martínez Cruz, Dr. Jesús García Díaz, Dr. René A. Cumplido Parra, Dr. Saúl Zapote-
cas Martínez and Dr. Efrén Mezura Montes, for their constructive feedback and assistance
in improving this work.

I am thankful to CONAHCYT for the financial support provided through scholarship
No. 794300, and for the grant CB-S-26314 that supported this work.

The experiments presented in Chapter 6 were conducted using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS, RENATER,
several universities, and other organizations (see https://www.grid5000.fr).

Finally i acknowledge the computer resources, technical advice, and support provided
by the Laboratorio Nacional de Supercómputo del Sureste de México (LNS), a member of
the CONAHCYT national laboratories, under project No. 202103083C.

[vii]

https://www.grid5000.fr

viii Acknowledgments

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Contents

Abstract i

Resumen iii

Dedication v

Acknowledgments vii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Problem statement . 2
1.2 Motivation . 3
1.3 Justification . 4
1.4 Research questions . 5
1.5 Hypothesis . 5
1.6 General objective . 6

1.6.1 Specific objectives . 6
1.7 Contributions . 6
1.8 Thesis summary . 8

2 Background 9
2.1 Neural architecture search . 9

2.1.1 Search space . 10
2.1.2 Search strategy . 12

[ix]

x CONTENTS

2.1.3 Performance estimation strategy 12
2.2 Evolutionary computation . 13

2.2.1 Genetic programming . 15
2.2.2 Cartesian genetic programming . 16
2.2.3 Multiobjective optimization . 17
2.2.4 Special solutions . 20
2.2.5 Multiobjective optimization evolutionary algorithms 23

2.3 Deep neural networks . 29
2.3.1 Neural networks . 29
2.3.2 Feedforward networks . 30
2.3.3 Convolutional neural networks . 31
2.3.4 Supervised classification . 33
2.3.5 Self-Supervised learning . 34

2.4 Discussion . 35

3 State of the art 37
3.1 Single-Objective NAS . 38
3.2 Multi-Objective NAS . 39
3.3 Discussion . 41

4 Continuous Representation for Multi-objective NAS 45
4.1 Multi-objective NAS problem . 45
4.2 Solutions representation for CNN - Search space 46

4.2.1 CGP Funtion set . 47
4.2.2 CGP-NASV1 representation . 51
4.2.3 CGP-NASV2 representation . 53

4.3 Evolutionary algorithm - Search strategy 55
4.4 Fitness function - Performance estimation strategy 56
4.5 Experimental framework . 57
4.6 Results analysis . 58

4.6.1 Effectiveness of searching for the hyperparameters 60
4.6.2 Best trade-off solution via multiple-criteria decision analysis 61
4.6.3 Performance comparison between different MOEAs 62
4.6.4 Comparison versus the state of the art 66
4.6.5 Evolved architectures . 72

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

CONTENTS xi

4.7 Discussion . 72

5 Progressive Self-Supervised Multi-objective NAS 75
5.1 Progressive search - Search strategy . 76
5.2 Self-supervised evaluation - Performance estimation strategy 77
5.3 Experimental framework . 78
5.4 Experimental results . 80

5.4.1 Comparison with state-of-the-art 80
5.4.2 Visual analysis of the evolved architectures 83

5.5 Discussion . 85

6 Incremental Training Dataset Expansion 89
6.1 The proposed performance estimation strategy 89
6.2 Experimental framework . 91
6.3 Results . 92

6.3.1 Overall performance of the best and knee Solutions 92
6.3.2 Overall Performance from a multi-objective perspective 93

6.4 Discussion . 97

7 Conclusions and Future work 99
7.1 Future Work . 101

Bibliography 103

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

xii CONTENTS

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

List of Figures

2.1 Neural architecture search, principal components, figure taken from [1]. . 9
2.2 The left side shows a chain-structured space, while the right side depicts

a more complex space with additional layer types 10
2.3 Two types of cells: (top) a normal cell and (bottom) a reduction cell. 11
2.4 Evolutionary algorithm, general scheme. 15
2.5 CGP representation, Genotype and phenotype 17
2.6 Decision variables space to objective function space mapping 20
2.7 Representation of an objective function space with ideal (𝑍 ∗), utopian

(𝑍 ∗∗), and nadir (𝑍𝑛𝑎𝑑) objective vectors. 21
2.8 Representation of a simple perceptron. 30
2.9 Architecture of a multilayer perceptron: input layer (red), hidden layer

(green), and output layer (blue). 31
2.10 Basic architecture of a convolutional neural network. 32

4.1 Function set blocks. 49
4.2 Function set blocks Cont. 50
4.3 General scheme of the representation based on chained blocks 52
4.4 CGP-NASV1 using the block-chained representation. 53
4.5 CGP-NASV2 block-chained representation with the hyperparameters di-

rectly encoded. 54
4.6 CGP-NASV2 solution representation . 54
4.7 NSGA-II general schema with encoding and decoding steps. 56
4.8 Each crossover is applied independently between sub-vectors at the same

overall position. 57
4.9 Examples from the CIFAR-10, CIFAR-100, and SVHN datasets, with each

row representing a class. 59

[xiii]

xiv LIST OF FIGURES

4.10 Knee and boundary selection method. 62
4.11 Aggregated Pareto Front of each evaluated Method on the CIFAR-100

Dataset. 64
4.12 Box plot of normalized Hypervolume on CIFAR-10 and CIFAR-100. 69
4.13 Comparison of the Pareto fronts between CGP-NASV1 and CGP-NASV2,

and the population through generations. 70
4.14 CGP-NASV2 evolved CNN architectures selected by the knee and bound-

ary method. 73

5.1 CGP-NASV2 block-chained representation with the hyperparameters di-
rectly encoded. 76

5.2 Proposed progressive search scheme. 77
5.3 Mating scheme of the progressive search 78
5.4 Images were rotated by random multiples of 90 degrees (i.e., 0°, 90°, 180°,

or 270°). 79
5.5 Evolved architecture, comparing both self-supervised and supervised ap-

proaches using Grad-CAM. 86
5.6 Activation maps extracted using Grad-CAM 87
5.7 Activation maps extracted using Grad-CAM 87

6.1 Aggregate Pareto fronts . 94
6.2 Box plot of the hypervolume relative deviation. 95
6.3 Convergence graphs of the proposed method versus CGP-NASV2. 97

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

List of Tables

2.1 Different strategies for estimating the performance of neural architectures
as well as for accelerating this process [1]. 13

3.1 Reviewed works of the state of the art . 42
3.1 Reviewed works of the state of the art . 43
3.1 Reviewed works of the state of the art . 44

4.1 Functions set with corresponding variations and arity 48
4.2 CGP-NASV1 and CGP-NASV2 parameters 57
4.3 Comparison between differents versions of CGP-NAS, on CIFAR-10 and

CIFAR-100 datasets, parameters and MAdds expressed in millions (1 × 106). 60
4.4 Trade-off knee solutions from the Pareto front. Parameters andMAdds are

expressed in millions (1 × 106). 62
4.5 Comparison of CGP-NAS versions on the CIFAR-100 dataset using differ-

ent MOEAs. 63
4.6 Summary of Hypervolume Results. 65
4.7 Pairwise Comparison of Hypervolume Results with NSGA-II-SBX as Base-

line. (+: better, -: worse, =: no significant difference). 65
4.8 CGP-NASv1 and CGP-NASV2 comparison on CIFAR-10 dataset. 67
4.9 CGP-NASv1 and CGP-NASV2 comparison on CIFAR-100 dataset 68
4.10 CGP-NASv1 and CGP-NASV2 comparison on SVHN dataset 71

5.1 Experimental Settings. 78
5.2 Comparison on CIFAR-100 dataset: Classification error rate, the number

of parameters and MAdds . 81

[xv]

xvi LIST OF TABLES

5.3 Comparison on CIFAR-10 dataset: Classification error rate, the number of
parameters and MAdds are expressed in millions (1 × 106), GPU-days and
GPU Hardware. 82

5.4 Comparison on the SVHN dataset : Classification error rate, number of
parameters and MAdds are expressed in millions (1 × 106), GPU-days and
GPU Hardware. 83

5.5 Comparison on the CINIC-10 dataset: Classification error rate, number of
parameters and MAdds are expressed in millions (1 × 106), GPU-days and
GPU Hardware. 84

6.1 Parameters configuration. 91
6.2 Comparisons between different approaches using the CIFAR-100 dataset . 93

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Chapter 1

Introduction

Deep neural networks (DNNs), particularly convolutional and recurrent neural networks,
have recently gained considerable popularity for approaching a wide variety of prob-
lems [2, 3, 4, 5]. Regarding convolutional neural networks (CNNs), these are very effective
computational models that have been thoroughly investigated in a wide range of image
processing and computer vision-related tasks. This has been possible thanks to a number
of factors including availability of large amounts of data, high-performance computing
resources and research advances in the machine learning field [6].

CNNs are often organized according to complex topologies (architectures) whose de-
sign, including hyperparameter configuration, is done by expert users. While CNNs grow
in complexity, manual configuration becomes time consuming and in some cases unfea-
sible [6]. Neural Architecture Search (NAS) is a field that aims at automating the design
and configuration of CNN models [1]. NAS methods explore the space of CNN topolo-
gies looking for an architecture that meets criteria, for instance, achieving a minimum
performance, or being light in terms of the number of parameters.

Nowadays, progress in NAS research has resulted in the identification of novel CNNs
with favorable performance on representative image classification datasets, attracting the
scientific community’s attention to this topic [7].

Evolutionary computation (EC) is a set of techniques inspired by the process of natural
evolution to deal with complex optimization problems among others. The multi-objective
approach deals with problems where objectives are in conflict and focuses on finding a set
of solutions that represent a trade-off among them [8]. EC techniques have been success-
fully applied in the multi-objective optimization problems domain. In the context of NAS,
the automated design of high-performance and low-complexity network architectures re-
mains an open issue. This relevant problem can be formulated as one of multi-objective
optimization [9, 7, 10, 11, 12].

[1]

2 1. Introduction

NAS can be divided in three components: the search space, the search strategy, and
the performance estimation strategy. Each of these components plays a crucial role in the
overall design and performance of the neural architectures.

In this thesis, we have developed and refined each of these areas. The primary con-
tribution is the design of a new search space that is both flexible and modular, capable
of supporting hyperparameters. From an evolutionary computation perspective, a novel
representation based on Cartesian Genetic Programming was created. Building on this
representation, a new search strategy was proposed, leveraging self-supervised learning
and progressive search techniques. Additionally, a new method for performance estima-
tion of neural architectures was developed, aimed at reducing the evaluation time. The
contributions of this thesis present a comprehensive set of strategies for designing neural
architectures from a multi-objective perspective.

1.1 Problem statement

State-of-the-art CNNs are becoming increasingly complex, and their performance de-
pends on both architecture and hyperparameter configuration, in addition to their high
processing requirements. Furthermore, extensive research has been conducted through
the development of specialized architectures for specific tasks [13]. However, due to the
lack of understanding of DNNs, determining CNN performance without empirical bench-
mark testing remains challenging. Accurate and less complex architectures are desirable
in scenarios where applications and user requirements needs models where time is a crit-
ical variable. However, searching for these optimal CNN architectures becomes a time-
consuming black-box optimization task. Many research projects have been developed to
automate CNN architectural search. Several of these works have posed this problem as
a single-objective optimization problem, aiming for model accuracy on a specific dataset
[14, 15, 16]. Recent works have reevaluated NAS and approached it as a multiobjective op-
timization problem, asmore than one objective is involved in CNNdevelopment [10, 7, 17].
Important variables such as the number of parameters and architectural complexity, usu-
ally measured in MAdds(multiply-add operations), have a significant impact on the fi-
nal model’s performance and are strongly related to the application context. Recent re-
search has focused on more classical Pareto-based algorithms. However, algorithms such
as indicator-based MOEAs or decomposition remain unexplored.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

1.2 Motivation 3

1.2 Motivation

The recent and rapid advances in deep learning, particularly in CNNs, have highlighted
the challenges and necessity of automating their design and configuration. The No Free
Lunch (NFL) theorem [18, 19] suggests that no single optimization algorithm can be uni-
versally effective across all problems, which implies the need for specialized algorithms
tailored to specific tasks. In the context of NAS, particularly NAS applied to CNNs, this
specialization is crucial for achieving optimal performance on specific datasets and appli-
cations.

NAS has emerged as a vital technique for automatically designing neural networks.
It leverages various search methodologies to discover architectures that balance perfor-
mance and complexity. Traditionally, NAS approaches have focused on three primary
paradigms: reinforcement learning (RL), evolutionary algorithms (EAs), and Bayesian op-
timization (BO) [1]. Each of these methods brings unique advantages and challenges, par-
ticularly inmanaging the trade-offs betweenmultiple objectives, such as accuracy, latency,
and model complexity.

This thesis focuses on evolutionary algorithms (EAs) due to their proven effectiveness
in multi-objective optimization scenarios and their adaptability in representing solutions
and designing operators specific to a problem’s context. EAs offer flexibility in encod-
ing architectures and dynamically adapting the search process, making them particularly
suitable for the complex search spaces involved in NAS. Despite their potential, multi-
objective evolutionary algorithms (MOEAs) have not been extensively explored in NAS,
especially concerning CNNs, presenting a significant opportunity for further develop-
ment.

Through the exploration of evolutionary approaches in NAS, this research aims to
contribute to the understanding of how specialized algorithms can better navigate the
trade-offs inherent in designing neural architectures. By leveraging EAs, the goal is to
develop methods that can efficiently search for architectures that are both accurate and
computationally efficient, providing a robust foundation for future innovations in deep
learning.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

4 1. Introduction

1.3 Justification

NAS represents a rapidly evolving area within deep learning, with significant potential to
automate the design of complex CNNs [1]. As deep learning models become increasingly
complex, the challenge of manually designing optimal architectures has grown, necessi-
tating more sophisticated automated methods. Despite substantial progress, most existing
NAS approaches have primarily focused on single-objective optimization, typically aim-
ing to maximize accuracy for specific datasets. This narrow focus limits the exploration of
trade-offs between multiple critical objectives, such as model complexity, computational
efficiency, and generalization ability.

Current research utilizing EAs in NAS has shown promise due to their flexibility and
robustness in exploring large search spaces. However, studies from a multi-objective per-
spective often rely on binary or integer representations, overlooking other mechanisms
that could be employed. This gap exists partly because the multi-objective approach is still
under extensive investigation [9, 10, 7]. Such approaches may not fully exploit the poten-
tial of NAS, as they do not adequately address the multi-objective nature of real-world
applications, where models must balance several performance metrics simultaneously.

A crucial aspect of NAS is the representation used to define the search space. The way
neural architectures and their hyperparameters are encoded significantly influences the
efficiency and effectiveness of the optimization process. An optimal representation should
be both flexible and comprehensive, enabling the exploration of diverse architectures that
achieve high performance across multiple objectives. This flexibility is particularly im-
portant given the dynamic nature of deep learning tasks and the need for models to adapt
to different environments and data distributions.

To address these challenges, this thesis proposes a novel multi-objective NAS frame-
work that incorporates advanced evolutionary strategies and a more sophisticated rep-
resentation mechanism based on Cartesian Genetic Programming. By focusing on multi-
objective optimization, this research aims to explore the trade-offs between competing
objectives such as accuracy and model complexity. Additionally, this work introduces in-
novative strategies for both the search process and performance estimation, which are
designed to enhance search efficiency and reduce computational overhead.

The contributions of this thesis comprise a set of strategies for the automated design
of neural architectures from a multi-objective perspective. By addressing the current lim-
itations in the field, this research aims to advance the state of the art in NAS, providing

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

1.4 Research qestions 5

a foundation for developing more effective and efficient deep learning models that can
better meet the diverse needs of real-world applications.

1.4 Research questions

The primary aim of this thesis is to advance the field of NAS by leveraging evolution-
ary algorithms and innovative representation mechanisms to optimize neural network
architectures across multiple objectives. The following research questions guided the in-
vestigation.

• Do different abstraction levels for solutions representation and population dynam-
ics in multiobjective evolutionary algorithms positively affect Neural Architecture
Search for significantly less complex and highly accurate Convolutional Neural Net-
works?

• Can multiobjective evolutionary algorithms improve neural architecture search for
significantly less complex and highly accurate convolutional neural networks?

• What kind of multiobjective evolutionary paradigms can lead to less complex and
highly efficient CNN architectures?

• What modifications to the search strategy will allow us to better exploit the search
space?

• Will combining different strategies for performance estimation have a positive effect
on the total search time?

1.5 Hypothesis

Anovel solution representation in evolutionary algorithms, which accurately models con-
volutional neural network components such as layer operations and hyperparameters,
when combined with optimized search operations and dynamic population management
within multi-objective evolutionary algorithms, will enhance neural architecture search
performance, particularly by improving accuracy and reducing computational cost (mea-
sured in multiply-add operations).

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

6 1. Introduction

1.6 General objective

To design, develop, and evaluate a novel search space representation for convolutional
neural networks, integrating specific layer operations and hyperparameters within a
multi-objective evolutionary algorithm framework in order to enhance the neural archi-
tecture search process, optimizing for image classification tasks to achieve competitive
performance in terms of accuracy and computational efficiency, specifically measured by
Multiply-Add operations, compared to state-of-the-art methods.

1.6.1 Specific objectives

• To design a novel search space representation for convolutional neural networks
(CNNs) that includes a comprehensive set of elements such as layer operations and
hyperparameters, enabling more effective exploration of potential architectures.

• To develop and optimize evolutionary operators that are specifically tailored to the
proposed search space representation, enhancing the search capabilities of multi-
objective evolutionary algorithms in finding high-performing CNN architectures.

• To implement a new neural architecture search (NAS) algorithm utilizing the multi-
objective evolutionary framework, to automatically discover CNN architectures
that balancemultiple objectives, particularly accuracy, andMultiply-Add operations

• To evaluate the proposed NAS algorithm’s effectiveness by benchmarking its per-
formance against state-of-the-art NAS methods, focusing on key metrics such as
classification accuracy and Multiply-Add operations.

1.7 Contributions

The main contributions of this thesis are as follows:

• Design of a novel search space: The thesis introduces a flexible and modular search
space for Neural Architecture Search that can effectively encode both architectural
elements and hyperparameters of Convolutional Neural Networks. This new search
space is based on Cartesian Genetic Programming, providing a robust foundation
for the multi-objective evolutionary exploration of neural architectures.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

1.7 Contributions 7

• Development of an advanced search strategy: A novel search strategy is proposed,
leveraging progressive self-supervised learning and a multi-objective evolutionary
algorithm. This strategy is designed to improve the efficiency and effectiveness of
the NAS process, enabling the discovery of generic architectures without requiring
labeled data that balance accuracy and computational complexity.

• Design and implementation of a performance estimation strategy: this thesis also
presents a new method for estimating the performance of neural architectures dur-
ing the search process. This method dynamically adjusts the size of the dataset used
for evaluation, starting with a small subset and gradually increasing it, thereby
reducing the computational cost while maintaining the quality of the search out-
comes.

The papers derived from this thesis are listed below:

• Journals

– C. Garcia-Garcia, A. Morales-Reyes, and H. J. Escalante, “Continuous
Cartesian Genetic Programming based representation for multi-
objective neural architecture search”, Appl. Soft Comput., vol. 147, p.
110788, 2023.

• International conferences

– C. Garcia-Garcia, H. J. Escalante, and A. Morales-Reyes, “CGP-NAS: Real-
based solutions encoding for multi-objective evolutionary neural ar-
chitecture search”, in Genetic and Evolutionary Computation Conference
Companion (GECCO ’22 Companion), July 9–13, 2022, Boston, MA, USA, 2022,
vol. 1.

– C. Garcia-Garcia, A. Morales-Reyes, and H. J. Escalante, “Progressive Self-
supervised Multi-objective NAS for Image Classification”. In: Smith, S.,
Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation (Part
of EvoStar). EvoApplications 2024. Lecture Notes in Computer Science, vol
14635. Springer, Cham. 3-5 April, Aberystwyth, Wales, United Kingdom.

– C. Garcia-Garcia, B. Derbel, A. Morales-Reyes, and H.J. Escalante, “Speed-
ing up the Multi-Objective NAS Through Incremental Learning”. 23rd

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

8 1. Introduction

Mexican International Conference on Artificial Intelligence. Puebla. Mexico,
2024.

• International workshops

– C. Garcia-Garcia, H. J. Escalante, and A. Morales-Reyes, “Continu-
ous Cartesian Genetic Programming based representation for Multi-
Objective Neural Architecture Search for image classification” (Extend
abstract, poster presentation only) LatinX in Computer Vision (LXCV) Work-
shop at CVPR, jun 18,2023, Vancouver, Canada

1.8 Thesis summary

The remainder of this document is organized as follows:

• Chapter 2. Provides the theoretical foundations of NAS, evolutionary algorithms,
and multi-objective optimization, with the aim of understanding the various con-
cepts used in this thesis.

• Chapter 3. Presents a state-of-the-art analysis, divided into two parts: a single-
objective and a multi-objective approach, focusing on NAS proposals from the per-
spective of evolutionary computation.

• Chapter 4. Introduces a novel search space based on a continuous representation
using Cartesian Genetic Programming.

• Chapter 5. Describes a new search strategy based on progressive self-supervised
learning, which is constructed by extending the proposed search space.

• Chapter 6. Presents an innovative performance estimation strategy based on incre-
mental dataset expansion, building on the extended search space proposed earlier.

• Chapter 7. Recaps the research conducted, discusses future work, and provides the
conclusions drawn from the results obtained.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Chapter 2

Background

This chapter provides an overview of the main topics involved in this research. It starts
by presenting the fundamentals of neural architecture search, followed by discussions
on deep neural networks, convolutional neural networks, and the classification problem.
Finally, it delves into algorithmic techniques from the evolutionary computation area,
considering its primary operations. Subsequently, an introduction to multiobjective opti-
mization, along with the principal associated multiobjective evolutionary algorithms, is
described.

2.1 Neural architecture search

In the last decade, the use of deep learning has become popular due to its high performance
in learning tasks as well as its wide range of applications. It is known that the success
of these applications is due to the architectures used, as well as the learning algorithms
that optimize the associated weights. Therefore, the architectures used have becomemore
complex, hence the need to automate the process of designing new architectures as well
as the need for architectures for specific problems [1, 20, 21]. Neural architecture search
(NAS) arises from this issue. This area can be divided into three different concepts: search
space, search strategy, and performance estimation strategy

Figure 2.1: Neural architecture search, principal components, figure taken from [1].

[9]

10 2. Background

2.1.1 Search space

As mentioned earlier, NAS can be divided into three main components, one of which is
the search space. This is also one of the most important components because it defines
how the architecture will be represented. This search space is encoded, and determines the
complexity of the problem. Smaller search spaces can simplify the search process, whereas
larger search spaces can provide more specific solutions [1]. Next, we will present two of
the most commonly used methods in different approaches for NAS. The most basic and
straightforward search space used in NAS is the chain-structured neural network. This
search space consists of a sequence of 𝑛-layers. The size of this search space can be fixed,
and the complexity of each layer depends on the types of operations chosen. Additionally,
this search space can be either linear or allowing for more complex configurations such
asmulti-branch networks like the InceptionNet. In Figure 2.2, we can observe examples of
both variants of the aforementioned search space [1, 22, 11].

input

output

L0

L1

Ln-1

Ln

input

output

L2

L5

L8

L10

L1

L4

L3

L6

L9

L7

Figure 2.2: Each node represents a neural network layer, with different colors for different
types. An edge from layer 𝐿𝑖 to layer 𝐿 𝑗 indicates that 𝐿 𝑗 receives the output from 𝐿𝑖 . The
left side shows a chain-structured space, while the right side depicts a more complex space
with additional layer types, branches, and skip connections.

One of the most commonly used search spaces is the cell-based, motivated by architec-
tures where repetitive patterns were observed. Consequently, the search began to focus
on these sets of blocks instead of the entire architecture. Typically, there are two types of
cells: normal cells and reduction cells. Normal cells maintain the spatial size of the feature

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.1 Neural architecture search 11

maps, while reduction cells reduce the spatial dimension. Figure 2.3 illustrates an example
of this search space [22, 1].

output

input

inputinput

output

output

Figure 2.3: On the left, there are two types of cells: (top) a normal cell and (bottom) a
reduction cell. On the right, we can observe the typical assembly used in this search space,
where normal and reduction cells are usually interspersed; every color represents different
layer operations.

A third type of search space emerges with the use of cell-based approaches. This
method can be divided into two different search spaces: macro-architecture and micro-
architecture. The macro architecture can be configured in various ways, including the
connections between cells and the repetition of each block. Internally, the micro architec-
ture search space defines which blocks or operations are specified in each layer and how
they are interconnected. The choice of search space significantly influences the complex-
ity of the optimization problem. For instance, even when dealing with just a single cell
and focusing on the micro architecture, the problem remains complex for several reasons.
These include the high dimensionality of the problem, as more intricate models typically

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

12 2. Background

yield better performance [1]. The cell-based approach served as the based for our repre-
sentation in this thesis.

