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Abstract

Hierarchical classification is commonly seen as a special type of multi-label classifica-
tion, where the instances can be associated to multiple labels, but labels are arranged
in a predefined structure, a hierarchy. The predictions in hierarchical classification
have to fulfill the hierarchical constraint that states if an instance is associated to a
node, then it also has to be associated to the ancestors of that node.

Moreover, scarcity of labeled data is a common problem in supervised clas-
sification, because hand-labeling data is expensive, time-consuming or difficult to
label; it is a problem also present in hierarchical classification. Even though, labels
arranged in hierarchies are found in multiples domains, such as text categorization,
image classification, biology and music, just a few works address the problem of
scarcity of labeled data in a hierarchical classification scenario.

Therefore, the main goal of this research it to develop a semi-supervised hi-
erarchical classifier that can be trained with labeled and unlabeled data, for the
hierarchical problem where the hierarchies can be of directed acyclic graph type and
the instances can be associated to multiple paths of labels of partial depth.

Semi-supervised hierarchical multi-label classifier based on local information
(SSHMC-BLI) is the proposed classifier, which can be trained with labeled and
unlabeled data to perform hierarchical classification tasks. The method mainly
consists on building pseudo-labels for each unlabeled instance from the paths of labels
of its labeled neighbors, while it considers whether the unlabeled instance is similar
to its neighbors. Experiments on several artificial and real world datasets show
that using unlabeled along with labeled data can help to improve the performance
of a supervised hierarchical classifier trained only on labeled data, with statistical
significance.

Finally, some extensions of SSHMC-BLI were proposed: SSHC-BLI which is
variant that handles only hierarchies of tree type; SSHBMC which follows a Bayesian
approach, that is, the hierarchy is modeled as a Bayesian network; and a variant of
SSHMC-BLI that incorporates transfer learning among neighboring nodes.
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Chapter 1

Introduction

Hierarchies have been a fundamental part of human organization throughout history.
From ancient civilizations to today’s societies, hierarchies have played a crucial role
in the structuring and functioning of communities and organizations. Moreover,
hierarchies have allowed us to organize and classify abstractions. For instance, one of
the most known hierarchies is the tazonomic hierarchy which organizes living beings
into classes, that is, for each living being, in the first level a kingdom is assigned, in
the second level a phylum (that inherits the characteristics from the corresponding
kingdom) is assigned, and so on until a specie is assigned. As results of this, we
can easily note that the amount of living beings, at each class, tend to decrease as
one goes deeper in the hierarchy. Moreover, the increasing number of classes and
instances requires automatic classifiers that allows us to classify an unknown instance
into the available classes, for example, imagine manually classifying an animal into
one of the ~6 million animals species [Wiens, 2023, Stork, 2018], it would be a very
difficult and time-consuming task.

Supervised classification (SC) is the branch of machine learning in charge of
building classifiers from labeled instances, which are later used to predict the labels
(classes) of new/unknown instances. Nevertheless, scarce data is a common problem
of SC, this occurs when hand-labeling data is time-consuming, expensive or difficult
to label [de Oliveira and Berton, 2023, van Engelen and Hoos, 2019, Gomes et al.,
2022|. Consequently, the problem when a classifier is trained with few labeled data
is that an unreliable classifier could be obtained. Furthermore, the problem of scarce
data may be found in a scenario of multi-label classification, that is, when instances
can be associated to multiple labels instead of a single.

Even more, hierarchical classification can be seen as a special type of multi-
label classification, that is, an instance can be associated to multiple labels, but the
labels are arranged into a predefined structure, that contains the relations among
the labels, which is commonly a tree but in its general form is a directed acyclic
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graph (DAG). As shown by Bielza et al. [2011] and Sucar et al. [2014], in multi-label
classification the labels can be related, and by taking into account those relations
when training a classifier the performance of it can be improved. Therefore, in
hierarchical classification the relations among the label must be taken into account.

There are two main approaches that try to addressed the problem of scarce
data. The first is generation of artificial data, for example the SMOTE method
[Chawla et al., 2002]. The second consists on making use of unlabeled data along with
labeled data, this approach is known as semi-supervised learning (SSL) [Gui et al.,
2023, Yang et al., 2023, van Engelen and Hoos, 2019]. Hence, SSL has the advantage
that large amounts of unlabeled information can be obtained from different sources,
for instance the internet, such as video, text, images, etc.

Therefore, the aim of this research is to develop a Semi-Supervised Hierarchical
Classifier (SSHC) which can be trained with labeled and unlabeled data, in a sce-
nario of hierarchical classification where the hierarchy is any DAG and the instances
can be associated to multiple paths of labels with partial depth. Furthermore, the
SSHC has to make use of the relations among the labels (hierarchy), and it is ex-
pected that the SSHC can predict both single and multiple paths of labels.

First, semi-supervised hierarchical classifier based on local information (SSHC-
BLI) was proposed as a hierarchical semi-supervise classifier, but it can only handle
hierarchies of tree type, where the instances can be associated to a single path of
labels of full depth. It consist on pseudo-labeling the unlabeled instances using the
labels of their labeled neighbors while considers their similarity; later, a hierarchical
classifier is trained with the labeled and pseudo-labeled instances.

Later, Semi-supervised hierarchical multi-label classifier based on local infor-
mation (SSHMC-BLI) was built upon the principles of SSHC-BLI, which is able
to handle any hierarchy of directed acyclic graph type where the instances can
be associated to multiple paths of labels of partial depth. Furthermore, a couple
of extensions of SSHMC-BLI were proposed, the first follows a Bayesian approach
(SSHBMC) where the hierarchy is modeled as a Bayesian network, additionally, a
supervised application on morphological classification of galaxies using the Bayesian
network was carried out; and the second, which incorporates transfer learning among
neighboring nodes.

Results on several real world datasets show that making use of unlabeled data
along with labeled can help to improve the performance of a hierarchical classifier.

As well as, the Bayesian and transfer learning extensions can help to improve the
performance of the SSHMC-BLI classifer.
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1.1 Motivation

A common problem in supervised classification is lack of data. This may be because
hand-labeling data is time consuming and costly or just hard to label [de Oliveira
and Berton, 2023, van Engelen and Hoos, 2019]. Hence, training a classifier with
few labeled data could produce a unreliable classifier.

This is even more notorious in hierarchical classification, because the data of
a node is split among its children, hence, nodes in deeper levels of the hierarchy
only have a little fraction of data. So, an alternative way is to use semi-supervised
learning, that is, use unlabeled data along with the labeled to train a classifier.
Moreover, considering that upper nodes contain general information while lower
nodes contain specific information, transfer learning may be applied, that is, upper
nodes could share their learned information to the lower ones.

Furthermore, large amounts of information can be obtained from different
sources of information, such as the internet. Information such as text, images,
videos, etc., is commonly desired, nevertheless, most of that information is unlabeled.
Moreover, unlabeled information could be required in scenarios where instances can
have associated multiple labels, like hierarchical classification, which makes more
challenging make use of unlabeled data. So strategies that take advantage of that
information are required.

Hierarchical classification methods have been applied in multiple domains,
showing better performance than flat classification (algorithms that do not consider
the hierarchy in any way), some of them are functional genomics [Giunchiglia and
Lukasiewicz, 2020, Serrano-Pérez and Sucar, 2019], text classification [Wu and Saito,
2018, Kowsari et al., 2017] and image classification [Sali et al., 2020, Kowsari et al.,
2020, Murtaza et al., 2019]. So, we consider that a suitable Semi Supervised Hierar-
chical Classification algorithm, that consider the hierarchy, trained with labeled and
unlabeled data, can produce a hierarchical classifier with better performance than
using only the few labeled data.

1.2 Justification

This research will address the following problems related to hierarchical classification:

» Few labeled data (Hierarchical classification): Training classifiers with few
labeled data could produce an unreliable classifier, but making use of unlabeled
data together with a suitable semi-supervised hierarchical classifier could help
to improve the performance of the supervised classifier. Furthermore, it is well
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known in hierarchical classification that the number of instances is split from
each node to its children, which result in deep nodes with very few instances.

* Single and multiple path prediction: The unlabeled data is used in a scenario
where the hierarchy can be of DAG type and the instances can be associated
to multiple paths of labels which can be of partial depth.

1.3 Research Questions

* Will training a SSHC with unlabeled and few labeled data produce a classifier
with better performance than the hierarchical classifier trained only in the few
labeled data?

* Will a SSHC perform better when it uses transfer learning than when it does
not?

1.4 Hypothesis

Training a SSHC, that uses as base hierarchical classifier to HC', with unlabeled
and labeled data will produce a classifier with better performance than training the
hierarchical classifier HC' only on labeled data.

1.5 Problem Statement

When training a hierarchical classifier with few labeled data, it can result in an
unreliable classifier. Using unlabeled data could help to improve the performance of
the hierarchical classifier. In the literature (see section 2.2), several methods have
been proposed that make use of labeled and unlabeled data to perform learning
tasks. Nevertheless, most of them were proposed for flat classification and applying
them directly on hierarchical classification means that the information provided by
the hierarchy is ignored.

Hence, a suitable SSHC is required, that is, a SSHC that pseudo-labels unla-
beled instances and selects the best of them to retrain itself, in order to get a better
performance than the hierarchical classifier trained only in the labeled data.

Formally: let X = {x1,z9,...,x,} and U = {x,11, Tpyo, ..., Tnim } be instances
sets where x; € R?, that is, each instances z; is described by a vector of d attributes,
let |L| be the number of labels, let Y = {y1, s, ..., yn} be the set of labels for X,
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where y; € {0, 1}‘L‘, that is, each y; ; indicates if the i-th instance is associated to the
j-th label, in this way (X,Y") is a labeled set and U is an unlabeled set. Additionally,
let HS = (L, E) be the DAG that represents the hierarchy, where L is the set of
nodes and E is the set of edges that link the labels.

Therefore, from (X, Y, U, HS) is required a classifier to predict labels for new
instances: fsspe : R? — {0, 1}*! and whose performance is better than the super-
vised classifier trained only with labeled data (X,Y, HS): fuc : RY — {0, 1}5 that
is:

per formance(fsspc) > per formance(fuc) (1.1)

1.6 Objectives

The general objective of this research is to develop a semi-supervised hierarchical
classifier for hierarchical multi-label classification, that can be trained with labeled
and unlabeled data; whose performance, in tree hierarchies, is competitive with
state-of-the-art methods, and in DAG! hierarchies its performance is better than
the supervised classifier trained on labeled data.

Our specific objectives are:

* Propose a methodology for semi supervised hierarchical classifiers based on self
training approach.

* Propose a strategy for labeling unlabeled data considering the hierarchy.
* Propose a SSHC based on the proposed methodology.

* Incorporate transfer learning between neighboring nodes.

Extend the SSHC to Multiple Paths Prediction.

1.7 Scope and Limitations

In hierarchical classification there are different hierarchical classification problems
(see section 2.1.1), however, the problems to cover in this research are the following:

* Problems with hierarchy of tree type, where instances are associated to a single
path of labels, and the paths always reach a leaf node (full depth).

"We could not find any previous work on semi-supervised hierarchical classification for DAG hierar-
chies.
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* Problems with hierarchy of DAG type, where instances are associated to mul-
tiple paths of labels, and the paths can finish in internal nodes (partial depth).

One notable limitation of this study is that the proposed semi-supervised
methodology was not applied to image, video, and audio datasets. This restriction
arises due to the inherent differences in data structure and processing requirements
between these types of data and the datasets used in this work. Consequently, the
findings and conclusions drawn from this study may not be directly transferable to
multimedia data, and further research is needed to adapt and validate the approach
for such datasets.

1.8 Contributions

The proposed semi-supervised hierarchical classifier can handle hierarchies of DAG
type, where the instances can be associated to multiple paths of labels which can
be of partial depth. Its main idea is to pseudo-label the unlabeled data by taking
advantage of the smoothness assumption, which are later used to train a hierarchical
multi-label classifier. It builds pseudo-labels using the labels of the nearest labeled
neighbors to each unlabeled instance, then, the function similarity of an instance
with a set of instances (SISI) is used to determine if the unlabeled instance is similar
to its labeled neighbors, if they are similar, the unlabeled instance is pseudo-labeled,
else it stays unlabeled. Experiments on several datasets where the hierarchy of
tree type show that the proposed method (SSHC-BLI) is competitive with related
methods, while in experiments on datasets where the hierarchy is of DAG type, the
proposed method (SSHMC-BLI) showed outstanding performance when compared
with its baseline, a supervised hierarchical classifier trained only on labeled instances.

The contributions of this research are next:

e The similarity function SISI to measure the similiarity of an instance with a
set of instances. This function takes into account the distances among the set
of instances, and the distances of an instances to the set of instances.

* The semi-supervised multi-label hierarchical classifier, SSHMC-BLI, for hier-
archical problems where the hierarchy is of DAG type and the instances can be
associated to a multiple paths of labels of partial depth. SSHMC-BLI builds
pseudo-labels for each unlabeled instances using the labels of its neighbors,
but if the unlabeled instance is not similar to its labeled neighbors, then it will
stay unlabeled. Several experiments in real world datasets show that using
unlabeled data along labeled data can help to improve the performance of a
supervised classifier trained only on labeled data.
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* The semi-supervised multi-label hierarchical classifier, SSHBMC, that models
the hierarchy as a Bayesian network. In order to avoid truncating the proba-
bilities of the nodes to obtain a prediction that fulfills the hierarchical proba-
bility constraint, as SSHMC-BLI does, SSHBMC uses a Bayesian network that
models the data distribution and uses it as post-processing to obtain consistent
predictions. Experiments in several real world datasets show that the inclusion
of the Bayesian network can improve the performance of the semi-supervised
hierarchical classifier.

* The supervised hierarchical classifier, BCNN, for hierarchical supervised clas-
sification of images. This method combines a CNN with a Bayesian network
that models the hierarchy. This classifier was applied to morphological classi-
fication of galaxies, showing that the use of the Bayesian network can improve
the performance of the CNN without the Bayesian network.

* The algorithm hierarchical specialization to transfer learning from parent to
child in hierarchies of DAG type. This method help us to carry out transfer
learning from parent to child in hierarchies of DAG type. Several experiments
in real world datasets shows that transfer learning can improve the performance
of a semi-supervised hierarchical classifier.

1.9 Publications

The following publications were derived from this PhD research.

JCR Journal:

* J. Serrano-Pérez and L. E. Sucar. Semi-supervised hierarchical multi-label
classifier based on local information. International Journal of Approximate
Reasoning, 2025, doi: 10.1016/j.ijar.2025.109411.

* J. Serrano-Pérez and L. E. Sucar. A Semi-Supervised Hierarchical Classifier

Based on Local Information. Pattern Analysis and Applications, September
2024, doi: 10.1007/s10044-024-01345-1.

* J. Serrano-Pérez, R. D. Hernandez, and L. E. Sucar. Bayesian and convo-
lutional networks for hierarchical morphological classification of galaxies. Ex-
perimental Astronomy, August 2024. doi: 10.1007/s10686-024-09950-y.

