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Preface 

    This technical report gives, in presentation style, a selection of topics 

that conforms a course in Basic Discrete Mathematics and its main 

purpose is to be used as a learning guide for students or self-educated 

persons interested in this area of mathematics. The use of colors in text, 

text backgrounds, and graphical elements is an essential characteristic of 

this kind of style format, helping the reader to distinguish and localize key 

words, fundamental ideas, or relevant suggestions. 
 

    The report can also serve as supporting material or as a didactic tool for 

known textbooks treating the same subject. A representative list of 

bibliographical references is provided in the next page. Thus, lecturers, 

instructors, or teaching assistants may also take advantage of the way 

topics are exposed herein. 
 

As prerequisites for a better understanding of the kind of mathematics 

given here, the reader must have a background on general Algebra, 

elementary Analytical Geometry, and basic Calculus. Also, some Computer 

Programming knowledge and practice coding algorithms is required. 

 

     Gonzalo Urcid 

     Tonantzintla, May 22nd, 2025 
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Goal: To learn how to think mathematically. 

1) Mathematical reasoning. 

       Read, understand, and construct mathematical arguments. 

 

2) Combinatorial analysis. 

       Ability to count objects using basic and advanced techniques. 

 

3) Discrete structures. 

       Represent and relate discrete objects mathematically. 

 

4) Algorithmic thinking. 

       Specify and solve a problem by means of an algorithm 

       in pseudocode language.  
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What is discrete mathematics? 

• The study of discrete objects using mathematics, 

• Calculus is based on the concept of continuity, but 

  discrete math deals with separated, disconnected 

  or discontinuous objects.   

• Discrete objects are finite in nature and can 

  be represented by natural or integer numbers. 

• In a technological sense, discrete means digital. 
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Why do we need to study discrete mathematics? 

• To develop our mathematical maturity, and 

   our ability to understand and create mathematical proofs. 

• As a gateway to more advanced courses in computer science 

  such as data structures, algorithm analysis, database theory, 

  formal languages, and computer security to name a few. 

• To solve problems in applied sciences or engineering 

   for example, in the industrial, chemical or biological areas. 
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• Propositions  

• Operators 

• Truth tables 

• Implications 

• Truth table construction 

Logic: Part I 

9 



Logic-I                                                        Propositions 

 The rules of logic give precise meaning to mathematical statements. 

 Used to distinguish between valid and invalid math arguments. 

 Also used to design computer circuits, construction of programs, 

    and verification of correctness (in programs). 

A proposition is a statement that is either true or false, but not both. 

Is is the basic building block on which logic is founded. 

Notation  

Truth values   T (true)  F (false) 

Propositions   p, q, r, s, … (lower case)

  

10 



xyyx  for every pair of real numbers x,y. Yes, T  

Answer this question. No, ??  

Yesterday was our  first class. Yes, F  

" ."x y y z if x z    Yes, p is true  

q = “Can you give me a prime number?” No, q is a question  

A compound proposition is constructed by combining one or more 

propositions using logical operators and connectives. 

Proposition? Examples 

Miami is the capital of Florida. Yes, F  

11 
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Basic logic operators or connectives 

Symbol  Meaning   Name 

p it is not the case that p negation 

qp p and q conjunction 

qp p or (inclusive) q disjunction (could be both) 

qp p or (exclusive) q exclusive or (not both) 

qp if p then q implication 

hypothesis, 

premise 

conclusion, 

consequence 

NOTE: negation is a unary operation, the others are binary operations. 

12 
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Let be, for example, 

prq  =  you miss the final exam, or pass the course, or have the flu. 

q r =  if you miss the final examination then you will not pass the course. 

r r =  you have the flu or you do not have the flu. 

p q =  you have no flu and you did not miss the final examination. 

p = you have the flu. 

q = you miss the final examination. 

 r = you pass the course. 

How do we find the truth value of a compound proposition? 

Use the logical values of each operator as defined by their truth tables. 

13 
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given find truth value of 

p p

p q, p q

p q, p q

T 

F 
F 

T 

p p

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

F 

F 

p qp q

T 

T 

F 

F 

T 

F 

T 

F 

T 

T 

T 

F 

p qp q
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given find truth value of 

p q, p q

p q, p q

T 

T 

F 

F 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

T 

F 

F 

T 

T 

F 

T 

F 

T 

T 

p qp q

p qp q

A brief exercise: find the truth tables for the compound propositions  

q pa) ( ) ( )p q q p  b) 
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Other ways of expressing an implication: 

 

• “if p, then q” 

   If you log on to the server, then you have a valid password. 

 

• “p is sufficient for q” 

   Logging on to the server is sufficient for a having a valid password. 

 

• “p implies q” 

  To log on to the server implies to have a valid password. 

 

• “q is necessary for p” 

  A valid password is necessary to log on to the server. 

qp

q p

Contrapositive 

qp  p qpq

Converse 

16 
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We can consider compound propositions as functions of several 

logical variables having values in the set {T,F}. 

1n variable, 1 1( ) ( )f p f p p 

2n variables, 1 2 1 2( , ) ( , ) ( )g p q g p p p p  

3n variables, 
321321 )(),,(),,( pppppphrqph 

# rows in table 

n

n

2222 



Each logical variable can assume the value T or F, therefore, 

the number of rows in the table for f is,  


n variables, ),,,( 21 npppf 

2 

4 

8 

n2
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q pa) 

( ) ( )p q q p  b) 

p q

T 

T 

F 

F 

T 

F 

T 

F 

q p

F 

T 

F 

T 

F 

F 

T 

T 

q p

T 

F 

T 

T 



p q

T 

T 

F 

F 

T 

F 

T 

F 

qp pq

T 

F 

T 

T 

T 

T 

F 

T 

)()( pqqp 

T 

F 

F 

T 

qp

T 

F 

T 

T 

This conjunction is called biconditional. 

qp

T 

F 

F 

T 

( )p q

T 

F 

F 

T 


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p q p qp p q ( ) ( )p q p q  

T 

F 

T 

F 

F 

F 

T 

T 

T 

F 

T 

T 

T 

T 

T 

F 

T 

F 

T 

F 

T 

T 

F 

F 

4 rows 

p q q q r ( )p q r r

T 

T 

T 

T 

F 

F 

F 

F 

T 

T 

F 

F 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

T 

F 

F 

F 

T 

T 

F 

F 

T 

T 

T 

F 

T 

T 

T 

F 

T 

T 

T 

F 

T 

T 

T 

T 

T 

T 

8 rows 
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• Bits and bit string operations  

• Logical equivalences 

• Basic logical identities 

• Algebraic manipulations 

• Generalized operators 

20 
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Language logic 

• truth value 

• logic variable 

• proposition 

• logical operations 

• sequence of logical values 

{ , }T F

{ , , , }  

s T T F F T F ( , , , , , )

Bitwise operations are performed 

on each corresponding bit for 

two bit strings of the same length. 

x

y

x y

x y

x y










 

 

 









110010

011011

010010

101001

111011

Computer logic 

• bit (binary digit) 

• boolean variable 

• boolean expression 

• bit operations 

• bit string 

{ , }0 1

{NOT,AND,OR,XOR}

s  110010 length 6 
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• a proposition that is always true is called a tautology, 

• a proposition that is always false is called a contradiction,  

• otherwise it is called a contingency. 

p p p pp p p p p p

T 

F 

F 

T 

F 

F 

F 

T 

T 

F 

T 

T 

We also use algebraic notation, for example, 

p p F  p p T 
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We say that p is logically equivalent to q if and only if the biconditional 

between p and q is a tautology. In symbols,  

 when p q p q T  

How do we verify a logical equivalence? 

1) by showing that p and q have the same final column in their 

    respective truth tables, or 

 

2) by reducing p to q using the rules of logic in algebraic notation. 

Completeness: a proposition p can be build using only the set 

of primitive logical connectives, that is to say, from {NOT, AND, OR}.  

Duality: a proposition p has a dual proposition p* obtained 

by exchanging AND’s with OR’s, and T’s with F’s.  

23 
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De Morgan’s laws: ( )p q p q  

Using the principle of duality, another equivalence is immediately 

established, this is the second logic law of De Morgan, 

( )p q p q  

( )p q p q  p q p q ( )p q p q

T 

T 

F 

F 

T 

F 

T 

F 

F 

F 

T 

T 

F 

T 

F 

T 

F 

T 

T 

T 

T 

F 

F 

F 

F 

T 

T 

T 

T 

T 

T 

T 

same last column 
biconditional is a tautology 
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Logical equivalence  Law name 

p T p 

p F F 

p p p 

( )p p

identity 

domination 

idempotent 

double negation 

p q q p  

( ) ( )p q r p q r    

p q r p q p r     ( ) ( ) ( )

( )p q p q  

commutative 

associative 

distributive 

De Morgan 

All these fundamental logical identities or equivalences, 

and their duals are proved using truth tables. 
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Example of algebraic reduction using the fundamental equivalences: 

[ ( )]p p q q  The following implication is a tautology 

[( ) ( )]p p p q q     distributive law 

[ ( )]F p q q    contradiction 

( )p q q   identity law 

( )p q q   equivalence of implication operator 

( ( ) )p q q   De Morgan’s law 

( )p q q   double negation and associative law 

  p T T tautology and domination law 

26 

Logic-II                                      Algebraic manipulation 



The associative law allows to take out parentheses from an expression 

containing only conjunctions  xor  disjunctions. So, we can write, safely, 

p p p1 2 3  instead of  ( )p p p1 2 3 

The generalized conjunction and disjunction are defined as: 

   

   





i

n

i n

i

n

i n

p p p

p p p

1 1

1 1





true when each pi is true, 

true when at least one pi is true. 

Example, the generalized De Morgan’s laws are written as: 

1 1

1 1

( )

( )

n n

i i i i

n n

i i i i

p p

p p

 

 

  

  

operator exchange 

transfer 

negation out-in 
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• Predicates 

• Quantifiers 

• Examples, one variable 

• Examples, two variables 

• Binding variables 

• Quantifier negation 

28 
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Reminder:  compound proposition = logical function = boolean expression, 

they depend only on logical variables assuming values in the set {T,F}={1,0}. 

)()4(  xx

m is an odd number 

Word x contains letter “a”. 

The set U from which x takes its values is called the universe of discourse 

or the set under discussion.  

A propositional function is a predicate P about an object x or a property that x 

can have. 

these statements have other 

kinds of variables whose values 

belong to a certain set such as 

real or integer numbers, or 

words. 

RxxP ),(

ZmmQ ),(

WxxS ),(

UxxP ),(

one argument 

UyxyxQ ,),,(

two arguments 
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Is a propositional function P(x) a proposition? 

NO if x remains without a value, YES if x is substituted by a specific value. 

)()4()(  xxxP

S(x) = word x contains letter “a” 

Q(m) = m is an odd number 









FP

TP

)5(

)3(









TQ

FQ

)2001(

)1098(









FdiscreteS

TappliedS

)(

)(

propositional 

function )(xP
Uxx  0

give a value 






F

T
xP )( 0

proposition 
1 
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propositional 

function )(xP
quantification 

all, some, or 

only one x 




F

T
xPQ )]([

proposition 
2 

quantifier 

)(xPxuniversal quantifier true if P(x) is true for all values of x in U.  

existential quantifier )(xPx true if P(x) is true for some values of x in U.  

we use the symbol )(! xPx true if P(x) is true for only one value of x in U.  

For a finite number of elements, Uxxx n },,,{ 21 

)()( 1 i

n

i xPxPx 

)()( 1 i

n

i xPxPx 

)()(! 1 i

n

i xPxPx 

in fact, you can take the 

quantifier operators as 

a natural extension of 

“and”, “or”, “xor” applied 

to a finite or infinite 

number of objects. 
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  Every computer science student needs a course in discrete mathematics. 

U     = set of all computer science students 

P(x) = x needs a course in discrete mathematics 
)(, xPUx

  There is a student in this class who owns a personal computer. 

U      = set of all students in this class 

Q(x) = x owns a personal computer 
)(, xQUx

  Truth value of )0(, 2  nZn

  Truth value of )2(, 2  nZn

  Truth value of )()(! xxPxxP 

T, since a square is always ≥ 0 

F, since the only solution to the 

equation is not an integer.  

T, since “only one x” can be taken 

as “at least one x” or “some x”. 
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  Every student in this class has taken at least one computer science course. 

U1     = set of all students in this class 

U2     = set of all courses in computer science 

P(x,y) = x has taken y 

),(,21 yxPUyUx 

  There is a student in this class who has been in every room of at least one 

     building on campus. 

U1     = set of all students in this class 

U2     = set of all buildings on campus 

U3     = set of all rooms 

P(z,y) = z is in y, Q(x,z) = x has been in z 
)),(),((

,321

zxQyzP

UzUyUx





  Truth value of )0(,  mnZmZn T, since m = -n 

)6(, 22  mnZmZn  Truth value of F, try low values for m,n. 

, 0, 1, 2, 3m n    
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  Remember the definition of a limit in calculus? Lxf
ax




)(lim

For every real number  0 there exists a real number  0
such that   Lxf )( whenever  ax0

))(0(00   Lxfaxx

  Write out the quantification  )(! xxP using the other quantifiers, 

and the logical operators. 

)(! xxP )(xxP ))()(( yxyPxPyx 

only one x some x 

Could be another y? 

we assure that x = y (unique) 

hidden or implicit 

universal quantifier 
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Given a propositional function P(x), if a quantifier is applied to P(x) or a specific 

value of x is given, we say that variable x is bound, otherwise it is free. 

),( yxxP

x is bound 

y is free 

),( yxyQx

x,y are bound 

)(),( zRyxyPx 

x,y are bound 

z is free 

Binding variables is the general process that gives us a proposition 

from a propositional function. 

pxxxP n ),,,( 21  if and only if boundisxi i,3 

),( 0 yxyQ

y is bound 

x0 is a value (bound). 
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( ) ( )xP x x P x 

There is an x that makes P(x) = F 

It is not the case that for all x, P(x) = T 


For all x, P(x) = F 

It is not the case that for some x, P(x) = T 



( ) ( )xP x x P x 

operator exchange 

negation transfer 

( , )y xP x y  ( , )y xP x y  ( , )y x P x y 

( ( , , ) ( , , ))x y zP x y z z yP x y z     ( ( ) ( ))x y zP z yP      

( ( ) ( ))x y zP z yP       

( ( ) ( ))x y zP z yP      

( ( ) ( ))x y z P z y P      
36 
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  show that )()( xxQxxP  is not logically equivalent to ))()(( xQxPx 

P(x) = x is an even number 

Q(x) = x is an odd number 

)()7(

)()8(

xxQTQ

xxPTP




then TxxQxxP  ))()((

but there is no integer number that is both 

even and odd at the same time, therefore, 
FxQxPx  ))()((

F

  truth value of )
2

(,
nm

ppmn


 where U is the set of integers. 

false because, for example, 

Zk
k

pkmkn 



2
1

2

12
1
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• Sets 

• Basic operations 

• Special operations 

• Hasse diagrams 

• Algebraic identities 

• Generalized operations 
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Sets 



A set is a finite or infinite collection of objects called elements. We usually 

consider that elements are of the same kind. 

Notation: })(|{},,,,{ 21 TxPUxSeeeS n  

by listing the elements or by using a predicate 

SxFxPUx

SxTxPUx





)(

)(

membership relation between 

an element x and a set S. 

Basic notions 

 

 universal set, empty set 

 

 subset 

 

 equal sets 

 

 sets (that we will use) 

 

 family of sets 

}|{ xxxU  }{}|{  xxx

the set with 

all elements 

the set 

without elements 

)( BxAxxBA  each x in A is also in B. 

ABBABA  A, B have the same elements. 

• sets of numbers: natural, integers, real, and complex, 

• sets of functions: polynomials, exponentials, and logarithms, 

• sets of discrete objects: strings, edges, nodes, etc. 

a set whose elements are SETS! 
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Basic set operators 

 

 union 

 

 

 

 intersection 

 

 

 

 symmetric difference 

 

 

 

 difference 

 

 

 

 complementation 

Definition 

Venn diagrams 

}|{ BxAxxBA 
A B 

}|{ BxAxxBA 

}|{ BxAxxBA 

}|{ BxAxxBA 

cA U A 
U 

Two sets are disjoint if BA A B 
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The following operations provides us with additional tools for working with sets. 

Additional set operators 

 

 cardinality 

 

 

 

 

 

 power set 

 

 

 

 

 

 Cartesian product 

Definition  Examples 

)(|| AcardA 

number of elements in A 

}|{)( ASSAP 

is the family of all subsets S of A 

(including itself and the empty set) 

10||}10|{  AxNxA

 )()( ZcardNcard

}}1,0{},1{},0{,{})1,0({ P

}{)( P

nAPNnnA 2|)(|,|| 

}|),{( BbAabaBA 

the set of all ordered pairs formed 

from the sets A and B 

),(},{ baba 

)},(),,(),,(),,{(

},{

FFTFFTTT

BAFTBA 
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Determine whether each of the following statements is true or false: 

}{xx

}}{{}{ xx 

}{}{ xx 

}{x

}{}{ xx 

}{x

Suppose that A, B, and C are sets such that A is included in B, and B is part of C. 

Show that A is a subset of C, this is known as inclusion transitivity. 

By definition: )( BxAxxBA 

)( CxBxxCB 

Take an arbitrary value of x, call it x0 then 

qpBxAx  00

rqCxBx  00

From logic, we know that: 

)()()( rprqqp 

So, 

rpCxAx  00

and again, by definition: 

CACxAxx  )(

T 

T 

T 

T 

F 

F 
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Show that ).()( ABBABA  We have to prove that both sets are equal. 

By definition: }|{ BxAxxBA  now pick an arbitrary x, say x0, then 

))(()( 0000 BAxBxAxBAx  belongs to A or B but not both. 

))(())(( 0000 BAxBxBAxAx  distributive law 

0 0 0 0( )cx A B x A B x A x B        Also, we have that (De Morgan) 

)())(( 0000 BxAxFBAxAx 

)())(( 0000 AxBxFBAxBx  therefore, 

)()( 00000 AxBxBxAxBAx  finally, at the set level, 

)}()(|{ AxBxBxAxxBA  from which the result follows 

by the definition of set difference. 
)()( ABBA 
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For sets A, B show that ( ) ( )cA B A B A   

( ) ( ) [( ) ] [( ) ]c cA B A B A B A A B B        

[( ) ( )] [( ) ( )]c cA A B A A B B B       

ONLY intersections, ( ) ( )cA B A A B U A       since A is a subset of the 

other three terms. 