2.1.2 Search strategy

The methods used in the search strategies vary widely in the state of the art and often
depend on the type of search space. In this section, we will outline the most commonly
usedmethods for NAS. Historically, evolutionary algorithms have played a significant role
in evolving neural architectures and even their weights, with methods like NeuroEvolu-
tion of Augmenting Topologies (NEAT) [23]. However, with contemporary neural archi-
tectures containing millions of weights, it is now preferable to use methods based on
Stochastic Gradient Descent (SGD). Evolutionary methods are primarily used to optimize
the architecture, while gradient-based methods are used to optimize the weights [1].

Another widely usedmethod is Bayesian optimization, which has been impactful since
2013 and remains a favorite in the machine learning community. Reinforcement learning
has also been applied, adapting the search space into an action space where the agent’s
reward is based on estimating the performance of the trained architectures [1]. There are
variants of the methods mentioned above, the most commonly used ones are presented
here, and in Chapter 3 the state of the art of the different methods used in NAS will be
review.

2.1.3 Performance estimation strategy

To guide the search process, it is necessary to estimate the performance of each solution.
Traditionally, this is done using the training and validation sets to verify the quality of
each solution. However, this method is very costly, requiring hundreds of GPU - days
to complete the search. This highlights the need for new and faster methods to evaluate
neural architectures [1].

With this issue in mind, multiple strategies have been developed, often aligned with
different search spaces and search strategies. Table 2.1 presents four types of methods de-
signed to accelerate performance estimation, addressing the challenge of time consump-
tion. In this thesis we utilize lower fidelity estimate methods. These methods focus on
using fewer epochs of training or smaller subsets of data to estimate the solution’s per-
formance while keeping the search time relatively short.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.2 Evolutionary computation 13

Table 2.1: Different strategies for estimating the performance of neural architectures as
well as for accelerating this process [1].

Speed-up method How are speed-ups achieved?

Lower fidelity
estimates

Reduced training time by
training for fewer epochs, on a
subset of data, using smaller
models, or downscaled data

Learning curve
extrapolation

Shortened training time by
extrapolating performance
after just a few epochs

Weight Inheritance/
Network Morphisms

Models are warm-started by
inheriting weights from a

parent model instead of being
trained from scratch

One-Shot Models/
Weight Sharing

Only the one-shot model needs
training; its weights are shared
across various architectures
that are subgraphs of the

one-shot model

2.2 Evolutionary computation

Evolutionary computing is a paradigm for solving problems; it is inspired by the biolog-
ical principles of evolution. Among the most popular of which are genetic algorithms,
evolutionary strategies, and genetic programming [8, 24].

In general, Evolutionary algorithms (EAs) are a class of optimization techniques in-
spired by the principles of natural selection and biological evolution. EAs are used to solve
complex optimization problems by iteratively improving a population of candidate solu-
tions. These algorithms are particularly well-suited for problems where the search space
is large and complex. They have been successfully applied across various domains, includ-
ing engineering, economics, artificial intelligence, and machine learning [8]. EAs consist
of several essential components that work together to evolve a population of candidate
solutions toward optimal or near-optimal solutions. The primary components of an EA
include the population, representation (encoding), fitness function, selection, genetic op-
erators, replacement, and termination criteria [25, 8]. In Figure 2.4 we can observe the
principal components.

The population is a collection of candidate solutions, also referred to as individu-

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

14 2. Background

als or chromosomes. Each individual represents a potential solution to the optimization
problem. The population evolves over time, with each generation producing a new set
of individuals through evolutionary operations. The size of the population can signifi-
cantly impact the diversity of solutions and the convergence rate of the algorithm. On the
other hand the representation, or encoding, defines how candidate solutions are struc-
tured within the algorithm. Common representations include binary strings, real-valued
vectors, and more complex structures like trees or graphs. The choice of representation is
crucial, as it directly impacts the performance of the evolutionary algorithm. For instance,
in NAS, a flexible and modular representation that captures various aspects of neural net-
works, such as layer types and hyperparameters, is essential for effectively exploring the
space of possible architectures.

The fitness function is a core component that evaluates how well each individual in
the population solves the optimization problem. It assigns a fitness score to each individ-
ual, reflecting its quality or suitability as a solution. In a MOEA, multiple fitness functions
may be used to evaluate different objectives simultaneously. For example, in NAS, objec-
tives might include maximizing accuracy while minimizing computational cost. Having
the fitness of each solution the selection process or parent selection determines which
individuals from the current population will be chosen to create offspring for the next
generation. Selection is typically based on the fitness of individuals, favoring those with
higher fitness scores. Common selection methods include roulette wheel selection, tour-
nament selection, and rank-based selection. The goal of selection is to ensure that better
solutions have a higher chance of contributing to the next generation while maintaining
diversity within the population.

Genetic operators such as crossover (recombination) and mutation are applied to in-
dividuals in the population to generate new offspring. Crossover combines two or more
parent solutions to produce one or more offspring, promoting the exchange of genetic ma-
terial and potentially creating better solutions.Mutation introduces small random changes
to an individual’s structure, maintaining diversity within the population and preventing
premature convergence to suboptimal solutions. The design and application of these op-
erators are critical for the algorithm’s ability to explore and exploit the search space ef-
fectively.

Replacement strategies or survivor selection strategies define how the new offspring
generated through genetic operators are integrated into the population. This strategy de-
termines which individuals are retained for the next generation and which are discarded.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.2 Evolutionary computation 15

Replacement strategies can vary, from replacing the entire population with new offspring
to more conservative approaches where only a portion of the population is replaced, pre-
serving some of the best individuals from the current generation.

Lastly, termination criteria specify when the evolutionary algorithm should stop run-
ning. Common termination conditions include reaching a maximum number of genera-
tions, achieving a satisfactory fitness level, or observing no significant improvement in
fitness over a specified number of generations. The choice of termination criteria can af-
fect the balance between exploration and exploitation in the search process.

Initialization

Population

Parents

OffspringTermination

Parent selection

Survivor selection

Recombination

Mutation

Figure 2.4: Evolutionary algorithm, general scheme.

2.2.1 Genetic programming

Genetic Programming (GP) is an evolutionary algorithm-based methodology inspired by
natural selection to automatically evolve computer programs or models to solve specific
problems. Introduced by John Koza in the 1990s, GP extends the principles of genetic algo-
rithms (GAs) by evolving programs represented as trees or graphs [26]. The process starts
with generating an initial population of programs, selecting the fittest individuals, and ap-
plying genetic operators such as crossover and mutation to produce new generations of
programs.

In GP, programs are typically encoded as tree structures where nodes represent func-
tions and leaves represent variables or constants, its commonly have a function set with
this functions and constants, normally the function have a defined arity. The fitness of

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

16 2. Background

each program is evaluated based on its performance on a given task. Through iterative
evolution, GP seeks to discover solutions that perform well according to predefined crite-
ria.

GP has been successfully applied to various domains, including symbolic regression,
automated design, and optimization problems. Its flexibility in representing complex so-
lutions and adaptability to different problem spaces make it a powerful tool for evolving
models and algorithms [26].

2.2.2 Cartesian genetic programming

Cartesian genetic programming (CGP) was initially conceived to evolve digital circuits.
It was proposed by Miller in 1997 [27] as a general form of genetic programming (GP)
in 2000 and is called Cartesian because it represents a program using a two-dimensional
grid [28]. CGP, unlike Genetic Programming (GP), is based on acyclic graphs for solution
representation that allows forwarding connections. CGP shares important features with
GP, such as the definition of a set of functions and their arity. Figure 2.5 shows a CGP
solution representation example in which the mapping of the solution to its phenotype,
in this case, a CNN architecture, is shown. However, CGP can also be applied to differ-
ent areas, such as automatic design of digital circuits, mathematical equations, and even
artistic applications [28].

In the genotype space, a solution is mapped as an integer-based vector divided by seg-
ments that represent the function identifier (this refers to a function predefined on a set of
functions that are taken as nodes) and its connections. The size of each segment varies de-
pending on the maximum arity of the represented function; in the example, the maximum
arity is two. Another CGP characteristic is the inactive nodes that are not expressed in
the phenotype (in Figure 2.5, these are represented by the grey sections), but it is informa-
tion that is maintained in the genotype and is exploited during the evolutionary process,
for example, by changing an important connection between two functions that maps as
a big change in the phenotype. Considering this CGP scenario, the crossover operator is
not used (but can be implemented). Instead, only mutations occur as random changes in
connections and nodes.

The CGP is set up on a fixed-size grid𝑁𝑟×𝑁𝑐 , with the number of connections between
nodes determined by an 𝑙 variable known as level-back. Normally, the number of inputs
and outputs depends on the problem. CGP in its base version is combined with the (1 +

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.2 Evolutionary computation 17

1

IN
P

U
T

0 0 3 0 1 6 1 2 2 3 0

4 2 4 3 2 5 6 3 0 7 2

A

AA C

B

A

A

A

D

O

8

1 2 3 41

5 6 7 8

1

2 3

4 5

6 7

8

Function IDFunction ID

1.Input Node

2.Input Node

Figure 2.5: CGP representation. Top: integer-based genotype representation, Bottom:map-
ping to the phenotype space as an acyclic graph. Vectors in gray represent no connection,
thus these are inactive nodes in the acyclic graph [29].

𝜆) evolutionary strategy algorithm. However, CGP can be adapted to other evolutionary
searching algorithms.

2.2.3 Multiobjective optimization

In multiobjective problems (MOPs), solution quality is determined by the relationship
between several conflicting objectives [8, 30]. Solving MOPs involves identifying trade-
offs among all objective functions. Unlike single-objective problems, MOPs yield a set of
optimal solutions instead of a single one. This is because it’s impossible to find a single
solution optimizing all objective functions simultaneously in multiobjective optimization.
There are various approaches to address this issue. For instance, the weight sum method
combines the fitness of each function to obtain a single measure, typically by assigning
fixed weights to each function [8, 31, 30]. Another classic method is the 𝜖-Constraint
method, which considers one function as the main objective and treats the others as con-
straints [30, 31]. Goal programming aims to find solutions close to predefined objectives
for each target and adjusts these objectives if the desired solutions are not achieved [30].
Multiobjective evolutionary algorithms surpass in obtaining a set of Pareto-optimal solu-
tions without requiring prior knowledge of the problem, such as weight vectors. However,

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

18 2. Background

classic methods may struggle to find Pareto optimal solutions in non-convex MOPs due
to the complexity of the Pareto front and the difficulty in locating such solutions [30].

Basic concepts

This section explains basic concepts of multiobjective optimization.

• Decision variables are represented by a vector x with 𝑛 decision variables repre-
sented by Equation 2.2.1 [31].

x = [𝑥1, 𝑥2, . . . , x𝑛] (2.2.1)

• Constraints are imposed by environment characteristics or resources and occur
in most optimization problems. They are expressed in the form of mathematical
equalities or inequalities, represented in Equations 2.2.2 and 2.2.3. If the number of
equality constraints is greater than the number of decision variables, the problem is
over constrained so there are not enough degrees of freedom for optimization [31].

ℎ 𝑗 = 0 , 𝑗 = 1, 2, . . . , 𝑝 (2.2.2)

𝑔𝑖 ≤ 0 , 𝑖 = 1, 2, . . . ,𝑚 (2.2.3)

• Objective function, in multiobjective optimization, a set of objective functions are
used to evaluate the decision variables vector: 𝑓1(x), 𝑓2(x), . . . , 𝑓𝑚 (x) where𝑚 is the
number of objective functions in a multiobjective problem. The vector of objective
functions f (x) is defined as [31]:

f (x) = [𝑓1(x), 𝑓2(x), . . . , 𝑓𝑚 (x)] (2.2.4)

• Decision variable and objective function space are defined by an𝑛-dimensional
space, where each coordinate axis represents a component of a decision variable
vector x. The objective function space is defined by a 𝑚-dimensional space, with
each coordinate axis corresponding to a component of the vector f𝑚 (x). Each point
in the decision variable space represents a solution, and when this vector is evalu-
ated in the objective function, the resulting value is a point in the objective function
space, determining the solution’s quality. Thus, a function 𝐹 : R𝑛 → R𝑚 maps the

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.2 Evolutionary computation 19

decision variable space to the objective function space [31]. Figure 2.6 illustrates
this process.

Multiobjective optimization problem

A multiobjective optimization problem involves multiple conflicting objective functions,
which must be minimized or maximized simultaneously. Those functions could be subject
to a number of constraints and variable bounds. Mathematically, a Multiobjective Opti-
mization Problem (MOP) is defined as:

Definition 2.2.1. General MOP [32]:

Minimize/Maximize f𝑚 (x),𝑚 = 1, 2, . . . , 𝑘 ;

subject to 𝑔 𝑗 (x) ≥ 0, 𝑗 = 1, 2, . . . ,𝑚;

ℎ𝑘 (x) = 0, 𝑘 = 1, 2, . . . , 𝑝 ;

𝑥
(𝐿)
𝑖

≤ 𝑥𝑖 ≤ 𝑥 (𝑈)
𝑖
, 𝑖 = 1, 2, . . . , 𝑡 ;


(2.2.5)

with 𝑘 objectives, 𝑚 and 𝑝 are the number of inequality and equality constraints. A
solution x ∈ R𝑛 is a vector of 𝑛 decision variables: x = [𝑥1, 𝑥2, . . . , 𝑥𝑛], which satisfy all
constraints and variable bounds [32, 31, 30]. The last set of constraints is called variable
bounds, which restrict each upper and lower decision variable 𝑥𝑖 value. These limits are
the decision variable space size. If a solution x satisfies all restrictions and variable bounds,
it is known as a feasible solution. The set of all feasible solutions is called the feasible
region [30]. It can be seen in Figure 2.6 that solutions within the blue area are feasible
solutions, and their set determines a feasible area.

Dominance and Pareto optimality

In multiobjective optimization problems, several objectives conflict, this means that more
than one optimal solution exists. These solutions are known as Pareto-optimal solutions.
Definition of a Pareto-optimal solution is related to the domination concept as follows:

Definition 2.2.2. Pareto dominance [31]: A vector u = (𝑢1, 𝑢2, . . . , 𝑢𝑘) is said to dominate
another vector v = (𝑣1, 𝑣2, . . . , 𝑣𝑘) (denoted by u ⪯ v) if and only if u is partially less than
v, this is specified as follows: ∀𝑖 ∈ {1, . . . 𝑘}, 𝑢𝑖 ≤ 𝑣𝑖 and ∃𝑖 ∈ {1, . . . 𝑘} : 𝑓 (𝑢𝑖) < 𝑓 (𝑣𝑖).

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

20 2. Background

2x

1x

2f

1f

Decision Variable
Space

Objective Function
Space

kn R:RF →


{ }nRxX ∈=


{ }kRyY ∈=


Pareto
Front

Feasible
Region

Infeasible
Region

Figure 2.6: Decision variables space to objective function space mapping. Feasible solu-
tions region is in blue. In the decision variable space, the Pareto optimal set is shown as
red dots and its mapping to the objective function space creates the Pareto front.

Definition 2.2.3. Pareto Optimal Set [31], for a given MOP and f (x), the POS P∗ is de-
termined by:

P∗ = {x ∈ Ω | ¬∃x′ ∈ Ω f (x′) ⪯ f (x)} (2.2.6)

These solutions are represented in the decision variable space. Non-dominated solu-
tions represented in the Pareto optimal set are the best solutions with a trade-off among
objectives. When mapping these solutions to the objective function space, a set called
Pareto front (PF ∗) is defined next [31]:

Definition 2.2.4. For a given MOP, f (x) and POS, P∗, the Pareto Front PF ∗ can be
expressed as:

PF ∗ = {u = f (x) | x ∈ P∗} (2.2.7)

| In Figure 2.6, a mapping example of solutions from the Pareto optimal set to the
objective function space is shown, therefore the Pareto front is created with solutions
with a trade-off among objectives.

2.2.4 Special solutions

This section explains three types of special solutions frequently used in multiobjective
optimization algorithms: ideal, utopian, and nadir objective vectors, as illustrated in Figure

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.2 Evolutionary computation 21

2.7.

**Z

2f

1f

)1*(Z
nadZ

)2*(Z

*Z

Figure 2.7: Representation of an objective function space with ideal (𝑍 ∗), utopian (𝑍 ∗∗),
and nadir (𝑍𝑛𝑎𝑑) objective vectors.

Ideal objective vector

Each conflicting objective has a unique optimal solution. The ideal objective vector con-
sists of these optimal objective values [30].

Definition 2.2.5. The m-th component of the ideal objective vector 𝑍 ∗ is a constrained
minimum solution of [30]:

Minimize fm(x)
subject to x ∈ 𝑆

}
(2.2.8)

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

22 2. Background

If the minimum solution for the m-th objective is the decision vector 𝑥∗(𝑚) with func-
tion value 𝑓 ∗𝑚 , then the ideal vector is defined as [30]:

𝑍 ∗ = f∗ =
(
𝑓 ∗1 , 𝑓

∗
2 , . . . , 𝑓

∗
𝑚

)
(2.2.9)

where
(
𝑓 ∗1 , 𝑓

∗
2 , . . . , 𝑓

∗
𝑚

)
are the solutions with the maximum value in the𝑚 objectives.

The ideal objective vector corresponds to a non-existent solution, since the solutions
of Equation 2.2.9 for each objective function need not be the same; furthermore, many al-
gorithms require knowledge of the lower bounds on each objective function to normalize
objective values in a common range. In this case, the ideal vector is taken as the solution
with the lowest value of solutions in the current population [30].

Utopian objective vector

The ideal objective vector consists of all objective functions at their lower bounds. This
means that for each objective function, there exists at least one feasible solution in the
solution space that shares an identical value with its corresponding elements in the ideal
solution. However, some algorithms require a solution where the objective value is strictly
better than any other solution in the search space. For this purpose, the utopian objective
vector is defined [30]:

Definition 2.2.6. In a utopian objective vector 𝑍 ∗∗, each component is slightly smaller
than the ideal objective vector, or 𝑍 ∗∗

𝑖 = 𝑍 ∗
𝑖 − 𝜖𝑖 with 𝜖 > 0 for all 𝑖 = 1, 2, . . . ,𝑚.

Like the ideal objective vector, the utopian objective vector also represents a non-
existent solution [30].

Nadir objective vector

The nadir objective vector is the opposite of the ideal objective vector and represents the
upper limit of each objective in the entire search space. It defines the upper limit of each
objective vector in the Pareto optimal set, not throughout the search space [30]. In some
algorithms, such as MOEA/D, the nadir point is represented as the solution which is the
upper limit [33], the maximum of every 𝑓𝑚 objective can be defined as:

𝑍𝑛𝑎𝑑 = f∗ =
(
𝑓 ∗1 , 𝑓

∗
2 , . . . , 𝑓

∗
𝑚

)
(2.2.10)

where
(
𝑓 ∗1 , 𝑓

∗
2 , . . . , 𝑓

∗
𝑚

)
are the solutions with the maximum value in the𝑚 objectives.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.2 Evolutionary computation 23

2.2.5 Multiobjective optimization evolutionary algorithms

The multiobjective evolutionary algorithms (MOEAs), in comparison with the classic
mathematical programming methods mentioned briefly in the previous section, possess
certain characteristics and advantages that make them well-suited for solving MOPs [30].
In this section, various evolutionary algorithm approaches for addressing multiobjective
problems are reviewed. These algorithms can be categorized into three main paradigms:
Pareto-based MOEAs, decomposition-based MOEAs, and indicator-based MOEAs [34].

Pareto-based paradigms

Pareto-based MOEAs use a dominance-based ranking scheme and combine elitist strate-
gies that converge to a global optimum in some problems [8]. Pareto and elitist strategies
laid the foundation for one of the most important algorithmic approaches in the area: the
NSGA-II algorithm proposed by Deb et al. [35]. Pareto-based MOEAs commonly employ
Pareto dominance, with some diversity criteria based on secondary ranking. Notable al-
gorithms in this class include theMultiobjective Genetic Algorithm (MOGA) [36], the first
MOEA; the Pareto Archived Evolutionary Strategy (PAES) [37], which uses a mesh in the
objective function space to ensure all regions are visited; and the Strength Pareto Evolu-
tionary Algorithm (SPEA) [38], which employs a different criterion based on dominance.
SPEA ranks individuals by howmany individuals they dominate and howmany dominate
them, and it also utilizes clustering. In its second version, SPEA-2 [39], both criteria are
improved.

NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was proposed by Deb et al.
in 2002 [35]. Its main features include the use of elitism, a diversity mechanism, and a
focus on non-dominated solutions. This improved version of NSGA [40] aims to reduce
the complexity of non-dominated sorting, make more efficient use of elitism, and reduce
parameters.

NSGA-II begins with a random population, where each offspring is generated using
two parents selected through a binary tournament method. The parents are recombined
using the SBX operator and mutated via polynomial mutation [35]. The offspring set𝑄 is
then combined with the current population 𝑃 , forming 𝑃∪𝑄 . The best 𝜇 individuals are se-
lected from 𝑃 ∪𝑄 based on the front to which they belong, determined by non-dominated

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

24 2. Background

sorting (See Algorithm 2). This sorting ranks solutions by corresponding fronts, provid-
ing a quality measure to evaluate different solutions. If the set of 𝜇 solutions exceeds the
population size, a ranking process called crowding distance (see Algorithm 1) is applied.
Solutions with larger crowding distances are better ranked to maintain population diver-
sity. Crowding distance is calculated as the average distance to neighboring solutions,
forming a cuboid in the objective function space. Finally, 𝜇 solutions are passed on to the
next generation, and the process repeats as described in Algorithm 3. Recently, NSGA-II
has been adapted to address many objectives in its NSGA-III version [41], which combines
NSGA-II principles with decomposition approaches.

Algorithm 1: Crowding Distance [35]
1 𝑙 = |𝐼 |;
2 𝐼 [𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0;
3 for each objective𝑚 do
4 𝐼 = 𝑠𝑜𝑟𝑡 (𝐼 ,𝑚);
5 𝐼 [1]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼 [𝑙]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∞;
6 𝑖 = 2 to

(𝑙 − 1) I[i]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼 [𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + (𝐼 [𝑖 + 1] .𝑚 − 𝐼 [𝑖 − 1] .𝑚)) /
(
𝑓𝑚𝑎𝑥𝑚 − 𝑓𝑚𝑖𝑛𝑚

)
;

Decomposition-based paradigms

A common issue with MOPs involving more than three objectives is the ineffectiveness
of dominance, rendering Pareto front ranking impractical. Consequently, decomposition-
based methods have been incorporated into MOEAs. These methods can handle problems
with two, three, or multiple objectives, offering a robust and effective alternative. One of
the most significant algorithms in this category is MOEA/D (Multiobjective Evolutionary
Algorithm based on Decomposition), developed by Zhang and Li [42, 8, 43].

