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Preface

This technical report gives, in presentation style, a selection of topics
that conforms a course in Basic Discrete Mathematics and its main
purpose is to be used as a learning guide for students or self-educated
persons interested in this area of mathematics. The use of colors in text,
text backgrounds, and graphical elements is an essential characteristic of
this kind of style format, helping the reader to distinguish and localize key
words, fundamental ideas, or relevant suggestions.

The report can also serve as supporting material or as a didactic tool for
known textbooks treating the same subject. A representative list of
bibliographical references is provided in the next page. Thus, lecturers,
instructors, or teaching assistants may also take advantage of the way
topics are exposed herein.

As prerequisites for a better understanding of the kind of mathematics
given here, the reader must have a background on general Algebra,
elementary Analytical Geometry, and basic Calculus. Also, some Computer
Programming knowledge and practice coding algorithms is required.

Gonzalo Urcid
Tonantzintla, May 22", 2025
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Introduction

Goal: To learn how to think mathematically.

1) Mathematical reasoning.
Read, understand, and construct mathematical arguments.

2) Combinatorial analysis.

Ability to count objects using basic and advanced techniques.

3) Discrete structures.
Represent and relate discrete objects mathematically.

4) Algorithmic thinking.
Specify and solve a problem by means of an algorithm
In pseudocode language.




Introduction

What is discrete mathematics?

* The study of discrete objects using mathematics,

* Calculus is based on the concept of continuity, but
discrete math deals with separated, disconnected
or discontinuous objects.

* Discrete objects are finite in nature and can
be represented by natural or integer numbers.

* In a technological sense, discrete means digital.



Introduction

Why do we need to study discrete mathematics?

* To develop our mathematical maturity, and
our ability to understand and create mathematical proofs.

» As a gateway to more advanced courses in computer science
such as data structures, algorithm analysis, database theory,
formal languages, and computer security to name a few.

* To solve problems in applied sciences or engineering
for example, in the industrial, chemical or biological areas.
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Logic-| Propositions

4 The rules of logic give precise meaning to mathematical statements.
1 Used to distinguish between valid and invalid math arguments.

4 Also used to design computer circuits, construction of programs,
and verification of correctness (in programs).

A proposition is a statement that is either true or false, but not both.
Is is the basic building block on which logic is founded.

Notation
Truth values T (true) F (false)
Propositions p,qg,r,s, ... (lower case)

10



Logic-| Propositions examples

Examples Proposition?
X+Y =Y+ X forevery pair of real numbers x,y. Yes, T
Answer this question. No, 7?7
Yesterday was our first class. Yes, F
p="X+y=y+zIif x=2." Yes, p is true

g = “Can you give me a prime number?” No, q is a question
Miami is the capital of Florida. Yes, F

A compound proposition is constructed by combining one or more
propositions using logical operators and connectives.

11



Logic-| Operators

Basic logic operators or connectives

Symbol Meaning Name
~P it is not the case that p negation
O A q p and g conjunction
DV q p or (inclusive) g disjunction (could be both)
0D g p or (exclusive) q exclusive or (not both)
P—>( If p then g implication
hypothesis, conclusion,
premise consequence

NOTE: negation is a unary operation, the others are binary operations.

12



Logic-| Operators examples

Let be, for example,

p = you have the flu.

g = you miss the final examination.
r = you pass the course.

q vIv p = you miss the final exam, or pass the course, or have the flu.
q —>» ~ | = if you miss the final examination then you will not pass the course.
ré~r = you have the flu or you do not have the flu.
~ p /N\ ~ q = you have no flu and you did not miss the final examination.

How do we find the truth value of a compound proposition?

Use the logical values of each operator as defined by their truth tables.

13



Logic-| Truth tables

given find truth value of P ~P

P i :
P { PAQ

od pag
P g DVv(Q

p.q  pvQ T

F F F
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Logic-| Additional tables

given find truth value of

pDq

P.g pDQ

nm ||
RIS
N A

P.q P—¢

|| O
n Al L

P—¢

A brief exercise: find the truth tables for the compound propositions

a |[~q—=>~P| b |[(P—=>0)A(0— P)

15



Logic-| Implications

Other ways of expressing an implication: p —> q

« “Iif p, then "
If you log on to the server, then you have a valid password.

* “p Is sufficient for q”
Logging on to the server is sufficient for a having a valid password.

* “p implies q”
To log on to the server_implies to have a valid password.

* “g is necessary for p”
A valid password is necessary to log on to the server.

o) =do-p)  (qopeEpo-a)

Contrapositive Converse

16



Logic-| Table construction

We can consider compound propositions as functions of several
logical variables having values in the set {T,F}.

# rows In table

Nn=1 variable, f(p)="Ff(p)=~0p, 2

n=2 variables, g(P,q)=9(p,P,)=~(P,Vv P,) 4

n=3 variables, h(p,q,r)zh(pl, P, p3):(pl_) pz)_) Ps 8
N variables, f(p,P,,---» Py) 2"

Each logical variable can assume the value T or F, therefore,
the number of rows in the table for f is,

17



Logic-| Truth table examples?
a [~d—>~P P9~ ~-PpP~-—>~p p—>(
T T F F T T
T F T F F F
F T F T T <:> T
F F T T T T
o |[(P—>0)A(q— p)
Pag p—>q gqo>p (p>PA(@—>p) P<>q | ~(pDa)
T T T T T T T
T F E T E E = E
F T T E E E E
F F T T T T T

This conjunction is called biconditional.

18



Truth table examples®

Logic-|
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Logic: Part |l

* Bits and bit string operations
* Logical equivalences
 Basic logical identities

* Algebraic manipulations

* Generalized operators

20




Logic-ll Bits & bit string operations

Language logic Computer logic
e truth value * bit (binary digit)
* logic variable  boolean variable
* proposition * boolean expression
* logical operations * bit operations
» sequence of logical values * bit string

{T,F} {0,1}

{~ AV, S} {NOT, AND, OR, XOR}
s=(T,T,F,F,T,F) §=110010 <1 length 6

on each corresponding bit for 011011 —=4X®y=101001
two bit strings of the same length. Y = xvy=111011

21
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Logic-ll Equivalences?

* a proposition that is always true is called a tautology,
* a proposition that is always false is called a contradiction,
* otherwise it is called a contingency.

ro~ |
p =P PA=P P—>~Pp ~Pp—=>P|PVv~=DP

T
F

F

F F T T
T F T F

We also use algebraic notation, for example,

PA~p=F pv~p=T

22



Logic-II EquivalencesP

We say that p is logically equivalent to q if and only if the_biconditional
between p and g is a_tautology. In symbols,

p<dqg when p<>g=T

How do we verify a logical equivalence?

1) by showing that p and g have the same final column in their
respective truth tables, or

2) by reducing p to g using the rules of logic in algebraic notation.

Completeness: a proposition p can be build using only the set
of primitive logical connectives, that is to say, from {NOT, AND, OR}.

Duality: a proposition p has a dual proposition p* obtained
by exchanging AND’s with OR’s, and T’s with_F’s.
23



Logic-ll |dentities?

De Morgan's laws: |~ (PAQ) <~ pVv ~0Q

~P~d~(PAQ)|~PV~A~(pAQ)<>~pVv~(

T - - @)
m— T - fl®)

4T =T
m T T -
— - -+

— < <

— < <

—H <47

biconditional is a tautology
same last column

Using the principle of duality, another equivalence is immediately
established, this is the second logic law of De Morgan,

~(pva)=~pAr~(q

24



Logic-II ldentities®

Logical equivalence Law name
pAT < p identity
pAF<SF domination
PAPS P idempotent
double negation
~(~p) P :
PAG=HAP commutative
(PAG)AT <= PA(QAT) associative
pr(@vr) < (pAa)v(PAT)  distributive
~(pAQ)=~pVv~(Q De Morgan

All these fundamental logical identities or equivalences,
and their duals are proved using truth tables.

25



Logic-ll

Algebraic manipulation

Example of algebraic reduction using the fundamental equivalences:

The following implication is a tautology

<S[(~pAap)v(~pag)l—q
<[Fv(~pagl—q

< (~ pAag)—g

<~ (~pag)vg

< (~(~p)v~a)vq

< pv(~qva)

S pvieseT

[~ pA(pPva)]—4

distributive law

contradiction

Identity law

equivalence of implication operator

De Morgan’s law

double negation and associative law

tautology and domination law

26



Logic-ll Generalized operations

The associative law allows to take out parentheses from an expression
containing only conjunctions xor disjunctions. So, we can write, safely,

Po AP AP instead of (P, A P,) A Ps
The generalized conjunction and disjunction are defined as:

Aieg Pi = PiAAP, true when each p; is true,

Vi Po=PpVeevp, true when at least one p; Is true.

Example, the generalized Ms laws are written as:

~ A P = VL (=~ p;) operator exchange

~Via P =AL(- P)

transfer
negation out-in \/

27



Logic: Part Il

 Predicates

* Quantifiers

« Examples, one variable
« Examples, two variables
 Binding variables

« Quantifier negation

28




Logic-lll Predicates?

Reminder: compound proposition = logical function = boolean expression,
they depend only on logical variables assuming values in the set {T,F}={1,0}.

< _ «— these statements have other
(x= A (x>=0) 2P0 HER kinds of variables whose values

m is an odd number Q(m), meZ | «— pelong to a certain set such as
. s real or integer numbers, or
Word x contains letter “a”. | S(X), XeW | «_— words J

The set U from which x takes its values is called the universe of discourse
or the set under discussion.

A propositional function is a predicate P about an object x or a property that x

can have. /

P(x), XeU

v
Q(X,y), X,yeU
one argument two arguments

29



Logic-IlI Predicates®

Is a propositional function P(x) a proposition?

NO if x remains without a value, YES if x is substituted by a specific value.

P(X)=(Xx<4) A (X >—x)

(Q(1098) =/F
1Q(2001) AT

Q(m) = m s an odd number

(S(applied) =T
S(x) = word X contains letter “a” iS(discrete) =

propositional

ive a value it
p(x) function | 9 proposmon) P(x ) = T
X=X, eU 0 F

30



Logic-lll
propc_)sitional guantification
@ P(X) function 5| all, some, or
only one x

Quantifiers

proposition B T
> Q[P(X)]—{F

guantifier

universal quantifier ~ VYXP(X)  true if P(x) is true for all values of x in U.

existential quantifier ~IXP(X)  true if P(x) is true for some values of x in U.

we use the symbol ~ I'XP(X)  true if P(x) is true for only one value of x in U.

For a finite number of elements,  {X;, X,,..., X, }=U

VXP(X) & AL P(X)
IXP(x) < v, P(x)

X P(X) & @, P(x)

in fact, you can take the
quantifier operators as
<«—— a natural extension of
“and”, “or”, “xor” applied
to a finite or infinite
number of objects.

31




Logic-lll Quantifiers 1 variable

» Every computer science student needs a course in discrete mathematics.

U = set of all computer science students
P(x) = x needs a course in discrete mathematics vxeU, P(X)

» There is a student in this class who owns a personal computer.

U  =setof all students in this class

Q(X) = x owns a personal computer IxeU ’ Q(X)
> Truth value of  VneZ,(n* >0) T, since a square is always = 0
> Truth value of 3IneZ, (n2 =2) F, since the only solution to the

equation is not an integer.

> Truth value of  FIXP(X) — IXP(X) T, since “only one X" can be taken
as “at least one x” or “some x".

32



Logic-lll Quantifier 2 variables

» Every student in this class has taken at least one computer science course.

U, =setofall students in this class
U, =setofall courses in computer science
P(X,y) = X has taken y

vxeU,dyeU,,P(xY)

» There is a student in this class who has been in every room of at least one
building on campus.

U, =setofall students in this class
U, =setofall buildings on campus dxeU,dyelU,Vzel,,

U. =setofall rooms
P?Z’y) =zisin Y: Q(X’Z) =X has beenin z (P(Z, y) — Q(X’ Z))

» Truth value of YNneZ dmeZ,(n+m=0) T, since m=-n

> Truth value of IneZ Ame Z,(n* +m?* =6) F, try low values for m,n.
m,n=0,%1,+£2,%3

33



Logic-lll Implicit quantifiers

> Remember the definition of a limit in calculus? | lim f(x) =L
X—a

For every real number g >0 there exists a real number 6 >0

such that [f(x)—L|<e whenever 0<|x—a/<& hidden or implicit
universal quantifier

Ve>036>0 vx(0<|x—a <6 —|f(x)-L<e)
N

N—_—

> Write out the quantification 3!XP(X) using the other quantifiers,
and the logical operators.

AXP(x) < 3IxXP(X) AV XTY(P(X)AP(Y) > x=Y)

only one x —> some X we assure that x =y (unique)

™~

Could be another y?
34



Logic-lll Binding variables

Given a propositional function P(x), if a quantifier is applied to P(x) or a specific
value of x is given, we say that variable x is bound, otherwise it is free.

VXP(X, y) Vx3yQ(x, y) VXVYP(x, y) v R(z) 3yQ(X,, Y)
X is bound X,y are bound X,y are bound y is bound
y is free zis free X, is a value (bound).

Binding variables is the general process that gives us a proposition
from a propositional function.

@ P(X,X;,...,X,) =P ifandonlyif VI,X; Isbound

35



Logic-lll Quantifier negation

It is not the case that for all x, P(X) =T It is not the case that for some x, P(x) =T
There is an x that makes P(x) = F Forall x, P(x) = F

operator exchange

~ VXP(X) < 3x ~ P(X) ~ 3IXP(X) < VX ~ P(x)

negation transfer

~ JyIXP(X, Y)| <= Vy ~ IXP(X, y) < WYyVX ~ P(X, y)

~ VX(3YVZP(X, Y, Z2) AJZVYP(X, Y, 2))| <> Ix ~ (3yVzP(e) ATzVYP(e))
< X(~ TyVzP(e) v ~ I2VYP(e))
< AX(VY ~ VZP(e) v VZ ~ VYyP(e))

< X(VYTz ~ P(e) v Vz3y ~ P(e))

36



Logic-lll Quantifiers other examples

» show that 3IXP(X) A3IXQ(X) is not logically equivalent to 3x(P(x) A Q(X))

P(X) = x is an even number
Q(x) = x is an odd number

P@B) =T — 3xP(x)

Q(7)=T — IxQ(x) then |(IXP(X) AIXQ(X)) =T

T=F

but there is no integer number that is both B
even and odd at the same time, therefore, SERIALLY) =~

» truth value of Ynvm3p, (p = ?) where U is the set of integers.

false because, for example,

:2k+1:k+lez

n=kam=k+1—>p >

37



Sets

e Sets

* Basic operations

« Special operations

« Hasse diagrams

* Algebraic identities

* Generalized operations

38




Sets Concepts

A set is a finite or infinite collection of objects called elements. We usually
consider that elements are of the same kind.

XeUAPX)=T »>xeS
XeUAP(X)=F 5>x¢$S

Notation:| S ={e;,e,,...,e,,..}vS={xeU|P(x)=T}
by listing the elements or by using a predicate

membership relation between
an element x and a set S.

Basic notions the set with the set
all elements without elements
v’ universal set, empty set U ={X|x=x} D={x|x=x}={ }
v’ subset AcB<e VYX(xe A—>XeB) | each x inAis also in B.
v equal sets A=B< AcBABc A | A, B have the same elements.
v’ sets (that we will use) » sets of numbers: natural, integers, real, and complex,

« sets of functions: polynomials, exponentials, and logarithms,
» sets of discrete objects: strings, edges, nodes, etc.

v’ family of sets \
a set whose elements are SETS!

39



Sets

Basic set operators

v’ union

v’ intersection

v’ symmetric difference

v difference

v’ complementation

Two sets are disjoint if

Basic operations
Definition

AuB={x|xeAvxeB}

ANB={x|xe AAxeB}

ADB={x|xe A®xeB}

A—-B={x|xe AAXx ¢ B}

A" =U-A

00e=e

ANB=Y @ Venn diagrams
40



Sets Special operations

The following operations provides us with additional tools for working with sets.

Definition Examples
A={xeN|x<10}—>| Al=10
card(N) =card(Z) =

Additional set operators

v’ cardinality | A|=card(A)
number of elements in A

W-isch] | BB
v/ power set - o)}

is the family of all subsets S of A
(including itself and the empty set) |Al=n,neN —|P(A)|=2"

{a,b}=(a,b)

: A=B={T,F}> AxB=
the set of all ordered pairs formed
from the sets A and B {1, 7),(T,F),(F,T),(F,F)}

v Cartesian product | AxB={(a,b)|ac AAbeB}

41



Sets Examples?

Determine whether each of the following statements is true or false:
x e{x} T ey L {Ge{d __F
{Ge{{3} L oG ! Se{dd _F

Suppose that A, B, and C are sets such that A is included in B, and B is part of C.
Show that A is a subset of C, this is known as inclusion transitivity.

By definiton: | AcB< Wx(xe A—>xeB)
BcCoeWx(xeB—>xeC)

Take an arbitrary value of x, call it X, then From logic, we know that:

X.- e Ao X, eB=
o ERTRERERTA g Ao = (poT)

X, €B—>X,€C=q—>r

So, and again, by definition:

X, €A>X,eC=p-or VX(xe A>xeC)= AcC

42



Sets ExamplesP

Show that A@B=(A—-B)uU(B—A). We have to prove that both sets are equal.

By definition: |A@ B ={Xx|xe A@ X e B}| now pick an arbitrary x, say x,, then

X, e AGB <= (X, € Av X, €B)A (X, 2(AMNB)) belongs to A or B but not both.