Conference Proceedings:


https://doi.org/10.1016/j.ijar.2025.109411
https://doi.org/10.1007/s10044-024-01345-1
https://doi.org/10.1007/s10686-024-09950-y
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* J. Serrano-Pérez and L. E. Sucar. Semi-supervised hierarchical Bayesian
classifier. In Advances in Artificial Intelligence — IBERAMIA 2024. doi:
10.1007/978-3-031-80366-6_23.

» J. Serrano-Pérez and L. E. Sucar. Semi-supervised hierarchical classification
based on local information. In Advances in Artificial Intelligence - IBERAMIA
2022, 2022. doi: 10.1007/978-3-031-22419-5_22.

1.10 'Thesis Organization

The rest of the document is organized as follows. Chapter 2 summarizes the funda-
mentals of hierarchical classification, semisupervised learning and transfer learning.
Chapter 3 presents the related work. Chapter 4 presents the datasets used for the
experiments with hierarchies of tree and DAG type. Chapter 5 presents the proposed
method for datasets with hierarchies of tree type. Chapter 6 presents the proposed
method for datasets with hierarchies of DAG type. Chapter 7 presents an extension
of the proposed method with Bayesian networks. Chapter 8 presents an extension
of the proposed method with transfer learning. Finally, in Chapter 9, conclusions
and some ideas for future work are given. A simple roadmap of the content of the
thesis is shown in 1.1.


https://doi.org/10.1007/978-3-031-80366-6_23
https://doi.org/10.1007/978-3-031-80366-6_23
https://doi.org/10.1007/978-3-031-22419-5_22
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Chapter 2

Fundamentals

This chapter presents the fundamentals required for this research. Hierarchical clas-
sification, semi-supervised learning and transfer learning are briefly introduced in
sections 2.1, 2.2 and 2.4, respectively.

2.1 Hierarchical Classification

In machine learining, hierarchical classification can be seen as a special type of
multilabel classification, where the labels are arranged in a predefined structure.
The structure can be a tree or in its general form a directed acyclic graph (DAG).

Formally, we define hierarchical classification as a tuple HC' = < HS, X, Y >,
where:

e HS = (L, E) is the hierarchical structure, a directed acyclic graph that repre-
sents the hierarchy, where L is the set of nodes and FE is the set of edges that
link the nodes.

e (X,Y) is the labeled set. X = {x1,z9,...,x,} contains n instances, where
x; € RY, that is, each instance z; is described by a vector of d attributes. Let
Y = {y1, 2, ..., yn} be the labels for X, where y; € {0, 1}/£l] that is, each y, ;
indicates whether the i-th instance is associated to the j-th label, while y;
satisfies the hierarchical constraint.

HC' is composed by two main elements, a hierarchy and a labeled set.

Hence, the problem of hierarchical classification consists in assigning to a par-
ticular object described by d attributes, a subset of labels that comply the hierar-

10
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chical constraint:
fre : RY— {0, 1} (2.1)

In hierarchical classification the hierarchical constraint states that if an instance
x is associated to the label [ € L then x has to be associated to the ancestors of [,
Anc(l), given by the HS:

Veel—uxezVze Anc(l) (2.2)

Therefore, a wvalid or consistent path is a subset of the labels that complies the
hierarchical constraint.

2.1.1 Hierarchical Classification Problems

In hierarchical classification there are different problems, thus, it is important to
know the hierarchical classification problem, in order to choose a suitable method to
train and predict. Silla and Freitas [2011] describe the different hierarchical problems
as a 3-tuple < T, ¥, ® > where:

* T: specifies the type of hierarchical structure in which the labels are arranged,
S0, it can take one of two values, T if it is a tree or DAG if it is a Direct Acyclic
Graph.

» U: specifies whether an instance can be associated either one or multiple paths.
Thus the values that it can take are: Single Path of Labels (SPL) and Multiple
Paths of Labels (MPL).

* ®: describes the depth of the paths of the instances, two values are permitted:
Full Depth (FD) if the path (or paths) of all instances reach a leaf node, and
Partial Depth (PD) if at least one path of an instance does not reach a leaf
node.

This implies that exist eight different hierarchical classification problems. Fig.
2.1 depicts examples of hierarchical problems when the hierarchy is a tree, while
Fig. 2.2 depicts examples of hierarchical problems when the hierarchy is a DAG
[Serrano-Pérez, 2019].

2.1.2 Hierarchical Classification Approaches

Some classical approaches for hierarchical classification are described in this section.
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) <T, SPL, PD> 6) <T, SPL, FD>
) <T, MPL, PD> ) <T, MPL, FD>

Figure 2.1: Examples of the four problems with hierarchy of tree type. The nodes shaded
in green indicate the labels to which some instance is associated, for example, an instance
x showed in the problem 3) is associated to the subset {y1, y2, ¥s } -

2.1.2.1 Flat classification

Flat classification for hierarchical classification is perhaps the simplest method, be-
cause this method ignores the hierarchy and focus its training and predictions over
the leaf nodes. Figure 2.3 shows examples of the nodes used to generate a multiclass
classifier in each hierarchy, hence any multiclass classifier or strategy can be ap-
plied. Nevertheless, this approach ignores the useful information that the hierarchy
provides.

2.1.2.2 Local Classifier per Parent Node Approach

This approach, Local Classifiers per Parent Node (LCPN), consist on training for
each non-leaf node a multiclass classifier to predict its children nodes. An example
of this approach is shown in Fig. 2.4, where the different multiclass problems are
inside boxes. In DAG hierarchies it is not natural to use LCPN, because nodes with
multiple parents obtain multiples predictions, one for each parent node, as can be
seen on node yg. However, strategies to combine multiple predictions can be used,
such as averaging the scores obtained by the different classifiers [Ramirez-Corona
et al., 2016].

In the prediction phase, the Top-Down (TD) procedure can be carried out to
obtain a consistent prediction, that is, the instance is evaluated in the multiclass
classifier of the root node, then the prediction advances toward the child node with
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) <DAG, SPL, PD> 6) <DAG, SPL, FD>
) <DAG, MPL, PD> 8) <DAG, MPL, FD>

Figure 2.2: Examples of the four problems with hierarchy of DAG type. The nodes shaded
in green indicate the labels to which some instance is associated, for example, the instance
x showed in the problem 6) is associated to the subset {y2, y3, ¥s } -

the highest score, and so on, until a leaf node is reached. Nevertheless, the TD
procedure has a very well known problem, called error-propagation, which occurs
when a prediction is wrong, this implies that all the next predictions will also be
wrong. Furthermore, the TD procedure is unable to correct wrong predictions.

2.1.2.3 Local Classifier per Node Approach

In local classifier per node (LCN) approach, a binary classifier is trained for each
node in the hierarchy, except for the root, an example is depicted in Fig. 2.5.
These classifiers are in charge of predicting whether an instance is associated to the
respective label or not. Several policies have been proposed to select the positive
and negative instances to train each local classifier [Eisner et al., 2005, Fagni and
Sebastiani, 2007, Feng et al., 2018], for instance:

* Less inclusive policy: for a node [, the positive instances are all the instances
associated to [, and the negative instances are the rest.

» Siblings policy: for each node [, the positive instances are all the instances
associated to [, while the negatives are those associated to the siblings of (.

» Fxclusive policy: for each node [ the positive instances are only those instances
which its most specific label is [, and the negatives are those instances which
its most specific label is some sibling of [.
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Figure 2.3: In flat classification the hierarchy is ignored. A multiclass classifier is trained
considering only the leaf nodes (shaded in gray) in both hierarchies.

Figure 2.4: LCPN approach in hierarchies of tree (left) and DAG (right) type. Each box
contains the nodes/labels for the multiclass problem of the node that all they are children.
(Best seen in color.)

* Balanced bottom-up: for each node [, the positive instances are all the instances
associated to [, while the negatives are at most equal to the amount of positives,
taking them first from its siblings, then from uncles and so on.

Making use of these policies is not mandatory, that is, variants of them and new
ones are allowed.

In order to obtain a consistent path, the procedure TD is also compatible with
this approach, that is, the prediction starts in the root node advances toward the
child node with the highest score, and so on until a leaf node is reached.
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Figure 2.5: LCN approach. For each node (except the root) a binary classifier is trained.

2.1.2.4 Local classifier per level approach

Local classifier per level approach consists in training a multiclass classifier for each
level of the hierarchy. This approach can be directly applied to hierarchies of tree
type, since the level of each node can be calculated by adding the number of edges
from the node to the root. However, determining the level of a node in a hierarchy
of DAG type is not straightforward, because there are multiple paths to reach some
nodes (nodes with multiple parents). In this work, the level of a node with multiple
parents is the level of parent node with the greatest level plus one.

On the other hand, this approach is much less used than the previous ap-
proaches.

2.1.2.5 Hierarchical classification methods

Several methods have been proposed for the different hierarchical classification prob-
lems, some approaches that have been researched are: improve standard methods,
modify the hierarchy, modeling probabilistically the hierarchy.

CLUS-HMC was proposed by Vens et al. [2008a], which creates a decision tree
where each leaf contains the probability of each node in the hierarchy. Feature
selection in a global and local way have been studied by Naik and Rangwala [2016],
however, a TD procedure is still used in the prediction phase.

Some works addressed the problem of error propagation of the TD procedure,
by proposing different ways of evaluation the different paths, such as P, descend-
ing order of probabilities (DOP), multiplication of probabilities (MP) and sum of
probabilities (SP) [Kosmopoulos et al., 2015, Hernandez et al., 2013]

Other studies addressed the problem of hierarchical classification by consider-
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ing that the hierarchies, usually designed by people, are not ideal /perfect; hence they
modified the hierarchy by adding, rewiring, or deleting nodes [Naik and Rangwala,
2016, Perera et al., 2018]. Nakano et al. [2017] proposed a different way of modifying
the hierarchy, which consists on replicating the internal nodes and adding them as
subclasses of themselves. Two variants were proposed, non-leaf local classifier per
parent node (nLLCPN) and local classifier per parent node and branch (LCPNB),
both train LCPN for the modified hierarchy, however the first makes use of the
TD procedure in the prediction phase, while the second use the measure SP to score
paths. Later, Panta et al. [2019] analyzed the performances of LCPNB and nLLCPN
using several base classifiers, where support vector machines (SVM) outperformed
the rest of them.

Some works consider that the classifiers, in the local approaches of hierarchical
classification, must not be independent and should share information among them.
Hence, the local classifiers are related by using the strategy of Bayesian chained
classifiers, Ramirez-Corona et al. [2016] applies it to LCPN, and Serrano-Pérez and
Sucar [2019] to LCN.

Other works consider a Bayesian approach, so they focus on modeling the
hierarchy as a Bayesian network which can be fed by independent classifiers or
related classifiers [Serrano-Pérez and Sucar, 2019, Barutguoglu et al., 2008, Decoro
et al., 2007].

Recent applications of hierarchical classification include: the problem of dia-
betic retinopathy [Mukti et al., 2018], classification of sparkling wine [Yamashita
et al., 2019], fashion image classification [Seo and shik Shin, 2019], identification
of COVID-19 [Pereira et al., 2020], detection of arthropod species [Tresson et al.,
2021], classification of insects [Bjerge et al., 2023], and classification of news articles
[Petukhova and Fachada, 2023].

2.2 Semi Supervised Learning

Semi-Supervised Learning (SSL) can be seen as the branch of machine learning that
aims to combine supervised and unsupervised learning [Chapelle et al., 2010, Zhu,
2008]. That is, SSL uses labeled and unlabeled data to perform learning tasks.

Semi-supervised classification methods are appropriated to scenarios where la-
beled data is scarce, and a reliable classifier could be hard to obtain. Scarce labeled
data occurs when it is expensive or difficult to obtain, like computer-aided diagnosis,
drug discovery and part-of-speech tagging [Gui et al., 2023, Yang et al., 2023, Gomes
et al., 2022, van Engelen and Hoos, 2019].
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2.2.1 Assumptions of Semi-Supervised Learning

In SSL there are some recognized assumptions, which are the foundation of most
semi-supervised learning algorithms, which depend on one or more of them being
satisfied (explicitly or implicitly) [Chapelle et al., 2010]. They are briefly described
below:

* Smoothness assumption: It states that, for two input points z;,z; € X that
are close by the input space, the corresponding labels y;, y; should be the same.
This assumption can be applied transitively to unlabeled data. For example,
let zo € X be a labeled point and let 1,29 € U be unlabeled points, if x; is
close to both xy and x5, but z( is not close to zs, x5 can be labeled with the
same label than x(, that is, the label was transitively propagated through x;.

* Low-density assumption: It states that the decision boundary of a classifier
should preferably pass through low-density regions in the input space. In other
words, the decision boundary should not pass through high-density areas.

* Manifold assumption: It states that the input space is composed of multiple
lower dimension manifolds on which all data points lie. Data points on the
same manifold have the same label.

An example of the smoothness and low-density assumption is shown in Fig. 2.6 a),
another example related to manifold assumption is shown in Fig. 2.6 b).

2.2.2 Taxonomy of Semi-Supervised Learning Methods

van Engelen and Hoos [2019] proposed a taxonomy to group the SSL methods,
the taxonomy is shown in Fig. 2.7. First, the SSL methods are divided into two
main groups, inductive and transductive, the former produces a classification model
(which can be used to label new instances), while the second is only focused with
labeling the unlabeled data points.

The inductive methods are the most interesting for our research, because a
classification model for labeling new data, different from the training set (labeled
and unlabeled data), is required. Inductive methods can be grouped based on the
way they incorporate the unlabeled data:

* Wrapper methods: They are the most well known algorithms for SSL. The
procedure commonly consists of two alternating steps, training: one or more
classifiers are trained with labeled and pseudo-labeled data (if available), and
pseudo-labeling: the resulting classifiers are used to infer labels for previously
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.Labelled data associated to class A === Decision boundary of a supervised classifier
@ Unlabelled data that is more related to class A =unn Optimal decision boundary

. Labelled data associated to class B

@ Unlabelled data that is more related to class B

Figure 2.6: Semi-supervised learning assumptions [van Engelen and Hoos, 2019]. a)
Smoothness assumption: close points by the input space must have the same label. a)
Low-density assumption: the decision boundary must pass through low-density areas as
the dotted line does. b) Manifold assumption: each circle represents a manifold, so points
lying in the same manifold must have the same label. (Best seen in color.)

unlabeled data and those with the most confident predictions are pseudo-
labeled and used in the next iteration. Wrapper methods can be divided into
the following categories:

— Self-training: They consist of a single classifier iteratively trained with
labeled and pseudo-labeled data.

— Co-training: It is an extension of self-training to multiple supervised
classifiers, that is, two or more classifiers are trained on labeled data, and
each one adds its most confident predictions to the labeled data of the
other classifiers in each iteration. However, in co-training is important
that the base classifiers are not strongly correlated in their predictions,
in order to provide each other with useful information, this condition is
called the diversity criterion [Wang and Zhou, 2010].

— Boosting: They are based on ensembles of multiple classifiers, following
the boosting approach. Hence, pseudo-labeled data is added after each
learinig step.

* Unsupervised preprocessing: They extract useful features from unlabeled
data, pre-cluster the data or determine the initial parameters of a supervised
method in a unsupervised manner. That is, the supervised classifier is only
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Figure 2.7: A taxonomy that groups the different approaches of semi-supervised learning
[van Engelen and Hoos, 2019].

trained with the labeled data.