The Cartesian product is not commutative for A, B nonempty sets, unless A = B. 

AAAABA  If both sets are equal there is nothing to prove. 

ABBABA  Since A, B are not equal we can make some choices: 

 

BA

 

AB

BAFor example,  
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

}{a }{b

},{ ba



}{a

These graphical representations of the power set of U are known as Hasse diagrams. 

}{aU  },{ baU  },,{ cbaU 
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

}{a }{c

},{ ba },{ cb

},,{ cba

},{ ca

}{b



The laws of sets are the same as the laws of logic, they share the same 

algebraic structure. Completeness and duality can also be applied to sets. 

identity 

domination 

idempotent 
 

double comp. 

AUA 

A

AAA 

( )c cA A

commutative 

associative 

Distributive 
 

De Morgan 

ABBA 
)()( CBACBA 

)()()( CABACBA 

( )c c cA B A B  

They have the same form, so we just have to remember one group of identities. 

Symbol exchange 

CBArqp ,,,,





,, UFT

cp A


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Suppose we have a finite family of sets 

then we define the generalized set operations as follows: 
},,,,{ 21 nSSSF 

},|{21

1

in

n

i

i SxixSSSSF 




},|{21

1

in

n

i

i SxixSSSSF 




},|),,,,{( 1

1

1

iini

n

n

i

i

Sxixxx

SSSF










• union 

 

 

 

• intersection 

 

 

 

• Cartesian product 

This is called an ordered n-tuple 
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• Functions 

• Classification 

• Inverse and composition 

• Discrete functions 
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Concept Symbol  

• function 

 

 

• domain 

 

 

• codomain 

 

 

• image of a 

 

 

• pre-image 

 

 

• range 

 

 

• image of S 

)(

:

afba

BAf







Afdom )(

Bfcod )(

bafb )(;

bafa )(;

Bfran )(

ASSf ;)(

a

A f

)(afb

B



A function f assigns only one element of B 

to each element of A. 
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f

)(Sf

B

)( fran

S

A



Common verbal expressions are: 

 

f is a function from A to B, 

 

f maps A  to B, 

 

f is a transformation from A to B. 

A

a

B

b

set level A B

element level a bWe define the image of a subset S of A as: 

f S f a a S( ) { ( )| } 

According to this definition the range of a function is ran f f A( ) ( )

and the following chain of inclusions are valid, 

f S f A B( ) ( )  note that, f a f a b B({ }) ( )  
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Functions are classified as: 

 

• injections (one-to-one) 

 

 

• surjections (onto) 

 

 

• bijections (both one-to-one and onto) 

    a a A a a f a f a1 2 1 2 1 2, , ( ) ( )

    b B a A b f a, ( )

( ) ( )  

A B

a1

a2

a3

b1

b2

b3

a b

a b

a b

1 3

2 1

3 2







Note that for a surjection 

or a bijection, 

f A B( ) 
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Given a bijection f from A to B then it is possible to go back 

from B to A by means of the inverse function of f. 

A B
a1

a2

a3

b1

b2

b3

a1

a2

a3

B A
f f 1

[ ( )] [ ( )]b f a a f b   1

The identity function from a set A to itself is the most elementary bijection: 

id A A id x xA A: ; ( ) 
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Functions can be chained one after another by means of the composition operation 

that can be regarded as the most important algebraic operation between functions. 

A B

C

f

gh

h g f 

h x g f x g f x( ) ( )( ) ( ( )) 

If g is the inverse function of f then 

h is the identity on A. 

A B

A

f

f 1idA

Another possible diagram is the 

following, beginning with set B, 

B A

B

f 1

fidB
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2circ( , )x y R
It is not a function ;bijx x

2; inj surx x 

A B R 

3;bijx x

A B R 

exp( );bijx x

A R B R  ,

ln( );bijx x

A R B R  ,
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ln:R R 

R R

R

exp

lnidR

R R

R

ln

expid
R

exp:R R 

R

R

R

R
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In computer science the next functions are useful tools for several purposes, 

all of them have in common that the function values are discrete objects. 

Discrete function Definition  Value or image 

cardinal | |: ( )P A N A A n| |

characteristic  c UA: { , } 01 c x
x A

x AA( )
;

;










1

0

binary string  : ( )P U Bn
A U s s s sn  1 2

 i s c xi A i, ( )

floor     x m m x n x n m    ; ;ZR :

ceiling     x m m x n x n m    ; ;ZR :
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  Let   f x x( ) / 2 3 find  f S f( ) ({ , , , , , })  2 1012 3

            ( ) ( )
, , , , , { , , , , , } { , , }

 
 

2

3

1

3
0
3

1
3

2
3

3
3

2 2 2 2 2 2

1 0 0 0 1 3 0 1 3

  Find the value of     
1
2

1
2

1
2         0 1 05 15 2. .

  Show that for all x,  f x f x f x f x f xA B A B A B   ( ) ( ) ( ) ( ) ( )2

x A B f x
x A x B

x A x BA B    
     

     





 ( )
( ) ;

( ) ;
1

1 0 2 1 0

0 1 2 0 1

x A B f x x A BA B          ( ) ( ) ;0 1 1 2 1 1
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• Discrete grids 

• Floor and ceiling 

• Sequences 

• Summations 

• Basic formulas 
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This is a rectangular region 

representing the xy plane: 

This is a rectangular set of points representing 

the discrete grid over the integers. 

In discrete mathematics we are interested in functions defined over the xy plane, 

the discrete grid or one of their subsets. 

Z Z P Z   ( )2

R

R

R R R2  

Z

Z

Z Z Z2  

R P R ( )2 Z P Z ( )2

Z Z 
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floor   :R Z

 x m m x n x n m    ; ;

 ceiling    :R Z

 x m m x n x n m    ; ;

1 2 

-1 -2 x R

m Z

1 2 

-1 -2 
x R

m Z

 

 

 
 

05 0

05 1

2 1

1001 2

.

.

.



  



  

 

 

 
 

0 5 1

0 5 0

2 2

1001 1

.

.

.



 



  

+1 

   x x 1 ?
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A sequence is defined as a map that assigns a 

numerical value to an integer variable as follows: 

s A B A Z B R: ; { },    0

A N an

n   ; ( )1 1

A N bk

k ; 2

A N c mm ; !

A Z a
jj  ;
1

n s n sn ( ) 

general term of index n  

ran s s A sn( ) ( ) { } 

the range of s is not the sequence of terms 

{ } { , , , , , , ,}bk k

 0 1 2 4 8 16 32

{ } { , , , , , , , ,}cm m

 0 11 2 6 24 120 720

{ } { , , , , , ,}a j j

 1 1
1

2

1

3

1

4

1

5


},,0,2,0,2,0,2{}{ 0 

nna
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Two important general sequences: 

 

• arithmetic progression 

 

 

 

 

 

 

 

• geometric progression 

s a nd dn   ; 0

first element difference between terms 

s a n d a nd dn      1 1( )

s s d d s sn n n n     1 1

g ar a rn

n   ; 0 1

first element 
ratio between terms 

g ar ar rn

n n



 1

1

g g r r g gn n n n   1 1 /
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Summation notation is used to represent the sum of a 

finite number of terms in a given sequence. 

{ }a a a a aj j m

n

j
j m

n

m m n


     1 

upper limit 

lower limit 

general term 

index of summation 

The choice of letter for the 

index of summation is arbitrary, 

a a aj
j m

n

i
i m

n

k
k m

n

  

   

Sometimes it is useful to sum a finite set of values obtained from a function, 

in that case, we use the following notation: 

f x
x S

( )




value of function at x 

S is the indexing set 
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ca c a c Rj
j

n

j
j

n

 

  
0 0

;

A constant value can be pulled out 

from  the summation symbol. 

( )a b a bj j
j

n

j
j

n

j
j

n

  
  

  
0 0 0

We can split the summation symbol 

for the sum of two finite sequences. 

c nc
j

n



 
1

b b k j pj p
j m

n

k
k m p

n p


  



   ;
An index can be shifted by p, so 

the limits of summation change also. 

c n c
k

n



  
0

1( )
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The sum of an arithmetic progression: 

 
 


n

j

n

j

n

j

n

j

j jdajdas
0 000

)(





n

j

n

j

jdanjdan
10

)1()1(

nSj
n

j




21
1

1)1(
1




nnSj
nj

2 ( 1) ( 1) ( 1)
n times

S n n n      

2

)1( 


nn
S








 


2

)1(
)1(

nn
dan













n
d

anjda
n

j 2
)1()(

0
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  List the first 10 terms of the sequence whose n-th term is 

     the sum of the first n positive integers. 

 { } { }
( )

s kn n
k

n

n

n n

n







 1

10

1
1

10 1

2
1

10

          { , , , , , , , , , }1 2
2

2 3
2

3 4
2

4 5
2

5 6
2

6 7
2

7 8
2

8 9
2

9 10
2

10 11
2

 { , , , , , , , , , }1 3 6 10 15 21 28 36 45 55

  What is the value of the following product: 

( ) ( ) ( ) ( ) ( ) ( ) ( )          


   1 1 1 1 1 1 1 1
1

100

1 3

50

99i

i

i

i

i

i

i

i even  odd  odd  times



  Find the following sum: 

k k k
n n n n

k kk n n

3

99

200

3 3

1

98

1

200

200

2

98

2
1

2

1

2   

   








 











( ) ( )

         
 200 200 1

2

2 98 98 1

2

2
2 2100 201 49 99 380 477 799

( ) ( )
( ) ( ) , ,
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21

1}{ nna  If  2
12  nan find 

       a1  , a2  2/11.2   2/12.2  ,  a3  2/13.2  …. 

  a1 = 1, a2 = 2 , a3 = 2,…  

 The sequence is  {1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6} 

  Evaluate 
 

2

0

3

0

32

i j

ji


 

2

0

3

0

32

i j

ji = (02 . 03) + (02.13) + (02.23) + (02.33) + (12.03) + (12.13) 

   (12.23) + (12..33) + (22.03) + (22.13) + (22.23) + (22.33) 

= 0 + 0 + 0 + 0 + 0 + 1 + 8 +27 + 0 + 4 + 32 + 108 

= 180 
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


 
n

j

njj aaaa
1

01)(  Show that (telescoping) 




 
n

j

njj aaaa
1

01)( = (a1 – a0 ) +  

   (a2 – a1)  + 

   (a3 – a2 ) +  

        … 

(an-1– an -2) + 

   (an – an-1) 

The first value of each term 

when added to the second 

value of the next  term equals 0. 

Hence, the final sum equals an – a0.  

  Using the fact that ?
1

)1(

1


 kkk
compute 

 

n

k kk1 )1(

1


 

n

k kk1 )1(

1

1

1
1

1

11
....

3

1

2

1

2

1

1

1

1

11

1
















































n

nn

kk

n

k 1

11

)1(

1




 kkkk
since  
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• Cardinality 

• Growth of functions 

• Big-O concept 

• Algebraic operations 

• Big- and big- 

69 
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Reminder: the cardinal of a set A = number of elements in A; it can be interpreted 

as the mapping from P(A) to the set of natural numbers N = {0,1,2,…}. 

NAP )(|:|
0|| 

the null set has 

no elements. 

mbb m |},,{| 1 
a finite set with 

m elements. 

0|| N

an infinite set; 

first transfinite number 

aleph 0 

 the principle of inclusion-exclusion; 

  for finite sets A and B: 
|||||||| BABABA 

|| A includes the elements of BA

|| B includes again the elements of 

so, we have to exclude them. 

BA

 note that if A and B are disjoint then: |||||| BABA 

 two sets A and B have the same cardinality if  

  a bijection can be established between them. 
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A countable set X is defined as a set that is finite or has the same cardinality of N; 

otherwise we say that X is an uncountable set. 

In other words, if the elements of set X can be listed in sequence, the set 

is countable. The real numbers are not countable because for a given x  

we do not know what the next number is (it is not x + 1 nor x + 0.001, etc.). 

Consequently, R is a “bigger set” than N, its cardinal is greater than aleph 0. 

|||| 10 RN  (second transfinite number) 

  Set   Bijection ? Countable? 

},6,4,2,0{ X

},9,7,3,1{ Y

}10|{]1,0[  xRx

},,{}{ 10 sssn 

nn 2 Yes 

12 nn Yes 

no bijection exists No 

nsn Yes 

71 

Functions-III                                           Countable sets  



Suppose that problem P admits a computational solution; consider also that 

P is solved by means of three algorithms A1, A2, and A3. 

Common question: which of the algorithms is better? 
 

 

In discrete mathematics, “better” means to establish a quantitative relation 

for algorithm Ai as function of a parameter n. The function value f(n) is 

usually interpreted as the amount of time required to solve problem P. 

P

( , ( ))A f n1

( , ( ))A g n2

( , ( ))A h n3

A comparison must be established 

between functions f, g, and h in 

order to decide which algorithm is 

the best. 
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Function f is big-O of g if and only if     C k x k f x C g x, ; | ( )| | ( )|0

f O g ( )test function f reference function g 

x k R

R

x k

| |g

| |f
C g| |

f x ax bx c a b c R( ) ; , ,   2

x f x ax bx c    1 2| ( )| | |

  | | | | | |a x b x c2

  x a
b

x

c

x
2

2(| |
| | | |

)

  x a b c2 (| | | | | |)  C x| |2

So in this example, C a b c k    | | | | | | 1

ax bx c O x2 2   ( )

• f grows almost as fast as g 

• f behaves almost as g 

• g is a simple upper bound of f 
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f n n( )   1   consider 

1     n n n

 n g n2 ( )

Thus, taking C k 1 0,

  n k f n C g n,| ( )| | ( )| Z 

Z 

| |f

| |g

i O n
i

n



 
1

2( )

f n n( ) !  consider 

n n n n n! . . 12   n g nn ( )

  from this result we obtain another example, 

f n n n n g n( ) log ! log ( )  

n O nn! ( )

log ! ( log )n O n n
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f f O g f f O g1 2 1 2, ( ) ( )   

f O g C k x k f x C g x1 1 1 1 1 1    ( ) , ,| ( )| | ( )|

f O g C k x k f x C g x2 2 2 2 2 2    ( ) , ,| ( )| | ( )|

By definition, 

We have to prove that,     C k x k f f x C g x, ,|( )( )| | ( )|1 2

C

k





?

?

 | ( )| | ( )|f x f x1 2  C g x C g x1 2| ( )| | ( )|

 ( )| ( )|C C g x1 2 ;( ) ( )x k x k  1 2

C C C

k k k

 



1 2

1 2max( , )

|( )( )| | ( ) ( )|f f x f x f x1 2 1 2   triangle inequality, 

f f O g f f O g1 2 1 2, ( ) ( )   Similarly, 
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f O g f O g f f O g g1 1 2 2 1 2 1 2     ( ) ( ) (max{| |,| |})

f O g f O g f f O g g1 1 2 2 1 2 1 2      ( ) ( ) ( )

Example: ( ! )( log( ))n n nn  2 13 2

( ! ) ( !)n O nn 2 since 2 3n n n  !

For the second factor, ( ) ( ) log( ) logn O n n n2 2 21 2    therefore, 

( log( )) ( )n n O n3 2 31   since 2 03logn n n  

Using the second law for the product of two functions, the estimate is: 

( ! )( log( )) ( ! )n n n O n nn   2 13 2 3
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f g g O f  ( ) ( )Function f is big- of g 

As an example, consider again, 

   f n n n n n( ) / ( / )       1 2 2 1 

        n n n/ / /2 2 2

     ( / ) /n n n2 1 2   ( / )( / ) / ( )n n n g n2 2 42

Since g is a lower bound 

for f, then f is an upper 

bound of g. 

Function f is big- of g f g f O g f g     ( ) [ ( )] [ ( )]

1
4

2 1
2

21n n n n  ( )

exact formula for the sum 

of the first n integers. 

upper 

estimate 

lower 

estimate 77 

2

2

2
1

(1 ) ( )
( )

(1 ) ( )

n

i

n O n
i n

n n 

   
  

    

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  Show that )( 43 xOx  but )( 34 xOnotisx

Since x3x4 for all x > 1, we know that x3 is O(x4). On the other hand, if  x4  Cx3, 

then (dividing by x3) x C. Since this latter condition cannot hold for all large x, no 

matter what the value of the constant C could be, we conclude that x4 is not O(x3). 

  Give a proof for: 




 ZknOi k
n

i

k ;)( 1

1

1

1

321











kk

kkkk

n

i

kkkkk

nnn

nnnn

ni





Hence, the given expression is O(nk+1). 
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1,;)(log)()(log)(  baxOxfxOxf ab  Show that 

Assume that the corresponding base of each logarithm is greater than 1, 

then using the definition of big-O, we can write 

|log||)(|,0, xCxfkxkC b

from general algebra, the relation between the two logarithmic functions, is given by, 

axx bba log/loglog  xCxax alabb loglogloglog 

therefore, |log||)(|,0, xCxfkxkC a

 

Where k is the same though  aCCCC bl log
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  Show that if f(x) and g(x) are real functions of x, then f is big-O of g  

     if and only if g is big- of f. 

f O g C k x k f x C g x    ( ) , ,| ( )| | ( )|
we can change the sense 

of the inequality, so 

| ( )| | ( )| *| ( )|g x C f x C f x 1
therefore, 

     C k x k g x C f x g f' , ,| ( )| *| ( )| ( )

  Explain what it means for a function to be (1); remember that, 

f g C g f C g   ( ) | | | | | |1 2
hence, if  g(x) = 1 

f C f C x k     ( ) | | ,1 1 2
for values of x greater than k, the 

function f will be bounded by the 

horizontal lines y = C1 and y = C2. 

  Show that  ( log ) ( )x xy x y O x y2 3 6 3  

( ) ( log )x y xy x y x y xy2 0 2      x y xy x y2 2

thus, ( ) , ,x y x y x y2 3 6 3 1 1   
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• Algorithms and pseudocode 

• Computational complexity 

• Terminology 

• Time estimation 
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An algorithm is a finite set of precise instructions for performing a computation 

or for solving a problem, generally, by means of a computing device. 

An algorithm must have the following characteristics: 

 

•  Input (from a domain set) and output (the range set according to the input). 

 

•  Definiteness, each step must be defined precisely. 

 

•  Correctness, the output values should be meaningful for a given input. 