< (X, € AnX, 2 (ANB)) v (X, €eBAaX, 2(ANB)) distributive law

Also, we have that| X, € ANB < X, € (AN B)* < X, ¢ AV X, ¢ B|(De Morgan)

(X, € ArX, 2 (ANB)) = Fv(X,e ArX, ¢ B)

(X, eBAX, 2(AnB)) <= Fv(Xx,eBAaXx,&A) therefore,

X, e AOB < (X, e AAX, €B)Vv (X, € BAX, & A) finally, at the set level,

ADPB={x|(xe ArxgB)v(xeBAaXxgA}| fromwhich the result follows
by the definition of set difference.
=(A-B)U(B-A)

43



Sets

For sets A, B show that (AnNB)U(ANB®)=A

(ANBYU(ANB®)=[(AnB)UA]N[(ANB)UB‘]

Examples®

=[(AUA) N (BUA)]IN[(AUB )N (BUB®)]

ONLY intersections, = AN

(BUA)

M

(AU B®)

m‘U

=A

since A is a subset of the
other three terms.

The Cartesian product is not commutative for A, B nonempty sets, unless A = B.

A=B > AxA=AxA

A#B > AxB#BxA

For example, AcCB

If both sets are equal there is nothing to prove.

Since A, B are not equal we can make some choices:

Bx A

44



Sets

U={a}

l

=
® &

Q @

U ={a,b}

l

{a,b}

{a} -Q o
%

Hasse diagrams

U ={a,b,c}

l

{a,b,c}

TR

These graphical representations of the power set of U are known as Hasse diagrams.
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Sets Algebraic identities

The laws of sets are the same as the laws of logic, they share the same
algebraic structure. Completeness and duality can also be applied to sets.

Symbol exchange ANE :A identity
AND =0 domination
TF|lU@ ANA=A idempotent
p,q,r | AB,C (A)" = A double comp.
—>
Al N _
v | U ANB=BnA commutative
) (ANB)NC=An(BNC) associative
=g = AN(BUC) =(ANB)U(ANC) Distributive
(AnB)*=A"UB’ De Morgan

They have the same form, so we just have to remember one group of identities.
46



Sets Generalized operations

Suppose we have a finite family of sets F ={S,,S,,...,S, },
then we define the generalized set operations as follows:

* union UJF=UJS =S,uS,u---uS, ={x|3i,xe S}
i=1

- intersection ﬂF =ﬂSi =5,NS,n---NnS, ={x|Vi,xe S}
i=1

n
« Cartesian product H F = HSi =S, x---xS_
i=1

={(X,..., X:,..., X )| Vi,x. €S}

]

This is called an ordered n-tuple
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Functions: Part |

e Functions
 Classification

* Inverse and composition
* Discrete functions
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Functions-I

Concept

» function

» domain

» codomain

* image of a

* pre-image

* range

* image of S

Concepts?

Symbol A —f) B

f:-A—>B
ar—>b=f(a)
dom(f)=A
cod(f)=B

A function f assigns only one element of B
to each element of A.

b; f(a)=Db
A T B
a; f(a)=>b
ran(f) B @
f(S);ScA
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Functions-I

Common verbal expressions are:

f Is a function from A to B,

f maps A to B,

f is a transformation from A to B.

ConceptsP

setlevel A— B

We define the image of a subset S of A as:

(S)=1{f(a)laeS}

elementlevel @ +— Db

According to this definition the range of a function is ran(f ) =f (A)

and the following chain of inclusions are valid,

F(S)cf(AcB

note that,

f({a}) = f(a)=b B
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Functions-| Classification

Functions are classified as:

* injections (one-to-one) ‘v’al, a, € A, a #ad, —> f (6\1) = f (a-z)

+ surjections (onto) VbeBdacAb=f(a) J

\%
» bijections (both one-to-one and onto) (o) A (o)

A/Note that for a surjection

al - b3 or a bijection,
a, — Db f(A)=B
a, — Db,

o1



Functions-I Inverse

Given a bijection f from A to B then it is possible to go back
from B to A by means of the inverse function of f.

[b=f(@)]rla=f ()]

The identity function from a set A to itself is the most elementary bijection:

Id,:A— A;id,(X) =X
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Functions-| Composition

Functions can be chained one after another by means of the composition operation
that can be regarded as the most important algebraic operation between functions.

f
A— B h=gef

h\ /9 h(x) = (g T)(x) =g(T(x))
C

If g is the inverse function of f then Another possible diagram is the
h is the identity on A. following, beginning with set B,

f f -1
A— B B — A

idA\A/fl idB\B/ f
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Functions-| Examples?
/”ﬂ\ _“ﬂ,“E_AzszR E tj¥-

N e 73
: | =

circ(x,y) c R*

It is not a function

. ______ - =Y. 1
-0 - — 60
""" T
X > X°; bij X = exp(X); bij X = In(X); bij
A=B=R A=R,B=R" A:RﬂB=R|
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Functions-|

EXP. R—o>R" nR* R

% %

ExamplesP
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Functions-I Discrete values

In computer science the next functions are useful tools for several purposes,
all of them have in common that the function values are discrete objects.

Discrete function Definition Value or image
cardinal |- P(A) > N A—|Al=n
_ 1;xeA
characteristic c,:U — {01} C,(X) = 0 x ¢ A
binary string S.P(U)— B” AQL{ = S=5% %
VI,s =Ca(X)
floor | ] :R>Z [ x]=m:m<x;n<x—>n<m

ceiling [T:R>Z [x]=m;m>x:n>x—>n>m
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Functions-| Examples®

> Find the value of H%J + (%—I + %—‘ =[0+1+05]=[15]|=2

> Let f(x)=|x?/3] find f(S)="f{2-10123})
2[5 ]3] 5] - 00013 023

> Show that for all x, fA@B (X) = fA(X)"‘ fB(X)—ZfA(X) fB(X)

1+0-2(1-0); x e AAXx ¢B

XeADPB—> fA@B(X):lz{O+1_2(O.1) XeAAXeB

XegADB—-> T, ;(X)=0=1+1-2(1-1);x € AnB
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Functions: Part |l

* Discrete grids

* Floor and ceiling
e Sequences

« Summations
 Basic formulas
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Functions-I|
R

/

Discrete grids

Z+ XZ+

4

/

R°=RxR

This is a rectangular region
representing the xy plane:

ceee| 7% =7 X7 hoos

This is a rectangular set of points representing
the discrete grid over the integers.

In discrete mathematics we are interested in functions defined over the xy plane,
the discrete grid or one of their subsets.

R e P(R?)

Z e P(Z?)

Z"xZ" eP(Z?)
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Functions-l| Floor & celling

floor | | :R—>Z eiling [ '1R—>Z
mel’Z i
! Oo—O
-2 1 k o X eR
| 1 2
o—
: [05]=1
&—=O i [—-05]=0
i [2]=2
[—1001]=-1

ijzm;‘msx;ngx—mgm ] ‘n>X—>nN>m
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Functions-l| Sequences definition

A sequence is defined as a map that assigns a
numerical value to an integer variable as follows:

sA>B:AcZ'u{0},BcR

/ \ ran(s) =s(A) ={s.}

general term of index n the range of s is not the sequence of terms

n—s(n)=s,

A: N , a.n :1+(_1)n EE— {an :]O:O :{210521012101---1}

A=N;b =2" — {b} ,={12481632,...}

A=N;c =m! — {c .} ,={112,6,24,120,720,...,}
. 1 B 1111

A=Z"a;=~ - {aj}jzlz{li____ }

213’4151"‘1
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Functions-l|

Two important general sequences:

e arithmetic progression

* geometric progression

Sequences examples

first element difference between terms

i

e

S, _a+nd d;tO

S,., =S,+d —>|d=s,, -5,
first element ratio between terms
e 'l

g, =ar ;a=z0Ar=1

01 = ar”” =ar'r

gn+1 — gnr > I= g”+1 / gn
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Functions-I| Summation definition

Summation notation is used to represent the sum of a
finite number of terms in a given sequence.
The choice of letter for the
upper limit /general term index of summation is arbitrary,

d. r-]_ a. = a a a n n n
{ J J—m Z J'\ + m+1+ T Zaj _| Zai _ Zak
j=m I=m k=m

Iower imit ™\ index of summation

Sometimes it is useful to sum a finite set of values obtained from a function,
in that case, we use the following notation:

3 (x)

xXeS

___—value of function at X

S is the indexing set
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Functions-l|

n n
anj =(:Zaj ,ceR
j=0 j=0

A constant value can be pulled out
from the summation symbol.

n n+p
Z]+p kzbk’k_J+p
j=m m+p

n
Y c=nc
j=1

Summation basic formulas

Z(aj +b;) = Zaj +ij
j=0 j=0 j=0

We can split the summation symbol
for the sum of two finite sequences.

An index can be shifted by p, so
the limits of summation change also.

Zn:c:(n+1)c
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Functions-l|

Summation examples?

The sum of an arithmetic progression:

Y5, => (a+ jd)
j=0 j=0

=Zn:a+zn:jd
j=0 j=0

=(n+Da+d> j=(n+Da+d) ]
j=0 j=1

:(n+1)a+d[

|

n(n +l)}
2

5

]=S=1+2+---+n
=1

e

\

Zn:(a+jd)=(n+1){a+%n}

2S=(n+)+(n+D)+---+(n+1)

n times

_n(n+1)
2

S
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Functions-I| Summation examples®

» List the first 10 terms of the sequence whose n-th term is
the sum of the first n positive integers.

Zk _ {n(n+1)} 12 23 34 45 56 67 78 89 910 1011
} n1_2’2’2’2’2’2’2’2’2’2
={1,3,6,10,15,21,28,36,45,55}

» Find the following sum:

200 3 200 3 . [n(n+1) 2 n(n+1) 2
Zk Zk Zk { 2 lzoo_{ 2 lgs

k=99

= [ ][0 _ (100-201)% - (49-99)* =|380,477,799

» What is the value of the following product:
100

[1[(—1)‘ [T T =TT = )H-)® - (—p* 2

i even i odd i odd 50 tlmes
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Functions-I| Other examples?

>Ifa—\_ +Jf|nd{a}
a1=\_\/?1+1/2J , 8y =\_\/§+1/2J, as =\_\/?3+1/2J

a,=1l,a,=2,a;=2,...
The sequence is {1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6}

2 3
> Evaluate ), ) i%j°

=0 j=0

2 3
ZZiZJB = (02. 09) + (02.13) + (02.2%) + (02.3%) + (12.0%) + (12.19)
0 0 (12.23) + (12.39) + (22.0%) + (22.13) + (22.2%) + (22.39)
=0+0+0+0+0+1+8+27+0+4+ 32+ 108
- 180
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Functions-lI
> Showthat ) (a;—a;,)=a,—a

n J=1
> (8;-a;,) =
=1

d,—dy =(a;—ay)+

(@ —ay) +

(ag—a,) +

(@1~ ap o) +

(an_an—l)
> Usi he f h L _1_7
sing the fact that (e k.

o 1 n, "1 1 _

wterd "2l i) snee

1 1 1 1

Other examplesP

(telescoping)

The first value of each term

when added to the second

value of the next term equals 0.
Hence, the final sum equals a, — a,.

L 1
compute
P Sk
1 1 1

K(k +1) k k=1

L

n n+1

{
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Functions: Part Il

 Cardinality

« Growth of functions
* Big-O concept

* Algebraic operations
* Big-Q2 and big-®
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Functions-Il| Cardinality

Reminder: the cardinal of a set A = number of elements in A; it can be interpreted
as the mapping from P(A) to the set of natural numbers N ={0,1,2,...}. /aleph 0

the null set has a finite set with an infinite set;
no elements. m elements. first transfinite number

= the principle of inclusion-exclusion;
for finite sets A and B:

|AUBHA|+|B|-|ANB|

<«—— | A] includes the elements of AN B

<«—— | B| includes again the elements of AMB
so, we have to exclude them.

= note that if A and B are disjoint then:| | AUB|H A|+| B|

= fwo sets A and B have the same cardinality if

a bijection can be established between them.
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Functions-llI Countable sets

A countable set X is defined as a set that is finite or has the same cardinality of N;
otherwise we say that X is an uncountable set.

Set Bijection ? Countable?
X ={0,24,6,..} n— 2n Yes
Y={137,9,..} nN— 2n+1 Yes
[0]={xeR|0<x<1} no bijection exists No
{s.}=1S,.5,--} NS, Yes

In other words, if the elements of set X can be listed in sequence, the set
IS countable. The real numbers are not countable because for a given x
we do not know what the next number is (it is not x + 1 nor x + 0.001, etc.).

Consequently, R is a “bigger set” than N, its cardinal is greater than aleph 0.

|N |=%, <&, 5| R| | (second transfinite number)
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Functions-llI Growth motivation

Suppose that problem P admits a computational solution; consider also that
P is solved by means of three algorithms A,, A,, and A,.

Common guestion: which of the algorithms is better?

In discrete mathematics, “better” means to establish a quantitative relation
for algorithm A, as function of a parameter n. The function value f(n) is
usually interpreted as the amount of time required to solve problem P.

(A11 f (n)) A comparison must be established
bet functi f,g,and hi
P (A, 9(N) | = order to decide which algorithm is

the best.

(A;;h(n))
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Functions-Il|

Growth big-O

Function f is big-O of g ifand only if JC,k >0WVX > K ;| f (X)|< C|g(X)|

test functionf ———

| T

el

x=k x>k R

 f grows almost as fast as g
 f behaves almost as g
* g is a simple upper bound of f

f = 0O(g) | <« reference function g

f(x)=ax”+bx+c;a,b,ceR

X >1—| f (x)|=|ax® +bx+c|
<|a|x2-+{b|x+[c]
|b|+ ]

X X
< x*(laj+bHc]) = C|x?|

= X" (|al+

So in this example, C =|aj+|bl+Hc|A k =1

ax” +bx +c ~O(x*)
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Functions-ll| Growth big-O example

> consider f(N)=1+---+n 7+ g ;
I+ 4N < N 4N : | |
=n"=g(n) i ~O(n?)
Thus, taking C =1,k =0 = oo’
vn>Kk,| T (n)|<Clg(n)| Z°

> consider T (n)=n!

n'=12..n<n.n...n=n" = g(n) > Inl~0O(n")

» from this result we obtain another example,

f (n)=logn!<nlogn=g(n) > | logn!~ O(nlogn)
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Functions-ll| Growth operations

f,, f,=0O(g) — f, + f, = O(0)

By definition, f; ® O(9) <> 3C, , k Vx>k,,| f,(X)|<C,|g(x)|
f, =0O(g9) <> 3C,, k, VX >k,,| ,(X)[< C,|g(X)]

We have to prove that, 3C, Kk VX > k’l( f1 n fz)(X)|$ Cl g(X)| - C="?
K=7
|(f, + £,)(X)|=] f,(X) + f,(X)| triangle inequality,
LM (I <ClOOHCII0 o g e

<(C,+C)IaMX)]; (x> k) A(x>K,) 7 k = max(k,, k,)

Similarly, f,, f,=0O(g) > f,- f, =O(0)
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Functions-ll| Growth operations example

f,=0O(g) A f, =O(g,) - f, + T, = O(max{|g,/,|9,[})

f,~O(g) A T, =0O(g,) = f,- f, =0O(g,-9,)

Example:  (n!+2")(n° + log(n® +1))

(n+2")Y =~ O(n!) since 2" <nl'vn>3
For the second factor, (n2 +1) = O(nz) —> Iog(nz) =2logn therefore,
(n° +log(n® +1)) = O(n®) since 2logn<n®¥vn>0

Using the second law for the product of two functions, the estimate is:

(n+2")(n® +log(n® +1)) = O(n!n?)
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Functions-Il|

Function f is big-Q of g

Growth big-Q & big-®
=

.

14
f ~Q(g) =< g~0O(f)

Since g is a lower bound
for f, then f is an upper

_ — bound of g.
As an example, consider again,

f(nN)=1+-4+n=[n/2|+(n/2]|+1D)+-+4n
>n/2]+[n/2 -+ nl2]
>(n-[n/2]+[n/2]=(n/2)(n/2)=n"/4=g(n)

Function f is big-® of g

/
(1+---+n) zO(nz)}_)

(1+---+n) zQ(pz)\il/
lower

I ~0(g) =[1 ~O(g)IA[T =(g)]

upper
\estimate

n

Dix0n?)|  in’<

sn(n+1)n’

estimate

exact formula for the sum
of the first n integers.
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Functions-Il| Growth examples?

> Show that x° = O(x*) but X* is not O(x’)

Since x3< x4 for all x > 1, we know that x3 is O(x%). On the other hand, if x* < Cx3,
then (dividing by x3) x < C. Since this latter condition cannot hold for all large x, no

matter what the value of the constant C could be, we conclude that x4 is not O(x3).

n
> Give a proof for: Zik ~O(n""):kezZ*
i1

n
Zik 12 34 4k
=1

<n“+n“+n“+...4n"

=n-n* =n*" Hence, the given expression is O(nk*1).
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Functions-ll| Growth examples®

> Showthat f(X)=O(log,Xx)— f(x)=O(log,x);a,b>1

Assume that the corresponding base of each logarithm is greater than 1,
then using the definition of big-O, we can write

3C,k >0vx>k,| f(x)[<C|log, X|
from general algebra, the relation between the two logarithmic functions, is given by,

log, x=Ilog, x/log,a =log, x=1log, a-log,x=C, log, x

therefore, 3C", Kk >0Vx>Kk,| f(X)[<C"|log, x|

Where k is the same though C*=C-C, =C-log, a
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Functions-Il| Growth examples®

» Show that if f(x) and g(x) are real functions of x, then f is big-O of g
if and only if g is big-Q of f.

f O(g) —3C Kk Vx> k’| f (X)|S Clg(X)l we can change the sense

of the inequality, so
[9()1= CT f ()5 CHE (X)]| therefore,
aC", k x> k,|g(x)|=C*|f (X)|=g=Q(f)
» Explain what it means for a function to be ®(1); remember that,

f ~0(g) ©Clal< fI<C,lg| hence, i gog =1

f =001 <C, f|<C,,Vx>k  forvalues of x greater than k, the
function f will be bounded by the
horizontal linesy = C, andy = C,,.

> Show that (x* +xy +xlog y)® = O(x°y?)

