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Resumen

La agricultura juega un papel importante en el crecimiento económico. En este
contexto; México alcanzo en 2020, 23,495 MDD en exportaciones agroalimenta-
rias; superando así las conseguidas por remesas (673 MDD), venta de productos
petroleros (14,047 MDD) y turismo extranjero (16,474 MDD) [6]. Lo alcanzando
en 2020 representan el valor más alto reportado en 28 años (desde 1993).

Es por ello que el rendimiento de los cultivos tiene un gran impacto en la
economía del país. Sin embargo, uno de los problemas más graves a los que
se enfrenta la agricultura son las plagas de insectos, pues afectan los procesos
metabólicos de los cultivos al degradar su rendimiento y calidad; lo que puede
obstaculizar aún más el desarrollo de la agricultura [60].

De entre la amplia variedad de plagas se encuentra la mosca mediterráneo
(ceratitis capitata), una de las más relevantes debido al impacto económico que
ha causado en los cultivos frutales de todo el mundo. En ausencia de control, la
mosca del mediterráneo puede llegar a dañar hasta el 100% de un cultivo [14].
El daño principal ocurre cuando las hembras ovispan en los frutos y; una vez
que eclosionan, las larvas inician su alimentación, facilitando así el desarrollo de
microorganismos que contribuyen a un mayor colapso del fruto [51].

Para esta y otras plagas, el monitoreo con trampas es un componente común
y crítico en los programas de detección, delimitación, supresión y erradicación
de plagas en todo el mundo. En el caso de las moscas del mediterráneo, los
dispositivos de captura están basados en estímulos específicos olfativos y/o visuales
para atraer a los adultos de la especie. La mayoría de los atrayentes utilizados por
las trampas son de tipo alimenticio, las cuales liberan amoniaco y simulan fuentes
de proteínas [51].

Sin embargo, el costo de mantenimiento de una red de trampas es bastante
alto si se considera los recursos monetarios, humanos y materiales que se requieren
para mantener un red de trampas. El mantenimiento de la red no solo se limita
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a la diseminación de trampas, sino también la frecuencia con la que se controla y
recolecta su información [14]. Por lo que este proceso puede llegar a ser complejo
en el mantenimiento y recolección de datos. Aunado a lo anterior, se debe tener
en cuenta el tiempo necesario para analizar las especies capturadas, ya que la
información sobre las especies y densidades de plagas se adquiere principalmente
a través de la inspección visual (forma, color, textura, entre otros) [40, 60].

Las trampas de monitoreo automático (smart traps) ayudan a resolver los
problemas anteriormente planteados y son eficientes; ya que pueden identificar y
contar a la plaga a medida que ingresan a la trampa [60], lo cual permite un flujo
de información más rápido.

El presente trabajo muestra la implementación de un trampa inteligente difer-
ente y novedosa a los enfoques reportados al día de hoy en la academia e industria.
La propuesta está basada en la utilización de la fusión de sensores para la identi-
ficación de la plaga.



Abstract

Agriculture plays an important role in economic growth. in this context; Mexico
reached in 2020, 23,495 million dollars in agri-food exports; thus exceeding those
achieved by remittances (673 million dollars), sale of oil products (14,047 mil-
lion dollars) and foreign tourism (16,474 million dollars) [6]. reaching it in 2020
represent the highest value reported in 28 years (since 1993).

That is why crop yields have a great impact on the country’s economy. how-
ever, one of the most serious problems facing agriculture are insect pests, since
they affect the metabolic processes of crops by degrading their yield and quality;
which may further hinder the development of agriculture [60].

Among the wide variety of pests is the Mediterranean fly (ceratitis capitata),
one of the most relevant due to the economic impact it has caused on fruit crops
around the world. In the absence of control, the Mediterranean fly can damage
up to 100% of a crop [14]. the main damage occurs when the females ovistop
on the fruits and; once they hatch, the larvae begin to feed, thus facilitating the
development of microorganisms that contribute to further fruit collapse [51].

For this and other pests, trap monitoring is a common and critical component
in pest detection, delimitation, suppression and eradication programs around the
world. In the case of Medflies, the capture devices are based on specific olfactory
and/or visual stimuli to attract the adults of the species. most of the attractants
used by the traps are food-type, which release ammonia and simulate protein
sources [51].

However, the cost of maintaining a trap network is quite high considering the
monetary, human, and material resources required to maintain a trap network.
Network maintenance is not only limited to the spread of cheats, but also the fre-
quency with which your information is monitored and collected [14]. Therefore,
this process can become complex in the maintenance and collection of data. In
addition to the above, the time necessary to analyze the captured species must
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be taken into account, since the information on the species and pest densities
is acquired mainly through visual inspection (shape, color, texture, among oth-
ers) [40, 60].

Automatic monitoring traps (smart traps) help to solve the previously men-
tioned problems and are efficient; since they can identify and count the pest as
they enter the trap [60], which allows for a faster flow of information.

This work shows the implementation of a different and novel smart trap from
the approaches reported to date in academia and industry. the proposal is based
on the use of sensor fusion to identify the pest.
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Chapter 1

Introduction

1.1 Background and Importance of Monitoring
Mediterranean Fruit Flies

Agriculture plays an important role in economic growth. Mexico reached 23,495
million dollars in agri-food exports in 2020; thus surpassing those achieved by
remittances (673 million dollars), sale of oil products (14,047 million dollars) and
foreign tourism (16,474 million dollars) [6]. This represents the highest value
reported in 28 years (since 1993) as you can see from Figure 1.1.

Figure 1.1: Evolution of Mexican agri-food exports, January-July 1993-2020
(MDD).

From Figure 1.1, it follows that improving crop yields is of great importance.
However, insect pests affect the metabolic processes of crops by degrading the
performance and quality of these, which can further hinder the development of
the agriculture.

1



2 1.1. Background and Importance of Monitoring Mediterranean Fruit Flies

In general, pests can be managed using pesticides, the effectiveness of which
largely depends on timely and accurate detection of infestations. However, pesti-
cides not only impact the natural enemies of pests but also beneficial pollinators.
Additionally, they can contaminate water sources and pose significant risks to
human health [60].

Among the wide variety of pests is the Mediterranean fly (ceratitis capitata);
which is one of the main ones due to the economic impact it can cause in the
fruit crops from around the world. In the absence of control, the Mediterranean
fly could damage up to 100% of a crop [14]. The main damage occurs when
females ovist in the fruits and; Once they hatch, the larvae begin their feeding,
thus facilitating the development of microorganisms that contribute to greater
collapse of the fruit or crop [51].

For the special case of Mexico, the condition it maintains is free of the Mediter-
ranean fly; this thanks to the Moscamed México Program that has been applied
since 1978. This program has the The objective is to eradicate and contain the
Mediterranean fly using different measures such as:

• detection by trapping of adult flies with sexual pheromones and food attrac-
tants;

• detection by fruit sampling;

• autocidal control (release of sterile flies);

• control biological (experimental, through the augmentative release of para-
sitoids);

• mechanical control and cultural;

• chemical control by spraying insecticide baits;

• legal control, and

• relations public and dissemination [49].

Among the benefits of the program is access to fruits and vegetables that
Mexico It exports to countries such as the United States and Japan, among others,
which have the most attractive markets for Mexican exporters of dozens of fruit
and vegetable products. This benefit has also been quantified from 1978 to 2008
in [49], resulting in:



Chapter 1. Introduction 3

• Direct benefits, represented by the volume and net value of production and
exports of fruits and vegetables that amounted to 40,555 and 25,866 mil-
lion dollars during the analysis period; while the indirect ones reached
19,593 million dollars.

• In the event that the Mexican government had not implemented a control
program; he could have saved the amount invested; however, there would
have been losses potential for 4,237 million dollars in the production of
fruits and vegetables susceptible to being attacked by the Mediterranean fly,
given the very possible infestation of the pest and the consequent amounts
of insecticide that would have had to be applied.

• In addition to the above, 25,866 million dollars are added for the value
net of exports that had ceased to take place during the period.

• 17,527 million dollars of indirect impacts must also be considered (in
health of the rural population, creation and maintenance of employment in
the fruit and vegetable activity, and environmental damage) for not having
an integrated strategy to control the plague.

In contrast to these data, in 2015 the Brazilian Ministry of Agriculture re-
ported that the fly of the Mediterranean had caused annual losses of 120 million
dollars to the producers; between production losses and control costs. Stopping
exporting to the markets from Japan, the United States and Chile [40]. Although
this program and many others for different pest species have demonstrated good
results, the different activities developed for the comprehensive management of
the pest present challenges. This is why an innovative and sustainable pest man-
agement strategy is required. [29].

1.2 Precision Agriculture and Integrated Pest
Management

Precision agriculture and Integrated Pest Management (IPM) represent two piv-
otal aspects of modern agricultural practices aimed at enhancing sustainability
and productivity. By integrating these strategies, farmers can achieve more pre-
cise control over agricultural inputs, optimize crop health, and reduce environ-
mental impacts.



4 1.2. Precision Agriculture and Integrated Pest Management

Precision agriculture utilizes advanced technologies to make farming more ac-
curate and controlled. GPS technology, drones, satellite imagery, and sensor
technology are among the tools that enable precise monitoring and management
of crop health and soil conditions. This approach allows farmers to apply wa-
ter, fertilizers, and pesticides more efficiently, reducing waste and enhancing crop
yields.

The cornerstone of precision agriculture lies in its data-driven methodology.
Farmers use detailed data collected from their fields to analyze everything from soil
moisture levels to nutrient status and pest infestations. This information helps in
making informed decisions about when and where to irrigate, plant, fertilize, and
apply pest control measures. The result is a highly efficient farming operation that
maximizes output while minimizing unnecessary expenditure and environmental
impact.

The Integrated Pest Management (IPM) is a holistic approach to sustainable
pest control that combines biological, cultural, physical, and chemical tools in a
way that minimizes economic, health, and environmental risks. IPM focuses on
long-term prevention of pests or their damage through a combination of techniques
such as habitat manipulation, biological control, use of resistant varieties, and
appropriate chemical interventions.

The strength of IPM lies in its emphasis on understanding the ecological rela-
tionships within agricultural systems. By monitoring pest populations and their
life cycles, farmers can implement targeted interventions that are effective yet less
disruptive to the ecosystem. For instance, the introduction of natural predators
to control a pest population, crop rotation to disrupt pest breeding cycles, and
selective pesticides that do not harm beneficial insects are all IPM strategies that
contribute to sustainable crop production.

The synergy between precision agriculture and IPM lead to revolutionary
changes in agricultural practices. Precision agriculture provides the tools to accu-
rately assess and manage field variability in factors such as soil fertility, moisture
levels, and pest distribution. This precision, in turn, enhances the efficacy of IPM
strategies by ensuring that interventions are applied optimally to achieve the best
outcomes.

While the integration of precision agriculture and IPM offers numerous ben-
efits, it also presents challenges. The high cost of technology and the need for
specialized knowledge to interpret data and implement strategies can be barriers
to adoption, particularly for smallholder farmers. However, ongoing advance-
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ments in technology and increased support from government and industry can
help overcome these hurdles.

As we move forward, the convergence of precision agriculture and IPM is set
to redefine farming practices. This integration not only aims to increase efficiency
and yields but also prioritizes environmental stewardship and the health of the
agricultural ecosystem. By continuing to develop and refine these approaches, the
future of agriculture looks both sustainable and prosperous, ensuring food security
and ecological balance for generations to come.

1.3 Objectives and scope of the thesis literature
review

The escalating challenges in agricultural pest management demand innovative so-
lutions to ensure crop health and productivity. Traditional methods often fall
short in providing timely and precise pest detection, leading to significant eco-
nomic losses and environmental damage due to over-application of pesticides. This
thesis explores the integration of advanced technologies to develop a more accu-
rate, efficient, and environmentally friendly approach to pest detection in crop
management.

1.3.1 Objectives

The primary objective of this thesis is to design and evaluate a crop pest detection
system that leverages the capabilities of sensor fusion and image processing. The
specific goals are outlined as follows:

• Develop a comprehensive understanding of the current state of pest detec-
tion technologies:

– Review existing methods and technologies in pest detection, focusing
on their advantages, limitations, and applicability for de Mediterranean
fruit fly.

– Identify gaps in current technologies that could be bridged by intera-
tion of new sensor technologies and image processing algorithms.

• Design an integrated pest detection system using sensor fusion:
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– Integrate different sensors to collect diverse data types that can provide
a multifaceted view of pest presence.

– Utilize sensor fusion techniques to combine data from different sources,
enhancing the robustness and accuracy of the pest detection process.

• Implement image processing algorithms to identify and classify crop pests.

• Validate the system in a controlled environment settings:

– Conduct experiments in controlled settings to fine-tune the system and
ensure its functionality for field conditions.

– Test the system to evaluate its practicality, accuracy, and efficiency for
trap monitoring.

1.3.2 Scope

The scope of this thesis encompasses several key areas:

• Technological Integration. The study focuses on integrating multiple sensing
technologies and image processing techniques to create a unified system for
early and accurate pest detection for Meditteranean fruit flies.

• Algorithm Development. Central to the thesis is the development of ro-
bust algorithms that can process and analyze data from diverse sensors and
images to detect and classify Mediterranean fruit between other species cap-
tured in traps.

• Field Trials. The system will be tested in a first stage in controlled settings
to ensure its applicability and effectiveness across various scenarios.

• Impact Analysis. The research will include a detailed analysis of the sys-
tem’s impact on reducing trap visitation frequency, improving pest detection
accuracy, and enhancing overall human labor.

• Limitations. The study will acknowledge the limitations of the proposed
system, including technical constraints, environmental factors, and potential
challenges in real-world implementation.
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This research aims to make significant contributions by developing a smart
trap system that incorporates software, hardware, and mechanical components
for effective field operation. The project also focuses on devising a methodology
for a radar system that employs a novel approach to detect the Mediterranean
fruit fly. Additionally, it includes the integration of air quality sensors to monitor
the presence of lures, thereby reducing the need for frequent physical inspections
of traps and lowering associated maintenance costs. Ultimately, the construction
of this system is designed to provide robust infrastructure, reduce operational
costs, and enhance the productivity of Ecosur in monitoring the Mediterranean
fruit fly.

1.4 Objectives and scope of the thesis

1.4.1 Research Questions

1. What kind of smart trap design can achieve efficient communication for
continuous monitoring of the Mediterranean fly while maintaining a cost-
performance ratio suitable for use in networks of traps?

2. Which sensors provide the most relevant information to detect the Mediter-
ranean fly?

1.4.2 Hypothesis

A smart trap based on the combination of millimeter-wave radar sensors (mmWave
radar data) and computer vision could offer the necessary qualities to monitor
pests remotely. Combined with an automatic recognition and classification sys-
tem, efficient identification of pests in real-time would be possible.

1.4.3 Thesis

This work aims to design and develop a smart trap based on the combination of
camera and radar sensors. The system development includes software, hardware,
and mechanical design. The developed system will be tested with the help of
Centro de Empaque de Moscas del Mediterráneo of SENASICA and Ecosur to
validate its correct operation and functionality.
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1.4.4 Contribution

This research aims to contribute by developing a smart trap with the necessary
software, hardware, and mechanical components for a functional system that op-
erates in the field. It also seeks to develop a methodology for combining radar
and camera sensors and a new automatic classification system for identifying the
Mediterranean fly using a novel sensor-based approach. Ultimately, the construc-
tion of this system aims to provide infrastructure, reduce costs, and increase the
productivity of Ecosur for monitoring the Mediterranean fly.

1.4.5 General Objective

• Design and implement a digital smart trap system based on the combination
of camera, radar, and other sensors for automatic real-time and remote
monitoring of the Mediterranean fly.

1.4.6 Specific Objectives

• Design the software, hardware, and mechanical components necessary to
implement a smart trap system.

• Propose a combination scheme of camera, radar, and other sensors to de-
velop an automatic classification scheme for the Mediterranean fly.

• Validate the system’s operation and functionality in conjunction with Eco-
sur.

1.5 Thesis outline

The outline of this thesis begins with an introduction that establishes the back-
ground and importance of monitoring the Mediterranean fruit fly, followed by a
discussion on the concepts of precision agriculture and integrated pest manage-
ment. This sets the stage for understanding the technological and methodological
innovations introduced in the subsequent sections.

The literature review provides a comprehensive analysis of conventional traps
and monitoring techniques, followed by a detailed exploration of smart traps and
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recent technological advancements. This section also delves into the various sen-
sors and detection mechanisms that have been utilized in entomology, with a
particular focus on radar technology.

In the materials and methods section, the design and development of the smart
delta trap are elaborated. This includes the main body and structure, ventilation
and accessibility, top panel and sensor integration, assembly and electronics hous-
ing, and structural reinforcements. Each component is meticulously described to
illustrate the integrated approach used in developing the trap.

The description of sensors and radar systems used in the smart delta trap
follows, detailing the camera sensor, temperature, humidity, and pressure sensors,
air quality sensors, color sensor, RTC sensor, radar sensor, and WiFi. This section
explains the selection criteria and functionalities of each sensor, providing a clear
understanding of their roles within the system.

The trap configuration and experimental setup section outlines the procedures
followed to test and validate the smart delta trap. This includes the experimental
design, setup, and the conditions under which the tests were conducted.

The development of the smart delta trap is discussed next, with a focus on
design considerations and challenges. This section covers the requirements, com-
ponent determination, sensor integration, and hardware implementation. The
software development for data analysis is also detailed, describing the system and
architecture design for the system on chip (SoC), application architecture, system
architecture design and management, and the structural model of the software
system.

The results and analysis section presents the findings from the radar-based
detection and counting of fruit flies. This includes the materials and methods used,
and the results obtained. The performance of various sensors, such as TVOC and
eCO2 detection, is evaluated in this section, highlighting the efficacy and accuracy
of the sensors used in the smart trap.

A comparison with traditional monitoring methods is provided to contextu-
alize the advancements and improvements offered by the smart delta trap. This
section discusses the advantages and limitations of the developed trap, providing
a balanced view of its performance and potential areas for improvement.

The thesis concludes with a discussion on potential improvements and future
work. This section outlines the possible enhancements that can be made to the
smart delta trap, and the future research directions that could be pursued to
further refine and optimize the system.
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The thesis outlines the development, implementation, and validation of a smart
delta trap for the Mediterranean fruit fly. The comprehensive approach taken
in integrating various sensors and developing robust software for data analysis
demonstrates the potential of advanced technologies in improving pest monitoring
and management practices.



Chapter 2

Literature review

2.1 Conventional traps and monitoring techniques

Several traps and monitoring techniques are commonly employed to detect and
manage infestations of the Mediterranean fruit fly, Ceratitis capitata. The Jackson
trap, specifically designed for this purpose, is highly effective in attracting and
capturing adult Mediterranean fruit flies. Additionally, McPhail traps, typically
made of glass or plastic, utilize a liquid protein bait to attract fruit flies and are
effective for both monitoring and controlling fruit fly populations [54].

Visual inspections and field surveys are also integral in assessing infestation
levels and evaluating the effectiveness of management strategies. To enhance the
efficacy of these traps, chemical lures such as methyl eugenol and cuelure are
used. These substances specifically target fruit fly populations, aiding in their
management[54].

Another significant method within broader control strategies is the Sterile In-
sect Technique (SIT), where sterile flies are released to mate with female flies.
This interaction results in no offspring, contributing to a reduction in the pest
population over time. Collectively, these methods comprise a comprehensive ap-
proach to monitoring and managing the Mediterranean fruit fly. By combining
mechanical trapping with biological control strategies, these methods effectively
assess and mitigate the impact of this pest on agricultural operations [54].