 

•  Finiteness, the output is reached after a finite number of steps (for any input). 

 

•  Effectiveness, each step must be performed in a finite amount of time.  

 

•  Generality, it must be applicable to a class of related problems and not only 

                     for particular inputs. 
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A pseudocode language is used to describe an algorithm in a generic way, 

independently from a specific machine architecture or programming context. 

procedure swap x y R

z x

x y

y z

( , )

:

:

:









procedure

for to

if then

 

   

   

smallest a a Z

small a

i n

small a small a

n

i i

( , , )

:

:

:

1

1

2

 





 

procedure

while 

for  to 

 insert x a a Z

a a

a

i

x a

i i

j n i

a a

a x

n

n

n

i

n j n j

i

( , , , )

{ }

:

:

:

:

:

:

1

1

1

1

0

1

1

0







 







 

 







  
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{ , , , };10 12 14 15 14 4x n  

1 1 4 14 10 2

2 4 14 12 3

3 4 14 14 3 3 4 3

( )

( )

( )

  

  

   

procedure

while 

if 

then 

else 

 ls x a a Z

i

i n x a

i i

i n

location i

location

n

i

( , , , )

:

( )

:

:

:

1

1

1

0

 



  

 







Algorithm: linear search 

{ , , , };10 12 14 15 11 4x n  

1 1 4 11 10 2

2 4 11 12 3

3 4 11 14 4

4 4 11 15 5 5 4 0

( )

( )

( )

( )

  

  

  

   

i i n x a i i n locationi( )   

i i n x a i i n locationi( )   
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{ , , , , };10 1316 55 52 16 x n  

1 16 8 52 31 9 16

9 16 12 52 43 12 16

12 16 14 52 49 14 16

14 16 15 52 52 14 15

14 15 14 52 49 15 15

 

 

 

 

 

i j m x a i jm 

52 7 3 15 1515    a location( )

 

procedure

while 

if 

then 

else 

if  

then 

else 

 

left end point

right end point

bs x a a Z

a a

i

j n

i j

m i j

x a

i m

j m

x a

location i

location

n

n

m

i

( , , , )

{ }

: { }

: { }

: ( ) /

:

:

:

:

1

1

1

2

1

0







 







 



 









Algorithm: binary search 

a n nn   7 3 1 16; , ,
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The computational complexity of an algorithm is defined as a quantitative measure 

of its performance when producing an output for a given input of size n. 

Computational complexity 

Time complexity: number of 

operations required for a given n. 

Space complexity: memory 

required for a given n. 

Procedure 

 

• smallest 

 

 

• linear search 

 

 

• binary search 

# of comparisons /  time complexity 

2 1n O n  ( )

2 2n O n  ( )

2 2log (log )n O n 
86 

Algorithms                                 Complexity basic ideas  



 

procedure

while 

if 

then 

else 

if  

then 

else 

 

left end point

right end point

bs x a a Z

a a

i

j n

i j

m i j

x a

i m

j m

x a

location i

location

n

n

m

i

( , , , )

{ }

: { }

: { }

: ( ) /

:

:

:

:

1

1

1

2

1

0







 







 



 









Algorithm: binary search 

n k nk  2 log

Assume that the number of elements in the 

list is a power of 2 (remember the example): 

During execution of the while loop two 

comparisons are made, one for testing 

the exit, the other for testing x. 

Each step within the loop reduces the 

search interval by half; this is done k times. 

One comparison is realized when exiting 

the while loop and another one for testing 

if x was found in the list. 

The total is: 2 2 2 2   k nlog
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Description  Complexity  Type of Problem 

O( )1

O n(log )

O n( )

O n n( log )

O nb( )

O b bn( ) ;  1

O n( !)

constant 

 

logarithmic 

 

linear 

 

linear-log 

 

polynomial 

 

exponential 

 

factorial 

tractable 

untractable 

S 

O 

L 

V 

A 

B 

L 

E 

UNSOLVABLE There is no algorithm that can tell if given 

another program with its input, the program 

will halt or not  (Alan Turing famous Halting Problem). 
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Just to have an idea of the amount of time needed for solving a problem 

with a certain time complexity if one bit operation takes 1 nanosecond. 

1 nanosecond = 1 ns = 10-9 seconds 

89 
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Input size                    Bit operations used__________ _             

n n n n n n nlog log 2 2

2 13

6 100

10 3 10 30 100 1 s

10 7 100 700 10 s 4 10 yr

10 20 100 s 20 ms 17 min 10 yr













  Describe an algorithm that uses only assignments statements that replaces 

    the triple (x,y,z) with (y,z,x). What is the minimum number of assignment 

    statements needed? 

w x x y y z z w: ; : ; : ; :    w is a buffer variable, 4 assignments. 

  Describe an algorithm that determines whether a function from a 

     finite set to another finite set is one-to-one (an injection). 

Dom f A a an( ) { , , }  1 
b

i n

j n

i j f a f a

T b

b

T f

F f

i j

:

, ,

, ,

( ) ( ) ?

:

?







  

  







1

1

1

0

1





exit

  injective

 not injective

( )i j

 How much time does an algorithm take to 

    solve a problem of size n if this algorithm 

    uses 2n2 + 2n bit operations, each requiring 

    1 ns, with the following values of n? 

n      10 2 10 2 200 1024 12242 10( )

  1224 1 1224 ns  s. 

n      20 2 20 2 800 1024 10493762 20 2( )

  1049376 1 1049376 ns  ms.
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  Devise an algorithm to compute xn, where x is a real number and n is an integer. 

     (Hint: First give a procedure for computing xn when n is nonnegative by succesive 

     multiplication by x, starting with 1. Then extend this procedure, and use the fact 

     that x-n = 1 / xn to compute xn when n is negative.  

}{

/1:

0 

:

  1: 

1:

)(abs :

),( 

nxp

pp

n

xpp

mi

p

nm

ZnRxpower

















if

tofor

procedure
# of arithmetical operations 

best          worst        average (any) 

n

n 0

1

0





n

n

2

1

2

)1(






n
nn

Zn

best, worst, average )(nO
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  Describe an algorithm for finding the smallest integer in a finite sequence 

     of natural numbers. 

)},,min({

: 

  2: 

 :

),,( 

1

1

1

n

ii

n

aasmall

asmallasmall

ni

asmall

Naasmallest















 then if

tofor

procedure

1:

: 

  

2:

 :

),,( 

1

1













ii

asmallasmall

ni

i

asmall

Naasmallest

ii

n

 then if

while

procedure 

In this example there is no distinction 

between the best, worst, and average 

analysis since all elements in the 

sequence must be scanned. 

)1(2]1)2[(2  nn

# of comparisons within the loop: 

)(121)1(2 total nOnn 

# of comparisons outside the loop: 

ni  when 1
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  Devise an algorithm that finds all terms of a finite sequence of integers 

     that are greater than the sum of all previous terms of the sequence. 

1 ( , , )

{use boolean vector 

for accumulating terms}

: 1

: 0

: 0

 : 1 1

:

 : 1

{  is a binary vector showing

positions where  spt}

n

i

i

j

i i

i

findterms a a Z

b

i n

b

s

j i

s s a

a s b

b

a









 

 

 



procedure

for  to 

for  to 

if  then 

Since there are two nested loops, after 

counting the number of additions and 

comparisons it results that,  
2time complexity ( )O n

A better algorithm:  

i

i

iii

n

ass

b

absa

ni

s

Zaafindterms













:

0:

: 

  1: 

0 :

),,( 1

 else

 then if

tofor

procedure 

Here,  time complexity ( )O n
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procedure

while 

if 

then 

else 

 ls x a a Z

i

i n x a

i i

i n

location i

location

n

i

( , , , )

:

( )

:

:

:

1

1

1

0

 



  

 







  Analyze the average-case performance of the linear search algorithm, if exactly 

     half the time element x is not in the list and if x in the list is equally likely to be 

     in any position. 

Case 1: when x is not in the list 

22

location)(check  1 (exit) 1 (within) 2





n

n

Case 2: when x is in the list 

2 1 (comparisons)ix a i  

2avg )2(

2

)1(
212)12(

111






 


nnn

n
nn

ii
n

i

n

i

n

i

Total average # of ops. )(
2

43

2

)2()22(

2

case2case1
nO

nnn











Algorithm: linear search 
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• Integer division 

• Prime numbers 

• The division algorithm 

• Modular arithmetic 

• Random numbers 

• The Euclidean algorithm 

• Base-b representation 

• Binary integer operations 
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/: ; ( , ) / ; , { }R R R a b a b b R R    0 00 0

Division between integer numbers: “a divides b” 

|: ; ( , ) | ; , { }Z Z Z a b a b a Z Z0 00 0    

Division between real numbers:  “a is divided by b” 

a b c Z b ca| ,   we say that a is a factor of b or b is a multiple of a 

Given two positive integers n > d, the number 

of integers divisible by d not exceeding n is  n d/

Proof: d is a divisor of all numbers of the form kd k Z,  

0 therefore, 

0 0    kd n k n d/ or  k n d /
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A basic set of properties for divisibility: let a, b, c be integer numbers, 

a b a c a b c| | |( )  

a b c Z a bc| , | 

a b b c a c| | | 

a b k Z b k a| ,  1 1

a c k Z c k a| ,  2 2

a b k Z b k a| ,  1 1

a b k Z b k a| ,  1 1

b c k Z c k b| ,  2 2

      b c k k a ka a b c( ) |( )1 2

   bc ck a ka a bc( ) |1

    c k b k k a ka a c2 2 1( ) |
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A prime number (in the sense of primitive or primary) is a positive integer p 

whose only divisors are itself, p and 1. If a number n is not prime it is called 

composite. 

P Z   { , , , , , , , , }2 3 5 7 1113 2 13021377 

There is no formula that generates all prime numbers; supercomputers are 

used to search for huge prime numbers, the prime shown in the list has 

909,256 digits, it is of the form, 

The fundamental theorem of arithmetic: 

  

 





n Z n p

p p p

i

e

i

m

e e

m

e

i

m

,
1

1 2
1 2

60 2 2 3 5 2 3 52      

210 2 3 5 7   

12 115103 7 11 13 193 2, ,    

2 1p p P ,
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n P n ab a b   , , 1    a n b n otherwise, 

       ( )a n b n a n b n

Thus, a or b is a factor of n less than its square root, and it can be prime or by the 

fundamental theorem of arithmetic it has a prime factor. In either case, 

   p P p n p n, |

  ab n n n

A consequence of this result: if there are no primes p dividing n but are less than the 

square root of n, then n is a prime number. 

 n   131 131 11

since, 2,3,5,7,11≤11 do not divide 131, then 131 is a prime number. 
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a Z d Z q r r d a dq r         ! , ; ( ) ( )0

dividend divisor remainder quotient 

67 7 9 4 0 4 7 67 7 4 9     ; ; ( , , , ) ( , , , )a d r q

         67 7 10 3 0 3 7 67 7 3 10( ) ; ; ( , , , ) ( , , , )a d r q

       67 7 9 4 4 0!( ) ( ) ;

As computer integer operators, 

q a d  div 

r a d  mod 

67 7 9 div 

 67 3 mod 7
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Greatest common divisor of 

two integer numbers a,b: 
D d d a d b a b D   { : | | } gcd( , ) max

Least common multiple of 

two integer numbers a,b: M m a m b m a b M   { : | | } , ) minlcm(

a p b p

a b p

a b p

i

a

i

m

i

b

i

m i

a b

i

m

i

a b

i

m
i i

i i

i i

  

















 





 



1 1

1

1

;

gcd( , )

, )

min( , )

max( , )lcm(

D  { , , , , , } gcd( , )12 3 4 612 24 36 12

M   { , , , } , )72 144 216 24 36 72 lcm(

24 2 3

36 2 3

3

2 2

 

 

gcd( , )

, )

min( , ) min( , )

max( , ) max( , )

24 36 2 3 2 3 12

24 36 2 3 2 3 72

3 2 1 2 2

3 2 1 2 3 2

    

    lcm(
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Two integer numbers a,b are congruent modulo the positive integer m if 

m divides (a-b) or if a and b have the same remainder when divided by m. 

a b m m a b a m b m    (mod ) |( ) [ mod mod ]

13 1 12 12 13 1 13 12 1 1 12     (mod ) |( ) [ mod mod ]

          7 3 4 4 7 3 7 4 1 3 4(mod ) |( ) [ mod mod ]

a b m a b km k Z    (mod ) ,

Since m divides (a-b), by definition, 

m a b m b km b m km k|( ) |( ) |     

Modular arithmetic consists of the usual sum and multiplication operations 

with respect to a fix modulus m. Cyclic events or devices can be described 

by a modular algebra; a common example is the clock algebra with m = 12 or 24.  
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a b m c d m a c b d m      (mod ) (mod ) (mod )

a b m m a b a b k m     (mod ) |( ) 1

c d m m c d c d k m     (mod ) |( ) 2

     a c b d k k m( )1 2

a b m c d m ac bd m    (mod ) (mod ) (mod )

       ac b k m d k m bd k b k d k k m m( )( ) ( )1 2 2 1 1 2

    ( ) ( )a c b d km

  ( ) ( )ac bd km
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The following message without spaces 

LNHWNQGHCQFIGMSHYDP 
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Number theory                           Encryption/decryptiona  

f p p( ) ( ) mod 7 3 26

was encrypted using the following affine transformation, 

If someone in the class finds the original message using the corresponding 

decryption function then there will be no quiz on day ?, but if no one decrypts 

the message we will do what the message says. 

f p 1( ) ??

Original message was: QUIZ UNTIL NEXT FRIDAY. Several students 

decrypted the message, but where is the inverse function? 
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f p p( ) ( ) mod 7 3 26

was encrypted using the following affine transformation 

The following message without spaces 

YDUHY JHDX 

The following solution has been established by David Miao. As you can see, 

it is a nice inverse transformation of the original function. Keep it, perhaps 

You will need to send a secret message. 

  1 1
( ) 26 (11 2)mod7 3

7
f p p p     



Pseudorandom numbers: the linear congruential method for generating 

a sequence of this kind of numbers is given by the expression, 

x ax c m n Nn n   1 ( ) mod ;

• x0 is the seed of the generator 

• m is the modulus 

• a is the multiplier 

• c is the increment 

      n x m a m c mn, ; ;0 2 0

For example, consider the choice:  x0 = 3, m = 7, a = 4 and c = 1, 

x x1 04 1 7 13 7 6   ( ) mod mod

x x2 14 1 7 25 7 4   ( ) mod mod

x x3 24 1 7 17 7 3   ( ) mod mod

x x4 34 1 7 13 7 6   ( ) mod mod

{ } { , , , , , , }xn n N  3 6 4 3 6 4

A useful generator is given by: 

x xn n  1

5 317 2 1mod( )

The length of its cycle is 231 - 2 

(before repetition begins). 
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  In each of the following cases, what are the quotient and remainder? 

       111 11 111 11 11 10 0 10 11/ ( ) ;

       1 3 1 3 1 2 0 2 3/ ( ) ;

  Find the prime factorization of 10! 

10! 12 34 56 7 8 910 2 32 5 2 3 7 2 3 2 5 2 3 5 72 3 2 8 4 2     . . . . . . . . . . . . .( . ). . . .( . )

  Which memory locations are assigned by the hashing function 

    h(k) = k mod 101 to the records of students with the following SSN? 

h( ) mod104578690 104578690 101 58 

h( ) mod432222187 432222187 101 60 

With hashing functions it is 

possible to find a record 

very quickly. 

  Decrypt the following message encrypted using the Caesar cipher. 

Julius Caesar decryption method is given by f p p  1 3 26( ) ( ) mod therefore, 

WHVW WRGDB TEST TODAY
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From the division algorithm we know that brrbqa  0;

Consider the following, 

rbqadqbdadbdad  |)(|||| rbba DD ,, 

arbqdrdbqdrdbd  ||||| barb DD ,, 

rbbabarbrbba DDDDDD ,,,,,, )()( 

Since both sets of common divisors are the same, they have the same maximum, so 

),gcd(maxmax),gcd( ,, rbDDba rbba 

611218 

}6,3,2,1{12,18 D

}6,3,2,1{6,12 D

)6,12gcd(6)12,18gcd( 
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Using this idea we will find the gcd(r0 ,r1) after several divisions as follows: 

122110 0; rrrqrr 

1112 0;   nnnnnn rrrqrr



nnn qrr 1

233221 0; rrrqrr 

344332 0; rrrqrr 

),gcd(),gcd( 2110 rrrr 

),gcd(),gcd( 3221 rrrr 

),gcd(),gcd( 4332 rrrr 

),gcd(),gcd( 112 nnnn rrrr  

nnnn rrrr  )0,gcd(),gcd( 1

113031

30331123

312123277







last nonzero remainder 

3164152463

15224634941

24632494112345

494141234554321








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Algorithm: greatest common divisor 

}),{gcd(

:

:

mod:

0 while

:

:

}{

),gcd( procedure

xba

ry

yx

yxr

y

by

ax

ba

Zba

















 

gcd( , )277 123 1

x y y r x y











0

277 123 123 0 31 123 31

31 0 30 31 30

30 0 1 30 1

1 0 0 1 0

0 0 1

Two additional definitions: 

• a and b are relatively prime if    

 

• a sequence {an} from n = 1 to m is pairwise relatively prime, if and only if, 

gcd( , ) ,a a i ji j   1
110 
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Integers are usually represented using the decimal notation, but computers 

use other representations such as binary, octal or hexadecimal.  

In general, we can consider a representation respect to a positive integer b > 1. 

The number b is called the base, and the corresponding representation of a 

positive number n in base b is called the base-b expansion of n. 

n a b a b a b am

m

m

k

k

k

k

k    





1

1

1

0 k Z a m a bk m    , ,0

n a a a ak k b ( )1 1 0

• b = 2, binary 

 

• b = 8, octal 

 

• b =16, hexadecimal 

B  { , }0 1

O  { , , , }0 1 7

H A F { , , , , , }0 9 

rightmost digit  leftmost digit 
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( ) ( )  b 10

( ) ( )1011 1 2 0 2 1 2 1 2 8 2 1 112

3 2 1 0

10           

( ) ( )707 7 8 0 8 7 8 448 7 4558

2 1 0

10        

( ) ( )3 3 16 10 16 15 16 768 160 15 94316

2 1 0

10AF          

( ) ( )  10 b
Apply the division algorithm until the quotient is zero, the first 

to the last remainder correspond to the digits in the expansion 

from right to left. 