(x°y° +xy < X°y) A (xlogy < xy) = X°y + xy < X°y
thus,| (x°y)° = x°y°, Vx>1,y>1
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Algorithms

* Algorithms and pseudocode
« Computational complexity

* Terminology

* Time estimation
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Algorithms Concept

An algorithm is a finite set of precise instructions for performing a computation
or for solving a problem, generally, by means of a computing device.

An algorithm must have the following characteristics:

 Input (from a domain set) and output (the range set according to the input).

» Definiteness, each step must be defined precisely.

« Correctness, the output values should be meaningful for a given input.

» Finiteness, the output is reached after a finite number of steps (for any input).
« Effectiveness, each step must be performed in a finite amount of time.

» Generality, it must be applicable to a class of related problems and not only
for particular inputs.
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Algorithms

A pseudocode language is used to describe an algorithm in a generic way,

Pseudocode

independently from a specific machine architecture or programming context.

procedure swap(x,y €R)
= X
X:=Y
y.=12

procedure insert(x,a,,...,a, €Z)

{a,<-<a}
a'n+1::O

=1

while x > a,

procedure smallest(a,,...,a, €Z)
small:=a,
fori.=2ton

If small >a, then small:=a,

=1+1
forj;=0ton-—i
an—j+1::an—j

a..= X
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Algorithms Example?2

£10,12,14,15%; x =14 —>n=4

. . I I S _ - S -
Algorithm: linear search | (Isn A X#&) 1 1<n location

orocedure Is(x.a,....a cz) | L 1<4114710) 2
= 1 (2<4A14%12) 3

(3<4A14=14) 3 3<4 |3

while (I<nAXx=a)
L=1+1 10121415} x =11—>n=4
Ifi<n
then location: =1
else location:= 0

I 1I<n A x=a) 1 1<n location

1 (1<4A11#10) 2
(2<4A11#£12) 3
(3<4A11#14) 4
(4<4A11#15) 55<4 |0
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Algorithms

Algorithm: binary search

procedure bs(x,a,,...,a, €Z)
{a, <---<a }
I:=1 {left end point}
J:=n {right end point}
while i < j
m:=| (i+)/2]
Ifx>a,
theni:=m+1
else j;=m
If X =a,
then location:=1
else location:=0

Exam

pleP

a=/+3n;n=1...16

{10,13,16,...,55};x=52 —>n=16

<] m x>a, 1 ]

1<16 8 52>31 9 16
9<16 12 52>43 12 16
12<16 14 52>49 14 16

14 <16 15 52>52 14 15
14 <15 14 52>49 15 15

/

52 =a, =7+3(15) — location =

15
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Algorithms Complexity basic ideas

The computational complexity of an algorithm is defined as a quantitative measure
of its performance when producing an output for a given input of size n.

/ Time complexity: number of
@ional co@\ operations required for a given n.
Space complexity: memory

required for a given n.

Procedure # of comparisons / time complexity
- smallest 2n—1~=0(n)
. linear search 2n+2 ~0(n)

« binary search 2logn+2 ~ O(logn)
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Algorithms

Algorithm: binary search

Complexity analysis

procedure bs(x,a,,...,a, €Z)
{a,<-<a}
I:=1 {left end point}

J:==n {right end point}
while i < | — .

thenil=m+1

else j;=m

ifx=a —
then location:= i
else location:=0

Assume that the number of elements in the
list is a power of 2 (remember the example):

n=2“—>k=logn

comparisons are made, one for testing
the exit, the other for testing x.

7 During execution of the while loop two

| Each step within the loop reduces the
search interval by half; this is done k times.

\ One comparison is realized when exiting
the while loop and another one for testing
— if x was found in the list.

The total is: 2-k+2:2Iogn+2
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Algorithms Complexity terminology

Description Complexity Type of Problem
constant O(]_)
logarithmic O(logn)
S
linear O(n) tractable 5
L
linear-log O(n Iog n) Vv
b A
polynomial O(n ) B
L
ny .
exponential O(b");b>1 SV E
factorial O(n !)
There is no algorithm that can tell if given UNSOLVABLE
another program with its input, the program

will halt or not (Alan Turing famous Halting Problem).
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Algorithms Input size, operations & time

Just to have an idea of the amount of time needed for solving a problem
with a certain time complexity if one bit operation takes 1 nanosecond.

1 nanosecond =1 ns = 10° seconds

Input size Bit operations used
n logn n nlogn n’ 2"
10 3 10 30 100 1 us

102 7 100 700 10 us | 4-10% yr
10° 20 100us 20ms 17 min| >10"° yr
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Algorithms Examples?

» Describe an algorithm that uses only assignments statements that replaces
the triple (x,y,z) with (y,z,x). What is the minimum number of assignment
statements needed?

W.=X,; Xi=VY,V.=2,Z:=W | wis a buffer variable, 4 assignments.

» Describe an algorithm that determines whether a function from a
finite set to another finite set is one-to-one (an injection).

Dom(t)=A=1a,...a,} » How much time does an algorithm take to

b:=1 solve a problem of size n if this algorithm
1 €1,...,n uses 2n2+ 2" bit operations, each requiring
jel,....n 1 ns, with the following values of n?
(i<))—izj—>f(a)="1(q)? n=10— 2(10)? + 2 = 200+ 1024 = 1224
T — b:=0Aexit = 1224 x1ns=51224 us
b=17 N = 20 —> 2(20)? + 2% = 800+ 10242 = 1049376

T — f injective
F — fnotinjective

— 1049376 x1 ns=1049376 ms
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Algorithms Examples®

» Devise an algorithm to compute x", where x is a real number and n is an integer.
(Hint: First give a procedure for computing x" when n is nonnegative by succesive

multiplication by x, starting with 1. Then extend this procedure, and use the fact
that x™ = 1/ x" to compute x" when n is negative.

procedure power(xeR,neZ)
s # of arithmetical operations
m:=abs(n) best worst average (any)
=
fF())ri'—ltom n>0 n<0 ne’
=p-X
ifnp<0p n n+1 n+(n+1)_n+1
2 2
p=1/p
{p=x"} best, worst, average ~ O(N)
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Algorithms Examples®

» Describe an algorithm for finding the smallest integer in a finite sequence
of natural numbers.

procedure smallest(a,,...,a, € N)

small ‘= o In this example there is no distinction
fori:=2ton between the best, worst, and average
analysis since all elements in the

If small > a, then small :=a, sequence must be scanned.

{small =min(a,,...,a,)}

# of comparisons within the loop:
procedure smallest(a,,...,a, € N) 2[(Nn-2)+1]=2(n-1)
small :=a,
| =2

while 1 <n
if small > a, then small :=a, total =2(n—1) +1=2n-1~O(n)

I=1+1

# of comparisons outside the loop:

lwheni>n
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Algorithms

Examples®

» Devise an algorithm that finds all terms of a finite sequence of integers
that are greater than the sum of all previous terms of the sequence.

procedure findterms(a,,...,a, € Z)
{use boolean vector b,
for accumulating terms}

fori=1ton
b =0
s=0
for j.=1toi-1
S:=5+a,

If a. >sthenb =1
{b is a binary vector showing
positions where a. > spt}

Since there are two nested loops, after
counting the number of additions and
comparisons it results that,

time complexity ~ O(n?)

A better algorithm:
procedure findterms(a,,...,a, € Z)

s:=0

fori:=1ton
If & >sthenb. =a,
elseb. =0
S=S+a

Here, time complexity ~ O(n)
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Algorithms Examples®

» Analyze the average-case performance of the linear search algorithm, if exactly
half the time element x is not in the list and if x in the list is equally likely to be
In any position.

Algorithm: linear search Case 1: when x is not in the list
procedure Is(x,a,,...,a, €Z) | 2n (within) +1(exit) +1 (check location)
=1 2N+ 2
while (I <n A Xx#a;) Case 2: when x is in the list

l=1+1

X =a — 21+1 (comparisons)

=Y @i+ =2)i+Y1=2. ”(”;1) N
i=1 i=1 i=1

ifi<n
then location:= 1

else location:= 0 =n(n+2)=avg=n+2

casel+case2 (2n+2)+(n+2) |3n+4
2 - 2 ]

Total average # of ops. =

~O(n)
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Number theory

* Integer division

* Prime numbers

 The division algorithm

* Modular arithmetic
 Random numbers

* The Euclidean algorithm
* Base-b representation
 Binary integer operations
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Number theory

Integer division

Division between real numbers: “a is divided by b”

:RxR, —R:(ab)>a/b;b=0,R = R—{0}

Division between integer numbers: “a divides b”

1Z,xZ—>Z;(a,b)—alb;a=0,Z,=2—-{0}

ab«<dceZ,b=ca

we say that a is a factor of b or b is a multiple of a

Given two positive integers n > d, the number
of integers divisible by d not exceeding n is |_n / dJ

Proof: d is a divisor of all numbers of the form kd , k S ZJ therefore,

O<kd<n—0<k<n/d o k=|n/d]
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Number theory

Properties

A basic set of properties for divisibility: let a, b, ¢ be integer numbers,

albAnalc—al(b+c)

alb > YVceZ,albc

alb Abjc—alc

alb<Jk, eZ,b=ka
alcedk, eZ,c=k,a

—=b+c=(k,+k,)a=ka=a|(b+c)

ab <3k, eZ,b=k,a

—bc =(ck,)a=ka=albc

ab <3k, eZ,b=ka
bjc <> Tk, €Z, c=k,b

=c=kb=k,(ka)=ka=alc
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Number theory Prime numbers?

A prime number (in the sense of primitive or primary) is a positive integer p

whose only divisors are itself, p and 1. If a number n is not prime it is called
composite.

P—{23571113,.. 2% 1 17"

There is no formula that generates all prime numbers; supercomputers are

used to search for huge prime numbers, the prime shown in the }ist has
909,256 digits, it is of the form,

2° -1, peP

The fundamental theorem of arithmetic:
60=2.2-3.5=52%-.3.5

vneZ ' ,n=]|p’
1_1[ 210=2-3-5-7

=P PP | 12115103 = 7%.11-13% 19
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Number theory Prime numbers®

ngP—»n:wL&b>1:>a£Jﬁvb£Jﬁ otherwise,

—~(a<J/nvb<yn)ea>Jvnab>Jn =ab=+/nvn>n

Thus, a or b is a factor of n less than its square root, and it can be prime or by the
fundamental theorem of arithmetic it has a prime factor. In either case,

dp € P, p|n/\p£\m

A consequence of this result: if there are no primes p dividing n but are less than the
square root of n, then n is a prime number.

n=131-|+131|=11

since, 2,3,5,7,11<11 do not divide 131, then 131 is a prime number.
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Number theory Division algorithm

acZrdeZ —>3lq,r;(0<r<d)a(a=dg+r)

dividend divisor remainder quotient

6/=7-94+4,0<4<7; (a,d,r,q) =(67,7,4,9)
—-67/=7-(-10)+3;0<3<7;(a,d,r,q) =(-67,7,3-10)
—67#7-(-9)+(-4),;,-4<0!

As computer integer operators,

g=adivd |— 67div7=9

r=amodd | — —67mod7=3

100



Number theory

Greatest common divisor of
two integer numbers a,b:

Least common multiple of
two integer numbers a,b:

gcd & Iecm
D ={d:d|a Ad|b}— gcd(a,b) = max D
D={12,34,612} — gcd(24,36) =12

M ={ma/mAb|m}— lcm(a,b) =min M

M ={72,144,216,.. } —> Icm(24,36) = 72

m

1=1

a:l_[piai ;b:Hpibi —>
i=1

¥,

m ng(aa b) — H pimin(ai b;)
i=1

lcm(a,b) = | | pm@*)
L i=1

24 =2°.3 gcd(24,36) = 2m"2) .3mnha) - 22.3-12
36=2°.3 lcm(24,36) = 2™(32) . gma(l2) — 23.32 — 72
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Number theory Modular arithmetic

Two integer numbers a,b are congruent modulo the positive integer m if
m divides (a-b) or if a and b have the same remainder when divided by m.

a=b(mod m) < m|(a—b) v[amod m=bmodm]

13=1(mod12) <12|(13-1) v[13mod12 =1=1mod12]
—7=-3(mod4) < 4|(-7+3) v[-7mod4 =1=-3mod 4]

Since m divides (a-b), by definition,

a=b(modm)<a=b+kmk €Z

m(a—b) — m(b+km—b) — mkm =k

Modular arithmetic consists of the usual sum and multiplication operations
with respect to a fix modulus m. Cyclic events or devices can be described
by a modular algebra; a common example is the clock algebra with m = 12 or 24.
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Number theory Modular properties

a=b(modm)Ac=d(modm) —>a+c=b+d(modm)

a=b(modm) < m|(a—b)<a=b+km

c=d(modm) < m|(c—d)<c=d+km

—a+c=b+d+(k, +k,)m

e

= (@a+c)=(b+d)+km

a=b(modm) A c=d(modm) — ac =bd(mod m)

—ac = (b-+km)(d +k,m) =bd + (k,b+k,d +kk,mm

~

= (ac) = (bd) + km
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Number theory Encryption/decryption?

The following message without spaces

LNHWNQGHCQFIGMSHYDP

was encrypted using the following affine transformation,

f(p)=(7p+3)mod26

If someone in the class finds the original message using the corresponding
decryption function then there will be no quiz on day ?, but if no one decrypts
the message we will do what the message says.

Original message was: QUIZ UNTIL NEXT FRIDAY. Several students
decrypted the message, but where is the inverse function?

f2(p)="?
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Number theory Encryption/decryption®

The following message without spaces

YDUHY JHDX

was encrypted using the following affine transformation

f(p)=(7p+3)mod26

The following solution has been established by David Miao. As you can see,
It IS a nice inverse transformation of the original function. Keep it, perhaps
You will need to send a secret message.

f*(p) =%(26-[(11p+2) mod 7]+ p—3)
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Number theory Random numbers

Pseudorandom numbers: the linear congruential method for generating
a sequence of this kind of numbers is given by the expression,

* X, Is the seed of the generator
N * m is the modulus

X1 = (X, +c)modm;neN » a is the multiplier
* C is the increment

vn,0<x, <m;2<a<m;0<c<m _—
For example, consider the choice: (X, =3, m=7,a=4andc = 1,
X, =(4X,+1)mod7=13mod 7 =6
X, =(4x,+1)mod7=25mod7 =4 i "
x, = (4x, +1)mod 7 =17 mod 7 = 3 Xp = 1%, Mod(2™ —1)
X, =(4x,+1)mod7=13mod 7 =6 The length of its cycle is 231 - 2

(before repetition begins).

{x} . ={364364,..}

A useful generator is given by:
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Number theory Examples

» In each of the following cases, what are the quotient and remainder?

~111/11> -111=11(-11) £10)0<10<11
~1/3->-1=3.(-D{2)0<2<3

» Find the prime factorization of 10!
10!1=12.3456.789.10=2.32°5.(2.3).7.2°.3°.(25) 52°-3* .5° . 7

» Which memory locations are assigned by the hashing function
h(k) = k mod 101 to the records of students with the following SSN?

h(104578690) = 104578690 mod 101(58) Xﬂé@.ﬂ?j?g”f?nﬁ*i;‘?giﬁif s

h(432222187) = 432222187 mod 101 @ very quickly

» Decrypt the following message encrypted using the Caesar cipher.

Julius Caesar decryption method is given by f (p) = (p—3)mod 26 therefore,

WHVW WRGDB —{ TEST TODAY
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Number theory

From the division algorithm we know that

Consider the following,

d|land|b—>d|anad|b(—g)—d|a-bg=r

dlbad|r—

d|bq

Euclidean algorithm?

a=bg+r;0<r<b

~d|r—{d|bg+r=a

Da,b - Db,r
Db,r - Da,b

(Da,b - Db,r) A (Db,r - Da,b) <~ Da,b — Db,r

Since both sets of common divisors are the same, they have the same maximum, so

gcd(a,b) =max D, , = max D, ,

=gcd(b, r)

1812
18=12-1+6 <

{1236/\

gcd(1812) =6=gcd(12,6)

D,, {1236}\/



Number theory Euclidean algorithmP

Using this idea we will find the gcd(r,,r,) after several divisions as follows:

L=nq+r,;0<r<np ged(r,, 1) =ged(r, r,) 277 =123|-2+ 31
123 =31-3+30

\

n=rg,+r;0<r,<r, gcd(r:,rz)/:gcd(rz,rs) 31:30.1@
L=rKg;+1, 0< I, <Ij ged( ) I’3) = ged( I, I’4) 54321 =12345 {4 + 4941

\

12345 = 4941 -2 + 2463
4941 = 2463 -2 +15

ng( rn—l’ rn)
2463 =15-164 @

rn—l — rnqn ng( M1 rn) — ng( I ’O) =T

r-n—2 — n—lqn—l + r.n ) 0< r.n < r.n—l ng( I 2, rn—l)

\

\7
last nonzero remainder
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Number theory

Algorithm: greatest common divisor

procedure gcd(a,beZ™)
{a>b}
X:=a
= b
while y =0
r.=xmod y
= v
y=r
{gcd(a,b) = x}

«a and b are relatively prime if

Euclidean algorithm®
gcd(277,123) =1

X y y+#0 r X y
277 123 123#0 31 123 31
310 30 31 30
300 1 30 1
10 O 1 0

=0 (D

Two additional definitions:

gcd(a,b) =1,

* a sequence {a,} from n = 1 to m is pairwise relatively prime, if and only fif,

gcd(a;,a;) =1, Vi # |
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Number theory Base-b representation?

Integers are usually represented using the decimal notation, but computers
use other representations such as binary, octal or hexadecimal.

In general, we can consider a representation respect to a positive integer b > 1.
The number b is called the base, and the corresponding representation of a
positive number n in base b is called the base-b expansion of n.