According to Montoya [39], the traps used to monitor and control the Mediter-
ranean fruit fly in Mexico include various types summarized in Table 2.1. These
traps, used with different monitoring techniques and attractants, detect and con-
trol the presence of fruit flies in the field. For example, the Fly/Trap/Day (FTD)

11
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Index is used to estimate the relative abundance of fruit fly populations. Factors
influencing FTD include abiotic conditions (temperature, humidity, rainfall), bi-
otic conditions (host plant type, density, phenology), physiological aspects of the
fly (age, nutritional, and reproductive status), and the quality of traps. Preven-
tive trapping is used in pest-free areas to detect fruit flies early and minimize the
risk of introduction and spread. Delimitation trapping is applied once a pest has
been detected to establish the boundaries of its spread. Monitoring trapping is
used in infested areas to determine the presence and density of fruit fly species
relative to the phenology of host plants, predicting future pest movements [39].

Besides the techniques and traps mentioned above, various attractants are used
in Mexico. For example, Trimedlure (TML) is specific for male Mediterranean
fruit flies, Methyl Eugenol (ME) is used for various Bactrocera species, and Cuelure
(CUE) is effective for Bactrocera and Zeugodacus species. Hydrolyzed proteins are
effective but less selective and used for general monitoring of fruit flies. Synthetic
baits (Biolure), a combination of ammonium acetate (AA), putrescine (Pt), and
trimethylamine (TMA), are used for detecting female Mediterranean fruit flies
[39]. It is important to highlight that Trimedlure is the most effective attractant
for the Mediterranean fruit fly and is a key component of the program MoscaMed
for the majority of traps used in Mexico [39].

Research continues to develop more effective and specific attractants and trap
designs, including the automation of traps for real-time monitoring to reduce labor
costs and improve monitoring efficiency. These methods and tools are critical for
the effective detection and control of Mediterranean fruit flies and other fruit fly
species in Mexico.

Trap Name Type Attractant(s) Usage
Jackson Trap Dry-sticky trap Trimedlure (TML) Specific for capturing

Mediterranean fruit
fly (Ceratitis capitata)

McPhail Trap Wet trap Hydrolyzed protein,
Torula yeast

General for Anas-
trepha species

Multilure Trap Wet trap Hydrolyzed protein,
Torula yeast, Ammo-
nium acetate (AA),
Putrescine (Pt)

General for Anas-
trepha species
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Trap Name Type Attractant(s) Usage
Yellow Panel Trap Dry trap with ad-

hesive
Trimedlure (TML) Specific for Mediter-

ranean fruit fly (Cer-
atitis capitata)

C&C Trap (Cook
& Cunningham)

Dry trap with ad-
hesive

Trimedlure (TML) Specific for Mediter-
ranean fruit fly (Cer-
atitis capitata)

Phase IV Trap Dry trap with
sticky insert

Ammonium acetate
(AA), Putrescine
(Pt), Trimethylamine
(TMA)

Captures a higher
proportion of females,
used for detecting
wild females in areas
with the release of
sterile males

Pherocon Trap Dry trap with ad-
hesive

Ammonium acetate
(AA)

For Rhagoletis species

Champ Trap Dry trap with
sticky insert

Ammonium bicarbon-
ate (BA)

Specific for Bactrocera
oleae

Table 2.1: Comparison of different traps used for monitoring Mediterranean fruit
fly and other species.

2.2 Smart traps and technological advances
Trap monitoring is an essential element in global pest detection, delimitation,
suppression, and eradication programs. For Mediterranean fruit flies, capture
devices utilize olfactory and visual stimuli, effectively leveraging specific chemical
and visual signals to attract adult flies.

Various types of traps are utilized depending on the specific needs. For in-
stance, McPhail-type traps, which use food attractants, are employed to capture
adult fruit flies in non-preventive trapping stages. Conversely, for preventive trap-
ping, Jackson traps and Phase 4 traps are predominantly used. Most attractants
employed in these traps are food-based, releasing ammonia to simulate protein
sources [51].

However, the maintenance costs of these traps are considerably high due to
the monetary, human, and material resources required to sustain a network of
traps. For example, the California Department of Food and Agriculture (CDFA)
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operates networks comprising approximately 63,000 traps, 30,000 of which are
dedicated to detecting Ceratitis capitata (moscamed) [14]. These maintenance
and manual inspection costs not only limit the spread of the traps but also the
frequency with which they can be checked [14]. Consequently, there is a delay
in the flow of information since personnel typically visit the traps only once a
week [11]. Additionally, there is significant time required to analyze the captured
species, as information regarding species and pest densities is primarily acquired
through visual inspection [40]. In this process, workers compare the shape, color,
texture, and other characteristics of pests [60].

Monitoring population evolution within specific time intervals is nearly impos-
sible due to the relatively low sampling rate [11]. To enhance pest and pathogen
control efforts, it is essential to understand the behavior of complex agroecosys-
tems. Modeling an agroecosystem necessitates the analysis of interactive sensing
data with high temporal and spatial resolutions [29]. Without a proper under-
standing of climate-pest interactions, crop producers may experience more harm
than benefit, as the cost of pest damage could exceed the cost of control measures
[29].

Efficient trap monitoring plays a vital role in controlling the medfly across re-
gions. There is a pressing need for more effective monitoring systems for moscamed
[14]. Developing an autonomous early warning system to detect the presence or
resurgence of pests is crucial to reduce the probability of Mediterranean fruit
fly spread and establishment [29]. The advancement of such technologies could
significantly improve the efficiency of pest control programs, ensuring timely and
accurate responses to pest threats. This would involve integrating modern sensing
technologies, data analysis, and automated reporting systems to provide real-time
updates and actionable insights to pest control personnel. Such innovations are
essential for maintaining the delicate balance of agroecosystems and safeguarding
agricultural productivity.

The implementation of advanced monitoring techniques and the development
of autonomous systems for early pest detection are imperative for the sustainable
management of agricultural pests. By enhancing the accuracy and efficiency of
pest monitoring, we can better protect crops, reduce economic losses, and mini-
mize the environmental impact of pest control measures.

Automatic monitoring traps, known as smart traps, are highly efficient as they
can autonomously identify and count pests as they enter the trap [60]. Tradition-
ally, this activity is inefficient due to the manual counting process and the need
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for technical personnel to travel long distances to access scattered traps in remote
areas.

Smart trap devices primarily employ two approaches: (a) capturing images of
the trapped insects and (b) detecting insects entering through a tunnel equipped
with sensors [14]. Image-based traps capture the surface containing the insects and
send these images to a server, where they are processed by recognition software
[14]. For effective pest species and density evaluation using artificial vision, a clear
image of the insect is crucial. However, capturing clear images is challenging due
to the constant movement of the insects [60]. Various implementations of smart
traps for capturing the Mediterranean fruit fly are reported in the literature, and
Table 2.3 compares these types of traps.

Sensor-based traps typically consist of infrared sensors placed along a tunnel
to count the number of times the target insect enters. Unlike imaging systems,
these traps do not identify the insect. Therefore, the attractant must be specific
to the target pest to avoid erroneous counts caused by non-target species [14]. A
comparison of sensor-based traps is shown in Table 2.4.

In the commercial sector, there are three major competitors focusing on fruit
fly trapping. Table 2.5 provides a comparison of these commercial smart traps.

The advantage of smart traps lies in their ability to continuously monitor pest
populations without the need for frequent human intervention. This reduces labor
costs and allows for more timely and accurate pest management decisions. The
automated nature of these traps ensures that data collection is consistent and
reliable, providing valuable insights into pest behavior and population dynamics.

The integration of smart traps into pest management programs can signifi-
cantly enhance the effectiveness of these programs. By providing real-time data
on pest populations, smart traps enable early detection and rapid response to
pest outbreaks. This proactive approach can prevent the spread of pests and re-
duce the reliance on chemical pesticides, promoting more sustainable agricultural
practices.

Moreover, the data collected by smart traps can be integrated into broader
pest management systems, allowing for comprehensive monitoring and analysis.
This can lead to the development of predictive models that help anticipate pest
outbreaks and optimize control strategies. The use of machine learning algorithms
and advanced data analytics can further enhance the accuracy and efficiency of
these systems.

The adoption of smart traps represents a significant advancement in pest man-
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agement technology. By automating the monitoring process and providing real-
time data, smart traps offer a more efficient, accurate, and sustainable solution
for managing pest populations. As technology continues to evolve, it is likely
that smart traps will become an increasingly important tool in the fight against
agricultural pests. The ongoing development and refinement of these technologies
will be crucial in addressing the challenges posed by pest infestations and ensuring
the sustainability of agricultural production.

In the commercial field, competition drives innovation, leading to the contin-
uous improvement of smart trap designs. This competitive environment benefits
the agricultural sector by providing more effective and user-friendly solutions for
pest management. As illustrated in Table 2.5, the advancements in smart trap
technology reflect the industry’s commitment to enhancing pest control measures
and supporting farmers in their efforts to protect crops from harmful pests.

Table 2.2 summarizes the comparison of smart traps for the Mediterranean
fruit fly.

Trap Type Image-Based Sensor-Based Commercial
Competitors

Efficiency High Moderate Varies
Identification Ac-
curacy

High Low Varies

Cost High Moderate Varies
Maintenance Moderate Low Varies
Deployment Complex Simple Varies

Table 2.2: Comparison of Smart Traps for Mediterranean Fruit Fly
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Species Hardware Used Detection Technique Accuracy
Percent-
age

Reference

Bactrocera dor-
salis

2MP camera,
microcontroller
(MSP430F5436A),
SD memory, and
GSM/GPRS
module (Telit
GM862).

Gaussian blur filters
and OTSU algorithm
for counting.

98–100% [29]

Dacus cilia-
tus, Rhagoletis
cerasi, Bactro-
cera oleae

Modified trap
with a camera.

Remote visual inspec-
tion.

88% [51]

- Camera and GSM
modem. No fur-
ther details re-
ported.

Various pre-trained R-
CNN models.

91.5% [24]

Table 2.3: Comparative table of camera-based traps.

Species Hardware Used Detection
Technique

Accuracy
Percent-
age

Reference

Bactrocera dor-
salis

Sensors for measuring
wind speed, infrared
sensor, temperature
and humidity sensors,
microcontroller (TI
MSP430F449), GPS
receiver, and a GSM
module.

Remote monitor-
ing

72-92% [23]
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Species Hardware Used Detection
Technique

Accuracy
Percent-
age

Reference

Bactrocera dor-
salis

GSM and ZigBee mod-
ules. Wireless mon-
itoring is performed
at the nodes, and
the information is re-
ported to a gateway
that eventually trans-
mits the data in a
text message. The
data is received by
a Host Control Plat-
form, where humid-
ity, light, temperature,
and the number of
captured flies are pro-
cessed.

Cloud data pro-
cessing

98–100% [29]

Bactrocera oleae,
Ceratitis capi-
tata, Bactrocera
dorsalis

An infrared sensor
is used to measure
wingbeat frequency.
In another study, the
author suggests using
Fresnel lenses and
stereo recording for
the same purpose.

SVM, convo-
lutional neural
networks, and
other techniques
for signal classifi-
cation.

81-99% [43], [44]

- Raspberry Pi, infrared
sensor, and Wi-Fi con-
nection.

Flies pass
through a tunnel
with a sensor
at the end that
counts the num-
ber of elements
falling to the
bottom.

88-100% [14]
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Species Hardware Used Detection
Technique

Accuracy
Percent-
age

Reference

Table 2.4: Comparative table of sensor-based traps.

Provider Characteristics Services
SnapTrap High-resolution photos com-

bined with sensors and other
trap data. Uses the cellu-
lar network to share infor-
mation and is powered by so-
lar cells.

Optimizes pest manage-
ment, production, and
historical trap images.

RapidAIM Uses attractants and sensor
technology for detection.

Detects the presence of flies,
identifies points with the
highest number of recog-
nized specimens, receives
real-time alerts, shows his-
torical trends, and can reg-
ister fumigation points and
GPS locations.

TRAPVIEW Works in any area covered
by the GPRS or 3G network.
Attracts with pheromones
and takes photos of at-
tracted pests. Trap images
are collected and processed.
The system is powered by
solar cells.

Automated pest marking
and counting, statistical
data collection on pests,
area-wide pest monitoring,
and pest forecasting.

Table 2.5: Comparative table of commercial traps.

2.3 Sensors and detection mechanisms
Several works are reported, and different technologies are applied to monitor and
capture Mediterranean fruit fly. For instance, using an optoelectronic sensor to

https://www.snaptrap.com.au/#temperature
https://rapidaim.io
https://www.trapview.com/en/
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detect wingbeat, Potamitis et al. [43] modified a McPhail trap to monitor its
entrance. The goal was to analyze the generated optoacoustic spectrum. The
authors detected the fly with an accuracy of 91%. With a modification to the same
system, using a bimodal optoelectronic sensor and stereo recording, Potamitis
showed in [44] that it is possible to distinguish between fruit fly species (Ceratitis
capitata and Bactrocera oleae) with an accuracy of 98.99%. Different works have
been reported with camera sensors because image capture is more robust and can
be used for entomologists or image processing systems for decision-making.

For Doitsidis et al. [11], developed a system based on a McPhail trap modified
with a camera to monitor Bactrocera oleae. The system allowed access to the
images remotely, reducing the time spent visiting and collecting data. This system
does not add automatic image recognition; only expert entomologists analyze the
images. In the same way, Shaked et al. [51] created two systems, one to monitor
Ceratitis capitata and the other for Bactrocera oleae, Dacus ciliates, and Rhagoletis
cerasi. Both were based on a real-time surface image sent to a remote server for
image analysis, reaching 88% of accuracy. Kalamatianos et al. [24]; based on a
McPhail-type trap, it was equipped with different instruments such as wind and
temperature sensors, WiFi, GSM modem, among others. With this system, the
authors were able gather data from the field and public a toolkit pre-trained for the
identification of the species Bactrocera Oleae. In this work proposes an automatic
classification of the species using different types of networks convolutional neural
networks (CNN) reaching an accuracy percentage of 91.5%. Jiang et al. [23],
implement a smart trap system based in sensors that operated remotely. The
system used a McPhail type trap integrating a microcontroller (MSP430F449)
which was responsible for processing GPS information, temperature, humidity,
wind speed, and GSM module as interface to connect to a Host Control Platform
(HCP) to receive commands. The capture module is based on a double infrared
sensor placed in line to validate that the fly enters the trap. In addition to the
above, the design of the tunnel through which the flies cross; has the measurements
just enough to let in only Mediterranean flies. On the HCP side, the information
is received and processed to be stored in a SQL table using LabView©. Also using
a trap uses a McPhail trap [29], Liao et al. propose an improved mechanism that
prevents double counting depending on the route that flies follow. In addition to
this, the system implements nodes equipped with ZigBee modules to cover larger
and more difficult to access areas where the GSM network does not cover. The
information from the nodes is transmitted to a gateway; which is responsible for
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sending data to the HCP. Continuing with McPhail traps, Potamitis et al [43]
proposed an array of infrared sensors to measure wing beat. The captured signal
passes through an analog-digital converter (ADC) which delivers a signal in time
and amplitude to which a fast Fourier transform (FFT) is applied to characterize
the spectrum in frequency. With this, it was possible not only to identify the
Mediterranean fly but also different species. Similarly, the same author proposes
in [44], the use of Fresnel lenses. For this case, the light from the infrared LED
passes through the Fresnel lens and is collimated. The insect’s wings beat cast a
shadow on the opposite receiving Fresnel lens. The collimated light is partially
dispersed laterally at 90°and directed to the passive Fresnel lens that records the
reflected light. Finally, a dark cone-shaped plastic fixes the LED and photodiodes
to their correct focal point. Sandrini et al. [50] also propose the use of infrared
sensors to measure wing beat, however the signal amplifier output of the sensor
is connected to the line input of a sound card. This signal was recorded using
Audacity©software and the amplitude of the signals is normalized. An analysis in
time and frequency is used to determine the main components and characterize
the species.

A novel approach for Mediterranean fruit fly detection is reported by Haff [16]
using hyperspectral images. In this work, the authors classified the spots of the
fruit fly in mangoes using a hyperspectral camera. The photos were analyzed using
Gaussian blur radius, ball radius, and minimum particle size techniques. However,
the main problem with this approach is the cost and size of hyperspectral cameras,
so this is not a practical solution for the field. In their most recent work, Diller
et al. [8] created a surveillance system based on a McPhail trap modified with a
camera and Raspberry Pi Zero for trapping and wireless transmission of images to
the cloud. Based on deep learning, the algorithm showed great results, reaching
a precision of 93-95% for three targets of the specie. Similarly, Uzun reported
in [56] the training of deep learning algorithms to detect and count the Ceratitis
capitata in the field. The algorithm was trained with 722 images, and 150 for
validation. The algorithm detected and counted the specie with an accuracy of
99.5%; however, no hardware was embedded in the trap for capturing images.
For the same specie, Hernadez et al. in [19], used a radar system to count the
number of fruit flies in in captured in a trap. The radar system was able to detect
the fruit flies using shadow effect which changes the radar intensity when the
Mediterranean fly is inside the trap.

From the review, it can be summarized that different sensors have been used



22 2.3. Sensors and detection mechanisms

to monitor and detect Mediterranean fly in the field. Table 2.6 summarizes the
technologies and systems. The most used are cameras, microphones, and opto-
electronics sensors. Especially for fruit fly detection, cameras have a particular
interest due to their high accuracy and robustness [51]. However, the research for
new sensors in smart trap systems applied to fruit flies is still in development, and
different problems must be addressed.

Reference Technology Target Pest Accuracy/Notes
[43] Optoelectronic sensor

(wingbeat detection)
Mediterranean
fruit fly

91% accuracy

[44] Bimodal optoelectronic
sensor

Ceratitis capi-
tata, Bactrocera
oleae

98.99% accuracy

[11] Camera-based system Bactrocera oleae Remote image ac-
cess, no automatic
recognition

[51] Real-time surface image Ceratitis capi-
tata, Bactrocera
oleae, Dacus
ciliatus, Rhago-
letis cerasi

88% accuracy

[24] McPhail trap with
various sensors (WiFi,
GSM, etc.)

Bactrocera oleae 91.5% accuracy
(CNN)

[23] Smart trap with multi-
ple sensors (GPS, tem-
perature, etc.)

Mediterranean
fruit fly

Uses double infrared
sensor and micro-
controller

[29] McPhail trap with im-
proved mechanism

Mediterranean
fruit fly

Prevents double
counting, uses
ZigBee modules

[43] Array of infrared sen-
sors (wingbeat measure-
ment)

Mediterranean
fruit fly

FFT applied for
species identifica-
tion

[44] Fresnel lenses with in-
frared LED

Mediterranean
fruit fly

Collimated light and
shadow detection



Chapter 2. Literature review 23

Reference Technology Target Pest Accuracy/Notes
[50] Infrared sensors with

sound card analysis
Various species Signal analysis using

Audacity©
[16] Hyperspectral images Mediterranean

fruit fly
High cost and size
limitations

[8] Camera with Raspberry
Pi Zero

Mediterranean
fruit fly

93-95% precision
with deep learning

[56] Deep learning algorithm
(image-based)

Ceratitis capi-
tata

99.5% accuracy

[19] Radar system (shadow
effect)

Mediterranean
fruit fly

Detects flies inside
the trap

Table 2.6: Summary of technologies and systems for monitoring and capturing
Mediterranean fruit fly

2.4 Radar technology in entomology
The radar operation is relatively simple: a radio wave is transmitted by an an-
tenna, and some waves are scattered by the object of interest (echo). They are
captured back by the same antenna (or another antenna, depending on the radar
type) to be processed [47]. The information about the target can be inferred from
the difference between the signal that is transmitted-received. The information
it provides depends on the design of the radar; however, this can often include
distance, direction, speed, and even the target size [18]. The radar allows the de-
tection of these variables using remote sensing, that is, applying techniques that
acquire measurements from an object using an instrument far from the target [46].
For the radar, the information is present in the intensity, frequency, phase, and
modulation of the radio signal; however, the main problem is their interpretation.
It isn’t easy because it is necessary to determine how the properties of the object
(for example, its temperature) are translated by the characteristics of the receiver
(for example, the wavelength of the object’s light) [13].