1023 16 63 15 63 16 3 15 3 16 0 3          

( ) ( )1023 310 16 FF
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Algorithm: base-b expansion 

( , )

:

: 0

0

: mod

: /

: 1

{vector  is the -expansion}

k

bbe n b Z

q n

k

q

a q b

q q b

k k

a b











   

 

procedure 

while 

( ) ( )1023 310 16 FF

q k q a q kk







0

1023 0 1023 0 15 63 1

63 0 15 3 2

3 0 3 0 3

The balanced ternary expansion is: 

n e Tm

m

m

k

  


 3 1 0 1
1

; { , , }

( ) ( ) ( ) ( )5 1 3 1 3 1 3 11110

2 1 0

3         b

( ) ( )13 1 3 1 3 1 3 11110

2 1 0

3       b

( ) ( ) ( )79 1 3 1 3 1 3 1001110

4 1 0

3        b
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( ) ( )1110 10102 2 

Two basic operations in binary arithmetic are addition and multiplication. 

Here is an example, 

1110

1010





a

b

0000

1110

0000

1110

10001100

Two binary numbers a, b of length n = 4,  

The list of partial products c; if b has a zero bit 

then c = 0, if b has a one bit then c = a but 

shifted to the left according to the bit position 

in b. 

The addition of all partial products gives the 

result containing at most 2n = 8 bits. 

c

c a

c

c a

 

 

 

 

0 0

1

0 2

3

ab a b a b cj
j

n

j

j
j

n

j

j
j

n

  












  
0

1

0

1

0

1

2 2( ) a b ab jj

j

j( ) ( , )2  lshf

ab if b aj j ( , , )0 0
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Algorithm: binary multiplication 

procedure 

for to

if 

then

else

for to

binmult a b Z

a a a b a a

j n

b

c a j

c

c

p

j n

p binadd p c

p ab

n n

j

j

j

j

( , )

{ ( ), ( )}

:

: ( , )

:

{

:

:

: ( , )

{



 

 









 







 1 0 1 0

0 1

1

0

0

0 1

 

   

 lshf

 

partial products are in }

   

}

To calculate the partial products, the number 

of shifts is given by: 

0 1 2 1
0

1

2      




 ( ) ( )n i O n
i

n

In the final for loop, procedure binadd takes 

O(n) operations to add two partial products. 

Therefore, the number of additions for p, is: 

max{ } ( )

( , ) ( )
( )

j O n

binadd p c O n
p O n

j








  2

The total number of operations needed for 

this algorithm is then of the same order, 

O n O n O n( ) ( ) ( )2 2 2 
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• Matrices 

• Operations 

• Boolean matrices 
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A matrix is a rectangular array of numbers with m rows and n columns. Upper case 

letters denote matrices of size m x n, and each element of a matrix is a number. 

Expanded notation 

A

a a a

a a a

a a a

n

n

m m mn





















11 12 1

21 22 2

1 2





   



2nd row 

2nd column 

Compact notation 

A a
i m

j nij








[ ] ;
, ,

, ,

1

1





element or entry aij is located in the 

intersection of row i and column j. 

• A square matrix is obtained by taking m = n (same number of rows and columns). 

• The transpose of a matrix is obtained by interchanging rows and columns: 

A a
j n

i m
T

ji








[ ] ;
, ,

, ,

1

1




its size is n x m 
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0

lower triangular 

ji 

upper triangular 

0

ji 

0
0

diagonal 

ji 

• The identity matrix I is defined 

   as a diagonal matrix where: 










ji

ji
ij

,0

,1

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A square matrix has n2 elements, if i = j  

the set {aii} is the main diagonal. 

A

a a a

a a a

a a a

n

n

n n nn





















11 12 1

21 22 2

1 2





   



A symmetric matrix is a matrix  

equal to its transpose. 

A

a a a

a a a

a a a

A

n

n

n n nn

T





















11 12 1

21 22 2

1 2





   





Arithmetic operations: 

 

 addition and difference 

    A,B of size m x n 

 

 multiplication 

    A of size m x p, B of size p x n  

 

 inversion of A 

    only for square matrices n x n 

     

][][;, ijijij bacjiCBA 





p

k

kjikij bacjiCBA
1

][;,

1,  ACACICAC

pm np

the # of columns in A must be 

equal to the # of rows in B. 

pjipjijiij bababac  2211][

Powers of square matrices are defined as: 

 
times

0 ,
k

k AAAAIA 
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

























ipi aa 1





















pj

j

b

b


1



Number of operations in the innermost loop: 

ppkba kjik  ,,1;  multiplications 

1,,1;)(  ppkcij  additions 

12 p operations per element 

Number of entries in matrix C is nm 

} is ,{

:

 1

0:

 1

 1

} is , is {

),( 

nmCABC

bacc

pk

c

nj

mi

npBpmA

BAmatmult

kjikijij

ij















 tofor 

 tofor 

 tofor 

procedure

Algorithm: matrix multiplication 

Total is: )12(  pnm

for square matrices, )()12( 3nOpnm 

 matrix multiplication is not 

  commutative but it is associative. 
)()(, BCACABBAAB 

(only multiplications,  ) pnm 

),(

),(

),(

nqC

qpB

pmA





 )()( npmqmnqmqpCAB 

)()( qmnppnqmnpBCA 
))(),(min( qmnpnpmq 

The order for multiplying A, B, C 

can be selected by calculating,  
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 Find the product AB, where 

c12 1 1 0 1 1 0 1       ( )

c13 1 1 0 0 1 1 0       ( )

c11 1 0 0 1 1 1 1        ( )

   Some explicit calculations are: 
A B  











































1 0 1

0 1 1

1 1 0

0 1 1

1 1 0

1 0 1

;

 























AB

1 1 0

0 1 1

1 2 1

 Let A and B be two n x n matrices. Show that, ( )AB B At t t

[ ] [ ]c a b c a b b aij ik
k

n

kj ji ki
k

n

jk jk
k

n

ki   
  

  
1 1 1

 Let A be a matrix. Show that the matrix AAt is symmetric. 

( ) ( )AA A A AAt t t t t t 
by definition, the given matrix 

equals its transpose. 
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Binary or boolean matrices have entries in the set B = {0,1} and their 

operations correspond to the usual logic or bit calculations. They are 

also called zero-one matrices. 

]or  [][ ijijijij babaBA  join 

 

 

 meet 

 

 

 boolean product 

 

 

 powers 

] and [][ ijijijij babaBA 

)(][
1

kjik

p

k
ij bacCBA 


V

   
 times

0 ;
k

k AAAAIA 

For square binary matrices A and B, )( 3nOBA  bit operations. 
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  Find the Boolean product of A and B, where 

A B





































1 0 0 1

0 1 0 1

1 1 1 1

1 0

0 1

1 1

1 0

;Since A is 3 x 4 and B is 4 x 2 the result C has 

size 3 x 2, 

C AB

c c

c c

c c

 



































11 12

21 22

31 32

1 0

1 1

1 1

c11 1 1 0 0 0 1 1 1 1        ( ) ( ) ( ) ( )

c12 1 0 0 1 0 1 1 0 0        ( ) ( ) ( ) ( )

  Let A be an n x n zero-one matrix. Let I be the n x n identity matrix. 

     Show that, A I A I A   

[ ] ( ) ( ) ( ) ( ) [ ]c a a a a aij
k

n

ik kj ij jj
k j

n

ik kj ij ij        
 1

1V V  

[ ] ( ) ( ) ( ) ( ) [ ]c a a a a aij
k

n

ik kj ii ij
k i

n

ik kj ij ij        
 1

1V V  
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• Rules of inference 

• Fallacies 

• Methods of proof 

• Mathematical propositions 
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Mathematical reasoning: Part I 



  When is a mathematical argument correct? 

  What methods can be used to construct mathematical arguments? 

  How are mathematical propositions classified? 

A mathematical argument has the form: 

qppp n  )( 21 premises or 

hypotheses 

conclusion 

or thesis 

A mathematical argument is valid if and only if the implication is a tautology: 

qpppTqppp nn  ,,,;])[( 2121 

The rules of inference are then universal valid arguments that constitute 

the fundamental patterns or forms that we use for higher thinking and we 

can consider them as our basic human built-in operators. 
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TFFF

TTTF

TTFT

TTTT

qppqpqp 

qpp 

addition 

pqp 

simplification 

qpqp ,

conjunction 

qqpp ,

Modus ponens or law of detachment 

,q p q p 

Modus tollens 

,p p q q 

Disjunctive 

syllogism 

rp

rq

qp







Hypothetical syllogism 

TFTFF

TFTTF

TFFFT

TTTTT

qqppqppqpqp  ))(()(
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  Construct an argument using rules of inference to show that the hypotheses 

    “If it does not rain or if it is not foggy, then the sailing race will be held and the life- 

    saving demonstration will go on”, “If the sailing race is held, then the trophy will 

    be awarded,” and “The trophy was not awarded” imply the conclusion “It rained.” 

( ), ,r f s l s t t r    

hypotheses 

conclusion 

by modus tollens,  ,s t t s 

by simplification,  s l s 

hence by hypothetical syllogism r f s 

So, we can apply again modus tollens to conclude that ( )r f

Finally we use De Morgan’s law and simplification again, r f r 
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UccPxPx  ),()(

universal instantiation 

c is a particular element of U 

)(),( xPxUccP 

universal generalization 

c is an arbitrary element of U 

UccPxPx  ),()(

existential instantiation 

c is a specific element of U, 

we have to find it if possible. 

)(),( xPxUccP 

existential generalization 

c is a particular element of U, 

we already know its value. 

The rules of inference for propositional logic and quantified statements 

are used extensively in mathematical arguments. 
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  What rules of inference are used in the following famous argument? 

    “All men are mortal. Socrates is a man. Therefore, Socrates is mortal.” 

  x H x M x H M( ( ) ( )), ( ) ( )Socrates Socrates

  Ryan, a student in this class, knows how to write programs in JAVA. Everyone 

     who knows hot to write programs in JAVA can get a high-paying job. Therefore, 

     someone in this class can get a high paying job.” 

C J x J x H x x C x H x( ) ( ), ( ( ) ( )) ( ( ) ( ))Ryan Ryan    

x  RyanWe apply universal instantiation with then J R H R( ) ( )
also from J R H R J R( ) ( ), ( ) we get H R( ) ; finally, combining this result 

with the first hypothesis the conlusion is obtained from existential generalization.  

H M H M( ) ( ), ( ) ( )Socrates Socrates Socrates Socrates 

Note that modus ponens has been used to obtain the conclusion. 

We apply universal instantiation with so we have x  Socrates
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A fallacy resembles a rule of inference but is based on contingencies 

rather than tautologies, so it corresponds to an invalid argument. 

affirming the conclusion 

pqqp ?,  , ?p q p q 

denying the hypothesis 

TFTFF

FTTTF

TFFFT

TTTTT

pqppqqpqpqp  ))(()(

begging the question or 

circular reasoning 

pp ?

;

( ) ( )

p F q T

p q p F T T T

T q T F F

 

      

    

but then we are not 

proving anything ! 

Tpp 
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  The following argument is an incorrect proof of the theorem “If n2 is not 

     divisible by 3, then n is not divisible by 3.” The reason it is incorrect is that 

     circular reasoning has been used. Where has the error in reasoning been made? 

 

     If n2 is not divisible by 3, then n2 does not equal 3k for some integer k. Hence, 

     n does not equal 3l for some integer l. Therefore, n is not divisible by 3. 

The initial theorem is of the form: p q but the argument given looks like, 

p r r q  

To complete the problem we will try to give an indirect proof using the contrapositive, 

23 | 3 |q p n n  

Applying the definition of integer division, 

3 3 3 3 32 2| , ( ) ,n k Z n k n k l l Z      
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• Direct p q

• Indirect p q q p  

• Vacuous  p q p F ;

• Trivial p q q T ;

• Contradiction ; ( )p p r r T p F    

• By cases 

• Multiple equivalences 

V
k

n

k
k

n

kp q p q
 



 


   

1 1
 ( )

[ ] ( )( )modp p p p pn
k

n

k k n1 2
1

1    


 

premise       conclusion 

F q T 

                p T T 

We negate the thesis p and derive a contradiction, therefore our 

assumption that the thesis was not true is false, hence p is true. 

In both methods we use the logical equivalence given by the conjunction of 

several implications, so we prove each of this implications one by one. 
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  Prove the proposition P(1), where P(n) is the proposition “If n is a positive 

     integer, then n2  n.” What kind of proof did you use? 

  Prove that at least one of the real numbers a1, a2, ... , an is greater than or 

     equal to the average of these numbers. What kind of proof did you use? 

1 1 12  Z This is a trivial proof since the conclusion is true 

(evident) without using the premise. 

  


a a ai i n i
i

n

,  1

1

by contradiction,  a ai i,  however, 

a a a a ni n

n

             1 2    
 times

or, 

1

1

n i
i

n

a


      and this is the contradiction 

we were looking for. 
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  Prove that if x and y are real numbers, then max(x,y)+min(x,y)=x+y. (Hint: 

     Use a proof by cases, with the two cases corresponding to x  y and x < y.) 

Case x  y  [max( , ) ] [min( , ) ]x y x x y y x y x y      

Case x < y [max( , ) ] [min( , ) ]x y y x y x y x x y      

  Use a proof by cases to show that min(a,min(b,c))=min(min(a,b),c) 

     whenever, a,b, and c are real numbers. 

Case a < b < c min( ,min( , )) min( , ) min( , ) min(min( , ), )a b c a b a a c a b c   

Case b < c < a min( ,min( , )) min( , ) min( , ) min(min( , ), )a b c a b b b c a b c   

Case c < a < b min( ,min( , )) min( , ) min( , ) min(min( , ), )a b c a c c a c a b c   

min( ,min( , )) min(min( , ), ) min( , , )a b c a b c a b c  associative property of min 
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case n k n k

l n l

          

        

5 4 5 4 5 4 5 256

5 255 1 5 1 1 5

4 4 4

4

4

4

( ) ( ) ( )

( )

case n k n k

l n l

          

        

5 3 5 3 5 3 5 81

5 80 1 5 1 1 5

4 4 4

3

4

3

( ) ( ) ( )

( )

case n k n k

l n l

          

        

5 2 5 2 5 2 5 16

5 15 1 5 1 1 5

4 4 4

2

4

2

( ) ( ) ( )

( )

case n k n k l n l            5 1 5 1 5 1 5 1 1 54 4 4

1

4

1( ) ( )

  Prove that n4 - 1 is divisible by 5 when n is not divisible by 5. Use a proof by 

cases, being four different cases - one for each of the non-zero remainders that 

an integer not divisible by 5 can have when you divide it by 5. 

5 5 14| |n n 

From the binomial expansion, ( )x y x x y x y xy y     4 4 3 2 2 3 44 6 4
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p = “The square root of 2 is not a rational number.” Q 2 by contradiction, 

n

m
Q  22

121)22(2144)12(12 2222  lkkkkkmkm

}01),gcd(,|{  nnmZnmQ
n
m

definition 

even is 2 222 mnm  1 

We go back to step 1 knowing that 

even is  so 242 22222 njnjn 

Intermediate step: even even  2 mm  odd  odd 2mm  2 

and apply step 2 again, thus 

From step 3 and step 4 we 

conclude that: 

)|2()|2( nm  this is the contradiction we were looking for. 
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3  Zjjm  somefor  2

4  Ziin  somefor  2



Auxiliary step: if 5 divides m2 then 5 divides m. We show this using an undirect proof, 

i.e., if 5 does not divide m then 5 does not divide the square of m. Consider the other 

possible remainders of m when divided by 5, and treat each case as follows: 

a) 

b) 

c) 

d) 

m k m k k l

m k m k k l

m k m k k l

m k m k k l

       

       

       

       

5 1 25 10 1 5 1

5 2 25 20 4 5 4

5 3 25 30 9 5 4

5 4 25 40 16 5 1

2 2

1

2 2

2

2 2

3

2 2

4

 5 2| m

5 5 5 52 2 2     Q
m

n
m n m( ) ( | ) A 

Since m = 5p; substitution in  A  gives: 25 5 5 52 2 2 2 2p n n p n   ( ) ( | ) B 

Therefore, applying to B the same result established in the auxiliary step, n = 5q; 

The contradiction is that m and n have a common factor equal to 5. 

  Prove that the square root of 5 is irrational. Proof by contradiction, 
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• existence x P x( )

Constructive proof: we find or 

build a specific element c such that P c T( ) 

Non-constructive proof: we only 

show that under certain assumptions there 

is an object c that makes P true somehow. 

• counterexample     x P x F x P x T( ) ( )

To show that a universal quantification is false we need to find 

just one element c in U such that the negation of P is true, 

in that case c is a counterexample. 
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  Prove or disprove each of the following statements about the floor and 

     ceiling functions. 

       x R x x, consider an arbitrary real number c then 

        c m c m Z m m c c      ,

Therefore, by universal generalization we see that the quantified predicate is true. 

         x y R x y x y, , take, x = y = 0.5, then 

     
1
2

1
2

1
2

1
21 0     this is a counterexample, so the double 

quantified predicate is false. 

       x R x x, take, x = 1/4, then 

    
1
4

1
41 0   this is also a counterexample, so the 

quantified predicate is false. 
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  Prove or disprove that n2 + n + 1 is prime whenever n is a positive integer.  

The proposition is of the form:     n Z n n P, 2 1

and in this specific case is false, so we must prove that,     n Z n n P, 2 1

Thus, it is enough to give a counterexample, a value of n for which n2 + n + 1 

is not a prime number. We test the following values,  

n P

n P

n P

n P

     

     

     

     

1 1 1 1 3

2 2 2 1 7

3 3 3 1 13

4 4 4 1 21

2

2

2

2

,

,

,

.

140 

Reasoning-I                      Methods of proof examplese  



{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

p p p G

p p p G

p p p G

p p p G

p p p G

p p p G

p p p G

p p p G

p p p G

p p p G

1 2 3 1

2 3 4 2

3 4 5 3

4 5 6 4

5 6 7 5

6 7 8 6

7 8 9 7

8 9 10 8

9 10 1 9

10 1 2 10





















  Show that if the first 10 positive integers are placed around a circle, in any order, 

     there exist 3 integers in consecutive locations that have a sum greater than or 

     equal to 17. 

p1p2

pi1

pi pi1

p10

   i p G G Gi i i i, , ,1 1

pi means the i-th position of 

any given integer from 1 to 10. 

a x ii
x Gi

 


 ; , ,1 10

Define the sequence of #s: 

then its average is given by, 

  






3

10

3 55

10
165

1

10

i
i

.