* Intrinsically semi-supervised methods: They directly optimize an objective
function with elements for labeled and unlabeled instances. Intrinsically semi-
supervised methods can be divided into the following categories:

— Mazimum-margin methods: This approach is focused in the low-density
assumption. That is, these classifiers attempt to maximize the distance
between the given data and the decision boundary.

— Perturbation based methods: A predictive model should be robust to local
perturbation in its input, because of the smoothness assumption. That is,
if a data point is perturbed with a small amount of noise, the prediction
for the noise and clean data points should be the same.

— Manifolds: This approach is based on the manifold assumption. Two
different techniques are presented, manifold reqularization techniques that
define a graph over data points and penalize differences in predictions
for instances with small geodesic distance, and manifold approzimation
techniques that explicity estimate the manifolds where the data lie while
optimize an objective function.

— Generative Models: The main goal of these methods is to model the
distribution that generated the data.

2.3 Semi-Supervised Hierarchical Classification

Formally, we define semi-supervised hierarchical classification as a tuple SSHC =

(HS,(X,Y),U), where:
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* HS = (L, F) is the DAG that represents the hierarchy, where L is the set of
nodes and E is the set of edges that link the nodes.

* (X,Y) is the labeled set. X = {xy,x9,...,2,} contains n instances, where
z; € R? that is, each instance z; is described by a vector of d attributes.
Y = {y1, s, ..., yn} contains the labels for X, where ; € {0, 1}/!, that is, each
y;; indicates whether the i-th instance is associated to the j-th label, while y;
satisfies the hierarchical constraint.

* U = {Zps1,Tpi2y -y Tnim is the unlabeled set, which contains m instances
described by the same d attributes as in X.

As it can be seen, semi-supervised hierarchical classification is composed by three
main elements, a hierarchy, a labeled set and a unlabeled set.

The problem of semi-supervised hierarchical classification consists in assigning
to a particular object described by d attributes, a subset of labels that comply with
the hierarchical constraint:

fesue : RY — {0, 1} (2.3)

However, in hierarchical classification where the instances are associated to multiple
paths of labels [Giunchiglia and Lukasiewicz, 2020, Cerri et al., 2016, Vens et al.,
2008b], the problem is commonly modified to assign to a particular instance the
probability of being associated to each node of the hierarchy:

fssue : R — [0, 1]1H (2.4)

Nevertheless, this prediction has to comply the hierarchical probability constraint,
which is defined next:

Definition 1 Hzierarchical probability constraint states that the probability for
an instance in the node | has to be equal or lower than the probabilities of all the
parent nodes of the node l; let f be a model with one output per node, then:

fi < f., Yz € Parents(l); Yl € L
Finally, the research reported here is born from the hypothesis that training
a semi-supervised hierarchical classifier, with labeled and unlabeled data in hier-

archical problems of (DAG, MPL, PD) type, will perform better than training a
hierarchical classifier only on labeled data.

per formance(fssuc) > per formance(fyc) (2.5)
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2.4 Transfer Learning

Transfer learning (TL) is commonly used in cases when labeled and unlabeled data
are difficult to collect. Hence, TL is focused on transferring the knowledge across
domains. Zhuang et al. [2021] formally define TL as follows:

Given some/an observation(s) corresponding to m® source domain(s) and task(s)
(i.e, {(Ds,,Ts,)|i = 1,....m*}), and some/an observation(s) about m* target do-
main(s) and task(s) (i.e., {(Dr,, Tr,)lj = 1,...,m"}), transfer learning utilizes the
knowledge implied in the source domain(s) to improve the performance of the learned
decision functions f1i = (j =1,....,mT) on the target domain(s).

Note this definition covers both situations, single-source transfer learning and
multi-source transfer learning.

When TL techniques are designed three issues should be considered [Aggarwal,
2014, Pan and Yang, 2010]: first, what to transfer?, that is, which part of the
knowledge can be transferred from source domain to target domain; second, how
to transfer?, once it is known which knowledge can be transferred, the algorithms
for transferring the knowledge need to be developed; and third, when to transfer?,
this last has to do with in which situations it is appropriate to use transfer learning.

It is worth to mention that in some situations where the source and target
domains are no related to each other, the TL may result unsuccessful. In other
words, the performance in the target domain could be worsened, this situation is
known as negative transfer.

Transfer learning using pre-trained models offers several advantages over train-
ing one from scratch, for instance, in the context of classification of images using
convolutional neural networks (CNN) [Li et al., 2022, Haridas and JyothiR, 2019,
Khan et al., 2020]: (i) pre-trained CNNs have already been trained on large data sets,
meaning they have learned feature-rich representations for a wide range of images;
(ii) less training data required, especially useful when few training data is available
for the new task; (iii) less computational resources, because training a network from
scratch can be computationally expensive and time-consuming, especially if powerful
hardware is not available.

2.5 [Evaluation Measures

In order to evaluate the performance of the proposed and related methods, evalu-
ation measures commonly used for hierarchical classification will be used. Several
evaluation measures have been proposed [Nakano et al., 2017, Silla and Freitas, 2011]
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which assess whether the predictions of the methods were either correct or partially
correct.

First of all, let NV be the number of instances in the test set, let Y be the real
subset of labels to which an instance is associated, let Y be the subset of predicted
labels and let |L| be the number of labels. The following evaluation measure are
used to asses the performance of the methods in hierarchical problems where the
hierarchy is of tree type:

» Exact Match (EM): It is the most strict measure, because, the prediction of an
instance has to be equal to real subset of labels. So, it returns the percentage
of instances classified correctly.

N
1
EM = ; l,_o (2.6)

 Hierarchical F-measure (hF): F-measure for hierarchical classification.

72*hP>x<hR

hEF = 2.7
hP + hR 2.7)
SN viny
hp="1 1 (28)
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hR = 2.9)
S Y|

Where hP is the hierarchical Precision, which calculates the ratio of correct
predictions over the number of predictions in the complete dataset, and hR is
hierarchical Recall, which calculates the ratio of correct predictions over the
number of real labels in the complete dataset.

» Matthews correlation coefficient (MCC)[Chicco and Jurman, 2020]: MCC has
the advantage that it is unaffected by the unbalanced datasets issue. It ranges
in the interval [—1,1], it reaches 1 in perfect classification and -1 in perfect
missclasification. (Refer to Chicco and Jurman [2020] for special cases).

1
MCC = T Z MCC; (2.10)

MCOC, — TP-TN —FP-FN @10
V(ITP+FP)-(TP+FN)-(TN+FP)- (TN + FN)
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On the other hand, when the outputs of the methods are the probabilities for
each node of the hierarchy, a common practice when the hierarchy is of DAG type
and the instances are associated to multiple paths [Sun et al., 2017, Cerri et al., 2016,
Robinson et al., 2015, Cerri et al., 2014, Bi and Kwok, 2011, Schietgat et al., 2010],
other evaluation measures are used. That is, it is not suitable to use evaluation
measures such as hF, hR and hR [Silla and Freitas, 2011, Nakano et al., 2017], since
they require binary values (associated, not associated) for each node. Even though,
a threshold could be applied to the output of the model to get binary values, it is not
straightforward to set the threshold, moreover, different thresholds could produce
different results.

In this case, the evaluation measure area under the average precision and recall
curve AU (PRC') also known as average precision (AP) [Zhu, 2004] is used to evaluate
the performance of the models:

AP = (R, — R,_1)P, (2.12)

n

where P, and R, are the precision (Eq. 2.13) and recall (Eq. 2.14) at the n-th
threshold, respectively.

L rp
P=—z 21 : (2.13)
Zi:l TF+ Zi:l FP;
Lrp
R = i lel |ZL| (2.14)
Zi:l TP+ Zi:l FN;

AP is an evaluation measure independent of a threshold to determine whether an
instance is associated to a node, which makes it ideal in this kind of scenarios.

2.6 Summary

This chapter presented the fundamentals for this research. First, an introduction to
hierarchical classification was given in section 2.1, where the different hierarchical
classification problems and the main hierarchical classification approaches were pre-
sented. Second, an introductions to semi-supervised learning was given in section
2.2, where the assumptions on which most SSLL methods are based on were shown,
also, a taxonomy of the SSL was presented. Third, the general formulation of trans-
fer learning was presented in section 2.4. Finally, the evaluation measures used in
this work were presented in section 2.5.
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Related Work

This chapter presents the related work divided into two sections, non-hierarchical
(section 3.1) and hierarchical (section 3.2) semi-supervised methods. Finally, a dis-
cussion and analysis about them is given in section 3.3, which includes a comparison
between related works and ours.

3.1 Non-Hierarchical Semi-Supervised Methods

The self-training approach is one of the most popular semi-supervised methods.
It was first proposed by Yarowsky [1995] for word sense disambiguation in text
documents. It has also been applied to semantic segmentation [Yang et al., 2022],
speech recognition [Xu et al., 2021], object detection [Yang et al., 2021}, speech
translation /recognition [Pino et al., 2020, Kahn et al., 2020], among others.

In co-training methods, we can find multi-view co-training methods [Liu et al.,
2024, Shi et al., 2020, Xu et al., 2013, Blum and Mitchell, 1998] where multiple
views (subsets of features) exist; single-view co-training methods [Du et al., 2011,
Jiao Wang et al., 2008] where there is only a view, so methods split the data into mul-
tiple views; and co-reqularization methods [Sindhwani and Rosenberg, 2008, Sind-
hwani et al., 2005] where the ensemble quality and the disagreement between base
learners are simultaneously optimized. In similar fashion, Feng et al. [2022] proposed
dynamic mutual training to address the noisy of pseudo instances by a re-weighted
loss function based on the inter model-disagreement. Xu et al. [2023] proposed to
use pseudo-negative labels, that are shared among submodels.

Several semi-supervised boosting methods have been proposed such as SSM-
Boost [Grandvalet et al., 2001, d'Alché-Buc et al., 2002], Adaptative Supervised En-
semble [Bennett et al., 2002] and SemiBoost [Mallapragada et al., 2009].

24
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There are some methods based on the low density assumption, which try to
extend support vector machines to the semi-supervised: S3VM [Bennett and Dem-
iriz, 1998, Ding et al., 2017] and S4VM [Li and Zhou, 2015]. Furthermore, SSL
methods based on artificial neural networks have been proposed, where they added
an additional term to its loss function to consider the unlabeled data: Han et al.
[2021] applied it to COVID-19 detection in CT images, while MSleepNet [Liu et al.,
2024] was proposed for sleep arousal and sleep stage detection.

There is a class of SSL methods known as graph-based semi-supervised learning
methods [Song et al., 2023, Chong et al., 2020], which represent each sample as a
node in an affinity graph, then the pseudo-labels for unlabeled instances can be
inferred based on the structure of the constructed graph. However, most of this kind
of methods are transductive [Kang et al., 2021, Wan et al., 2021, Feng et al., 2020].
Likewise, Li et al. [2023, 2019] proposed semi-supervised graph classification via
cautious iteration (SEAL-CI), which is an iterative method that builds or updates
two classifiers: one at graph level instance, where the instances are represented by
graphs; and other at the hierarchical level, where the instances of the previous level
are used as nodes, which form an undirected graph.

3.2 Hierarchical Semi-Supervised Methods

The first method for semi-supervised hierarchical classification was proposed by Metz
and Freitas [2009]. It is a Top-Down (Tree, SPP, NMLNP) with LCN, where the
positive instances of a label are those associated to the label or its descendants, and
the negative instances are those associated to its siblings or its siblings descendants.
Each local classifier is self-trained following one of three strategies: self-train A: all
the instances in the labeled set are used, self-train B: the instances classified as
positive in the parent class are used, and self-train C': only the instances classified
as positive instances during the self-train step on the parent node are used as unla-
beled set in the children nodes. Also, they state there is not statistically significant
difference among their proposed strategies and a standard top-down classifier.

Santos and Canuto [2014a] proposed Hierarchical Multi-label classification us-
ing Semi-Supervised Label Powerset (HMC-SSLP). First, a HMC-Label Powerset
(HMC-LP) [Cerri et al., 2009] is trained with labeled data, then it is used to label a
(predefined) proportion of the unlabeled data which are added to the training set,
this process is iterated until all the unlabeled data are labeled. HMC-LP [Cerri
et al., 2009] combines all the classes of an example to generate a new hierarchy,
nevertheless, examples of how to combine paths of different lengths are not given.
On the other hand, the positive instances for each new class could be too few, which
can result on unreliable classifiers. So, using the HMC-SSLP for semi-supervised
hierarchical classification does not seem a good option in any way.
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Furthermore, Santos and Canuto [2014a] proposed Hierarchical Multi-label
using Semi-Supervised Random k-Labelsets (HMC-SSRAKEL) which is the semi-
supervised version of HMC-RAKEL [Santos and Canuto, 2014a]. This method trains
LCPN, that is, for each parent node a RAKEL (multi-label) classifier [Tsoumakas
et al., 2011] is trained. Then, a Top-Down procedure is use to pseudo-label a (prede-
fined) proportion of unlabeled data, which are added to the training set, this process
is iterated until all the unlabeled data are labeled.

Hierarchical Multi-label Classification using Semi-Supervised Binary Relevance
(HMC-SSBR) was proposed by Santos and Canuto [2014b], which is the semi-
supervised version of HMC-BR, [Cerri et al., 2009] (a Top-Down method with LCN,
siblings policy). However, Santos and Canuto indicate that BR is replaced by SSBR
[Santos and Canuto, 2012], a semi-supervised method for multi-label classification,
that is, each node of the HMC-BR is self-trained and the prediction for each unla-
beled data follows the Top-Down procedure.

The Top-Down procedure for labeling instances in HMC-SSRAKEL and HMC-
SSBR can predict multiple labels in the same level, that is, it advances for different
paths if the instance is classified as positive in the following label /node. On the other
hand, for HMC-SSRAKEL, HMC-SSBR and HCM-SSLP methods a proportion of
unlabeled data to be labeled in each iteration is predefined, the proportions used
are 17%, 33% and 50%, which results in 6, 3 and 2 iterations, respectively. That
is, when labels are predicted for unlabeled data, instead of choosing those with the
most confident predictions, all of them are pseudo-labeled and added to the labeled
data; so, these methods lack a way to select the instances with the most confident
predictions.

Xiao et al. [2019] proposed Path Cost-Sentive Algorithm with Expectation-
Maximization (PCEM) which consists in the following steps. First, the base classifier
Path Cost-Sentive Naive Bayes Classifier (PCNB) [Xiao et al., 2019] is trained with
the labeled data, then it pseudo-labels all the unlabeled instances and trains the
PCNB with labeled and pseudo-labeled instances, this is iterated until the parame-
ters of the PCNB converge. PCNB was proposed for hierarchical text classification,
where the document representation is a vector called bag-of-word, that is, the num-
ber of attributes is equal to the number of words in the corpus, and each cell contains
the frequency of the word in the document. A limitation of this method is that it
is not straightforward to apply it in non-text domains, because PCNB is designed
using the bag-of-word representation.