In a general classification, there are two types of radars, coherent and non-
coherent [34]. Non-coherent radars are characterized by not preserving the phase
information contained in the return signal; therefore, the detection is carried out
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Letter Designation Frequency Range in GHz (IEEE Standard)
HF 0.003 - 0.03
VHF 0.03 - 0.3
UHF 0.3 - 1.0
L-band 1.0 - 2.0
S-band 2.0 - 4.0
C-band 4.0 - 8.0
X-band 8.0 - 12.5
Ku-band 12.5 - 18.0
K-band 18.0 - 26.5
Ka-band 26.5 - 40.0
V & W or Millimeter Wave (MMW) Normally >34.0

Table 2.7: Radar letter classification.

fundamentally based on the amplitude. Non-coherent receivers are often found in
simple radar systems since they do not require complicated hardware and software.
Coherent radars have a known amplitude and phase for signal processing, such
as pulse compression, Doppler processing, mono-pulse comparison, moving target
indication, synthetic aperture radar imaging, and adaptive processing space-time
[18]. These types of radars are more complex but also allow for obtaining more
information about the target.

According to the operation frequency, radars are denoted with a letter set
because radars were historically developed for military use. The IEEE (Institute
of Electrical and Electronics Engineers) has adopted as a letter set the band. Ta-
ble 2.7 shows the spectrum associated with each letter set. UHF band is used
for very long early warning systems (EWR) for detecting and tracking satellites
or ballistic missiles. The primary applications for L-band and S-band radars are
ground-based and ship-based systems. The C-band is used for military surveil-
lance, missile control, and ground surveillance. The X-band has applications in
missile guidance and airborne imaging. Ka-band is applied to avoid vehicle col-
lisions, police traffic radar, and security monitor detectors. Both radars in V
and W-bands suffer from atmospheric attenuation, so their use is limited to short
range, with primary applications in the automotive industry for parking assistance
or blind spot detection. Radar systems above this band are considered in Tera
Hertz frequency and are an emerging technology [34].

Radar is the most popular technique among remote sensing solutions [46] be-
cause the information is present in the radar signal’s intensity, frequency, phase,
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Sensibility
Sensor Temperature Color Light Sound/Noise
Infrared Yes Yes Yes No
Ultrasonic Yes No No Yes
Radar No No No No

Table 2.8: Comparison of remote sensing technologies.

and modulation [18]. Compared to other remote sensing techniques, such as in-
frared or ultrasound, radar is, most of the time, not sensitive to light, color, sound,
acoustic noise, or temperature, as shown in Table 5.1.

The radar also has been applied to insect study since the 60s, and this ap-
plication is known as radar entomology. Conventional entomological radars are
non-coherent, and the signal amplitude and polarization information received from
the insects are used to detect aerial insects’ density and class [31]. This type of
radar operates at a wavelength of 3.2 cm in the X-band and uses a parabolic
antenna with a beam width of one to two degrees. Coherent radars offer better
measurement accuracy [3]. With this type of radar, both amplitude and phase
information can be used to extract the micro-Doppler frequency induced by the
vibratory components of the target. Coherent radars operating the W band are
the ones that achieve the best performance in measurement precision and also the
smallest measurable size of the insect [13].

Particular challenges that emerge when the radar is applied in entomology are
primarily associated with issues originating from the backscattered signal. These
drawbacks include, among others: intensity decay, absorption (or complete block-
age), scattering (additional reflections), refraction (change of direction caused by
the shift in medium), and drift (caused by lateral movements of the medium). The
measurement context is another variable that produces problems with radars, for
example, when insects settle or crawl on vegetation surfaces. However, this prob-
lem can be solved with visual methods such as image analysis. Despite all these
limitations, radar continues to be one of the most effective tools for observing
insect flight because it works in severe weather conditions and round-the-clock
[13].

In the case of radar entomology, it can be focused at the individual or group
level on aspects such as migration, behavior, target characterization, and surveil-
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lance [13]. For these applications, it is customary to use radars of type scan-
ning, vertical looking (VLR), harmonics, or frequency-modulated continuous wave
(FMCW) [42].

The signals provided by the radars are used to estimate the parameters of an
isolated insect [32]. For example, to calculate the mass of an insect, in [2] the
authors proposed in 1989 to use the radar cross-section of the insect (RCS) since
it was observed that there was a logarithmic relationship between the mass of
the insect and its average RCS [2]. The RCS quantifies the target’s backscatter
and characterizes how much of the transmitted signal was intercepted by the
target; it depends not only on the material’s properties but also on the frequency,
polarization, orientation, geometry, and angle of incidence of the transmitted wave
[26].

Another parameter that can be determined using the radar is the target’s
orientation, which according to Long [31], can be calculated using the polarization
pattern; the power of the received signal reaches its maximum value when the
polarization direction is parallel to the axis of the insect’s body. This principle
has been shown to perform well for vertical-looking type radars (VLR). The wing
beating is another parameter that can be calculated using radars, such as radars
in the W band. The wing beating causes a fluctuation in the amplitude of the
radar signal, producing a periodic modulation and, therefore, it can be used to
detect and characterize the wing beating [57].

Other application of radar is insect tracking, which is carried out using the
harmonic radar technique, which consists of attaching a small transponder to the
insect and excite it with the radar to re-emit a new signal at a different frequency
[5]. This application has been widely used to study the movement of insects in
plantations, such as the study of the displacement of the melon flies, Zeugodacus
cucurbitae, which are major pests and pose invasion risks [37] or Vespa velutina,
which preys on pollinating insects [33]. For honeybee surveillance, Nawaf et al.
[1] used a 5.8 GHz Continuous-Wave radar to monitor free fly activity. Using
machine learning techniques, the authors were able to automated classification of
the different activities such as leaving, entering, and hovering.

For insect migration and early detection, the vertical-looking radar (VLR) is
used. For example, Chapman et al. [4], the authors used a VLR for monitoring
migrant insects populations. Rotating the polarization of the radar and nutation,
Chapman et al. were able to detect different insects in the air at different altitudes.
A database of migration flux was created for different species. In a similar work,
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Wang et al. [59] also used a VLR to detect different insects in the air but focused
on ascent and descent behaviors. Without specify the species, the author was able
to detect insects with mass less than 10 mg.

A big problem with radars is related to measurement; small insects reflect
radiation that can be hardly observable and, therefore, tricky to interpret. This
condition is especially true as the dimensions of the insect become around or less
than 5 cm [61]. Measurement is affected not only by size but also by the aspect
and relative orientation of the target to the antenna, which directly impacts a
small RCS magnitude [13]. Another factor affecting the RCS is humidity, a main
reflective component. Hajovsky et al. in 1966 [17] reported that the loss of body
moisture affects insects’ dispersal properties; the humidity decreased considerably
after their death.

Searching the recent literature, different studies have been reported for insect
measuring with size dimension smaller than 5 cm. Rui et al. [58] used a X band
and Ku-/K band radars to detect different types of moths. Using the RCS, the
authors were able to classify the mass and body length. For mass estimation, the
authors reached twice the precision compared with traditional methods. For body
length, the authors were able to measure body length from 6 to 28 mm using a
range of frequencies from 4 to 38 GHz. A similar study was conducted by Wang
[20], where the use of support vector regression (SVR) was proposed to estimate
the mass of different moth species. In the experiment, the authors used a X-band
radar and an microwave anechoic chamber where the moth was attached to a
polyethylene line suspended. The size for the different species was not reported.

Continuing with body width and length estimation, Li et al. [28] used a X-
band polarimetric radar to estimate the body width and length of different insects.
The authors took 159 insects from different sizes and split them in three groups.
For small insects, the sizes were in the range of 10 to 20 mm, for medium insects,
it was 20 to 30 mm, and for large insects, the size ranged between 30 and 47
mm. They propose empirical equations based on the different RCS parameters to
estimate the body width and length of the insects.

Riley [48] using an X-band radar and a transmission line to prevent beam
scattered, was able to measure tiny insects (less than 1 cm). Another one was
conducted by Wang et al. [57], where it was possible to measure different targets
of the species Mythimna separata of sizes 10-42 mm using FMCW radars in the W
and S bands. For free fly insect monitoring, Diyap et al. [10] used a continuous
wave radar in W-band to detect two species: mosquitoes (Culex pipiens) and
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bees (Apis mellifera). In both cases, due to the dimension of the insects, the
authors used micro-Doppler effect generated by wing-beat to detect and classify
the species. Simulation and experimental results validated the proposed method.

The Table 5.2 shows a summary of the different studies reported in the litera-
ture. As it can observed, the different studies are focused on the estimation of the
insect size, mass, body width and length, surveillance or tracking. Also the setup
required to measure the insect is heavy and not portable. In this sense, the use
of anechoic chambers and heavy equipment was reported. The size of the insect
is not reported in all the studies, but the smallest insect was 10 mm. Regarding
to the species, the most common insects are moths, and bees. The most common
radar used is the X-band, Ku-band, and W-band. For the radar type, mainly
FMCW, VLR and CW are used.

Reference Radar Type Band Application Insect
Species

Dimensions

[57] Coherent W (93.6 GHz)
and S (3.3 GHz)

Wing-beat
detection

Mythimna
separata

10-42 mm

[5] Harmonic X (9.4 GHz) Tracking Vespa
velutina

20 mm

[1] CW C (5.8 GHz) Surveillance Honeybees
(species not
reported)

Not re-
ported

[59] VLR Ku (16.2 GHz) Detection
and track-
ing

Various in-
sects

Not re-
ported

[58] Multifrequency X (8.25–11.75
GHz), Ku
(17.75–18
GHz), and K
(18–23.75 GHz)

Morphological
parameter
estimation

Various
moth
species

6-28 mm

[20] SFCW X (9.4 GHz) Mass esti-
mation

Various
moth
species

Not re-
ported

[28] Polarimetric X (9.4 GHz) Width and
length esti-
mation

Various in-
sect species

10-47 mm
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Reference Radar Type Band Application Insect
Species

Dimensions

[48] - X - Aphids and
planthop-
pers

Not re-
ported

[10] CW W (94.3 GHz) Wing-beat
classifica-
tion

Culex
pipiens
(mosquitoes)
and Apis
mellifera
(bees)

Not re-
ported

Table 2.9: Summary of the different studies reported in the literature on radar-
based insect detection.
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Chapter 3

Materials and methods

3.1 Design of the smart delta trap

The Smart Delta Trap, meticulously designed using Fusion 360, showcases an in-
novative approach to insect monitoring and control. This design combines func-
tionality and aesthetics, ensuring efficiency in capturing insects while maintaining
a sleek, modern look. The trap is composed of several integral components, each
designed to serve a specific purpose. The images provided offer a comprehen-
sive view of the trap from different angles, illustrating its detailed and thoughtful
design.

3.1.1 Main Body and Structure

The main body of the trap is a robust, triangular structure designed to provide
stability and durability. The desing is based on the delta trap, which is a widely
used in field conditions for MoscaMed program. The triangular design is not only
structurally sound but also maximizes the surface area for insect attraction. The
base of the trap is wide, ensuring that it remains stable when placed in various
environments. The sides of the triangular frame are reinforced to withstand out-
door conditions, making the trap suitable for various weather conditions. The
Figure 3.1 a) shows the trap body and structure, highlighting the attention to
detail in the design of the main frame.
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3.1.2 Ventilation and Accessibility

Figure 3.1 d) shows the trap with its lid. The lid is designed to provide structural
support to hold the lure securely. The design incorporates ample ventilation
to ensure proper airflow through the lure, allowing sensors to receive accurate
readings. This ventilation is crucial for sensors like the SGP30, which measure air
quality and volatile organic compounds (VOCs). Additionally, the design retains
the familiar elements of current traps used in the field, thereby eliminating the
need for revalidation of the trap design.

3.1.3 Top Panel and Sensor Integration

The top panel of the trap is designed to house several essential components. As
shown in Figure 3.1 c) , the top panel includes multiple cutouts and slots for sen-
sors and electronic components. These cutouts are strategically placed to ensure
that the sensors can operate effectively without being obstructed. The integra-
tion of sensors like the SGP30 and ENS160, which are visible in the design, allows
the trap to monitor environmental conditions and detect the presence of insects
through their emissions.

3.1.4 Assembly and Electronics Housing

Figure 3.1 d) highlights the intricate assembly of the trap. The design includes a
dedicated compartment for housing the electronic components, ensuring they are
protected from external elements. This compartment is designed with precision,
featuring ventilation slots to prevent overheating and maintain optimal operating
conditions for the electronics. The placement of the electronic housing ensures
that the trap’s functionality is not compromised while keeping the components
accessible for maintenance.

3.1.5 Structural Reinforcements

The internal frame is designed to hold the main components securely, ensuring
they remain in place during operation. The design includes brackets and sup-
ports that add to the trap’s overall stability. These reinforcements are crucial for
maintaining the structural integrity of the trap, especially when it is subjected to
outdoor elements.
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The Smart Delta Trap’s design in Fusion 360 is a testament to thoughtful
engineering and design. By integrating advanced sensors and ensuring robust
structural support, the trap offers a reliable solution for monitoring and controlling
insect populations. The images illustrate the meticulous attention to detail in
every aspect of the design, from the placement of electronic components to the
overall structural integrity. This trap not only serves its functional purpose but
also represents a sophisticated piece of equipment that can be utilized in various
environments for effective insect monitoring and control. It is impotant to note
that this was the first version of the trap and the technical specifications and
design will be discussed in the next chapter.
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a) Trap body and structure. b) Trap lid with sensor integration.

c) Trap assembly with electronic compo-
nents. d) Trap case to hold main board.

Figure 3.1: Design of the Smart Delta Trap.

3.2 Description of sensors and radar systems used
The Smart Delta Trap is equipped with a variety of sensors and radar systems
to monitor Mediterranean fruit fly populations. In the implementation of a com-
prehensive system for crop pest detection through different sensors and image
processing, so the selection and integration of various sensors and radar systems
are crucial for ensuring the system’s effectiveness and reliability. This section de-
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tails the specific sensors employed in the project, elucidating their functionalities
and the role each plays in ensuring the accuracy and reliability of the detection
system.

3.2.1 Camera Sensor

The camera sensor is a pivotal component in this system, primarily responsible
for capturing high-resolution images inside the trap. These images serve as the
primary data source for image processing algorithms designed to identify and clas-
sify different species of insects. The camera sensor must offer high resolution, fast
shutter speed, and adaptability to varying lighting conditions to ensure clear and
detailed imagery. lthough the images are captured solely in the visible spectrum,
this capability allows for the identification of species that might not be easily
discernible to the naked eye.

3.2.2 Temperature, Humidity, and Pressure Sensor

Environmental factors such as temperature, humidity, and atmospheric pressure
significantly influence pest behavior and population dynamics for Mediterranean
fruit flies. Therefore, a sensor capable of measuring these parameters is integrated
into the system. The data collected by the temperature, humidity, and pressure
sensor helps in understanding the environmental conditions that correlate with
pest infestations. This sensor provides real-time environmental data, which is
essential for the accurate interpretation of pest presence and activity patterns.

3.2.3 Air Quality Sensors

Air quality sensors play a critical role in monitoring the concentration of volatile
organic compounds (VOCs) and other pollutants that may indicate the presence
of pests or their metabolic activities. By measuring parameters such as carbon
dioxide, ammonia, and other gas concentrations, these sensors can provide in-
fomrmation about the lure presence and its degradation. The integration of air
quality sensors enhances the system’s avoiding trap visits when the lure is not
effective, thereby reducing unnecessary costs and labor.
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3.2.4 Color Sensor

The color sensor is employed to detect changes within the trap, thereby inform-
ing decisions regarding camera activation. By monitoring variations in color, this
sensor can identify the presence of insects or other triggers that necessitate im-
age capture. This proactive approach ensures that the camera is only activated
when relevant changes occur, optimizing power consumption and enhancing the
efficiency of the system. The color sensor’s ability to detect subtle shifts in col-
oration provides a reliable mechanism for determining the appropriate moments
for image acquisition, thereby improving the overall effectiveness of pest detection.

3.2.5 RTC Sensor

The Real-Time Clock (RTC) sensor is essential for timestamping the data col-
lected by other sensors. Accurate timekeeping is crucial for correlating environ-
mental conditions, air quality, and pest detection data. The RTC sensor ensures
that all data points are synchronized, enabling a precise analysis of temporal pat-
terns in pest activity and environmental changes. This synchronization is vital
for developing predictive models and understanding the cyclical nature of pest
infestations.

3.2.6 Radar Sensor

The radar sensor is employed to detect the presence of insects within its range,
providing critical data on their movements and activities. This sensor is particu-
larly useful for monitoring nocturnal conditions, where traditional visual methods
may fail due to low light levels. Additionally, the radar sensor’s ability to operate
under various weather conditions—such as rain, fog, or strong sunlight—ensures
consistent and reliable performance. Its non-intrusive nature means it does not
disturb the insects or the surrounding environment, making it an invaluable com-
ponent of the pest detection system. By continuously monitoring insect activity,
the radar sensor helps in early detection and timely intervention, thereby enhanc-
ing the overall effectiveness of pest management strategies.
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3.2.7 WiFi

The inclusion of WiFi capabilities facilitates the seamless transmission of data
from the sensors to a central processing unit or cloud-based storage. This con-
nectivity allows for real-time monitoring and analysis, enabling prompt responses
to pest detections. WiFi also supports remote access to the system, allowing
researchers and farmers to monitor crop conditions and pest activities from any
location. The integration of WiFi ensures that the data collected is not only read-
ily accessible but also can be analyzed in conjunction with other relevant datasets,
enhancing the overall effectiveness of the pest detection system.

The fusion of these diverse sensors and radar systems forms a robust and
comprehensive framework for mainly Mediterranean fruit fly detection and moni-
toring. Each sensor contributes unique and valuable data, which, when integrated,
provides a holistic view of the crop environment and pest dynamics. This mul-
tidisciplinary approach leverages the strengths of various sensing technologies to
achieve accurate and timely pest detection, ultimately contributing to more effec-
tive pest management strategies in agricultural settings.

3.3 Trap configuration and experimental setup
Among the sensors described above, the air quality sensors and radar sensor re-
quired special attention in the experimental setup. The air quality sensors were
used to detect the presence of the lure in the trap, while the radar sensor was em-
ployed to detect the presence of the flies. The other sensors did not need special
setup and were simply integrated into the trap at positions optimal for measuring
the desired parameters.