From examplesa,2  there is 

a number aj greater than 16.5 

Since aj is an integer then it is 

greater than or equal to 17. 

This is a non-constructive proof for  the existence of an object. 
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It is a usual practice to classify mathematical propositions by type, in order 

to organize the results of a theory. 

  lemmas 

theorems 

corollaries 

axioms or postulates 

definitions 

rules of inference 

proof methods 

 Proofs 

A conjecture is a proposition 

whose truth value is unknown; 

however, several proofs have 

been attempted without success. 

Theory 

A theory is a group of mathematical propositions 

including conjectures which are based on a certain 

number of axioms, postulates, principles, and 

definitions accepted without proof. 
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• Well ordering 

• Mathematical induction 

143 
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The well ordering (w.o.) principle: every non-empty subset of the natural numbers 

has a least element. 

    S N m N m S, ; min( )

This principle is simple and intuitive; it works for finite and infinite sets. Examples, 

min{ | }2 1 1n n N   min{ | }x x is a prime  2

1 0min{ | }n i ia n N a a i a     min{ (mod )| }n n  0 7 0 7

The principle of mathematical induction (m.i.): assume that S is a subset of N  

such that, 

[( ) ( )]0 1       S k k S k S S N

This principle is simple but not easy to grasp, however it is a property of the 

natural numbers when treated from an axiomatic point of view. It is the 

foundation of inductive reasoning in mathematics. 

144 

Reasoning-II                          Well ordering & induction  



(w.o.  m.i.) (m.i.  w.o.)   w.o.  m.i.Theorem:  

Proof: by contradiction, the hypotheses are, 

w.o., 0 , 1S k S k S    

The conclusion is: 

S N

m D m m    min( ) 0 0

m D m S m S      1 1

( )m D m S F   

S N D N S D N      ( ) ( )

The second part is left as an exercise. m.i.  w.o.
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The set  difference 

is key to find a 

contradiction ! 
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Recall that a set is well-ordered if every nonempty subset of this set has a least 

element. Determine whether each of the following sets is well-ordered. 

a) the set of integers, 

b) the set of integers greater than -100, 

c) the set of positive rationals.  

d) the set of positive rationals with denominator less than 100. 

a) Z is not a well-ordered set because Z Z Z Z     but min( )

b) this set is well-ordered since 

    Thus any nonempty subset S of A has a least element greater than or equal to -99. 

A x Z x A      { | } min( )100 99

c) the set of positive rationals defined as, Q r Q r   { | }0 is not well-ordered, e.g. 

S
n

Q n S   { | } min( )
1

0  does not exist. Note:  = 0 but lim
n n

Q



1

0

d) this last set is well ordered since 

Therefore, any nonempty subset S of B 

has a least element greater than or equal to 1/99. 

B
p

q
q B    { | } min( )0 100

1

99
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Mathematical induction is used as a proof technique when predicates are related 

to the domain of the natural numbers or one of its subsets; also stated in the 

following equivalent form: 

In order to give a proof that P(n) is true for all integers n we verify two steps, 

 

1.  Basis step: show that P(0) is true; this part is almost trivial, substitute n = 0 

     in P(n) and check if the corresponding proposition is true. Also, the basis 

     step can begin with a specific value greater than 0. 

 

2.  Inductive step: this is the difficult one; assume P(k) is true for an arbitrary 

     integer k and prove that P(k+1) is also true. Avoid to substitute directly 

     k with k+1; this is circular reasoning because k+1 = m is also an arbitrary 

     integer and then your are assuming what you want to prove.  

P P k P k n P n( ) [ ( ) ( )] ( )0 1   

basis step inductive step 

Induction hypothesis 

conclusion 

147 

Reasoning-II                             Mathematical induction  



( ) ( ) ( ( ) ) ( ) ( )2 1 2 1 2 1 1 2 1 1
1

1

1

2 2j j k k k k
j

k

j

k

           






 

   


n j n
j

n

0 2 1 2

1

, ( )

n j
j

       


1 2 1 2 1 1 1 12

1

1

( ) ( )Basis step: 

Inductive step: n k j k
j

k

   


 ( )2 1 2

1

Induction hypothesis 

P k j k
j

k

( ) : ( ) ( )   




1 2 1 1
1

1

2
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    n N A n P A n, | | | ( ) | 2

Basis step: n A A P         0 0 1 20( | | ) | ( ) | |{ }|

Inductive step: Induction hypothesis | | | ( ) |A k P A k   2

| | { , , } | { }| ;A k A a a A x k x ak i       1 1

P A x F F P A S x S P A( { }) ( ) { { }| ( )}      1 2

F F P A x F F k k k

1 2 1 2 2 2 2 2        | ( { })| | | | |

| *| | ( *) |A k P A k    1 2 1
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  n n n4 22,

Basis step: n     4 4 16 16 22 4

Inductive step: Induction hypothesis k kk2 2 4 ;

k k k   4 2 1 2

        a b c d Z a b c d a c b d, , , , ( ) ( )

k k k k2 2 1 2 2   ( )

P k k k( ) : ( )   1 1 22 1
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  Use mathematical induction to show that 2n > n2 + n whenever 

     n is an integer greater than 4. 

Basis step, take n = 5 > 4, then 2 32 30 25 5 5 55 2     

Inductive step, assume the inequality is true for n = k, i.e., 

2 1 2 1 62k k k k k k k      ( ) ( ) since 

induction hypothesis 

by transitivity of  > , and adding both inequalities, 2 2 1k k ( )

2 2 2 2 1 2 21 2 2k k k k k k k k k          ( )

        ( ) ( ) ( ) ( )k k k k k2 22 1 1 1 1
this is the right 

side for n = k + 1. 
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  For all positive integers n, show, by mathematical induction, that: 

1

1 3

1

3 5

1

2 1 2 1 2 1



 

 





( )( )n n

n

n

Basis step, take n = 1, then 
1

1 3

1

3

1

2 1 1
 



( )

( )

Just to see if the formula works, take, for example n = 2, then both sides are equal, 

1

1 3

1

3 5

1

3

1

15

6

15

2

5

2

2 2 1



    



( )

( )

Inductive step: assume that the formula is true for n = k, and show its validity 

for n = k +1. 

1

2 1 2 1 2 11 ( )( )j j

k

kj

k

 




 induction hypothesis 
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



   

k

k k k2 1

1

2 1 1 2 1 1[ ( ) ][ ( ) ]

1

2 1 2 1

1

2 1 2 1

1

2 1 1 2 1 11

1

1( )( ) ( )( ) [ ( ) ][ ( ) ]j j j j k kj

k

j

k

 


 


   





 





 

















k

k k k k
k

k2 1

1

2 1 2 3

1

2 1

1

2 3( )( )
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


 











 



  













1

2 1

2 3 1

2 3

1

2 1

2 2 1

2 3

2 2

k

k k

k k

k k k

k




  











  


 



1

2 1

2 1 1

2 3

1

2 1

2 1 1

2 3k

k k k

k k

k k

k

( ) ( ) ( )( )

and this is the right side for n = k +1. 







 

k

k

k

k

1

2 3

1

2 1 1( )



  Show that n circles divide the plane into n2 – n + 2 regions if every two circles 

     intersect in exactly two points and no three circles contain a common point. 

To answer this problem we combine induction with geometrical reasoning. 

n 1 (one circle)

R1 R2 

12   1 2 2 1 2; { , }R R

Introducing a 2nd circle splits each existing region, so for n = 2 we have two new 

additional regions or 2k = 2.1 = 2 where k = 1 is the previous # of circles. 

n  2 (two circles)

R11 R12 R22 

R21 

22   2 2 4 11 12 21 22; { , , , }R R R R
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n  3 (three circles)

1 

2 

3 

4 5 

6 

7 

8 

32   3 2 8

n  4 (four circles)

1 

2 

3 

4 

5 6 

7 8 

13 

14 

42   4 2 14

Introducing the 3rd 

circle splits again 

previous regions; it 

generates 2,4,5,7. 

Introducing the 4th 

circle splits again 

previous regions; it 

generates 4,7,8,9,11,13. 

Induction hypothesis: k circles under the stated conditions divide the plane into 

k2 – k + 2 regions. If we introduce the k + 1 circle it will generate 2k additional regions. 

Therefore, 

k k k k k k k        1 2 2 2 1 12 2 circles divide the plane into ( )

          ( ) ( ) ( )k k k k1 1 1 1 1 1 22 2

155 

Reasoning-II                                ...Induction examplesf  



The principle or method of mathematical induction has a second form that uses 

the same basis step but modifies the inductive step as follows: 

P P P k P k n P n( ) [ ( ) ( ) ( )] ( )0 0 1     
basis step inductive step 

Induction hypothesis 

conclusion 

• The induction step now assumes the truth of all values less than or equal to k, 

P m T m k( ) ; , ,  0

• Note that if we use modus ponens we have only that P(k) = T, so 1st form of 

  mathematical induction results. Both forms of the principle are equivalent. 

• This 2nd form is helpful when we need several previous instances of P(k) to be 

   true in order to show the truth of P(k+1). 
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   


n fn

n3
1 5

2
2, ; 

“golden ratio or 

divine proportion” 

• in the basis step it is shown that, ( ) ( )f f3 4

22 3     

• besides using the modified inductive step (based on 2nd form of m.i.), we have 

  that (looks like a trick but it is not), 

   2 21 0 1     

• this “trick” is justified since a quadratic equation is associated with the 

  recursive definition of fn, that is to say, 

f f f x xn n n       1 2

20 1 0

Prove the next proposition using the 2nd form of mathematical induction. 

l

h
 
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The number of divisions used by the Euclidean algorithm to find gcd(a,b) is less 

than or equal to five times the number of decimal digits in b when a  b. 

• after n divisions it is shown that, b fn 1

• from the previous slide, if n > 2 then f bn

n n



   1

1 1 

• taking common logarithms (base 10) to both sides of the last inequality, 

log ( ) log . ( ) ( ) /10 101 0208 1 1 5b n n n     

• if the number b has k decimal digits then 

b n k n kk     10 1 5 5( )

• the number of decimal digits in b is calculated as 

 log log10 101 1b b  

# of divisions: 

n b O bd    5 110(log ) (log )
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• Recursive definitions 

• Recursive sets 

• Recursive algorithms 

• Iterative algorithms 
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Certain objects such as functions, sequences, and sets can be defined 

in two different ways: 

 

•  direct or explicit, the object is defined by a specific expression that does 

   not depend on the object itself, 

 

•  recursive or implicit, the object is defined by an expression that includes 

   the same object. 

s n k k n s n n n n n
k

n

k

n

( ) ( ) ? ( ) ? 








        

 



 
1 1

1

1 1

f n k k n f n n n n n
k

n

k

n

( ) ( ) ! ( )! 








       

 



 
1 1

1

1 1

factorial function 

termial function 

p n a a a p n an n( ) ( )     1 1 power function, a > 1 

160 

Reasoning-III                                Recursive definitions  



In the context of integer numbers it is usual to exchange notations between 

functions and sequences (recall that a sequence is a type of function). 

f n f n S Nn( ) ;  

f n fn   ( ) ;

Direct definition 

The general term of the 

sequence is given by an 

expression that depends 

only on the index n and does 

not require initial values. 

f f f f f

f f

n n n n k

k

   



 ( , , , ) ;

{ , , }

1 2

0 1



  are initial values.

Recursive definition 

The general term of the sequence 

is given by an expression that 

depends on previous values of the 

same sequence and requires the 

knowledge of the first k terms. 

161 

Reasoning-III                                  Recursive functions  



a nn  4 2      a n nn 1 4 1 2 4 2 4( ) we take the difference, so 

a a a a an n n n       1 1 04 4 2;

an

n  1 1( )       

an

n n

1

11 1 1 1( ) ( ) adding both expressions, 

a a a a an n n n      1 1 02 2 2;

f f f f fn n n    1 2 0 11 1; ,

f f f

f f f

f f f

f f f

2 1 0

3 2 1

4 3 2

5 4 3

1 1 2

2 1 3

3 2 5

5 3 8

    

    

    

    

note that two initial values are needed to 

compute the next terms of the sequence. 

fn  { , , , , , , , , }112 35813 21

known as the Fibonacci numbers. 
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c)  since 99

 since 

M M M

M M M M

M M

M M M M

( ) ( ( ))

( ( )) ( ) ( )

( ( )

( ( )) ( ) ( )

99 99 11 100

110 110 10 100

100 11 100 100

111 111 10 101 91

  

   

  

    

  The McCarthy 91 function is defined using the rule, 

M n
n n

M M n n
( )

;

( ( )) ;


 

 





10 100

11 100

for all positive integers n. By successively using the defining rule for M(n), 

find a) M(102),  b) M(101),  c) M(99), and  d) M(97). 

a)  since M( )102 102 10 92 102 100   

b)  since M( )101 101 10 91 101 100   

d) M M M M M M

M M M M M M

( ) ( ( )) ( ( )) ( )

( ) ( ( )) ( ( )) ( )

97 97 11 108 98

98 98 11 109 99 91

   

    
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Thus, from b) to d) 
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As in the case of functions and sequences, a set S of objects can also be 

defined recursively by performing two steps. 
 

1.-  Initial element, in this step a specific element x (or elements) is defined to 

      belong to S, 

 

2.-  Generation, in this step the rest of the elements in S is generated by means 

      of a rule or a procedure to combine previous elements (initial element). 

x S

y S r y S



  ( )

x y S

z w S p w z S

,

, ( , )



  

In fact, mathematical induction can be taken as a recursive definition of  

the natural numbers if P is the identity predicate, P(k) = k. 

0

1



   




 

S

k S k S
S N
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The set of strings * over the finite alphabet :  

    









  

*

* *( ) ( )

(empty string)

w x wx   { , } { , , , , , }*0 1 0 1 00 01111

The length of a string can be defined as: 

l

w x l wx l w

( )

( ) ( ) ( ) ( )*

 

     





0

1 
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The set C of well-formed formulae (wff) for compound propositions is 

defined recursively as follows: 

, , ,
wff

, , , , ,

T F p q C

p q C p p q p q p q p q C

 


       

A recursive definition for the set of positive integers powers of 3: 

3

3
3



   




   

S

k S k S
S n Zn{ | }



  Let S be the set of strings defined recursively by abc  S, bac  S, acb  S, 

     and abcx  S; also, abxc  S, axbc  S, xabc  S if x  S. 

     a) Find all elements of S of length eight or less, 

     b) Show that every element of S has a length divisible by three.  

Total = 15 - 2 = 13 3 strings 3 strings 9 strings

The proof of b) is by induction on the length of the string. The basis step is part a), 

for the inductive step, assume that the length of a string x in S is a multiple of 3. Then, 

the following generated strings have a length that is a multiple of 3, i.e., 

l abcx l abxc l axbc l xabc l x k m( ) ( ) ( ) ( ) ( ) .       3 3 3 3
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l w( )  3 l w( )  6

abc

bac

acb

abcx

abc

abc

abc

abc

bac

acb









l w( )  6

abxc

axbc

xabc

ab abc c ab bac c ab acb c

a abc bc a bac bc a acb bc

abc abc bac abc acb abc







| | , | | , | |

| | , | | , | |

| , | , |



A recursive algorithm is an algorithm that calls itself using a set of initial values. 

procedure

if

then

else if 

then 

else 

 

 

 

fib n N

n

fib

n

fib

fib n fib n fib n

( )

( ):

( ):

( ): ( ) ( )











   

0

0 0

1

1 1

1 2

Recursive algorithm: n-th Fibonacci number 

f1 f0

f2

f1

f1 f0

f2
f3

f4

• works from top to bottom reducing input size, 

• needs additional memory to store partial calls, 

• inefficient in terms of time complexity, 

• easy to understand and compact pseudocode, 

• a recursive definition can be translated in a recursive algorithm. 

Features of recursion: 

# of additions: 

fn 1 1
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procedure

if

then

else  

 

{assume }

 

 

gcd( , )

gcd( , ):

gcd( , ): gcd( , mod )

a b N

b a

b

a b a

a b b a b











0

Recursive algorithm: greatest common divisor  

procedure

case

case 

case 

otherwise

 

 

bs x i j

m i j

x a

location m

x a i m

bs x i m

x a j m

bs x m j

location

m

m

m

( , , )

: ( ) /

:

( ) ( )

( , , )

( ) ( )

( , , )

:

 





  



  





2

1

1

0

Recursive algorithm: binary search 

Input size reduction: 

a b bmod 

Input size reduction: m j
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An iterative algorithm is an algorithm that does not call itself. However, it can be 

based on a recursive definition using its initial values to find the next value. 

procedure

if

then

else

for  to 

 

 

 

 

fib n N

n

y

x

y

i n

z x y

x y

y z

y fn

( )

:

:

:

:

:

:

:

{ }











 

 







0

0

0

1

1 1

Iterative algorithm: n-th Fibonacci number 

• works from bottom to top, 

• needs few memory to store values, 

• efficient in terms of time complexity, 

• longer pseudocode, 

• a recursive definition can be used to design it. 

Features of iteration: 

# of additions: 

n n 1 1;

It is clear that,     n n fn3 1 11,

so the iterative version performs better than 

the recursive version for large values of n. 
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procedure

if

then

else  

 

 

 

fact n N

n

fact n

fact n n fact n

( )

( ):

( ): ( )







  

0

1

1

procedure

for  to 

 

 

fact n N

x

i n

x i x

x n

( )

:

:

:

{ !}







 



1

1

Recursive vs. iterative factorial 

n = 4 Frames     Locations 

4! = 4 . 3! ; 1+2 

3! = 3 . 2! ; 1+2 

2! = 2 . 1! ; 1+2 

1! = 1       ; 1+1 

4                  11 

Faster in stack oriented machines. 

n = 4 Vars        Locations 

x = 1, i.x  ;  1 

i  = 1, n    ;  1 

2                 2 

Faster in register oriented machines. 
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• Sum and product rules 

• Inclusion-exclusion 

• Tree diagrams 

• Pigeonhole principle 
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The basic principles for counting are based on the corresponding laws 

between cardinals for families of sets (both finite). 

The sum rule: suppose that the tasks T1,T2,…,Tm can be done in n1,n2,…,nm 

ways respectively, and no two of these tasks can be done at the same time. 