MOEA/D

The Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D) in-
tegrates elements of the weighted-sum approach and population-based algorithms.
MOEA/D begins by distributing a set of 𝜆 weight vectors in the objective function space
and then creates an array of the𝑇 closest vectors using Euclidean distance, thereby form-
ing neighborhoods. MOEA/D and its variants show performance comparable to Pareto-
based algorithms for problems with a few objectives and superior performance for prob-

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.2 Evolutionary computation 25

Algorithm 2: Non-dominated sorting [35]
1 for each 𝑝 ∈ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃 do
2 𝑆𝑝 = ∅, 𝑛𝑝 = 0;
3 for each 𝑞 ∈ 𝑃 do
4 if 𝑝 ≺ 𝑞 then
5 𝑆𝑝 = 𝑆𝑝 ∪ {𝑞};
6 else
7 if 𝑞 ≺ 𝑝 then
8 𝑛𝑝 = 𝑛𝑝 + 1;

9 if 𝑛𝑝 = 0 then
10 𝑝𝑟𝑎𝑛𝑘 = 1;
11 𝐹1 = 𝐹1 ∪ {𝑝};

12 while 𝐹𝑖 ≠ ∅ do
13 𝑄 = ∅;
14 for each 𝑝 ∈ 𝐹𝑖 do
15 for each 𝑞 ∈ 𝑆𝑝 do
16 𝑛𝑞 = 𝑛𝑞 − 1;
17 if 𝑛𝑞 = 0 then
18 𝑞𝑟𝑎𝑛𝑘 = 𝑖 + 1;
19 𝑄 = 𝑄 ∪ {𝑞};

20 𝑖 = 𝑖 + 1;
21 𝐹𝑖 = 𝑄 ;

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

26 2. Background

Algorithm 3: NSGA-II [35]
1 Create initial population 𝑃𝑡 ;
2 Evaluate fitness of each solution;
3 Apply non-dominated sorting to rank the solutions;
4 while Termination condition not satisfied do
5 Offspring population 𝑄𝑡 = ∅;
6 for each solution in 𝑃𝑡 do
7 Select two parents using binary tournament;
8 Recombine the parents using SBX and generate a child 𝑟 ;
9 Apply mutation on 𝑟 generating 𝑞;

10 𝑄𝑡 = 𝑄𝑡 ∪ 𝑞;
11 Apply Algorithm 2 to rank 𝑃𝑡 ∪𝑄𝑡 population obtaining 𝐹 fronts;
12 if |𝐹1 | + |𝐹2 |, . . . , |𝐹𝑖 | = |𝑃𝑡 | then
13 Copy the solutions of these fronts to the new population 𝑃𝑡+1;
14 𝑃𝑡+1 =

⋃
𝑖 𝐹𝑖 ;

15 else
16 Determine the front 𝐻 of 𝐹𝑖 that is greater than |𝑃𝑡 |, to this last front

apply Crowding Distance (Algorithm 1) and add to 𝑃𝑡 the solutions with
the higher Distance;

17 𝑃𝑡+1 = (⋃𝑖 𝐹𝑖)) ∪ 𝐻 ;

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.2 Evolutionary computation 27

lems with five or more objectives [8, 42]. The canonical MOEA/D algorithm employs
Tchebycheff decomposition, defined as follows:

min𝑔𝑡𝑒
(
x|𝜆 𝑗 , 𝑍 ∗) = max

1≤𝑖≤𝑚

1
𝜆
𝑗

𝑖

��𝑓𝑖 (x) − 𝑍 ∗
𝑖

�� (2.2.11)

The MOEA/D algorithm is detailed in Algorithm 4. Initially (lines 1-4), 𝜆 reference
vectors are set up, neighborhoods are created using the nearest 𝑇 vectors, and the ideal
point 𝑍 is calculated. The main cycle iterates over all individuals in the population. In line
7, two parents are selected from the neighborhoods stored in 𝐵(𝑖). Two random parents
are chosen from this structure, and the SBX operator along with polynomial mutation is
used to generate the offspring. It is important to note that only one child is generated in
this process. In the final steps of the algorithm, the value of 𝑍 is updated, and the aggre-
gation values of the two parents and the offspring 𝑦𝑖 are calculated using the 𝜆 reference
vectors. Finally, if the offspring𝑦𝑖 has a smaller aggregation value than one of the parents,
it replaces the parent; otherwise, the parent remains, and the population is not modified.

Algorithm 4:MOEA/D
1 𝜆𝑖 = (𝜆𝑖1, . . . , 𝜆𝑖𝑚)𝑇 , 𝑖 = 1, . . . , 𝑁𝑝 ;
2 𝐵(𝑖) = {𝑖1, . . . , 𝑖𝑡 }, where 𝜆𝑖1, . . . , 𝜆𝑖𝑇 are the 𝑇 closest weight vectors to 𝜆𝑖 .;
3 𝑃 = {x1, . . . , x𝑁𝑝 } ;
4 Set 𝑍 using equation 2.2.9;
5 while 𝑘 ≤ 𝑇𝑚𝑎𝑥 do
6 for 𝑖 = 1 to 𝑠𝑖𝑧𝑒 (𝑃) do
7 𝑃 = 𝐵 (𝑖, 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝐵)) ;
8 Generate 𝑦 from P(1) and P(2) by GA operator;
9 Polynomial mutation on 𝑦 to new solution 𝑦𝑖 ;

10 Update 𝑍 using equation 2.2.9;
11 𝑔𝑝𝑜𝑝 = 𝑔

𝑡𝑒
(
𝑃 |𝜆𝑃 , 𝑧∗

)
;

12 𝑔𝑦 = 𝑔
𝑡𝑒

(
𝑦𝑖 |𝜆𝑃 , 𝑧∗

)
;

13 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
(
𝑃

(
𝑔𝑝𝑜𝑝 ≥ 𝑔𝑦

))
= 𝑦𝑖 ;

Indicator-based paradigms

Indicator-based MOEAs utilize quality metrics, which are functions assessing approxima-
tion sets, to define selection mechanisms. The underlying concept aims to optimize the
population’s indicator value throughout the evolutionary process. A prominent exam-

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

28 2. Background

ple of these algorithms is the S-Metric Selection Evolutionary Multi-objective Algorithm
(SMS-EMOA) [44]. This algorithm employs the Hypervolume (HV) [45] indicator, which
measures the dominated volume of an approximation set bounded by an anti-optimal
point. SMS-EMOA establishes a total order among solutions by evaluating their contribu-
tion to the hypervolume indicator [46].

SMS-EMOA

The S-Metric Selection Evolutionary Multiobjective Optimization Algorithm (SMS-
EMOA) is a variant of NSGA-II in which the crowding distance-based density estimator
is replaced by the Hypervolume (HV) indicator. In other words, solutions that contribute
the least to the HV are eliminated, as described in Algorithm 4. Due to the mathematical
properties of HV, this algorithm can theoretically solve any MOP, producing a uniform
and well-distributed Pareto front. However, one of the challenges with this algorithm is
that when addressing Many Objectives Problems (MaOPs), it often requires calculating
the HV for the entire population. This leads to additional computation and a high cost in
calculating the HV in high-dimensional objective spaces.

Algorithm 5: SMS-EMOA
1 Randomly initialize population 𝑃 of size 𝜇;
2 while Termination condition not satisfied do
3 Create a new offspring solution 𝑞;
4 𝑄 = 𝑃

⋃
𝑞;

5 𝐹1, . . . , 𝐹𝑘 =non-dominated sorting(Q) using Algorithm 2;
6 if |𝐹𝐾 | > 1 then
7 𝑧𝑚𝑎𝑥𝑖 = max𝑞∈𝑄 𝑓 𝑖 (𝑞),∀𝑖 = 1, . . . ,𝑚;
8 𝑞𝑤𝑜𝑟𝑠𝑡 = 𝑎𝑟𝑔 min𝑞∈𝑅𝑘 𝐻𝑉 (𝑄, 𝑧𝑚𝑎𝑥) − 𝐻𝑉 (𝑄\{𝑞}, 𝑧𝑚𝑎𝑥)
9 else
10 𝑞𝑤𝑜𝑟𝑠𝑡 is equal to the sole solution in 𝑅𝑘 ;
11 𝑃 = 𝑄\{𝑞𝑤𝑜𝑟𝑠𝑡 }

Hypervolume

This metric (HV) reflects the closeness between PF ∗ and PF 𝑡𝑟𝑢𝑒 . A large HV indicates
that the PF ∗ set is closer to PF 𝑡𝑟𝑢𝑒 . HV corresponds to the non-overlapping volume of
all hypercubes formed by the reference point 𝑧 and every vector in the PF ∗. An HV with

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.3 Deep neural networks 29

a larger value represents better performance in terms of both diversity and convergence.
Let Λ denote the Lebesgue measure in R𝑚 ,then HV is defined as follows:

𝐻𝑉 (A, 𝑧) = Λ

(⋃
𝑎∈A

{𝑥 | 𝑎 ≺ 𝑥 ≺ 𝑧}
)

(2.2.12)

where 𝑧 ∈ R𝑚 is a reference point that should be dominated by all points inA. The HV is
a unary quality indicator (QI) that evaluates both the convergence and the overall spread
of an approximation set, regardless of its dimensionality. It does this by measuring the
volume of the objective space that is dominated by A At present, HV is the only unary
QI that is proven to be Pareto compliant. [46].

2.3 Deep neural networks

Deep learning is a branch of machine learning, which falls under the domain of artificial
intelligence. As the basic idea of machine learning is to learn from data, the representation
of data is particularly important in the performance of learning algorithms. Obtaining the
most effective features is not a simple task and often requires a certain degree of human
expertise and prior knowledge of the task at hand. This makes the process somewhat
dependent on human input.

Representation learning has emerged as an alternative to feature engineering, capable
of automatically extracting useful representations. By using representation learning, raw
data can be mapped to a useful representation that can be more easily utilized by a clas-
sifier or predictor. Deep learning learns a complex representation by aggregating simpler
ones, which in turn depend on even simpler representations. By using this hierarchy of
complex mappings, deep neural networks can learn complex concepts [47].

2.3.1 Neural networks

An artificial neuron mimics the behavior of a biological neuron, although a simplified
model is used due to the complexity of accurately replicating the biological system. This
model includes input signals from other neurons, a threshold function, and an output. The
simple perceptron, introduced by Rosenblatt and Minsky [48, 49], is depicted in Figure
2.8. The perceptron can be described using a linear discrimination function (see Equation
2.3.1). As a linear classifier, a single perceptron can categorize patterns into two classes.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

30 2. Background

It takes a feature vector 𝑥 as input and generates a scalar output [48].

𝑦 = 𝜑

(
𝑛∑︁
𝑖=1

(𝑤𝑖𝑥𝑖 +𝑤0)
)

(2.3.1)

Here, 𝑤 represents the weights that define the hyperplane, and 𝜑 is a nonlinear function
with a threshold, typically a sigmoid function [50].

y

Figure 2.8: Representation of a simple perceptron.

Neural networks consist of nodes or units interconnected by links. Each link has an
associated weight 𝑤 that influences the connection’s strength and form. The network’s
architecture, including the arrangement of nodes, intermediate nodes, their weights𝑤 , the
threshold𝑤0, and the nonlinear function 𝜑 , determines the network’s characteristics [51,
48].

2.3.2 Feedforward networks

Feedforward networks, also known as multilayer perceptrons (MLP), have connections
that proceed in a single direction, forming a directed acyclic graph. In this structure, each
node receives inputs from preceding nodes and sends information to subsequent nodes
without forming cycles [51, 48]. Initially, the weights of each input are assigned randomly
and are then adjusted through an iterative learning process. It is established that three lay-
ers are sufficient to represent any arbitrary discrimination function, provided the network
contains an adequate number of nodes. These three layers are commonly identified as the

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.3 Deep neural networks 31

input layer, hidden layer, and output layer. Figure 2.9 illustrates a three-layer neural net-
work.

Figure 2.9: Architecture of a multilayer perceptron: input layer (red), hidden layer (green),
and output layer (blue).

The learning process in feedforward networks utilizes the backpropagation algorithm.
A set of patterns is fed into the network, and information propagates through the layers,
with the output 𝑦 generated by the final layer.

The backpropagation algorithm evaluates the difference between the output𝑦 and the
desired classification𝜔 . To minimize classification errors, the weights𝑤𝑖 𝑗 are recalculated
and adjusted accordingly [50, 51].

2.3.3 Convolutional neural networks

Convolutional Neural Networks (CNNs) are among the most recognized and widely ap-
plied deep learning architectures, inspired by the animal visual system. They have sig-
nificant applications in computer vision [47]. These networks are characterized by their
mesh topology. As a type of feedforward neural network, CNNs transform inputs through
a series of sequential layers [48].

The primary distinction between CNNs and feedforward neural networks (FFNNs)
lies in the number of layers; CNNs consist of multiple layers compared to the single layer
in FFNNs. A typical CNN comprises three types of layers: convolutional layers, pooling
layers, and fully connected layers [47, 48].

Figure 2.10 illustrates the general flow of a CNN for image classification tasks. The
input is usually a three-dimensional tensor, such as an image with height, width, and

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

32 2. Background

Input layer Convolutional
layer 1

Pooling
layer 1

Convolutional
layer 2

Pooling
layer 2

Fully connected
layer

Output
layer

Figure 2.10: Basic architecture of a convolutional neural network.

color channels.

The image is entered at the initial layer and passes through multiple convolutional
and pooling layers, which generate representations fed into the final part of the network,
the fully connected layer [47].

Convolution layers

Convolutional layers form the core of CNNs, functioning as feature extractors. Each neu-
ron in these layers connects to small regions of the preceding layers, referred to as recep-
tive fields, also known as kernels or filters [47]. This operation is typically defined in its
discrete form as shown in Equation 2.3.2 Where, 𝐼 is a two-dimensional image and 𝐾 is a
two-dimensional kernel [48] .

𝑆 (𝑖, 𝑗) = (𝐼 ∗ 𝐾) (𝑖, 𝑗) ==
∑︁
𝑚

∑︁
𝑛

𝐼 (𝑖 −𝑚, 𝑗 − 𝑛) 𝐾 (𝑚,𝑛) (2.3.2)

Designing convolutional layers involves various parameters, including the number of
filters learned from the previous layer. The output of a layer is determined by the filter
size, stride size, and padding. The spatial dimension of the filter is known as the kernel
size. The stride indicates the step size withwhich the filter slides over the input to generate
the feature map, while padding adds zeros at the edges of the input. After obtaining the
feature map, the rectified linear unit (ReLU) activation function is usually applied, which
can enhance the CNN’s performance [47].

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.3 Deep neural networks 33

Pooling layers

Pooling layers are employed to achieve spatial invariance translations. Typically, these
layers are placed between consecutive convolutional layers to diminish the spatial di-
mensions of feature maps. Pooling layers serve to progressively reduce the number of
parameters and computational load, while also aiding in the mitigation of overfitting. The
pooling function operates along the spatial dimension of the input volume, reducing its
size while maintaining the depth constant [47, 48].

The most prevalent pooling methods in CNNs are max-pooling and average-pooling.
Similar to convolution operations, pooling is conducted with a specified filter size and
stride. For instance, themax-pooling operator selects themaximum value within a defined
region, whereas the average-pooling operator computes the average of the values in that
region

Fully connected layers

Following several cycles of learning through convolution and pooling layers, CNNs ex-
tract high-level features from the input data and conduct advanced reasoning based on
these representations. Ultimately, fully connected layers are implemented at the network’s
conclusion. Similar to FFNNs, fully connected layers are one-dimensional, with each neu-
ron in the fully connected layer being connected to every neuron in the preceding layer.

Fully connected layers encompass the majority of the CNN’s parameters and impose a
substantial computational load during training. Besides the three primary layers (convo-
lutional, pooling, and fully connected), various standardization layers have been incorpo-
rated into CNNs, with batch normalization being the most prevalent. Research indicates
that batch normalization can accelerate training and reduce sensitivity to weight initial-
ization [47].

2.3.4 Supervised classification

Supervised classification is one of the core tasks in machine learning, where the objective
is to assign input data points to predefined categories or classes. The process involves
learning a mapping function from input data to corresponding output labels based on
a labeled dataset. Each data point in the dataset consists of input features and a target
label that indicates the correct class. The goal of supervised classification is to create a

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

34 2. Background

model that can accurately predict the label of unseen data points by generalizing from the
patterns learned during training.

The supervised classification process can be divide in two main stages: training and
testing. During the training phase, the model is provided with a labeled dataset, where it
uses the input-output pairs to adjust its internal parameters, typically via an optimization
algorithm such as Stochastic gradient descent (SGD), to minimize a predefined loss func-
tion. The loss function quantifies the error between the model’s predictions and the true
labels. Common loss function for classification is the cross-entropy (see equation 2.3.3).
In the testing phase, the trained model is evaluated on a separate set of data (the test
set) to assess its generalization ability, which is critical for the model’s performance on
real-world applications [48].

𝐻 (𝑦, 𝑝) = −
∑︁
𝑖

𝑦𝑖 log𝑒 (𝑝𝑖) (2.3.3)

2.3.5 Self-Supervised learning

Self-supervised learning (SSL) has emerged as a powerful paradigmwithin machine learn-
ing, bridging the gap between supervised and unsupervised learning. Unlike traditional
supervised learning, which relies on labeled data for training, self-supervised learning
leverages unlabeled data by creating supervised data itself. This approach is particularly
useful in scenarios where labeled data is scarce or expensive to obtain [52, 53].

SSL revolves around generating pseudo-labels or auxiliary tasks that provide super-
visory signals from the data [53]. The core idea is to design pretext tasks that enable
the model to learn meaningful representations of the data, which can then be fine-tuned
on specific downstream tasks such as classification. Common pretext tasks include pre-
dicting missing parts of an image [54], solving jigsaw puzzles [55], or predicting image
rotations [56].

In the context of classification, SSL can be particularly advantageous when labeled
data is limited . By pre-training models on large amounts of unlabeled data with self-
supervised methods, models can learn rich feature representations that improve perfor-
mance on supervised classification tasks. This transfer of learned representations allows
models to achieve higher accuracy with fewer labeled samples [52].

For instance, self-supervised pre-training has been successfully applied to various do-
mains, including computer vision and natural language processing. In computer vision,

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

2.4 Discussion 35

techniques like contrastive learning and pretext tasks have demonstrated significant im-
provements in image classification performance, even with limited labeled datasets [53].

2.4 Discussion

In this chapter, the necessary theoretical bases for the development of this thesis were pre-
sented. The topic of neural architecture search and their three most important parts were
addressed, then we reviewed the evolutionary techniques in this case with emphasis on
Cartesian genetic programming, as well as multi-objective optimization and evolutionary
multi-objective algorithms, ending with an introduction to deep neural networks with a
focus on convolutional neural networks.

In the following chapter, state of the art for single and multi-objective neural archi-
tecture search is analyzed in detail.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

36 2. Background

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Chapter 3

State of the art

In this chapter, we will provide a comprehensive review of the various approaches pro-
posed for neural architecture search. We will explain these approaches from the perspec-
tive of evolutionary computation, beginning with a discussion of single-objective meth-
ods. These methods focus on optimizing a single metric, typically aiming to improve per-
formance or efficiency. Subsequently, we will explore multi-objective methods that con-
sider multiple criteria simultaneously, such as accuracy, computational cost, or learnable
parameters. Through this review, we aim to elucidate the strengths and limitations of each
approach, providing a clear understanding of the current state of research in NAS.

Deep architectures, particularly convolutional neural networks (CNNs), have tradi-
tionally been designed by experts through manual effort. With the recent exponential
growth in computational power, fields like NAS have emerged to leverage these resources,
creating methods to improve CNN design. NASmethods can be categorized into twomain
approaches: evolutionary algorithms (EAs) and reinforcement learning (RL) [9].

The quest to identify high-performance architectures using EAs is not a new challenge;
initial efforts date back to the 1990s, with a significant milestone being the proposal of
Neuroevolution of Augmenting Topologies (NEAT) in 2002 [23]. NEAT initially worked
with small artificial neural networks (ANNs), optimizing both connections and weights.
NEAT inspired several approaches, such as HyperNeat [57] and ES-HyperNeat [58].

More recently, the focus has shifted towards Deep Learning, necessitating adaptations
in the evolution of these more complex architectures [6, 10].

The fundamental goal of CNNs is to create a feature extractor that, through a series
of operations, generates a feature map at each network layer to generalize patterns from
the input image, culminating in a classifier. Hence, the connections and operations within
base blocks and the overall architecture significantly impact performance.

[37]

38 3. State of the art

3.1 Single-Objective NAS

Evolutionary NAS methods focus on optimizing a single metric, most commonly accu-
racy, to find the best-performing neural networks for a given task. These approaches aim
to design models that can maximize performance on a particular dataset, often evaluated
through a testing error rate, such as those in CIFAR-10 and ImageNet benchmarks. Sev-
eral methods have been proposed, achieving competitive results in the design of convolu-
tional neural networks [6, 16, 14]. These methods vary in the encoding schemes they use
to represent network architectures and the search strategies that guide the optimization
process.

In early approaches, Xie and Yuille [16] introduced Genetic CNN, utilizing a binary
encoding scheme for CNN architectures. Here, each bit represented a connection between
nodes, corresponding to convolutional operations. Their evolutionary operations included
low-probability bit flips and crossover operations, which allowed them to discover pat-
terns similar to established models such as VGG and ResNet. This approach produced a
model (GeNet) that achieved competitive accuracy on CIFAR-10, demonstrating that ge-
netic algorithms could effectively navigate complex search spaces for a single objective.

Building on this, CoDeepNEAT [6], the search space was structured by extending the
NEAT algorithm to support CNNs, employing coevolutionary strategies to independently
evolve two subpopulations of network modules. The objective was to minimize testing
error, leading to a competitive 7.3% error rate on the CIFAR-10 dataset. This marked an
important development in evolutionary NAS, showcasing the capability of genetic algo-
rithms to find high-performing architectures by minimizing a single objective.

More recently, Suganuma et al. [14] proposed using Cartesian genetic programming
for CNN design, with function blocks such as convolutional layers and pooling blocks
represented in a graph structure. Their evolutionary strategy applied mutations and eval-
uated architectures on CIFAR-10 and CIFAR-100 datasets. This approach further advanced
single-objective NAS by achieving a 5.01% error rate on CIFAR-10, positioning CGP as a
viable method for optimizing CNN architectures with a focus on accuracy, Other CGP
based proposal is made by Tobari [59] they introduced a NAS algorithm similar to CGP-
CNN. This algorithm employs evolutionary strategies for searching and is block-based.
Its main innovation is incorporating a CGP crossover method inspired by the Multiple
Sequence Alignment (MSA) algorithm, which aligns amino acid sequences, leading to im-
provements over traditional CGP.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

3.2 Multi-Objective NAS 39

Additionally, research by Sun et al. [60] introduced variable-length genotype represen-
tations using ResBlocks and DenseBlocks, demonstrating that a genetic algorithm with
binary tournament selection could reduce error rates while also minimizing model pa-
rameters. This technique achieved significant results on CIFAR-10 and CIFAR-100, further
proving the effectiveness of single-objective NASwhen focused on accuracy optimization.

Despite their success, single-objective NAS methods are limited by their focus, which
often overlooks other important factors such as computational efficiency and Parameters.
Nevertheless, these methods have proven that evolutionary algorithms can be powerful
tools for optimizing CNN architectures under a single objective, often achieving perfor-
mance comparable to manually designed models [15, 61].

In conclusion, single-objective NAS approaches have demonstrated their ability to op-
timize neural architectures effectively, achieving competitive results in terms of accuracy
across various datasets. However, their focus on a single objective leaves room for further
exploration, particularly in balancing other performance metrics such as computational
complexity. On the other hand, it can observed that in general the search spaces used were
limited to integer or binary representations, where the main focus was trying to represent
or approximate already known architectures.

3.2 Multi-Objective NAS

Multi-objective NAS methods aim to optimize several objectives simultaneously, such as
accuracy, computational cost or/ andmodel complexity. One of the earliest examples is the
Neuro-Evolution with Multiobjective Optimization (NEMO) approach proposed by [62],
which optimizes convolutional neural networks (CNNs) by considering two objectives:
error rate and inference time. The network architecture is encoded as an integer vector
inspired by the LeNet architecture, where different channel sizes are searched for each
layer. The evolutionary process was conducted using NSGA-II, targeting datasets such
as MNIST and CIFAR-10, as well as a real-world problem for driver monitoring (drowsy
behavior recognition). The authors concluded that NEMO found faster networks without
compromising accuracy, although the approach demanded significant GPU power.

In another influential work, [9] proposed NSGANet, a NAS algorithm based on the
well-known NSGA-II multiobjective optimization algorithm. NSGANet optimizes two ob-
jectives: accuracy and FLOPs, using a binary string encoding similar to [16]. The evolu-
tionary process involves crossover and mutation operators, where offspring are generated

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

40 3. State of the art

by flipping bits in positions where parent networks differ. NSGANet also incorporates the
Bayesian Optimization Algorithm (BOA) [63], which finds relationships among network
blocks and routes to promotemore efficient exploration of the search space. On the CIFAR-
10 dataset, NSGANet achieved a 3.85% error with only 3.34 million parameters and 1290
MFLOPs, while requiring only 8 GPU-days, making it competitive with other state-of-the-
art NAS methods.

In [17] a particle swarm optimization (PSO) algorithm for NAS called MOCNNwas in-
troduced, which employs a novel representation based on computer networks and IP cod-
ing. This approach divides CNN layers into subnetworks, allowing for the inclusion of hy-
perparameters within the encoding. The authors proposed both single-objective (IPPSO)
andmultiobjective (MOCNN) versions. Themultiobjective approach aimed to optimize ac-
curacy and FLOPs, usingDenseNet-121 as a comparison on the CIFAR-10 dataset.MOCNN
achieved comparable accuracy, with the authors reporting promising results, although the
exact number of FLOPs was not disclosed.

In [64], an evolutionary multiobjective NAS algorithm called MOGIG-Net was intro-
duced, inspired by the encoding of NSGANet [9]. This method also employed weight in-
heritance, which allows offspring to inherit parent weights, reducing the training time
required. The algorithm was evaluated on CIFAR-10 and CIFAR-100 datasets, achieving
a classification error of 2.01% with 3.7 million parameters on CIFAR-10, and 14.38% error
with the same parameter count on CIFAR-100. Despite the impressive results, the authors
did not report the technical specifications used, making it difficult to assess the total GPU-
days.

Building upon NSGANet, [10] proposed NSGANetV1, which further optimized clas-
sification accuracy and architecture complexity (measured by FLOPs). The evolutionary
process was divided into exploration (selection, crossover, and mutation) and exploitation
(using a Bayesian network to guide offspring creation). The architecture representation is
a directed acyclic graph divided into fivemain blocks, eachwith internal nodes performing
convolution and pooling operations. On CIFAR-10, NSGANetV1-A4 achieved 97.98% ac-
curacy with 4.0 million parameters, while on CIFAR-100 it obtained 85.62% accuracy with
4.1 million parameters. NSGANetV1 models were also transferred to ImageNet, where the
A3 model reached 76.2% Top-1 accuracy.