Levati¢ et al. [2024] proposed Semi-Supervised Predictive Clustering Trees
(SSL-PCT) method, which is based on predictive clustering trees (PCT) [Breiman
et al., 1984, Blockeel et al., 1998]. PCT’s consist of a hierarchically organized set
of clusters, where the root cluster is recursively divided into smaller cluster as one
goes deeper to the leaves. They reported that the results of SSL-PCT were not so
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successful on the functional genomics datasets, because the supervised hierarchical
classifier was rarely outperformed. Moreover, this work carried out a transductive
study, because data used for training was also used to evaluate the performance of
the methods, i.e. the unlabeled data.

3.3 Analysis

Table 3.1 shows a comparison among the related methods and the proposed methods
in this work. Non-hierarchical methods were summarized in the first row, since they
were not proposed for hierarchical classification, therefore, they can not handle the
hierarchy and they do not guarantee to comply the hierarchical constraint.

The proposed methods are different by the type of paths that they predict, the
first predicts a single path of labels while the second is able to predict multiple path
of labels. However, we highlight the following points:

* Hierarchical Structure: The related works were proposed for problems with hi-
erarchy Tree type, which is a limitation of the methods. The proposed method
will overcome this limitation and be able to work in any hierarchy (DAG type).

* Number and depth of paths: The related works are proposed for a predefined
number of paths and depth. In this way, the proposed methods are able to
predict either a single (full depth) or multiple (partial depth) paths of labels,
SSHC-BLI and SSHMC-BLI respectively.

* Labeling strategy: a labeling strategy to pseudo-label the unlabeled data with
the most confident predictions is required. Moreover, the labeling strategy has
to consider the information provided by the hierarchy. Note that some related
works lack of a way to pseudo-label only the data with the most confident
prediction.

* Transfer learning: None of the related methods carries out transfer learning,
while a variant of the proposed method is able to transfer learning from parent
to child in hierarchies of DAG type.

As it can be seen, we address the hierarchical problem with hierarchy of DAG
type and instances associated to multiple path of labels with partial depth following
an inductive SSL approach, which has not been addressed before. Furthermore,
we explore the case of transfer learning among local nodes in this semi-supervised
hierarchical case.



28

Chapter 3. Related Work

Table 3.1: Comparative list of the related and proposed method. Y: hierarchical struc-
ture, U: number of paths, ®: depth of paths, LS: labeling strategy to pseudo-label only

instances with the most confident predictions, TL: transfer learning, N/A: not applicable.
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Chapter 4

Datasets

Several datasets were used to asses the performance of the proposed method and
its variants. The datasets are split into two main groups: those with hierarchy
of tree type and those with hierarchy of DAG type, sections 4.1 and 4.2, respec-
tively. Description and results of the proposed methods are presented later in the
corresponding chapters.

4.1 Trees

Artificial and real-world datasets from different fields were collected, all of them have
associated a hierarchy of tree type, and the instances are associated to a single path

of labels that always reach a leaf node, that is, they are hierarchical problems of
(Tree, SPL, FD) type.

Real world datasets from the field of functional genomics were collected, the
datasets are a subset of the Functional Catalogue' (FunCat) [Vens et al., 2008b],
these datasets are divided into training, validation and test sets. The preprocessing
applied to the datasets consisted on removing nodes with less than 40 instances in
the training set, then the same nodes were also removed from validation and test sets,
as preprocessing 2 (Tree, SPL, FD) in Serrano-Pérez and Sucar [2019]. Description
of FunCat datasets is shown in Table 4.1.

The 20 newsgroup® dataset is a collection of approximately 20,000 documents,
which is commonly used for text classification tasks. The hierarchy of this dataset is
depicted in Fig. 4.1, which has 20 leaf nodes and 7 internal nodes, where related sub-
jects are grouped together. Since the data is provided as raw text, the preprocessing

"https://dtai.cs.kuleuven.be/clus/hmcdatasets/
’http://qwone.com/~jason/20Newsgroups/
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Table 4.1: Description of the FunCat and 20 newsgroup datasets. Attr.. number of at-
tributes; Nodes: number of nodes in the hierarchy; MD: Maximum Depth.

Dataset Training Validation Test Attr. Nodes MD
cellcycle FUN 1116 541 877 717 27 3
derisi_FUN 1141 556 905 63 26 3
eisen_ FUN 806 387 631 79 22 3
gaschl FUN 1120 540 881 173 27 3
gasch2 FUN 1121 542 887 52 27 3
20 newsgroup 9051 2263 7532 50 27 3

in Appendix A was applied to the dataset. The last row of Table 4.1 describes the
20 newsgroup dataset.

0s.ms-windows.

misc

religion

Soc.religion:

Figure 4.1: Hierarchy of the 20 newsgroup dataset.

Furthermore, the arficial datasets of Serrano-Pérez and Sucar [2021] * where
the hierarchy is of tree type are considered. The artificial datasets are grouped by
difficulty: easy, hard and very hard, that makes them useful to extend the analysis of
the methods. In order to be consistent with previous datasets, the training set was
divided into training and validation sets, with proportion 80% and 20%, respectively.
The artificial datasets are described in Table 4.2.

Finally, in order to observe the behavior of the proposed method with different
amounts of labeled and unlabeled data, the training sets were split into labeled and
unlabeled sets:

* Labeled: {10, 30, 50, 70, 90}%

*https://github.com/jona2510/ADforHC
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Table 4.2: Description of artificial datasets. Attr.: number of attributes; Nodes: number of
nodes in the hierarchy; MD: Maximum Depth.

Dataset Training Validation Test Attr. Nodes MD
EA 01 FD b 192 48 60 4 9 2
EA_01_FD_ub 832 208 260 4 9 2
EA_02_FD_b 192 48 60 10 9 2
EA _02_FD_ub 832 208 260 10 9 2
HA 01 FD_b 448 112 140 3 23 6
HA 01 _FD_ub 1056 264 330 3 23 6
HA_02_FD_b 448 112 140 13 23 6
HA_02_FD_ub 1280 320 400 13 23 6
HA 03 FD_b 448 112 140 9 23 6
HA _03_FD_ub 1280 320 400 9 23 6
HA 09 FD_b 2816 704 1760 2 140 10
HA_09_FD_ub 8576 2144 5360 2 140 10
HA_10_FD_b 2624 656 1640 7 161 20
HA_10_FD_ub 7168 1792 4480 7 161 20
VH_01 _FD_b 288 72 90 3 13 4
VH_01_FD_ub 528 132 165 3 13 4
VH_02 FD_b 224 56 70 10 10 3
VH_02_FD_ub 880 220 275 10 10 3
VH_03_FD_b 672 168 210 16 28 2
VH_03_FD_ub 1567 389 489 16 28 2
VH_08_FD_b 2016 504 1260 5 112 10
VH_08_FD_ub 5632 1408 3520 5 112 10

 Unlabeled: {90, 70, 50, 30, 10}%, complement with respect to labeled.

This split is shown properly in Fig. 4.2. The division of training set was randomly
carried out 3 times, so results are the average of 3 executions, while the validation
set was used for tuning the hyper-parameters of each method.

4.2 DAGs

Real world datasets from the field of functional genomics were collected, these
datasets belong to the Gene Ontology* (GO) collection [Vens et al., 2008b]. The
labels of each datasets are arranged in a hierarchy of DAG type, that is, some nodes

“https://dtai.cs.kuleuven.be/clus/hmcdatasets/
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109% labeled - 909% unlabeled

309% labeled - 70% unlabeled

50% labeled - 509% unlabeled

70% labeled - 309% unlabeled

90% labeled - 109% unlabeled

Figure 4.2: Division of the training set into labeled (green) and unlabeled (blue) sets.
(Best seen in color)

have multiple parents. Furthermore, the instances can be associated to multiple
paths of labels which can finish in internal nodes.

The datasets were preprocessed in similar fashion than Ramirez-Corona et al.
[2016], that is, nodes with less than 50 instances associated in the training set were
removed, then, the same nodes were removed from validation and test sets; however,
in this case, all the paths to which instances are associated are kept. Description of
GO datasets is shown in Table 4.3; the datasets are described as (DAG, MPL, PD).

Finally, in the same way than the datasets with hierarchy of tree type, the train-
ing sets were split into labeled and unlabeled sets in the proportions {10, ...,90}%.
The split of training set was carried out 3 times, so results are averages.

4.3 Summary

In this chapter the datasets that are used to evaluate the performance of the different
methods were described. The datasets are divided into two groups: those with
hierarchy of tree type, where the instances are associated to a single path of labels
of full depth, section 4.1; and those with hierarchy of DAG type, where the instances
can be associated to multiple paths of labels of partial depth, section 4.2.
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Table 4.3: Description of Gene Ontology datasets. Attr. shows the number of attributes;
Nodes shows the number of nodes/labels in the hierarchy; and MD correspond to the
maximum depth of the hierarchy.

Dataset Training Validation Test Attr. Nodes MD
cellcycle GO 1625 848 1278 77 164 9
church_GO 1627 844 1278 31 164 9
derisi_GO 1605 842 1272 63 161 9
eisen_GO 1055 528 835 79 122 9
expr_-GO 1636 849 1288 565 165 9
gaschl_GO 1631 846 1281 173 165 9
gasch2_GO 1636 849 1288 52 165 9
hom_GO 1661 867 1309 47034 166 9
pheno_GO 653 352 581 276 68 7
seq-GO 1692 876 1332 530 171 9
spo_GO 1597 837 1263 89 162 9
struc_GO 1659 859 1306 19628 169 9




Chapter 5

Semi-Supervised Hierarchical Classifier
Based on Local Information

Semi-Supervised Hierarchical classifier Based on Local Information' (SSHC-BLI)
[Serrano-Pérez and Sucar, 2024, Serrano-Pérez and Sucar, 2022] is the proposed
method for semi-supervised hierarchical classification, which is based on the smooth-
ness assumption, that is, neighboring instances must have the same or similar paths
of labels. SSHC-BLI starts building the pseudo-label for each unlabeled instance
using the labels of its neighbors, but if the unlabeled instance is not similar to its la-
beled neighbors, it will stay unlabeled; this process iterates until all the pseudo-labels
do not change.

In semi-supervised hierarchical classification, pseudo-labeling the unlabeled in-
stances using a flat approach is not the best way, because it will leave instances
unlabeled that may be partially pseudo-labeled. For example, Fig. 5.1a depicts a
hierarchy formed by nine nodes and Fig. 5.1b shows an unlabeled instance and three
labeled instances, then, Fig. 5.1c calculates the probabilities for each label in a flat
approach, since the hierarchy is ignored, the three labels got the same score which
is not useful to build a pseudo-label, so the unlabeled point will stay unlabeled. In
a hierarchical approach, the instance could be pseudo-labeled with a partial path,
built from the labels of its neighbors, that fulfills the hierarchical constraint as shown
in Fig 5.1d, where the number of times a label is seen is averaged for each label, in
this way, the instance would be pseudo-labeled with the nodes 0 and 3, because they
got, the highest score.

The steps of SSHC-BLI are shown in Algorithm 1. It is an iterative method
where the unlabeled instances are pseudo-labeled using the labels of their neighbors
(lines 6 - 7), subsection 5.1 details how pseudo-labels are built. The similarity of

!Open source available at: https://github.com/jona2510/SSHC-BLI
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) A hierarchy b) Unlabeled and Labeled points
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c) Flat approach d) Hierarchical approach
(SSHC-BLI)
L5:10f 3~0.333... ,Q p -
L8 : 1 of 3~ 0.333... o+t
L7:1of 3 ~0.333... ©
Maximum entropy ppsl = [0.66, 0, 0.33, 0.66, 0, 0.33, 0, 0.33, 0.33]

Figure 5.1: Example of pseudo-labeling an instance based on the smoothness assumption.
(a) A hierarchy composed of nine labels. (b) an unlabeled point and 3 labeled points
(colored with the most specific label with respect to the hierarchy in (a)) are shown. (c)
In a flat approach, the unlabeled instance will stay unlabeled because the three instances
are different since the hierarchy is ignored. (d) On the other hand, in the hierarchical
approach, ppsl represents the probability for each label of the hierarchy, so, the instance
could be pseudo-labeled with the nodes {0,3} that got the highest probability. (Best seen
in color.

each unlabeled instance with its neighbors (line 9) is taken into account: if they are
similar, then, the unlabeled instance is pseudo-labeled, otherwise it is not; section
5.2 details how the similarity is estimated. The loop finishes (line 11) either when
the pseudo-labels of the unlabeled data do not change from an iteration to other,
or when the maximum number of iterations is reached. Finally, with labeled and
pseudo-labeled instances, a hierarchical classifier can be trained (line 17).

Three variants of the SSHC-BLI method were developed:

* Variant 1 (V1): follows Algorithm 1 to the letter.

* Variant 2 (V2): in V1, the pseudo-labels for the unlabeled set are re-estimated
in each iteration, so, after the first iteration, an instance that was added to the
training set will have itself as one of its labeled neighbors. In order to avoid
this case, the function getNLN (line 6) is modified to guarantee that none of
the labeled neighbors is the instance itself.

* Variant 3 (V3): increases the value of k by one unit after a predefined number
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Algorithm 1 SSHC-BLI

Require: (X,Y): labeled data, U: unlabeled data, k: number of labeled neighbors,
THR: similarity threshold, t2label: threshold to pseudo-label an instance, H.S hi-
erarchy, max[terations: maximum number of iterations.

Ensure: f,,,.: semi supervised hierarchical classifier

T+ 1 > [teration
2. LD+ X > LD: Labeled data
3: CL+Y > Labels of labeled data

4: while True do

5: for each u; € U do
6: IND; < getNLN (k,u;, LD) > Get nearest labeled neighbors
7: PSL; + getPseudoLabel(IND;, LD, t2label) > Pseudo label for v,
8: for each u; € U with valid PSL; do
9: if similarity(u;, IND;) < THR then
10: PSL; =0 o> Invalid pseudo-label
11: if (T > mazlIterations) or (PSLT == PSL™™!) then
12: break loop (while)
13: else > join labeled data with valid pseudo-labeled data
14: CL <+ Y Uwalid(PSL)
15: LD < X UUvalid(PSL)]
16: T+T+1
17: fsspc < trainHC(LD,CL,HS) > Train a hierarchical classifier

of iterations, since the number of instances in the training set could increase
in each iteration.

5.1 Pseudo-labeling an instance

To pseudo-label an instance, the labels of instances close by the input space to it
are required. Let Y = [yi, ..., yx] be the labels of k instances close to the unlabeled
instance x, then the probabilities for each individual label can be estimated with
equation 5.1:

_ Z?:I Yij .
ppSlj - T ) V] S {17 7| L |} (51)

Then a threshold (t2label) is used to determine if an instance is associated to the
label:

: . >
psl; = {1 ppsty 2 t2label "oy (5.2)

0: ppsl; < t2label’
0 < 2label <1
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In this way, psl is the pseudo-label generated for x. Different threshold may result in
different pseudo-labels, for instance, a threshold of 1 will work as an AN D function,
that is, psl; will be 1 only if all the k-instances are associated to the i-th label; in
similar way, a threshold of 0 will work as an OR function, that is, ps/; will be 1 if
at least one of the k-instances is associated to the i-th label. On the other hand, if
psl is full of zeros, it means that x stays unlabeled.