Then the number of ways to do task T1 or T2 or … or Tm is n1 + n2 + … + nm. 

Set  interpretation 

Let Ti be the task of choosing 

an element from set Ai, then 

there are |Ai| = ni ways to do Ti. 

For m sets the expression is: 

  Pseudocode interpretation 

Let Ti be the task of traversing 

the independent i-th loop, then 

there are ni ways to do Ti. 

For m loops the pseudocode is: 

1:;1:

1:;1:

1:;1:

0:

22

11









kkni

kkni

kkni

k

mm  to  for

 to  for

 to  for






ji

m

i

i

m

i

i AAjiAA ,;||||
11



mnAnAi
m

i

ii  
1

||||,
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T1 is the task of selecting a mathematics major, 

T2 is the task of selecting a computer science major, therefore 

 

# of ways to do T1 or T2 is 18 + 325 = 343. 

T1 is the task of selecting a capital letter, 

T2 is the task of selecting a lowercase letter, 

T3 is the task of selecting a decimal digit, therefore, 

 

# of ways to do T1 or T2 or T3 is 26 + 26 + 10 = 62. 

In most applications, the sum rule is used together with the 

product rule to count objects satisfying certain conditions. 

There are 18 mathematics majors and 325 computer science majors at a college. 

How many ways are there to pick one representative who is either a mathematics 

major or a computer science major. 

How many ways are there to choose a symbol from capital or lowercase letters, 

or a decimal digit? 
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The product rule: suppose that a procedure is carried out by performing 

T1,T2,…,Tm.tasks. If task Ti can be done in ni ways after tasks T1,T2,…,Ti-1  

have been done, then there are n1 n2 … nm ways to carry out the procedure. 

Set interpretation 

Let Ti be the task of choosing 

an element from set Ai, then 

there are |Ai| = ni ways to do Ti. 

For m sets the expression is: 

Pseudocode interpretation 

Let Ti be the task of traversing 

the nested i-th loop, then there 

are ni ways to do Ti. 

For m loops the pseudocode is: 

1:

1:

1:

1:

0:

22

11











kk

ni

ni

ni

k

mm  to  for

 to  for

 to  for



productcartesian ;||||
11





m

i

ii

m

i

AAX

m
m

i

ii nAnAi  
1

||||,

number of ways of selecting an 

ordered sequence (a1,a2,…,am) 
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Ti is the task of selecting a bit value for the i-th position in the string, for 

each i the number of ways is 2 (0 or 1), therefore the number of strings is, 

10,2; or 10242222 10

positions 10

 mnnm

 

na

bbb n

 of one 

},,,{

1

21







1 of one 

},,{

2

2





na

bb n

2 of one 

},,{

3

3





na

bb n

)1( of one 

},,{





mna

bb

m

nm





So, the number of one-to-one functions is, )1()2)(1(  mnnnn 

The format of a license plate is LLLDDD, thus there are 

000,576,171026 33  d.l.p. 

How many different bit strings are there of length 10? 

How many injections are there from a set A with m elements to a 

set B with n elements if m  n? 

How many different license plates (d.l.p.) are available if each plate contains 

a sequence of three letters followed by three digits? 
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• For a password 6 characters long (combining sum and product rules): 

6

66

26

36)1026(





LLLLLL

CCCCCC
560,866,867,12636 66

6  P

• For a password 7 characters long: 

7

77

26

36)1026(





LLLLLLL

CCCCCCC
920,353,332,702636 77

7  P

880,842,282,612,22636 88

8  P

• For a password 8 characters long: 

8

88

26

36)1026(





LLLLLLLL

CCCCCCCC

12

876 107.2360,063,483,684,2  PPPPThus, the # of passwords is 

Each user on a computer system has a password, which is 6 to 8 characters 

long, where each character is an uppercase letter or digit. Each password must 

contain at least one digit. How many possible passwords are there? 
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  How many positive integers with exactly 4 digits between 1000 and 9999 inclusive, 

a) are divisible by 9? 999 9 9999 111 1111 1111 111 1000       k k

b) are even? 9999 1000 1 9000 2 4500   /

c) have distinct digits? dddd      ( )( )( )( )10 1 9 8 7 9 8 7 45362

d) are not divisible by 3? 999 3 9999 333 3333 3333 333 3000       k k

  9000 3000 6000

e) are divisible by 5 or 7? 1000 5 10000 200 2000 2000 200 1800       k k

 

 

1000 7 142 7 142 994

10000 7 1428 7 1428 9996
1428 142 1286

/

/

   

   




  

 

 

1000 35 28 35 28 980

10000 35 285 35 285 9975
285 28 257

/

/

   

   




  

   1800 1286 257 2829
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f) are not divisible by either 5 or 7?   9000 2829 6171

g) are divisible by 5 but not by 7?   1800 257 1543

h) are divisible by 5 and 7? 257

  How many different functions are there from a set with 10 elements 

     to sets with the following number of elements? 

a) 2 

 

b) 3 

 

c) 4 

 

d) 5 

     m n f2 10 2 102410, #( )

     m n f3 10 3 5904910, #( )

       m n f4 10 4 2 1024 104857610 20 2, #( )

     m n f5 10 5 976562510, #( )

In general, for 
nmfmBnABAf  )(#,|||| when :
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The principle of inclusion-exclusion is applied to situations in which two or more 

tasks can be realized at the same time and we need to count the number or ways 

to do one of these tasks. 

For 2 tasks (in terms of sets):  BABABABA ;||||||||

For 3 tasks (in terms of sets): 

||

||||||

||||||||

CBA

CBCABA

CBACBA







Task 1 (set A), string format starting with 1, 1BBBBBBB strings 12827 

Task 2 (set B), string format ending with 00, BBBBBB00 strings 6426 

Common task (A and B), string format, 1BBBBB00 strings 3225 

Hence, applying inclusion-exclusion, 1603264128|| BA

How many bit strings of length 8 either start with a 1 bit or end with the two bits 00? 
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A tree is a graphical object that has a root, a number of branches leaving the root, 

and possible additional branches leaving the endpoints of other branches. 

In the context of counting, we use a branch to represent each possible choice, 

and the leaves of the tree represent the outcomes (endpoints of the tree). 

Trees are useful for modeling problems with small values. 

0 1 

0 0 1 1 

0 1 1 0 0 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 1 

The number of strings is the number of leaves at the end of the tree = 13.  

Use a tree diagram to find the number of bit strings 

of length 4 with no 3 consecutive 0’s. 
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The pigeonhole principle in its simplest form states that if there are more 

pigeons than pigeonholes, then there must be at least one pigeonhole 

with at least two pigeons in it. 

The formal mathematical statement is known as the Dirichlet drawer principle. 
 

If k + 1 or more objects are placed into k boxes, then there is at least one box 

containing two or more of the objects. 

objects 71

boxes 6





k

k

2 objects in box 3, 

drawer is full. 

3 objects in box 2, 

nothing in box 3. 

2 objects in boxes 1,4; 

no objects in box 5. 
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To apply the pigeonhole principle, it is very important to identify which are 

the objects and which are the boxes. 

  Show that if there are 30 students in a class, then at least 2 have 

     last names that begin with the same letter. 

The students correspond to the “objects”, the letters to the “boxes”, then there are 

26 boxes and 30 objects where 30 > 26, thus by the pigeonhole principle there 

is a box with at least 2 objects, i.e., 2 names begin with the same letter. 

  Show that if f is a function from S to T where S and T are finite 

        sets with |S|>|T|, then there are elements s1 and s2 in S such 

        that f(s1) = f(s2), or in other words, f is not one-to-one. 

The elements of S are the “objects”, their images the “boxes”; since |S|>|T| 

(more objects than boxes) by the pigeonhole principle. there is an element 

of T that is the image of at least two elements of S, hence f is not one-to-one. 
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)odd is ()0(;2}{ 1

1 jjj

k

j

n

jj qkqaa j 



First, represent the n + 1 integers as follows: 

also, there are n odd numbers (boxes) less than 2n (the other n are even). 

by construction, 1,,2,1;2  njnq j  (objects) 

From the pigeonhole principle, two of the integers qj must be equal, i.e., 

)(, qqqjiji ji  )2()2( qaqa ji
k

j

k

i 

Then, 

ji

kk

ji aakk ji |2|2 

ij

kk

ji aakk ij |2|2 

Show that among any n + 1 positive integers not exceeding 2n 

there must be an integer that divides one of the other integers. 
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Theorem: Every sequence of n2 + 1 distinct real numbers contains a subsequence 

                  of length n + 1 that is either strictly increasing or strictly decreasing.           

},,,,{}{
121

1

1 22

2





 
nn

n

kk aaaaa Let where 
lk aalk  ,

To each term of the sequence associate an ordered pair as follows 






k

k

kkk
d

i
dia ),(

length of longest increasing subsequence 

length of longest decreasing subsequence 
},,{ 1 kk aa

        Note that the total number of ordered pairs is n2 + 1 (objects) 

Now, by the product rule, the number of length pairs is at most n2 (boxes) 

By contradiction, there is no strictly increasing sequence and there 

is no strictly decreasing sequence of length n + 1. 

1,,1;1 and 1 2  nknndnni kk 
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tstsdttsts ddddaaaaa
t

  1)( 1

1( ) 1
ts t s t t i s t s ta a a a a i i i i          

By cases, 

Consequently, applying the pigeonhole principle, there are at least two ordered 

pairs in the same box, i.e., 

),(),(, ttss didits  Not possible! 

Since, by assumption, the terms of the sequence are distinct, then 

)()( tststs aaaaaa 
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There can be a number of objects greater than a multiple of the number of boxes. 

So the generalized pigeonhole principle (g.p.p.) states the following: 

 

 If n objects are placed into k boxes, then there is at least one box 

 containing at least objects.  /n k  

  1838/677 

   There are 38 different time periods during which classes at a university can 

      be scheduled. If there are 677 different classes, how many different rooms 

      will be needed? 

The classes are the “objects”, the time periods are the “boxes”; note that 

677 is greater than some multiple of 38, hence using the g.p.p. the 

number of rooms needed is       

   Show that there are at least 4 people in California (population: 25 million) 

      with the same three initials who were born on the same day of the year. 

The number of ways of selecting the 3 initials is 263, also there are 366 

possible birthdays (counting leap years). Hence the number of “boxes” is 

263 x 366 = 6432816, therefore applying the g.p.p. the answer is computed as 

  46432816/25000000 
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   Show that if 7 integers are selected from the first 10 positive integers, 

      there must be at least two pairs of these integers with the sum 11. 

We must first define from the context of the problem which are the “objects” 

and which are the “boxes”. The pairs whose sum is 11 are the boxes, i.e., 

}6,5{},7,4{},8,3{},9,2{},10,1{

Note that all 10 numbers are in these 5 boxes; the 7 integers are the objects 

and 7 > 5, hence by the g.p.p. there are at least          two integers in a box.  7 5 2/ 
Now we have 4 boxes and 5 integers, again 5 > 4, then by the same principle 

there is another box containing two integers. 

   How many ordered pairs of integers (a,b) are needed to guarantee that 

      there are two pairs (a1,b1) and (a2,b2)  such that a1 mod 5 = a2 mod 5 

      and b1 mod 5 = b2 mod 5.  

In each of the last equalities we have 5 possible remainders, {0,1,2,3,4}, since 

there are 2 equalities the number of pairs of remainders is 25, therefore, 

 N N N/ 25 2 26 26     (minimum)  pairs
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  Show that in a group of 5 people (where any two people are either friends or 

     enemies), there are not necessarily 3 mutual friends or 3 mutual enemies. 

     (Ramsey theory) 

4

3

3

3 3
“objects” = pairs of F    E 

“boxes” = mutual friends or mutual enemies 

5

4 4

4 4

4

In this graphical model, 

there are 4 pairs/person and 

the rest are non-related pairs 

to the same person. 

In this graphical model, 

there are 5 pairs/person and 

the rest are non-related pairs. 
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by the g.p.p. 4 / 2 2  

So, not necessarily 3 F’s or 3 E’s. So, 3 F’s or 3 E’s. 

by the g.p.p. 5 / 2 3  



Counting-I                                           G.p.p. examplesb  



• Permutations 

• Combinations 

• Identities 

• Binomial expansion 
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A permutation of a set of distinct objects is an ordered arrangement of these 

objects. An ordered arrangement of r elements of a set is called an r-permutation. 

The number of r-permutations of a set with n distinct elements is 

nrjnrnnnnrnP
r

j

 


1;)1()1()2)(1(),(
1



1a 2a 3a
1ra

ra

Select r elements from a set with n elements; the first element, a1 can 

be selected in n ways, a2 can be selected in (n - 1) ways until the last 

element ar , that can be selected among the remaining n - (r - 1) elements. 

By the product rule the total number of permutations of size r is P(n,r). 

)!(

!
)1(/)1()1(),(

111 rn

n
jnjnjnrnP

n

rj

n

rj

r

j 
 


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  Specific cases of the formula P(n,r), 

n
n

nn

n

n
nP 









)!1(

)!1(

)!1(

!
)1,( 1!0;!

!0

!

)!(

!
),( 


 n

n

nn

n
nnP

  List all permutations of the set A = {a,b,c}. 

Perm(A) = {(a,b,c),(b,c,a),(c,a,b),(a,c,b),(b,a,c),(c,b,a)} 6!3)3,3( P

  Evaluate P(8,5). 

67204.5.6.7.8!3/!3.4.5.6.7.8!3/!8)!58/(!8)5,8( P

cyclic permutation = 120° rotation b

a c

c

b a

a

c b

c

a b

a

b c

b

c a
transposition = flip about a vertex  

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

a b c b c a c a b

a c b b a c c b a

 

  
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  How many ways are there to seat 6 people around a circular table, where 

     seatings are considered to be the same if they can be obtained from each 

     other by rotating the table? 

fixed person 

remaining persons 

In general, for n people, one of them is the anchor, i.e., 

is fixed (note that we can choose any person), the 

rest can be arranged in (n - 1)! or P(n - 1,n - 1) ways. 

This kind of ordered arrangement (in a circle) is called 

circular permutation of size n. For the present problem, 

    n P6 5 5 5 120( , ) !
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A combination of a set of distinct objects is an unordered selection of these 

objects. An r-combination is simply a subset with r elements. 

The number of r-combinations of a set with n distinct elements is 

nr
rnr

n
rnC 


 0;

)!(!

!
),(

Combinatorial proof: an r-combination is just a set whose elements are selected 

from a set with n elements, its number is C(n,r); on the other hand, there are 

P(r,r) possible permutations taken r at a time, so by the product rule, 

!),(),(),(),( rrnCrrPrnCrnP 











r

n
rnC ),( binomial 

coefficient 

The following result is helpful in computing C(n,r): 

),(
))!(()!(

!
),( rnC

rnnrn

n
rnnC 


 or 




















rn

n

r

n
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  Let S = {1,2,3,4,5}. List all the 3-combinations of S. 

First compute C(5,3) = 5! / 3!(5-3)! = 5.4.3! / 3! 2! =10, this is the number of 

subsets of S that contain 3 elements from 5. The list of 3-combinations is 

Comb3(S) = {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5}}  

  Find the value of C(12,6) and C(5,1). 

C( , )
!

)!

!
12 6

12

6!(12 6

12

6!6!

12 7 6!

6!6!

12 11 10 9 8 7

2 3 4 5 6
11 3 4 7 924




 



    

   
    


C C C( , ) ( , ) ( , )

!

!( )!

. !

!

51 5 5 1 5 4

5

4 5 4

54

4
5

  




 

  Specific cases of the formula C(n,r), 

C n
n n

n
( , )

!

)!
0

0 0!( 0
1








 




n

n

n






 








 

0
1

C n
n

n
n

C n n

( , )
!

!( )!

( , )

1
1 1

1






 
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  A group contains n men and n women. How many ways are there to 

     arrange these people in a row if the men and women alternate? 

M m m

W w w

n

n





{ , , }

{ , , }

1

1





There are 2 ways of 

organizing these people 

in a row. 

( , , , )

( , , , )

m w m w

w m w m

n n

n n

1 1

1 1





The number of permutations in each is, n n n n n      ( ) ( ) ( !)1 1 1 1 2

Therefore, the total number of arrangements is  2 2( !)n

  Suppose that a department contains 10 men and 15 women. How many ways 

     are there to form a committee with 6 members if it must have the same number 

     of men and women? 

The committee must have 3 men and  3 women; we can select the men 

from C(10,3) possible combinations, and the women from C(15,3) combinations. 

By the product rule, the total number of ways to form such a committee is, 

10

3

15

3

10!

3 7

15

3 12

10 9 8

6

151413

6
54600









 








     

! !

!

! !

. . . .
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  How many ways are there to select 12 countries in the United Nations to serve on 

     a council if 3 are selected from a block of 45, 4 are selected from a block of 57, 

     and the others are selected from the remaining 69 countries? 

3 from block 1,  n1 45

4 from block 2,  n2 57
  3 4 7 countries from two blocks

12-7 = 5 from block 3,  n3 69

Therefore, applying the product rule and the number of combinations in each block, 

the answer is given by, 

n

r

n

r

n

r r

1

1

2

2

3

1 212

45

3

57

4

69

5









 








 

 









 









 








 










( )

   
 


  


   45

3 42

57

4 53

69

5 64

45 44 43

6

57 56 55 54

24

69 68 67 66 65

120

!

! !

!

! !

!

! !

    14190 395010 11238513 6 3 1016.
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Pascal’s identity: Let n and k be positive integers with n  k. Then 

C n k C n k C n k( , ) ( , ) ( , )   1 1

Combinatorial proof: assume a finite set S with n+1 elements. Let x belong to S 

so S* = S - {x} has n elements. First, we have C(n+1,k) subsets of size k from S. 

Second, a subset of S of size k either contains x together with k - 1 elements 

of S*, or does not contain x and has k elements from S*. There are C(n,k-1) 

subsets of S that contain x and there are C(n,k) subsets of S that do not contain x. 

The result follows from the sum rule because both families of subsets are disjoint. 

0

0

1

0

1

1

2

0

2

1

2

2

3

0

3

1

3

2

3

3



























































































Pascal’s 

 triangle 

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
197 

(4,2) (3,1) (3,2)C C C 

(5,3) (4,2) (4,3)C C C 

Counting-II                                                     Identitiesa  



We have shown by mathematical induction that the power set P(A) of a finite 

set A with n elements has 2n subsets. A new identity with binomial coefficients 

is established using a combinatorial proof. 