K
n= Zambm = akbk _|_ak_1bk‘1_|_..._|_ao keZ”,a #0AVm,a_<Db
m=1
I «b =2, binary B={01}
n= (/akak_l' ) 'aia\o)b * b =8, octal O= {0,1, .o ;7}

/ \ e b :16, hexadecimal H :{O,...,g, A,-”’ F}

leftmost digit rightmost digit
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Number theory

(®)p = (*)10

(1011),

(707),

(SAF) 4

Base-b representation®

—51.2°40-2241.2' +1.2° =8+ 2+1=|(11),,

—>7-8°+0-8'+7-8° =448+7 =|(455),,

— 3-16° +10-16" +15-16° = 768 +160+15=

(943)

(®)10 = (*)s

Apply the division algorithm until the guotient is zero, the first

to the last remainder correspond to the digits in the

from right to left.

expansion

10236@3-@3-0+§

(1023) 10 — (3FF)16
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Number theory Base-b representation®

Algorithm: base-b expansion (1()23)10 = (3FF)16
procedure bbe(n,beZ”)
=) q K q+0 A g K
& ° 1023 0 1023#0 |15 | 63 1
whileq =0 6320 |15 3 2
a, :'=qgmodb
3#0 |3 | 0 3
q:=|q/b]|
kK=k+1
{vector a is the b-expansion} (5),, =1-3° +(-1)-3' +(-1)-3° = (]_’_I_’_L)b3

The balanced ternary expansion is: (13),, =1 P 4+1-304+1-3° = (111),,

K
n= mzz;em3m T=1100 1 (79), =13 4 (-1) -3 +1.3° = (10011),,
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Number theory

Two basic operations in binary arithmetic are addition and multiplication.
Here is an example,

(1110), % (1010),
1010=D
c=0«0 0000
c=a<«1 1110
c=0«2 0000
c=a<«3| 1110
10001100

n-1 n-1 n—1
ab=a) b2/ => ab2')=) c a(b,2) — Ishf(ab;, j)
j=0 j=0 j=0

Multiplication2

— 1110=a Two binary numbers a, b of length n = 4,

The list of partial products c; if b has a zero bit
then c =0, if b has a one bit then ¢ = a but
shifted to the left according to the bit position
inb.

The addition of all partial products gives the
result containing at most 2n = 8 bits.

_

ab, =if (b, =0,0,a)
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Number theory

Algorithm: binary multiplication

procedure binmult(a,b €Z")

{a b (an—l”'ao)’ b= (an—l"'ao)}
forj;=0ton-1 < 7
ifb =1 /
then c,:=Ishf(a, )

elsec;:=0

{partial products are in c}

p:=0

forj;=0ton-1
p:=binadd(p,c;)

1p = abj}

oy

/

Multiplication®

To calculate the partial products, the number

of shifts is given by:

0+1+2+-+(N=-D) =3 D I~

I
o

In the final for loop, procedure binadd takes
O(n) operations to add two partial products.
Therefore, the number of additions for p, is:

max{j}~ O(n)

—{p~0(n°)

binadd(p,c.) ~ O(n)}

The total number of operations needed for
this algorithm is then of the same order,

O(n*) +0O(n*) = O(n%)
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Matrices

 Matrices
« Operations
 Boolean matrices

116




Matrices Definitions

A matrix is a rectangular array of numbers with m rows and n columns. Upper case
letters denote matrices of size m x n, and each element of a matrix is a number.

Expanded notation Compact notation
_3‘11 Ay | aln_ 1=1....m
A a.21 a.zz a?n 2nd row A:[aij];{jzl,...,n
1 |2 ... 1 element or entry a; is located in the
el mn intersection of row i and column j.
2nd column

* The transpose of a matrix is obtained by interchanging rows and columns:

AT:[a._]' _j=1,...,n its sizeisn xm
2 =1...,m

» A square matrix is obtained by taking m = n (same number of rows and columns).
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Matrices Types

A square matrix has n? elements, if i = | A symmetric matrix is a matrix
the set {a;} is the main diagonal. equal to its transpose.

* The identity matrix | is defined
as a diagonal matrix where:

s _J1 =]
Y10 i

diagonal lower triangular upper triangular
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Matrices

Arithmetic operations:

O addition and difference
A.B of sizem xn

Operations?

A+tB=C o Vi, |;[c;]=[a; £b;]

O multiplication o P

A of size m x p, B of size p xn A-B=C Vi, |;lc] :Zaikbkj

=

O inversion of A -

only for square matrices n x n dC,A-C=1=C-A=C=A"
_ov cer @ _.Nblj ._

By By e | | —— [c]l=ayb, +a,b, +--+a;b,

[~
e ... o ol b. | e

= - P

Mx P «<—> pxn

the # of columns in A must be
equal to the # of rows in B.

Powers of sqguare matrices are defined as:

A=1, A*=A.A..-A

k times
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Matrices

Algorithm: matrix multiplication

{Aismx p,Bis pxn}

Operations®

multiplications

procedure matmult (A, B) Number of operations in the innermost loop:
/ by k=1...,.p—>p

= matrix multiplication is not
commutative but it is associative.

(B, pxQq)
(C,gxn)

(A, mx p) >< (AB)C — mgp-+mng=mqg(p+n)

A(BC) — mnp+ png=np(m-+q)

{C =AB,Cis mxn} for square matrices, m-n-(2p—1) ~|O(n°)

AB=BA, (AB)C = A(BC)

fori=1tom C;+(®);k=1...,p—>p-1 additions
for j=1ton 2p—1 operations per element
¢; =0 S~ Number of entries in matrix Cis m-n
e tion Total is:| m-n-(2p-21) | (only multiplications,m-n-p)

The order for multiplying A, B, C
can be selected by calculating,

min( mq(p +n), np(m+q))
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Matrices Examples

> Find the product AB, where 1 01 0 1 -1
o | A=0 -1 -1|:B=|1 -1 O
Some explicit calculations are: _—l 1 0 | __1 0 1 |
c,=1.0+0-1+1.-(-) =-1 1 1 0]
c, =1-1+0-(-1)+1-.0=1 —~AB4l 0 1 -1
Cy =1-(-1)+0-0+1-1=0 |1 -2 1)
> Let A and B be two n x n matrices. Show that, (AB)' =B'A

[Cij] — kzaikbkj — [Cji] — kzakibjk = kzbjkaki
-1 -1 =1

» Let A be a matrix. Show that the matrix AAt is symmetric.

(AAt)t _ (At)t Al —[AAL by definition, the given matrix

equals its transpose.
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Matrices

Boolean case

Binary or boolean matrices have entries in the set B = {0,1} and their
operations correspond to the usual logic or bit calculations. They are

also called zero-one matrices.

Q join Av B=[a; vib;]=[a; orby;]
O meet AAB= [aij /\bij] = [aij and bij]
Q boolean product A®B=C=[c;]= \p/ (ay Aby)
k=1
Q powers A=1;A=AQA® -®A
K times

For square binary matrices A and B,

A®B ~0(n?)

bit operations.
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Matrices

» Find the Boolean product of A and B, where

Since Ais3 x4 and B is 4 x 2 the result C has

Size 3 X 2,
C11
C=AB=|c,
_C31

Boolean examples

(1 0 0 1
=0 1 0 1{;
1111

1 o

0
1
1

o -

¢y = (1A V(OAOQV(0AD v(AAD =1

1 0
(1 1
1 1

Cp, =(AA0)v(0AD) v (0AD v(AA0) =0

» Let A be an n x n zero-one matrix. Let | be the n x n identity matrix.

Show that,

[61= V(@ ~d) @y A0 V(a7 d) (g aD)-

ARl =A=1XRA

(€

[Cij]:i/l(ék /\akj) = (4 Aa’ij)v\n/(élk /\akj) = (1/\aij)

€3




Mathematical reasoning: Part |

* Rules of inference

* Fallacies

* Methods of proof

« Mathematical propositions
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Reasoning-I

Rules of inference

O When is a mathematical argument correct?

O What methods can be used to construct mathematical arguments?

0 How are mathematical propositions classified?

A mathematical argument has the form:

premises or
hypotheses

%

(PLAP, A AP,) =

conclusion
or thesis

A mathematical argument is valid if and only if the implication is a tautology:

(P, AP, AAP)—=A]l=T; Py Py, P, G

The rules of inference are then universal valid arguments that constitute

the fundamental patterns or forms that we use for higher thinking and we
can consider them as our basic human built-in operators.
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Reasoning-I

E‘p.'.pvq

addition

PAQ.. P

simplification

Rules of inference basic forms

Modus ponens or law of detachment

P.P—(..¢

P.q.. PAQ
conjunction l
P 94 pPvq|p—>pv(

m =
m = m -
m 44 - -

— 4 - —

Modus tollens

>~q,p—>q.-.> ~Ppva-.g
p— g

Disjunctive
q—r syllogism
P> r
Hypothetical syllogism
P g P> pa(p-0) | (palp-1) g
T T T T T
T F F F T
F T T F T
F F T F T
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Reasoning-I Inference example?

» Construct an argument using rules of inference to show that the hypotheses
“If it does not rain or if it is not foggy, then the sailing race will be held and the life-

saving demonstration will go on”, “If the sailing race is held, then the trophy will
be awarded,” and “The trophy was not awarded” imply the conclusion “It rained.”

(~rv~fosal), s>t ~t:[r)

conclusion
hypotheses
by modus tollens, S>>t ~t..~S
by simplification, S A | .S

hence by hypothetical syllogism ~F v ~ f — S
So, we can apply again modus tollens to conclude that ~ (~ rv~ f )

Finally we use De Morgan’s law and simplification again, I A f @
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Reasoning-I Quantification rules of inference

P(c),ceU ... YxP(x)

vxP(x)..P(c),ceU

universal instantiation universal generalization
c is a particular element of U c is an arbitrary element of U

wP(x) . Pe),ceU ) <

existential instantiation existential generalization
c is a specific element of U, c is a particular element of U,
we have to find it if possible. we already know its value.

The rules of inference for propositional logic and quantified statements
are used extensively in mathematical arguments.
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Reasoning-I Quantification inference examples

» What rules of inference are used in the following famous argument?
“All men are mortal. Socrates is a man. Therefore, Socrates is mortal.”

VX(H(x) > M(x)), H(Socrates) ... M (Socrates)

We apply universal instantiation with X = SOCrates so we have

H (Socrates) — M (Socrates), H(Socrates) .".| M (Socrates)

Note that modus ponens has been used to obtain the conclusion.

» Ryan, a student in this class, knows how to write programs in JAVA. Everyone
who knows hot to write programs in JAVA can get a high-paying job. Therefore,
someone in this class can get a high paying job.”

C(Ryan) A J(Ryan), Vx(J(x) = H(X)) .. 3x(C(x) AH(X))

We apply universal instantiation with X = Ryan then J (R) —> H (R)
also from J (R) —>H (R), J (R) we get H (R) ; finally, combining this result

with the first hypothesis the conlusion is obtained from existential generalization.
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Reasoning-I Fallacies

A fallacy resembles a rule of inference but is based on contingencies
rather than tautologies, so it corresponds to an invalid argument.

begging the question or

affirming the conclusion denying the hypothesis circular reasoning

P g p>q (pogag (Pa(p-9) P p=>p=T

T T T T T but t_hen we are nlot
. . - . 0=F:q=T proving anything !
FT T T F =(P2>PA~p=(F>T)AT=T
F F T F T =T ->~q=T > F=|F
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Reasoning-I Fallacy example
» The following argument is an incorrect proof of the theorem “If n? is not
divisible by 3, then n is not divisible by 3.” The reason it is incorrect is that
circular reasoning has been used. Where has the error in reasoning been made?

If N2 is not divisible by 3, then n? does not equal 3k for some integer k. Hence,
n does not equal 3l for some integer I. Therefore, n is not divisible b

The initial theorem is of the form: P —> {J butt

p—AT > 1154

To complete the problem we will try to give an indirect proof using the contrapositive,

~g—>~p<e3|n—3|n°
Applying the definition of integer division,

rgument given looks like,

Ine=Ik eZ,n=3k ->n* =33k =3l 1eZ
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Reasoning-I Methods of proof
F—>q=T
* Direct P—>( Pp—>qd;,p=F
*Indirect pP—>0<=~(—>~pP p—>q;q:T
: . Pp>T=T
premise  conclusion
« Contradictign P;~P>UA~N=T=~p=F

We negate the thesis p and derive a contradiction, therefore our
assumption that the thesis was not true is false, hence p is true.

* By cases

(k\:/1 pk) —>q< A(p—0)

n
» Multiple equivalences [p1 SP, oo pn] <~ kAl( Py — p(k+1)m0dn)

In both methods we use the logical equivalence given by the conjunction of
several implications, so we prove each of this implications one by one.
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Reasoning-I Methods of proof examples?

» Prove the proposition P(1), where P(n) is the proposition “If n is a positive
integer, then n? > n.” What kind of proof did you use?

+ 2 This is a trivial proof since the conclusion is true
—> 1" > ) : . :
leZ 1" =1 (evident) without using the premise.

» Prove that at least one of the real numbers a,, a,, ..., a, Is greater than or
equal to the average of these numbers. What kind of proof did you use?

n
1 .
Hai : ai > o = anl by contradiction, \v/al : ai < O however,
i=1
8 <a—a +a,++a, <a+a+-+a=na o,

n times

n
%Za. < —) and this is the contradiction
i=1 | we were looking for.
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Reasoning-I Methods of proof examples®

» Prove that if x and y are real numbers, then max(x,y)+min(x,y)=x+y. (Hint:
Use a proof by cases, with the two cases correspondingto x 2y and x <y.)

Casexzy  [max(X,y)=X]A[mIN(X,y) =y] xX+y=X+Yy

Casex<y  [max(X,y)=Y]A[MIN(X,y)=X] 3 Yy+X=X+VY

» Use a proof by cases to show that min(a,min(b,c))=min(min(a,b),c)
whenever, a,b, and ¢ are real numbers.

Casea<b<c  min(a,min(b,c)) =min(a,b) =a=min(a,c) = min(min(a,b),c)
Caseb<c<a min(a, min(b,c)) = min(a,b) =b = min(b,c) = min(min(a,b),c)

Casec<a<b  min(a, min(b,c)) = min(a,c) = ¢ = min(a,c) = min(min(a,b),c)

min(a, min(b,c)) = min(min(a,b),c) 5 min(a,b,c) | associative property of min
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Reasoning-I Methods of proof examples®

» Prove that n“4 - 1 is divisible by 5 when n is not divisible by 5. Use a proof by
cases, being four different cases - one for each of the non-zero remainders that
an integer not divisible by 5 can have when you divide it by 5.

5/n—5|n* -1

From the binomial expansion, (X + y)4 = X*+ 4x3y + 6X2y2 + 4Xy3 4+ y4

case N=5k +1(>n* = (5k +1)* =5(e) +1* :5I1+1

case N =5k +2{>n* = (5k +2)* =5(e) +2* =5(e) +16

=5(e)+15+1=5l, +1

case N =5k + 31> n* = (5k +3)* =5(e) +3* =5(e) +81

=5(e)+80+1=5l,+1

case N =5k + 4> n* = (5k +4)* =5(e) +4" =5(e) + 256

=5(-)+255+1=5|4+1 .



Reasoning-I A classic example

p = “The square root of 2 is not a rational number.” ={~/2 € Q | by contradiction,

V20> - /Q ={|m,neZ ngcd(m,n) =1An =0}

definition

=2n° —>m’ is even @
Intermediate step: | m* even — meven < modd— m* odd @

m=2k+1—->m’ =2k +1)° =4k* +4k +1=2(2k* +2k) +1=2l +1
We go back to step 1 knowing that [m=2j forsome jeZ"” @

—2n°=4j°> >n*=2j°son®is even and apply step 2 again, thus

From step 3 and step 4 we N=2iforsoneie’Z” @
conclude that:

(2| m) A(2|n) | thisis the contradiction we were looking for.
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Reasoning-I A similar example

» Prove that the square root of 5 is irrational. Proof by contradiction,

J5 eQ—>I=%—>(m2 —s)v@Eim) (&)

Auxiliary step: if 5 divides m? then 5 divides m. We show this using an undirect proof,
l.e., if 5 does not divide m then 5 does not divide the square of m. Consider the other
possible remainders of m when divided by 5, and treat each case as follows:

a)m=5k +1—>m? = 25k2 + 10k +1=5I, +1 |
b) m=5k +2 — m* = 25k* + 20k + 4 =5, + 4
c) m=5k +3—> m* =25k* +30k +9 =5l +4
d) m=5k +4 — m* =25k* +40k +16 =5, +1 |

Since m = 5p; substitution in A gives: 25p° =5n° — (n* =5p*) v (5|n°)

Therefore, applying to B the same result established in the auxiliary step, n = 5q;
The contradiction is that m and n have a common factor equal to 5.

\ — 5fm’
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Reasoning-I Methods of proof

K Constructive proof: we find or

build a specific element ¢ such that P(C) =T
« existence| 94X P(X) < D (c)

Non-constructive proof: we only
show that under certain assumptions there
IS an object ¢ that makes P true somehow.

~

®
- counterexample | WX P(x) - F < Elx_,P(x) =T

To show that a universal guantification is false we need to find
just one element ¢ in U such that the negation of P is true,
in that case c is a counterexample.
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Reasoning-I Methods of proof examples®

» Prove or disprove each of the following statements about the floor and
ceiling functions.

o VX eR, |_|_X—|J = |_X—| consider an arbitrary real number c then
[cl=m=c,meZ > m|l=m—|[c]|=[c]

Therefore, by universal generalization we see that the quantified predicate is true.

o VX,Yy €R, \_X + yj =| x| +\_yJ take, x =y = 0.5, then

L% + %J =120= I_%J + L%J this is a counterexample, so the double
guantified predicate is false.

o VX eR, \_mj = \_\/;J take, x = 1/4, then
\_ﬁj =1#0= LJ%J this is also a counterexample, so the

guantified predicate is false.
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Reasoning-I Methods of proof examples®

> Prove or disprove that n2+ n + 1 is prime whenever n is a positive integer.