For the air quality sensors, a modified Delta trap (also known as a Jackson
trap) is used. This design is chosen because it is widely used in the field in Mexico
and allows for effective integration of sensor hardware. The trap design includes
slots at the top for placing air quality sensors, and the traps are constructed using
a 3D printer and biodegradable PLA material. The design retains the traditional
dimensions of Delta traps but features a central basket to stabilize the lure’s
position within the trap.

Two types of Metal Oxide (MOX) gas sensors are used: the SGP30 and
ENS160 from ScioSense®. These sensors measure the air concentration of Volatile
Organic Compounds (VOCs) (TVOC, Total VOC) and equivalent Carbon Diox-
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ide (eCO2). The ENS160 requires a warm-up period of up to 20 minutes and is
suitable for high-power applications, while the SGP30 is suitable for low-power,
battery-operated devices and reaches stability after three minutes. The sensors
are managed by an STM32F401 microcontroller board, featuring a 32-bit ARM
Cortex-M4 core, 512 KB of flash memory, and 96 KB of RAM. Communication is
facilitated via an I2C interface, programmed using STM32CubeIDE software in
C language.

Initial tests are conducted in a controlled environment (a clean room main-
tained at 25°C and 20% relative humidity) to establish baseline noise levels for
the sensors. The lure (Trimedlure©) is placed at varying distances (1 cm, 2 cm,
and 3 cm) from the sensors within the trap.

For the radar sensor, the experimental setup initially involve using a polystyrene
base for all measurements to avoid variations in the reflectivity graphs. To char-
acterize the radar, metal spheres of sizes 3, 4, 5, 6, and 15 mm are used to measure
reflectivity. These metal spheres are placed on the polystyrene base to character-
ize the radar and determine the detection zone. The 5 mm sphere was specifically
used to match the size of Mediterranean fruit flies.

After characterizing the radar, the base is changed to a glue base used in
the field to ensure realistic measurements. Flies are added to the glue base after
the bottom is characterized. Measurements are taken using two types of lenses:
Fresnel Zone Plate (FZP) and Hyperbolic (HBL) lenses, with variations in two
parameters: Hardware Acceleration Average Sample (HWAAS) and gain. Mea-
surements are made with gain values of 0.1, 0.2, and 0.3, and HWAAS values of
15, 30, and 40.

The radar used is a pulsed W-band radar (Acconeer©A111) operating at 60.5
GHz with a spatial resolution of 5 mm. Radar configuration includes adjusting
antenna gain between 0.0 and 1.0, starting at 0.1 to avoid ADC saturation, ini-
tially setting HWAAS to 15 to reduce signal noise, disabling power save mode to
ensure optimal performance, setting the update rate to 30 Hz, using the maxi-
mum resolution profile for close range (less than 20 cm), and setting the range
between 10 and 26 cm. One thousand sweeps are performed to obtain a single
measurement, which is then averaged to minimize noise impact.
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Development of the smart delta
trap

4.1 Design considerations and challenges
This section outlines the methodology required to develop a smart trap system
based on the specific objectives and proposed hypothesis.

4.1.1 Requirements
The components necessary for the smart trap system vary according to the design
but include the following key elements:

• Temporal resolution, defining the monitoring frequency (e.g., daily, weekly).

• Verification data for validating the automatic counting module.

• A Mediterranean fly detection algorithm [14].

• An online interface for accessing and analyzing historical detection data.

• An alert system to notify administrators in case of an outbreak to mitigate
economic losses [29].

Additionally, interviews with Ecosur staff identified further requirements:

• Powering the system with batteries or solar cells.

• Automatic insect detection within the trap, with event time recording.

39
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• Remote access to the trap’s status via a camera.

• Geographical positioning of the trap.

• Recording the level of attractant available.

• Recording weather conditions.

• A unique identifier number for each trap.

• Deployment of a network of traps.

• Cost-effectiveness compared to existing commercial solutions.

4.1.2 Determine Components
Developing the smart trap system involves integrating software, hardware, and
mechanical components.

In the domain of hardware development, it is imperative to integrate the req-
uisite instrumentation to fulfill the specifications of various input variables. This
integration is critical given that the system in question is passive and, as such,
does not employ actuators. The instrumentation must be meticulously selected
and integrated to accurately capture and process the necessary input data, ensur-
ing that all system requirements are adequately met.

The absence of actuators implies that the system relies solely on the passive
collection and monitoring of data, without the capability to initiate any active
mechanical movements or adjustments. Therefore, the hardware components, in-
cluding sensors and related circuitry, must be optimized for precise and reliable
data acquisition. These components should be capable of operating within the
specified parameters and environmental conditions, ensuring consistent perfor-
mance and accuracy.

Furthermore, the instrumentation must be designed to seamlessly interface
with the system’s control and processing units. This involves ensuring compatibil-
ity with the data acquisition protocols and communication interfaces used within
the system. The goal is to achieve a harmonious integration where the hardware
components effectively gather and relay input data to the processing units for
subsequent analysis and utilization.

Software development encompasses multiple layers, each serving distinct but
interrelated functions. At the foundational level, low-level firmware is crucial for
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establishing and maintaining connections with the hardware. This firmware is
responsible for controlling hardware components, managing communication pro-
tocols, and ensuring seamless integration between the software and the physical
devices. It operates close to the hardware, providing essential instructions and
managing operations critical to the hardware’s functionality.

On the other hand, high-level applications are developed to implement the var-
ious required services that the system must deliver. These applications are built on
top of the low-level firmware, leveraging the foundational control and connectivity
established by the firmware to offer more complex and user-facing functionalities.
High-level applications encompass a broad range of software, including user in-
terfaces, data processing algorithms, network communication modules, and other
service-oriented components. They are designed to interact with the end-users,
providing the necessary tools and interfaces for operating the system, processing
data, and delivering the intended services.

Together, these layers form a comprehensive software architecture that en-
sures efficient hardware utilization and delivers high-level services to users. The
low-level firmware acts as the backbone, facilitating direct hardware management
and interaction, while the high-level applications provide the sophisticated func-
tionalities and user-centric operations that define the overall system performance
and user experience. This layered approach in software development ensures that
each component operates efficiently within its domain, contributing to a cohesive
and robust system architecture.

Finally, the intention behind the mechanical design in smart trap is to create
a functional, reliable, and manufacturable physical structure for the product. It
begins with ensuring the structural integrity of the product, making sure it can
withstand operational and environmental stresses throughout its lifecycle. This
involves selecting appropriate materials and designing a robust structure that
guarantees durability and safety.

Different engineering methodologies, known as design processes, address these
stages. Examples include the V model, waterfall, spiral, incremental, iterative,
and agile processes. Each methodology adapts to specific development contexts.

For software development, the V model involves stages such as requirements
analysis, system design, architecture design, module design, coding, unit testing,
integration, and system testing. For hardware, it includes requirements, schematic
design, PCB manufacturing, hardware testing, system testing, and production.
This highlights the distinct processes for each component.
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This document will follow the V model methodology, as it provides the neces-
sary stages from requirements to testing. Additionally, it allows for client inter-
actions to refine or correct development, making it somewhat iterative.

4.2 Sensor integration and hardware implemen-
tation

Based on the requirements, the analysis for determining the necessary components
will be divided into hardware, software, and mechanical systems.

4.2.1 Hardware components
This section outlines the hardware design process. As shown in Figure 4.1, the
first stage in hardware design is defining requirements, which has been covered
previously. The next stage is schematic design, requiring component selection for
the schematic.

Figure 4.1: Hardware design process.

To implement the proposed hypothesis, it is essential to acquire data from
two primary sources: a camera and a radar system. In addition, the system ne-
cessitates an independent power supply, which can be provided by batteries or
solar cells, to ensure uninterrupted operation. The integration of sensors to mea-
sure temperature, humidity, pressure, attractant level, and internet connectivity
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is also required. These sensors must provide precise and reliable data to support
the system’s functionality.

Given these stringent requirements, relying solely on a microcontroller (MCU)
is inadequate, particularly for the demanding task of image processing. A more
suitable solution is the deployment of a system on chip (SoC). An SoC integrates
various high-level components within a single chip, each capable of managing com-
plex tasks. These components typically include central processing units (CPUs),
digital signal processors (DSPs), various peripherals, and microcontroller units
(MCUs). The integration of these elements into a single chip allows for a highly
efficient and capable system, providing the computational power needed for ad-
vanced tasks such as image processing while maintaining low power consumption.

The SoC architecture offers several advantages, making it ideal for the core
of the trap development. Its ability to consolidate multiple processing units and
peripherals into one compact and efficient package reduces the overall system
complexity and enhances performance. The low power consumption of SoCs is
particularly beneficial in applications requiring extended operation on battery or
solar power. Additionally, the integrated nature of SoCs simplifies the design and
implementation process, leading to more reliable and maintainable systems.

SoC technology offers several options depending on the application. For rapid
prototype development and easy integration of new components, Octavo Systems
provides not only SoC technology but also system in package (SiP) technology.
SiP technology integrates multiple integrated circuits (ICs) and passive compo-
nents into a single package, as shown in Figure 4.2. This approach leverages
semiconductor manufacturing processes and bare silicon die to create a closely
coupled module. SiP technology facilitates the design process by providing sub-
systems that can be directly connected, eliminating the need for extensive routing
and allowing focus on value-adding features. Additionally, SiP technology enables
rapid validation by focusing on system integration, saving engineering effort and
reducing the likelihood of design errors.

Among the chips offered by Octavo Systems, the OSD32MP15x best fits the
requirements. It features a heterogeneous architecture with two Arm®Cortex®A7
cores and one Arm®Cortex®M4 core, supporting both hard and soft real-time
applications.

Following the selection of the processor, the subsequent phase involves the
selection of appropriate sensors. In the context of the camera, available infor-
mation regarding resolution is somewhat limited. Notably, [29] references a 2

https://octavosystems.com
https://octavosystems.com/octavo_products/osd32mp15x/
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Figure 4.2: Example of SiP technology. The parts marked in red are integrated
into the chip, reducing design size, expense, and speeding up development.

Megapixel resolution, yet does not specify the interface utilized for connection.
The OSD32MP15x processor, however, provides support for both DCMI and USB
interfaces for camera management.

Given the necessity for flexibility in adjusting resolution parameters, the USB
interface emerges as the most advantageous option for the initial prototype. This
choice facilitates straightforward modifications to resolution settings without ne-
cessitating changes to the hardware, interface, or software, thereby streamlining
the development process.

For the initial prototype, the LI-OV5640-USB-AF 5 Megapixel camera from
Leopard Imaging has been selected. This camera’s USB interface aligns with
the processor’s capabilities, ensuring compatibility and ease of integration. Fur-
thermore, the higher resolution offered by this camera model provides a greater
degree of detail and accuracy in image capture, which is essential for the system’s
functionality.

This careful selection of the camera, considering both resolution and interface
compatibility, ensures that the prototype will meet the required specifications
while allowing for future adjustments and enhancements with minimal disruption
to the overall system design. This strategic approach not only facilitates the
current development phase but also provides a robust foundation for subsequent
iterations and improvements.

For the selection of the radar sensor, it is imperative to consider several critical
criteria: detection range and low power consumption. The detection range must
be precise, operating on the order of millimeters, to accurately detect the Mediter-
ranean fly, which measures between 3 to 5 millimeters in size. Additionally, due

https://www.leopardimaging.com/product/usb20-cameras/5m-usb-af-camera/li-ov5640-usb-af/
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to the constraints imposed by the system’s limited power source, the radar sensor
must exhibit minimal power consumption. This is particularly crucial as the sys-
tem requires continuous presence detection to identify when a species enters the
trap.

Among the available options, the Acconeer A111 radar sensor stands out as
the optimal solution. It uniquely guarantees measurements within the millimeter
range, which is essential for detecting the small dimensions of the Mediterranean
fly. Furthermore, the Acconeer A111 offers advanced signal processing capabili-
ties, providing separate management of the received signal in terms of amplitude,
phase, and time. This level of detailed signal management enhances the accuracy
and reliability of the detection system, ensuring precise identification of the target
species.

The Acconeer A111’s combination of precise measurement capabilities and low
power consumption makes it ideally suited for integration into the trap system.
Its ability to operate effectively within the specified parameters ensures that the
radar sensor will perform reliably under the constraints of continuous operation
and limited power availability. This careful selection underscores the importance
of aligning sensor capabilities with system requirements to achieve optimal per-
formance in the intended application.

To effectively monitor the attractant level within the trap, it is imperative to
integrate sensors that measure temperature, humidity, and pressure. These envi-
ronmental parameters are crucial for assessing the efficacy and condition of the
attractant. Typically, these sensors are consolidated into a single chip, stream-
lining the design and implementation process. The primary considerations for
selecting these sensors include the connection interface—commonly SPI or I2C—
and the precision of the measurements.

The MS8607 sensor emerges as an exemplary choice for this application. It
offers a combination of ultra-low power consumption, high precision, and compact
size, making it well-suited for the trap system’s operational requirements. The
ultra-low power consumption is particularly advantageous, given the system’s de-
pendence on a limited power source, such as batteries or solar cells. High precision
in measuring temperature, humidity, and pressure ensures that the environmental
conditions affecting the attractant are accurately monitored, thus maintaining the
trap’s effectiveness.

Furthermore, the compact size of the MS8607 facilitates its integration into the
trap’s design, allowing for a more streamlined and unobtrusive sensor deployment.

https://www.acconeer.com
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS8607-02BA01&DocType=DS&DocLang=English
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This integration enhances the overall functionality of the trap without imposing
significant additional space or power requirements. By leveraging the advanced
capabilities of the MS8607, the trap system can achieve reliable and precise envi-
ronmental monitoring, thereby optimizing the performance and longevity of the
attractant and, consequently, the efficacy of the trap itself.

To effectively sense the attractant level within the trap, it is essential to iden-
tify the specific chemical components emitted. In the case of trimedlure, these
components predominantly include ketones and aldehydes. These volatile organic
compounds (VOCs) are readily detectable using gas sensors designed for air qual-
ity measurement.

For this purpose, the SGP30 and ENS160 sensors have been selected. Both
sensors incorporate a metal-oxide gas (MOX) sensing element, which is particu-
larly effective for detecting a broad range of VOCs, including ketones and aldehy-
des. These sensors are equipped with an integrated microcontroller unit (MCU),
an analog-to-digital converter (ADC), and an I2C interface, facilitating seamless
communication with the system’s processing unit.

Moreover, the SGP30 and ENS160 sensors are designed for low power con-
sumption, which is a critical attribute given the system’s reliance on a limited
power supply. This low power requirement ensures that the sensors can operate
continuously without imposing significant additional load on the power source.
The inclusion of an MCU within the sensors enables pre-processing of the sensor
data, thereby reducing the computational burden on the main processing unit and
enhancing overall system efficiency.

The integrated ADC within these sensors converts the analog signals from
the MOX sensing element into digital data, which can be easily processed by the
system. The I2C interface allows for straightforward integration with the system’s
existing communication infrastructure, enabling quick and efficient data transfer
without necessitating additional hardware or software modifications.

The selection of the SGP30 and ENS160 sensors for detecting the attractant
level in the trap system is informed by their ability to accurately sense VOCs, their
low power consumption, and their ease of integration. These attributes collectively
ensure that the sensors can be incorporated into the system with minimal effort
while providing reliable and precise measurements of the attractant’s chemical
components. This enhances the overall functionality and effectiveness of the trap
system in monitoring and maintaining optimal attractant levels.

Finally, the integration of a color sensor is employed to monitor the ambient

https://sensirion.com/products/catalog/SGP30
https://www.mouser.com/datasheet/2/1081/SC_001224_DS_1_ENS160_Datasheet_Rev_0_95-2258311.pdf
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light levels within the trap. This strategy is intended to minimize the frequency
of camera activations, thereby conserving power. In addition to its role in power
management, the color sensor supplies valuable data regarding the lighting con-
ditions inside the trap, which can be leveraged to enhance the performance of the
detection algorithm.

For this application, the AS73211 sensor has been selected. This sensor is
renowned for its precise color sensing capabilities, making it highly suitable for the
intended purpose. The AS73211 is capable of providing detailed information on
the light spectrum, including intensity and color composition. Such comprehensive
data allows the system to determine the optimal conditions for activating the
camera, ensuring that power is only utilized when necessary.

Furthermore, the accurate color sensing provided by the AS73211 sensor can
significantly improve the efficacy of the detection algorithm. By analyzing the light
conditions, the algorithm can be fine-tuned to distinguish between different states
of trap occupancy more effectively. This enhancement in detection capability is
crucial for maintaining the reliability and accuracy of the system.

The AS73211 sensor’s integration into the trap system is facilitated by its
advanced features and compatibility with standard communication protocols. Its
low power consumption and high precision make it an ideal component for appli-
cations where power efficiency and accuracy are paramount.

The deployment of the AS73211 color sensor within the trap system serves
a dual purpose: it reduces unnecessary camera activations, thereby conserving
power, and it provides critical data on ambient light conditions, which can be used
to refine the detection algorithm. This integration ensures that the trap system
operates efficiently and effectively, with optimized power usage and enhanced
detection capabilities.

At this stage, significant progress has been made in identifying several essen-
tial components required for the system’s implementation. However, additional
components, particularly those related to power management, remain to be se-
lected and integrated. Figure 4.3 presents a block diagram illustrating the first
prototype of the system.

The subsequent step in the design process involves the integration of the iden-
tified components into a comprehensive schematic diagram. This phase is crucial,
as it necessitates the validation of the proposed design’s operational efficacy. To
ensure the prototype and proposed design function as intended, rigorous evalua-
tion will be conducted using the OSD32MP1-RED evaluation board.

https://ams.com/as73211
https://octavosystems.com/octavo_products/osd32mp1-red/
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This evaluation board provides a robust platform for testing and validating
the system’s components and their interactions. It allows for thorough examina-
tion and debugging, ensuring that each component operates correctly within the
overall system architecture. The insights gained from this evaluation will inform
any necessary adjustments or optimizations, thereby enhancing the reliability and
performance of the final design.

A notable advancements have been achieved in defining the system’s com-
ponents, further sections will describe the integration of these components into
the system and what are the efforts required to incorporate additional elements,
particularly in power management.

Figure 4.3: Block diagram of the hardware to be developed.

4.3 Software development for data analysis

Following a methodology analogous to that employed in the hardware design pro-
cess, the software design process is depicted in Figure 4.4. This section concen-
trates on the system and architecture design stages, given that the requirements
have already been delineated.

In the initial stages of software design, it is imperative to establish a com-
prehensive understanding of the system architecture. This involves defining the
overall structure and organization of the software components, ensuring that they
align with the specified requirements. The architecture design phase serves as
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a blueprint, guiding the development process and ensuring that all components
integrate seamlessly.

The system design phase focuses on the high-level structure of the software,
outlining the key modules and their interactions. This includes specifying the
functional and non-functional requirements, identifying the primary components,
and defining the interfaces between them. The objective is to create a cohe-
sive and scalable architecture that can accommodate future modifications and
enhancements with minimal disruption.

During the architecture design stage, various architectural patterns and frame-
works are evaluated to determine the most suitable approach for the system. This
includes considering factors such as performance, scalability, maintainability, and
security. The chosen architecture must provide a robust foundation that supports
the efficient development and deployment of the software.

Furthermore, detailed design specifications are developed for each component,
outlining their responsibilities, data structures, and algorithms. These specifica-
tions serve as a reference for developers, ensuring consistency and adherence to
the overall architectural vision.

By adhering to a systematic and methodical approach, the software design pro-
cess aims to create a well-structured and efficient system that meets the defined
requirements. The subsequent phases of development, including implementation,
testing, and deployment, are guided by the architectural design, ensuring a coher-
ent and effective software solution.