P A F F F i jk
k

n

i j( ) ;   
0

  for 

The power set P(A) is a union of families Fk each one containing subsets of size 

k taken from the n elements of A, i.e., 

Therefore, 

| ( )| | | | | ( , )P A F F C n kk
k

n

k
k

n

k

n

n   
  

 
0 0 0

2

Vandermonde’s identity: let m, n, and r be nonnegative integers with 

r not exceeding either m or n. Then 

C m n r C m r k C n k
k

r

( , ) ( , ) ( , )  



0
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The binomial theorem: let x, y be variables, let n be a positive integer. Then, 

( ) ( , )x y C n j x y
n

j
x yn

j

n

n j j

j

n

n j j  















 
0 0

Combinatorial proof: when the product is realized it is clear that all possible terms 

xn-j yj occur in the expansion for j = 0,1,2, ... ,n; note that, (n - j) + j = n. 

The number of times that a term xn-j yj appears for a fixed j is C(n,j) if we count yj 

or C(n,n - j) if we count xn-j (in the exclusive sense). Since C(n,j) = C(n,n - j) by 

Pascal’s identity, the result follows from the generalized sum rule.  

Corollaries:  

 

•  let x = y = 1, then ( ) ( , )1 1 2
0

  


n n

j

n

C n j

•  let x = 1 and y = -1, then ( ) ( ) ( , )1 1 0 1
0

   


n j

j

n

C n j
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  What is the coefficient of x8y9 in the expansion (3x + 2y)17? 

In this case, x8 y9 = xn-j yj thus we have that n = 17,  j = 9, and n - j = 17 - 9 = 8. The 

coefficient is given by C(17,9) modified by the new x* = 3x and the new y* = 2y, i.e., 

C n j Cn j j( , )( ) ( ) ( , ) , , ,3 2 17 9 3 2 24310 6561 512 81 662 929 9208 9       

  Show that if n is a positive integer, then C(2n,2) = 2C(n,2) + n2. 

We use Vandermonde’s identity with m = n and r = 2, i.e., 

C m n r C m r k C n k
k

r

( , ) ( , ) ( , )  



0

  


C n C n k C n k
k

( , ) ( , ) ( , )2 2 2
0

2

   C n C n C n C n C n C n C n( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )2 2 2 0 1 1 0 2

        C n C n n n C n C n n( , ) ( , ) ( , ) ( , )2 2 2 1 1 2 2 2 2
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• Recurrence relations 

• Applications 

• Types of recurrence relations 

• Solving recurrence relations 
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A recurrence relation for the sequence {an} is an equation that expresses an in 

terms of one or more of the previous terms of the sequence, a0,a1, ... ,an-1 for 

all integers n  n0 and n0  Z+.  

A sequence is called a solution of a recurrence relation  if its terms satisfy the 

recurrence relation. The initial conditions specify the terms that precede the first 

term where the recurrence relation takes place. 

  Show that the sequence an = 2(-4)n + 3 is a solution of the recurrence 

     relation an = -3an-1 + 4an-2. 

We compute an-1 and an-2 from the expression for an and substitute them in 

the recurrence relation or equation; thus, 

a

a

n

n

n

n









  

  







1

1

2

2

2 4 3

2 4 3

( )

( )

      3 2 4 3 4 2 4 31 2[ ( ) ] [ ( ) ]n n

      

       

 



6 4 9 2 4 12

8 4 3 2 4 3

1 1

1

( ) ( )

( ) ( )

n n

n n

na
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Recurrence relations are helpful for modeling a variety of situations that 

involve the terms of a sequence which are related in a quantitative way. 

   A person deposits $ 1000 in an account that yields 9% interest compounded 

      yearly. a) Setup a recurrence relation for the amount in the account at the end 

      of n years. b) Find an explicit formula for the amount in the account at the end 

      of n years. c) How much money will the account contain after 10 years? 

a) Let An denote the amount of money in the account at the end of n years, 

    so A0 is the initial deposit, also 9/100 = 0.09. Therefore, 

A A A An n n n    1 1 1009 109. .

b) We unfold the previous relation until the initial term is reached, i.e.,  

A A A A An n n

k

n k

n       109 109 109 1091

2

2 0. ( . ) ( . ) ( . ) 

c) substitution of n = 10 in the last formula gives the amount of money after 

    10 years, 
10 10

10 0(1.09) (1.09) 1000 $ 2,367.36A A   
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A popular puzzle of the late nineteenth century is known as the Tower of Hanoi. 

  Let Hn denote the number of moves needed to solve the puzzle with n disks. 
 

•    transfer the top n - 1 disks in peg 1 to peg 3 using Hn -1 moves,  

•    then, using one move, put the largest disk of peg 1 in peg 2, 

•    finally, transfer again using Hn -1 moves the n - 1 disks in peg 3 to peg 2. 

Therefore, 

H H H H Hn n n n       1 1 1 11 2 1 1;

To find an explicit formula, iterate until the initial value is reached, i.e., 

H H H Hn n n n         2 1 2 2 1 1 2 2 11 2

2

2( )

         2 2 1 2 1 2 2 2 12

3

3

3

2( )H Hn n 

    










 2 2 2 2
0

1

1

1
0

2

k

n k

j

j

k

n j

j

n

H H   




2 2 1
0

1

j

j

n

n
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  a) Find a recurrence relation for the number of bit strings of length n that 

          contain 3 consecutive 0s. b) What are the initial conditions? c) How many 

          bit strings of length seven contain 3 consecutive 0s? 

a) Let sn be the number of bit strings of length n containing 000. Consider 

the following exhaustive possibilities for building all these strings, 

• the same type of strings but of length n - 1 beginning with a 1, 

• the same type of strings but of length n - 2 beginning with a 01, 

• the same type of strings but of length n - 3 beginning with a 001, 

• strings beginning with 000 and a string of length n - 3. 

Therefore, s s s sn n n n

n     



1 2 3

32

b) There are no strings of length 0, 1, and 2 with 000, so s0 = s1 = s2 = 0 

Note that s3 = s2 + s1 + s0 + 23-3 = 1 which is “000”. 
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c) we find the value of s7 as follows, 

s s s s s s s7 6 5 4

7 3

6 5 42 16       

There are 47 bit strings of length 7 with 3 consecutive 0s. 

s s s s s s

s s s s s s

s s s s s

7 5 4 3

6 3

5 4

5 4 4 3 2

5 3

4

4 3 2 1

4 3

3

2 16

2 2 25 2 2 2 25

4 35 4 2 31 4 43

47

      

        

        









( )

( )

( )
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There is no single method to solve a recurrence relation for the general 

term an . However, the methods shown here apply to a certain class 

of recurrences that can be solved in a sistematic way. 

A linear homogeneous recurrence (LHR) relation of degree k 

with constant coefficients (CC) has the following form 

a c a c a c a j c R cn n k n k j n j
j

k

j k         


1 1
1

0 ; ,

The sequence {an} satisfying this type of recurrence relation 

is unique once the k initial conditions are given 

a C a C a C j C Rk k j0 0 1 1 1 1     , , , ; ,

1(1.11) ; LHR, 1n nP P k  

1 2 ; LHR, 2n n nf f f k    

5 ; LHR, 5n na a k  

   a a an n n1 2

2 ;  not linear

  H Hn n2 11 ;  not homogeneous

1 ;  is variablen nB nB n 
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In order to solve a LHR of degree k with CC we assume that solutions 

are a power of some real number r, i.e., an = rn with r a constant. Then, 

r c r c r c r c rn

j

n j

j

k

n n

k

n k    



  
1

1

1

2

2 

       r c r c r c rn n n

k

n k( )1

1

2

2 0

       r r c r c r cn k k k k

k( )1

1

2

2 0

       polk

k k k

kr r c r c r c( ) 1

1

2

2 0

Therefore, the sequence {an} with an = rn is a solution if and only if r is a 

solution of the polynomial known as the characteristic equation of the 

recurrence relation. In that case, r is a characteristic root. 

The general form of the term an of the sequence that solves a 

LHR of degree k with CC will depend on the number and 

nature of the characteristic roots. 
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Let us consider a LHR with CC and k = 2. Thus, 

a c a c a cn n n   1 1 2 2 2 0;     pol2

2

1

1

2 0( )r r c r c

Suppose that the roots r1 and r2 of this quadratic equation are real and distinct, 

then, the solution, where the values of the constants 1 and 2 are determined 

by the initial conditions a0 = C0 and a1 = C1, is given by 

a r rn

n n  1 1 2 2 1

1 0 2

1 2






C C r

r r
2

0 1 1

1 2






C r C

r r

  Find an explicit formula for the Fibonacci numbers. 

f f fn n n  ( ) ( )1 11 2     pol2

2 1 0( )r r r 1,2

(1 5) / 2

(1 5) / 2
r





  
  

 
f f0 1 1 21 1 1 5 1 5        / /

Consequently, 
1

5
( )n n

nf   
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Let us consider a LHR with CC and k = 2. Thus, 

a c a c a cn n n   1 1 2 2 2 0;     pol2

2

1

1

2 0( )r r c r c

Suppose that the root r0 of this quadratic equation has multiplicity = 2, 

then, the solution, where the values of the constants 1 and 2 are determined 

by the initial conditions a0 = C0 and a1 = C1, is given by 

a r nrn

n n  1 0 2 0

  Find the solution to the recurrence relation (initial conditions are a0 = 1, a1 = 6) 

a a an n n  6 91 2     pol2

2 6 9 0( )r r r  r0 3

a a0 1 1 21 6 1 1       

Hence, a n nn

n n n   3 3 3 1( )
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  Find the solution to the LHR of degree k = 3, 

     with initial conditions a0 = 2, a1 = 5, a2 = 15. 

a a a an n n n    6 11 61 2 3

        r r r r r r3 26 11 6 1 2 3 0( )( )( )    r r r1 2 31 2 3, ,

a a a0 1 2 1 2 32 5 15 1 1 2       , , , ,  

The unique solution is an

n n   1 2 2 3

The previous examples presented simple LHRs of degree k = 2. The general 

case is more complicated since the characteristic roots can be real or 

complex, and each one with its own multiplicity. 

We present a generalization for the case of k different real roots rj , i.e., 

a c an j n j
j

k

 



1

   


polk

k

j
j

k

k jr r c r( )
1

0

The solution has the form (the j can be found by applying the initial conditions): 

a rn j j

n

j

k





1

)()(pol
1





k

j

jk rrr
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• Divide and conquer relations 

• Computational complexity 
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Advance Counting: Part II 



Divide-and-conquer recurrence relations are used in the analysis of recursive 

algorithms. Remember that a recursive algorithm solves a problem by 

decreasing the size of the input until the smallest input is computed. 

The fact that a recursive algorithm divides a problem into subproblems of 

smaller size is expressed by saying that it is a divide-and-conquer procedure. 

  The binary search algorithm. 

• the input is a sequence of size n, 

• it reduces the input to n / 2 when n is even, 

• 2 comparisons are needed for this reduction.   f n f n( ) ( / )2 2

f(n) = # of comparisons 

   A fast matrix multiplication algorithm. 

• the inputs are 2 matrices of size n x n, 

• it reduces the inputs to n/2 x n/2 for n even 

• it uses 7 multiplications of 2 matrices, 

• it uses 15 additions of 2 matrices. 
  f n f n n( ) ( / ) /7 2 15 42

f(n) = # of operations 
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Structure of a general divide-and-conquer recurrence (DCR) relation: 

• an algorithm splits a problem of size n into a subproblems, 

• each subproblem is of size n / b (where b divides n), 

• a total of g(n) extra operations are required for the split, 

• if f(n) represents the total number of operations, then 

Our purpose is to provide an estimate of the rate of growth or time complexity 

for functions that satisfy divide-and-conquer recurrence relations. 

By assumption, b is a divisor of n, so we can take n = bk for some k  Z+ 

     f n af n b g n a af n b g n b g n( ) ( / ) ( ) [ ( / ) ( / )] ( )2

  a f n b ag n b g n2 2( / ) ( / ) ( )

   a f n b a g n b ag n b g n3 3 2 2( / ) ( / ) ( / ) ( )

f n af n b g n( ) ( / ) ( )  1 
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 




a f n b a g n bk k j j

j

k

( / ) ( / )
0

1

  




f n a f a g n bk j j

j

k

( ) ( ) ( / )1
0

1

2 

Equation 2 is used to establish the time complexity of the function f(n).  

Let f(n) be an increasing function of n that satisfies the DCR given by, 

f n af n b c a b n b c R( ) ( / ) ; , | , ,     1 1

 








f n
O n a

O n a

b a

( )
( )

(log )

log  if 

 if 

1

1
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When n = bk for some k  Z+, the explicit formulas for f(n) are:  

  Find f(n) when n = 3k, where f satisfies f(n) = 2 f(n / 3 ) + 4 with f(1) = 1. 

a f n f c n

a f n f
c

a
n

c

a

b

ab

   

   










 



1 1

1 1
1 1

( ) ( ) log

( ) ( ) log

3 

4 

Apply Eq. 4 with b = 3, a = 2, and c = 4; hence, 

 f n n n( ) log log     1 5 44
2 1

2 4
2 1

23 3

  Estimate the time complexity of f(n) if it is an increasing function of n. 

Since a > 1, b > 1, b | 3k, and c > 0, we have 

f n O n( ) ( )log 3 2
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Let f(n) be an increasing function of n that satisfies the DCR given by, 

f n af n b cn a b n b c d Rd( ) ( / ) ; , | , , ,     1 1

 















f n

O n a b

O n n a b

O n a b

b a d

d d

d d

( )

( )

( log )

( )

log      if 

 if 

         if 

  Estimate the time complexity of f(n) of the fast matrix multiplication algorithm. 

Since a = 7, b = 2, d = 2, a > bd, and c = 15/4, we have 

f n O n O n( ) ( ) ( )log . 2 7 2 8

f n f n n( ) ( / ) / 7 2 15 42
Recall that 

vs O n( )3

direct matrix multiplication 

n C Cd f

10 10 631

100 10 398108

3

6
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• Binary relations 

• Types of relations 

• Operations with relations 

• Representations 

• Partition of a set 

• Equivalence relations 
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Relations 



Let A and B be sets. A binary relation from A to B is a subset of A X B. 

R A B aRb a b R aRb a b R     ; ( , ) ; ( , )

Binary relations represent a correspondence between the elements of two sets. 

Let A be a set. A binary relation on A is a relation from A to A. 

R A A A   2

• every function or mapping from A to B is a binary relation, 

f A B f A B b f a a f b: ; ( )     

( , ) ( , )a b f a c f b c    

• not every relation from A to B is a function from A to B. 

( , ) ( , )a b R a c R b c    
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The following two examples are taken from number theory, 

D Z Z mDn m n    ; |•  the divisibility relation: 

( , ),( , ),( , ) ( , ),( , ),( , )3 3 2 6 5100 2 1 3 7 7 3 D D but 

( , ) ( , )1 1 1n D n D n   but  for 

( , )m n D n m  for 

C Z Z xC y m x y x y mm m     ; |( ) (mod )

•  the congruence relation modulo m (positive integer): 

( , ),( , ),( , ) ( , ),( , ),( , )55 12 0 012 8 2 2 8 11112 12 C C but 

( , )x y C y x 12 for 

( , ) ( , )x y C y x C  12 12  
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Consider a relation on A, i.e., R is a subset of A X A, then 

R x A x x R is reflexive   ,( , )

R x y R y x R is symmetric    ( , ) ( , )

R x y y x R x y is antisymmetric     ( , ) ( , )

R x y y z R x z R is transitive     ( , ) ( , ) ( , )

• the divisibility relation on Z+ is reflexive, antisymmetric, and transitive. 

( | ) ( | ) ( ) ( )

( ) ( )

m n n m n k m m k n

n k k n k k n

k k k k

    

  

    

1 2

1 2 1 2

1 2 1 21 1

• the congruence relation on Z is reflexive, symmetric, and transitive. 

Antisymmetric, 

Symmetric, x y m m x y

m y x y x m

  

   

(mod ) |( )

|( ) (mod )
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Consider a finite subset of the positive integer numbers, say A = {1,2,3,4,5,6}. 

A A A  2

Cartesian support 

6

5

4

3

2

1

12 3 4 5 6

6

5

4

3

2

1

12 3 4 5 6

( ,|)A

1

2
3

5

4

6 ( , )A 2

1

3

5

2 4

6
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Since binary relations R are subsets of A X B or subsets of A X A, the normal 

operations of set theory can be applied to relations. 

Suppose that both sets are finite, i.e., |A| = n and |B| = m, where m,n are 

positive integers. How many relations are there from A to B?, on A? 

• the number of relations from A to B is 

| ( )| | | | | | |P A B A B A B nm    2 2 2

• for the number of relations on A take m = n in the previous formula, then 

| ( )|P A n2 2
2



Composition of relations: 

R A B S B C S R a c b B aRb bSc        ; {( , )| , }

Powers of a relation on A: 

R R R R R n Zn n1 1    ; 
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Let R = {(1,2),(1,3),(2,3),(2,4),(3,1)} and S = {(2,1),(3,1),(3,2),(4,2)}. 

Find the composition of R with S. 

1

2

3

1

2

3

4

1

2

R S

A B C

1

2

3

A



1

2

C

S R

S R  {( , ),( , ),( , ),( , )}11 1 2 2 1 2 2
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Let R be the relation on the set A = {a,b,c,d,e} containing the ordered pairs 

(a,a),(a,b),(a,c),(b,c),(b,d),(c,a),(c,d),(c,e),(d,b),(d,e),(e,a),(e,b),(e,d). 

Find the following powers R2 , R3, R4 and R5. 

R R R A A3 2  
Thus, R3 is the total relation on A 

containing all pairs. 

R R R5 4 3 

In this case, increasing powers 

do not add any new pairs. 
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a 

e b 

d c 

R



a 

e b 

d c 

R R R2  

Relations                                    Composition exampleb 



• Set builder notation 

 

 

 

• Cartesian support 

 

 

 

 

• Zero-one matrix 

 

 

 

• Directed graph 

There are basically four ways to represent binary relations from A to B or on A. 