The proposition is of the form: Yn eZ™, nN“+n+leP

and in this specific case is false, so we must prove that,9n e Z™", n°+n+1 z P

Thus, it is enough to give a counterexample, a value of n for whichn?+n + 1
IS not a prime number. We test the following values,

n=1-1+1+1=3¢P,
Nn=2->2°+2+1=7€P,
n=3->3+3+1=13€eP,
N=4—->4°4+4+1=21¢P.
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Reasoning-I

Methods of proof examples!

» Show that if the first 10 positive integers are placed around a circle, in any order,
there exist 3 integers in consecutive locations that have a sum greater than or

equal to 17.

p; means the i-th position of

any given integer from 1 to 10.

P,
P
. P1o

Pit
pi pi +1

\V/i, P EGi_]_!Gi’Gi+1

{p1’ P, p3}:Gl
{P,, P3P} =G,
{ps’ Py ps}:G3
{Ps: Ps, Pe} =G,

Ps: P Pyot = Gg
{pg’ P pl}: Gg

{plo’ P1 pz}: GlO

Define the sequence of #s:
a, =Y x;i=1...10
XEGi

then its average is given by,

3. 3.55
= - -:—:1
o 10§| 10 6.5

From examples?? there is
a number g, greater than 16.5
Since g is an integer then it is
greater than or equal to 17.
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Reasoning-I Mathematical propositions

It is a usual practice to classify mathematical propositions by type, in order
to organize the results of a theory.

A conjecture is a proposition
whose truth value is unknown:;
however, several proofs have
been attempted without success.

axioms or postulates
Mﬁnitigry /
lemmas K}

rules of inference

theorems .// > _I_ Il
4
corollaries / proof methods

A theory is a group of mathematical propositions
including conjectures which are based on a certain
number of axioms, postulates, principles, and
definitions accepted without proof.
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Mathematical reasoning: Part Il

* Well ordering
 Mathematical induction
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Reasoning-ll Well ordering & induction

The well ordering (w.0.) principle: every non-empty subset of the natural numbers
has a least element.

VS < N,dm e N; m=min(S)

This principle is simple and intuitive; it works for finite and infinite sets. Examples,

min{2n+1n eN}=1 min{X|X Is a prime} = 2

min{a [neNAra <a_,Vi}=a, min{n=0(mod 7)[n>0}=7
The principle of mathematical induction (m.i.): assume that S is a subset of N
such that,

[(0eS)AVK(k eS—k+1eS)]>S=N

This principle is simple but not easy to grasp, however it is a property of the
natural numbers when treated from an axiomatic point of view. It is the
foundation of inductive reasoning in mathematics.
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Reasoning-l| Well ordering implies induction

Theorem: W.0. <> M.l. <|(W.0. > M)A (MI. — W.0.)

Proof: by contradiction, the hypotheses are, The conclusion is:

WD”Oe&keS—»k+L§i/////—ﬂi:::>

5 (D=N-S=2)A(Dc N)

] The set difference
Mm=min(D) >m=0—->m>0 seytofind a

contradiction !
Mm-1¢g¢D—->m-1eS—>meS
(meDAmeS)=F J

The second part is left as an exercise. |M.l. — W.O.
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Reasoning-l| Well ordering examples

Recall that a set is well-ordered if every nonempty subset of this set has a least
element. Determine whether each of the following sets is well-ordered.

a) the set of integers,
b) the set of integers greater than -100,

c) the set of positive rationals.
d) the set of positive rationals with denominator less than 100.

a) Z is not a well-ordered set because Z~ #J < Zbut min(Z™) =—-w ¢Z

b) this set is well-ordered since  A={X €Z|x>-100} - min(A) =-99
Thus any nonempty subset S of A has a least element greater than or equal to -99.

c) the set of positive rationals defined as,Q™ ={r €Q|r > 0} is not well-ordered, e.g.

1 1
S = {ﬁ eQ|n> 0} > min(S) does not exist. Note: lim—=0but0¢Q"

n—oo N

d) this last set is well ordered since B = {E > 0]q <100} - min(B) = —
Therefore, any nonempty subset S of B 99
has a least element greater than or equal to 1/99. 146



Reasoning-ll Mathematical induction

Mathematical induction is used as a proof technique when predicates are related
to the domain of the natural numbers or one of its subsets; also stated in the
following equivalent form:

Induction hypothesis
P(0) A[P(K)—> P(K +1)] .-

basis step inductive step conclusion

In order to give a proof that P(n) is true for all integers n we verify two steps,

1. Basis step: show that P(0) is_true; this part is almost trivial, substitute n =0
in P(n) and check if the corresponding proposition is true. Also, the basis
step can begin with a specific value greater than 0.

2. Inductive step: this is the difficult one; assume P(K) is true for an arbitrary
integer k and prove that P(k+1) is also true. Avoid to substitute directly
k with k+1; this is circular reasoning because k+1 = m is also an arbitrary
integer and then your are assuming what you want to prove.
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Reasoning-ll Induction examples?

vn>0,) (2j-1)=n?

=1

1
Basis step: n=1-> (2j-1)=(2-1-1)=1=1°

=1

K
Inductive step: n=k —> Z(ZJ —1)=k” Induction hypothesis
-1

= “— "\

k /7
YRiI-D)D Rj-D+@2-(k+1D)-1)|=k*+(2k +1) = (k +1)?

B -

Pk+1): >, (2j-1) =(k+1)°
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Reasoning-ll

Induction examples®

vn eN,|Al=n—|P(A)|=2"

Basisstep: N=0—->(A=TA|A|=0)—|P(D)|={}=1=2"

Inductive step: |A|l=k =|P(A)|=2"

|Al=k <> A={a,,...,.a}>]AU{}=k+1;x=a

P(Au{x}) =R UF, =P(A) U

1S VIXHS e P(A)}

v

FNF =3 —>|P(AU{Y)|=FHF|=2" +2* =2.2"

/>

d

|A*|=k +1 | P(A*)|=2""

Induction hypothesis
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Reasoning-ll Induction examples®

vn>4,n*<2"

Basis step: n:4_>42 :16316:24

Inductive step: k? < 2% k>4 Induction hypothesis

k>4-—->2k+1<2"

va,b,c,d eZ",(a<b)A(c<d)—>a+c<b+d

+Qk+D<2k+T -

\

P(k+1):(k+1)?* <2
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Reasoning-l| Induction examples®

> Use mathematical induction to show that 2" > n2 + n whenever
n is an integer greater than 4.

Basis step, taken =5>4,then 2°=32>30=25+5=5%+5

Inductive step, assume the inequality is true for n =k, i.e.,

Induction hypothesis

A
[ )

2“>k*+k =k(k+1)>2(k +1) sincek >6
\ /

by transitivity of >, and adding both inequalities, | 2% > 2(k +1)

2 =2 4+ 2" S kP +k+2(k +D) =k® +k +2k +2

> (k2 42k +1)+ (k+1) =[(k + 2 + (K +D)| st ror ks 1.
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Reasoning-ll Induction examples®

» For all positive integers n, show, by mathematical induction, that:
1 1 1 n
1.3 3.5 (2n-1)(2n+1) 2n+1

1|1 (D
Basis step, take n = 1, then 1—3 — g = 2(1) +1
Just to see if the formula works, take, for example n = 2, then both sides are equal,
1 111 1 6 2| (2

1.3 35 37156 15 5 |2(2)+1

Inductive step: assume that the formula is true for n = k, and show its validity
forn =k +1.

k
K
JZ: (2] —1)(2] +1) 2k 1 Induction hypothesis
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Reasoning-ll ...Induction examples®

k+1 1

X 1
;(21—1)(21'+1) Z;‘(21 1)(21+1) [2(k+1) 1[2(k +1) +1]

J

1
@+ [2(k +1) —1J[2(k +1) +1]

ok N 1 1 {H 1 }
-2k +1 (2k+1)(2k+3)_2k+1 2k +3

3k+1_ 1 | 2k* 42Kk +k 1
2k+1 2k+3 2k +1 2k +3

{2k|(k+1)+|(k+1)}_ 1 F)(K +1)
T2k +1 2k +3 - 2k+1 2k +3

_ k+1 Jk+1
2k+3 2k +1)+1

and this is the right side for n = k +1.
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Reasoning-I Induction examples!

» Show that n circles divide the plane into n?—n + 2 regions if every two circles
Intersect in exactly two points and no three circles contain a common point.

To answer this problem we combine induction with geometrical reasoning.

n=1 (one circle) n =2 (two circles)

12—1+2=2;{R1,R2} 22—2+2:4;{R11,R12,R21,R22}

Introducing a 2" circle splits each existing region, so for n = 2 we have two new
additional regions or 2k = 2.1 = 2 where k = 1 is the previous # of circles.
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Reasoning-ll ...Induction examples!

n = 3 (three circles) Introducing the 3rd n =4 (four circles)
circle splits again
previous regions; it
generates 2,4,5,7.

Introducing the 4th
circle splits again
previous regions; it
generates 4,7,8,9,11,13.

3 -3+2=8

4° -4+2=14
Induction hypothesis: k circles under the stated conditions divide the plane into
k?—k + 2 regions. If we introduce the k + 1 circle it will generate 2k additional regions.
Therefore,

k +1 circles divide the plane into (k* =k +2) +2k =k* +2k +1-k +1

=(k+1)°—-k+1-1+13(k+D)°—(k+1) +2
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Reasoning-l| Induction 2" form

The principle or method of mathematical induction has a second form that uses
the same basis step but modifies the inductive step as follows:

Induction hypothesis
P(0) ALP(O)A. . AP(K] —> P(k +1)] .-

basis step inductive step conclusion

* The induction step now assumes the truth of all values less than or equal to k,
P(mM=T;m=0,..,k

* Note that if we use modus ponens we have only that P(k) =T, so 15t form of
mathematical induction results. Both forms of the principle are equivalent.

 This 2nd form is helpful when we need several previous instances of P(k) to be
true in order to show the truth of P(k+1).

156



Reasoning-ll Induction 2" form example

Prove the next proposition using the 2nd form of mathematical induction.

g 1++/5 | “golden ratio or |
vnz3, f,>a™" ;a=——2— duvine proportion p=a

+in the basis step itis shown that, (f,=2>a)A(f, =3>a?)

* besides using the modified inductive step (based on 2nd form of m.i.), we have
that (looks like a trick but it is not),

a’—a-1=0>a’ =a+1

» this “trick” is justified since a quadratic equation is associated with the
recursive definition of f, that is to say,

f —f  —f ,=0= x*-x-1=0
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Reasoning-l| Lamé’s theorem

The number of divisions used by the Euclidean algorithm to find gcd(a,b) is less
than or equal to five times the number of decimal digits in b when a > b.

- after n divisions it is shown that, D> f_ .

« from the previous slide, if n > 2 then f > a”_l S b> a”—l

n+1

» taking common logarithms (base 10) to both sides of the last inequality,

log,,b>(n-1)log,, &« =0.208(n—-1) >(n—-1) /5

* if the number b has k decimal digits then
b <10 —» (n—1) <5k — n <5k

* the number of decimal digits in b is calculated as

# of divisions:

|log,,b | +1<log,,b+1 n, <5-(log,,b+1) ~ O(logb)

158



Mathematical reasoning: Part Il

* Recursive definitions
* Recursive sets

* Recursive algorithms
* Iterative algorithms
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Reasoning-ll| Recursive definitions

Certain objects such as functions, sequences, and sets can be defined
In two different ways:

« direct or explicit, the object is defined by a specific expression that does
not depend on the object itself,

 recursive or implicit, the object is defined by an expression that includes
the same object.

- n_1 factorial function
f(n):Hk:( kj-n —n!=n(nh-1)!
k=1 k=1
n n—l termial function
s(n)::Zk k +n —>n?=n+(n-1)7?
k=1 k=1
p(n)=a"|= ' power function, a > 1
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Reasoning-ll| Recursive functions

In the context of integer numbers it is usual to exchange notations between
functions and sequences (recall that a sequence is a type of function).

f(n)=f ;neScN

Direct definition Recursive definition
f =p(n);p=f fn:l//(fn—l’fn—Zt"-"-fn—k);Wi f
{f,...., f,_.} are initial values.

The general term of the
sequence is given by an
expression that depends
only on the index n and does
not require initial values.

The general term of the sequence
IS given by an expression that
depends on previous values of the
same sequence and requires the
knowledge of the first k terms.
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Reasoning-lll Recursive functions examples?

a =4n—-2—a _,=4(n—-1)—-2=4n—-2—-4 we take the difference, so

a—a  ,=4—a =a ,+4;a,=-2

a =1+(-1" |»>a _,=1+(-D)""=1-(-1)" adding both expressions,

a+a ,=2—a =2-a ,;a,=2

n

f =f 4+ f -f =1 f =1 note that two initial values are needed to
n n—-1 n-21' "0 1 71
compute the next terms of the sequence.

f,=1+f,=1+1=2

fy=1f,+f,=2+1=3 >| f ={112,3581321,..}
f,=1,+f,=3+2=5
fo=f,+f,=5+3=8

known as the Fibonacci numbers.
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Reasoning-lll Recursive functions examples®

» The McCarthy 91 function is defined using the rule,

\ n—10 'n>100
(n) = M(M(n+11));n<100

for all positive integers n. By successively using the defining rule for M(n),
find a) M(102), b) M(101), c) M(99), and d) M(97).

a) M(102) =102 —10 = 92 since 102 >100 Thus, from b) to d)

b) M(101) =101—-10= 91/since 101> 100 vn<101, M(n) =91

c) M(99) = M(M (99 +11)) since 99 <100
= M(M(110)) = M(110-10) = M(100)
= M(M(100+11) since 100 <100
=M(M(111) = M(111-10) = M(101) 591
d) M(97) = M(M (97 +11)) = M(M(108)) = M(98)
M(98) = M(M(98+11)) = M(M(109)) = M(99) =91
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Reasoning-lll Recursive sets

As in the case of functions and sequences, a set S of objects can also be
defined recursively by performing two steps.

1.- Initial element, in this step a specific element x (or elements) is defined to

belong to S,
2.- Generation, in this step.the rest of the elements in S is generated by means

of a rule or a procedure to~combine previous elements (initial element).

X €S X,y €S
yeS—or(y)eS Z,WeS— p(w,z) eS

In fact, mathematical induction can be taken as a recursive definition of
the natural numbers if P is the identity predicate, P(k) = K.

0eS
keS—>k+1eS

}:>S=N
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Reasoning-lll Recursive sets examples?

A recursive definition for the set of positive integers powers of 3:

3eS S_(3 -
KeS >3 kes[ 2= INeZ}

The set C of well-formed formulae (wff) for compound propositions is
defined recursively as follows:

T,F,p,geC }:
P.geC—>~p,pvq,pAq,p—>qg,p«>qeC

wif

The set of strings Z* over the finite alphabetX: 4 ¥~ (empty string) }

> ={03 > ={01,0001111,..} (WeZ)A(xeZ)>wxeX

The length of a string can be defined as:

1(1) =0
(WeX)A(XeX) - I(wx) = |(W)+l}
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Reasoning-lll Recursive sets examplesP

> Let S be the set of strings defined recursively by abc € S, bac € S, acb € S,
and abcx € S; also, abxc € S, axbc € S, xabc € Sifx € S.
a) Find all elements of S of length eight or less,
b) Show that every element of S has a length divisible by three.

I(w) =3 I(w) =6 I(w) =6
abc abc|abc abxc (— |ablabc|c,ab|bac|c|ablachb|c
bac ;jabcx || abc|bac axbc — |alabc|bc,a|bac|bc{alacb|bc
ach | abc|acb xabc— | abc|abc,bac|abc,acb|abc
3strings 3 strings O strings  Total =15-2 =13

The proof of b) is by induction on the length of the string. The basis step is part a),
for the inductive step, assume that the length of a string x in S is a multiple of 3. Then,
the following generated strings have a length that is a multiple of 3, i.e.,

|(abcx) = I(abxc) = I(axbc) = (xabc) = 3+ 1(x) =3+ 3k =3m.
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Reasoning-lll Recursive algorithms

A recursive algorithm is an algorithm that calls itself using a set of initial values.

Recursive algorithm: n-th Fibonacci number

O
procedure fib(n e N)
ifn=0
then fib(0):= 0 @ T @ f,
else if n=1 f,
then fib(1): = 1 @ f® @
else fib(n):= fib(n—1) + fib(n —2) f, f,

N
Features of recursion: flUfO

» works from top to bottom reducing input size,

* needs additional memory to store partial calls,
« inefficient in terms of time complexity, f 1
 easy to understand and compact pseudocode, n+1
* a recursive definition can be translated in a recursive algorithm.

# of additions:
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Reasoning-lll Recursive algorithms examples

Recursive algorithm: binary search

procedure bs(x,1, J)
Recursive algorithm: greatest common divisor m: = L(, + )/ ZJ
procedure gcd(a,b eN) casex—a_
P <A location:=m
0 case (x <a,) A (1 <m)
then gcd(a,b):=a bs(x.i,m—1)
else gcd(a,b):= ged(b,a modb) case (x>a ) A (j>m)
bs(x,m+1, j)
Input size reduction: otherwise
amodb<b location:=0

Input size reduction: M < |
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Reasoning-lll

Iterative algorithms

An iterative algorithm is an algorithm that does not call itself. However, it can be
based on a recursive definition using its initial values to find the next value.

Iterative algorithm: n-th Fibonacci number

procedure fib(n € N)
Ifn=0
theny:=0
else x:=0
y.i=1
fori:=1ton-1
Z=X+Y
X:=Yy
y.=12
{y= 1.}

Features of iteration:

» works from bottom to top,

* needs few memory to store values,

« efficient in terms of time complexity,

* longer pseudocode,

* a recursive definition can be used to design it.