The software design process, as illustrated in Figure 4.4, focuses on the crit-
ical stages of system and architecture design. This structured approach ensures
that the software components are well-defined, integrated, and aligned with the
specified requirements, providing a solid foundation for subsequent development
activities.

System design entails representing the components of a system from a broad
perspective using graphical notations, such as Unified Modeling Language (UML).
This stage purposefully omits intricate details to enhance clarity and facilitate
understanding among stakeholders. Various models are developed to depict the
system from multiple viewpoints, aligning with the methodology suggested by
[53].

Initially, a structural view of the system is provided, serving as a foundational
representation that outlines the primary components and their interrelations. This
approach allows for a comprehensive understanding of the system’s architecture
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Figure 4.4: Software design process.

without delving into the complexities that might obscure the overall vision.
The accompanying diagram (Figure 4.4) illustrates the software design process,

mirroring the methodology employed in hardware design. This visual represen-
tation underscores the systematic progression from requirements to acceptance
testing, highlighting the iterative nature of system design and validation.

As depicted in the diagram, the system design phase is followed by architecture
design, which further refines the structural view into more detailed components
and their interactions. This stage is critical for identifying the high-level archi-
tecture that will guide subsequent development phases.

Module design comes next, focusing on the detailed specification of individual
components. This is followed by coding, where the actual implementation of the
design takes place. Unit testing ensures that each module functions correctly in
isolation, while integration testing verifies the interaction between modules.

System testing encompasses the evaluation of the complete system to ensure it
meets the specified requirements. Finally, acceptance testing involves validating
the system against user needs and expectations, marking the culmination of the
design and development process.

By adhering to this structured approach, system design ensures a coherent and
comprehensive architecture that aligns with both functional and non-functional
requirements. This methodical process not only facilitates understanding but also
enhances the reliability and maintainability of the final system.
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4.3.1 System Design for the SoC
For the OSD32MP15x SoC, which supports a Linux operating system (Figure 4.3),
an embedded Linux system comprises four essential components [52]:

• Toolchain: This includes the compiler and other tools necessary for creating
code tailored for the device.

• Bootloader: This program initializes the SoC and subsequently loads the
Linux kernel.

• Kernel: Responsible for managing system resources and interfacing with the
hardware.

• Root file system (rootfs): Contains the libraries and programs executed after
the kernel completes its initialization.

Manually configuring and compiling each component is unnecessary; instead,
a build system can be utilized. The two most prominent build systems are Yocto
and Buildroot. These systems automatically search for and compile the required
components, creating a complete image ready for deployment. The SoC supports a
Yocto-based system called OpenSTLinux, which provides extensive configuration
options and several key components [55]:

• OE-Core: Manages core metadata.

• OpenEmbedded BitBake: A task scheduler responsible for compiling the nec-
essary components to create the distribution.

• Poky: The reference distribution.

• Documentation: User manuals and developer guides for each component.

• Toaster: A web-based interface to BitBake and its metadata.

The Yocto Project provides a stable foundation that can be used as is or
extended with additional layers. The first layer, typically provided by SoC ven-
dors, is the board support package (BSP), which primarily contains recipes for
the bootloader and kernel. Additional layers can be added to create extended or
customized build systems.

https://www.yoctoproject.org
https://buildroot.org
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In summary, the Yocto build system operates as follows: BitBake parses files
known as recipes and schedules tasks for the compiler. Recipes can inherit from
other recipes, override or add tasks, and customize variables, allowing for extensive
customization. This approach saves time and accelerates development, enabling
a focus on the root file system and application.

Figure 4.5 summarizes the layered architecture provided by OpenSTLinux
(Yocto) for the SoC.

Figure 4.5: Layered architecture for OpenSTLinux.

4.3.2 Architecture Design for the Application
The architecture design phase is pivotal in the development process as it focuses on
establishing the overall structure of the system and systematically organizing its
components. This phase serves as a critical juncture, bridging the gap between
the conceptual design and the specific requirements of the system. It involves
identifying the key structural components and elucidating their interrelationships,
resulting in a comprehensive model that delineates the system’s organization and
communication pathways.

According to [53], inadequate architectural design can severely impair a sys-
tem’s performance, robustness, distributability, and maintainability. Consequently,
this stage is of paramount importance because any subsequent changes or refactor-
ing can be exceedingly costly, necessitating modifications across numerous system
components.

To mitigate such risks, it is imperative to meticulously identify the primary
components that embody high-level characteristics, ensuring that functions or
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features are appropriately grouped within specific components or subsystems. The
architectural design process can be conducted at two distinct levels of abstraction:

• High-Level Design (HLD): This level focuses on the broader system archi-
tecture, outlining the major components and their interactions. It provides
a macro perspective, highlighting the system’s overall structure without
delving into the intricate details. High-Level Design is essential for under-
standing how different parts of the system collaborate to achieve the desired
functionality and performance.

• Low-Level Design (LLD): This level delves into the finer details of the sys-
tem architecture, specifying the internal workings of each component. It
includes detailed diagrams, data structures, algorithms, and interface def-
initions that guide the implementation phase. Low-Level Design ensures
that each component is designed to meet the specified requirements and
integrates seamlessly with other components.

The architecture design phase culminates in a model that not only maps out
the system’s structural framework but also delineates the communication path-
ways between components. This model serves as a blueprint for subsequent devel-
opment activities, guiding the implementation, testing, and maintenance phases.
By adopting a methodical approach to architecture design, developers can create
a robust, scalable, and maintainable system that meets the specified requirements
and performs efficiently in its operational environment.

Developing a detailed architectural description is an inherently time-consuming
and costly endeavor, as it necessitates that the system design comprehensively ad-
dresses both functional and non-functional requirements. Given the complexity
and breadth of such an undertaking, it is impractical to represent every nuance of
the architecture in exhaustive detail. Nevertheless, [53] advocates for the use of
multiple architectural views to effectively model the system. These views provide
a structured approach to understanding and documenting the architecture:

• Logical view: This view illustrates the system’s relationships in terms of
objects or classes of objects, detailing their responsibilities and interactions.
It provides a conceptual framework for understanding how various parts of
the system function together to fulfill the system’s requirements.
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• Process view: This perspective focuses on the dynamic aspects of the system,
depicting the runtime processes and their interactions. It is instrumental
in understanding the system’s behavior during execution, showing how pro-
cesses communicate and collaborate to achieve the desired outcomes.

• Development view: This view dissects the software into components that are
manageable for development. It illustrates how the software is partitioned
for implementation, highlighting the division of work among individual de-
velopers or development teams. This ensures clarity in task allocation and
facilitates effective project management.

• Physical view: This view maps the software components onto the hardware
infrastructure, detailing the distribution of these components across system
processors and physical devices. It provides insight into the deployment
architecture, showing how software components are hosted on the hardware
to ensure optimal performance and scalability.

The logical view is crucial for understanding the interactions between different
parts of the system, defining their roles and responsibilities as objects or classes.
This view aids in conceptualizing the overall architecture and identifying key
components and their interactions.

The process view, on the other hand, emphasizes the dynamic behavior of
the system. It illustrates how processes operate concurrently, communicate, and
synchronize during execution. This view is essential for analyzing the system’s
performance, identifying potential bottlenecks, and ensuring efficient process man-
agement.

The development view provides a clear roadmap for the implementation phase,
breaking down the software into modular components. It delineates the responsi-
bilities of individual developers or teams, ensuring that each component is devel-
oped in a coherent and coordinated manner. This view is vital for managing the
development process, tracking progress, and maintaining consistency across the
project.

Finally, the physical view aligns the software components with the underlying
hardware infrastructure. It details how the components are distributed across
various physical devices and processors, ensuring that the system’s deployment
is optimized for performance, reliability, and scalability. This view is critical for
planning the deployment strategy and managing the physical resources effectively.
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In summary, architecture design is about systematically organizing the sys-
tem’s structure to meet both functional and non-functional requirements effi-
ciently. By adopting a multi-view approach, as suggested by [53], developers
can ensure that the architecture remains robust, maintainable, and adaptable to
change. This structured methodology facilitates a comprehensive understanding
of the system, guiding the development process and ensuring the successful real-
ization of the system’s objectives.

4.3.3 System architecture design and management

Based on the preceding explanations, this section delineates the architecture of the
system, with a particular emphasis on a small-scale architecture viewed through
a logical perspective. To facilitate comprehension and streamline the representa-
tion, a block diagram is utilized in place of Unified Modeling Language (UML)
notation. In these diagrams, boxes are employed to symbolize the various compo-
nents, and nested boxes are used to denote subcomponents, effectively illustrating
hierarchical relationships. Arrows are incorporated to indicate the flow of data or
control signals between the components, thereby elucidating the interactions and
dependencies within the system.

The choice of a block diagram over UML notation is intentional, aimed at pro-
viding a clear and concise visual representation of the system’s architecture. This
approach ensures that the core elements and their interconnections are readily
understandable, minimizing the complexity that often accompanies more detailed
notational systems. By focusing on a logical view, the diagram highlights the
structural organization and functional relationships between the components, of-
fering a high-level overview that is critical for initial design and analysis.

Each component within the block diagram is strategically placed to reflect
its role and significance within the overall system architecture. The arrows, de-
noting data or control signal flow, are carefully plotted to accurately represent
the direction and nature of communication between components. This methodi-
cal arrangement aids in visualizing the system’s operational dynamics, providing
insights into how different parts collaborate to achieve the desired functionalities.

The hardware platform encompasses a diverse array of sensors, each necessitat-
ing meticulous management. To address this complexity, the architectural design
strategically divides responsibilities among various components. As depicted in
Figure 4.3, multiple sensors are interfaced via the Inter-Integrated Circuit (I2C)
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protocol. The IO Control application is tasked with overseeing the sensors con-
nected to the I2C interface, ensuring efficient data acquisition and processing.
Given that these sensors do not demand low-latency communication, their man-
agement can be effectively handled by an application running within the Linux
kernel.

The architectural choice to utilize a Linux kernel application for managing
these sensors is driven by the need to balance performance with system complex-
ity. By leveraging the inherent capabilities of the Linux kernel, the system can
handle the necessary data flows without imposing significant overhead or requir-
ing real-time processing capabilities. This approach ensures that the sensor data
is processed reliably and efficiently, contributing to the overall functionality and
robustness of the system.

For the acquisition and processing of radar data, the Radar App is designated
as the primary entity responsible for information retrieval. This application lever-
ages a shared memory mechanism facilitated by OpenSTLinux, a strategic choice
due to the radar sensor’s connection to the Arm Cortex-M4 (M4) core. The
M4 core is specifically selected to fulfill real-time data acquisition requirements,
ensuring timely and accurate processing of radar data.

The shared memory mechanism employed by the Radar App enables efficient
data exchange between the radar sensor and the processing application, minimiz-
ing latency and optimizing performance. This architectural decision capitalizes
on the real-time processing capabilities of the M4 core, thereby enhancing the
system’s ability to handle high-frequency data input and complex computations
inherent in radar operations.

The Camera App is tasked with managing the camera sensor, which is in-
terfaced through the Digital Camera Memory Interface (DCMI) protocol. This
application is meticulously designed to capture high-resolution images and process
them for subsequent analytical purposes. The processing of the high-resolution
images generated by the camera sensor necessitates robust computational capa-
bilities, which are provided by the Arm Cortex-A7 (A7) core.

The Camera App is responsible not only for the initial capture of images but
also for the subsequent processing required to prepare these images for analysis.
The Arm Cortex-A7 core, known for its efficiency and performance, is ideally
suited to handle the intensive processing demands associated with high-resolution
image data. This processing includes tasks such as image enhancement, compres-
sion, and possibly initial feature extraction, ensuring that the captured data is in
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an optimal state for further analysis by downstream applications.
Once the images have been captured and processed, they are transferred to

the AI App for further analysis. The AI App is responsible for executing advanced
image processing algorithms and neural network models specifically designed to
identify the Mediterranean fly.

The AI App employs sophisticated techniques to analyze the high-resolution
images provided by the Camera App. This involves the application of complex
algorithms that enhance the quality and detail of the images, facilitating more
accurate identification. Furthermore, the AI App utilizes neural networks, which
are trained to recognize the unique characteristics and patterns associated with
the Mediterranean fly.

These neural networks leverage machine learning techniques to improve their
accuracy and efficiency over time. By continuously learning from new data, the
AI App enhances its ability to correctly identify the Mediterranean fly, thereby
increasing the reliability of the system. The use of neural networks also allows
the AI App to process large volumes of image data swiftly, ensuring real-time or
near-real-time analysis.

The integration of the AI App within the system architecture underscores the
importance of advanced computational methods in achieving precise and efficient
identification of target species. By delegating the execution of image process-
ing algorithms and neural networks to the AI App, the system ensures that the
identification process is both thorough and accurate, leveraging state-of-the-art
artificial intelligence technologies.

In addition to local data processing, the system necessitates connectivity to
a cloud server for extended functionality, data storage, and remote access. This
connectivity is facilitated by a Google client, which is implemented through the
Google IoT Client application. The Google IoT Client is responsible for managing
the communication link between the local system and the cloud infrastructure,
ensuring secure and reliable data transmission.

The integration of the Google IoT Client within the system architecture allows
for seamless interaction with cloud services, enabling advanced data analytics,
storage solutions, and remote monitoring capabilities. This cloud connectivity is
critical for leveraging the full potential of IoT (Internet of Things) applications,
providing scalability, flexibility, and enhanced functionality.

To effectively decouple requests and responses between the various sensors and
the Google client, the System Server application is employed. This application
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serves as an intermediary, managing the flow of data and commands, thereby
isolating the sensors from direct communication with the Google client. This
decoupling mechanism enhances modularity and simplifies the overall system ar-
chitecture.

The Event Manager application is integral to monitoring the system’s op-
erations. It is responsible for logging activities, tracking the status of various
processes, and issuing notifications when requests have been processed. This func-
tionality ensures that all system operations are meticulously recorded, providing
a comprehensive audit trail and facilitating efficient troubleshooting and system
maintenance.

Inter-process communication (IPC) among all applications is facilitated via
DBus, a message bus system that allows for the seamless exchange of messages
between applications. DBus is particularly suited for this role due to its efficiency,
reliability, and support for asynchronous communication, which is essential for the
responsive operation of a complex, distributed system.

The initial architectural overview is depicted in Figure 4.6. In this schematic
representation, the Google client is depicted as the entity responsible for managing
communications with the cloud server. When a request is received from the cloud,
the Google client interfaces with the System Server, which processes the request
and responds appropriately.

By utilizing the System Server to mediate interactions between sensors and
the Google client, the architecture ensures that each component operates within
a clearly defined scope, enhancing the system’s robustness and scalability. The
Event Manager, with its comprehensive monitoring and logging capabilities, fur-
ther augments the system’s reliability by providing real-time oversight and de-
tailed records of all operational events.

Figure 4.6 illustrates the interactions between the System Server and various
sensor applications. Upon receiving a request, the System Server initiates a cor-
responding sensor request and notifies the Event Manager of this action. Once
the sensor request has been fulfilled, the respective sensor application commu-
nicates the completion of the request to the Event Manager. Subsequently, the
Event Manager either transfers the retrieved information or provides access to it,
depending on the nature of the data.

For instance, in the case of the Camera App, instead of transferring the cap-
tured image directly through DBus, the application notifies the Event Manager
of the image’s storage location. This approach is adopted due to the limitations
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of DBus in handling large data transfers efficiently. Similarly, the Radar App em-
ploys the same method, indicating the location of the captured data rather than
attempting a direct transfer.

Conversely, the IO Control application, which manages sensors connected via
the I2C interface, directly transfers the measurement results to the Event Manager
through DBus. This direct transfer is feasible because DBus is well-suited for
transmitting basic data types, such as boolean, integer, or float values, ensuring
efficient and reliable data communication.

All interactions with the Event Manager are meticulously logged and stored in
a database. This logging mechanism provides a comprehensive audit trail, serving
as a local backup that documents the system’s operations and historical data.
This log is invaluable for diagnostic purposes, system analysis, and maintaining
an accurate record of system performance and interactions.

The System Monitor, as depicted in Figure 4.6, is responsible for overseeing
various system resources, encompassing database size, stored images, radar data,
processing resources, and application activity. This component continuously mon-
itors these resources to ensure the system operates within predefined parameters.

Should the System Monitor detect that storage limits have been exceeded or
identify any application failures, it promptly generates alarms and communicates
these to the System Server. The System Server subsequently relays these no-
tifications to the Google client, ensuring that critical issues are brought to the
attention of remote monitoring and management systems.

Upon receiving a response from the Google client, the System Monitor takes
appropriate action based on the directives provided. This may involve releasing
certain resources to mitigate storage constraints or initiating recovery procedures
to address and rectify application failures. The ability to dynamically respond
to client instructions ensures that the system maintains optimal performance and
reliability, even in the face of operational anomalies.

Figure 4.6 delineates the architecture for the firmware update process. This
process is initiated by a request from the Google client. Upon receiving such a
request, the Firmware Update application undertakes several critical tasks, includ-
ing the downloading of the update, the partitioning of storage to accommodate
the new firmware, and the application of the update itself.

Throughout this process, the Firmware Update application maintains contin-
uous interaction with the Event Manager to ensure comprehensive logging of all
operations. This interaction ensures that each step of the update process is metic-
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ulously recorded, providing a detailed audit trail and facilitating troubleshooting
and verification.

The firmware update procedure is built upon the OTA by Mender framework,
a robust and reliable over-the-air update solution. Mender’s OTA framework
offers several advantages, including secure and efficient delivery of updates, the
ability to manage updates across a fleet of devices, and mechanisms for rollback
in case of update failures. This ensures that the update process is both reliable
and resilient, minimizing downtime and maintaining system integrity.

Figure 4.6: Software architecture and management for the appplications running
on the SoC.

4.3.4 Structural model of the software system
The depicted structural architecture represents a layered IoT system integrated
with Google Cloud IoT Core, and it features multiple components that work to-
gether to achieve specific functionalities. The topmost layer showcases the Google
Cloud IoT Core, which is responsible for cloud connectivity and IoT functionali-
ties. Communication between the local system and the cloud is facilitated using
the MQTT protocol.

Below the cloud layer, the architecture comprises several middleware applica-
tions: Event Management, System Server, Cloud IoT Client, System Monitor, and
SQLite. Event Management handles system events and logs activities, ensuring
comprehensive audit trails. The System Server acts as an intermediary, managing
data flow and commands between various components, thereby enhancing modu-
larity. The Cloud IoT Client manages secure and reliable communication between
the local system and Google Cloud IoT Core. System Monitor oversees system

https://mender.io
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resources and application activities, generating alarms for any detected issues.
SQLite serves as a lightweight database, supporting local data storage needs.

The application layer includes specialized applications such as Camera App,
I/O Control, Firmware Update, User Management, and AI App. The Camera App
manages camera operations and preprocessing functions, capturing high-resolution
images for analysis. I/O Control interfaces with various sensors connected via the
I2C protocol, managing sensor data acquisition and processing. The Firmware
Update application handles the firmware update process, ensuring the system
firmware remains up-to-date through over-the-air (OTA) updates. User Man-
agement handles user authentication and authorization. The AI App executes
advanced image processing algorithms and neural networks for identifying the
Mediterranean fruit fly, performing preprocessing functions to prepare images for
analysis.