A further extension, NSGANetV2 [7], introduced surrogate models to speed up both
the search and evaluation process. The approach employed an online learning algorithm
to estimate fitness values during the search, while a Supernet model enabled weight inher-

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

3.3 Discussion 41

itance to reduce training time. NSGANetV2 outperformed other NAS methods on CIFAR-
10, achieving 98.4% Top-1 accuracy, while also producing less complex models. For Im-
ageNet, the method reached 75.9% Top-1 accuracy, demonstrating its ability to balance
multiple objectives efficiently.

Other notable contributions include MOGI-NET [65], which also employed weight
inheritance to reduce training epochs, and EEEA-NET [12], which introduced a novel
population initialization mechanism that considers a parameter threshold to reduce total
search time. LF-MOGP [66] used Cartesian genetic programming with a leader-follower
evolution mechanism to maintain an external archive of the best solutions, promoting
diversity in the search. EvoApproxNAS [67] extended CGP by incorporating bottleneck
and inverted residual blocks to simultaneously optimize power consumption, network
parameters, and classification error.

3.3 Discussion

Based on the state-of-the-art review, we found that the main challenges in this area are
the following: More search spaces need to be explored, as well as the involvement of dif-
ferent representations, such as the use of real or continuous domains. The inclusion of
hyperparameters is also barely used in the revised search spaces. We can observe that the
use of Cartesian genetic programming has gained significant attraction, but the represen-
tation has not been extended or modified, as well as that it is just beginning to be tested in
multi-objective approaches. On the other hand, we can observe that both search and time
estimation strategies are slightly addressed or already established methods are used. But,
it is necessary to approach new methods, which can better integrate with evolutionary
computation, as well as generate a synergy with these methods.

Therefore, our thesis work fill the gaps generated from the state of the art by propos-
ing a multi-objective approach using Cartesian genetic programming, as well as using
a continuous search space, which can be adaptable to different MOEAs. Finally, we also
propose new strategies to perform the search, as well as to estimate the performance, in
order to address the current problems of NAS. Finally in Table 3.1 it is shown a summary
of the state-of-the art related algorithmic proposals.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

42
3.

State
of

the
art

Table 3.1: Reviewed works of the state of the art

Year Name Application Benchmark EC Encoding Model Objetive Proposal

2017

A genetic programming
approach to design

convolutional neural network
architectures [68]

Image
Classification

CIFAR-10 CGP, ES Graph, Integer CNN Accuracy CGP-CNN

2017

NEMO : Neuro-Evolution
with Multiobjective
Optimization of

Deep Neural Network
for Speed and Accuracy [62]

Drowsiness
Recognition for

Driver Monitoring
System

CIFAR-10, MNIST NSGA-II Integer CNN
Accuracy

Inference Speed
NEMO

2017 Genetic CNN [16]
Image

Classification
CIFAR-10

ILSVRC2012
GA Binary CNN Accuracy GeNet

2017

NEMO : Neuro-Evolution
with Multiobjective
Optimization of

Deep Neural Network
for Speed and Accuracy [62]

Drowsiness
Recognition for

Driver Monitoring
System

CIFAR-10, MNIST NSGA-II Integer CNN
Accuracy

Inference Speed
NEMO

2019

Evolution of Deep
Convolutional Neural Networks

Using Cartesian
Genetic Programming [14]

Image
Classification

CIFAR-10, CIFAR-100 CGP, ES Graph, Integer CNN Accuracy CGP-CNN

2019
NSGA-Net: Neural Architecture
Search using Multi-Objective

Genetic Algorithm [9]

Image
Classification

CIFAR-10 NSGA-II Binary CNN
Accuracy
FLOPs

NSGA-Net

2019

A Graph-Based Encoding for
Evolutionary Convolutional

Neural Network
Architecture Design [69]

Image
Classification

CIFAR-10 Random search Graph CNN None
Random
search

2019
Evolving Deep

Neural Networks [6]
Image

Captioning
CIFAR-10 GA NEAT-DNN CNN, LSTM Accuracy

CooDeepNeat
DeepNeat

2020

NSGANetV2: Evolutionary
Multi-objective

Surrogate-Assisted
Neural Architecture Search [10]

Image
Classification

Aircraft, CIFAR-10,
CIFAR-100, CINIC-10
DTD, Flowers102,

ImageNet, Pets, STL-10

NSGA-II Integer CNN
Accuracy
MAdds

MSuNAS
NSGA-NetV2

Coordinación
de

CienciasComputacionales
Instituto

N
acionalde

A
strofísica,Ó

ptica
y
Electrónica

3.3
D
iscussion

43

Table 3.1: Reviewed works of the state of the art

Year Name Application Benchmark EC Encoding Model Objetive Proposal

2020

Multi-Objective Evolutionary
Design of Deep

Convolutional Neural Networks
for Image Classification [7]

Image
Classification

CIFAR-10, CIFAR-100
ImageNet

NSGA-II Block CNN
Accuracy
FLOPs

NSGA-NetV1

2020

Designing Convolutional Neural
Network Architectures

Using Cartesian
Genetic Programming [14]

Image
Classification
Inpainting
Denoising

CIFAR-10, CIFAR-100 CGP, ES Graph, Integer CNN Accuracy CGP-CNN

2020

Particle Swarm Optimization
for Evolving Deep Convolutional

Neural Networks
for Image Classification:

Single and Multi-Objective
Approaches [17]

Image
Classification

CIFAR-10, Convex Sets
MNIST Basic, MRDBI

OMOPOSO
PSO

IP-based CNN
Accuracy
FLOPs

IPPSO
MOCNN

2020
Fast Evolution of
CNN Architecture

for Image Classification[15]

Image
Classification

CIFAR-10, CIFAR-100
SVHN

GA Integer CNN Accuracy GAnet

2020
Completely Automated CNN

Architecture Design
Based on Blocks [60]

Image
Classification

CIFAR-10, CIFAR-100 GA Block CNN Accuracy AE-CNN

2021

A Multi-Objective Evolutionary
Approach Based on
Graph-in-Graph for

Neural Architecture Search
of Convolutional

Neural Networks [65]

Image
Classification

CIFAR-10, CIFAR-100 NSGA-II Block CNN
Accuracy
Parameters

MOGIG-Net

2021
EEEA-Net: An Early Exit
Evolutionary Neural

Architecture Search [12]

Image
Classification

CIFAR-10, CIFAR-100
ImageNet

NSGA-II Integer CNN
Accuracy
Parameters

EEEA-Net

2022

Using Cartesian
Genetic Programming

Approach with New Crossover
Technique to Design

Convolutional
Neural Networks [59]

Image
Classification

CIFAR-10, CIFAR-100 CGP, ES Graph, Integer CNN
Accuracy
Parameters

MSA

M
ulti-objective

Evolutionary
A
lgorithmsfor

the
optimization

of
D
eep

N
euralN

etw
ork

A
rchitectures

44
3.

State
of

the
art

Table 3.1: Reviewed works of the state of the art

Year Name Application Benchmark EC Encoding Model Objetive Proposal

2022

Evolutionary convolutional
neural network for
image classification

based on multi-objective
genetic programming

with leader–follower mechanism [66]

Image
Classification

CIFAR-10, Fashion,
CIFAR-100, MNIST

NSGA-II Graph, Integer CNN
Accuracy
Parameters

LF-MOGP

2022
Evolutionary approximation

and neural architecture search [67]
Image

Classification
CIFAR-10, SVHN NSGA-II Graph, Integer CNN

Accuracy
Energy

EvoApproxNASCoordinación
de

CienciasComputacionales
Instituto

N
acionalde

A
strofísica,Ó

ptica
y
Electrónica

Chapter 4

Continuous Representation for
Multi-objective NAS

In this chapter, we introduce a two-level solution representation encoding for CNN ar-
chitecture search. The proposals are CGP-NASV1 and CGP-NASV2. At the first level, we
employ the CGP representation using acyclic graphs that considered feed-forward con-
nections, which are represented as integer-based vectors. At the second level, these CGP-
based solutions are converted into real-valued vectors.

The motivation behind this proposed representation is to improve the multi-objective
neural architecture search by utilizing a continuous representation based on Cartesian
Genetic Programming. The goal is to demonstrate the benefits of continuous representa-
tions compared to discrete ones, particularly for optimizing neural architectures in multi-
objective contexts. Additionally, in this chapter we examine the performance of various
multi-objective evolutionary algorithms to better understand how different algorithms
impact the quality and diversity of the resulting solutions.

Moreover, in this chapter we investigate a block-chained representation combined
with the proposed continuous approach to simplify the complexity of the search space.
By integrating these representations, the aim is to enhance the flexibility and adaptability
of the search process.

4.1 Multi-objective NAS problem

In this chapter, we propose a representation for the design of CNN architectures that
simultaneouslymaximize accuracy andminimize complexity. Our objective is to constrain

[45]

46 4. Continuous Representation for Multi-objective NAS

model capacity to achieve accuratemodels withmoderate complexity. Ourmethod utilizes
a CGP representation, enabling operations in the real domain and facilitating the use of
standard multi-objective optimization techniques. The problem can be formulated as a
multi-objective optimization task as follows:

Minimize F (𝑥) = (𝑓1 (𝑥 ;𝑤∗ (𝑥)) , 𝑓2 (𝑥))𝑇 (4.1.1)

subject to:𝑤∗ (𝑥) ∈ argmin L (𝑤 ;𝑥) (4.1.2)

Here, 𝑓1 represents the classification error of the CNN architecture defined by param-
eters 𝑤∗, and 𝑓2 represents model complexity, measured in MAdds (the total number of
operations performed in each architecture). Previous studies have shown that MAdds are
a useful guideline for specific implementation scenarios, such as mobile settings, where
complexity should not exceed 600 MAdds [10, 70]. To estimate classification error, it is
necessary to optimize the weights𝑤 of the CNN architecture, making 𝑥 (solution) depen-
dent on this optimization, typically performed using algorithms like stochastic gradient
descent (SGD).

4.2 Solutions representation for CNN - Search space

Our initial idea is to use CGP, as explained in Section 2.2.2. CGP relies on an integer-based
vector to represent the genotype. To modify this representation at the genotype level, we
utilized the approach proposed by Clegg et al [71].

Equation 4.2.1 defines a range where 𝑓 𝑢𝑛𝑐𝑘 is the current function identifier and
𝑓 𝑢𝑛𝑐𝑡𝑜𝑡𝑎𝑙 is the total number of functions in the function set. Within this range, a uni-
form random number is generated to represent a function in the real domain.

𝑟 𝑓 𝑢𝑛𝑐𝑘 ∈
[
𝑓 𝑢𝑛𝑐𝑘

𝑓 𝑢𝑛𝑐𝑡𝑜𝑡𝑎𝑙
,
𝑓 𝑢𝑛𝑐𝑘 + 1
𝑓 𝑢𝑛𝑐𝑡𝑜𝑡𝑎𝑙

]
(4.2.1)

Equation 4.2.2 defines the range for the input connections in the real domain to map
each node connection. An input value (𝑛𝑜𝑑𝑒𝑖𝑛𝑝𝑢𝑡) and its node number (𝑛𝑜𝑑𝑒𝑇𝑒𝑟𝑚) are
used to calculate this range.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.2 Solutions representation for CNN - Search space 47

𝑟𝑖𝑛𝑝𝑢𝑡 𝑗 ∈
[
𝑛𝑜𝑑𝑒𝑖𝑛𝑝𝑢𝑡 𝑗

𝑛𝑜𝑑𝑒𝑇𝑒𝑟𝑚
,
𝑛𝑜𝑑𝑒𝑖𝑛𝑝𝑢𝑡 𝑗 + 1
𝑛𝑜𝑑𝑒𝑇𝑒𝑟𝑚

]
(4.2.2)

Equation 4.2.3 decodes the function identifier by multiplying the gene value by the
total number of functions, and Equation 4.2.4 obtains the value of each connection by
multiplying the gene value and the node number. It should be noted that the real-based or
integer-based vector must be divided into segments. The leftmost position per segment
represents the function, and the other values represent the connections.

𝑓 𝑢𝑛𝑐𝑘 = ⌊𝑔𝑒𝑛𝑒𝑖 × 𝑓 𝑢𝑛𝑐𝑡𝑜𝑡𝑎𝑙⌋ (4.2.3)

𝑖𝑛𝑝𝑢𝑡 𝑗 = ⌊𝑔𝑒𝑛𝑒𝑖 × 𝑛𝑜𝑑𝑒𝑇𝑒𝑟𝑚⌋ (4.2.4)

4.2.1 CGP Funtion set

CGP operates on a set of functions that implicitly define the search space, as shown in
Table 4.1. For CGP-NASV1 and CGP-NASV2, we considered 11 functions, making explicit
all possible combinations of the number of channels and kernels.

The ConvBlock [68] function is a basic block composed of three stages: convolution,
batch normalization, and the ReLU function. This function is illustrated in Figure 4.1a.

On the other hand, the ResBlock [72] function involves another significant component
of convolutional networks, the shortcut connections. As shown in Figure 4.1b, it internally
contains a ConvBlock, an additional convolution operation, and a summation operation
that performs a tensor addition of both inputs, the original input and the preprocessed
input. It is important to note that a 1× 1 convolution operation is performed to match the
feature map sizes of both inputs before the tensor addition.

The Bottleneck block [73] (Figure 4.1c) imply a reduction in the number of parameters
and computations. By using the first 1 × 1 convolution to reduce the dimensionality, the
computationally intensive 𝑘 ×𝑘 convolution operates on fewer channels, thus decreasing
the overall computational cost. Another 1 × 1 convolution is used to restore the original
number of channels.

The Fused-MBConv [73] (Figure 4.1d) block with Squeeze-and-Excitation [74] com-
bines efficient convolution operations and adaptive feature recalibration. It starts with a

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

48 4. Continuous Representation for Multi-objective NAS

Table 4.1: Functions set with corresponding variations and arity

Block type Symbol CGP-NASV1 CGP-NASV2 Arity

ConvBlock 𝐶𝐵(𝐶, 𝑘) 𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{1 × 1, 3 × 3, 5 × 5, 7 × 7}

𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5} 1

ResBlock 𝑅𝐵(𝐶, 𝑘) 𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5, 7 × 7}

𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5} 1

Bottleneck 𝐵𝑁 (𝐶, 𝑘) 𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5, 7 × 7}

𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5} 1

FusedMBconv 𝐹𝐵𝐶 (𝐶, 𝑘) 𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3}

𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5} 1

MBconv 𝑀𝐵𝐶 (𝐶, 𝑘) Not used in CGP-NASV1 𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5} 1

SepConv 𝑆𝐶 (𝐶, 𝑘) 𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5, 7 × 7}

𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5} 1

DiConv 𝐷𝐶 (𝐶, 𝑘) 𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5}

𝐶 ∈ {32, 64, 128, 256}
𝑘 ∈{3 × 3, 5 × 5} 1

Indentity 𝐼 - - 1
C1x7-7x1 𝐶17 - - 1
Summation Sum - - 2

Concatenation Concat - - 2

fused convolution that expands the channels followed by batch normalization and activa-
tion. The SE block then scales the feature map channels adaptively using global average
pooling and a set of fully connected layers. Finally, a 1x1 convolution restores the original
number of channels. This architecture enhances efficiency and representational power.

The MBConv block [75] (Figure 4.2c), essential in MobileNetV2, optimizes computa-
tional efficiency and performance for mobile and embedded devices. It comprises three
main convolutional steps: an initial 1x1 pointwise convolution to reduce dimensionality,
a depthwise convolution to handle spatial relationships within channels, and a final 1x1
pointwise convolution to restore dimensionality. The Squeeze-and-Excitation module is
included to recalibrate feature maps. A skip connection is used to improve gradient flow
and mitigate the vanishing gradient problem, ensuring efficient training and high accu-
racy with fewer parameters.

The SepConv function applies the Separable Convolution [76] block (Figure 4.2a), this
enhances efficiency in CNNs by separating spatial and channel-wise convolutions. It con-
sists of a Depthwise Convolution, which applies a single filter per input channel, followed
by a Pointwise Convolution (1x1), which combines these outputs. This architecture re-
duces the number of parameters and computational cost compared to standard convo-

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.2 Solutions representation for CNN - Search space 49

Convolution

Batch normalization

ReLU

(a) ConvBlock

ConvBlock

Convolution

Batch normalization

Summation

ReLU

ConvBlock
1×

1

(b) ResBlock

ConvBlock

ConvBlock

Summation

ReLU

𝑘 × 𝑘

1 × 1

ConvBlock 1 × 1

ConvBlock
1×

1

(c) Bottleneck

ConvBlock 𝑘 × 𝑘

Squeeze-and-Excitation

ConvBlock 1 × 1

Summation

ReLU

ConvBlock
1×

1

(d) FusedMBConv

Figure 4.1: Function set blocks.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

50 4. Continuous Representation for Multi-objective NAS

ConvBlock 1 × 1

Convolution𝑘 × 𝑘
Groups=input size

(a) Separable Convolution

Convolution𝑘 × 𝑘

ConvBlock 1 × 1

dilation = 2

(b) Dilated Convolution

ConvBlock 1 × 1

Squeeze-and-Excitation

ConvBlock 1 × 1

Summation

ReLU

ConvBlock
1×

1
ConvBlock 𝑘 × 𝑘

(c) MBConv

Convolution1 × 7

Convolution7 × 1

Batch normalization

ReLU

(d) Convolution 1×7 then Convolution 7×1

Figure 4.2: Function set blocks Cont.

lutions, maintaining performance while being more efficient. Separable convolutions are
used in efficient CNN architectures such as MobileNet [76] and Xception [77].

The Dilated Convolution [78] or DiConv block (Figure 4.2b), increases the kernel’s
receptive field by inserting “holes” between elements in convolution, allowing for better

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.2 Solutions representation for CNN - Search space 51

context capture without changing kernel size or parameters. They retain image resolution
while eliminating the loss caused by pooling. In our implementation, we also used a 1× 1
convolution after dilated convolution because it can reduce the number of channels, which
helps in reducing the computational load and the number of parameters in the model.

The C1 × 7 − 7 × 1 block [70] is a sequence of applying a 1 × 7 convolution followed
by a 7 × 1 convolution (Figure 4.2d), is an efficient technique to approximate a larger
7 × 7 convolution, significantly reducing computational cost and parameter count while
preserving spatial information. This approach captures horizontal and vertical features
separately, enhancing feature extraction in CNN architectures. Compared to a direct 7× 7
convolution, this method uses fewer parameters and computations, making it suitable for
resource-constrained environments.

The identity, summation, and concatenation blocks are simple functions that facili-
tate connections between other blocks, thereby increasing the diversity of possible archi-
tectures. The identity block [70] acts as a bridge between two blocks, helping to reduce
the overall number of operations. On the other hand, the Summation and Concatenation
blocks [14] are the only ones with arity 2, meaning they receive two tensors. In the case
of summation, an element-wise summation of two feature maps is performed channel by
channel, resulting in a new tensor of the same size. Finally, the concatenation block con-
catenates two inputs along the channel dimension, producing a new feature map with a
size equal to the sum of the sizes of the two input feature maps.

4.2.2 CGP-NASV1 representation

Using the aforementioned as a basis, we can define a Cell-based representation as ex-
plained in Section 2.1.1, With this information, we can introduce CGP-NASV1, which
implements a block-chained approach. see Figure 4.3. In each “Normal” block, an inter-
nal CGP representation itself handles the connections and functions, in the “Reduction”
blocks, a spatial reduction is applied, in our case, a pooling block is fixed. During the
optimization process, this representation is re-encoded to a real-valued representation.
Therefore, the full MOEAs searching potential within continuous domain is exploited.
CGP-NASV1 employs block-chained encoding at the highest level, defining a template
with multiple layers that connect blocks sequentially, each fulfilling specific tasks. Spatial
reduction in CGP-NASV1 is achieved through pooling layers. At the top level of the block-

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

52 4. Continuous Representation for Multi-objective NAS

Image

Normal

Reduction

Normal

Reduction

Normal

Softmax

C
h

a
n

n
e

l in
c
re

m
e

n
t

Initial channel size

Figure 4.3: The general scheme of the representation based on chained blocks; each block
internally focuses on special operations; in each normal block, for example, convolution
operations are performed; on the other hand, in the reduction blocks, methods such as
pooling are applied to spatially reduce the feature maps. As the number of blocks in-
creases, the number of channels will gradually increase.

chained structure, CGP-NASV1 integrates a CGPwithin a “Normal” block, while reduction
blocks incorporate max pooling layers. All pooling blocks maintain a fixed size with a 2×2
kernel and a stride of 2. Figure 4.4 illustrates an example where, following the final block,
global average pooling and a fully connected layer are added. Similar methodologies are
endorsed in related literature reviews [7, 67]. Figure 4.4 depicts the representation as an
integer-based vector. Each square encapsulating a function symbolizes a “Normal” block
with its own CGP configuration, including distinct function sets and sizes. Function IDs
are highlighted in red within the figure. CGP-NASV1 represents CNN architectures in a
divide and conquer approach. The use of a block-chained schema in synergy with CGP
allows more control over the final architecture.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.2 Solutions representation for CNN - Search space 53

In
p

u
t

RB-64-5

CB-32-3 Concat

CB-32-3

M
a

x
P

o
o

lin
g

RB-128-5 SepConv-64-3RB-128-5

SumCB-128-3

CB-64-3 DiConv-128-5Concat

RB-64-5

M
a

x
P

o
o

lin
g

RB-128-3

CB-128-5 Sum

CB-256-3

G
A

P

F
C

2 0 0 1 0 0 2 0 0 3 1 0 4 1 3 5 4 2 6 0 0 7 5 0 8 6 0

Function ID 1.Input node 2.Input node

Figure 4.4: CGP-NASV1 using the block-chained representation.

4.2.3 CGP-NASV2 representation

The CGP-NASV2 proposal incorporates hyperparameters into the solution representation
used in CGP-NASV1, allowing them to be evolved and optimized during the search pro-
cess. Modifications in CGP-NASV2 are applied to the block-chained “low level” encoding,
leading to a reduction in the number of functions within the function set. However, the
inclusion of hyperparameters in the search process inevitably increases the size of the in-
teger vectors (and the corresponding real-based vectors) used to encode the block-chained
solutions.

In deep neural architectures, hyperparameters such as the number of channels or fil-
ters and kernel size play a crucial role. In CGP, these hyperparameters are explicitly in-
cluded in the function set if not already considered within the solution representation and
evolutionary search. Therefore, a comprehensive function set must be defined to encom-
pass all possible combinations of these hyperparameters.

Moreover, a larger function set directly increases the CGP grid size required to ac-
commodate them uniformly.In CGP-NASV2, hyperparameters are explicitly added to the
vector representing the CGP. This approach reduces the number of functions, as only the
standard functions remain without the need for their hyperparameter configurations.

In Figure 4.5, a possible solution in CGP-NASV2 is shown. The number of channels
and kernel size are defined as parameters associated to each block-chained. The idea is
to associate these parameters as weights to each CGP node. Green positions at the in-
teger vector encoding in Figure 4.5 represent the assigned hyperparameters within their
corresponding CGP block.

Figure 4.6 illustrates an example of a CGP-NASV2 solution representation as an inte-

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

54 4. Continuous Representation for Multi-objective NAS

RBRB

 332

 332

 564 364

 332

332

53

Channels Kernels

6432 53

Channels Kernels

12864 53
Channels Kernels

256128

2 0 0 0 0 1 0 0 1 2 0 0 1 0 1 1 0 10 3 1 3 0 2 3 2 1 1 4 4 2 0 0 6 5 0 0 5 6 0 010 0 0

CB

CB Concat

CB

M
a

x
P

o
o

lin
g

31285128

 364 364

364 564 364

3128

3128

RB SepConvRB

SumCB

CB MBConvConcat

RB

M
a

x
P

o
o

lin
g

3128

5128

256 3

 3256

3128

3128

RBRB

CB

CB Sum

CB

G
A

P

F
C

Function ID 1.Input node 2.Input node 1. node value 2. node value

In
p

u
t

Figure 4.5: CGP-NASV2 block-chained representation with the hyperparameters directly
encoded.

Figure 4.6: A CGP-NASV2 solution represented as an integer vector and its equivalent
real-based vector with the added hyperparameters in the green positions.

ger vector with hyperparameters. The entire vector is altered when hyperparameters are
explicitly considered by the CGP. The first three positions (white and gray) represent the
function ID and input connection nodes. The green positions indicate two hyperparam-
eters: one for the number of channels and the other for the kernel size. For instance, in
the integer vector representation shown in Figure 4.5, a 0 in position 4 signifies a channel
value of 64, and a 1 in position 5 indicates a kernel size of 5x5.