# of additions:
n—-1:n>1

ltis clear that, | VN>3,n—-1<f , -1

so the iterative version performs better than
the recursive version for large values of n.
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Reasoning-lll  Recursive vs iterative: about memory

procedure fact(n € N) —> Frames Locations
i 41=4.3;1+2
ifn=0 =3 o119
then fact(n):=1 D=2 11 142
else fact(n):=n* fact(n—1) 1'=1  ;1+1
4 11

. . . Faster in stack oriented machines.
Recursive vs. iterative factorial

procedure fact(n e N) J ‘—’ vars Locatlons

=N Xx=11X :

-5 | =1, n ; 1
fOI’I.—.l ton 5 >

X:= %X
{x=nl} Faster in register oriented machines.
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Counting: Part |

« Sum and product rules
* Inclusion-exclusion

* Tree diagrams

* Pigeonhole principle
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Counting-I

Sum rule

The basic principles for counting are based on the corresponding laws
between cardinals for families of sets (both finite).

The sum rule: suppose that the tasks T,,T,,...,T,, can be done in ny,n,,...,n,
ways respectively, and no two of these tasks can be done at the same time.

Then the number of waysto do task T, or T,or ...or T, isn;+n,+ ... + n..

Set interpretation

Let T, be the task of choosing
an element from set A;, then
there are |A)| = n, ways to do T.
For m sets the expression is:

|OA|:_Zm:|Aﬁ|JVi¢j,AmAj — &

vilAEn—YAl=nm

Pseudocode interpretation

Let T, be the task of traversing
the independent i-th loop, then
there are nways to do T,

For m loops the pseudocode is:

k:=0
fori =1ton, ;k:=k+1
fori,=1ton,;k:=k+1

fori,=1ton ;k:=k+1
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Counting-I Sum rule examples

There are 18 mathematics majors and 325 computer science majors at a college.
How many ways are there to pick one representative who is either a mathematics
major or a computer science major.

T, is the task of selecting a mathematics major,
T, is the task of selecting a computer science major, therefore

#of waystodo T, or T, is 18 + 325 = 343.

How many ways are there to choose a symbol from capital or lowercase letters,
or a decimal digit?

T, is the task of selecting a capital letter,
T, is the task of selecting a lowercase letter,
T4 is the task of selecting a decimal digit, therefore,

#of waystodo T, orT,or T;is 26 + 26 + 10 = 62.

In most applications, the sum rule is used together with the
product rule to count objects satisfying certain conditions.
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Counting-I Product rule

The product rule: suppose that a procedure is carried out by performing
T, T,,..., T tasks. If task T, can be done in n;ways after tasks T,,T,,...,T.;
have been done, then there are n; n, ... n ways to carry out the procedure.

Pseudocode interpretation

Let T, be the task of traversing
the nested i-th loop, then there
are n,ways todo T,

For m loops the pseudocode is:

m m - _ q k=0
|i)§A |—1:1[| A |; cartesian product BT ETIoN

for i, :=1ton,

Set interpretation

Let T, be the task of choosing
an element from set A,, then
there are |A)| = n, ways to do T.
For m sets the expression is:

Vil AN [TIA ="

fori, =1ton,

number of ways of selecting an k =k +1
ordered sequence (a,,a,,...,a,,)
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Counting-I Product rule examples

How many different bit strings are there of length 10?

T, is the task of selecting a bit value for the i-th position in the string, for
each i the number of ways is 2 (0 or 1), therefore the number of strings is,

2.2...2=29=21024 orln™:n=2m=10
%/_J

10positions

How many injections are there from a set A with m elements to a
set B with n elements if m <n?

.b,...b} {o,...b} {b,,....b} .,...b}
li li li i

a, »>oneofn a, —»oneofn-1 a, »>oneofn-2 a, »>oneof n—(m-1)

So, the number of one-to-one functions is, [N(N—=D)(N—2)---(h—m+1)

How many different license plates (d.l.p.) are available if each plate contains
a sequence of three letters followed by three digits?

The format of a license plate is LLLDDD, thus there are
26°-10° 517,576,000 d.l.p.
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Counting-I Other examples?

Each user on a computer system has a password, which is 6 to 8 characters
long, where each character is an uppercase letter or digit. Each password must
contain at least one digit. How many possible passwords are there?

» For a password 6 characters long (combining sum and product rules):
CCCCCC —» (26 +10)° = 366>

LLLLLL — 26°

— P, =36° - 26° =1,867,866,560

 For a password 7 characters long:
CCCCCCC — (26 +1O)7 =36’

LLLLLLL  — 26’

> > P, =367 —26" 470,332,353,920

 For a password 8 characters long:

CCCCCCCC — (26 +10)® = 36°
LLLLLLLL — 268

>_> P, =36° - 26° = 2,612,282,842,880

Thus, the # of passwords is P =P, + P, + P, =2,684,483,063,360 ~|2.7 x10*
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Counting-I

Other examples®

» How many positive integers with exactly 4 digits between 1000 and 9999 inclusive,

a) are divisible by 97 099 <9k <9999 »>111<k <1111—-»1111-111=1000
b) are even? 9999 -1000+1=9000/2 =
c) have distinct digits? dddd — (10—1)(9)(8)(7) =9°-8-7 = 4536

4500

d) are not divisible by 3? 999 < 3k <9999 — 333 < k <3333 — 3333-333 = 3000
— 9000 —-3000 = 6000

e) are divisible by 5 or 7?1000 <5k <10000 — 200 < k <2000 — 2000—200 = 1800

—1800+1286—257 =

2829

11000/7 =142 — 7-142 =994
110000/ 7 ]=1428 — 7-1428 = 9996

11000/ 35]=28— 35-28 =980
10000/ 35] = 285— 35-285=9975

} — 1428 -142 =1286
} — 285—-28 =257
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Counting-I Other examples®

f) are not divisible by either 5 or 7?2 — 9000—2829 =(6171

g) are divisible by 5 but not by 7?2  —1800—257 <1543

h) are divisible by 5 and 77? 257

» How many different functions are there from a set with 10 elements
to sets with the following number of elements?

In general, for f:A— Bwhen|Al=nA|B|=m|#(f)=m"

a)2 ->m=2,n=10—-#(f)=2" 51024

b)3 —>m=3n=10-#(f)=3" =59049

04 —>m=4,n=10#(f)=4" =2% =1024° = 1048576

d)5 —>m=5n=10->#(f)=5" 59765625
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Counting-I Inclusion-exclusion

The principle of inclusion-exclusion is applied to situations in which two or more
tasks can be realized at the same time and we need to count the number or ways
to do one of these tasks.

For 2 tasks (in terms of sets): | | AUB|=|A|+|B|—-|ANB|; ANB=Y

How many bit strings of length 8 either start with a 1 bit or end with the two bits 00?

Task 1 (set A), string format starting with 1, 1BBBBBBB —> 2’ 5128 strings

Task 2 (set B), string format ending with 00, BBBBBB00 —» 2° =64 strings

Common task (A and B), string format, 1BBBBB00 — 2° ={32 strings

Hence, applying inclusion-exclusion, | AU B|=128+64—-32 =160

For 3 tasks (in terms of sets): || AUBUC |=| A|+|B|+|C|
—|AnB|-|ANC|-|BNC|
+|ANBNC|
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Counting-I Tree diagrams

Atree is a graphical object that has a root, a number of branches leaving the root,
and possible additional branches leaving the endpoints of other branches.

In the context of counting, we use a branch to represent each possible choice,
and the leaves of the tree represent the outcomes (endpoints of the tree).
Trees are useful for modeling problems with small values.

Use a tree diagram to find the number of bit strings
of length 4 with no 3 consecutive 0O’s.

The number of strings is the number of leaves at the end of the tree = 13.
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Counting-I Pigeonhole principle

The pigeonhole principle in its simplest form states that if there are more
pigeons than pigeonholes, then there must be at least one pigeonhole
with at least two pigeons in it.

The formal mathematical statement is known as the Dirichlet drawer principle.

If k + 1 or more objects are placed into k boxes, then there is at least one box
containing two or more of the objects.

O O H=N=N)
] ( 888 D ]
kK =6 boxes 55 > =
k +1=7 objects = = < 9 5 >
O O
O O O
2 objects in box 3, 3 objectsin box 2, 2 objects in boxes 1,4;
drawer is full. nothing in box 3. no objects in box 5.
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Counting-I Pigeonhole examples?

To apply the pigeonhole principle, it is very important to identify which are
the objects and which are the boxes.

> Show that if there are 30 students in a class, then at least 2 have
last names that begin with the same letter.

The students correspond to the “objects”, the letters to the “boxes”, then there are
26 boxes and 30 objects where 30 > 26, thus by the pigeonhole principle there
IS a box with at least 2 objects, i.e., 2 names begin with the same letter.

» Show that if f is a function from S to T where S and T are finite
sets with |S|>|T|, then there are elements s, and s, in S such
that f(s,) = f(s,), or in other words, f is not one-to-one.

The elements of S are the “objects”, their images the “boxes”; since |S|>|T]|
(more objects than boxes) by the pigeonhole principle. there is an element
of T that is the image of at least two elements of S, hence f is not one-to-one.

182



Counting-| Pigeonhole examples®

Show that among any n + 1 positive integers not exceeding 2n
there must be an integer that divides one of the other integers.

First, represent the n + 1 integers as follows:
1 K : .
{a,}ihi—>a;=2"q;;(k; 20)A(q; is odd)
by construction, g; <2n; J=12,...,n+1 (objects)
also, there are n odd numbers (boxes) less than 2n (the other n are even).
From the pigeonhole principle, two of the integers g; must be equal, i.e.,

3i9),(i# jA G =0, =0) >(a =2q)(a, =2"q)
Then,

ki <k; >24]2 > a|a,

ki >k, >212% >a |a
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Counting-I Pigeonhole examples*

Theorem: Every sequence of n?+ 1 distinct real numbers contains a subsequence
of length n + 1 that is either strictly increasing or strictly decreasing.

2
Let {ak}E:I1 :{ai,az,...,anz,an2+l} where VK =1, a, #a,

To each term of the sequence associate an ordered pair as follows

ik length of longest increasing subsequence

a < (I, dy) | {a 8-
dk length of longest decreasing subsequence

Note that the total number of ordered pairs is n?+ 1 (objects)

By contradiction, there is no strictly increasing sequence and there
IS no strictly decreasing sequence of length n + 1.

—i, <n<n+landd <n<n+1;k=1,...,n°+1
Now, by the product rule, the number of length pairs is at most n? (boxes)
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Counting-I ...Pigeonhole examples®

Consequently, applying the pigeonhole principle, there are at least two ordered
pairs in the same box, i.e.,

Is =t, (i;,d,)=(i,,d,) Notpossible!

Since, by assumption, the terms of the sequence are distinct, then

a;#a —> (@, <a)v(a >a)

By cases,

(a, <a[)<at <<l i =140 > i >
(a, >aT)> a >...>a,4,—>0d,=1+d, —d, >d,
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Counting-I Generalized pigeonhole principle

There can be a number of objects greater than a multiple of the number of boxes.
So the generalized pigeonhole principle (g.p.p.) states the following:

If n objects are placed into k boxes, then there is at least one box
containing at least | n/k | objects.

» There are 38 different time periods during which classes at a university can
be scheduled. If there are 677 different classes, how many different rooms
will be needed?

The classes are the “objects”, the time periods are the “boxes”; note that
677 is greater than some multiple of 38, hence using the g.p.p. the
number of rooms needed is 677 /38 |=18

» Show that there are at least 4 people in California (population: 25 million)
with the same three initials who were born on the same day of the year.

The number of ways of selecting the 3 initials is 263, also there are 366
possible birthdays (counting leap years). Hence the number of “boxes” is
263 x 366 = 6432816, therefore applying the g.p.p. the answer is computed as

| 25000000 /6432816 |=4
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Counting-I G.p.p. examples?

» Show that if 7 integers are selected from the first 10 positive integers,
there must be at least two pairs of these integers with the sum 11.

We must first define from the context of the problem which are the “objects”
and which are the “boxes”. The pairs whose sum is 11 are the boxes, i.e.,

11,10} {2,9} {3,8},{4,7}.15,6}

Note that all 10 numbers are in these 5 boxes; the 7 integers are the objects
and 7 > 5, hence by the g.p.p. there are at least[ 7/5]|=2 two integers in a box.
Now we have 4 boxes and 5 integers, again 5 > 4, then by the same principle

there is another box containing two integers.

» How many ordered pairs of integers (a,b) are needed to guarantee that
there are two pairs (a,,b,) and (a,,b,) such thata, mod 5=a, mod 5

and b, mod 5 =b, mod 5.
In each of the last equalities we have 5 possible remainders, {0,1,2,3,4}, since
there are 2 equalities the number of pairs of remainders is 25, therefore,

| N/25]=2— N >26— N (minimum) = 26 pairs
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Counting-| G.p.p. examples®

» Show that in a group of 5 people (where any two people are either friends or
enemies), there are not necessarily 3 mutual friends or 3 mutual enemies.

(Ramsey theory)
3 In this graphical model, A A
there are 4 pairs/person and
the rest are non-related pairs
to the same person.

5

In this graphical model,
there are 5 pairs/person and
the rest are non-related pairs. 4 4

“objects” = pairs of FPE
“boxes” = mutual friends or mutual enemies

by the g.p.p. [4/2]52 by the g.p.p. [5/2]=3

So, not necessarily 3 F's or 3 E’s. So,3F'sor3FE’s.
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* [dentities
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Counting-I| Permutations

A permutation of a set of distinct objects is an ordered arrangement of these
objects. An ordered arrangement of r elements of a set is called an r-permutation.

The number of r-permutations of a set with n distinct elements is

P(n,r)=n(n-1)(n-2)---(n—r+1) = H(n—1+1) 1<r<n

[ |/ AN

N

a1 az a3 ar—l a

r

Select r elements from a set with n elements; the first element, a, can
be selected in n ways, a, can be selected in (n - 1) ways until the last
element a,, that can be selected among the remaining n - (r - 1) elements.
By the product rule the total number of permutations of size r is P(n,r).

PN, r) = H(n—1+1) H(n—j+l)/H(n—j+l)— n

j=r+1 j=r+1 (n_ r)l
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Counting-I| Permutations examples?

» Specific cases of the formula P(n,r),

P(nl) = n__nin-Di_ . P(n,n) = " :E_nl 0l=1
(n=-1)! (n-1)! (n—n)I O

» List all permutations of the set A = {a,b,c}.

Perm(A) ={(a,b,c),(b,c,a),(c,a,b),(a,c,b),(b,a,c),(c,b,a)} P(3,3)=3=6

cyclic permutation = 120° rotation
(abc)—>(bca)—>(cab A A A
J 2
(a,c,b) (b,a,c) (cba

transposition = flip about a vertex K K K

» Evaluate P(8,5).
P(8,5) =8/(8—-5)!1=8/3=8.7.6.5.4.31/3=8.7.6.5.4 56720
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Counting-I| Permutations examples®

» How many ways are there to seat 6 people around a circular table, where
seatings are considered to be the same if they can be obtained from each

other by rotating the table?

fixed person
In general, for n people, one of them is the anchor, i.e.,

Is fixed (note that we can choose any person), the
rest can be arranged in (n - 1)! or P(n - 1,n - 1) ways.

This kind of ordered arrangement (in a circle) is called
circular permutation of size n. For the present problem,

sn=6- P(55) =5! =120

remaining persons
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Counting-I| Combinations

A combination of a set of distinct objects is an unordered selection of these
objects. An r-combination is simply a subset with r elements.

The number of r-combinations of a set with n distinct elements is

| N : :
C(n, r)—L 0<r<n C(n,r) = blnor_m_al
r'(n—r)! r coefficient

Combinatorial proof: an r-combination is just a set whose elements are selected
from a set with n elements, its number is C(n,r); on the other hand, there are
P(r,r) possible permutations taken r at a time, so by the product rule,

P(n,r)=C(n,r)P(r,r)=C(n,r)r!

The following result is helpful in computing C(n,r):

010~ =) o (e o)
== ey o or e )T
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Counting-I| Combinations examples?

» Specific cases of the formula C(n,r), Al

C(nl)=——-==n
NO n (n U(n-1)!
Ll _(Oj ~ 0!(n—0)! -1 (nj :(Oj -1 =C(n,n-1)

» Let S ={1,2,3,4,5}. List all the 3-combinations of S.

First compute C(5,3) = 5!/ 3!(5-3)! =5.4.3! / 3! 2! =10, this is the number of
subsets of S that contain 3 elements from 5. The list of 3-combinations is

Comb,(S) = {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5}}

» Find the value of C(12,6) and C(5,1).

121 12! 12...7-6!

CA20) = 5112—6) " 616!~ 6l6! COL=COS=D=C64)

12.11-10-9-8-7 L

e _11.3-4-74924 TA1(5-4)! 41
2.3.4.5.6 (5=4)
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Counting-I| Combinations examples®

» A group contains n men and n women. How many ways are there to
arrange these people in a row if the men and women alternate?

M ={m,...,m} There are 2 ways of (m,w,,...m ,w)
organizing these people
W={w,....W,} inarow (Wy, M, ... W, m,)

The number of permutations in each is, N-N-(N—=1)-(n=1)--1-1= (n!)?

Therefore, the total number of arrangements is 2(n!)2

» Suppose that a department contains 10 men and 15 women. How many ways
are there to form a committee with 6 members if it must have the same number
of men and women?

The committee must have 3 men and 3 women; we can select the men
from C(10,3) possible combinations, and the women from C(15,3) combinations.
By the product rule, the total number of ways to form such a committee is,

(10) (15) 10! 15! 1098 151413
3)\3) 37132t 6 6

54600
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Counting-I| Combinations examples®

» How many ways are there to select 12 countries in the United Nations to serve on
a council if 3 are selected from a block of 45, 4 are selected from a block of 57,
and the others are selected from the remaining 69 countries?