The foundational software layer, labeled as BSP Components, includes the
Filesystem, Linux Kernel, and Boot Chain. The Filesystem manages file storage
and organization. The Linux Kernel, as the core operating system component, pro-
vides essential services and interfaces for hardware interaction. The Boot Chain
consists of the First Stage Boot Loader: Trusted Firmware-A, responsible for ini-
tial hardware initialization, and the Second Stage Boot: U-Boot, which manages
subsequent stages of the boot process and transitions to the Linux kernel.

Overall, the architecture ensures efficient and reliable operations through a
well-organized, layered approach, promoting modularity, scalability, and ease of
maintenance.
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Figure 4.7: Structural architecture of the software system.



Chapter 5

Results and analysis

5.1 Radar-Based detection and counting of fruit
flies

Radar is the most popular technique among remote sensing solutions [46] because
the information is present in the radar signal’s intensity, frequency, phase, and
modulation [18]. Compared to other remote sensing techniques, such as infrared
or ultrasound, radar is, most of the time, not sensitive to light, color, sound,
acoustic noise, or temperature, as shown in Table 5.1.

The radar also has been applied to insect study since the 60s, and this ap-
plication is known as radar entomology. Conventional entomological radars are
non-coherent, and the signal amplitude and polarization information received from
the insects are used to detect aerial insects’ density and class [31]. This type of
radar operates at a wavelength of 3.2 cm in the X-band and uses a parabolic
antenna with a beam width of one to two degrees. Coherent radars offer better
measurement accuracy [3]. With this type of radar, both amplitude and phase

Sensibility
Sensor Temperature Color Light Sound/Noise
Infrared Yes Yes Yes No
Ultrasonic Yes No No Yes
Radar No No No No

Table 5.1: Comparison of remote sensing technologies.
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information can be used to extract the micro-Doppler frequency induced by the
vibratory components of the target. Coherent radars operating the W band are
the ones that achieve the best performance in measurement precision and also the
smallest measurable size of the insect [13].

Particular challenges that emerge when the radar is applied in entomology are
primarily associated with issues originating from the backscattered signal. These
drawbacks include, among others: intensity decay, absorption (or complete block-
age), scattering (additional reflections), refraction (change of direction caused by
the shift in medium), and drift (caused by lateral movements of the medium). The
measurement context is another variable that produces problems with radars, for
example, when insects settle or crawl on vegetation surfaces. However, this prob-
lem can be solved with visual methods such as image analysis. Despite all these
limitations, radar continues to be one of the most effective tools for observing
insect flight because it works in severe weather conditions and round-the-clock
[13].

In the case of radar entomology, it can be focused at the individual or group
level on aspects such as migration, behavior, target characterization, and surveil-
lance [13]. For these applications, it is customary to use radars of type scan-
ning, vertical looking (VLR), harmonics, or frequency-modulated continuous wave
(FMCW) [42].

The signals provided by the radars are used to estimate the parameters of an
isolated insect [32]. For example, to calculate the mass of an insect, in [2] the
authors proposed in 1989 to use the radar cross-section of the insect (RCS) since
it was observed that there was a logarithmic relationship between the mass of
the insect and its average RCS [2]. The RCS quantifies the target’s backscatter
and characterizes how much of the transmitted signal was intercepted by the
target; it depends not only on the material’s properties but also on the frequency,
polarization, orientation, geometry, and angle of incidence of the transmitted wave
[26].

Another parameter that can be determined using the radar is the target’s
orientation, which according to Long [31], can be calculated using the polarization
pattern; the power of the received signal reaches its maximum value when the
polarization direction is parallel to the axis of the insect’s body. This principle
has been shown to perform well for vertical-looking type radars (VLR). The wing
beating is another parameter that can be calculated using radars, such as radars
in the W band. The wing beating causes a fluctuation in the amplitude of the
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radar signal, producing a periodic modulation and, therefore, it can be used to
detect and characterize the wing beating [57].

Other application of radar is insect tracking, which is carried out using the
harmonic radar technique, which consists of attaching a small transponder to the
insect and excite it with the radar to re-emit a new signal at a different frequency
[5]. This application has been widely used to study the movement of insects in
plantations, such as the study of the displacement of the melon flies, Zeugodacus
cucurbitae, which are major pests and pose invasion risks [37] or Vespa velutina,
which preys on pollinating insects [33]. For honeybee surveillance, Nawaf et al.
[1] used a 5.8 GHz Continuous-Wave radar to monitor free fly activity. Using
machine learning techniques, the authors were able to automated classification of
the different activities such as leaving, entering, and hovering.

For insect migration and early detection, the vertical-looking radar (VLR) is
used. For example, Chapman et al. [4], the authors used a VLR for monitoring
migrant insects populations. Rotating the polarization of the radar and nutation,
Chapman et al. were able to detect different insects in the air at different altitudes.
A database of migration flux was created for different species. In a similar work,
Wang et al. [59] also used a VLR to detect different insects in the air but focused
on ascent and descent behaviors. Without specify the species, the author was able
to detect insects with mass less than 10 mg.

A big problem with radars is related to measurement; small insects reflect
radiation that can be hardly observable and, therefore, tricky to interpret. This
condition is especially true as the dimensions of the insect become around or less
than 5 cm [61]. Measurement is affected not only by size but also by the aspect
and relative orientation of the target to the antenna, which directly impacts a
small RCS magnitude [13]. Another factor affecting the RCS is humidity, a main
reflective component. Hajovsky et al. in 1966 [17] reported that the loss of body
moisture affects insects’ dispersal properties; the humidity decreased considerably
after their death.

Searching the recent literature, different studies have been reported for insect
measuring with size dimension smaller than 5 cm. Rui et al. [58] used a X band
and Ku-/K band radars to detect different types of moths. Using the RCS, the
authors were able to classify the mass and body length. For mass estimation, the
authors reached twice the precision compared with traditional methods. For body
length, the authors were able to measure body length from 6 to 28 mm using a
range of frequencies from 4 to 38 GHz. A similar study was conducted by Wang
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[20], where the use of support vector regression (SVR) was proposed to estimate
the mass of different moth species. In the experiment, the authors used a X-band
radar and an microwave anechoic chamber where the moth was attached to a
polyethylene line suspended. The size for the different species was not reported.

Continuing with body width and length estimation, Li et al. [28] used a X-
band polarimetric radar to estimate the body width and length of different insects.
The authors took 159 insects from different sizes and split them in three groups.
For small insects, the sizes were in the range of 10 to 20 mm, for medium insects,
it was 20 to 30 mm, and for large insects, the size ranged between 30 and 47
mm. They propose empirical equations based on the different RCS parameters to
estimate the body width and length of the insects.

Riley [48] using an X-band radar and a transmission line to prevent beam
scattered, was able to measure tiny insects (less than 1 cm). Another one was
conducted by Wang et al. [57], where it was possible to measure different targets
of the species Mythimna separata of sizes 10-42 mm using FMCW radars in the W
and S bands. For free fly insect monitoring, Diyap et al. [10] used a continuous
wave radar in W-band to detect two species: mosquitoes (Culex pipiens) and
bees (Apis mellifera). In both cases, due to the dimension of the insects, the
authors used micro-Doppler effect generated by wing-beat to detect and classify
the species. Simulation and experimental results validated the proposed method.

The Table 5.2 shows a summary of the different studies reported in the litera-
ture. As it can observed, the different studies are focused on the estimation of the
insect size, mass, body width and length, surveillance or tracking. Also the setup
required to measure the insect is heavy and not portable. In this sense, the use
of anechoic chambers and heavy equipment was reported. The size of the insect
is not reported in all the studies, but the smallest insect was 10 mm. Regarding
to the species, the most common insects are moths, and bees. The most common
radar used is the X-band, Ku-band, and W-band. For the radar type, mainly
FMCW, VLR and CW are used.

Reference Radar Type Band Application Insect
Species

Dimensions

[57] Coherent W (93.6 GHz)
and S (3.3 GHz)

Wing-beat
detection

Mythimna
separata

10-42 mm

[5] Harmonic X (9.4 GHz) Tracking Vespa
velutina

20 mm
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Reference Radar Type Band Application Insect
Species

Dimensions

[1] CW C (5.8 GHz) Surveillance Honeybees
(species not
reported)

Not re-
ported

[59] VLR Ku (16.2 GHz) Detection
and track-
ing

Various in-
sects

Not re-
ported

[58] Multifrequency X (8.25–11.75
GHz), Ku
(17.75–18
GHz), and K
(18–23.75 GHz)

Morphological
parameter
estimation

Various
moth
species

6-28 mm

[20] SFCW X (9.4 GHz) Mass esti-
mation

Various
moth
species

Not re-
ported

[28] Polarimetric X (9.4 GHz) Width and
length esti-
mation

Various in-
sect species

10-47 mm

[48] - X - Aphids and
planthop-
pers

Not re-
ported

[10] CW W (94.3 GHz) Wing-beat
classifica-
tion

Culex
pipiens
(mosquitoes)
and Apis
mellifera
(bees)

Not re-
ported

Table 5.2: Summary of the different studies reported in the literature on radar-
based insect detection.

The utilization of the W-band radar remains uncommon in entomology; how-
ever, the findings presented in this section create new prospects for applying this
technology for detecting small insects. The proposal shows the potential of using
the radar for counting, which is new in the literature for radar entomology. Re-
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garding smart traps, we found no reports on the use of radar [23, 43, 44, 40]. So
the present research is the first proposal and validation for its implementation.

5.1.1 Materials and methods

The experiment’s arrangement is shown in Figure 5.1. The radar was placed in the
center of a structured aluminum cube with dimensions of 30x30x30 cm, pointing
towards its base. The cube’s walls are constructed with transparent acrylic to
prevent flies from escaping, and the cube has a door to access the inside. A 2 cm
thick polystyrene base was used to place the target, providing mechanical stability
and preventing the radar from being affected by the material’s reflectivity. The
polystyrene base was used because it is a material that does not affect the signal
received by the radar since it has a low reflectivity [57].

The W-band pulsed radar used was the Acconeer©A111 (as it was proposed
in the previous sections), with an operating frequency of 60.5 GHz and a spatial
resolution of 5 mm. That means covering a distance of 30 cm, the radar will
transmit 600 pulses to sweep the distance range and generate the corresponding
data points. The radar provides two primary services: the Envelope Service and
IQ Service. The Envelope Service provides the envelope of the received signal,
which is the amplitude of the received signal as a function of distance. The IQ
Service provides the in-phase and quadrature components of the received signal.
They can be used to compute amplitude and phase. Only the Envelope Service
was used in this research.

Figure 5.1: Experimental arrangement to fix the radar for the detection of insects.

The following parameters were used to configure the radar. The first parameter
was antenna gain, which can be adjusted between 0.0 and 1.0. The recommended
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value for this parameter is 0.5; however, for the proposed experiments, the mea-
sures started with 0.1 and the value was increased gradually to avoid saturation of
the ADC converter. Saturation happens when the reflectiveness of the material is
too high with the gain set, so the API will automatically detect this condition and
according to the documentation provided, the ADC’s gain should be reduced to
have a right measurement. The second parameter was the hardware acceleration
average sample (HWAAS), i.e., the number of averaged samples used to obtain
a single measurement. This parameter is used to reduce the signal noise. For
this experiment, an initial value of 15 was used; the initial value recommended by
the radar manufacturer. The third parameter was the power save mode, which
reduces the radar’s power consumption. For this experiment, it was disabled to
obtain the best possible performance. The fourth parameter was the update rate,
which is the number of frames obtained per second. A frame is just the data for
a complete azimuthal sweep up to maximum range . For this experiment, the de-
fault value of 30 Hz was used. The fifth parameter was the profile, which controls
the length of sent pulses and how they are sampled on return. The max resolution
profile was used for the experiments, which is recommended for close range (less
than 20 cm). Finally, the sixth parameter was the range set between 10 and 26
cm. This parameter controls the range of distances at which the measures are
taken.

One thousand sweeps were performed to obtain a single final measurement
and then averaged to minimize the impact of noise. This procedure for noise
diminishing is justified because the object is at a fixed distance, and the noise
where the signal is immersed has zero mean. So this will help to avoid errors with
the interpretation of object distance. All the experiments were conducted with
this condition.

Based on the works reported by Wang [57] and Riley [48], for the first experi-
ment this did not use lenses or any other radar accessories. However, it was found
that the antenna gain was low and dispersed, so according to Riley’s [48] proposal,
this led to add a lens to improve the antenna gain and concentrate better the sig-
nal beam. The lenses used were from Acconeer: Fresnel (FZP) and a Hyperbolic
lens (HBL), both made of solid polyamide PA12. Each of these lenses has a gain
dependent on the position in which they are placed on the printed circuit board
holder (PCB). Table 5.3 summarizes the gain and angle (in the horizontal and
vertical planes) of the signal beam as a function of the lens used.

The target was modeled using metal spheres of different sizes to characterize
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Max. Gain
(dBFS)

HPBW-E
(degree)

HPBW-H
(degree)

D1 D2 D1 D2 D1 D2
HBL 11.6 20 22 17 30 15
FZP 11.4 18.2 20 12 27 12

Table 5.3: Gain reported by the manufacturer in the vertical (E-Plane) and hor-
izontal (H-plane) planes according to two lens positions on the holder (D1, D2).
Source, manufacturer data sheet.

the radar and determine the presence of a target. According to Drake [13], metal
spheres or water drops are the ideal models that can be used for insect representa-
tion due to their high reflectivity. For this purpose, metal spheres were placed in
polystyrene support and at a distance of 13 cm from the radar; since the minimum
distance suggested by the manufacturer is 10 cm. The used sphere sizes were 3,
4, 5, 6, and 15 mm in diameter. Figure 5.2 summarizes the obtained results for
each sphere, reaching a minimum detection with a sphere of 3 mm.

A radar detection happens when the received signal exceeds a particular thresh-
old value. Three parameters are associated with the detection: probability of
detection (Pd), probability of missing (Pm), and probability of false alarm (Pf ).
The Pd is the probability that the radar detects a target when it is present. The
Pm is the probability that the radar does not detect a target when it is present.
The Pf is the probability that the radar detects a target when it is not present.
The Pd and Pm are related to the radar’s sensitivity, and the Pf is related to
the radar’s noise level. To increase Pd, the signal-to-noise ratio (SNR) must be
increased. The SNR is the ratio of the signal power to the noise power. In the
experiment, the noise level was measured without the presence of a target. Cal-
culating the variance for noise level, it was observed that it was below 200 using
the polystyrene base. With this condition, the threshold value was choosen to
produce the results in Figure 5.2. This assumption is true due to the fact that the
noise level is zero mean, and the variance is the square of the standard deviation.

Another experiment used an identical metal sphere of 5 mm to continue with
the radar characterization. For this purpose, a matrix of holes over a polystyrene
base was used. Each hole had a diameter of 3 mm and a separation of 1 cm; all
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a)

b)

Figure 5.2: Radar intensity for FZP (a) and HBL (b) lenses. X and Y axis in cm.

were drilled with a CNC machine to obtain good precision between holes and avoid
misalignment between measures. A 5 mm sphere was used as a target because this
almost matched the size of medflies and was placed in the orifices to determine
the radar’s detection zone. The measures ranges were in a 5x5 cm area, taking the
center of the radar as a starting point (0,0). One thousand frames were sampled
and averaged for each hole to obtain a single measurement. Figure 5.3 shows the
experiment results, wherein the axes X and Y represent the distance from the
center of the radar, and the amplitude of the maximum received signal is in the
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Z axis.

a) b)

Figure 5.3: Radar intensity for FZP (a) and HBL (b) lenses. X and Y axis in cm.

The results showed that radar has a detection zone of 1.5x.1.5 cm, close to
the center. Here it is important to note that for declaring the detection of a
sphere, a threshold value was set to 200 after measuring the noise level of the
radar (same as first experiment) , so the results over that value are considered as
a sphere presence, and below that value, an absence. For absence values, those
were normalized to 200 to visualize the results better. Once the detection of
metal spheres and the minimum achievable resolution have been validated, the
same experiment was carried out with Mediterranean flies. Figure 5.4 shows the
experimental setup for a Medfly placed in the center of the base. In the beginning,
dead flies were used to prevent movement; however, no detection was observed.
This result was already reported by Drake [13], which was corroborated since
the dead flies did not present reflectivity due to the low moisture content of the
dead bodies; so live flies were used in the following experiments. These tests were
carried out in the dark to avoid movement, but even under these conditions, the
flies showed activity, which made detection difficult. Figure 5.5 shows that the
Medfly is detected by increasing the magnitude of the received signal that exceeds
the detection threshold set at 200, which was determined by measuring the signal
received in the open air.
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Figure 5.4: Radar experiment setup with dead Medfly.

Figure 5.5: Radar detection for Mediterranean fruit fly. Graphs a) and b) show
the radar intensity before the detection threshold. Graphs c) and d) show the
radar intensity after the detection threshold when the fly is in the detection zone.
Note the increment in the intensity values by 0.14 m. Graphs e) and f) show
the radar intensity after the detection when the fly moves away from the radar
detection zone.

Given the difficulty of detecting live flies, another experiment was designed
to validate the detection. According to Drake [13], carbon dioxide or cold is
recommended for anesthetized live insects. In the experiment, the temperature of
the flies was reduced to 4◦C for 3 minutes to loosen their movements. However,
this was ineffective, as not all flies survived the low temperature. While detection
was still possible, the received signal was weak. A new experiment was designed to
solve the above problem and to validate the detection based on the field conditions
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in which the Medfly is captured. For this, a literature search was carried out, and
it was found that one of the primary Medfly capture techniques is using traps [38].
Although there are many traps, delta traps are used primarily in Mexico. This trap
type has a triangular prism shape, with a glue base and a grid at the top where the
attractant is placed. Figure 5.6 shows a delta-type trap. Therefore it was decided
to use the glue base as a reference point for a new detection experiment. For this,
the same polystyrene base was used on which the glue base was placed. The same
procedure was used for the metal spheres to measure the reflectivity of the glue
base. Still, in this case, it was done with the two available lenses (FZP and HBL)
and in different positions to vary the gain according to Table 5.3. It is crucial
to characterize the glue base with the two lenses since the amount of glue is not
uniform, and it affects the reflectivity obtained by the radar. In the experiment,
the same glue base was used during all the measurements to avoid variations in
the graphs presented. Once the bottom was characterized, flies were added to
the glue base, and measures were taken with the lenses. Two measurements were
added with the variation of two parameters: HWAAS and gain. Measurements
were made with the gain values of 0.1, 0.2, and 0.3. In the case of HWAAS, the
values 15, 30, and 40 were used. As a result, three measurements were made for
each lens and position with the parameter variation mentioned above.

Figure 5.6: Delta trap used for Medfly capture.

5.1.2 Results

The Figure 5.7 shows the different measurements of the backscattered signal using
different bases and with the presence of a fly. In this conditions, the fly cause an
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interference compared with the reference signal and the shadow effect of the fly
over the reference shows an improvement in the detection. For example, for Fresnel
lens (Figure 5.7a) the signal is 11% less than reference, but much stronger than
signal with polystyrene base.

Figure 5.8a (top left corner) shows the graphs obtained for the FZP lens in
position 1 with a gain of 0.1 and HWAAS of 15. It can be seen that the reflectivity
of the glue base is the highest of all the measurements made, which corresponds to
the expected result. Adding one and two flies decreased reflectivity. By increasing
the gain of the amplifier and HWAAS to double (0.2 and 30, respectively), the
same behavior is observed. In the case of the gain of 0.3 and HWAAS of 40, the
radar’s ADC was saturated, so these results were not considered in this report.