To convert the integer vector to a real-based vector, the same mechanism explained in
section 4.2 is applied, with the addition of Equations 4.2.5 and 4.2.6 to encode and decode
the hyperparameters.

𝑟𝐻𝑦𝑝𝑘 ∈
[
𝐻𝑦𝑝𝑘

𝐻𝑦𝑝𝑡𝑜𝑡𝑎𝑙
,
𝐻𝑦𝑝𝑘 + 1
𝐻𝑦𝑝𝑡𝑜𝑡𝑎𝑙

]
(4.2.5)

𝐻𝑦𝑝 𝑗 = ⌊𝑔𝑒𝑛𝑒𝑖 × 𝐻𝑦𝑝𝑡𝑜𝑡𝑎𝑙⌋ (4.2.6)

The key difference between the two proposed variants is that in CGP-NASV1, the func-
tion set is limited to explicit instantiations of the functions. In contrast, CGP-NASV2 does
not have this restriction, requiring the algorithm to determine which functions and hy-

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.3 Evolutionary algorithm - Search strategy 55

perparameters (filter size, channels) to use when building solutions. This approach offers
greater flexibility at the cost of expanding the search space.

When we compare this new representation with others in the state of the art, we can
highlight the use of this two-level representation, in this case the use of real encoding,
letting us adapt any MOEA for NAS; this characteristic is not found in other methods;
on the other hand, this representation can be adapted to multiple hyperparameters; and
finally, the use of CGP gives us a variable length representation because we can take
advantage of the nature of the inactive nodes in CGP, letting us to obtain a diversity of
solutions.

4.3 Evolutionary algorithm - Search strategy

Adopting real-valued representations allows us to leverage any MOEA that operates in
such a domain as a search strategy. Consequently, we initially selected the NSGA-II MOEA
as our optimizer, given its widespread use and effectiveness. Figure 4.7 presents a general
schema of this well-known MOEA. Since both CGP variants represent solutions in the
continuous domain for the search process, NSGA-II’s full capabilities are preserved. The
only significant modifications are in the crossover and mutation operations, which were
adapted for CGP-NASV1 and CGP-NASV2 due to the block-chained representation.

Each individual, represented as a real-based vector, is splitted into three sub-vectors,
each encoding a CGP “Normal” block. Figure 4.8 illustrates the application of crossover
and mutation operations. The crossover operation is performed between sub-vectors at
the same overall position within the full solution vector, while the mutation operation is
applied independently to the offspring of each sub-vector. It is crucial to note that each
operation is carried out independently at the sub-vector level. In the example shown,
three crossover and mutation operations are performed for each sub-vector’s offspring
(pairs of CGP “Normal” blocks), which together form the complete neural architecture to
be evaluated. The crossover andmutation operators are those commonly used in NSGA-II:
simulated binary crossover (SBX) and polynomial mutation (PM).

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

56 4. Continuous Representation for Multi-objective NAS

Pt Pt

Qt

F2

F3

F1

Fn

F3

Mating
pool

Pt+1

Rejected

Non-dominated
sorting

Crowding distance sorting

Initial PopulationEncode initial
population

Decode
(Pt)

Decode
(Qt)

Figure 4.7: NSGA-II general schemawith encoding and decoding steps. NSGA-II generates
an initial population 𝑃𝑡 , and after mating, an offspring population 𝑄𝑡 is obtained. 𝑄𝑡 is
decoded for evaluation and optimization considering the non-dominance criterion.

4.4 Fitness function - Performance estimation strategy

As previously mentioned, in the introduction of this chapter we aim to simultaneously
optimize two objectives with both variants of CGP-NAS: accuracy and complexity as mea-
sured in MAdds. The goal is to maximize accuracy while minimizing complexity.

The accuracy estimate is obtained by evaluating the validation set, which is a random
subset of the training set. This method of obtaining accuracy is referred to as the partial
training performance estimation strategy (see Section 2.1.3).

To align both objectives for minimization, the classification error is calculated using
the expression 1 − Accuracy. A CNN architecture relies on the convolution operation,
which primarily involves multiplications and additions. Therefore, complexity is calcu-
lated as the total number of multiplication and addition operations performed by the CNN.
The complexity, calculated as the sum of MAdds, is the second objective to minimize, to
obtain such data, the PyTorch Profiler was used, which is part of the PyTorch API.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.5 Experimental framework 57

Normal-Block 3Normal-Block 2Normal-Block 1

Crossover

First
parent

Second
Parent

CrossoverCrossover+ + +

Offspring

Mutation

Figure 4.8: Each sub-vector represents a CGP “Normal” block. Crossover is applied inde-
pendently between sub-vectors at the same overall position, while mutation operates on
the sub-vector offspring.

4.5 Experimental framework

To evaluate the proposed CGP-NASV1 and CGP-NASV2 approaches, we first conduct a
direct performance comparison between the best evolved architectures using accuracy as
the performance metric. Subsequently, a multiple-criteria decision analysis is performed
to identify CNN models that best balance both objectives: accuracy and complexity. This
section outlines the experimental settings for these evaluations and describes the datasets
used.

Table 4.2: CGP-NASV1 and CGP-NASV2 parameters

Parameters CGP-NASV1 CGP-NASV2
Rows 5 10

Columns 25 4
Level-Back 1 1

Mutation probability 𝑃𝑚 = 0.3

Crossover probability 𝑃𝑐 = 0.9, distribution index for
simulated binary crossover 𝐷𝑠𝑐 = 20.

Population 24 24
Generations 30 30

Table 4.2 presents the configurations for CGP-NASV1 and CGP-NASV2. The key mod-
ification in CGP-NASV2 is the direct representation of hyperparameters within the solu-

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

58 4. Continuous Representation for Multi-objective NAS

tions, requiring a smaller grid size due to a reduced function set. In contrast, CGP-NASV1
needs a larger grid due to the comprehensive function set required to express all possible
hyperparameter combinations.

For evaluating the proposed algorithms, we used three image classification datasets:
CIFAR-100 [79], CIFAR-10 [79], and SVHN [80]. CIFAR-100 consists of 100 classes, and
CIFAR-10 consists of 10 classes, with each dataset containing 50,000 training images and
10,000 test images of 32 × 32 pixels. Figure 4.9 shows sample images from these datasets.
The SVHN dataset includes 99,289 images, with 73,257 for training and 26,032 for testing,
also at 32x32 pixels.

During the evolutionary search, solutions were evaluated using a training set split
randomly into 80% for training and 20% for validation. For the final evaluation of selected
solutions from the Pareto front, the entire training dataset was used to train the models,
which were then evaluated on the test partition.

The CNN architecture was trained using Stochastic Gradient Descent (SGD) with a
cosine annealing learning rate schedule. The initial learning rate was set to 0.025, mo-
mentum to 0.9, and weight decay to 0.0005. The batch size was set to 128, and 36 training
epochs were executed during the evolutionary search. Data was preprocessed with a 4
pixel-mean subtraction padding and randomly cropped to 32 × 32 patches or their hori-
zontally flipped versions. Final solutions were retrained for 600 epochs with cutout pre-
processing, and the batch size was set to 96. An auxiliary head classifier [9] was used to
enhance training, concatenated after the second reduction block, with its loss multiplied
by 0.4 and added to the main architecture’s loss.

All experiments were executed on a Supercomputing Node with 2 Intel Xeon E5-2650
v4 @ 2.20GHz processors, 8 Nvidia GTX 1080 Ti GPU cards, and 128GB of RAM, running
on Centos 7 OS.

4.6 Results analysis

We designed three experimental setups to evaluate the proposed representation ap-
proaches. The difference between the first two experiments lies in the method used to
select the final solution from the achieved Pareto front. In the first experiment, the final
solution is determined by the smallest classification error, following a criterion similar to

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.6 Results analysis 59

(a) CIFAR-10 (b) CIFAR-100

(c) SVHN

Figure 4.9: Examples from the CIFAR-10, CIFAR-100, and SVHN datasets, with each row
representing a class.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

60 4. Continuous Representation for Multi-objective NAS

that used in most state-of-the-art works. Hence, we selected the evolved CNN presenting
the lowest classification error. This solution is then executed 10 times to facilitate a fair
comparison with state-of-the-art solutions and other discussed algorithmic approaches
using three datasets: CIFAR-10, CIFAR-100, and SVHN.

In the second experiment, CGP-NASV1 and CGP-NASV2 were compared using a
multiple-criteria decision-making (MCDM) method to identify the solution with the best
Pareto front trade-off on the CIFAR-10 and CIFAR-100 datasets.

In the third experiment, CGP-NASV2 was assessed by implementing other MOEAs
and search operations. To verify the developed representation, three different MOEAs
were used: NSGA-II with the differential evolution crossover operator,MOEA/D, and SMS-
EMOA, using the CIFAR-100 dataset for comparison.

Finally, we compare both proposed approaches against state-of-the-art works using
the three datasets considered and discuss how the proposed solution representations and
search mechanisms impact the final performances of CGP-NASV1 and CGP-NASV2.

4.6.1 Effectiveness of searching for the hyperparameters

In the first experiment we empirically assessed the effectiveness of including the hyperpa-
rameters in the evolutionary search. Thus, we compared CGP-NASV1 versus CGP-NASV2
on the CIFAR-10 and CIFAR-100 datasets. The best evolved architectures in terms of ac-
curacy from 10 independent runs were evaluated. We also added CGP-NAS [81] as a base-
line for comparison because it uses the same mechanism for selecting solutions from the
Pareto front.

Table 4.3: Comparison between differents versions of CGP-NAS, on CIFAR-10 and CIFAR-
100 datasets, parameters and MAdds expressed in millions (1 × 106).

CIFAR-10 CIFAR-100
Error Parameters MAdds Error Parameters MAdds

CGP-NAS [11] 4.86
(5.42 ± 0.46)

1.40
(2.52 ± 0.90)

388.71
(1167.13 ± 477.11)

24.23
(26.41± 1.41)

5.43
(5.89 ± 2.75)

1581.93
(1229.11 ± 782.00)

CGP-NASV1 4.23
(4.73 ± 0.44)

8.47
(8.74 ± 3.27)

1255.93
(1161.09 ± 373.78)

21.76
(24.20 ± 1.80)

3.60
(7.25 ± 3.24)

791.85
(792.02 ± 342.60)

CGP-NASV2 3.70
(4.07 ± 0.17)

4.04
(5.82 ± 2.70)

636.32
(818.61 ± 372.62)

20.63
(22.49 ± 1.04)

5.90
(6.50 ± 1.70)

827.00
(850.74 ± 476.08)

Table 4.3 shows the performance effect of evolving the hyperparameters. CGP-NASV2
reduces the error by half a percentile point compared to CGP-NASV1 and by more than

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.6 Results analysis 61

one percentile point compared to the baseline approach CGP-NAS. This reduction is also
observed in the standard deviation corresponding to the 10 experimental samples, demon-
strating that CGP-NASV2 is robust compared to the other approaches.

We can also observe that the complexity measured inMAdds achieved by CGP-NASV2
is lower than that obtained by CGP-NASV1 for the CIFAR-10 dataset. On the other hand,
both have similar values in MAdds for the CIFAR-100 dataset. It is worth mentioning that
the number of parameters is not one of the objectives to optimize, hence a significant vari-
ation among results is observed. Selecting the best evolved architecture by accuracy shows
that CGP-NASV2 achieves the best results in terms of classification error. In contrast, the
complexity objective is negatively affected, evidenced by a higher standard deviation.

4.6.2 Best trade-off solution viamultiple-criteria decision analysis

CGP-NASV1 and CGP-NASV2 are multi-objective proposals; therefore, selecting the best
solution in terms of accuracy from the Pareto front is not an efficient criterion. When
evolving neural architectures as a multi-objective optimization problem, the best solution
would represent a trade-off between objectives. In the proposed algorithmic approaches,
this trade-off is between the classification error and the complexity of the architecture in
terms of MAdds. The Multi-Criteria Decision Making (MCDM) method was used to select
the best solution from the Pareto front. In particular, the Knee and Boundary Selection
method [82] has been explored for the empirical analysis.

This method obtains two solutions, called boundary heavy and boundary light, cor-
responding to the solution with the lowest value per objective. After, it calculates the
solution closest to the intersection of both solutions (heavy and light). The obtained so-
lution is called the knee and represents the solution with the best trade-off. Figure 4.10
shows how the knee and boundary selection works.

Table 4.4 shows the results achieved after applying the MCDM analysis to compare
CGP-NASV1 and CGP-NASV2 in both CIFAR-10 and CIFAR-100 datasets.

The differences found with this selection method mostly favor solutions with a lower
number of parameters and MAdds. Although the classification error increased compared
to selecting the solution with the lowest classification error, the difference is relatively
minor, averaging a 2% increase on CIFAR-10 and a 5% increase on CIFAR-100. However,
the reduction inMAdds from 818.61M to 79.44M for CIFAR-10 and from 850.74M to 55.66M

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

62 4. Continuous Representation for Multi-objective NAS

Figure 4.10: Knee and boundary selection method. Measuring the distance between the
intersections of the two best extreme solutions ensures the best trade-off solution is ob-
tained.

Table 4.4: Trade-off knee solutions from the Pareto front. Parameters and MAdds are ex-
pressed in millions (1 × 106).

CIFAR-10 CIFAR-100
Error Parameters MAdds Error Parameters MAdds

CGP-NASV1 5.66
(7.33± 1.55)

0.41
(0.36 ± 0.13)

70.13
(52.01 ± 21.09)

31.47
(33.34 ± 1.60)

1.06
(0.82 ± 0.52)

45.70
(30.81 ± 9.70)

CGP-NASV2 4.85
(5.59± 0.50)

0.78
(0.71 ± 0.31)

53.99
(79.44 ± 31.96)

23.57
(28.23 ± 2.20)

0.49
(0.53 ± 0.13)

66.66
(55.66 ± 19.14)

for CIFAR-100 represents a substantial decrease in model complexity. This highlights the
ability to find solutions that balance both objectives. Additionally, our results indicate that
incorporating the hyperparameters within the search process is beneficial, particularly in
terms of reducing the classification error.

4.6.3 Performance comparison between different MOEAs

To further test the effectiveness of the proposed representation, three additional exper-
iments were conducted. In the first experiment, the differential evolution crossover op-
erator (DE) instead of SBX in NSGA-II was implemented. In a second and third experi-

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.6 Results analysis 63

ment, MOEA/D and SMS-EMOA were implemented as the searching techniques. Using
MOEA/D and SMS-EMOA as the optimization algorithms would show the adaptability
of the proposed CGP-based solution representation to different evolutionary searching
strategies.

The experiments were run 10 times on the CIFAR-100 dataset. The DE operator was
configured with CR = 1 and F = 0.5, while MOEA/D and SMS-EMOA used the same
crossover and mutation mechanisms of NSGA-II and the configurable parameter to define
the number of neighborhoods was set equal 4. The rest of the parameters were configured
the same as those listed in Table 4.2.

Table 4.5: Comparison of CGP-NAS versions on the CIFAR-100 dataset, considering both
methods for selecting solutions from the Pareto front. Classification error rate, the param-
eters and MAdds are expressed in millions (1 × 106).

Knee Best
Error rate (%) Parameters MAdds Error rate (%) Parameters MAdds

CGP-NASV2
NSGA-II-DE

24.75
(27.15 ± 1.85)

1.09
(0.78 + 0.21)

86.49
(71.06+ 12.03)

21.02
(22.66± 0.99)

5.99
(5.89 + 2.75)

960.01
(1164.75 + 559.59)

CGP-NASV2
MOEA/D

29.47
(32.46 ± 1.42)

0.32
(0.34 ± 0.07)

36.71
(30.75± 7.70)

21.12
(23.88 ± 1.7)

5.30
(3.98 ± 1.11)

1021.62
(601.18± 186.12)

CGP-NASV2
NSGA-II-SBX

23.57
(28.43± 2.20)

0.49
(0.53 ±0.13)

66.66
(55.66 ±19.14)

20.63
(22.49 ± 1.04)

5.99
(6.50 ± 1.7)

827
(850.74± 476.08)

CGP-NASV2
SMS-EMOA

25.38
(26.84 ± 1.68)

0.95
(0.54 ± 0.19)

98.74
(61.09± 17.84)

21.55
(22.82 ± 1.06)

12.19
(7.10 ± 3.21)

1320.17
(846.15± 261.03)

Table 4.5 shows the results for CGP-NASV2 with different evolutionary strategies af-
ter 10 executions on the CIFAR-100 dataset. Our experiments revealed several interesting
behaviors. In the canonical version of CGP-NASV2 with NSGA-II and SBX , we consis-
tently obtained the best classification errors. When using the DE operator, we saw similar
results to CGP-NASV2, with a slightly lower average and standard deviation, indicating
more consistent behavior. Finally, MOEA/D performed similarly to DE while producing
solutions with significantly lower complexity, potentially due to its decomposition ap-
proach. In the case of SMS-EMOA, we see a very similar performance to NSGA-II-SBX.
However, we can notice that on average, in SMS-EMOA, the solutions have a lower or
equal error than NSGA-II-SBX. This may be due to the indicator-based approach of SMS-
EMOA, but the best solution located is worse than our baseline.

To further illustrate these findings, we present in Figure4.11 the aggregated Pareto
fronts for each method below. To obtain them, we concatenated the Pareto fronts from
each run, ten in total, and we keep it with the non-dominated solution.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

64 4. Continuous Representation for Multi-objective NAS

Figure 4.11: Aggregated Pareto Front of each evaluatedMethod on the CIFAR-100 Dataset.
To obtain each Aggregated Pareto Front, the Pareto fronts from the 10 executions were
used, and then the non-dominated solutions were selected, thus obtaining the aggregated
Pareto front.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.6 Results analysis 65

Analyzing Figure 4.11, we can observe different behaviors with the various MOEAs
utilized. For example, we note that the NSGA-II-DE version with the differential evolution
crossover operator stands out by providing solutions with notably lower complexity while
maintaining good performance in terms of classification error. However, its distribution
is slightly worse. Similarly, for MOEA/D, the solutions tend to have higher complexity
but also higher error, reaffirming the trade-off that exists between both objectives. In the
case of SMS-EMOA and NSGA-II-SBX, we observe very similar behaviors, excelling in a
well-distributed set of solutions across the Pareto front.

To delve deeper and enable a more detailed analysis of the different algorithms, a
comparison was performed using the hypervolume metric.

Ten runs were carried out for each MOEA, and all Pareto fronts were aggregated to
obtain a single Pareto front. The Nadir point was taken as the reference point for evalua-
tion. Using this reference point, each individual Pareto front was assessed to calculate the
hypervolume value for each algorithm. The values obtained for each MOEA are shown in
Table 4.6.

Table 4.6: Summary of Hypervolume Results.

Dataset Mean ± STD
SMS-EMOA 0.4085 ± 0.0043
NSGA-II-DE 0.4007 ± 0.0135
MOEA/D 0.3671 ± 0.0057

NSGA-II-SBX 0.4051 ± 0.0052

Table 4.7: Pairwise Comparison of Hypervolume Results with NSGA-II-SBX as Baseline.
(+: better, -: worse, =: no significant difference).

MOEA Baseline: NSGA-II-SBX Adjusted P-value Result (+, -, =)
SMS-EMOA NSGA-II-SBX 0.2058 =
NSGA-II-DE NSGA-II-SBX 0.3527 =
MOEA/D NSGA-II-SBX 0.0009 -

The Wilcoxon Rank-Sum Test was used to compare the hypervolume results of four
MOEAs: SMS-EMOA, NSGA-II-DE,MOEA/D, andNSGA-II-SBX. This non-parametric test
evaluates whether there are significant differences in the distributions of two independent

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

66 4. Continuous Representation for Multi-objective NAS

samples, making it appropriate for datasets that may not meet the assumptions of para-
metric tests. To address multiple pairwise comparisons, the Bonferroni correction was
applied to the p-values to minimize the likelihood of Type I errors, as recommended in
multiple hypothesis testing scenarios [83].

With these results, we can confirm that statistically, there is no significant difference
between SMS-EMOA, NSGA-II-DE, and NSGA-II-SBX. However, MOEA/D is significantly
worse than NSGA-II-SBX. Based on these findings and the results summarized in Table
4.5, we select the NSGA-II-SBX algorithm as the one delivering the best results, and it will
therefore be used for subsequent experiments.

4.6.4 Comparison versus the state of the art

Tables 4.8 and 4.9 present a detailed comparison between the State of the Art works and
the proposed algorithmic approaches CGP-NASV1 and CGP-NASV2 on the CIFAR-10 and
CIFAR-100 datasets. A total of 4 human designs, 5 NAS single-objective, and 7 multi-
objective proposals are considered for comparison.

From previous empirical assessments, it was determined that CGP-NASV2 provided
the best overall results when compared to CGP-NASV1 and their baseline CGP-NAS. It
was also analyzed that selecting the best solution from the Pareto front in terms of classi-
fication error would negatively affect the resulting evolved architecture in its complexity.
Thus, a method to select trade-off solutions for both conflicting objectives, known as the
knee and boundary methods, allowed the selection of an evolved architecture with more
balanced performance metrics.

Another method to evaluate the performance of the proposed is by using the hyper-
volume metric. This metric assesses the distribution of solutions along the Pareto front,
indicating how effectively they are spread across the objective function space. The hyper-
volume metric quantifies the total area covered by the Pareto front relative to a reference
point, for which we use the nadir point (see section 11). This metric is computed after
each generation, with higher values indicating better performance.

Figure 4.12 presents four box plots, each depicting the average hypervolume value per
generation across 10 runs for the CIFAR-10 and CIFAR-100 datasets.

The final hypervolume for CGP-NASV1 on CIFAR-10 is 0.85(0.651 ± 0.147), and for
CIFAR-100 it is 0.618(0.505 ± 0.08). Conversely, the results for CGP-NASV2 on CIFAR-10

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.6 Results analysis 67

Table 4.8: Comparison on CIFAR-10 dataset: Classification error rate, the number of pa-
rameters and Multiply-adds (MAdds) are expressed in millions (1 × 106), GPU-days and
GPU Hardware.

Model Error
rate % Params MAdds GPU-Days GPU hardware

Human Design
DenseNet (𝑘 = 12) [84] 5.24 1.0 - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 101) [72] 6.43 1.7 - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 1202) [72] 7.93 10.2 - -

VGG [85] 6.66 20.04 - -
Single Objective Approaches

CGP-CNN(ConvSet) [14] 5.92 1.50 - 8 Nvidia 1080Ti
CGP-CNN(ResSet) [14] 5.01 3.52 - 14.7 Nvidia 1080Ti

Large-Scale Evolution [86] 5.4 5.4 - 2750 -
AE-CNN [87] 4.3 2.0 - 27 Nvidia 1080 Ti

Genetic-CNN [16] 7.1 - - 17 -
(Torabi et al., 2022) [59] 5.69 1.96 - - NVIDIA Tesla k80

Multi-Objective Approaches
NSGANet [10] 3.85 3.3 1290 8 Nvidia 1080 Ti

NSGANetV1 [10] 4.67 0.2 - 27 Nvidia 2080 Ti
MOCNN [17] 4.49 - - 24 Nvidia 1080 Ti

MOGIG-Net [65] 4.67 0.2 - 14 -
EEEA-Net [12] 2.46 3.6 - 0.52 Nvidia RTX 2080 Ti

EvoApproxNAS [67] 6.80 1.11 458.2 8.8 NVIDIA Tesla V100-SXM2
LF-MOGP [66] 4.13 1.07 - 10 NVIDIA GeForce 3090

CGP-NAS [11] 4.86
(5.42 ± 0.46) 1.40 388.71 1.4 Nvidia Titan X

CGP-NASV1-Best Solution 4.23
(4.73 ± 0.44)

8.47
(8.74 ± 3.27)

1255.93
1161.09 ± 373.78) 8.97 Nvidia 1080Ti

CGP-NASV1-Knee Solution 5.66
(7.33 ± 1.55)

0.41
(8.74 ± 0.13)

70.13
(52.01 ± 21.09) 8.97 Nvidia 1080Ti

CGP-NASV2-Best solution 3.70
(4.07± 0.17)

4.04
(5.82 ± 2.70)

636.32
(818.61 ± 372.62) 11.54 Nvidia 1080Ti

CGP-NASV2-Knee solution 4.85
(5.59 ± 0.5)

0.78
(0.71 ± 0.31)

53.99
(79.44 ± 31.96) 11.54 Nvidia 1080Ti

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

68 4. Continuous Representation for Multi-objective NAS

Table 4.9: Comparison on CIFAR-100 dataset: Classification error rate, the number of pa-
rameters and Multiply-adds (MAdds) are expressed in millions (1 × 106), GPU-days and
GPU Hardware.