5.2 SISI: Similarity of an instance with a set of instances

A similarity function to estimate how similar is an instance to a small set of instances
is required; it is also required that the result is in interval [0, 1], where 1 means that
the instance is similar to the set of instances and 0 it is not. Nevertheless, it is not
known a similarity function that complies the previous requisites to the best of our
knowledge.

The heuristic function Similarity of an Instance with a Set of Instances (SISI)
[Serrano-Pérez and Sucar, 2022] is proposed as a local measure, because it does not
consider the complete data distribution, but only the instance of interest, p € RY,
and a set of instances, X C R?. In this way, it is said that the instance p is similar
to the set of instances X, if the average of distances from p to each instance in X
is equal or lower than the average of the distances among the set of instances in
X. The distances among the set of instances X (lavg(z)) is calculated as shown in

equation 5.3,
k k
i1 i A )

lavg(X) = ST (5.3)

2

and the distances of p with the set of instances X is calculated as shown in equation

5.4,
Zf:l d(pa xz)
k

where x;, x; € X, k is the cardinality of X and d(x;, z;) is any metric’. Additionally,
two assumptions are made:

uavg(p, X) = 5.4)

Assumption 1 If uavg(p, X) is lower or equal than lavg(X), the instance p is similar
to the set of instances X with score 1.

Assumption 2 If uavg(p, X) is greater or equal than n times lavg(X), with n > 1,
the instance p is not similar to the set of instances X, that is, score 0.

2 Axioms that a metric must satisfy can be found in Appendix C.
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From assumptions 1 and 2, the equation of the line that passes through points
(lavg, 1) and (n - lavg,0) is defined as:

l _
score = _avg —_uavg +1 (5.5
(n—1)-lavg
Equation 5.5 scores the similarity of the point p with the set of instances X in
interval (lavg,n - lavg). Finally, the function SISI is defined in equation 5.6 from

assumptions 1 and 2, and equation 5.5.

1 uavg(p, X) < lavg(X)
SISI(p, X) = 0 uavg(p, X) > nlavg(X) (5.6)

lavg(X)—uavg(p,X) .
(gnq)-zavg“(({)?) +1 otherwise

The general behavior of SISI is shown in Fig. 5.2. Additionally, a comparison of
SISI with existing similarity measures is given in Appendix B. On the other hand,
for the experiments in this work, n was set to 3, and the euclidean distance was used
as the metric.

SISI

0.5

0 lavg n*lavg

uavg

Figure 5.2: Behavior of the function SISIL. If uavg is lower or equal than lavg then SISI
returns 1; if uavg is greater or equal than n - lavg then SISI returns O; else, a score is
calculated with equation 5.6.

5.3 Experiments and Results

The experiments are focused on showing that using unlabeled data could help to
improve the performance of a hierarchical classifier trained only on labeled data.
The performance of the proposed method is also compared against the next meth-
ods: supervised TDI[Silla and Freitas, 2011] classifier (our base line), which is only
trained with the labeled data; self-train A (STA) which is the strategy with the best
performance as reported in Metz and Freitas [2009]; and hierarchical multi-label clas-
sification using semi-supervised binary relevance (HMC-SSBR) [Santos and Canuto,
2014b], which can be applied to hierarchies of tree type with depth greater than two.
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5.3.1 Simple case: SSHC-BLI Behaviour

To illustrate the behavior of the SSHC-BLI variants, a simple artificial dataset was
designed. The hierarchy is the one in Fig. 5.1a, that has 9 nodes; the dataset is
two-dimensional: 20, 400 and 80 instances were generated® for labeled, unlabeled
and test sets, respectively. The labeled and unlabeled instances are depicted in Fig.
5.3a, note that the labeled instances are colored with the most specific node of its
path.

The SSHC-BLI variants were applied to this dataset with the following hyper-
parameters: nearest labeled neighbors, k£ = 3; similarity threshold, THR = 0.5;
threshold to positively label an instance, t2label = 0.5; and for variant 3, k increases
by 1 every 5 iterations. Finally, a TD classifier was trained with labeled and pseudo-
labeled data, which uses random forest classifiers* as LCN, and the less inclusive
policy (for a node, the positive instances are those associated to the node, while the
negatives are the rest) is used to select positive and negative instances in each node.

Fig. 5.3 shows how the SSHC-BLI variants pseudo-labeled the unlabeled set.
Variant 1 pseudo-labeled the whole unlabeled set, but it wrongly pseudo-labeled
some instances, most of them at the tips of the half moons (circled in blue) as shown
in Fig. 5.3b. Variant 2 pseudo-labeled in a better way the tips of the half moons
(circled in blue), as shown in Fig. 5.3c, however, there are unlabeled instances
surrounded by labeled instances with the same labels, so, they should have the same
path of labels, but they were not pseudo-labeled because the estimation of similarity

with its neighbors. And variant 3 seems to smooth the results of the 2nd variant, as
shown in Fig. 5.3d.

Later, for each variant, the labeled and pseudo-labeled instances were used to
train the hierarchical classifier. Hence the results of the SSHC-BLI variants on the
test set are shown in Table 5.1, the table also includes the results of the TD classifier.
As it can be seen, the results obtained by the semi-supervised variants outperformed
the results of the supervised classifier.

5.3.2 Artificial Datasets

The validation set was used for tuning the hyper-parameters of each method. The
hyper-parameters and values that each method can take are the following:

» SSHC-BLI variants: similarity threshold (THR): {0.3, 0.5, 0.7}; number of
labeled neighbors (k): {3, 4, 5}. Additionally, the threshold to pseudo-label

3The function make moons of scikit-learn.org was used to generate the instances.
“Implementation of scikit-learn.org, default parameters.


scikit-learn.org
scikit-learn.org

Chapter 5. SSHC-BLI 40

......

.....
s

« unlabeled « unlabeled

Figure 5.3: Initial configuration of labeled and unlabeled instances and final configuration
obtained by the three variants of SSHC-BLI. The (pseudo-)labeled instances are colored
with the most specific node of its path, while unlabeled instances are shown in gray. a)
Initial labeled and unlabeled data. Pseudo-labels of variant 1 b), variant 2 ¢), and variant
3 d). Blue eclipses highlight the main pseudo-labels differences between the different
variants. (Best seen in color.)

an instance (t2label) was set to 0.5, k increases by one unit each 10 iteration
(only for variant 3) and the variants make use of a TD classifier that trains
random forest classifiers® for each node.

* STA: the threshold a: {0.3, 0.5, 0.7}.

« HMC-SSBR: iterations: {2, 3, 6}; C: {1, 10, 100}; gamma: {’scale’,’auto’,1}

The evaluation measure hF was used to determine the best configuration with grid
search. Later, each method was trained with the best configuration but only with
the labeled and unlabeled sets, the validation set was not used as labeled data.
Finally, the methods were evaluated on the test set. Note that the supervised TD
is the same than the used by the SSHC-BLI variants.

SImplementation of scikit-1learn.org, default parameters except n_jobs=5.
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Table 5.1: Results of SSHC-BLI variants (1, 2 and 3) and the TD classifier for the ar-
tificial dataset. EM: exact match, hR: hierarchical recall, hP: hierarchical precision, hF:
hierarchical F-measure, MCC: Matthews correlation coefficient. In bold the best score.

Eval. Measure TD V1 V2 V3

EM 0.8367 0.9033 0.9033 0.9167
hR 0.9092 09415 0.9385 0.9477
hP 0.8821 0.9415 0.9428 0.9521
hF 0.8955 0.9415 0.9406 0.9499
MCC 0.8454 092 09114 0.9318

Fig. 5.4 shows the results obtained, in MCC and hF, by the different methods
in a couple of datasets: HA_02_FD_ub and VH_03_FD_ub. The SSHC-BLI variants
tend to outperform the TD classifier, which is only trained in the labeled data; how-
ever, the difference of performance is reduced as the amount of labeled information
increases.

The complete tables of results for the artificial datasets (Table 4.2) on exact
match, MCC and hF can be found in Appendix F. Table 5.2 shows the average
rank of each classifier on the different evaluation measures. As it can be seen, the
variants of the proposed method tend to get better performance than their super-
vised counterpart, the TD classifier, and the method STA throughout the different
amounts of labeled and unlabeled data. Even though, HMC-SSBR performed very
well in the easy datasets, it was unable to keep this performance in the hard and very
hard datasets, being outperformed in the very hard datasets by V1 of the proposed
method in all the evaluation measures but hR.

On the other hand, considering all the artificial datasets, the 22 datasets and
their 5 splits, the SSHC-BLI variants got the best performance in the evaluation
measures EM, hP and MCC. However, HMC-SSBR showed the best performance in
the evaluation measure hR, hence also in hF. The SSHC-BLI variant 1 got the best
performance of all the variants, which is the one that allows pseudo-labeled instances
to contribute themselves when building a new pseudo-label, which seems beneficial
in these artificial datasets.

5.3.3 20 Newsgroup

In the same way than in the previous section, the hyper-parameters of the methods
and their results were obtained.

Results in the 20 newsgroup dataset are shown in Fig. 5.5, as it can be seen, the
variants of SSHC-BLI tend to outperform their supervised counterpart and the STA
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Figure 5.4: Results of artificial datasets. Results in HA_02_FD_ub dataset are shown in a)
and b); results in VH_03_FD_ub dataset are shown in ¢) and d). (Best seen in color)

method when there is at least 30% of labeled data. Table 5.3 shows the average rank
of each classifier, where variants 1 and 2 got the best performances in the evaluation
measures EM and hR, being V1 the best. On the other hand, HMC-SSBR got the
best performance in MCC and hP (hence also in hF).

Furthermore, the results of the SSHC-BLI variants converged with the obtained
by the TD classifier as the amount of labeled data increases.

5.3.4 FunCat datasets

The same steps than in Section 5.3.2 were applied to obtain the hyper-parameters
and results for the FunCat datasets.

The results in terms of MCC and hF for the FunCat datasets are shown in Figs.
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Table 5.2: Average rank of each classifier in different evaluation measures for the arti-
ficial datasets. EM: exact match, hR: hierarchical recall, hP: hierarchical precision, hF:
hierarchical F-measure, MCC: Matthews correlation coefficient. In bold the best (lower is
better).

Measure TD V1 V2 V3 STA HMC-SSBR

EM 435 3275 295 295 6 1.475
hR 4325 33 295 295 6 1.475
Easy hP 4325 33 295 295 6 1.475
hF 4325 33 295 295 6 1.475
MCC 3775 2875 2975 2975 5.5 2.65
EM 339 25 29 285 478 4.58
hR 544 38 3.1 352 412 1.02
Hard hP 346 27 319 285 534 3.46
hF 526 33 307 335 49 1.12
MCC 264 319 338 312 412 4.55
EM 375 2.038 2412 3.075 4.888 4.838
hR 48 2588 2812 35 4975 2.325
Very Hard hP 425 2,025 2712 2912 5.475 3.625
hF 4.65 245 2712 3288 53 2.6
MCC 3.325 2725 2762 2.662 4.325 5.2
EM 3.695 2473 2732 295 5.041 4.109
hR 5.005 3.268 2968 3.409 4.773 1.577
ALL hP 3905 2.564 2973 2.891 5.509 3.159
hF 4.868 2991 2918 3.255 5.245 1.723

MCC 3.095 2964 3.082 2927 4.491 4.441

5.6, 5.7 and 5.8. Each graph compares the results of the SSHC-BLI variants with the
related methods and the TD classifier on different percentages of labeled-unlabeled
data. As it can be seen, the variants of the proposed method tend to outperform the
supervised TD and STA method in the hF measure, moreover, in the MCC measure
the variants tend to outperform the same methods mainly when there is few labeled
data.

Table 5.4 summarizes the results of the semi-supervised methods and the su-
pervised classifier. The SSHC-BLI variants obtained the best performance in the
evaluation measures EM and hR; nevertheless;, HMC-SSBR got the best scores in
MCC and hP (hence also in hF). In this case, the variant 3 got the best perfor-
mance among the variants of the proposed method, which gradually increases the
number of labeled neighbors when building new pseudo-labels, also, it does not al-
low to pseudo-labeled instances to make use of themselves when building the new
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Figure 5.5: Results of 20 newsgroup dataset in a) MCC and b) hF. (Best seen in color)

Table 5.3: Average rank of each classifier in the 20 newsgroup dataset. EM: exact match,
hR: hierarchical recall, hP: hierarchical precision, hF: hierarchical F-measure, MCC:
Matthews correlation coefficient. In bold the best (lower is better).

Measure TD V1 V2 V3 STA HMC-SSBR

EM 3 16 21 35 6 4.8
hR 32 1.6 21 33 6 4.8
hP 42 26 31 41 6 1
hF 42 26 31 41 6 1
MCC 42 26 31 41 6 1

pseudo-labels; situations that were beneficial in these datasets.

5.4 Discussion

The performance of the different methods tend to variate throughout the amount
of labeled-unlabeled data for each dataset, that is, the performances do not always
increase as the amount of labeled data does (mainly in the Funcat, hard and very
hard datasets). We attribute this behavior to the fact that those datasets are very
hard and noisy. Vens et al. [2008b] indicate that the FunCat datasets suffer from
non-unique feature representations, situation that would affect the performance of
the classifiers as shown by Pliakos et al. [2015]. In similar way, the artificial datasets
(hard and very hard) were generated from probability distributions where the inter-
section between them is high, and similar distributions are not necessarily grouped
together [Serrano-Pérez and Sucar, 2021], making the learning task difficult.
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Figure 5.6: Results in the FunCat datasets: cellcycle a) and b); derisi ¢) and d). (Best seen
in color.)

In order to know if there is statistical difference among the SSHC-BLI variants
and the related methods (HMC-SSBR, STA, and TD), the Friedman test together
with its post-hoc the Nemenyi test were used as recommended by Demsar [2006]
when comparing multiple classifiers over multiple datasets.

First, let 7/ be the rank of the j-th of [ algorithms on the i-th of M datasets,
then R; = % Z£1 7“27 is the average rank of the j-th algorithm. So, the null hypoth-
esis of the Friedman test states that all the algorithms are equivalent, therefore their
average ranks (R;) should be equal, against the alternative which states that they

are not.

Afterward, only if the null hypothesis is rejected, the Nemenyi test is used to
compare all the classifiers against each other. Therefore, the performance of two
classifiers is significantly different if their average ranks differ by at least the critical
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Figure 5.7: Results in the FunCat datasets: gaschl a) and b); gasch2 c) and d). (Best seen
in color.)

difference (CD), which can be estimated with equation 5.7,

I(1+1)

OD =4\ —G37

(5.7)
where values ¢, are based on the Studentized range statistic divided by v/2 [Demsar,
2006].

The FunCat, 20 newsgroups and the artificial datasets (and their corresponding
divisions) were considered. The results of the Friedman tests with significance o =
0.05, for the different evaluations measures, are that null hypothesis can be rejected
in favor of the alternatives, that is, the average ranks of the algorithms are not equal.

Since the null hypothesis were rejected, the Nemenyi tests can be applied.
Fig 5.9 shows the graphical representation of the Nemenyi tests for EM and MCC,
while Fig. 5.10 for hP, hR and hF. The performance of the related methods is
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Table 5.4: Average rank of each classifier in the FunCat datasets. In bold the best (lower
is better).