Repeating the experiment for the FZP lens in position 2, the results are similar
to those obtained in position 1; however, the reflectivity is higher due to the gain
increase. Similarly, the data obtained for the gain of 0.3 and HWAAS of 40 were
discarded due to saturation. The results are shown in Figure 5.8b (top right
corner).

In the case of the HBL lens in position 1, glue base reflectivity is lower than
that obtained with the FZP lens and decreases only up to the first fly, slightly
increase for the second. When doubling the gain and HWAAS, the results are
similar to those obtained with the FZP lens, as shown in Figure 5.8c (bottom
left corner). The radar was saturated for a gain of 0.3 and HWAAS of 40, so
these results were not considered. With the highest gain in position two and the
HBL lens, the reflectivity increased above all measurements. Still, the results were
maintained, where the reflectivity decreases for second fly. These results held for
0.2 gain and 30 HWAAS, but the radar saturated for 0.3 gain and 40 HWAAS.
The results are shown in Figure 5.8d (bottom right corner).

After the measures were taken, a decreasing pattern was observed in all cases,
so no more measures were considered due to this pattern.

5.2 Sensor performance: TVOC and eCO2 de-
tection

The advent of Precision Agriculture (PA) tools has ushered in a new era, enabling
farmers to analyze the spatial-temporal variability of several critical factors that
influence plant health and productivity. Data collected through sensors are stored
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a) b)

c) d)

Figure 5.7: Results for radar measurements using polystyrene and glue bases.

and synthesized to guide decision-making processes and implement early warning
systems to mitigate threats [3]. Additionally, there has been a shift towards smart
traps, which enhance traditional methods by improving the accuracy of insect
counting and detection capabilities. This transition is driven by the demand for
more efficient, less labor-intensive techniques that allow for continuous monitoring
and data collection [35].

Advancements in sensor technology and microprocessors have revolutionized
the development of new devices that facilitate the detection and monitoring of
insect pests over extensive areas at reduced costs and deployment times. These
innovative devices, integral to early warning systems, continuously monitor the
pest community and its quantitative distributions, helping to avert potential agri-
cultural disasters [21]. Although integrating such technologies involves multiple
disciplines, the benefits are substantial [21].

Modern sensors can be seamlessly integrated with the Internet of Things (IoT)
or directly connected to cloud-computing services, enhancing decision-making pro-
cesses by enabling real-time surveillance at the field level [3]. This connectivity
allows for immediate data analysis and response, crucial for managing dynamic
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a) b)

c) d)

Figure 5.8: Results for medfly counting using different lens positions, gain val-
ues and HWAAS. Graphs (a,b) correspond to the FZP lens in position 1 and
2, respectively. Graphs (c,d) correspond to the HBL lens in position 1 and 2,
respectively.

pest populations effectively.

Moreover, the application of new technologies extends beyond traditional mon-
itoring methods. Examples include radar technologies that track pest migration
patterns [4], video equipment for observing flying insects, thermal infrared imaging
to detect heat signatures, and chemiluminescent tags to track insect movements in
darkness [9]. These tools not only improve the accuracy of pest detection but also
contribute to comprehensive field surveys across various pest species, supporting
more targeted and effective pest control strategies.

Different traps and sensors have been applied for pest monitoring. For in-
stance, to monitor the moth Cydia pomonella, Guarnieri et al. [15] developed a
system modifying a trap used in the field with a mobile phone to capture and
report the data; the data were sent to a remote server where images were ana-
lyzed. The sound produced by Rhynchophorus ferrugineus, a palm tree pest was
digitally processed to generate the sound spectrum and detect its presence when
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the pest eats or moves [36]. Similar works based on sound recording were reported
in [41, 12] for detection and classification of pests. Robot cars have been used to
monitor pests of Pyralidae species [3]. Liu et al. [30] mounted an image-processing
system in a robot car to detect and count the number of moths in the field, reach-
ing an accuracy of 95%. For the Mythimna separata species, Wang et al. [57] used
a radar system to detect their presence and wingbeat, being able to detect insects
with a length of 10-42 mm using FMCW radars in the W and S bands.

Regarding to Mediterranean fruit fly, in 2019 the losses attributed this pest
in Brazil amounted to 120 million USD, severely impacting exports to Japan, the
USA, and Chile [40]. Generally, pest control relies on pesticides, whose efficiency
depends on timely and precise location information about infestations.

Trap monitoring for Mediterranean fruit fly, it is essential in pest detection,
suppression, and eradication programs worldwide, typically involves olfactory and
possibly visual stimuli to attract adult species. Most attractants are food-type,
emitting ammonia and simulating protein sources [51]. However, maintaining a
trap network is costly, considering the required monetary, human, and material
resources. Staff typically check traps weekly, traveling long distances to areas that
may be difficult to access, which delays information flow [11, 14]. The information
on pest species and densities is primarily acquired through visual inspection, which
complicates monitoring population dynamics due to the relatively low sampling
rate. Smart traps address these issues efficiently by identifying and counting pests
as they enter the trap, allowing for faster information flow [60].

5.2.1 Sensors on smart traps for Mediterranean fruit fly

Different technologies have been applied to monitor and capture the Mediter-
ranean fruit fly. Potamitis et al. [43] modified a McPhail trap, adapting an opto-
electronic sensor to monitor the fly entrance by sensing wingbeat. The goal was
to analyze the generated optoacoustic spectrum, reaching an accuracy of 91% in
detection. An updated version of the system integrates a bimodal optoelectronic
sensor and stereo recording [44], showing that it was possible to distinguish be-
tween fruit fly species (Ceratitis capitata and Bactrocera oleae) with an accuracy
of 98.99%. Image capture is robust and can be used for entomologists or image
processing systems for decision-making. Therefore, camera sensors have been also
used in smart traps. Doitsidis et al. [11] developed a system based on a McPhail
trap modified with a camera that monitored Bactrocera oleae and allowed remote
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access to the images, reducing the time spent in collecting data. The system does
not add automatic image recognition; expert entomologists analyze the images.
In a similar way, Shaked et al. [51] created two systems, one to monitor Ceratitis
capitata and another for Bactrocera oleae, Dacus ciliates, and Rhagoletis cerasi.
Both were based on a real-time surface image sent to a remote server for image
analysis, reaching 88% of accuracy. Haff [16] uses hyperspectral images to classify
the spots of the fruit fly in mangoes. The images were analyzed using Gaussian
blur radius, ball radius, and minimum particle size techniques. However, the main
issue of the system is the cost and size of hyperspectral cameras, making it an
impractical solution for the field. Recently, Diller et al. [8] created a surveillance
system based on a McPhail trap modified with a camera and Raspberry Pi Zero
for trapping and wireless transmission of images to the cloud. Based on a Deep
Learning (DL) model, a precision of 93-95% in the species identification is reached.
Similarly, Uzun [56] reported in the training of deep learning algorithms to detect
and count the Ceratitis capitata in the field. The algorithm was trained with 722
images and 150 for validation. The algorithm detected and counted the species
with an accuracy of 99.5%; however, no hardware was embedded in the trap for
capturing images.

Other types of sensors have been integrated into smart traps, presenting inno-
vative approaches for pest detection. Kalamatianos et al. [24] equipped a McPhail-
type trap with a system that included different instruments, such as wind and
temperature sensors, WiFi, and a GSM modem. The system gathered data from
the field and used a public pre-trained toolkit for identifying the species Bactrocera
Oleae. With this information, an automatic classification of the species using dif-
ferent convolutional neural networks (CNN) reached an accuracy of 91.5%. In [23],
a system based on sensors operated remotely in a McPhail trap was implemented.
The capture module used a double infrared sensor placed in line to validate that
the fly enters the trap through a tunnel designed to let in only Mediterranean flies.
A microcontroller (MSP430F449) was responsible for processing GPS information,
temperature, humidity, and wind speed; a Host Control Platform (HCP) received
commands through a GSM module to information be processed and stored in
a SQL table using LabView©. An improved mechanism that prevents double-
counting depending on the route that flies follow inside the trap was proposed by
Liao et al. [29]. The system implements nodes equipped with ZigBee modules to
cover extensive and difficult-to-access areas the GSM network does not cover. In
this way, the information from the nodes can be transmitted to a gateway that
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sends data to the HCP.
Infrared sensors have also been used to measure wing beat in McPhail traps, as

proposed by Potamitis et al. [43]. The captured signal passes through an analog-
digital converter (ADC) which delivers a signal in time and amplitude to which a
fast Fourier transform (FFT) is applied to characterize the spectrum in frequency.
With this, it was possible to identify the Mediterranean fly and different species.
In a subsequent work [44], the light from the infrared LED is passed through the
Fresnel lens and collimated. The wings beating of the insect cast a shadow on
the opposite receiving Fresnel lens. The collimated light is partially dispersed
laterally at 90°and directed to the passive Fresnel lens that records the reflected
light. Finally, a dark cone-shaped plastic fixes the LED and photodiodes to their
correct focal point. A mixture of infrared and sound sensors was implemented
by Sandrini et al. [50]. The infrared sensor measures wing beat while the signal
amplifier output of the sound sensor is connected to the input of a sound card. The
beating signal was recorded. A time and frequency analysis determined the main
components and characteristics that identify each species. Recently, Hernandez
et al. [19] used a radar system to count the number of fruit flies captured in a
trap. The radar system was able to detect the fruit flies using the shadow effect,
which changes the radar intensity when the Mediterranean fly is inside the trap,
demonstrating an efficient approach to solving pest detection.

The literature review shows that integrating different sensors strengthens the
systems to monitor and detect Mediterranean fruit flies. However, research on new
sensors in smart trap systems applied to fruit fly detection is still in development,
and several challenges must be addressed. One of the various components of
this kind of trap is the lure, which plays a vital role in the capture of insects.
Commonly, the lures are based on volatile organic compounds (VOCs) that attract
the insect to the trap when released into the air.

Trimedlure, a synthetic lure consisting primarily of four trans isomers, is highly
effective in attracting male Mediterranean fruit flies . This lure is considered supe-
rior to many other synthetic and natural attractants, owing to its unique configu-
ration and potent behavior-inducing properties [22]. Although specific data on its
longevity under various environmental conditions are not detailed, the molecule’s
effectiveness is sufficiently sustained for widespread use in traps for surveying and
controlling medfly populations [22]. Trimedlure is classified as Volatile Organic
Compounds (VOCs) due its structure incorporates volatile elements that allow it
to evaporate and disperse into the air, a characteristic behavior of VOCs, enhanc-
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ing its effectiveness as an aerial dispersant.
However, the VOCs are unstable and can be degraded by environmental factors

such as temperature, humidity, and light. So, without an active lure, no capture is
possible, and the trap is useless. Currently, the only information about the useful
life of the lure is provided by the manufacturer based on reference conditions.
Therefore, obtaining information about the lure lifetime is essential to keep the
trap network in optimal conditions, according to regional and weather conditions.

This section explain the use of air quality sensors to monitor and detect the
trimedlure. Two sensors were used to show the potential of this approach: the
SGP30 and ENS160. The sensors measure the air concentration of VOCs (volatile
organic compounds) (TVOC, Total VOC) and the air carbon dioxide concentra-
tion (eCO2). The integration of air quality sensors showed promising results as
an aid tool that could be implemented in new smart trap systems to improve the
information gathered and reduce trap visits to replace lures.

5.2.2 Sensors and hardware setup

Volatile Organic Compounds (VOCs) are ubiquitous in both indoor and outdoor
environments, with over 5,000 different types identified, many of which are harm-
ful to human health and the environment [25]. The ability to monitor VOCs
accurately is crucial due to their potential adverse effects. Various sensors are
available that can detect changes in gas concentrations, facilitating data collection
for further analysis and decision-making. For instance, Photoionization Detectors
(PID) utilize ultraviolet light to ionize gas molecules, allowing for the detection
of VOCs by measuring the resultant charge carriers. Flame Ionization Detectors
(FID), commonly used in industrial applications, detect hydrocarbons by burn-
ing them and measuring the ions produced. Metal Oxide Semiconductor (MOS)
sensors detect specific compounds like benzene, ethanol, and toluene by changes
in resistance across a thin metal oxide layer. It is important to note that some
VOC sensors require temperature compensation for accurate readings, though this
feature may not be integrated into all sensor models [7].

Carbon Dioxide (CO2) is a colorless and odorless greenhouse gas. Its con-
centration, typically around 400 ppm in ambient air [45], can be measured using
various sensing technologies. Nondispersive Infrared (NDIR) sensors determine
CO2 levels by detecting the amount of infrared light absorbed at a specific wave-
length (4.3 µm). Photoacoustic spectroscopy involves exposing a gas sample to
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electromagnetic energy tuned to CO2’s absorption wavelength, then measuring the
resultant pressure waves with an acoustic detector to calculate the gas concentra-
tion. Electrochemical sensors detect CO2 by measuring the current change when
CO2 reacts with a polymer surface inside the sensor. Additionally, Metal Oxide
(MOX) technology utilizes a thin film that alters its resistance in the presence of
CO2, providing a measure of gas concentration.

Figure 5.9: The CAD design with Fusion 360©of a trap integrating air quality
sensors and slots with different lure locations.

This study employed two types of Metal Oxide (MOX) gas sensors, the SGP30
and ENS160 from ScioSense®, designed to detect a broad spectrum of Volatile Or-
ganic Compounds (VOCs) and equivalent Carbon Dioxide (eCO2). Both sensors
operate based on the principle that the resistance of the metal oxide layer changes
in response to gas exposure. Notably, the ENS160 requires a warm-up period of
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up to 20 minutes and is suitable for high-power applications, whereas the SGP30,
suitable for low-power, battery-operated devices, reaches stability after just three
minutes. The ENS160 also features independent hot plate control, enhancing its
selectivity and sensitivity by compensating for environmental factors such as hu-
midity and ozone levels. In contrast, the SGP30 requires an external sensor to
regulate temperature.

While various types of traps are available for capturing the Mediterranean fruit
fly, for instance, the McPhail trap, our experiment exclusively utilized a modified
Delta trap, also known as a Jackson trap (Figure 5.6). This choice was made to
integrate the sensor hardware effectively and because it is a widely used trap design
in the field for Mexico [38]. As depicted in Figure 5.9, the adapted trap design
includes five slots at the top specifically for air quality sensor placement. These
traps were constructed using a 3D printer and PLA—a biodegradable material—
following the specifications from CAD models created in Fusion 360 software.
The design retains the traditional dimensions of Delta traps but features a central
basket. This addition is crucial as it stabilizes the lure’s position within the trap,
thereby minimizing variability in the sensor readings and ensuring consistent data
collection.

Figure 5.9 illustrates the CAD model of the trap, designed using Fusion 360
software. This model retains the standard dimensions of a conventional Delta trap
but incorporates five slots at the top specifically designed for mounting the air
quality sensor. In practical field applications, the lure is housed within a plastic
basket equipped with a hook, forming a soft grid to secure the lure. For our
experiments, a similar basket was centrally placed within the trap to prevent lure
movement and minimize measurement errors. This central placement does not
impact the air flow or dispersion patterns within the trap, as confirmed by Lewis
et al. [27].

The trap components were produced using a 3D printer, based on the CAD
model. It consists of two main parts: the body and the lid, which were assembled
using screws and nuts. The material used for printing was Polylactic Acid (PLA),
a biodegradable polymer known for its low melting point, making it ideal for such
applications.

The sensors within the trap are managed by an STM32F401 microcontroller
board from St Semiconductors, featuring a 32-bit ARM Cortex-M4 core running
at 84 MHz, with 512 KB of flash memory and 96 KB of RAM. Communication
is facilitated via an I2C interface, programmed using STM32CubeIDE software
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in C language and utilizing the Hardware Abstraction Layer (HAL) library. This
library supports the Arduino ecosystem, simplifying the development process by
eliminating the need for additional programming.

5.2.3 Experimental Design

The experiment was designed to assess the sensors’ capability to detect the pres-
ence of Trimedlure©, a widely used lure in Mediterranean fruit fly control strate-
gies [38, 22]. Initial tests were carried out in a controlled environment—a clean
room maintained at 25°C and 20% relative humidity—to establish the baseline
noise levels for the sensors. In subsequent tests, the lure was strategically placed
at varying distances (1 cm, 2 cm, and 3 cm) from the sensors within the basket of
the trap (Figure 5.9). Although initial trials included adjusting the sensor’s po-
sition along the trap slots, this approach proved ineffective and was discontinued
in further tests.

Data collection focused on monitoring changes in CO2 and VOC concentra-
tions across varying distances during ten-minute intervals. Although additional
time intervals were evaluated, the ten-minute duration was ultimately selected due
to its efficiency in yielding results comparable to those from longer periods. This
duration proved to be optimal for assessing each sensor’s response to the chemi-
cal emissions from the lure under controlled environmental conditions. Detailed
sensor responses, including variations in CO2 and TVOC levels corresponding to
different distances from the lure, are comprehensively presented in the Results
section.

5.2.4 Sensor Performance Evaluation

The experimental results reveal distinct performance capabilities between the two
tested sensors, the SGP30 and the ENS160, in detecting the presence of Trimedlure
substance using measurements of equivalent Carbon Dioxide (eCO2) and Total
Volatile Organic Compounds (TVOC). The SGP30 sensor demonstrated limited
effectiveness in eCO2 detection, showing no significant change that could reliably
indicate the presence of the lure. However, it could detect variations in TVOC
levels, although the data were prone to noise and influenced by external factors
such as ambient temperature and humidity.

Conversely, the ENS160 sensor exhibited robust detection capabilities for eCO2
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Figure 5.10: Resulting measures for the SGP30 (top) and the ENS160 (bottom)
sensors in an experiment of 30 minutes: before setting the lure (min 1-10), with
the lure set (min 11-20), and after removing the lure (min 21-30). The recorded
data correspond to eCO2 (a,c) and TVOC (b,d).

and TVOC, with less sensitivity to external disturbances. This sensor maintained
consistent performance across various experimental conditions, and its readings
significantly correlated with the known concentrations of lure substances. The
detailed results are as follows:

• SGP30 Sensor Findings (Figure 5.10a-b):

– eCO2 Detection: The sensor failed to show any significant change in
eCO2 levels, remaining at baseline values around 500 ppm regardless
of the lure presence.
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– TVOC Detection: The sensor responded to the lure presence with
an increase in TVOC measurement, reaching up to 140 ppb. However,
the response was unstable, fluctuating significantly with environmental
changes.

• ENS160 Sensor Findings (Fig. 5.10c-d):

– eCO2 Detection: The ENS160 showed a clear response to the lure with
eCO2 levels increasing by an average of 200 ppm above the ambient
baseline, providing a reliable indicator of lure presence.

– TVOC Detection: This sensor detected TVOC concentrations consis-
tently above the baseline, with an average increase of 300 ppb when
exposed to the lure. The measurements were stable across multiple
tests, with a low variance.

5.2.5 Distance-Based Sensor Performance
Further analysis focused on the effect of sensor distance from the lure on detection
effectiveness. The optimal performance for the ENS160 sensor was observed at a
2 cm distance from the lure (Fig. 5.11a-b), where both eCO2 and TVOC readings
were maximized and most consistent.

• 1 cm distance: At this proximity, both sensors showed heightened sensi-
tivity, but the ENS160 readings exhibited a tendency towards saturation,
suggesting that too close a placement may lead to overestimation of lure
concentrations (Fig. 5.11c-d).