3 fromblock 1, n, =45
4 from block 2, n, =57

12 -7 =5 from block 3, n, =69

Therefore, applying the product rule and the number of combinations in each block,

the answer is given by,
(57j (69)
4 ) \5

MM o)

45! 571 69!  45.44.43 57.56-55-54 69-68-67-66-65
31421 41531 514! 6 24 120

— 3+4 =7 countries from two blocks

=14190-395010-11238513 ~/6.3 x 10*°
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Counting-I| ldentities?
Pascal’s identity: Let n and k be positive integers with n > k. Then
C(n+1,k) =C(n,k —1) + C(n,k)

Combinatorial proof: assume a finite set S with n+1 elements. Let x belong to S
so S* =S - {x} has n elements. First, we have C(n+1,k) subsets of size k from S.

Second, a subset of S of size k either contains x together with k - 1 elements

of S*, or does not contain x and has k elements from S*. There are C(n,k-1)
subsets of S that contain x and there are C(n,k) subsets of S that do not contain x.
The result follows from the sum rule because both families of subsets are disjoint.

(0 C(4,2)=C(31)+C@3,2) !
° 11

1
Pascal’s (Oj
triangle
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Counting-Il ldentities®

We have shown by mathematical induction that the power set P(A) of a finite
set A with n elements has 2" subsets. A new identity with binomial coefficients

Is established using a combinatorial proof.

The power set P(A) is a union of families F, each one containing subsets of size
k taken from the n elements of A, I.e.,

P(AY={JR FnF =0fori=]
k=0

Therefore,

|P(A)|:|kUOFk|=§|Fk|:kZ_()c:(n,k):2”

Vandermonde’s identity: let m, n, and r be nonnegative integers with
r not exceeding either m or n. Then

C(m+n,r) = Zr:C(m, r—k)C(n,k)

k=0
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Counting-Il Binomial expansion

The binomial theorem: let x, y be variables, let n be a positive integer. Then,

(X+y)" = Z(;C(n, xlyl = Z@X”"y"

j—o\J

Combinatorial proof: when the product is realized it is clear that all possible terms
x"yl occur in the expansion for j =0,1,2, ... ,n; note that, (n -j) +j =n.

The number of times that a term x"Jy! appears for a fixed j is C(n,j) if we count y!
or C(n,n - j) if we count x"J (in the exclusive sense). Since C(n,j) = C(n,n -j) by
Pascal’s identity, the result follows from the generalized sum rule.

Corollaries:

- letx =y =1, then (1+1)" =2" :ZC(I’], J)
j=0

. |etX:1andy:-1, then (1_1)n ZOZZ(_l)jC(n’ J)
j=0

199



Counting-I| Combinations examples®

» What is the coefficient of x8y? in the expansion (3x + 2y)17?

In this case, x8y® = x"yl thus we have thatn =17, j=9,andn-j=17-9=8. The
coefficient is given by C(17,9) modified by the new x* = 3x and the new y* = 2y, i.e.,

C(n, j)(3)"(2)! =C(17,9) 3 -2° = 24310-6561-512 = 81,662,929,920

» Show that if n is a positive integer, then C(2n,2) = 2C(n,2) + n?.

We use Vandermonde’s identity withm =n andr = 2, i.e.,

C(m+n,r) = Zr:C(m, r—k)C(n,k) — C(2n,2) = iC(n,Z —k)C(n, k)

k=0 k=0

— C(2n,2) =C(n,2)C(n,0)+C(n,1)C(n,1) + C(n,0)C(n,2)

—C(2n,2)=C(n,2)-1+n-n+1-C(n,2) 52C(n,2) +n°
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Advance Counting-I Recurrence relations

A recurrence relation for the sequence {a,} is an equation that expresses a, in

terms of one or more of the previous terms of the sequence, ay,a,, ... ,a,., for
all integers n > ny,and n, € Z*.

A sequence is called a solution of a recurrence relation if its terms satisfy the

recurrence relation. The initial conditions specify the terms that precede the first
term where the recurrence relation takes place.

» Show that the sequence a, = 2(-4)" + 3 is a solution of the recurrence
relation a, = -3a,, + 4a,.

We compute a,; and a,_, from the expression for a,, and substitute them in
the recurrence relation or equation; thus,

a, 1 =2(-4)""+3| 5 _g2(-4)"" + 3]+ 4[2(-4)"* +3]
8, , =2(-4)""+3] =_6(-4)"1—9-2(-4)"" +12
_ _8(—4)"*+3=[2(-4)" +3=a
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Advance Counting-I Recurrence application?

Recurrence relations are helpful for modeling a variety of situations that
involve the terms of a sequence which are related in a quantitative way.

» A person deposits $ 1000 in an account that yields 9% interest compounded
yearly. a) Setup a recurrence relation for the amount in the account at the end
of n years. b) Find an explicit formula for the amount in the account at the end
of n years. ¢) How much money will the account contain after 10 years?

a) Let A, denote the amount of money in the account at the end of n years,
S0 A, is the initial deposit, also 9/100 = 0.09. Therefore,

A =A_+009A ,=109A ,

b) We unfold the previous relation until the initial term is reached, i.e.,

A =109A , =(109)*A ,=---=(L09)*A , =---=(L09)" A,

c) substitution of n = 10 in the last formula gives the amount of money after
10 years,

= (1.09)'° A, = (1.09)*° -1000 ={$ 2,367.36
0
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Advance Counting-I Recurrence application®

A popular puzzle of the late nineteenth century is known as the Tower of Hanoi.
» Let H, denote the number of moves needed to solve the puzzle with n disks.

« transfer the top n - 1 disks in peg 1 to peg 3 using H,, ., moves,
« then, using one move, put the largest disk of peg 1 in peg 2,
 finally, transfer again using H, ; moves the n - 1 disks in peg 3 to peg 2.

Therefore,

H,_,+1+H _ =H =2H, ,+1;H,=1

To find an explicit formula, iterate until the initial value is reached, i.e.,
H =2H  +1=22H_,+1)+1=2°H_,+2+1
=2°(2H, ,+1)+2+1=2°H_,+2°+2+1=---

k-1 n—2 n-1
=2"H,  +D. 2= =2"TH + D20 =) 212271
J=0 j=0 j=0
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Advance Counting-I Recurrence application®

» a) Find a recurrence relation for the number of bit strings of length n that
contain 3 consecutive 0s. b) What are the initial conditions? ¢) How many
bit strings of length seven contain 3 consecutive 0s?

a) Let s, be the number of bit strings of length n containing 000. Consider
the following exhaustive possibilities for building all these strings,

* the same type of strings but of length n - 1 beginning with a 1,

* the same type of strings but of length n - 2 beginning with a 01,
» the same type of strings but of length n - 3 beginning with a 001,
» strings beginning with 000 and a string of length n - 3.

Therefore, | S, =S, ; +S, 5 +S, 5 +2"

b) There are no strings of length O, 1, and 2 with 000, sos;=s,=s,=0
Note that s; =s, + 5, + 55 + 233 = 1 which is “000”.
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Advance Counting-| ...Recurrence application®

c) we find the value of s, as follows,

7-3
S, =S +S+S,+2" =S, +5 +5, +16

/

S, = (S, +S, +5,+2°7) JTS +5, +16
=25, +25,+25=2(S, +S,+S, +2°°) + 25, + 25
=4s, +35=4(s, +5, +5, +2°°)+31=4s, +43
=47

There are 47 bit strings of length 7 with 3 consecutive 0s.
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Advance Counting-| Types of recurrences

There is no single method to solve a recurrence relation for the general
term a, . However, the methods shown here apply to a certain class
of recurrences that can be solved in a sistematic way.

A linear homogeneous recurrence (LHR) relation of degree k
with constant coefficients (CC) has the following form

k
a,=Ca, ,++Ca, =2 Ca,;Vjc eRac #0
i1

The sequence {a,} satisfying this type of recurrence relation
IS unique once the k initial conditions are given

a,=C,,a,=C,,...,a,,=C_,;V],C. eR

J

eP =(1.1DP ,; LHR, k=1 ea =a_,+a’,; notlinear
of =f +f ;LHR k=2 e H =2H, , +1; not homogeneous
ea =a_.;LHR k=5 eB =nB__,;nisvariable
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Advance Counting-I Linear recurrences

In order to solve a LHR of degree k with CC we assume that solutions
are a power of some real number r, i.e., a, = r" with r a constant. Then,

"= cr"™ =cr" 4" g ™
j=1
n n-1 n-2 n—k
=r —(cr+cr— +---+cr")=0
=r" @ —cr*t—cr*—-..—¢ ) =0
=lpol, (r)=r*—cr*“*—cr**—...—c, =0

Therefore, the sequence {a,} with a, = r" is a solution if and only if r is a
solution of the polynomial known as the characteristic equation of the
recurrence relation. In that case, r is a characteristic root.

The general form of the term a, of the sequence that solves a
LHR of degree k with CC will depend on the number and
nature of the characteristic roots.
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Advance Counting-I LHR 2 real roots

Let us consider a LHR with CC and k = 2. Thus,

a, =Ca,; +Ga, ;¢ #0 =pol,(r)=r*—cr'-c, =0

Suppose that the roots r, and r, of this quadratic equation are real and distinct,
then, the solution, where the values of the constants a; and a, are determined
by the initial conditions a, = C, and a, = C,, is given by

n n Cl —C0r2 COrl _Cl
a =ol +o,r — _
T T & = “ =
» Find an explicit formula for the Fibonacci numbers. \/_
(1++5)/2=¢
fo=@f+@Df . =pol,(r)=r*-r-1=0 =r,= g
1-+5)/2=¢

fo=1nf =1=a =1//5ra, =-1//5

Consequently, fn = % ((Pn — (5”)
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Advance Counting-I LHR 1 real root

Let us consider a LHR with CC and k = 2. Thus,

a, =Ca,; +Ga, ;¢ #0 =pol,(r)=r*—cr'-c, =0

Suppose that the root r, of this quadratic equation has multiplicity = 2,
then, the solution, where the values of the constants a; and a, are determined

by the initial conditions a, = C, and a, = C,, is given by

a, =al, +a,nr

» Find the solution to the recurrence relation (initial conditions are a; = 1, a, = 6)
a =6a_,-9 , =pol,(r)=r’-6r+9=0 =r, =3
a,=1lra =020 =1, =1

Hence, la_ =3"+n3" =3"(n+1)
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Advance Counting-I LHR general solution

The previous examples presented simple LHRs of degree k = 2. The general
case Is more complicated since the characteristic roots can be real or
complex, and each one with its own multiplicity.

We present a generalization for the case of k different real roots r, le.,
k K k
a,=y.ca, ; =pol(r)=r=>cr<i=o =pol,(r)=]](r-r)
j=1 j=1 =1

The solution has the form (the ¢; can be found by applying the initial conditions):

k
a, = Zaj rf

1=1

> Find the solution to the LHR of degree k =3, &,=6a ,—11a ,+6a ,
with initial conditions a, = 2, a, = 5, a, = 15.

=r’—6r’+1lr-6=(r-)(r-2)(r-3)=0 =r,=1r,=2,r,=3
The unique solutionis|a =1-2" +2-3
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Advance Counting: Part Il

 Divide and conquer relations
« Computational complexity
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Advance Counting-Il Divide & conguer?

Divide-and-conquer recurrence relations are used in the analysis of recursive
algorithms. Remember that a recursive algorithm solves a problem by
decreasing the size of the input until the smallest input is computed.

The fact that a recursive algorithm divides a problem into subproblems of
smaller size is expressed by saying that it is a divide-and-conquer procedure.

» The binary search algorithm.

* the input is a sequence of size n, f(n) = # of comparisons
* it reduces the inputto n / 2 when n is even,
« 2 comparisons are needed for this reduction. = f(n)=1f(n/2)+2

» A fast matrix multiplication algorithm.

* the inputs are 2 matrices of size n x n,
* it reduces the inputs to n/2 x n/2 for n even

* it uses 7 multiplications of 2 matrices, . 2
* it uses 15 additions of 2 matrices. =1 (n) =11 (n / 2) +15n°/4

f(n) = # of operations
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Advance Counting-Il Divide & conquer®

Structure of a general divide-and-conquer recurrence (DCR) relation:

« an algorithm splits a problem of size n into a subproblems,
 each subproblem is of size n / b (where b divides n),

« a total of g(n) extra operations are required for the split,

« if f(n) represents the total number of operations, then

f (n)=af (n/b)+g(n) @

Our purpose is to provide an estimate of the rate of growth or time complexity
for functions that satisfy divide-and-conquer recurrence relations.

By assumption, b is a divisor of n, so we can take n = bk for some k e Z*
= f (n) =af (n/b) +g(n) =afaf (n/b*)+g(n/b)]+ g(n)
=a’f(n/b*) +ag(n/b)+g(n)
=a’f(n/b*)+a’g(n/b*)+ag(n/b)+g(n)
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Advance Counting-Il Divide & conguer®

k-1
—a“f(n/b*)+ ) alg(n/b)

=0

= f(n)=akf(1)+§a"g(n/bj) @

Equation 2 is used to establish the time complexity of the function f(n).

Let f(n) be an increasing function of n that satisfies the DCR given by,

f(n)=af(n/b)+c;a>1bjn,b>1ceR"”

O(n*%*?) ifa>1

= T = {O(Iog n)ifa=1
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Advance Counting-Il DCR complexity?

When n = bk for some k e Z*, the explicit formulas for f(n) are:

a=1— f(n) = f (1) +clog, n @

a>1— f(n)Z(f(l)-I-%jn'ogba_ﬁ @

» Find f(n) when n = 3 where f satisfies f(n) =2 f(n / 3) + 4 with f(1) = 1.

Apply Eq. 4 with b =3, a =2, and c = 4; hence,

f(n) = (1+55)n"%? — 5% 25n°%2 _4

» Estimate the time complexity of f(n) if it is an increasing function of n.

Sincea>1,b>1,b|3% andc >0, we have

f (n) = O(n'*%?)
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Advance Counting-Il

DCR complexity®

Let f(n) be an increasing function of n that satisfies the DCR given by,

f(n)=af (n/b)+

cn®;a>1bln,b>1c,d eR"

=(f(n) =1

O(n"®?) ifa> b
O(n logn) if a =b°

O(n‘) if a <b*

» Estimate the time complexity of

Recallthat f(n)=7f(n/2)+

Sincea=7,b=2,d=2,a>bd and ¢c = 15/4, we have

f(n) of the fast matrix multiplication algorithm.

f (n) _ O(nlogﬂ) - O(n2.8)

2
15n“ /4 N Cd Cf
10 10° 631
vs O(n°) 100 10° 398108

direct matrix multiplication
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Relations

 Binary relations

 Types of relations

» Operations with relations
* Representations

* Partition of a set

* Equivalence relations
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Relations Concepts

Let A and B be sets. A binary relation from A to B is a subset of A X B.
RcAxB ; aRbe(a,b)eR ; aRb«(a,b) ¢R

Binary relations represent a correspondence between the elements of two sets.

Let A be a set. A binary relation on A is a relation from A to A.

Rc Ax A= A?

 every function or mapping from A to B is a binary relation,
f:A>B< fcAxB;b=f(@)<afb
(a,b) ef A(a,c) ef >b=c

 not every relation from A to B is a function from A to B.

(a,b) eRA(a,c) eRAb=C
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Relations Main examples

The following two examples are taken from number theory,

- the divisibility relation:  |Dc Z" xZ" ; mDn <> m|n
(3,3),(2,6),(5100) €D but (2,1),(3,7),(7,3) D
(Ln) eDbut (nl) gDforn>1

(mn) eDforn=m

 the congruence relation modulo m (positive integer):

C.cZxZ;xXC y<>m|(X—Y)<>x=y(modm)
(55),(12,0),(012) €C,, but (8,2),(2,8),(111) ¢C,,
(X,y) €C, — (¥,X%) €Cy,

(x,y) €C,, fory =x
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Relations Types

Consider a relation on A, i.e., R is a subset of A X A, then

Ris reflexive < Vx € A,(X,X) eR

R Is symmetric <(X,Y) eR—(y,X) R

R is antisymmetric <<(X,Y) A(Y,X) eR—>Xx=Yy
Ris transitive <(X,Y)A(Y,2) eR—(X,2) eR

« the divisibility relation on Z* is reflexive, antisymmetric, and transitive.
Antisymmetric, (m|n) A (n|m) — (n =k,m) A (m=k,n)
— n =Kk, (k,n) = (kk;)n
—>kk,=1->k =k, =1
* the congruence relation on Z is reflexive, symmetric, and transitive.
Symmetric, X =Yy(modm) <> m|(x —-Y)

<> m|(y—X) <> y = x(mod m) -



Relations Types examples

Consider a finite subset of the positive integer numbers, say A ={1,2,3,4,5,6}.

Ax A= A?

Cartesian support

NN w01 o

NN w b

~
—
~ -




Relations Composition

Since binary relations R are subsets of A X B or subsets of A X A, the normal
operations of set theory can be applied to relations.

Suppose that both sets are finite, i.e., |A| =n and |B| = m, where m,n are
positive integers. How many relations are there from A to B?, on A?

* the number of relations from A to B is

|P(Ax B)|= 218l = I8l pnm

« for the number of relations on A take m = n in the previous formula, then

|P(A%)|=2"

Composition of relations:

Rc AxB;ScBxC—>SoR={(a,c)|db €B,aRb AbSc}

Powers of a relation on A:

R'=R;R™=R"0R VneZ*
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Relations Composition example?

Let R ={(1,2),(1,3),(2,3),(2,4),(3,1)} and S = {(2,1),(3,1),(3,2),(4,2)}.
Find the composition of R with S.

Se.R={(11),(1,2),(2,1),(2,2)}
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Relations Composition example®

Let R be the relation on the set A = {a,b,c,d,e} containing the ordered pairs
(a,a),(a,b),(a,c),(b,c),(b,d),(c,a),(c,d),(c,e),(d,b),(d,e),(e,a),(e,b),(e,d).
Find the following powers R? | R3, R* and R>.