Model Error
rate % Params MAdds GPU-Days GPU hardware

Human Design
DenseNet (𝑘 = 12) [84] 24.42 1.0 - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 101) [72] 25.16 1.7 - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 1202) [72] 27.82 10.2 - -

VGG [85] 28.05 20.04 - -
Single Objective Approaches

CGP-CNN(ConvSet) [14] 26.7 2.04 - 13 Nvidia 1080Ti
CGP-CNN(ResSet) [14] 25.1 3.43 - 10.9 Nvidia 1080Ti

Large-Scale Evolution [86] 23.0 40.4 - 2750 -
AE-CNN [87] 20.85 5.4 - 36 Nvidia 1080 Ti

Genetic-CNN [16] 29.03 - - 17 -
(Torabi et al., 2022) [59] 26.03 2.56 - - NVIDIA Tesla V100-SXM2

Multi-Objective Approaches
NSGANetV1 [10] 25.17 0.2 1290 27 Nvidia 2080 Ti
MOGIG-Net [65] 24.71 0.7 - 14 -
EEEA-Net [12] 15.02 3.6 - 0.52 Nvidia RTX 2080 Ti
LF-MOGP [66] 26.37 4.12 - 13 NVIDIA GeForce 3090

CGP-NAS [11] 24.23
(26.41 ± 1.41) 5.43 1581 2.1 Nvidia Titan X

CGP-NASV1 - Best Solution 21.76
(24.20 ± 1.80)

3.60
(7.25 ± 3.24)

791.85
(792.02 ± 342.60) 8.82 Nvidia 1080Ti

CGP-NASV1 - Knee Solution 31.47
(33.34 ± 1.6)

1.06
(0.82 ± 1.12)

45.70
(30.81 ± 9.7) 8.82 Nvidia 1080Ti

CGP-NASV2 - Best Solution 20.63
(22.49 ± 1.04)

5.9
(6.50± 1.7)

827
(850.74 ± 476.08) 11.28 Nvidia 1080Ti

CGP-NASV2 - Knee solution 23.57
(28.43 ± 2.20)

0.49
(0.53 ± 0.13)

66.66
(55.66 ± 19.14) 11.28 Nvidia 1080Ti

are 0.69(0.551 ± 0.10), and for CIFAR-100, it is 0.51(0.37 ± 0.07).

From these results and the previous figures, it can be observed that on the CIFAR-10
dataset, CGP-NASV1 exhibits more evenly distributed data, as indicated by the length of
the whiskers and the size of the boxes, which suggests a higher degree of variability in the
data across experiments. In contrast, CGP-NASV2 shows less variability, leading to a more
concentrated distribution. A similar trend is observed on the CIFAR-100 dataset, where
CGP-NASV1 tends to havemore evenly distributed data, while CGP-NASV2 demonstrates
a more concentrated distribution and more consistent solutions between experiments.
However, in the final generations, CGP-NASV2 generates outliers, possibly due to sud-
den and unpredictable changes in the Pareto front caused by the stochastic nature of
the search algorithm and the additional hyperparameters influencing this behavior. In
summary, CGP-NASV1 appears to favor exploration, while CGP-NASV2 tends to favor
exploitation towards the end of the search processes.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.6 Results analysis 69

(a) Hypervolume CGPNAS-V1 on CIFAR-10 (b) Hypervolume CGPNAS-V2 on CIFAR-10

(c) Hypervolume CGPNAS-V1 on CIFAR-100 (d) Hypervolume CGPNAS-V2 on CIFAR-100

Figure 4.12: Box plot of normalized Hypervolume on CIFAR-10 and CIFAR-100.

The search process of CGP-NASV1 and CGP-NASV2 on the CIFAR-10 and CIFAR-
100 datasets is illustrated in Figures 4.13a and 4.13b, respectively. The transparency of
the circular marks in the figures indicates the relative early stages of the generations.
The Pareto front for each approach is depicted by the corresponding lines. Initially, it is
observed that the solutions are primarily located in the upper left zone, indicating more
complex solutions. As the generations progress, solutions are placed further to the right.
The region with the most optimal trade-off is located in the lower left corner.

From the figures, it is also apparent that the Pareto front for CGP-NASV1 tends to be
more dispersed in the objective function space. Conversely, CGP-NASV2 demonstrates
a tendency to focus on a more restricted area of the objective function space, typically
leading to improved initial solutions compared to CGP-NASV1.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

70 4. Continuous Representation for Multi-objective NAS

(a) CIFAR-10 Pareto front (b) CIFAR-100 Pareto front

Figure 4.13: Comparison of the Pareto fronts between CGP-NASV1 and CGP-NASV2, and
the population through generations.

Compared to other methods, particularly those designed by humans, our proposal
demonstrates superior performance in terms of both classification error and the num-
ber of parameters on both datasets. When compared with single-objective methods, our
proposal outperforms them in terms of classification error while showing a significant
reduction in the number of parameters. It is important to note, however, that minimizing
the number of parameters is not the primary objective of our proposal. When comparing
with multi-objective methods in terms of classification error, the EEEA-NET [12] method
shows better performance, albeit at the cost of a higher number of parameters. In other
metrics, our proposal outperforms the other methods presented. Our proposal aims to find
solutions with a favorable trade-off between classification error and MAdds, resulting in
architectures with reduced parameters and MAdds.

In comparison with other proposals that use CGP as a method for architecture repre-
sentation, such as CGP-CNN [14], Torabi [59], EvoApproxNas [67], and LF-MOGP [66],
our proposal demonstrates superior performance. Works like EvoApproxNAS [67] focus
on optimizing values at the hardware level with a multi-objective approach, keeping the
CGP representation intact and adding some block functions like bottleneck and residual
inverted to the function set while maintaining the CGP properties unchanged by only
using mutations. On the other hand, none of these proposals modify CGP at the represen-

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.6 Results analysis 71

tation level, instead addressing specific problems, for example by proposing new operators
(Torabi [59]) or mechanisms to improve the search process (LF-MOGP [66]), which seem
to be important components since the results shown improve compared to other propos-
als, even though CGP-NASV2 shows superior performance with canonical MOEAs.

To demonstrate the applicability of CGP-NASV1 and CGP-NASV2 to other image clas-
sification tasks, we evaluated them on the SVHN dataset, with results reported in Ta-
ble 4.10. When compared to human-designed methods, CGP-NASV1 and CGP-NASV2
achieve classification errors comparable to these methods, notably excelling in solutions
with a smaller number of parameters. Our results surpass the multi-objective EvoApprox-
NAS [67] and the single-objective Bakhshi’s [15] proposal in terms of classification error,
number of parameters, and complexity. Particularly, CGP-NASV2, where parameters are
included in the search, demonstrates better performance regarding the number of param-
eters and MAdds without negatively impacting the error rate.

Table 4.10: Comparison on SVHN dataset: Classification error rate, number of parameters,
and Multiply-adds (MAdds) are expressed in millions (1× 106), GPU-days, and GPU hard-
ware.

Model Error
rate % Params MAdds GPU-Days GPU hardware

Human Design
FractalNet [88] 2.01 38.6 - -

Wide ResNet [89] 1.64 2.7 - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 101) [72] 2.01 1.7 - -
DenseNet (𝑘 = 24) [84] 1.72 15.3 - -

Single Objective Approaches
(Bakhshi et al., 2020) [15] 4.43 19 - 6

Multi-Objective Approaches
EvoApproxNAS [67] 3.09 0.90 247.3 8.8 NVIDIA Tesla V100-SXM2

CGP-NASV2-Best solution 2.70
(2.87± 0.15)

2.21
(4.26 ± 1.88)

399.52
(697.71 ± 210.51) 16.25 Nvidia 1080Ti

CGP-NASV2-Knee solution 2.88
(3.05 ± 0.18)

0.49
(0.51 ± 0.16)

55.93
(49.31 ± 11.26) 16.25 Nvidia 1080Ti

CGP-NASV1-Best solution 3.03
(3.27± 0.33)

3.24
(5.02 ± 2.16)

556.58
(698.24 ± 381.22) 13.87 Nvidia 1080Ti

CGP-NASV1-Knee solution 3.77
(4.07± 0.42)

0.34
(0.28 ± 0.12)

24.22
(25.95 ± 7.68) 13.87 Nvidia 1080Ti

CGP is known to be a robust method for architecture representation, and the use of
real-based representation in our proposal improves performance. This can be attributed to
the relaxation of the search space and the better utilization of MOEAs, which are designed
to operate in a continuous domain.

In summary, CGP-NASV1 and CGP-NASV2 demonstrate the ability to identify solu-

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

72 4. Continuous Representation for Multi-objective NAS

tions with a favorable trade-off between two objectives, specifically by achieving a lower
number of MAdds compared to other methods. Depending on the specific application or
task at hand, different methods for selecting solutions, such as those presented in this
work, may be utilized to determine the most appropriate solution for the given scenario.

4.6.5 Evolved architectures

Figures 4.14 showcase two CGP-NASV2 evolved architectures selected through the knee
and boundary method. Figure 4.14a, corresponding to the CIFAR-10 dataset, reveals an
architecture with numerous branches and parameter-free blocks such as summation and
concatenation. In contrast, Figure 4.14b for the CIFAR-100 dataset shows a more linear
structure with complex blocks such as MBConv and SepConv. This indicates that CGP-
NASV2 adapts to the more challenging CIFAR-100 dataset by selecting necessary, albeit
complex, blocks without significantly inflating the number of parameters or MAdds, thus
maintaining a low classification error.

4.7 Discussion

In this chapter we introduced a robust representation for multi-objective evolutionary ap-
proach for NAS applied to image classification tasks using the CIFAR-10,CIFAR-100 and
SVHN datasets. The proposed methods, CGP-NASV1 and CGP-NASV2, excel at discover-
ing CNN architectures that strike a balance between classification error and complexity,
as measured by the number of MAdds. A notable strength of CGP is its versatility in ex-
ploring various evolutionary search strategies and operators.

Moreover, leveraging the block-chained representation in combination with continu-
ous CGP provides significant advantages for evolutionary algorithms in NAS. This con-
straint effectively reduces the search space’s dimensionality, offering enhanced control
over layer connections within the architecture. This block-chained approach has gained
traction in NAS research [1, 7], resulting in improved optimization efficiency. Our experi-
mental results highlight that the block-chained constraint achieves competitive outcomes,
outperforming our previous proposal [11], where this constraint was absent. The integra-
tion of block-chain encoding has markedly boosted the efficacy of our multi-objective
NAS variants, aligning them closely with state-of-the-art methods in the field.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

4.7 Discussion 73

(a) For CIFAR-10 dataset (b) For CIFAR-100 dataset

Figure 4.14: CGP-NASV2 evolved CNN architectures selected by the knee and boundary
method.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

74 4. Continuous Representation for Multi-objective NAS

The findings confirm that CGP-NASV2 is effective in identifying CNN architectures
with fewer parameters and MAdds compared to other leading methods. Additionally, our
exploratory study examined the impact of different multi-objective evolutionary search
strategies and operations. By substituting the crossover operator with the DE operator
and employing other MOEAs like MOEA/D and SMS-EMOA, we observed multiple ben-
efits from our CGP-based representation. These include accommodating variable-length
architectures and adapting to various operators and search schemes due to our represen-
tation’s operation in a real domain. Overall, this approach underscores the effectiveness
and adaptability of the CGP-based representation for NAS.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Chapter 5

Progressive Self-Supervised
Multi-objective NAS

Self-supervised learning aims to enable architectures to learn high-level representations
from data using synthetic labels generated without human supervision [53]. Under this
approach, an architecture, such as a CNN, is trained to minimize loss on pretext tasks
(e.g., learning to rotate an image). The trained architecture then serves as a starting point
(pretrained model) for supervised tasks with available labels (the downstream task). The
primary advantage of these models is their ability to perform well across multiple tasks,
making this approach highly attractive for NAS, as the costly search for a model becomes
worthwhile if the model is applicable to numerous downstream tasks.

In this chapter, we will present a novel search strategy, as well as a variant of the per-
formance estimation strategy. Thus focusing on two important parts of NAS. The search
space used will be the one presented in Chapter 4, specifically CGP-NASV2.

Our model targets a self-supervised learning objective based on RotNet [56]. The idea
is to empower our model to discover generic architectures without requiring labeled data,
making them adaptable to other datasets and tasks. These architectures are integrated
into a multi-objective searching algorithm that provides a spectrum of solutions where
complexity and classification error are critical considerations. It is expected that by joining
these two proposals, wewill findmore specialized architectures at each stage of the search,
this thanks to a progressive search, on the other hand we seek to reduce the time thanks
to the self-supervised learning, because a reduction in time is expected when we apply
transfer learning to other tasks or datasets.

[75]

76 5. Progressive Self-Supervised Multi-objective NAS

5.1 Progressive search - Search strategy

As detailed in Chapter 4, CGP-NASV2 employs high-level blocks for solution represen-
tation, with each block representing a segment of the CNN architecture. Figure 5.1 illus-
trates an architecture comprising three blocks. The general idea is to divide the search
process into 𝑁 different stages, corresponding to the number of “Normal” blocks in the
representation used and the established number of generations, as depicted in Figure 5.2.
The search is focused on the current block by applying crossover and mutation operators
solely to this block, as these are the operators that generate modifications in the resulting
descendants, see Fig 5.3.

The other blocks are not considered and are substituted with the ConvBlock function
to simplify the architecture, ensuring that these blocks do not interfere. As we move to
the next stage, the previous blocks are fixed, meaning they can no longer be modified in
the future, and will only connect with the current blocks.

RBRB

 332

 332

 564 364

 332

332

53

Channels Kernels

6432 53

Channels Kernels

12864 53
Channels Kernels

256128

2 0 0 0 0 1 0 0 1 2 0 0 1 0 1 1 0 10 3 1 3 0 2 3 2 1 1 4 4 2 0 0 6 5 0 0 5 6 0 010 0 0

CB

CB Concat

CB

M
a

x
P

o
o

lin
g

31285128

 364 364

364 564 364

3128

3128

RB SepConvRB

SumCB

CB MBConvConcat

RB

M
a

x
P

o
o

lin
g

3128

5128

256 3

 3256

3128

3128

RBRB

CB

CB Sum

CB
G

A
P

F
C

Function ID 1.Input node 2.Input node 1. node value 2. node value

In
p

u
t

Figure 5.1: CGP-NASV2 block-chained representation with the hyperparameters directly
encoded.

The MOEA modified with this new crossover and mutation mechanism was NSGA-II,
as mentioned in Chapter 4 Section 4.3, which yielded the best results. It is important to
note that the modification was only applied to this stage of the algorithm.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

5.2 Self-supervised evaluation - Performance estimation strategy 77

MaxGen/Stages

 Localized
 Search

Dummy
block

Dummy
block

Dummy
blockFixed

Fixed Fixed

MaxGen/Stages

MaxGen/StagesFixed

 Localized
 Search

 Localized
 Search

Figure 5.2: Proposed progressive search scheme.

5.2 Self-supervised evaluation - Performance estima-
tion strategy

The evaluation utilizes a self-supervised approach based on the RotNet [56] model with
the CIFAR-100 dataset. We generated a new dataset by replacing the original CIFAR-100
training set classes with rotation levels, resulting in four distinct classes (0°, 90°, 180°, 270°)
as shown in Figure 5.4 instead of the original 100 classes. This data is then used to classify
rotations, enabling us to train a model on a related task without the need for extensive
labeled data. Once a competitive architecture is identified, it is further trained with labeled
data for image classification. It is important to note that an architecture learned from this
dataset can also be applied to other downstream tasks. Therefore, with this approach,
the complexity when evaluating the architecture is reduced in a certain way, because the
number of parameters in the final layer of the architecture is reduced, since it is related
to the number of classes.

To evaluate the fitness of each solution, all blocks are assembled together, and the re-
sulting architecture is trained using the modified CIFAR-100 dataset, thereby obtaining
the classification error. The complexity of the model is measured by summing all the ad-
dition and multiplication operations within the architecture, resulting in the total number
of MAdds.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

78 5. Progressive Self-Supervised Multi-objective NAS

Dummy blockCurrent searchFixed block

First
parent

Second
Parent

Crossover+

Offspring

Mutation

Figure 5.3: Example of how the mating stage is carried out, the block where the current
search is performed, changes after each stage defined by a number 𝑁 of generations.

5.3 Experimental framework

The proposed experimental framework first assesses the performance of the best-evolved
architectures in terms of accuracy. After that, a multiple-criteria decision analysis is ap-
plied to thosemodels that achieved a good trade-off performance in terms of both accuracy
and complexity (measured in MAdds). The experimental settings and benchmark datasets
are defined next.

Table 5.1: Experimental Settings.

Parameter Value
CGP rows and columns 10 × 4
Mutation probability 𝑃𝑚 = 0.3
Crossover probability 𝑃𝑐 = 0.9

Population 16
Generations 30

CNN train epochs 36

The search was performed on the modified CIFAR-100 dataset. For self-supervised
learning, only the training partition of the modified CIFAR-100 was used at this stage:
80% for training and 20% for validation of the evaluated architectures during the evolu-

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

5.3 Experimental framework 79

(a) 0° rotation (b) 90° rotation (c) 180° rotation (d) 270° rotation

Figure 5.4: Images were rotated by random multiples of 90 degrees (i.e., 0°, 90°, 180°, or
270°).

tionary search. The evolved architectures were then transferred to the CIFAR-100, CIFAR-
10, and SVHN datasets previously defined in the chapter 4 , and CINIC-10 [90] dataset.
The CINIC-10 dataset contains 270,000 color images divided into 10 categories, includ-
ing airplanes, cars, birds, and animals, similar to CIFAR-10. The dataset was created by
combining CIFAR-10 images with additional images sourced from the ImageNet dataset,
providing a more diverse and larger dataset compared to CIFAR-10.

We followed the training mechanisms for the evolved CNN architecture according
to CGP-NASV2: Stochastic Gradient Descent (SGD) as the optimizer together with the
cosine annealing learning rate schedule. Our initial learning rate was configured at 0.025,
while the momentum was set to 0.9, and the weight decay to 0.0005. The batch size was
established at 128, and we conducted a total of 36 training epochs during the evolutionary
search.

For both training and testing data, we implemented the following preprocessing steps:
a 4-pixel mean subtraction padding on each side and random cropping with a 32×32 patch
or its horizontally flipped counterpart. To enhance the training process, we incorporated
an auxiliary head classifier [9, 29], which is concatenated after the second reduction block.
The loss from this auxiliary head classifier was scaled by a constant factor of 0.4 and
added to the loss of the original architecture. This step is applied when we retrain the
architectures with a complete dataset. In the final stages, the selected solutions are trained
for 600 epochs with the application of the cutout preprocessing technique and a batch size
set to 96.

All experiments were conducted on a supercomputing node equipped with 2 Intel

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

80 5. Progressive Self-Supervised Multi-objective NAS

Xeon E5-2650 v4 @ 2.20GHz processors, 6 Nvidia GTX 1080 Ti GPU cards, and 128GB of
RAM. The system operated on the CentOS 7 OS.

5.4 Experimental results

Our empirical assessment first involves a general performance comparison against state-
of-the-art approaches. Subsequently, we analyze the generalization achieved by the self-
supervised approach using the Grad-CAM [91] method.

5.4.1 Comparison with state-of-the-art

Tables 5.2 - 5.5 present a comparison of the results between the state-of-the-art methods
and our proposed approach on the CIFAR-100, CIFAR-10, SVHN, and CINIC-10 datasets.
As detailed in Section 4, the search was conducted on themodified CIFAR-100 dataset. The
total search time was 5.79GPU days on the modified CIFAR-100 dataset. It is important to
note that the search was not performed on the aforementioned datasets; they were only
used for transfer learning.

We conducted ten individual experiments on the modified CIFAR-100 dataset. We re-
port the best solution, average, and standard deviation, and present two types of solutions:
the “Best Solution”, which refers to the best-evolved solution found in 10 executions, and
the “Knee Solution," determined by the Knee and Boundary Selection Method [82], which
identifies the solution closest to the ideal point by balancing the two objectives.

These datasets were selected because they are the most commonly used in the NAS
domain, starting with CIFAR-100 (see Table 4.9). Our proposal demonstrates competitive
performance with state-of-the-art solutions, including both human-designed and single-
objective approaches. Inmulti-objective proposals, the ability to find solutionswith a good
trade-off between the number of parameters and low classification error is highlighted.
The proposed approach shows performance very similar to CGP-NASV2 [29], with the
added advantage of reduced time in terms of GPU-days.When comparedwith othermulti-
objective methods, the EEEA-NET [12] method exhibits better performance in terms of
classification error. However, in terms of the number of parameters and MAdds, our pro-
posal outperforms most other methods presented. Our approach aims to find solutions
with a favorable trade-off between classification error and MAdds. Compared to other

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

5.4 Experimental results 81

Table 5.2: Comparison on CIFAR-100 dataset: Classification error rate, the number of pa-
rameters and MAdds are expressed in millions (1 × 106), GPU-days, and GPU Hardware.

Model Error
rate % Params MAdds GPU-Days GPU hardware

Human Design
DenseNet (𝑘 = 12) [84] 24.42 1.0 - -

ResNet (𝑑𝑒𝑝𝑡ℎ = 101) [72] 25.16 1.7 - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 1202) [72] 27.82 10.2 - -

VGG [85] 28.05 20.04 - -
Single Objective Approaches

CGP-CNN(ConvSet) [14] 26.7 2.04 - 13 Nvidia 1080Ti
CGP-CNN(ResSet) [14] 25.1 3.43 - 10.9 Nvidia 1080Ti

Large-Scale Evolution [86] 23.0 40.4 - 2750 -
AE-CNN [87] 20.85 5.4 - 36 Nvidia 1080 Ti

Genetic-CNN [16] 29.03 - - 17 -
(Torabi et al., 2022) [59] 26.03 2.56 - - NVIDIA Tesla V100-SXM2

Multi-Objective Approaches
NSGANetV1 [10] 25.17 0.2 1290 27 Nvidia 2080 Ti
MOGIG-Net [65] 24.71 0.7 - 14 -
EEEA-Net [12] 15.02 3.6 - 0.52 Nvidia RTX 2080 Ti
LF-MOGP [66] 26.37 4.12 - 13 NVIDIA GeForce 3090

CGP-NAS [11] 24.23
(26.41 ± 1.41) 5.43 1581 2.1 Nvidia Titan X

CGP-NASV2 - Best solution 21.18
(22.55 ± 1.24)

4.02
(4.43 ± 1.57)

457.55
(559.60 ± 476.08) 6.25 Nvidia 1080Ti

CGP-NASV2 - Knee solution 26.35
(29.19 ± 2.20)

0.69
(0.46 ± 0.14)

54.09
(46.96 ± 16.50) 6.25 Nvidia 1080Ti

Progressive - Best solution 22.76
(25.63 ± 2.44)

2.89
(2.67 ± 1.34)

629.11
(545.30 ± 264.25) 5.79 Nvidia 1080Ti

Progressive - Knee solutions 26.57
(30.45 ± 2.67)

0.53
(0.43 ± 0.22)

66.39
(51.89 ± 28.89) 5.79 Nvidia 1080Ti

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

82 5. Progressive Self-Supervised Multi-objective NAS

Table 5.3: Comparison on CIFAR-10 dataset: Classification error rate, the number of pa-
rameters and MAdds are expressed in millions (1 × 106), GPU-days and GPU Hardware.

Model Error
rate % Params MAdds GPU-Days GPU hardware

Human Design
DenseNet (𝑘 = 12) [84] 5.24 1.0 - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 101) [72] 6.43 1.7 - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 1202) [72] 7.93 10.2 - -

VGG [85] 6.66 20.04 - -
Single Objective Approaches

CGP-CNN(ConvSet) [14] 5.92 1.50 - 8 Nvidia 1080Ti
CGP-CNN(ResSet) [14] 5.01 3.52 - 14.7 Nvidia 1080Ti

Large-Scale Evolution [86] 5.4 5.4 - 2750 -
AE-CNN [87] 4.3 2.0 - 27 Nvidia 1080 Ti

Genetic-CNN [16] 7.1 - - 17 -
(Torabi et al., 2022) [59] 5.69 1.96 - - NVIDIA Tesla k80

Multi-Objective Approaches
NSGANet [10] 3.85 3.3 1290 8 Nvidia 1080 Ti

NSGANetV1 [10] 4.67 0.2 - 27 Nvidia 2080 Ti
MOCNN [17] 4.49 - - 24 Nvidia 1080 Ti

MOGIG-Net [65] 4.67 0.2 - 14 -
EEEA-Net [12] 2.46 3.6 - 0.52 Nvidia RTX 2080 Ti

EvoApproxNAS [67] 6.80 1.11 458.2 8.8 NVIDIA Tesla V100-SXM2
LF-MOGP [66] 4.13 1.07 - 10 NVIDIA GeForce 3090

CGP-NAS [11] 4.86
(5.42 ± 0.46) 1.40 388.71 1.4 Nvidia Titan X

CGP-NASV2-Best solution 3.70
(4.07± 0.17)

4.04
(5.82 ± 2.70)

636.32
(818.61 ± 372.62) 11.54 Nvidia 1080Ti

CGP-NASV2-Knee solution 4.85
(5.59 ± 0.5)

0.78
(0.71 ± 0.31)

53.99
(79.44 ± 31.96) 11.54 Nvidia 1080Ti

Progressive - Best solution 4.53
(5.30 ± 0.9)

2.11
(2.65 ± 1.34)

684.52
(545.21 ± 264.25) 5.79 Nvidia 1080Ti

Progressive - Knee solutions 5.38
(7.43 ± 1.42)

0.82
(0.41 ± 0.22)

87.30
(51.80± 28.88) 5.79 Nvidia 1080Ti

CGP-based architecture representation methods, such as CGP-CNN [14], Torabi [59], and
LF-MOGP [66], our proposal shows superior performance.