• 2 cm distance: This distance was found to be optimal, offering a balance
between sensitivity and accuracy, with clear differentiation between baseline
and lure-present states (Fig. 5.11a-b).

• 3 cm distance: At this range, the effectiveness of the sensors decreased
slightly, with lower but still detectable increases in both eCO2 and TVOC
levels compared to closer ranges (Fig. 5.10c-d).

These results underscore the ENS160’s suitability for integration into smart
trap designs, providing reliable, real-time monitoring of lure conditions that can
significantly enhance pest management strategies.
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Figure 5.11: Results for ENS160 sensor when measuring eCO2 and TVOC at
(top) 2 cm and (bottom) 1 cm of distance between the sensor and the lure. Time
intervals were distributed as in Fig. 5.10.
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Chapter 6

Discussion

6.1 Comparison with traditional monitoring meth-
ods

In this research proposal, a smart trap design is presented, aimed at analyzing
the acquired information on the Mediterranean fly pest. This design integrates
camera sensors, radar (PCR), and other sensors to monitor the pest. The primary
distinction between this proposal and traditional traps is that it not only counts
specimens but also gathers additional information related to them through the
complementary data provided by the proposed sensors. This work aims to demon-
strate that the two-dimensional information from the camera, three-dimensional
information from the radar, and other sensor data can be combined to intelligently
determine the presence of the Mediterranean fly in a trap. Furthermore, it seeks
to provide the necessary tools to prevent the establishment of the pest through a
continuous monitoring mechanism based on automatic classification.

Without proper analysis of the information that a trap can capture, under-
standing the interactions between various factors and pest development is chal-
lenging. Moreover, food production can be significantly affected, and it has been
shown that the cost of pest damage exceeds the cost of control [29]. Therefore,
efficient monitoring with traps plays a crucial role in pest control, particularly
for the Mediterranean fly. Currently, sensor-based smart traps can identify and
count specimens as they enter the trap [60], but they have significant limitations:
they require manual in situ reading, and the information they provide depends
on their condition at the time of review. In this context, the need for more ef-
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fective monitoring is evident [14], especially for the Mediterranean fly, which is
the focus of this study. Developing an autonomous early warning system to de-
tect the presence of pests is essential to reduce the likelihood of their spread and
establishment [29].

Mexico has significant potential for agricultural development. However, this
potential has been hindered by a lack of resources and economic support. Addi-
tionally, farmers often lack access to technological tools that would enable them
to efficiently monitor and manage their crops. Moreover, the personnel involved
in some monitoring projects do not possess the necessary tools for field operations.
This motivates the research into the development of efficient traps.

The current limitations in pest trapping necessitate the proposal of an au-
tomatic monitoring system that combines data obtained from different sensors
for analysis and monitoring. Two primary sensors, an RGB digital camera and
a Pulsed Coherent Radar (PCR), are proposed for this purpose. The camera
continuously monitors the trap, capturing the appearance of new specimens and
providing two-dimensional information on color, texture, shape, among other at-
tributes. The PCR sensor, on the other hand, uses presence information to mon-
itor in real-time any species entering the trap, avoiding interference from light,
dust, or noise that affects sensor-based traps. The two-dimensional tracking to lo-
cate position in image processing avoids unnecessary processing. The camera can
analyze shape, color, or texture, providing information not only about the species
but also about the current state of the trap. This allows experts to respond more
quickly and take prompt action.

6.2 Advantages and limitations of the developed
trap

By analyzing the information presented in Chapter 2, several commonalities can
be observed: all traps are operated remotely, powered by solar cells or batteries,
and report information to a central server. The processing unit is typically a
microcontroller or microprocessor, and they connect to the server via interfaces
such as GSM, GPRS, 3G, or WiFi. Their primary service is the detection of the
Mediterranean fly, though not necessarily the specific species of the fly, and the
information gathered must be validated by a specialist.

The main differences among the traps include the type of sensor used, the



Chapter 6. Discussion 91

species they detect, their mechanical design, information processing capabilities,
detection variables, and detection techniques. The sensors can be divided into
two main types: those with cameras and those with sensors. Camera-based traps
detect based on physical analysis of the image sensor variables, while sensor-based
traps primarily detect based on attractants and do not distinguish the type of
insect, merely counting them. However, there are exceptions such as in [43] and
[44], where sensor signals are also used to acquire physical information from wing
flapping.

Regarding species detection, the greatest risk of infestation for Mexico is from
the Ceratitis capitata species, but other regions and crops report different primary
species, such as Bactrocera oleae in Brazil. The mechanical design of the traps also
varies depending on whether the objective is monitoring or capture, with classic
designs (Jackson, Phase IV, McPhail) and custom designs. Custom designs, as
shown in [14], need validation for effectiveness, as not all designs attract or disperse
the attractant as efficiently as classic traps.

Information processing differs significantly based on the sensor type. Camera-
based traps require a more complex system, such as a microprocessor, to process
the information, enabling tasks like image processing and deploying artificial intel-
ligence models ([51]). In contrast, sensor-based traps often use microcontrollers,
which deliver basic information like measurements or signals for further processing
([29], [43]).

The detection variable also varies; camera-based systems use physical analysis
of image sensor variables through various techniques ([29]) or artificial intelligence
models ([24]). In contrast, most sensor-based traps focus on capturing the target
species via an attractant and maintaining a count using an infrared sensor ([14],
[29], [23], SnapTrap, RapidAIM) that does not discriminate insect type. Special
cases, like those reported in [43] or [44], use wing flapping captured in optoelec-
tronic or acoustic signals for classification, though these signals are vulnerable to
ambient light or external sounds.

The development of the smart delta trap presented here demonstrates several
advantages that significantly enhance the monitoring and control of the Mediter-
ranean fruit fly.

One of the primary advantages of the developed trap is its integration of
advanced sensor technologies, which allows for more accurate and real-time detec-
tion of the target pest. The use of Metal Oxide (MOX) gas sensors, such as the
SGP30 and ENS160, provides precise measurements of volatile organic compounds
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(VOCs) and equivalent carbon dioxide (eCO2) levels, indicating the presence of
attractants within the trap. These sensors, managed by an SSTM32MP1, of-
fer reliable performance with low power consumption, making them suitable for
continuous field operations. The inclusion of a radar sensor operating at 60.5
GHz enhances the trap’s ability to detect the presence of fruit flies through non-
intrusive means, even under various weather conditions and low light levels.

Another significant advantage is the trap’s design, which incorporates 3D-
printed components made from biodegradable PLA material. This choice of ma-
terial not only ensures environmental sustainability but also allows for precise
customization and easy assembly of the trap. The structural design includes a
central basket to stabilize the lure, minimizing variability in sensor readings and
ensuring consistent data collection. The integration of WiFi capabilities facilitates
real-time data transmission to central processing units or cloud-based storage,
enabling remote monitoring and timely responses to pest detections. This con-
nectivity significantly reduces the need for frequent physical inspections, thereby
lowering operational costs and labor requirements.

Despite these advantages, the developed trap also faces several limitations.
One of the main challenges is the high initial cost associated with the advanced
sensors and radar systems integrated into the trap. While these components
enhance the trap’s functionality and accuracy, they also contribute to higher pro-
duction and maintenance expenses compared to traditional trapping methods.
Additionally, the complexity of the trap’s design and the need for specialized
knowledge to interpret the collected data can be barriers to widespread adoption,
particularly among smallholder farmers.

Another limitation is the reliance on environmental conditions for optimal
sensor performance. For instance, the air quality sensors require specific temper-
ature and humidity levels to provide accurate readings, which may not always be
present in field conditions for ENS160; however, the SGP30 sensor is more robust
in this regard. Furthermore, the radar sensor, while effective in various weather
conditions, may still face challenges in differentiating between target pests and
other insects or objects within its detection range. This limitation necessitates
additional validation by experts to ensure the accuracy of pest identification and
to avoid false positives.

The deployment of the smart delta trap in remote or difficult-to-access areas
poses another challenge. While the inclusion of WiFi capabilities allows for re-
mote data transmission, ensuring consistent connectivity in such regions can be
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problematic. Additionally, the power management requirements for continuous
operation of the sensors and communication modules necessitate robust and reli-
able power sources, such as solar cells or long-lasting batteries, which may add to
the overall cost and maintenance efforts.

6.3 Potential improvements and future work

To address the limitations of the developed trap and further enhance its functional-
ity, several potential improvements and future work directions can be considered.
One possible improvement is the integration of additional sensors. In this regard,
our results indicate that the inclusion of a time of flight (ToF) sensor could provide
valuable distance measurements to substantiate the radar’s detection data.

Although the radar sensor offers reliable detection capabilities, the main lim-
itations is the lack resolution in the Z-axis. By incorporating a ToF sensor, the
trap could provide more precise distance measurements, enabling better tracking
of the target pests and reducing the likelihood of false positives. Additionally,
the ToF sensor could enhance the trap’s ability to differentiate between pests and
other objects or insects within its detection range, thereby improving the overall
accuracy of pest identification.

Another potential improvement is the development of an automated pest iden-
tification system based on machine learning algorithms. The first stage of the
system was involved in the development of a basic classification model using neu-
ral networks to distinguish between the Mediterranean fruit fly and other insects.
However, the model’s performance could be further enhanced by incorporating
additional features and training data to improve its accuracy and reliability. For
this pourpose, the AI app was proposed in the architecture of the trap, which could
be used to train the model with new data and update its classification capabilities
over time.

The architecture proposed in this research could be further expanded to detect
other pests and adapted to different traps or monitoring systems. For instance,
the smart delta trap could be modified to target moth pests by incorporating
additional sensors or attractants specific to these. With just a few modifications,
the trap could be adapted to monitor moths.

The intention of the smart trap was mainly to be deployed in areas with WiFi
coverage. However, the trap could be further improved by integrating additional
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communication modules, such as LoRa or Narrowband IoT (NB-IoT), to enable
connectivity in remote or low-coverage regions. By expanding the trap’s com-
munication capabilities, it could be deployed in a wider range of environments,
enhancing its applicability and reach.

Finally, the smart delta trap has the intention to be tested in field conditions to
validate its effectiveness and reliability. This was not possible due to the COVID-
19 pandemic and the time needed to validate the trap design. However, future
work will focus on field testing to evaluate the trap’s performance under real-
world conditions and to gather feedback from end-users. This feedback will be
crucial for refining the trap’s design and functionality, ensuring its practicality
and effectiveness in pest monitoring and control.

It is important to note that none of the designs presented in this research are
published or patented. This will be the next step in the development of the smart
delta trap. The design will be published in a scientific journal and patented to
protect the intellectual property of the trap. In any way, the author ask for your
discretion in the use of the information presented in this research.



Chapter 7

Conclusion

7.1 Summary of Findings

The research presented in this thesis aimed to design, develop, and validate a smart
trap for monitoring the Mediterranean fruit fly (Ceratitis capitata). The smart
trap integrates radar and camera sensors, leveraging advances in sensor technol-
ogy, data processing, and connectivity to enhance pest detection and monitoring.
The findings are categorized into several key areas: sensor performance, radar-
based detection, system integration, and overall efficacy compared to traditional
methods.

The radar-based detection system was a central focus of this study. The radar
technology, particularly the W-band pulsed radar, was evaluated for its ability to
detect and count fruit flies. Initial experiments with metal spheres validated the
radar’s detection zone and resolution. Subsequent tests with Mediterranean fruit
flies demonstrated that live flies could be detected effectively, although dead flies
posed detection challenges due to low moisture content and reflectivity. Exper-
iments in dark conditions confirmed that radar detection improved significantly
with live flies, indicating the importance of specific environmental controls for
optimal performance.

One of the critical findings was the performance of different lenses (FZP and
HBL) and their impact on detection accuracy. The FZP lens showed higher re-
flectivity and better performance under varying gain and HWAAS (High Way
Application Specific) settings. However, the radar’s ADC saturation at higher
gain values necessitated careful calibration to avoid data loss. This meticulous
calibration allowed for robust detection even under challenging conditions, affirm-
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ing the radar’s potential for entomological applications.

The integration of various sensors in the smart trap provided comprehensive
data collection capabilities. The ENS160 sensor exhibited robust detection capa-
bilities for eCO2 and TVOC, essential for monitoring environmental conditions
that influence pest behavior. The sensor’s optimal performance was observed
at a 2 cm distance from the lure, where both eCO2 and TVOC readings were
maximized and most consistent. This optimal distance ensures reliable, real-time
monitoring of lure conditions, significantly enhancing pest management strategies.

Additionally, the trap’s design considered various practical aspects, such as the
mechanical stability provided by a polystyrene base and the strategic placement of
sensors. The radar’s capability to detect flies on a glue base further validated the
trap’s practical applicability in field conditions. The consistent detection patterns
observed across different configurations underscored the system’s reliability and
adaptability.

Comparative analysis with traditional monitoring methods highlighted several
advantages of the smart trap. Traditional methods, such as visual inspections and
mechanical traps, are labor-intensive and less efficient in real-time data collection.
The smart trap’s integration with IoT and cloud services facilitated continuous,
real-time monitoring and immediate data analysis. This connectivity allows for
rapid response to pest infestations, reducing the reliance on manual inspections
and enabling more proactive pest management.

However, the study also identified limitations and areas for improvement. The
radar’s sensitivity to environmental factors, such as ambient light and tempera-
ture, requires further refinement to ensure consistent performance across diverse
field conditions. Additionally, the need for precise calibration of sensor parame-
ters suggests that further development is necessary to create a more user-friendly
and universally applicable system.

In conclusion, the developed smart trap demonstrated significant advance-
ments in pest monitoring technology. By integrating radar and camera sensors,
and leveraging IoT connectivity, the system offers a scalable, efficient, and accu-
rate solution for monitoring the Mediterranean fruit fly. Future research should
focus on refining sensor calibration, expanding the system’s applicability to other
pests, and enhancing user interfaces to facilitate broader adoption in agricultural
practices.
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7.2 Contributions to precision agriculture and
integrated pest management

The contributions of the presented work to precision agriculture and integrated
pest management (IPM) are significant and multifaceted. This research integrates
modern sensing technologies, data analysis, and automated reporting systems to
enhance the monitoring and control of the Mediterranean fruit fly, a major pest
in fruit crops worldwide.

One of the primary contributions to precision agriculture is the development
of smart traps equipped with advanced sensors and image processing capabilities.
These smart traps autonomously identify and count pests, reducing the need for
manual labor and enabling continuous, real-time monitoring of pest populations.
By employing a combination of millimeter-wave radar and computer vision, the
system achieves high accuracy in pest detection, even in challenging conditions
where insects are constantly moving.

The integration of smart traps into precision agriculture frameworks allows
for precise application of pest control measures. The detailed data collected from
these traps, including the number and type of pests, helps farmers make informed
decisions about when and where to apply pesticides. This targeted approach
minimizes the use of chemical pesticides, reducing environmental impact and pro-
moting sustainable farming practices. Additionally, the data-driven methodology
supports better resource allocation, ensuring that water, fertilizers, and other
inputs are used efficiently to maximize crop yields.

In the context of integrated pest management, the smart trap system offers
several advantages. IPM relies on a combination of biological, cultural, physical,
and chemical tools to manage pest populations in an environmentally and eco-
nomically sustainable manner. The automated nature of the smart traps enhances
the monitoring component of IPM by providing consistent and reliable data on
pest behavior and population dynamics. This real-time data enables early detec-
tion of pest outbreaks, allowing for timely and targeted interventions that can
prevent the spread of pests and reduce reliance on chemical controls.

Furthermore, the data collected by smart traps can be integrated into broader
pest management systems, facilitating comprehensive monitoring and analysis.
This integration supports the development of predictive models that help antici-
pate pest outbreaks and optimize control strategies. Machine learning algorithms
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and advanced data analytics can further enhance the accuracy and efficiency of
these systems, providing valuable insights into pest trends and informing long-
term pest management plans.

The work also addresses some of the challenges associated with implementing
precision agriculture and IPM practices. The high cost of technology and the need
for specialized knowledge to interpret data and implement strategies can be barri-
ers to adoption. However, the research demonstrates that ongoing advancements
in technology can help overcome these hurdles. By making these technologies
more accessible and user-friendly, the research promotes wider adoption of preci-
sion agriculture and IPM practices, benefiting Mexico agriculture. This research
significantly advances the fields of precision agriculture and integrated pest man-
agement by developing an innovative smart trap system.

This system enhances the accuracy and efficiency of pest monitoring, sup-
ports sustainable pest control practices, and provides valuable data for informed
decision-making. The contributions of this work have the potential to improve
crop health, reduce economic losses, and minimize environmental impact, ulti-
mately leading to more sustainable and productive agricultural practices.

7.3 Future research directions

The future research and directions for the proposed work on the smart delta trap
present significant opportunities for enhancing its functionality and applicability
in integrated pest management (IPM) and precision agriculture. The current
design and implementation of the smart trap, although robust, can be further
refined to address some of its limitations and expand its scope. One potential
direction is the integration of additional sensors, such as time of flight (ToF)
sensors, which could provide valuable distance measurements to substantiate the
radar’s detection data. This would enhance the trap’s ability to track pests more
accurately and reduce the likelihood of false positives.

The incorporation of ToF sensors would also enable the differentiation between
pests and other objects or insects within the detection range, thereby improving
overall pest identification accuracy. Another avenue for future research is the de-
velopment of an automated pest identification system based on advanced machine
learning algorithms. While the initial stages of this research involved developing
a basic classification model using neural networks, the model’s performance could
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be further enhanced by incorporating additional features and training data. This
improvement would increase the accuracy and reliability of the pest identification
system, making it more effective in real-world applications.

Expanding the architecture proposed in this research to detect other pests
and adapt to different traps or monitoring systems is another critical direction.
For instance, the smart delta trap could be modified to target moth pests by
incorporating specific sensors or attractants. This adaptability would broaden
the trap’s applicability, making it useful for monitoring a variety of pest species
in different agricultural contexts. The trap could also be improved by integrating
additional communication modules, such as LoRa or Narrowband IoT (NB-IoT),
to enable connectivity in remote or low-coverage regions. This enhancement would
allow the trap to be deployed in a wider range of environments, increasing its reach
and effectiveness.

Field testing of the smart delta trap is essential to validate its performance
and reliability under real-world conditions. Due to the COVID-19 pandemic,
extensive field testing was not possible, but future work should focus on this aspect
to gather feedback from end-users and refine the trap’s design and functionality.
Field testing will provide valuable insights into the trap’s practical application,
helping to identify any issues that may arise and addressing them accordingly.

The development and publication of the smart delta trap design in a scientific
journal, along with obtaining a patent to protect its intellectual property, are
crucial next steps. This will ensure that the innovations presented in this research
are recognized and protected, fostering further development and collaboration in
the field. Additionally, publishing the design will allow other researchers and
practitioners to build on this work, contributing to the advancement of IPM and
precision agriculture.

Future research should also explore the integration of renewable energy sources
to power the smart delta trap, reducing its reliance on traditional power sources
and making it more sustainable. Solar cells or long-lasting batteries could be used
to ensure continuous operation, even in remote or difficult-to-access areas. This
would enhance the trap’s practicality and reduce maintenance efforts and costs.

The proposed future research and directions aim to address the current limi-
tations of the smart delta trap while expanding its functionality and applicability.
By integrating additional sensors, improving pest identification algorithms, adapt-
ing to different pests and environments, and conducting extensive field testing,
the smart delta trap can become a more effective and versatile tool in IPM and
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precision agriculture. The publication and patenting of the design will further
solidify its contribution to the field, promoting innovation and collaboration.
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