Measure TD V1 V2 V3 STA HMC-SSBR

EM 36 192 224 236 5 5.88
hR 548 2.68 258 214 394 4.18
hP 572 324 348 3.16 44 1

hF 5776 332 332 296 4.28 1.36
MCC 436 332 336 2.88 4.28 2.8

significantly worst than the obtained by the SSHC-BLI variants on EM and MCC
measures. Moreover, the performance of TD and STA is significantly worst than
the performance of the SSHC-BLI variants on hF and its components. The variants
of the proposed method are competitive with HMC-SSBR on hP, but HMC-SSBR
performed better on hR, which calculates the ratio of correct prediction over the
number of predictions in the datasets, and therefore on hF.

Throughout the experiments in the different datasets, the SSHC-BLI variants
obtained competitive results. The variant 1 seems to be the best among the vari-

cD D
— —
1 2 3 4 5 6 1 2 3 4 5 6
V1 J _L STA V3 ﬁ STA
V2 HMC-SSBR V1 HMC-SSBR
V3 TD V2 D
(a) EM (b) MCC

Figure 5.9: Graphical representations of the Nemenyi test for the evaluation measures
(a) EM and (b) MCC. Classifiers that are not significantly different, with p = 0.05, are
connected. CD: critical difference. (Lower is better)
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Figure 5.10: Graphical representations of the Nemenyi test for the evaluation measures
(a) hP, (b) hR and (c) hE. Classifiers that are not significantly different, with p = 0.05, are
connected. CD: critical difference. (Lower is better)

ants in general, nevertheless, the Nemenyi test indicates that there is no statistical
difference among the variants on all the evaluation measures.

SSHC-BLI shows the best results on scenarios where the instances that are
close in the input space share the same or similar paths of labels; that is, where the
datasets fulfill the smoothness assumption, such as the easy artificial datasets. On
the other hand, SSHC-BLI will have its performance degraded when the datasets do
not fulfill the smoothness assumption, such as the very hard artificial datasets.

5.5 Summary

In this chapter, the similarity function SISI was proposed to measure the similarity
of an instance (point) and a set of instances (points). Later, the semi-supervised
classifier SSHC-BLI was proposed for hierarchies of tree type and instances associ-
ated to a single path of labels. SSHC-BLI builds pseudo-labels for each unlabeled
instance using its labeled neighbors while considers whether the unlabeled instance
is similar to its labeled neighbors. Experiments showed that SSHC-BLI is better
than its supervised counterpart and it is competitive with related methods.



Chapter 6

Semi-Supervised Hierarchical
Multi-label Classifier Based on Local
Information

SSHC-BLI can only handle hierarchies of tree type and the instances must be asso-
ciated to a single path of labels with full depth. In this chapter, a semi-supervised
hierarchical classifier able to handle hierarchies of DAG type, while the instances can
be associated to multiple paths of labels which can be of partial depth, is proposed.

Semi-Supervised Hierarchical Multi-label Classifier Based on Local Informa-
tion! (SSHMC-BLI) [Serrano-Pérez and Sucar, 2025] is proposed to tackle the limi-
tations of SSHC-BLI. The steps of SSHMC-BLI are similar to SSHC-BLI as shown
in Algorithm 2. It is an iterative method that tries to pseudo-labeled the unlabeled
data using its nearest labeled neighbors (lines 6-7), the way in which pseudo-labels
are built is described in subsection 5.1. Fig. 6.1 shows an example of how a pseudo-
label is built from the paths of labels of 3 instances, the labels of the instances are
used to calculate ppsl (equation 5.1); later, a threshold is applied to ppsl which
produces the pseudo-label as it is shown in 6.1d. This way of pseudo-labeling has
the advantage that can be applied to any hierarchy of DAG type, furthermore, the
instances can be associated to multiple paths of labels, that is, it is not limited to
instances associated to a single path of labels.

This method considers the similitude of each unlabeled instances with its la-
beled neighbors (line 9), if they are not similar the unlabeled instance cannot be
pseudo-labeled; the function SISI (equation 5.6) is used for estimating the similar-
ity. The iteration process finishes when the pseudo-labels for the unlabeled data do
not change from an iteration to another, or when the maximum number of iterations

'Open source available at: https:/github.com/jona2510/SSHMC-BLI/tree/master
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Algorithm 2 SSHMC-BLI algorithm

Require: (X,Y"): labeled data, U: unlabeled data, k: number of nearest labeled neigh-
bors, T'H R: similitude threshold, ¢2label: threshold to pseudo-label an instance, H S
hierarchy of DAG type, maxzIterations: maximum number of iterations.

Ensure: f,,,.: trained SSHMC-BLI classifier

1. T+ 1 > Iteration
2: LD <+ X > LD: Labeled data
3: CL <+ L > Labels of labeled data

4: while True do

5: for each u; € U do

6: IND;j < getNLN (k,u;, LD) > Get the nearest labeled neighbors
7: PSL; < buildPseudoLabel(IND;, LD, t2label) > Pseudo label for u;
8: for each u; € U with valid PSL; do

9: if SISI(u;,IND;) < THR then
10: PSL; =0 > Invalid pseudo-label
11:  if (T > mazlIterations) or (PSLT == PSL™T™!) then

12: break loop (while)

13: else > join labeled data with valid pseudo-labeled data
14: CL < Y Uwalid(PSL)

15: LD < X UUvalid(PSL)]

16: T+ T+1
17: fssuc < trainHMC(LD,CL,HS) > Train a hierarchical multi-label classifier

is reached. Finally, a hierarchical multi-label classifier is trained with the labeled
and pseudo-labeled data, details can be found in section 6.1.

The three variants of SSHC-BLI are kept for SSHMC-BLI, the differences
among them are briefly described next: Variant 1 (V1) follows Algorithm 2 to the
letter. Variant 2 (V2), in each iteration all pseudo-labels for the unlabeled set are
re-built, so, after the first iteration an instance, that was added to the labeled set,
will have to itself as one of its nearest labeled neighbors; in order to avoid this, the
function getNLN (line 6) is modified to guarantee that none of the nearest labeled
neighbors is the instance itself. In Variant 3 (V3), the value of k is increased after
a predefined number of iterations.
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0 (D/ @ y,= {2} = [0,0,1,0,0,0]
(a) Hierarchy (b) Labels of 3 instances

psl(0.5) = [1,1,0,1,0,0]
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ppsl = [0.66, 0.66, 0.33, 0.66, 0.33, 0.33] ‘/:
-

(¢) Calculation of ppsl (d) Pseudo-label after
applying a threshold

Figure 6.1: Example of how a pseudo-label is built. (a) A hierarchy formed by 6 labels.
(b)Shows the nodes to which three instances are associated, for example, the first instance
is associated to the nodes {0, 1,3, 4}, then its vector form is displayed, [1,1,0,1,1,0],
that is, 1 if the node is associated, 0 otherwise. (c) ppsl is calculated with the labels in
vector form of the instances in (b). Finally, the pseudo-label is obtained after applying a
threshold (0.5) to ppsl as it is shown in (d).

6.1 Hierarchical Classifier for SSHMC-BLI

The hierarchical classifier is formed by LCNs, that is, for each node of the hierarchy
(except the root node) a binary classifier? is trained; additionally, the policy balanced
bottom-up (for a node, the positive instances are those associated to the node, while
the negatives are taken from sibling, then uncles and so on, until the number of
negatives equals the positives) is used to select the positive and negative instances
at each node. In the prediction phase the probabilities of being associated to each
LCN are obtained, then a post-processing is applied. The post-processing follows a
top-down manner where the probabilities of each node are limited by the probabilities
of their parents [Giunchiglia and Lukasiewicz, 2020]. Let a,b be nodes, let f* be the
post-processed output of the model f then:

fa = mines, (fo) (6.1)
Sa = Parents(a) U {a}

that is, a node gets the lowest probability among itself and its parents as shown in
equation 6.1. In this way, the predictions of the model f* are consistent with the

2Random forest classifier: default parameters except n_jobs=5. Implementation of scikit-learn.org.
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hierarchy, because they comply the hierachical probability constraint.

An example of the result of post-processing is depicted in Fig. 6.2. The left
hierarchy shows the probabilities of being positively associated to each node (output
of the LCNs), which does not comply the hierarchical probability constraint, then,
the post-processing is applied as it is shown in the hierarchy to the right, where the
probabilities of a couple of nodes were limited in order to comply the hierarchical
probability constraint.

Figure 6.2: Example of post-processing. Left: the hierarchy has the probability of being
associated to each node. Right: the hierarchy shows the post-processed output; grey nodes
were limited by the probabilities of their parents.

6.2 Experiments and Results

The experiments are focused on showing if using unlabeled data may help to improve
the performance of a hierarchical classifier trained only on labeled data, in the case
where the hierarchy is a DAG, and the instances can be associated to multiple paths
of labels which can be of partial depth.

The results of the proposed method are compared against standard methods
(STML and STHC, both described in Appendix E) and a supervised hierarchical
(LCN) classifier, which can be seen as the base line.

In order to carry out the experiments, the training set of each dataset was
split into labeled and unlabeled sets. Then, the best configuration of each method is
obtained by tuning their hyper-parameters with grid search, while they are evaluated
on the validation set. Results of the methods on the test set are reported, also, they
were compared with the Friedman test to identify statistical difference among the
methods.
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6.2.1 SSHMC-BLI Behaviour

A small artificial dataset was designed to show if the SSHMC-BLI variants pseudo-
label properly the unlabeled data. The hierarchy is shown in Fig. 6.1a, which is
composed by 6 nodes; the dataset is two-dimensional: 12, 330 and 300 instances were
generated from normal distributions for labeled, unlabeled and test sets, respectively.
Figs. 6.3a and 6.4a show unlabeled instances and the instances associated to nodes
1 and 4, respectively.

The SSHMC-BLI variants were applied to this dataset with the following con-
figuration: nearest labeled neighbors, k& = 3; similitude threshold, THR = 0.5;
threshold to positively label an instance, t2label = 0.5; for variant 3, k increases by
1 each 10 iterations. Finally, a hierarchical multi-label classifier (section 6.1) was
trained with labeled and pseudo-labeled data.

Figs. 6.3 and 6.4 show how SSHMC-BLI variants pseudo-labeled the unlabeled
data with respect to nodes 1 and 4; inside the red circles is approximately 95% of the
data that should be associated to the corresponding node. Variant 1 pseudo-labeled
almost the whole unlabeled set, but it wrongly pseudo-labeled some instances as it
can be seen in Fig. 6.4b for node 4; however, most of them were properly pseudo-
labeled by its parent node, node 1, as it can be seen in Fig. 6.3b. Variant 2
pseudo-labeled in a better way the instances associated to nodes 1 and 4, as it can
be seen in Figs. 6.3c and 6.4c; however, it was the variant where more instances
stayed unlabeled due to the estimation of the similitude with its nearest neighbors.
Finally, variant 3 seems to smooth the results obtained by the variant 2 as shown
in Figs. 6.3d and 6.4d, since it was able to pseudo-label most of the instances that
were previously unlabeled.

Later, for each variant the labeled and pseudo-labeled instances are used to
train the hierarchical multi-label classifier. Results obtained by the SSHMC-BLI
variants and the supervised classifier (LCN) are shown in Table 6.1. As it can be
seen, the results of the SSHMC-BLI variants outperformed the supervised classifier.

Table 6.1: Results of SSHMC-BLI variants (1, 2 and 3) and the supervised classifier, LCN,
for the artificial dataset. In bold the best score.

Measure LCN V1 V2 V3
Avg. precision 0.4492 0.4817 0.4526 0.4573




Chapter 6. SSHMC-BLI 54

9 e nodel 94 . e nodel
© e« e noassociated to node 1 ® s ,% ¢ noassociated tonode1
s : +  unlabeled s * e . unlabeled
. ‘ . L
- »*
’ P 7 Lo .
6 - 6 ;-': f:’if':".,. 'é"i“-\
5 3 5 P I U W O g
1'..‘.“.‘:"{’5 ¢ -?.\;r “,
4 4 \.._.. o e .'q oo o !
a tofes = od
5] 3 13 g il lc;-o **
st L S, %
2 2 L) - _-7 e~ te_ -~
1 14 .
75‘ o 72‘.5 0.‘() 2.‘5 5.‘0 7.‘5 lDI.O l?I.S 7.“!.0 72‘.5 0.‘0 2.‘5 5.‘0 7.‘5 lDI.O l?I.S
(a) Node 1 (b) Node 1 - V1
9 e node 1 94 L4 e nodel
b5 YL associated to node 1 SeL% o+ O associated to node 1
8 * ® - unlabeled 8 * e - unlabeled
'. 4 P - '. 4 o -
6 * el S P e 6 * e -3 Sdtie.
F ) ’: .”‘:“' *-..l e 2. ,’;:-l,’s' 5 o* -
5 S 51 g =4, S, .o \ 5 g 0 g . ‘e \
Al eS| Al e
4 SR el M EY | 41 . -.}-.-.'. b ah.ﬁ-‘. : |
a ' . o o . = o ! L & o0e -
¥ e L ; ¥t )
2 L e ety T 2 L] et b, -
1 1 .
-5.0 -2.5 0.0 25 5.0 7.5 10.0 125 7.’;.0 -2.5 0.0 25 5.0 75 10.0 125
(c)Node 1-V2 (d) Node 1 - V3

Figure 6.3: Pseudo-labels for the artificial dataset. (a) Initial data for node 1. (b,c,d) show
the pseudo-labeled data at the end of each variant, V1, V2, V3, respectively. Approxi-
mately 95% of the data that should be associated to node 1 is inside the red circles. (Best
seen in color.)

6.2.2 Results in the GO collection

First, the validation set was used for tuning the hyper-parameters of the SSHMC-BLI
variants for each run. The parameters and values that could take are the following:
similitude threshold (THR): {0.3, 0.5, 0.7}; number of labeled neighbors (k): {3, 4,
5}. The evaluation measure AP was used to determine the best configuration. Later,
the semi-supervised classifier is trained with the best configuration but only with
the labeled and unlabeled sets; that is, the validation set is not used for training.
Finally, the SSHMC-BLI classifier is evaluated in the test set.

The results in average precision of the SSHMC-BLI variants, the standard
methods (STML, STHC) and the supervised (LCN) classifier are shown in Figures
6.6 and 6.7. STML got the worse performance, since it is a multi-label method
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Figure 6.4: Pseudo-labels for the artificial dataset. (a) Initial data for node 4. (b,c,d) show
the pseudo-labeled data at the end of each variant, V1, V2, V3, respectively. Approxi-
mately 95% of the data that should be associated to node 4 is inside the red circle. (Best
seen in color.)

which does not consider the hierarchy, therefore, the predictions do not guarantee
to comply the hierarchical probability constraint. STHC improved the performance
of STML just by adding the post-processing to comply the hierarchical probability
constraint, nevertheless, its performance is most of times lower than the supervised,
showing that the self-training strategy does not help to improve the performance of
the supervised classifier. Finally, the different variants of the SSHMC-BLI got the
best performances among the different semi-supervised and the supervised methods.
The greatest improvement is found when there is just few labeled instances, then the
performance of the SSHMC-BLI variants became closer to the supervised classifier
as the amount of labeled data increase.
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6.3 Discussion

Table 6.2 summarizes the results of the semi-supervised methods and the supervised
classifier, that is, it presents the average rank of each classifier, where the SSHMC-
BLI variants got the best performance. Variant 2 showed the best performance, this
variant does not allow to pseudo-labeled instances to make use of themselves when
building the new pseudo-labels; situation that was beneficial in these datasets.