In Table 5.3, a comprehensive comparison of various methods on the CIFAR-10 dataset
is presented. Our method outperforms single-objective proposals designed by humans in
terms of both parameters and classification error. Comparable results to those achieved on
the CIFAR-100 dataset were observed when compared to other multi-objective proposals.
It’s noteworthy that our approach did not conduct direct search within the dataset but
instead transferred discovered architectures using self-supervised learning.

Finally, we evaluated the proposed approach on the SVHN and CINIC-10 datasets, and
the corresponding results are shown in Tables 5.4 and 5.5. When compared with methods
designed by humans, our method achieves very close performance values; however, the
solutions identified by our approach demonstrate a significant reduction in terms of pa-

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

5.4 Experimental results 83

rameters. In comparison to CGP-NASV2, it is evident that, on average, our solutions are
less complex with reduced parameter counts.

On the CINIC-10 dataset, which is more demanding, ourmethod again shows competi-
tive performance comparable to human-designed methods, highlighting our approach for
delivering low-complexity solutions compared to other methods. We have demonstrated
that employing a progressive search combined with self-supervised learning leads to the
discovery of more generalizable architectures.

It is important to emphasize that our search process did not directly use the original
dataset labels. This achievement is significant as our method adapts evolved architectures
through self-supervised learning. This simplifies the task because, unlike conventional
methods that use all 100 labels for the CIFAR-100 dataset, our approach utilizes only 4
labels corresponding to the rotation levels (0°, 90°, 180°, 270°) mentioned earlier.

Table 5.4: Comparison on the SVHN dataset : Classification error rate, number of param-
eters and MAdds are expressed in millions (1 × 106), GPU-days and GPU Hardware.

Model Error
rate % Params MAdds GPU-Days GPU hardware

Human Design
FractalNet [88] 2.01 38.6 - -

Wide ResNet [89] 1.64 2.7 - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 101) [72] 2.01 1.7 - -
DenseNet (𝑘 = 24) [84] 1.72 15.3 - -

Single Objective Approaches
(Bakhshi et al., 2020) [15] 4.43 19 - 6

Multi-Objective Approaches
EvoApproxNAS [67] 3.09 0.90 247.3 8.8 NVIDIA Tesla V100-SXM2

CGP-NASV2 - Best solution 2.70
(2.87± 0.15)

2.21
(4.26 ± 1.88)

399.52
(697.71 ± 210.51) 16.25 Nvidia 1080Ti

CGP-NASV2 - Knee solution 2.88
(3.05 ± 0.18)

0.49
(0.51 ± 0.16)

55.93
(49.31 ± 11.26) 16.25 Nvidia 1080Ti

Progressive - Best Solution 2.95
(3.32± 0.43)

2.87
(2.65 ± 1.34)

629.02
(545.21 ± 264.25) 5.79 Nvidia 1080Ti

Progressive - Knee Solution 2.82
(3.64± 0.49)

0.51
(0.41 ± 0.22)

66.29
(51.80 ± 28.88) 5.79 Nvidia 1080Ti

5.4.2 Visual analysis of the evolved architectures

In this section, we conduct a visual analysis of the architecture discovered by our pro-
posed method using Grad-CAM [91]. Figure 5.5 presents the architecture trained with
the self-supervised approach. Different layers of the network are examined to observe
the activated regions within images. Our initial hypothesis suggests that employing the

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

84 5. Progressive Self-Supervised Multi-objective NAS

Table 5.5: Comparison on the CINIC-10 dataset: Classification error rate, number of pa-
rameters and MAdds are expressed in millions (1 × 106), GPU-days and GPU Hardware.

Model Error
rate % Params MAdds GPU-Days GPU hardware

Human Design
VGG-16 [92] 12.23 14.7 - -
ResNet-18 [92] 9.73 11.2 - -
MobileNet [92] 18.00 3.2 - -

DenseNet-121 [92] 8.74 7.0 - -
GoogLeNet [92] 8.83 6.2 - -

Multi-Objective Approaches

Progressive - Best solution 12.16
(13.74 ± 1.4)

3.07
(2.65 ± 1.34)

584.71
(545.21 ± 264.25) 5.79 Nvidia 1080Ti

Progressive - Knee solutions 14.33
(17.00 ± 1.92)

0.51
(0.41 ± 0.22)

66.29
(51.80± 28.88) 5.79 Nvidia 1080Ti

self-supervised approach leads the CNN architecture to focus on high-level features in
images, such as circular or square shapes, as well as more complex features like heads or
eyes. This specific architecture was selected from those discovered by our method.

The evolved architecture underwent training in two distinct manners: initially in a
self-supervised manner using the modified CIFAR-100 dataset, and subsequently in a su-
pervised manner using the CINIC-10 dataset.

Two random images from the CINIC-10 dataset are depicted in Figures 5.6 and 5.7. The
first row displays activation maps from the self-supervised training, while the second row
shows those from the supervised training. Each image corresponds to activation maps
extracted at different depths of the architecture, indicated by the respective layer.

Upon observation, the architecture discovered through the self-supervised approach
initially highlights more generalized details and sharper edges within the input images.
Conversely, when transferred and trained in a supervised manner, the activation maps
from early layers tend to emphasize regions relevant to the classification task (see Fig. 5.6).
For instance, as illustrated in Fig. 5.7, the area corresponding to the bird’s head promi-
nently influences the final decision. In contrast, in the self-supervised approach, the shape
and distinct edges of the bird’s wings appear more significant.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

5.5 Discussion 85

5.5 Discussion

In this Chapter based on the results obtained, we found that the architectures discovered
by our method prioritize operations conducive to enhanced generalization, as evidenced
by the Grad-CAM analysis. Moreover, our approach demonstrates promising outcomes
alongside a significant reduction in GPU Days. The utilization of self-supervised learn-
ing, particularly through techniques like RotNet which estimate geometric transforma-
tions, enables networks to focus on object shapes, edges, and textures in images. This
approach facilitates learning of crucial image features. Consequently, the generalization
achieved allows for the transfer of discovered architectures to datasets with similar char-
acteristics. In summary, this approach establishes a novel method for neural architecture
search, leveraging self-supervised learning as a performance estimation strategy to de-
velop models tailored to user-defined specifications in data-limited environments.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

86 5. Progressive Self-Supervised Multi-objective NAS

Figure 5.5: Visualization of the evolved architecture, comparing both self-supervised and
supervised approaches using Grad-CAM.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

5.5 Discussion 87

(a) Input image (b) Layer 7 (c) Layer 17 (d) Layer 23

Figure 5.6: Activation maps extracted using Grad-CAM. Top: architecture learned with
self-supervised learning. Bottom: architecture learned with supervised learning.

(a) Input Image (b) Layer 7 (c) Layer 17 (d) Layer 23

Figure 5.7: Activation maps extracted using Grad-CAM

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

88 5. Progressive Self-Supervised Multi-objective NAS

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Chapter 6

Incremental Training Dataset
Expansion

In this chapter, we introduce a new, simple yet effective strategy to estimate the perfor-
mance of the search for neural architectures. This new strategy derives from the lower
fidelity estimates explained in Section 2.1.3. Under this technique, when evaluating an
architecture, a reduced amount of training data is used to estimate the model’s accuracy.
Our proposed strategy aims to use a linear increase in the size of the training set used to
train each architecture, i.e., the training dataset increases as the number of generations
increases. The search space and search strategy are based on the methods explained in
Chapter 4, specifically CGP-NASV2. With this, it is expected to drastically reduce the to-
tal time of the search, since the smaller the amount of data used, the training of CNNs
architectures in early generations will be performed quickly, also since the initial solu-
tions are random, it should not focus the expenditure of resources on these solutions as
they are likely to be discarded in the following generations.

6.1 The proposed performance estimation strategy

In this new approach, we focus on methods to speed up the performance estimation of ar-
chitectures within the domain of lower-fidelity estimates. Typically, in this class of meth-
ods, a subset of the training set is employed to estimate the performance of each architec-
ture during its evaluation. In various studies, 80% of the training subset is utilized, with
the remaining 20% used for model validation, thus avoiding testing on the test partition
of datasets [9, 11]. Such a choice obviously influences both the quality of the solutions

[89]

90 6. Incremental Training Dataset Expansion

explored by the considered NAS approach and the GPU time required to find them.
Now, we instead consider changing the amount of data used for training dynamically

during the NAS optimization process. More particularly, we propose to start from a small
subset and progressively increase the size of the training set used to evaluate the evolved
architectures. Specifically, depending on the total number of generations 𝐺 available to
evolve the corresponding solutions, the size of the training partition is gradually increased
at each generation𝑔, starting with𝑋% and ending at𝑌% of the dataset size. More formally,
we consider a simple linear increase, where at each current generation 𝑔 ∈ {1, . . . ,𝐺} of
the considered evolutionary search process, the size 𝑆 of the training dataset is set to:

𝑆 = (𝑌 − 𝑋) · 𝑔 − 1
𝐺 − 1 + 𝑋 (6.1.1)

Therefore, the idea is to incrementally grow the dataset size with each generation, aim-
ing to create an environment conducive to convergence in the final generations, where the
dataset size is larger. In other words, we gradually use more training data as the optimiza-
tion process advances, resulting in increased confidence in the estimated performance of
the discovered architectures. As a consequence of this method, our objective is to reduce
the total algorithm time, as there is a clear correlation between the size of the data used
to evaluate the architecture and the required training time.

Although this idea of incrementally expanding the training dataset in the NAS set-
ting is independent of the (evolutionary) optimization algorithm and framework, we use
the CGP-NASV2 representation as the baseline. using CGP-NASV2 will allow us to ob-
serve the search dynamics inferred by our proposed approach from a multi-objective per-
spective. In our case, the considered objectives are to reduce classification error and the
complexity of the architecture measured in MAdds.

In the remainder of this approach, we consider coupling the proposed approach with
the well-established NSGA-II [35] as a search strategy. We use the standard SBX crossover
and polynomial mutation, considered the default evolutionary operations in NSGA-II.
Thanks to the flexibility offered by CGP-NASV2, the underlying representation employ-
ing real domain encoding is easily adaptable to be integrated into such standard MOEAs.
Although other MOEAs could have been considered, we do not explore such alternatives
since our goal is to focus on the impact of the proposed incremental training dataset ex-
pansion approach.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

6.2 Experimental framework 91

6.2 Experimental framework

In this section, we will define the experimental setup, detailing the configurations and
parameters used. Then, we will present and analyze the results, followed by a comparison
with other state-of-the-art methods, highlighting our approach’s strengths and potential
improvements.

Five runs were executed, and the following parameters (see Table 6.1) were used as
recommended in previous work from the literature[29]. CGP-NASV2 was used as the
baseline, and the same multiple-criteria decision analysis was applied to select the so-
lution with the best trade-off performance in terms of both accuracy and complexity in
MAdds. The CIFAR-100 dataset was used to evaluate our model. A total of 30 generations
were used, with the percentage of the training set increasing from 20% to 80%.

Table 6.1: Parameters configuration.

Parameter Value
CGP rows and columns 10 × 4

Generations (G) 30
Population 24

Mutation probability (𝑃𝑚) 0.3
CNN training epochs 36

Crossover probability (𝑃𝑐) 0.9
Initial dataset size (X) 20%
Final dataset size (Y) 80%

Notice that we keep the same training procedures as specified by CGP-NASV2 for
the evolved CNN architecture. Stochastic Gradient Descent (SGD) served as the optimizer
with a cosine-annealing learning rate schedule. Our initial learning rate was set to 0.025,
with a momentum of 0.9 and weight decay of 0.0005. The batch size was fixed at 128, and
a total of 36 training epochs were conducted during the evolutionary search.

For both the training and testing datasets, we applied specific preprocessing steps: a
4-pixel mean subtraction padding on each side and random cropping using a 32×32 patch
or its horizontally flipped counterpart. To augment the training process, an auxiliary head
classifier [9, 29] was integrated and concatenated after the second reduction block. The
loss from this auxiliary head classifier varied, scaling by a constant factor of 0.4, and was

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

92 6. Incremental Training Dataset Expansion

added to the loss of the original architecture. This step was implemented during the re-
training of architectures using a complete dataset. In the final stages, the selected solutions
underwent training for 600 epochs, employing the cutout preprocessing technique, with
a batch size set to 96.

Our experiments were carried out on a supercomputing node featuring 2 Intel Xeon
Gold 6126 processors, 2 Nvidia Tesla V100 (32 GiB) GPU cards, and 192GB of RAM. The
baseline CGP-NASV2 results were obtained using eight Nvidia 1080Ti (16 GiB) GPU cards.
Initially, this suggests a difference in processing time. However, our approach aims to use
less information to achieve faster training. This implies that even if the same GPUs were
used, the training time for our proposal should be shorter.

6.3 Results

To evaluate the performance of the proposed method, we consider both single-objective
and multi-objective perspectives, as detailed below.

6.3.1 Overall performance of the best and knee Solutions

Initially, we analyze the relative performance of our approach compared to existing meth-
ods, including single-objective NAS approaches that focus solely on the objective 𝑓1 ini-
tially stated in Equation (4.1.2) as the primary optimization problem. This allows us to
appreciate the capability of our method to guide the search toward competitive archi-
tectures relative to other state-of-the-art single-objective approaches from the literature.
However, since our approach is inherently multi-objective, the final output is a complete
Pareto set approximation. Therefore, we usemultiple-criteria decision-making tools to ex-
tract a single solution for comparison. For this purpose, we present two types of results:
(i) the solution with the best classification error (ignoring the second MAdds objective)
and (ii) the Knee solution, which is closest to the reference point in the Pareto approxima-
tion. As mentioned in CGP-NASV2, the Knee solution represents a reasonable trade-off
between accuracy and complexity in the computed CNN architectures.

Table 6.2 provides an overall summary of the results, showing the performance of
our proposal against the baseline CGP-NASV2 and other state-of-the-art approaches. The
different approaches are divided into three categories: architectures designed by humans,

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

6.3 Results 93

Table 6.2: Comparisons on CIFAR-100 dataset: Classification error rate, the number of
parameters, and MAdds are expressed in millions (1×106), GPU-days, and GPU hardware.

Model Error
rate % Params MAdds GPU-Days GPU hardware

Human Design
VGG [85] 28.05 20.04 - - -

DenseNet (𝑘 = 12) [84] 24.42 1.0 - - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 1202) [72] 27.82 10.2 - - -
ResNet (𝑑𝑒𝑝𝑡ℎ = 101) [72] 25.16 1.7 - - -

Single Objective Approaches
AE-CNN [87] 20.85 5.4 - 36 Nvidia 1080 Ti

Genetic-CNN [16] 29.03 - - 17 -
(Torabi et al., 2022) [59] 26.03 2.56 - - NVIDIA Tesla V100-SXM2
CGP-CNN(ConvSet) [14] 26.7 2.04 - 13 Nvidia 1080Ti
CGP-CNN(ResSet) [14] 25.1 3.43 - 10.9 Nvidia 1080Ti

Large-Scale Evolution [86] 23.0 40.4 - 2750 -
Multi-Objective Approaches

NSGANetV1 [10] 25.17 0.2 1290 27 Nvidia 2080 Ti
EEEA-Net [12] 15.02 3.6 - 0.52 Nvidia RTX 2080 Ti
LF-MOGP [66] 26.37 4.12 - 13 NVIDIA GeForce 3090
MOGIG-Net [65] 24.71 0.7 - 14 -

CGP-NASV2 [29] - Knee solution 23.57
(28.53 ± 3.13)

0.49
(0.47 ± 0.09)

66.66
(51.07 ± 17.81) 12.15 Nvidia 1080Ti

CGP-NASV2 [29] - Best solution 20.63
(22.23 ± 1.46)

5.99
(6.75± 1.80)

827.14
(876.27± 344.87) 12.15 Nvidia 1080Ti

Performance estimation - Knee solutions 28.23
(30.18 ± 1.82)

0.79
(0.24 ± 0.24)

81.42
(48.83± 19.03) 2.62 Nvidia V100

Performance estimation - Best solution 22.84
(23.94 ± 1.02)

5.90
(5.09 ± 1.15)

716.00
(716.70 ± 196.10) 2.62 Nvidia V100

architectures designed by single-objectivemethods, and those designed bymulti-objective
methods. When comparing our approach to CGP-NASV2, with the primary objective of
reducing the overall search time, we observe a reduction to 2.62 GPU days from the base-
line’s 12.15 GPU days, demonstrating that our approach is 4.6 times faster. Additionally,
when comparing the results in terms of classification error and MAdds objectives, the
differences in classification error are minimal. However, concerning complexity, our pro-
posal achieves better outcomes on average. This becomes even clearer when we analyze
the results from a multi-objective perspective, as detailed in the following paragraphs.

6.3.2 Overall Performance from a multi-objective perspective

For illustrative purposes, we present in Figure 6.1 the Pareto front approximations ob-
tained by our method and the existing CGP-NASV2 baseline. These fronts are derived by
aggregating the independent executions of both approaches and subsequently applying a
filtering procedure to retain only non-dominated solutions. As shown in the figure, both
approaches achieve seemingly similar approximation sets.

To deepen our analysis, we examine the impact of gradually increasing the percent-

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

94 6. Incremental Training Dataset Expansion

Figure 6.1: Illustration of the (aggregated) Pareto fronts obtained respectively by the base-
line CGP-NASV2 (Blue) and our proposal (Orange).

age of data used in each generation on the multi-objective optimization process. We cal-
culate the hypervolume (HV) [93] achieved by each method for each given generation
of the NSGA-II algorithm. Specifically, we compute the Hypervolume Relative Deviation
(HVRD) defined as ℎ𝑣𝑟𝑑 (𝐴) = (ℎ𝑣 (𝑅) − ℎ𝑣 (𝐴)) /ℎ𝑣 (𝑅), where 𝐴 represents the consid-
ered approximation set at a given generation and 𝑅 is the best (reference) Pareto front
approximation, derived by aggregating results across all executions. The reference point
for the hypervolume is the Nadir point, obtained from the worst values for each objec-
tive. The lower the HVRD value, the better the approximation set and, consequently, the
underlying approach.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

6.3 Results 95

Figure 6.2: Box plot of the hypervolume relative deviation; in blue is the baseline CGP-
NASV2, and in orange is our proposal across generations.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

96 6. Incremental Training Dataset Expansion

As reported in Figure 6.2, the HVRD of the CGP-NASV2 baseline is shown in blue,
while our approach is represented in orange. It is important to interpret the difference in
relative HVRD values from Figure 6.2 with caution, as the two approaches use different
amounts of training data in the early generations but the same size of test data. There-
fore, it might be unfair to conclude that one approach is dominating the other without
retraining both approaches using the exact same amount of training data.

With this consideration, we notice a notable disparity in the distribution of solutions
between our proposal and the baseline, primarily due to the limited amount of data used
to train solutions in the early generations. However, using less data reduces the evaluation
time for these solutions. Asmore data is utilized, solutions progressively converge towards
the baseline. In the final generation, both approaches operate on an equal amount of data,
resulting in minimal differences between solutions.

Thus, we conclude that this novel performance estimation strategy can effectively
guide solutions throughout the evolutionary process. Even with limited training data, the
proposed approach retains the ability to differentiate between good and bad solutions, evi-
denced by the continuous improvement of solutions over generations, eventually catching
up to the more costly baseline approach.

Besides, such an observation applies not only to the Pareto set approximation but also
to specific solutions extracted at each generation. In fact, Figure 6.3 illustrates the quality
of the Best and Knee solutions obtained across generations for the two competing multi-
objective NAS approaches. We observe that, in the case of our proposal, the classification
error in early generations is higher compared to the baseline. This is again due to the
smaller amount of data used to train these solutions. Nevertheless, we can still see clear
changes between generations, unlike the baseline CGP-NASV2, where a faster conver-
gence is evident and the solutions do not vary much; by generation 30, both algorithms
show convergence. In the case of the Knee solutions, our proposal finds a better solu-
tion with respect to the classification error. This can, for instance, be seen in the bottom
sub-figure of Figure 6.3.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

6.4 Discussion 97

Figure 6.3: Selected solutions in each generation using the proposed estimation perfor-
mance strategy. Both objectives are shown, as well as two types of solutions: knee so-
lutions and best solutions. Top sub-Figure: our proposed method versus CGP-NASV2 in
Knee solutions. Bottom sub-Figure: our proposed method versus CGP-NASV2 in Best so-
lutions.

6.4 Discussion

In this Chapter, we proposed a straightforward strategy to estimate the performance of
CNN architectures within the context of Neural Architecture Search (NAS). The proposed
approach involves gradually increasing the size of the training dataset, thereby reducing
the computational time required to train and evaluate the solutions obtained through the
evolutionary process. Using the CGP-NASV2 representation as a baseline, we conducted
a comprehensive comparison and observed that this new evaluation approach indeed ac-
celerates the search process. By utilizing less data in the initial stages, the search is ex-
pedited. While this introduces some bias, which affects the quality of the solutions, the
multi-objective NSGA-II algorithm is still capable of distinguishing between these solu-
tions and searching for a relatively high-quality approximation set.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

98 6. Incremental Training Dataset Expansion

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Chapter 7

Conclusions and Future work

In this thesis, we tackled the key components of Neural Architecture Search through
multi-objective optimization, focusing on the development of novel approaches that ad-
dress both performance and computational efficiency. The primary contribution of this
work lies in the introduction of new representations for NAS, the design of an effective
search space, and the implementation of a novel search and evaluation strategies. The
following are the conclusions of this doctoral thesis work:

• Novel search space for multi-objective NAS:
We introduced two new representations, CGP-NASV1 and CGP-NASV2, designed
to offer greater flexibility and scalability in the NAS process. These representations
were specifically tailored to navigate complex search spaces in a continuous domain,
enabling the exploration of a diverse set of architectures, it was also tested with dif-
ferent MOEAs and it was observed that our representation is easily adaptable to dif-
ferent search algorithms. From the results obtained, in the three benchmarks tested
we can observe that in general our proposal has a quite favorable performance, if
we focus on the methodologies that use CGP as search space, our proposal is bet-
ter, also, through the analysis of the Hypervolume we see a clear convergence of the
solutions through the generations, finally we can conclude that indeed this new rep-
resentation that includes hyperparameters, is adaptable and flexible which allows a
better performance in NAS.

[99]

100 7. Conclusions and Future work

• Progressive Self-Supervised multi-objective NAS

The proposed approach integrated two powerful strategies to enhance the efficiency
and generalization capabilities of neural architecture search. First, leveraging self-
supervised learning enabled the generation of more generalized architectures with
the ability to transfer knowledge across different tasks. This significantly improved
the versatility of the architectures, allowing them to perform well in a variety of
scenarios and domains.

Additionally, the introduction of a progressive NAS mechanism focused the search
power and evolutionary operations on specific, promising regions of the architec-
ture. This targeted exploration ensured a more efficient and focused search process,
leading to the discovery of architectures that not only performed better but also met
multiple performance criteria. Given the results obtained, we conclude that the ar-
chitectures discovered by this method prioritize operations conducive to enhanced
generalization, as evidenced by the Grad-CAM analysis. Also our method shows a
significant reduction in GPU days, reaffirming also that the self-supervised learning
strategy can reduce the overall search time.

• A new performance estimation strategy:
Recognizing the high computational cost associated with NAS, we explored a novel
performance estimation strategies aimed at reducing evaluation time. The strategy
focused on incremental training data usage during the search process, progressively
increasing the amount of data used for evaluation as the search progressed. This
method significantly reduced computational time while maintaining the accuracy
of the search, addressing a major bottleneck in NAS. We found that, by using this
strategy, the MOEA can discern between solutions even if they have a high level
of bias, which comes from the less information used to train the solutions in the
early generations of the search. However, by linearly increasing the percentage of
data, the search can refine the solutions, thus providing a set of highly competitive
solutions, this is confirmedwhenwe compared the total GPU-days with the baseline
obtaining a speed up of 4.6.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

7.1 Future Work 101

7.1 Future Work

For future research, several research lines can be pursued to extend and improve the cur-
rent work:

• Comparison of evolutionary multi-objective algorithms:We plan to compare
different evolutionary multi-objective algorithms and explore hybridization with
other methods, such as early stopping mechanisms, to further accelerate the search
process. This aims to reduce computational timewhilemaintaining the effectiveness
of the search.