R A B  R A A A   2

R a a c {( , ),( , ),( , )}1 2 1 R b b c b b c {( , ),( , ),( , )}

a b c

2

1

a b c

c

b

a

MR 

















1 1

0 0

1 0

a

b

c

1 2

MR 

















0 0 0

0 1 1

0 1 0

a b c

a

b

c
a

b

c

1

2
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a

b c



A binary relation from A to B has a corresponding m x n boolean matrix whenever 

A has m elements and B has n elements. The relation matrix is defined as 

R A B M m
a b R

a b RR ij

i j

i j

    








[ ]
, )

, )

1

0

 if (

 if (

1

1

1

1



















 i mii, 1

R is reflexive 

0

0

0

0



















 i mii, 0

R is irreflexive 

1 1 0

1 1 0

1 1 1

0 0 1



















m mij ji

R is symmetric 

1 0 1

0 0 0

1 0 0

0 0 1



















m mij ji  1 0

R is antisymmetric 

R a b a b R M M M
R A R    {( , )|( , ) } (complementary)  (complement)2

R b a a b R M M
R R

t    

1
1{( , )|( , ) } (inverse)  (transpose)

227 

Relations                                                      Matrix form 



The operations between binary relations are performed using the algebra of 

zero-one or boolean matrices. Suppose that R and S are relations on a finite set 

A with n elements whose corresponding matrices are MR and MS, then 

M M MR S R S    (union - join)

M M MR S R S    (intersection- meet)

M M MR S R S    (symmetric difference - xor)

M M MS R R S    (composition- boolean product)

M M
R R

n
n 

[ ] (power - power)

In other words, the algebra of relations R on a set A is the same as the algebra 

of zero-one square matrices MR. These equations are useful for computational 

purposes. So the basic data structure of a binary relation is a boolean square matrix. 
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A binary relation on A can be represented in a pictorial way by means of a 

directed graph or digraph G = (V,E) where the elements of A are the vertices 

or nodes in V and the ordered pairs belonging to R are the elements of E 

called edges or arcs.  

a Ra a a Ri i i i  ( , )  loop

a Ra i j a a Ri j i j; ( , )     directed edge

Representing a binary relation with a digraph is a visual aid for understanding 

the properties and types of relations. They serve as an introduction to the 

concepts of graph theory and are useful for modeling problems. 
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ai
a jloop 

directed edge or arc 



a b

d c

 i a a Ei i,

R is irreflexive 
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a b

d c

R is antisymmetric 

a a E a a Ei j j i  

a a E a a E

a a E

i k k j

i j

  

 

R is transitive 

a b

d c

 i a a Ei i,

R is reflexive 

a b

d c

a b

d c

R is symmetric 

a a E a a Ei j j i   a a E a a Ei j j i   1

inverse of R (previous) 

a b

d c



a b

a b c

a b c d

R

a bR1


a c

R 2

a dR 3

A new edge is 

added if there 

is a path of 

length 1, 2, 

and 3 in the 

original relation. 

In general, the n-th power of a binary relation R on A will contain (i, j) if there is 

a path of length n from i to j in R; here, length means the number of arcs. 

R n R Rn is transitive  ,

n R R 1 1 (trivial),  

n R R R R  2 2 (basis),  

( , ) , ( , ), ( , )

( , )

a c R b A a b b c R

R a c R

    

 

2

since  is transitive 

Proof of the direct implication: 

induction 

hypothesis ,  thenkn k R R 

R R R R R

R R

k k  

 

1

2

 

231 

Relations                                      Transitivity & powers 



A family of sets P = {A1,A2, ... ,An} of a given set A is a partition if and only if 

the sets Ai cover A and any two subsets in P are disjoint, i.e., 

A A i j A Ai
i

n

i j    
1

 ; ,

A natural binary relation on A is defined as follows: xR y i x y AP i ; ,

The relation induced by P has the properties, 

  xR x i x AP i,   (reflexive)

 

   

xR y yR x

i x y A y x A

P P

i i

 since

  (symmetric); , ,

  

      

xR y yR z xR z

i j x y A y z A x z A

P P P

i j i

  (transitive)

; , , ,

A2

A1

A3

 An

The sets Ai are called 

blocks, cells or classes. 
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An equivalence on A is a binary relation R on A that is reflexive, symmetric, and 

transitive. Every equivalence on A induces a partition of A known as the quotient 

set denoted by A / R. 

For each element a in A we define the equivalence class of a as the set: 

[ ] [ ] ( ) { | }a a cl a b A aRbR    

Therefore, the quotient set (or partition induced by R on A) is defined as the family: 

A R a a A/ {[ ]| } 

It is not difficult to prove that, 

aRb a b aRb a b A a
a A

     


[ ] [ ] ; [ ] [ ] ; [ ]

Any element or member of a class [a] is called a representative. 

Equivalence on Partition of A A
Same idea, but expressed 

In different forms! 
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This is the classic example of an equivalence. It shows how this idea 

is used to build new objects from old ones in a clever way. 

Let R be the binary relation of congruence modulo m between two integers x,y  Z. 

reflexive,    

symmetric,  

transitive,    

x x m

x y m y x m

x y m y z m x z m



  

    

(mod )

(mod ) (mod )

(mod ) (mod ) (mod )

The equivalence classes and the quotient set are computed as follows: 

[ ] { | (mod )} { | } { | }x y y x m y y x km y y x km       

or 
[ ] { , } { , , , , , , }x x km k Z x m x m x x m x m        2 2

Each equivalence class has an infinite number of elements from Z and we take 

as representatives the possible remainders for m, i.e., 0,1, ... , m - 1. Therefore, 

Z R r r m m Zm/ {[ ] | , , , } {[ ],[ ], ,[ ]}     01 1 0 1 1 

This quotient set is called the integers modulo m and it is a finite set! 
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• Types of graphs 

• Graphs as models 

• Graphs examples 

• Applications of graphs 

• Operations with graphs 
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Graphs-Part I 



Undirected 

Graphs 

Directed 

Graphs 

Name      Multiple edges?      Loops? 

simple graph     no                     no 

multigraph         yes                   no 

pseudograph     yes                   yes 

directed graph   no                    yes 

directed 

multigraph          yes                  yes 
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Mathematical definitions for pseudographs and directed multigraphs: 

1 2 1 2

PG ( , , : {{ , }| , })

( ) ( ) { , }  ; parallel edges ,

( ) { , }  ; loop 

V E f E u v u v V

f e f e u v u v e e

f e u v u v e

  

   

  

1 2 1 2

MDG ( , , : {( , ) | , })

( ) ( ) ( , )  ; directed parallel edges ,

( ) ( , )  ; directed loop 

V E f E u v u v V

f e f e u v u v e e

f e u v u v e

  

   

  

A graph is a model when the vertices (set V) and edges (set E) are assigned a 

specific meaning according to the problem being represented by the graph. 

• niche overlap graph: interaction between animal species; V = {species}, 

  {u,v} means species u competes with species v for food resources. 

• precedence graph: execution of programs in concurrent mode; V = {instructions}, 

  (u,v) means instruction v can be executed if instruction u has been executed. 
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  The intersection graph of a collection of sets A1, A2, ... , An is the graph 

that has a vertex for each of these sets and has an edge connecting the vertices 

representing two sets if these sets have a nonempty intersection. Construct the 

intersection graph for the following collection of sets. 

A x x A x x A x x

A x x A x x A R

1 2 3

4 5 6

0 1 0 0 1

1 1 1

        

       

{ | }, { | }, { | },

{ | }, { | },

Note that: A A A A1 3 2 3    otherwise A A i ji j   if 

A1 A2

A3

A4
A5

A6
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  Construct a precedence graph for the following program: 

S x

S x x

S y

S z y

S x x

S y x z

S z

1

2

3

4

5

6

7

0

1

2

2

4

: :

: :

: :

: :

: :

: :

: :



 





 

 



V S S S { , , , }1 2 7

The set of vertices V contains as elements the 

statements or instructions of the program, i.e., 

There is an edge e = (Si, Sj) if Sj can be executed after 

Si has been executed, therefore the directed graph is 

S1 S3 S7

S2

S5

S4

S6

239 

Graphs-I                                               Model exampleb 



General terminology for undirected graphs: 
 

•  two vertices u and v are called adjacent or neighbors if {u,v} is an edge, 

•  if e = {u,v} , the edge is called incident with the vertices u and v, 

•  the edge e is also said to connect u and v, 

•  the vertices u and v are called endpoints of the edge {u,v}. 

v v v v1 2 1 3, , adjacent ;   not adjacent

e v v3 4 2 incident with ,

v1 v2

v4
v3

e1

e2

e3

e4 e5

e6

e7

•  the degree of a vertex =  number of edges incident with it, 

•  a loop at a vertex contributes twice to the degree of that vertex, 

•  the degree of a vertex v is denoted by deg(v). 

deg( ) ; deg( )v v1 24 3 

e e v v5 6 4 3, , parallel edges,  endpoints are 

deg( ) | |v Ei
i

        
1

4

4 3 3 4 14 2 7 2
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Euler’s theorem (handshaking): Let G = (V,E) be an undirected graph with 

e edges, then (it applies also to multigraphs or pseudographs) 

deg( ) deg( ) | |v v e Ei
v Vi

n

  



1

2 2

An undirected graph has an even number of vertices of odd degree. 

V v V v V v V veven odd is even  is odd   { |deg( ) }; { |deg( ) }

deg( ) deg( ) deg( )v v v k p e
v V v V v V  

      
(even) (odd)

2 21  p is even

Since the second summation is an even number and is obtained by adding odd 

numbers there must be an even number of them. 

Particular kinds of vertices: 

v v v v is isolated  is pendant    deg( ) ; deg( )0 1
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Complete graphs               Cycles    Wheels 

K4

K6

C4

C6

W4

W6

K n

i j v v E

n

i j

;

,{ , }



  

1 C n

i v v E

n

i i n

;

,{ , }mod



 

3

1 0

; 3 a cycle

plus 0,{ , }

n

i

W n

i v v E



  
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            Stars    Complete bipartite graphs             Cubes 

S4
K2 3,

S6
K3 3,

Q2

00 

10 11 

10 

Q3

000 

100 

110 
111 

001 

011 010 

101 

K m n i j

u v E u U v V

U V

m n

i j i j

, ; , ,

{ , } ,

  

   

  

1
S K nn n 1 1, ,

; 1,

,{ , }

( , ) 1

n

n

i j

d i j

Q n v B

i j v v E

H v v

 

   


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  Determine the sum of the in-degrees of the vertices and the sum of the 

     outdegrees of the vertices directly. Show that they are both equal to the 

     number of edges in the graph. 

a b

d c

deg ( ) ( ) ( ) ( ) ( )



       

    

v V

v a b c d   

2 3 2 1 8

deg ( ) ( ) ( ) ( ) ( )



       

    

v V

v a b c d   

2 4 1 1 8

In general, for a directed multigraph the following relation always holds: 

deg ( ) deg ( ) | |







  
v V v V

v v E
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  How many vertices and how many edges do the following graphs have? 

K V n E C nn

n n
 (complete)    


| | ; | | ( , )

( )
2

1

2

C V n E nn (cycle)  | | ; | |

W V n E nn (wheel)   | | ; | |1 2

K V m n E mnm n, | | ; | | (complete bipartite)    

Q V E nn

n n (cube)    | | ; | |2 2 1

  Let G be a graph with v vertices and e edges. Let M be the maximum degree 

     of the vertices of G, and let m be the minimum degree of the vertices of G. 

     Show that a) 2e / v  m, and b) 2e / v  M. 

a)         


v m v v m v e e v m
v V

, ( ) ( ) /  2 2

b)         


v M v v M v e e v M
v V

, ( ) ( ) /  2 2
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Graphs with a certain structure as those shown before can be used to model, for 

example, computer networks or arrangements of units for parallel processing. 

Computer networks topology: rings (cycles), stars or hybrid (wheels). 

Parallel processing machines: complete graphs, grids or hypercubes (cubes). 

linear array of 5 processors; only 

two direct connections between Pi and 

processors Pi - 1 , Pi + 1 (except P1,P5) 

L5
P1 P2 P3 P4 P5

K nn ; 5 Low values of n ; otherwise, number of connections = C(n,2). 

M5 5,

a mesh or grid (two dimensional array) 

of 5 x 5 = 25 processing units. Each 

interior processor (not on the boundary) 

has 4 direct connections with its neighbors. 

Communication between some processors 

require a number of intermediate links: 

O n O m m m( ) ( ) ;   mesh
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Two basic operations on graphs are performed by eliminating or adjoining 

vertices or edges. The formal definitions are as follows: 

• a subgraph of a graph G = (V,E) is a graph H = (W,F) where W  V and F  E. 

• the union of two simple graphs G1 = (V1,E1) and G2 = (V2,E2) is the simple 

  graph G = G1   G2 where V = V1  V2 and E = E1  E2. 

Examples: 

• Every cycle Cn for n  3 is a subgraph of Kn (complete) and of Wn (wheel) 

• Every star Sn for n  1 is a subgraph of Km,n (complete bipartite) and of Wn (wheel) 

• Every wheel Wn for n  3 is the union of Cn (cycle) and of Sn (star) 

• The cube  Qn for n  1 is a subgraph of the cube Qn+1 
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• Adjacency matrix 

• Incidence matrix 

• Graph isomorphism 

248 

Graphs-Part II 



A usual representation of a graph (as in the case of binary relations) is a matrix. 

The n x n adjacency matrix AG of a graph G = (V,E) with |V | = n where m is a 

positive integer denoting the multiplicity of an edge is defined as follows: 

[ ]
; { , }

a
m v v E

ij

i j




0   otherwise

Undirected graphs 

Directed graphs 

[ ]
; ( , )

a
m v v E

ij

i j




0   otherwise

v1 v2

v4
v3

v1 v2

v4
v3

1 1 0 1

1 0 1 1

0 1 0 2

1 1 2 0



















v

v

v

v

1

2

3

4

v v v v1 2 3 4

1 1 0 1

0 0 0 1

0 1 0 1

0 0 1 0



















v

v

v

v

1

2

3

4

v v v v1 2 3 4
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Another matrix representation for an undirected graph G = (V,E) with n vertices 

and m edges is the n x m incidence matrix MG defined as follows: 

[ ]
;

m
e v

ij

j i





1

0

if  is incident with 

  otherwise
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parallel edges have 

identical columns 

loops appear as a column 

having a single entry = 1 

v

v

v

v

1

2

3

4

e e e e e e e1 2 3 4 5 6 7

1 0 0 1 0 0 1

1 1 1 0 0 0 0

0 1 0 0 1 1 0

0 0 1 1 1 1 0



















v1 v2

v4
v3

e1

e2

e3

e4 e5

e6

e7

Before displaying the matrix MG the 

vertices and edges must be labeled 

in a certain order 





An isomorphism (“isos” means equal and “morphe” means form) between 

to simple graphs G = (V,E) and H = (U,F) is a bijection from V to U  

that preserves edge adjacency. In that case, G and H are isomorphic. 

G H f V U v v E f v f v Fi j i j      bij: , { , } { ( ), ( )}

Besides finding (possibly) a one-to-one and onto function between the vertices 

of both graphs, the following invariants are useful to test for graph isomorphism 

•  both graphs must have the same number of vertices and edges, 

•  the degrees of the corresponding vertices must be the same, 

Additional criteria to test for graph isomorphism are 

•  subgraphs of both graphs made up of vertices with degree 3 and the 

   edges connecting them must be isomorphic, 

•  the adjacency matrix of the second graph labeled by the bijection f 

   must be equal to the adjacency matrix of the first graph. 
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  Determine whether the given pair of graphs is isomorphic. 

v1

v2 v3

v4

v5

G V E ( , )

u1

u2
u3

u4u5

H U F ( , )

A bijection f between V and U is 

v u

v u

v u

v u

v u

1 4

2 2

3 5

4 3

5 1











• same # of vertices 

• same # of edges 

• each vertex has 

  the same degree. 
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0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0























So, we verify using the respective adjacency matrices: 

u

u

u

u

u

4

2

5

3

1

v

v

v

v

v

1

2

3

4

5

 G H

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

























  Determine whether the given pair of graphs is isomorphic. 

v1 v2

v3

v4
v5

G V E ( , )

v6

u1 u2

u3

u4u5

u6

H U F ( , )

• same # of vertices (6) 

 

• same # of edges (8) 

Consider the degree 

of each vertex: 

deg({ , , , })v v v v1 2 5 6 3

deg({ , })v v3 4 2

deg({ , , })u u u1 4 5 2

deg({ , })u u2 3 3

deg( )u6 4
Since vertex u6 of graph H has degree 4 there is 

no corresponding vertex in graph G with the same degree. 

Therefore, the graphs G and H are not isomorphic. 
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G H H G f g f       since   preserves adjacency

between H and G.

bij bij

1

  Show that isomorphism of simple graphs is an equivalence relation. 

Consider the set S of all finite simple graphs, let G, H, K  S. We show that 

the relation of isomorphism between graphs is an equivalence on S if it is 

reflexive, symmetric, and transitive. 

   G S G G f idG,   since  bij

G H H K G K h g f       since    is a bijection

between G and K preserving adjacency.



The equivalence class [G] contains all simple graphs isomorphic to G, and 

the quotient set S /   is the corresponding partition of S. 
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The complementary graph   G of a simple graph G has the same vertices as G. 

Two vertices are adjacent in  G if and only if they are not adjacent in G. 

  A simple graph G is called self-complementary if G and   G are isomorphic. 

     Show that the following graph is self-complementary. 

a b

cd

G

a b

cd



G



ab

cd

G G
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  How many nonisomorphic simple graphs are there with n vertices, 

     when n is a) 2?,  b) 3?, and c) 4? 

n  2

0e

1e

#G  2 n  3

0e 1e 2e 3e

#G  4

n  4

0e 1e 2e 2e 3e

3e

3e
4e

4e 5e

#G 11
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  Determine whether the graphs without loops with the following 

     incidence matrices are isomorphic. 
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Since both incidence matrices 

are equal after a permutation 

of columns, graphs G and H 

are isomorphic. So, we write: 

G K H 3

a) M MG H



































1 0 1

0 1 1

1 1 0

1 1 0

1 0 1

0 1 1

,

b) 

Again, since both incidence matrices are equal after a permutation of columns, 

graphs G and H are isomorphic. Both graphs are the same as the unique graph 

that exists with 4 vertices and 5 edges (see previous slide).  

M MG H







































1 1 0 0 0

1 0 1 0 1

0 0 0 1 1

0 1 1 1 0

0 1 0 0 1

0 1 1 1 0

1 0 0 1 0

1 0 1 0 1

,