Table 6.2: Average rank of each classifier in the GO collection. In bold the best (lower is
better).

LCN V1 V2 V3 STML STHC
Avg. Precision 4.133 2.0 1.492 2708 5.958 4.708

The SSHMC-BLI variants got their best performance when there is few labeled
data in most of the GO collection, then, their performance become closer to the
performance of the supervised classifier as the amount of labeled data increases.

On the other hand, in order to know if there is statistical difference among the
SSHMC-BLI variants, standard methods and the supervised classifier, the Friedman
test together with its post-hoc the Nemenyi test were used [Demsar, 2006].

The result of the Friedman test with p = 0.05 for evaluation measure average
precision is that the null hypothesis can be rejected in favor of the alternative, that
is, the average ranks of the algorithms are not equal. Since the null hypothesis was
rejected, the Nemenyi test can be applied. Fig. 6.5 shows the graphical representa-
tion of the Nemenyi test for average precision. The three variants of SSHMC-BLI
are significantly better than STML, STHC and the supervised classifier, LCN.

Throughout the experiments, the SSHMC-BLI variants obtained the best per-
formances. Variant 2 got the best performance among the variants in general, al-
though for some datasets the variant 1 was sightly better. However, the Nemenyi
test indicates that the performances of variants 1 and 2 are not significantly different.

Finally, it is expected that the SSHMC-BLI variants work properly on scenarios
were close instances share the same or similar paths of labels, that is, when the
datasets fulfill the smoothness assumption. On the other hand, the SSHMC-BLI
will have its performance limited when the datasets do not fulfill the smoothness
assumption, that is, when close instances do not necessarily share the same or similar
path of labels.
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Figure 6.5: Graphical representations of Nemenyi test for the evaluation measures average
precision. Classifiers that are not significantly different, with p = 0.05, are connected.
CD: critical difference. (Lower is better)

6.4 Summary

In this chapter, the semi-supervised classifier SSHMC-BLI was proposed, which can
handle hierarchies of DAG and the instances can be associated to multiple paths of
labels of partial depth. In similar way than SSHC-BLI, SSHMC-BLI builds pseudo-
labels for the unalabeled instances using the labels of its neighbors while considers
the similitude among them. Results showed that SSHMC-BLI is statistically better
than its supervised counterpart and standard methods.
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Figure 6.6: Results in GO datasets with the evaluation measure average precision: a)
cellcycle, b) church, ¢) derisi, d) eisen, e) expr and f) gaschl. The x-axis correspond to
the amount of labeled data (while its complement is the unlabeled data). (Best seen in
color.)
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Chapter 7

Hierarchical Bayesian Approach

Even tough, the results of SSHMC-BLI showed that using unlabeled data along la-
beled can help to improve the performance of a supervised classifier, the hierarchical
classifier makes use of a post-processing that may affect the general performance of
the classifier, since it is truncating the probabilities of some nodes to obtain predic-
tions that comply the hierarchical probability constraint.

Therefore, we propose to use a Bayesian network, as an alternative post-
processing, to obtain predictions that comply the hierarchical probability constraint
without being truncated. First, the hierarchical Bayesian classifier is introduced in
section 7.1, followed by a supervised application to morphological classification of
galaxies in section 7.2. At last, the hierarchical Bayesian classifier is integrated to
the semi-supervised hierarchical classifier in section 7.3.

7.1 Hierarchical Bayesian Classifier

The hierarchical Bayesian classifier [Serrano-Pérez and Sucar, 2019, Barutguoglu
et al., 2008] consist in modeling the hierarchy as a Bayesian network, which rep-
resents the data distribution as well as models the behavior of the base classifier.
Hence the Bayesian network receives the initial probability estimates for each label
in the hierarchy, then these are updated according to the hierarchical relations via
probabilistic inference. Furthermore, through this post-processing step, the Bayesian
network guarantees to comply the hierarchical probability constraint.

Two types of random nodes compose the Bayesian network, as shown in Fig.
7.1, y and ¢ nodes. y nodes represents the data distribution and are also in charge
of maintaining the hierarchical constraint in the Bayesian network, while ¢ nodes
model the initial estimations from the local classifiers.

60
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Figure 7.1: The hierarchy on the left is transformed into a Bayesian network (right). The
y; nodes in in the Bayesian network correspond to the /; nodes in the hierarchy, and the ¢;
nodes in the Bayesian network correspond to the initial estimations from the local classi-
fiers.

For each node of the hierarchy, there is a y; node in the Bayesian network.
The parameters for each node y; are estimated by maximum likelihood from the
training set, as shown in Table 7.1, where pa(y;) is the set of parents of y; given by
the hierarchy. Note that if an instance is not associated to all the parents of pa(y;),
then it will be not associated to y; with probability one, P(y;=0|pa(y;)#1)=1, this
is what maintains the hierarchical probability constraint in the Bayesian network.

Table 7.1: Conditional probability table of P(y;|pa(y;)). a is the number of instances
associated to both y; and its parents, pa(y;); b is the number of instances not associated
to y; but associated to all its parents, pa(y;); 1 represents the case when the instances
are associated to all nodes of pa(y;), while #1 all the other cases. Laplace smoothing is
applied only when pa(y;)=1.

pa(y:)

1 41

N
O ‘ a+b+2 1

On the other hand, ¢ nodes are the second type of random nodes in the Bayesian
network. Each y; node has a child node, ¢;, except the root node. ¢ nodes model the
behavior of the base classifier for predicting instances that were not used in training.
Furthermore, ¢ nodes will receive the predictions of the base classifier, which will be
propagated in the Bayesian network.

Considering that the base classifier provides as prediction the probabilities of
being associated to each node, the distribution for each node ¢;, P(¢;|y;), is modeled
parametrically with Gaussian distributions [Barutcuoglu et al., 2008]. That is,

P(QiGR’inO)ﬁN(HO,USX

where 1 is the mean and of is the variance of the predictions of the base classifier



Section 7.2. BCNN 62

in the instances not associated to y; in the validation set; and the same for
P(qieR’yizl)gN(y’la U%)?

but considering the instances associated to y; in the validation set.

The base classifier can be any classifier able to provide the probability for each
node of the hierarchy (except the root).

To sum up:

* Training phase: the base classifier is trained with the training set. Then,
the parameters of the Bayesian network are estimated, P(y;|pa(y;)) can be
calculated from the training set, while P(g;|y;) can be estimated from the
predictions of the base classifier in a validation set.

* Prediction phase: the base classifier is fed with new data, the base classifier’s
predictions are sent to the Bayesian network, and the evidence is propagated.
The posterior probabilities of the y nodes is the output, which guarantee to
comply the hierarchical probability constraint.

7.2 Morphological Classification of Galaxies

Galaxy morphological classification is essential for understanding galaxy evolution
and studying stellar populations and their physical properties. Despite recent ad-
vances, galaxy classification continues to face several difficulties and challenges.
Some current issues and challenges include subjectivity, which can lead to incon-
sistencies and variations in classification results, mainly due to subjective decisions
made by experts based on visual inspection.

The great utility of deep learning in astronomy is straightforward, specifically
for galaxy classification. However, previous works do not take advantage of the
hierarchy, which could help to improve accuracy. Therefore, Bayesian and Con-
volutional Neural Networks [Serrano-Pérez et al., 2024] is proposed for supervised
morphological galaxy classification, which models the hierarchy as a Bayesian net-
work as described in section 7.1, while is fed by a CNN as detailed in section 7.2.1;
in this case, the hierarchy is of tree type and the instances are associated to a single
path of labels of partial depth.
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7.2.1 Bayesian and Convolutional Neural Networks

Bayesian and convolutional neural networks' (BCNN) [Serrano-Pérez et al., 2024] is
the proposed classifier for hierarchical image classification. BCNN uses the Bayesian
network described previously in section 7.1, but the base classifier that feeds the
Bayesian network is a pretrained convolutional neural network (CNN) [Li et al.,
2022, Haridas and JyothiR, 2019, Khan et al., 2020]. CNNs have the advantage that
can be trained with raw images because they can automate the feature extraction
process from the images [Li et al., 2022, Altenberger and Lenz, 2018].

EfficientNet V2-zl-21k [Tan and Le, 2021] is the CNN used by BCNN, which
was joined with a dense layer (with sigmoid activation function) that has one output
for each node of the hierarchy, except the root node. This way, the training can be
carried out only in this last layer, but the whole CNN can be retrained, too; the
CNN is optimized with the gradient descent (with momentum) optimizer and binary
cross-entropy as the loss function. Later, the predictions of the CNN are used to
feed the Bayesian network through the ¢ nodes, as shown in Fig. 7.2.

S =

CNN |

B I =
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Figure 7.2: Model of BCNN [Serrano-Pérez et al., 2024]. It comprises two main mod-
ules: a CNN that feeds a Bayesian network. The CNN classifier is fed directly with the
images, which outputs the probability for each class (in this example, four classes). These
probabilities are sent to the Bayesian network (BN) that optimizes the classification via
probabilistic inference. In this simple example, the hierarchy consists of 4 classes, where
y1 and g5 are sub-classes of the root, I?; and y3 and g, are sub-classes of ;.

Finally, the prediction for new instances is obtained from the posterior prob-
abilities of the y nodes, where the TD procedure is applied to get a single path of
labels.

!Open source available at: https://github.com/jona2510/BCNN
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7.2.2 Galaxies Dataset

A collection of galaxies® sourced from the Principal Galaxies Catalog (PGC) and the
APM Equatorial Catalogue of Galaxies were employed. Both compilations provide
details regarding the morphological and numerical characteristics of each galaxy. All
the images were standardized to size 300x300 pixels and monochrome. The labels
of galaxies are arranged in the hierarchy shown in Fig. 7.3. As it can be seen, the
different labels and the hierarchy are based on the Hubble sequence [Hubble, 1926,
1927], that is, galaxies with labels Sa, Sb, Sc and Sd are grouped as Spiral galaxies;
Elliptical, Lenticular and Spiral labels are grouped as Regular galaxies; and galaxies
of labels Regular, Irreqular and Others are grouped in the root node. Each image is
associated with a single path of labels of full depth. Table 7.2 presents the number
of galaxies per label.

Root

N

Spiral

PEAONS

Figure 7.3: Galaxy hierarchy [Serrano-Pérez et al., 2024].

7.2.3 Experiments and Results

The first experiment consisted on showing if making use of the Bayesian network
helps to improve the performance of the CNN than when it is not used. Table
7.3 shows that the incorporation of the Bayesian network helped to improve the
performance of the CNN by ~ 7 points in exact match and ~ 4 points in hF.

This application requires a classifier that predicts a single path of labels. Hence
some strategies were compared to select one of the paths of labels. Table 7.4 shows
the results of the strategies TD procedure, sum of probabilities (SP) [Hernandez

>The dataset is available at https://www.kaggle.com/datasets/jonsperez/
galaxies-dataset-for-hierarchical-classification
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Table 7.2: Labels of galaxies and the number of images associated to them in training,
test, and validation sets. *Images associated with multiple labels are counted only once.

Class Total Training Test Validation
Sa 277 177 56 44
Sb 281 180 56 45
Sc 222 142 45 35
Sd 62 40 12 10
Spiral 842 539 169 134
Elliptical 471 301 94 76
Lenticular 387 247 78 62
Regular 1700 1087 341 272
Irregular 181 116 36 29
Others 50 32 10 8

*Total no. of images: 1931 1235 387 309

Table 7.3: Results (percentage) of the classifier with and without the Bayesian network,
BCNN and CNN, respectively. EM: exact match, hR: hierarchical recall, hP: hierarchical
precision, hF: hierarchical F-measure.

Classifier EM hR hP hF

CNN 57.62 80.38 75.03 77.61
BCNN 64.34 8194 80.15 81.04

et al., 2013] and score gain-loose balance (scoreGLB), where TD procedure showed
the best performance, so TD is used for the rest of experiments.

In the previous experiments, the weights of the pre-trained CNN were frozen,
so they can not be updated, that is, the layers of the pre-trained CNN worked only
as feature extractors. Hence in the next experiment, all the weights of the CNN
layers can be updated (retraining). Additionally, an experiment that carries out
image augmentation was carried out, details of image augmentation can be found in
Appendix D. Table 7.5 shows the results, where retraining all of the layers helped
to improve the performance of the classifier; furthermore, the performance of the
classifier was further improved by carrying out image augmentation.

Finally, the results obtained by BCNN where compared against Deep Galaxy
2 [Khalifa et al., 2018] and different CNN models: Inception v3 [Palacio et al.,
2018], Inception ResNet v2 [Szegedy et al., 2017], BiT m-r152x4 [Kolesnikov et al.,
2020] and EfficientNet V2-x1-21k [Tan and Le, 2021]. In the same way than BCNN,
all of the CNN models were joined with a dense layer with one output per label
and sigmoid activation functions, also, the models were optimized with the gradient
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Table 7.4: Results (percentage) of the BCNN classifier with different procedures to obtain
the path of labels. EM: exact match, hR: hierarchical recall, hP: hierarchical precision,
hF: hierarchical F-measure. In bold the best.

Procedure EM hR hP hF
TD 64.34 8194 80.15 81.04
SP [Hernandez et al., 2013] 62.53 7971 79.8 79.75

scoreGLB [Ramirez-Corona et al., 2016] 63.31 80.04 80.13 80.09

Table 7.5: Results (percentage) of BCNN classifier retraining or not all the CNN’s layers.
ImgA: plus image augmentation. EM: exact match, hR: hierarchical recall, hP: hierarchi-
cal precision, hF: hierarchical F-measure. In bold the best.

Retraining EM hR hP hF

No 64.34 8194 80.15 81.04
Yes 65.89 82.16 82.25 82.21
Yes+ImgA 67.18 84.17 82.33 83.24

descent (with momentum) optimizer and binary cross-entropy as the loss function;
the framework tensorflow® was used for training the CNNs. Additionally, the TD
procedure is applied to their predictions to obtain consistent predictions.

Table 7.6 shows the results of BCNN and the different models, where Efficient-
Net can be seen as the baseline. BCNN outperformed the rest of the classifiers in
all the evaluation measures. Furthermore, when BCNN was trained with image aug-
mentation and retraining of all the layers, the performance increased by ~ 3 points
in exact match and ~ 2 in hF.

Table 7.6: Results (percentage) of the BCNN classifier compared with several CNN mod-
els. ImgA: plus image augmentation; FN: plus retraining of all the layers. EM: exact

match, hR: hierarchical recall, hP: hierarchical precision, hF: hierarchical F-measure. In
bold the best.