• Dynamic adjustment of hyper-parameters: Investigating dynamic adjustment
of critical hyper-parameters in a more efficient and effective way. It is hoped that by
performing the search these hyper-parameters can lead to better and less complex
solutions., addressing one of the significant challenges in NAS design.

• Incorporation of additional objectives: Another direction is to enhance the
search process by incorporating additional objectives, such as latency andmodel pa-
rameters. This will help better capture the trade-offs between various performance
metrics, resulting in more balanced and comprehensive neural architectures.

• Integration of local search algorithms: We aim to integrate local search algo-
rithms that can learn the weights of architectures, refining and improving the solu-
tions generated by our NAS approach. This hybrid strategy could further optimize
the architectures for various tasks.

• Application of CGP-NASV2 to real-world challenges: Finally, applying the
CGP-NASV2 representation to real-world challenges, particularly in environments
where architecture complexity is critical (e.g., mobile or embedded devices), is a pri-
ority. We aim to tailor our approach for resource-constrained scenarios, optimizing
architectures for efficiency without sacrificing performance, thus broadening the
applicability of our research.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

102 7. Conclusions and Future work

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

Bibliography

[1] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A Survey,” Tech.
Rep., 2019. [Online]. Available: http://jmlr.org/papers/v20/18-598.html.

[2] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning
based natural language processing [review article],” IEEE Computational Intelligence
Magazine, vol. 13, no. 3, pp. 55–75, 2018.

[3] M. Kolbk, Z.-H. Tan, J. Jensen, M. Kolbk, Z.-H. Tan, and J. Jensen, “Speech
intelligibility potential of general and specialized deep neural network based speech
enhancement systems,” IEEE/ACM Trans. Audio, Speech and Lang. Proc., vol. 25,
no. 1, p. 153–167, jan 2017. [Online]. Available: https://doi.org/10.1109/TASLP.2016.
2628641

[4] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning
techniques for autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp. 362–
386, 2020.

[5] A. D. Martinez, J. Del Ser, E. Villar-Rodriguez, E. Osaba, J. Poyatos, S. Tabik,
D. Molina, and F. Herrera, “Lights and shadows in Evolutionary Deep Learning: Tax-
onomy, critical methodological analysis, cases of study, learned lessons, recommen-
dations and challenges,” Information Fusion, vol. 67, pp. 161–194, mar 2021.

[6] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving Deep Neural
Networks,” in Artificial Intelligence in the Age of Neural Networks and Brain
Computing. Elsevier, 2019, pp. 293–312. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/B9780128154809000153

[103]

http://jmlr.org/papers/v20/18-598.html.
https://doi.org/10.1109/TASLP.2016.2628641
https://doi.org/10.1109/TASLP.2016.2628641
https://linkinghub.elsevier.com/retrieve/pii/B9780128154809000153
https://linkinghub.elsevier.com/retrieve/pii/B9780128154809000153

104 BIBLIOGRAPHY

[7] Z. Lu, I. Whalen, Y. Dhebar, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti,
“Multi-Objective Evolutionary Design of Deep Convolutional Neural Networks for
Image Classification,” IEEE Transactions on Evolutionary Computation, pp. 1–1, sep
2020. [Online]. Available: https://ieeexplore.ieee.org/document/9201169/

[8] A. Eiben and J. Smith, Introduction to Evolutionary Computing, ser. Natural
Computing Series. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. [Online].
Available: http://link.springer.com/10.1007/978-3-662-44874-8

[9] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W. Banzhaf,
“NSGA-Net,” in Proceedings of the Genetic and Evolutionary Computation Conference.
New York, NY, USA: ACM, jul 2019, pp. 419–427. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3321707.3321729

[10] Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti, “NSGANetV2:
Evolutionary Multi-objective Surrogate-Assisted Neural Architecture Search,”
in LNCS, vol. 12346 LNCS, aug 2020, pp. 35–51. [Online]. Available: https:
//doi.org/10.1007/978-3-030-58452-8

[11] C. Garcia-Garcia, H. J. Escalante, and A. Morales-Reyes, “CGP-NAS,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion, vol. 1.
New York, NY, USA: ACM, jul 2022, pp. 643–646. [Online]. Available: https:
//doi.org/10.1145/3520304https://dl.acm.org/doi/10.1145/3520304.3528963

[12] C. Termritthikun, Y. Jamtsho, J. Ieamsaard, P. Muneesawang, and I. Lee,
“EEEA-Net: An Early Exit Evolutionary Neural Architecture Search,” Engineering
Applications of Artificial Intelligence, vol. 104, p. 104397, 2021. [Online]. Available:
https://doi.org/10.1016/j.engappai.2021.104397

[13] J. Liang, E. Meyerson, B. Hodjat, D. Fink, K. Mutch, and R. Miikkulainen,
“Evolutionary neural AutoML for deep learning,” in Proceedings of the Genetic and
Evolutionary Computation Conference. New York, NY, USA: ACM, jul 2019, pp.
401–409. [Online]. Available: https://dl.acm.org/doi/10.1145/3321707.3321721

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

https://ieeexplore.ieee.org/document/9201169/
http://link.springer.com/10.1007/978-3-662-44874-8
https://dl.acm.org/doi/10.1145/3321707.3321729
https://dl.acm.org/doi/10.1145/3321707.3321729
https://doi.org/10.1007/978-3-030-58452-8
https://doi.org/10.1007/978-3-030-58452-8
https://doi.org/10.1145/3520304 https://dl.acm.org/doi/10.1145/3520304.3528963
https://doi.org/10.1145/3520304 https://dl.acm.org/doi/10.1145/3520304.3528963
https://doi.org/10.1016/j.engappai.2021.104397
https://dl.acm.org/doi/10.1145/3321707.3321721

BIBLIOGRAPHY 105

[14] M. Suganuma, M. Kobayashi, S. Shirakawa, and T. Nagao, “Evolution of deep con-
volutional neural networks using cartesian genetic programming,” pp. 141–163, mar
2020.

[15] A. Bakhshi, S. Chalup, and N. Noman, Fast Evolution of CNN Architecture for
Image Classification. Singapore: Springer Singapore, 2020, pp. 209–229. [Online].
Available: https://doi.org/10.1007/978-981-15-3685-4

[16] L. Xie and A. Yuille, “Genetic CNN,” in 2017 IEEE International Conference on
Computer Vision (ICCV). IEEE, oct 2017, pp. 1388–1397. [Online]. Available:
http://ieeexplore.ieee.org/document/8237416/

[17] B. Wang, B. Xue, and M. Zhang, “Particle Swarm Optimization for Evolving
Deep Convolutional Neural Networks for Image Classification: Single- and Multi-
Objective Approaches,” pp. 155–184, 2020.

[18] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[19] Y. Ho and D. L. Pepyne, “Simple explanation of the no free lunch theorem of
optimization,” Kibernetika i Sistemnyj Analiz, vol. 38, no. 2, pp. 164–173, 2002.
[Online]. Available: https://link.springer.com/article/10.1023/A:1016355715164

[20] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A Survey
on Evolutionary Neural Architecture Search,” aug 2020. [Online]. Available:
https://arxiv.org/abs/1611.01578http://arxiv.org/abs/2008.10937

[21] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A Comprehensive Survey of Neural Architecture Search: Challenges and
Solutions,” arXiv, vol. 37, no. 111, p. 33, jun 2020. [Online]. Available: http:
//arxiv.org/abs/2006.02903

[22] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 8697–8710.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

https://doi.org/10.1007/978-981-15-3685-4
http://ieeexplore.ieee.org/document/8237416/
https://link.springer.com/article/10.1023/A:1016355715164
https://arxiv.org/abs/1611.01578 http://arxiv.org/abs/2008.10937
http://arxiv.org/abs/2006.02903
http://arxiv.org/abs/2006.02903

106 BIBLIOGRAPHY

[23] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through Augmenting
Topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99–127, jun 2002. [Online].
Available: http://mitpress.mit.edu/e-mailhttps://www.mitpressjournals.org/doi/abs/
10.1162/106365602320169811

[24] D. Fogel, “What is evolutionary computation?” IEEE Spectrum, vol. 37, no. 2, pp.
26–32, feb 2000. [Online]. Available: https://ieeexplore.ieee.org/document/819926/

[25] H. Iba, Evolutionary Computation and Meta-heuristics. Singapore: Springer Singa-
pore, 2020, pp. 3–33. [Online]. Available: https://doi.org/10.1007/978-981-15-3685-4_
1

[26] J. R. Koza, Genetic programming: on the programming of computers by means of nat-
ural selection. Cambridge, MA, USA: MIT Press, 1992.

[27] J. Miller, P. Thomson, T. Fogarty, and I. Ntroduction, “Designing electronic circuits
using evolutionary algorithms. arithmetic circuits: A case study,” Genetic Algorithms
and Evolution Strategies in Engineering and Computer Science, 10 1999.

[28] J. F. Miller, “Cartesian Genetic Programming,” in Natural Computing Series,
2011, vol. 43, pp. 17–34. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-17310

[29] C. Garcia-Garcia, A. Morales-Reyes, and H. J. Escalante, “Continuous cartesian
genetic programming based representation for multi-objective neural architecture
search,” Applied Soft Computing, vol. 147, p. 110788, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1568494623008062

[30] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, 2001.

[31] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems, ser. Genetic and Evolutionary
Computation Series. Boston, MA: Springer US, 2007. [Online]. Available:
http://link.springer.com/10.1007/978-0-387-36797-2

[32] K. Deb, Evolutionary and Swarm Intelligence Algorithms, ser. Studies in
Computational Intelligence, J. C. Bansal, P. K. Singh, and N. R. Pal,

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

http://mitpress.mit.edu/e-mail https://www.mitpressjournals.org/doi/abs/10.1162/106365602320169811
http://mitpress.mit.edu/e-mail https://www.mitpressjournals.org/doi/abs/10.1162/106365602320169811
https://ieeexplore.ieee.org/document/819926/
https://doi.org/10.1007/978-981-15-3685-4_1
https://doi.org/10.1007/978-981-15-3685-4_1
http://link.springer.com/10.1007/978-3-642-17310
http://link.springer.com/10.1007/978-3-642-17310
https://www.sciencedirect.com/science/article/pii/S1568494623008062
http://link.springer.com/10.1007/978-0-387-36797-2

BIBLIOGRAPHY 107

Eds. Cham: Springer International Publishing, 2019, vol. 779. [On-
line]. Available: http://www.springer.com/series/7092http://link.springer.com/10.
1007/978-3-319-91341-4{_}6http://link.springer.com/10.1007/978-3-319-91341-4

[33] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Push and
pull search for solving constrained multi-objective optimization problems,” Swarm
and Evolutionary Computation, vol. 44, pp. 665–679, feb 2019.

[34] M. T. M. Emmerich and A. H. Deutz, “A tutorial on multiobjective optimization: fun-
damentals and evolutionarymethods,”Natural Computing, vol. 17, no. 3, pp. 585–609,
sep 2018. [Online]. Available: http://link.springer.com/10.1007/s11047-018-9685-y

[35] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II,” Tech. Rep. 2, 2002.

[36] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization,” 1993.

[37] J. Knowles and D. Corne, “The pareto archived evolution strategy: a new baseline
algorithm for pareto multiobjective optimisation,” in Proceedings of the 1999 Congress
on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 1, 1999, pp. 98–105 Vol.
1.

[38] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach,” IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, vol. 3, no. 4, pp. 257–271, 1999.

[39] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto evo-
lutionary algorithm,” Tech. Rep., 2001.

[40] N. Srinivas and K. Deb, “Multiobjective optimization using nondominated sorting in
genetic algorithms,” Evolutionary Computation, vol. 2, pp. 221–248, 1994.

[41] K. Deb, “Multi-objective Optimization,” in Search Methodologies. Boston, MA:
Springer US, 2014, pp. 403–449. [Online]. Available: http://link.springer.com/10.
1007/978-1-4614-6940-7{_}15

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

http://www.springer.com/series/7092 http://link.springer.com/10.1007/978-3-319-91341-4{_}6 http://link.springer.com/10.1007/978-3-319-91341-4
http://www.springer.com/series/7092 http://link.springer.com/10.1007/978-3-319-91341-4{_}6 http://link.springer.com/10.1007/978-3-319-91341-4
http://link.springer.com/10.1007/s11047-018-9685-y
http://link.springer.com/10.1007/978-1-4614-6940-7{_}15
http://link.springer.com/10.1007/978-1-4614-6940-7{_}15

108 BIBLIOGRAPHY

[42] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on
decomposition,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp.
712–731, dec 2007.

[43] Hui Li and Qingfu Zhang, “Multiobjective Optimization ProblemsWith Complicated
Pareto Sets, MOEA/D and NSGA-II,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 284–302, apr 2009. [Online]. Available: http://ieeexplore.ieee.org/
document/4633340/

[44] N. Beume, B. Naujoks, and M. Emmerich, “Sms-emoa: Multiobjective selection based
on dominated hypervolume,” European Journal of Operational Research, vol. 181,
no. 3, pp. 1653–1669, 2007.

[45] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms
— a comparative case study,” in Parallel Problem Solving from Nature — PPSN V, A. E.
Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 292–301.

[46] J. G. Falcón-Cardona and C. A. Coello, “Indicator-basedMulti-objective Evolutionary
Algorithms: A Comprehensive Survey,” jun 2020.

[47] N. Noman, A Shallow Introduction to Deep Neural Networks. Singa-
pore: Springer Singapore, 2020, pp. 35–63. [Online]. Available: https:
//doi.org/10.1007/978-981-15-3685-4_2

[48] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[49] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and
organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[50] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis and Machine Vision.
Boston, MA: Springer US, 1993.

[51] S. Russell and P. Norvig, Artifical Intelligence: A Modern Approach (Third Edition),
3rd ed., 2009.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

http://ieeexplore.ieee.org/document/4633340/
http://ieeexplore.ieee.org/document/4633340/
https://doi.org/10.1007/978-981-15-3685-4_2
https://doi.org/10.1007/978-981-15-3685-4_2
http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 109

[52] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep neural net-
works: A survey,” IEEE Transactions on Pattern Analysis amp; Machine Intelligence,
vol. 43, no. 11, pp. 4037–4058, nov 2021.

[53] J. Gui, T. Chen, J. Zhang, Q. Cao, Z. Sun, H. Luo, and D. Tao, “A survey on self-
supervised learning: Algorithms, applications, and future trends,” 2023.

[54] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros, “Context encoders:
Feature learning by inpainting,” in 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016, pp. 2536–2544.

[55] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solv-
ing jigsaw puzzles,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp. 69–84.

[56] Z. Feng, C. Xu, and D. Tao, “Self-supervised representation learning by rotation fea-
ture decoupling,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019, pp. 10 356–10 366.

[57] D. B. D’ambrosio and K. O. Stanley,ANovel Generative Encoding for Exploiting Neural
Network Sensor and Output Geometry, 2007.

[58] S. Risi, J. Lehman, and K. O. Stanley, Evolving the Placement and Density of Neurons
in the HyperNEAT Substrate, 2010.

[59] A. Torabi, A. Sharifi, and M. Teshnehlab, “Using Cartesian Genetic Programming
Approach with New Crossover Technique to Design Convolutional Neural
Networks,” Neural Processing Letters, 2022. [Online]. Available: https://doi.org/10.
1007/s11063-022-11093-0

[60] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely Automated CNN
Architecture Design Based on Blocks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 31, no. 4, pp. 1242–1254, apr 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/8742788/

[61] R. H. R. Lima, D. Magalhães, A. Pozo, A. Mendiburu, and R. Santana, “A
grammar-based GP approach applied to the design of deep neural networks,”

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

https://doi.org/10.1007/s11063-022-11093-0
https://doi.org/10.1007/s11063-022-11093-0
https://ieeexplore.ieee.org/document/8742788/

110 BIBLIOGRAPHY

Genetic Programming and Evolvable Machines, vol. 23, no. 3, pp. 427–452, sep 2022.
[Online]. Available: https://doi.org/10.1007/s10710-022-09432-0https://link.springer.
com/10.1007/s10710-022-09432-0

[62] Y.-H. Kim, B. Reddy, and S. Yun, “NEMO: Neuro-Evolution with Multiobjective Op-
timization of Deep Neural Network for Speed and Accuracy Chanwon Seo,” Tech.
Rep., 2017.

[63] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, “Boa: The bayesian optimization algo-
rithm.” Morgan Kaufmann, 1999, pp. 525–532.

[64] S. Li, Y. Sun, G. G. Yen, and M. Zhang, “Automatic Design of Convolutional
Neural Network Architectures Under Resource Constraints,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–15, 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9609007/

[65] Y. Xue, P. Jiang, F. Neri, and J. Liang, “AMulti-objective evolutionary approach based
on graph-in-graph for neural architecture search of convolutional neural networks,”
International Journal of Neural Systems, vol. 31, no. 9, sep 2021.

[66] Q. Liu, X. Wang, Y. Wang, and X. Song, “Evolutionary convolutional neural net-
work for image classification based on multi-objective genetic programming with
leader–follower mechanism,” Complex and Intelligent Systems, 2022.

[67] M. Pinos, V. Mrazek, and L. Sekanina, “Evolutionary approximation and neural
architecture search,” Genetic Programming and Evolvable Machines, jun 2022.
[Online]. Available: https://doi.org/10.1007/s10710-022-09441-zhttps://link.springer.
com/10.1007/s10710-022-09441-z

[68] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming approach to
designing convolutional neural network architectures,” in Proceedings of the Genetic
and Evolutionary Computation Conference. New York, NY, USA: ACM, jul 2017, pp.
497–504. [Online]. Available: https://dl.acm.org/doi/10.1145/3071178.3071229

[69] W. Irwin-Harris, Y. Sun, B. Xue, and M. Zhang, “A Graph-Based Encoding for
Evolutionary Convolutional Neural Network Architecture Design,” in 2019 IEEE

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

https://doi.org/10.1007/s10710-022-09432-0 https://link.springer.com/10.1007/s10710-022-09432-0
https://doi.org/10.1007/s10710-022-09432-0 https://link.springer.com/10.1007/s10710-022-09432-0
https://ieeexplore.ieee.org/document/9609007/
https://doi.org/10.1007/s10710-022-09441-z https://link.springer.com/10.1007/s10710-022-09441-z
https://doi.org/10.1007/s10710-022-09441-z https://link.springer.com/10.1007/s10710-022-09441-z
https://dl.acm.org/doi/10.1145/3071178.3071229

BIBLIOGRAPHY 111

Congress on Evolutionary Computation (CEC). IEEE, jun 2019, pp. 546–553. [Online].
Available: https://ieeexplore.ieee.org/document/8790093/

[70] Z. Lu, G. Sreekumar, E. Goodman, W. Banzhaf, K. Deb, and V. N. Boddeti,
“Neural Architecture Transfer,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–1, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/
9328602/

[71] J. Clegg, J. A. Walker, and J. F. Miller, “A new crossover technique for Cartesian
genetic programming,” in Proceedings of the 9th annual conference on Genetic and
evolutionary computation - GECCO ’07. New York, New York, USA: ACM Press,
2007, p. 1580. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1276958.
1277276

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[73] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models and faster training,” 2021.
[Online]. Available: https://arxiv.org/abs/2104.00298

[74] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks,”
2019. [Online]. Available: https://arxiv.org/abs/1709.01507

[75] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” 2019. [Online]. Available: https:
//arxiv.org/abs/1801.04381

[76] A. G. Howard,M. Zhu, B. Chen, D. Kalenichenko,W.Wang, T.Weyand,M. Andreetto,
and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile
vision applications,” 2017. [Online]. Available: https://arxiv.org/abs/1704.04861

[77] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” 2017.
[Online]. Available: https://arxiv.org/abs/1610.02357

[78] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in
International Conference on Learning Representations (ICLR), 2016.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

https://ieeexplore.ieee.org/document/8790093/
https://ieeexplore.ieee.org/document/9328602/
https://ieeexplore.ieee.org/document/9328602/
http://portal.acm.org/citation.cfm?doid=1276958.1277276
http://portal.acm.org/citation.cfm?doid=1276958.1277276
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1610.02357

112 BIBLIOGRAPHY

[79] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech. Rep.,
2009.

[80] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading digits in
natural images with unsupervised feature learning,” 2011.

[81] C. Garcia-Garcia, M.-G. Martínez-Peñaloza, and A. Morales-Reyes, “cMOGA/D: a
novel cellular GA based on decomposition to tackle constrained multiobjective
problems.” in Proceedings of the 2020 Genetic and Evolutionary Computation
Conference Companion. New York, NY, USA: ACM, jul 2020, pp. 1721–1729.
[Online]. Available: https://doi.org/10.1145/3377929.3398137

[82] F. E. Fernandes Jr. and G. G. Yen, “Pruning Deep Convolutional Neural
Networks Architectures with Evolution Strategy,” Information Sciences, vol. 552,
pp. 29–47, apr 2021. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0020025520310951

[83] W. Haynes, Bonferroni Correction. New York, NY: Springer New York, 2013, pp.
154–154. [Online]. Available: https://doi.org/10.1007/978-1-4419-9863-7_1213

[84] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[85] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[86] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and
A. Kurakin, “Large-Scale Evolution of Image Classifiers,” mar 2017. [Online].
Available: http://arxiv.org/abs/1703.01041

[87] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang, “Surrogate-
Assisted Evolutionary Deep Learning Using an End-to-End Random Forest-Based
Performance Predictor,” IEEE Transactions on Evolutionary Computation, vol. 24,
no. 2, pp. 350–364, apr 2020. [Online]. Available: https://ieeexplore.ieee.org/
document/8744404/

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica

https://doi.org/10.1145/3377929.3398137
https://linkinghub.elsevier.com/retrieve/pii/S0020025520310951
https://linkinghub.elsevier.com/retrieve/pii/S0020025520310951
https://doi.org/10.1007/978-1-4419-9863-7_1213
http://arxiv.org/abs/1703.01041
https://ieeexplore.ieee.org/document/8744404/
https://ieeexplore.ieee.org/document/8744404/

BIBLIOGRAPHY 113

[88] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet: Ultra-deep neural
networks without residuals,” CoRR, vol. abs/1605.07648, 2016. [Online]. Available:
http://arxiv.org/abs/1605.07648

[89] S. Zagoruyko and N. Komodakis, “Wide residual networks,” CoRR, vol.
abs/1605.07146, 2016. [Online]. Available: http://arxiv.org/abs/1605.07146

[90] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “Cinic-10 is not imagenet
or cifar-10,” 2018. [Online]. Available: https://arxiv.org/abs/1810.03505

[91] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-
cam: Visual explanations from deep networks via gradient-based localization,” in
2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 618–626.

[92] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “CINIC-10 is
not imagenet or CIFAR-10,” CoRR, vol. abs/1810.03505, 2018. [Online]. Available:
http://arxiv.org/abs/1810.03505

[93] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. Fonseca, “Performance assess-
ment of multiobjective optimizers: An analysis and review,” Evolutionary Computa-
tion, IEEE Transactions on, vol. 7, pp. 117 – 132, 05 2003.

Multi-objective Evolutionary Algorithms for the optimization of Deep Neural Network Architectures

http://arxiv.org/abs/1605.07648
http://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1810.03505
http://arxiv.org/abs/1810.03505

	Abstract
	Resumen
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Motivation
	Justification
	Research questions
	Hypothesis
	General objective
	Specific objectives

	Contributions
	Thesis summary

	Background
	Neural architecture search
	Search space
	Search strategy
	Performance estimation strategy

	Evolutionary computation
	Genetic programming
	Cartesian genetic programming
	Multiobjective optimization
	Special solutions
	Multiobjective optimization evolutionary algorithms

	Deep neural networks
	Neural networks
	Feedforward networks
	Convolutional neural networks
	Supervised classification
	Self-Supervised learning

	Discussion

	State of the art
	Single-Objective NAS
	Multi-Objective NAS
	Discussion

	Continuous Representation for Multi-objective NAS
	Multi-objective NAS problem
	Solutions representation for CNN - Search space
	CGP Funtion set
	CGP-NASV1 representation
	CGP-NASV2 representation

	Evolutionary algorithm - Search strategy
	Fitness function - Performance estimation strategy
	Experimental framework
	Results analysis
	Effectiveness of searching for the hyperparameters
	Best trade-off solution via multiple-criteria decision analysis
	Performance comparison between different MOEAs
	Comparison versus the state of the art
	Evolved architectures

	Discussion

	Progressive Self-Supervised Multi-objective NAS
	Progressive search - Search strategy
	Self-supervised evaluation - Performance estimation strategy
	Experimental framework
	Experimental results
	Comparison with state-of-the-art
	Visual analysis of the evolved architectures

	Discussion

	Incremental Training Dataset Expansion
	The proposed performance estimation strategy
	Experimental framework
	Results
	Overall performance of the best and knee Solutions
	Overall Performance from a multi-objective perspective

	Discussion

	Conclusions and Future work
	Future Work

	Bibliography