3 2 5 4 3
R°=R°ocR=AxA R°=R"=R
Thus, R3 is the total relation on A In this case, increasing powers
containing all pairs. do not add any new pairs.
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Relations Representations

There are basically four ways to represent binary relations from A to B or on A.

Rc AxB Rc Ax A= A’
» Set builder notation R ={(a,1),(a,2),(c,)} R ={(b,b),(c,b),(b,c)}

C

2 /B b
* Cartesian support 1 N ]
C

a b

R = O T
OHOIO

O O LN
(@
<
Py
|l
O O Ow

1
1

e Zero-one matrix MR 10
1 C i )

e, @
b @ '
ENCOERO
C

* Directed graph
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Relations Matrix form

A binary relation from A to B has a corresponding m x n boolean matrix whenever
A has m elements and B has n elements. The relation matrix is defined as

lif(a,b;) eR
0if (a,b;) R

Rc AxB& I\/IR:[mij]:{

.
0
1

vi,m. =1 Vi,m =0 m; =m, m, =1—->m; =0

R is reflexive R is irreflexive R is symmetric R is antisymmetric

R™ ={(b,a)|(a,b) R} (inverse) —» M., = M, (transpose)

R ={(a,b)|(a,b) ¢ R} (complementary) — M. =M , — Mg (complement)

227




Relations Algebraic operations

The operations between binary relations are performed using the algebra of
zero-one or boolean matrices. Suppose that R and S are relations on a finite set
A with n elements whose corresponding matrices are My and Mg, then

M. . = M. v M. (union- join)

M, . = My A M. (intersection - meet)

Moo = Mg @ M (symmetric difference - xor)
M. . = M, ® M, (composition - boolean product)

M., = M{" (power - power)

In other words, the algebra of relations R on a set A is the same as the algebra
of zero-one square matrices M. These equations are useful for computational
purposes. So the basic data structure of a binary relation is a boolean square matrix.
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Relations Digraph form

A binary relation on A can be represented in a pictorial way by means of a
directed graph or digraph G = (V,E) where the elements of A are the vertices

or nodes in V and the ordered pairs belonging to R are the elements of E
called edges or arcs.

r OAL__TAC

directed edge or arc

aRa <= (a,a,) eR— loop

aRa; ;1 # ] < (a,a;) R — directed edge

Representing a binary relation with a digraph is a visual aid for understanding
the properties and types of relations. They serve as an introduction to the
concepts of graph theory and are useful for modeling problems.
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Relations

@, ©
@ o

Vi,aa €E Vi,aa ¢E
R is reflexive R is irreflexive

@) @O0 a0
ONO &

a,a eEnaa; ek

8,8, eE—>aq €k
R is symmetric —aa; €k
R is transitive

Properties

8,8, eE—>aq ¢E
R Is antisymmetric

aa; cE —»aa E™

’

@'l@

iInverse of R (previous)
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Relations

a b

0——0

a b C
R O >O >O

a b C

O O O

d

»O

Transitivity & powers

=¥ d b A new edge is
O O added if there

N2 a C isapath of
O——0 length 1, 2,

d and 3 in the
O 'O original relation.

In general, the n-th power of a binary relation R on A will contain (i, j) if there is
a path of length n fromi to j in R; here, length means the number of arcs.

R is transitive < Vn,R" =R

n=1 (trivial), R' = R

n=2 (basis), R =R-RcR

(a,c) eR? <> 3b e A (a,b),(b,c) eR |[R=R*eRcReoR
since R Is transitive — (a,c) R

Proof of the direct implication:
induction
THEON =k, R* < R then

hypothesis / X(

=R°cR
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Relations Set partition

A family of sets P = {A,A,, ... /A, } of a given set A is a partition if and only if
the sets A, cover A and any two subsets in P are disjoint, i.e.,

A={JA Viz|,AnA =0
i=1

A natural binary relation on A is defined as follows: XRPy <Al X, Y € A

The relation induced by P has the properties,

o XR.x<>di,xeA (reflexive)

e XR,y— yR,xsince
di; X,y e A >y, x e A (symmetric)

o XR,YAYR,zZ— XR,z (transitive)

The sets A, are called o7
blocks, cells or classes. di=];X,yeA Ay, ze Aj —> X,z €A
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Relations

Equivalence

An equivalence on A is a binary relation R on A that is reflexive, symmetric, and
transitive. Every equivalence on A induces a partition of A known as the quotient

set denoted by A/ R.

For each element a in A we define the equivalence class of a as the set:

[a]r =[a]=cl(a) = {b = AlaRb}

Therefore, the quotient set (or partition induced by R on A) is defined as the family:

A/R={[a]la € A}

It is not difficult to prove that,

aRb <> [a] =[Db] ; ayébe[a]m[b]:@ ; A=U[a]

acA

Any element or member of a class [a] is called a representative.

Equivalence on A < Partition of A

Same idea, but expressed
In different forms!
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Relations Integers modulo m

This is the classic example of an equivalence. It shows how this idea
IS used to build new objects from old ones in a clever way.

Let R be the binary relation of congruence modulo m between two integers x,y € Z.
reflexive, x=x(modm)

symmetric, x = y(mod m) — y = x(mod m)

transitive, x=y(modm) A y=z(modm) — x = z(modm)

The equivalence classes and the quotient set are computed as follows:

[X]=1y|y=x(modm)}={y|y—x=km}={y|y = Xx+km}

o [X]={X+kmk eZ}={ .., x—-2m,x—m, X, Xx+m,X+2m,...}

Each equivalence class has an infinite number of elements from Z and we take
as representatives the possible remainders for m, i.e., 0,1, ..., m - 1. Therefore,

ZIR={[r]|r=04,...,m=T={[0L.[4.... .[n-1} = Z.

This quotient set is called the integers modulo m and it is a finite set!
234



Graphs-Part |

 Types of graphs

* Graphs as models

* Graphs examples

* Applications of graphs
« Operations with graphs
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Graphs-|

Undirected
Graphs

Directed
Graphs

Name  Multiple edges?

simple graph  no

multigraph yes

pseudograph yes

directed graph no

directed
multigraph yes

Types

Loops?

no

no

yes

yes

yes
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Graphs-| Models
Mathematical definitions for pseudographs and directed multigraphs:
PG=(V,E,f:E—>{{u,v}|uveV}
f(e)=f(e,)={u,v}Aau=v; parallel edgese,,e,
f(e)={u,v}Aau=v;loope

MDG =(V,E, f :E—>{(u,v)|u,veV})
f(e)=f(e,)=(u,v) Au=v; directed parallel edges e, e,
f(e)=(u,v) Au=v;directed loop e

A graph is a model when the vertices (set V) and edges (set E) are assigned a
specific meaning according to the problem being represented by the graph.

* niche overlap graph: interaction between animal species; V = {species},
{u,v} means species u competes with species v for food resources.

 precedence graph: execution of programs in concurrent mode; V = {instructions},
(u,v) means instruction v can be executed if instruction u has been executed.
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Graphs-| Model example?

» The intersection graph of a collection of sets A, A,, ..., A, is the graph

that has a vertex for each of these sets and has an edge connecting the vertices
representing two sets if these sets have a nonempty intersection. Construct the
intersection graph for the following collection of sets.

A ={X|x<0} A ={X-1<x<0}, A, ={x|0< x <1},
A ={X-1<x<1}, A={Xx>-1}, A =R
Notethatt ANA=A NA = othewise ANA #DIifi= ]

A A
A e A,
A A,
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Graphs-|

Model exampleP

» Construct a precedence graph for the following program:

N =

w

ol

(o]

(DU)(Db(D(DU)(D

\l

X:=0
X:=X+1
y.=2
=}
Xi=X+2
YVi=X+1Z
=4

The set of vertices V contains as elements the
statements or instructions of the program, i.e.,

V={5,S,,...,S,}

There is an edge e = (S, §) If S; can be executed after
S; has been executed, therefore the directed graph is
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Graphs-| Basic Concepts

General terminology for undirected graphs:

 two vertices u and v are called adjacent or neighbors if {u,v} is an edge,
« if e ={u,v}, the edge is called incident with the vertices u and v,

» the edge e is also said to connect u and v,

 the vertices u and v are called endpoints of the edge {u,v}.

v,,V, adjacent ; v,,v, not adjacent
e, Incident with v, v,

e., &, parallel edges, endpoints are v,, v,

» the degree of a vertex = number of edges incident with it,
» aloop at a vertex contributes twice to the degree of that vertex,
 the degree of a vertex v is denoted by deg(v).

4
deg(v,) =4; deg(v,) =3 D deg(v,) =4+3+3+4=14=2.7=2|E]|
i=1
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Graphs-| Main Results

Euler’s theorem (handshaking): Let G = (V,E) be an undirected graph with
e edges, then (it applies also to multigraphs or pseudographs)

_Zn:deg(vi) = Zdeg(v) =2e=2|E]

veV

An undirected graph has an even number of vertices of odd degree.

V,..n =1V €V|deg(v) is even};V ,, ={v €V|deg(v) Is odd}

D deg(v)= D deg(v)+ D deg(v)=2k,+p=2e — piseven

veV veV (even) veV (odd)

Since the second summation is an even number and is obtained by adding odd
numbers there must be an even number of them.

Particular kinds of vertices:

vis isolated <> deg(v)=0;Vvis pendant <»>deg(v) =1
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Graphs-| Special Types?

Complete graphs Cycles Wheels
K, C, W,
KG C6 VV6
K,;n=1 C,;nx3 W._;n>3acycle
Vi # j,{Vi,Vj}EE Vi’{vilvi+1modn}EE pIUS Vi ¢O,{V0,Vi}6 E
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Graphs-|

Stars

34::><i: AOF

Special TypesP

Complete bipartite graphs Cubes

10 11

Q,

110 111
101
100
Q,
010 011
000
001

m,n ?

S, =K., ,nx1

K,nimn>1Vi#j Q,;n=1veB”
{u,v}eE©ou eU,v, eV Vi#j{v,v}eE©
UnV =y Hy(vi,v;) =1
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Graphs-| Examples?

» Determine the sum of the in-degrees of the vertices and the sum of the
outdegrees of the vertices directly. Show that they are both equal to the
number of edges in the graph.

D deg (v) =5 (@)+5 (b)+5 (c)+5 (d)

a veV
=2+3+2+1=8
@ C Zdeg+(v):5+(a)+5+(b)+5+(c)+5+(d)
veV
=2+4+1+1=8

In general, for a directed multigraph the following relation always holds:

> deg (v) = Y_deg"(v) =[E|

veV veV
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Graphs-|

» How many vertices and how many edges do the following graphs have?

ExamplesP

C, (cycle) »V|=n;|E|=n
W (wheel) -|V|=n+1;|E|=2n

Q. (cube) -»V|=2";|E|=n2""

Kn (complete) —)|V|: n: |E |: C(n,2) _ n(n2—1)

Knn (complete bipartite) -V|=m+n;|E|=mn

» Let G be a graph with v vertices and e edges. Let M be the maximum degree
of the vertices of G, and let m be the minimum degree of the vertices of G.

Show thata) 2e /v >m, and b) 2e /v <M.

a) Yv,m< (V) »>v-m< Y S(v)=2e—>2e/v=m

veV

b) YV, M>6(V) >V-M 2> D 5(V)=2e—

veV

2e/v< M
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Graphs-| An Application

Graphs with a certain structure as those shown before can be used to model, for
example, computer networks or arrangements of units for parallel processing.

Computer networks topology: rings (cycles), stars or hybrid (wheels).

Parallel processing machines: complete graphs, grids or hypercubes (cubes).
Kn N <5 Low values of n ; otherwise, number of connections = C(n,2).
linear array of 5 processors; only

L5 ® ® ® ® ® two direct connections between P, and
P PR P, P, B processorsP;_;, P, (except P;,Ps)

a mesh or grid (two dimensional array)

of 5 x 5 = 25 processing units. Each
interior processor (not on the boundary)
has 4 direct connections with its neighbors.

Communication between some processors
require a number of intermediate links:

O(~/n) = O(m) : mx m mesh
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Graphs-| Operations

Two basic operations on graphs are performed by eliminating or adjoining
vertices or edges. The formal definitions are as follows:

 a subgraph of a graph G = (V,E) is a graph H = (W,F) where W c V and F c E.

« the union of two simple graphs G, = (V,E,) and G, = (V,,E,) is the simple
graphG=G; u G,whereV=V,uV,and E=E; UE,.

Examples:

* Every cycle C, for n > 3 is a subgraph of K, (complete) and of W, (wheel)

* BEvery star S, for n > 1 is a subgraph of K, (complete bipartite) and of W, (wheel)
» Every wheel W, for n > 3 is the union of C, (cycle) and of S, (star)

* The cube Q, forn > 1 is a subgraph of the cube Q.
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Graphs-Part |l

» Adjacency matrix
* Incidence matrix
« Graph isomorphism
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Graphs-Il Adjancecy Matrix

A usual representation of a graph (as in the case of binary relations) is a matrix.
The n x n adjacency matrix A of a graph G = (V,E) with [V | =n where m is a
positive integer denoting the multiplicity of an edge is defined as follows:

Vv, V, V, V,

Undirected h _ °
n wece{grap}s . V, v, [IN1 0 1
m;{v.,v.} €
[aij]: 0 = V, | INON1 1
otherwise v.lo 1NN
vV, Vs ’
Y} _1 1 2

D

<

N
oo<
| -l><

Directed graphs

m;(v;,v;) eE
[aij]:{

0 otherwise

<
N
<
< < < <
w N
|
o o~ =
o /o~
L /o/o0 o
o/

N
()
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Graphs-li Incidence Matrix

Another matrix representation for an undirected graph G = (V,E) with n vertices
and m edges is the n x m incidence matrix M defined as follows:

1;1f e; Is incident with v,
[mij] —

0 otherwise
Before displaying the matrix M the parallel edges have
vertices and edges must be labeled identical columns
in a certain order e € € € |6& €l €
vifl1 0 0 1|0 Of1
V.11 1 1 0|0 0[O0
—>
V10 1 0 01 1|0
V10 0 1 1|1 1|0

loops appear as a column
having a single entry = 1
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Graphs-Il Isomorphism

An isomorphism (“isos” means equal and “morphe” means form) between
to simple graphs G = (V,E) and H = (U,F) is a bijection from V to U
that preserves edge adjacency. In that case, G and H are isomorphic.

GrHeI 1, V-oU {v,v}eE>{f(v) f(v,)}eF

Besides finding (possibly) a one-to-one and onto function between the vertices
of both graphs, the following invariants are useful to test for graph isomorphism

* both graphs must have the same number of vertices and edges,
» the degrees of the corresponding vertices must be the same,

Additional criteria to test for graph isomorphism are

» subgraphs of both graphs made up of vertices with degree 3 and the
edges connecting them must be isomorphic,

 the adjacency matrix of the second graph labeled by the bijection f
must be equal to the adjacency matrix of the first graph.
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Graphs-li

» Determine whether the given pair of graphs is isomorphic.
A bijection f between V and U is

v
'\ v

Isomorphism example?

VvV, = U,
v A « same # of vertices V, U,
1 V » same # of edges
4 * each vertex has V. — U
Ve Uz u, the same degree. 3 °
vV, = U
G=(V,E) H=(U,F) * ’
So, we verify usin ' ' ices: s U
, g the respective adjacency matrices: S 1
V, 0 0 0] u, 0 O 0]
v, |0 0 0 u, | |0 0 0
v, 0 0 0 U, 0 0 O —G~H
v, 0 00 u, 0 00
Ve 0 0 0 U 0 0 0 252




Graphs-li

Isomorphism exampleP

» Determine whether the given pair of graphs is isomorphic.

Vy

G=(V,E)
deg({vl’vz ’VS’VG}) =3
deg({v3,v4}) =2

* same # of vertices (6)

» same # of edges (8)

Consider the degree
of each vertex:

Since vertex ug of graph H has degree 4 there is
no corresponding vertex in graph G with the same degree.
Therefore, the graphs G and H are not isomaorphic.

u, @ u,
u5. .u4
H=(U,F)

deg({Uy Uy, us}) =2
deg({u,,Us}) =3
deg(us) =4
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Graphs-Il Isomorphism example®

» Show that isomorphism of simple graphs is an equivalence relation.

Consider the set S of all finite simple graphs, let G, H, K € S. We show that
the relation of isomorphism between graphs is an equivalence on S if it is
reflexive, symmetric, and transitive.

VG eS,G~G since f; =I1dg

G~H-—>H=~G|since f; > g= fb}jl preserves adjacency

between H and G.

GxHAH=K-—>G=K]since h=go f Isa bijection
between G and K preserving adjacency.

The equivalence class [G] contains all simple graphs isomorphic to G, and
the quotient set S/ ~ is the corresponding partition of S.
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Graphs-Il Isomorphism example®

The complementary graph 621‘ a simple graph G has the same vertices as G.
Two vertices are adjacent in G if and only if they are not adjacent in G.

» Asimple graph G is called self-complementary if G and G are Isomorphic.
Show that the following graph is self-complementary.

a b a b
Y

O
O
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Graphs-Il Isomorphism example®

» How many nonisomorphic simple graphs are there with n vertices,
when nis a) 2?, b) 37, and c) 47

_____________________________________________________________________________________________




Graphs-Il Isomorphism examplef

» Determine whether the graphs without loops with the following

incidence matrices are isomorphic.
- - Since both incidence matrices
1 0 1 1 1 0 are equal after a permutation
of columns, graphs G and H

a) Mg=10 1 1), My=1 0 1 are isomorphic. So, we write:
1 1 0] 011 G~K, ~H
1 11000 0O 0 10 0o 1
B M. 1 0 (1] 0 1 M 0 1111 1 0
¢ /o001 1" " |12 0|01 0
01 11 0] 1 01 0 1]

Again, since both incidence matrices are equal after a permutation of columns,
graphs G and H are isomorphic. Both graphs are the same as the unigue graph
that exists with 4 vertices and 5 edges (see previous slide).

257