Classifier EM hR hP hF
Deep Galaxy v2[Khalifa et al., 2018] 16.54 4134 49.61 55.89
Inception v3 [Palacio et al., 2018] 48.32 76.14 69.27 72.54

Inception ResNet v2 [Szegedy et al., 2017] 42.12 7391 64.62 68.95
BiT m-r152x4 [Kolesnikov et al., 2020] 5297 72.69 75.29 73.96
EfficientNet V2-x1-21k [Tan and Le, 2021] 57.62 80.38 75.03 77.61
BCNN 64.34 8194 80.15 81.04
BCNN(ImgA,FN) 67.18 84.17 82.33 83.24

Shttps://www.tensorflow.org/
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7.2.4 Discussion

From the experiments, we conclude that all the elements (Bayesian network hier-
archical classifier, data augmentation, and retraining) contribute to improve the
performance of the basic CNN classifier in all measures. There is an improvement of
~ 10 points on exact match and ~ 7 points for the hierarchical F-measure over the
baseline (EfficientNet). However, the Bayesian network provides the most significant
impact on the performance of the different elements, ~ 7 points (from 57% to 64%)
in exact match and ~ 3 points (77% to 81%) in hF.

7.3 Semi-Supervised Hierarchical Bayesian Multi-label Clas-
sifier

Section 7.2 showed that the incorporation of the Bayesian network to post-process
the output of a base classifier could help to improve its performance. Therefore,
Semi-Supervised Hierarchical Bayesian Multi-label Classifier (SSHBMC) [Serrano-
Pérez and Sucar, 2025] proposes to incorporate the Bayesian network as an alterna-
tive post-processing to truncating the probabilities as SSHMC-BLI does.

Algorithm 3 shows the steps of SSHBMC, which is based on SSHMC-BLI. It
is an iterative method that tries to build pseudo-paths of labels (line 10) to pseudo-
label the unlabeled data using its nearest labeled neighbors (line 6), details of how
pseudo-paths of labels are built can be found in section 5.1. Also, the method
considers the similarity of each unlabeled instances with its neighbors (line 7), if
they are not similar the unlabeled instance stays unlabeled; SISI is the function
used to estimate the similarity. Furthermore, the hierarchical Bayesian classifier
described in section 7.1 is used as the hierarchical classifier, which uses LCN to feed
the Bayesian network.

7.3.1 Experiments and Results

Results in the GO datasets (section 4.2) and a comparison of SSHBMC (which incor-
porates the Bayesian network) against SSHMC-BLI (variant 1), standard methods
(STML and STHC, both described in Appendix E) and the supervised classifier
(LCN) are shown in Figures 7.5 and 7.6. The proposed method, SSHBMC, tends
to outperform most of times the rest of methods, even SSHMC-BLI; showing that
making use of the Bayesian network as post-processing is helping to improve the
performance of the classifier compared to when the post-processing consists on trun-
cating the probabilities.
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Algorithm 3 SSHBMC algorithm

Require: (X,Y"): labeled data, U: unlabeled data, k: number of nearest labeled neigh-
bors, T'HR: similarity threshold, thLabel: threshold to pseudo-label an instance,
H S hierarchy of DAG type, maxIterations: maximum number of iterations.
Ensure: fqsyc: trained SSHBMC classifier
1: T+1
LD+ X
CL+Y
while T'rue do
for each u; € U do
IND;j < getNLN (k,u;, LD) > Nearest labeled neighbors
if SISI(u;,IND;) < THR then
PSL; =0
else
PSL; < buildPPL(IND,, LD,thLabel) > Pseudo-path-of-labels for

R A A o

_
e

Uj
11: i (T > mazlterations) or (PSLT == PSLT~') then
12: break loop (while)
13: else
14: CL «+ Y Uwalid(PSL)
Is: LD + X UUlvalid(PSL)]

16: T+ T+1
17: fsspc < trainHBC(LD,CL,HS)  © Train the hierarchical Bayesian classifier

7.3.2 Discussion

The Friedman test together with its post-hoc, Nemenyi test, were carried out to
verify if there is statistical difference among the methods [Demsar, 2006].

The result of the Friedman test with a = 0.05 is that the null hypothesis
can be rejected in favor of the alternative, in other words, the average ranks of the
algorithms are not equal. Then, the Nemenyi test was applied, Fig. 7.4 shows its
graphical representation. As it can be seen, SSHBMC is significantly better from
the rest of methods.

7.4 Summary

In this chapter, the semi-supevised hierarchical classifier SSHBMC was proposed,
which extends SSHMC-BLI by using a Bayesian network to post-process the output
of the local classifiers instead of truncating the probabilities. Section 7.1 presents the
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cD
—A
1 2 3 4 5
SSHBMC J L STML
SSHMC-BLI — L STHC
LCN

Figure 7.4: Graphical representation of the Nemenyi test. Classifiers that are not signifi-
cantly different, with oo = 0.05, are connected. CD: critical difference. (Lower is better.)

hierarchical Bayesian classifier, which models the hierarchy as a Bayesian network
while considers the behavior of the base classifier. Additionally, the supervised
classifier BCNN was proposed for hierarchical classification of images, which is based
on the hierarchical classifier and it was applied to morphological classification of
galaxies.
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Figure 7.5: Results in terms of average precision (AP) in the following datasets: a) cell-
cycle, b) church, c) derisi, d) eisen, e) expr and f) gaschl. The x-axis corresponds to the
amount of labeled data, while its complement is the unlabeled data. (Best seen in color.)
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Figure 7.6: Results in terms of average precision in the following datasets: a) gasch2, b)
hom, c) pheno, d) seq, e) spo and f) struc. The z-axis corresponds to the amount of labeled
data, while its complement is the unlabeled data. (Best seen in color.)
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Transfer Learning in SSHMC-BLI

Since the scarcity of labeled data is a mayor problem in this field, the available
information has to be exploited as much as possible. One way that we proposed to
achieve this is by carrying out transfer learning (TL) between neighboring nodes.

In hierarchical classification, the LCN approach implies that upper nodes learn
general information while depth nodes learn specific information. So, instead of
training independent local classifiers as classical LCN does, we propose to transfer
the knowledge of each parent node to its children, in this way, the child nodes will
not be trained from scratch.

8.1 Hierarchical Specialization

Hierarchical specialization (HSp) is the proposed method to train a classifier based
on LCN, which takes into account that upper nodes learn general information, so,
this information can be shared to their children to be specialized by them.

The idea of HSp can be illustrated with an example, but first, a perceptron
[Rosenblatt, 1958] will be used as the local classifier, whose function is shown in

equation 8.1:
d
y=f (b + wa) 8.1)
i=1

where z € R? is the input space, w € R? and b are the parameters of the perceptron,
d is the number of attributes and f(-) is the activation function.

The example consist on training a binary classifier from scratch, in this example
a perceptron, so later, the parameters learned by the classifier can be copied for its
children, so they are not trained from scratch. The hierarchy and labeled instances

72
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OO > -
@ (b) hF

Figure 8.1: Example of hierarchical specialization. a) A hierarchy. (b) Some labeled
points, z € R?, are shown (colored with the most specific label). The decision boundaries
(DB) of nodes 1, 3 and 5 are shown, instances below the line are positively classified,
negatively otherwise. TL may be applied in a TD manner, for instance, the DB of node
1 may be used as the staring point of node 3 instead of being trained from scratch, in the
same way, the DB of node 3 may be used as starting point of node 5. (Best seen in color)

for the example are shown in Fig. 8.1, hence the training for node 1 will start
by giving random values to the parameters of the perceptron, in this example the
number of attributes is d = 2, which are later fit to the labeled set, so, at the end
of the training, it will find! that w, ~ 0, and some values for w; and b, hence the
decision boundary (DB 1) can be plot as shown in Fig. 8.1b, where instances below
the line will be positively classified, while instances over the line will be negatively
classified. Later, there are two alternatives for training node 3: the first is training
from scratch, i.e. the parameters of the perceptron would be randomly initialized;
or the second, use as starting point the learned parameters of its parent, that is,
copy the parameters of node 1’s perceptron, this means that an specialization would
be carry out. In this example, it is clear that the second option should be preferred
because the parameters learned by node 1’s perceptron will be pretty much similar
than those learned by node 3’s perceptron but b; decision boundary of node 3 (DB
3) is plotted in Fig 8.1b, where instances below the line are positively classified,
negatively otherwise. Following the same idea of specialization, the classifier of
node 5 (DB 5) can be obtained using as starting points the parameters of node 3’s
perceptron. As it can be seen, the classifier of node 3 is an specialization of the node
1, while the classifier of node 5 is an specialization of node 3.

'In this example is also possible that w; = 0.



Chapter 8. SSHBMC 74

HSp works only on the training phase of the hierarchical classifier based on
LCN. Algorithm 4 shows the general steps of HSp, it initializes an artificial neural
network (ANN) from scratch for children of the root node (line 5); for the rest
of nodes, it selects one parent and copy its parameters (line 8), that is, transfer
learning from parent to child, in other words, an specialization. After selecting the
positive and negative instances with the corresponding policy (line 9; the balanced
bottom-up policy is used in the experiments of this chapter) the local classifier can
be (re-)trained.

Even tough, in the toy example a perceptron was used, any ANN [Haykin,
2009, Goodfellow et al., 2016], whose parameters can be copied to be retrained later,
can be used as the binary classifier, for instance the multilayer perceptron.

On the other hand, the order determined by parents first search (PFS) is
followed to walk through all nodes, which guarantees that a node can be trained
only when its parents have already been trained; PFS is a search for DAGs similar
to breadth first search[Needham and Hodler, 2019}, however, PFS adds a node to its
queue only if all its parents have already been visited. Algorithm 5 shows the steps
of PFS, it requires an empty queue and an empty list of visited nodes (lines 1 and
2, respectively); the search always starts at the root node, so, it adds the root node
at the list and adds root’s children to the queue (lines 4-6); later, the search gets
the first node of the queue and adds it to the list (lines 9 and 10, respectively), then
only its children whose parents have already been visited, can be added to the queue
(lines 12-16); the search iterates until the queue is empty. Finally, the root node is
removed from the list of visited nodes, because it is not useful for LCN, and the list
of visited nodes is returned (lines 18-19).

Algorithm 4 HSp algorithm; fit function of the hierarchical classifier.

Require: (X,Y): (pseudo-)labeled data, H: hierarchy of DAG type, n number of nodes.
Ensure: trained classifier

1: lens < array(n) > Array of local classifiers
2:

3: for each j € PFS(H) do > PFS: parents first search
4: if isRootChild(j, H) then

5: lens[j] < AN N (hyperparameters) > Artificial neural networks
6: else

7: p < getParent(j) > index of one parent
8: lens[j] < copy(lens|p)) > copy the parameters of its parent
9: (X", Y") < policy(j, H, X,Y)

_
e

lens[j]. fit( X', Y") > training of the binary ANN
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Algorithm 5 Parents first seach: PF'S(H)

Require: H': hierarchy of DAG type.
Ensure: list with ordered nodes.

1: queue < Queue() > Initialize a queue
2: visited < List() > Empty list
3:

4: children < getChildren(0, H) > Get children of the root node: 0
5: wvisited.append(0)

6: queue.append(children)

7

8: while queue.length > 0 do > While there are items in the queue
9: node < queue.pop()

10: visited.append(node)

11:

12: children < getChildren(node, H)
13: for each j € children do

14: parents < getParents(j, H) > Get j’s parents
15: if all parents in visited then

16: queuve.append(j)

17:

18: wisited.remove(0) > Remove root node

19: return visited

8.2 Experiments and Results

The experiments in this section are carried out to show if TL helps to improve the
performance of a semi-supervised hierarchical classifier than when it is not used, in
the case when the hierarchy is of DAG type and the instances can be associated to
multiple path of labels of partial depth.

Multilayer perceptron (MLP) is the ANN used as the local classifier, which is
formed of: input layer, 3 hidden layers with 100 neurons each (activation relu) and
output layer (activation sigmoid). The MLP is optimized with the Adam optimizer
and binary cross-entropy as the loss by 100 epochs.

Figs. 8.3 and 8.4 show the results, on the GO datasets, of SSHMC-BLI (v1)
with and without TL as well as the results of the supervised classifier (LCN?).
SSHMC-BLI keeps outperforming most of times the supervised classifier as in chapter
6, furthermore, when TL is carried out, the performance of the classifier tend to be
improved most of times.

21t is trained with the same MLP.
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8.3 Discussion

Table 8.1 presents the average rank of the results of the classifiers SSHMC-BLI, with
and without TL, and the supervised classifier, where SSHMC-BLI with TL shows

the best general performance.

Table 8.1: Average rank of each classifier in the GO collection. In bold the best (lower is
better).

LCN SSHMC-BLI SSHMC-BLI+TL
Avg. Precision 2.94 1.8 1.26

To know if there is statistical difference among the SSHMC-BLI the supervised
classifier, the Friedman test together with its post-hoc the Nemenyi test were applied
[Demsar, 2006].

The result of the Friedman test with p = 0.05 for evaluation measure average
precision is that the null hypothesis can be rejected in favor of the alternative, that
is, the average ranks of the algorithms are not equal. Since the null hypothesis was
rejected, the Nemenyi test can be applied. Fig. 8.2 shows the graphical represen-
tation of the Nemenyi test for average precision. As it can seen, SSHMC-BLI with
TL is statistically better than when TL is not used. Furthermore, SSHMC-BLI with
and without TL are statistically better than the supervised classifier.

cD
——

1 2 3

SSHMC-BLI+TL —— L LCN
SSHMC-BLI

Figure 8.2: Graphical representations of Nemenyi test for the evaluation measures average
precision. Classifiers that are not significantly different, with p = 0.05, are connected.
CD: critical difference. (Lower is better)

8.4 Summary

In this chapter, the semi-supervised hierarchical classifier SSHMC-BLI was extended
by including TL among neighboring nodes. The algorithm HSp was proposed to
train a hierarchical classifier based on LCN to transfer learning from a parent to
its children. Furthermore, it was shown that using TL can help to improve the
performance of the semi-supervised hierarchical classifier than when it is not used.
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Figure 8.3: Results in terms of average precision (AP) in the following datasets: a) cell-
cycle, b) church, c) derisi, d) eisen, e) expr and f) gaschl. The x-axis corresponds to the
amount of labeled data, while its complement is the unlabeled data. (Best seen in color.)



Chapter 8. SSHBMC 78

gasch2_GO pheno_GO
_____ 0.54
042 ®-—"""" O e . S LCN
mesal o N SSHMC-BLI
e o ~ -®- SSHMCBLI+TL
0.41 B | -~ ~
053] & S
- __
0.40 4 .
c = -
S 5 ~
2 2 0524 AN
£ 039 g Y
& & »
g g
< 038 z
0.51
037
LCN
036 4 SSHMC-BLI 0.504
~®- SSHMC-BLI+TL
10 30 50 70 %0 10 30 50 70 %0
% Labeled % Labeled
(a) (b)
seq_GO spo_GO
0.40
LCN __--® LY LCN
0.45 SSHMC-BLI Y sl SSHMC-BLI
~®- SSHMCBLI4TL o 0.39 iq ~®- SSHMCBLI+TL
0474 o Thees
e 0.38 s
c 0.46 ” - DR
g & 2 0374 e
v 5 S 9
£ 045 ’,/ g
& L7 5 0.36
g P g
< 0.44 2
035
0.43 4
0.34
0.42 4
T T T T T 0337 T T T T T
10 30 50 70 %0 10 30 50 70 %0
% Labeled % Labeled

(c) (d)

Figure 8.4: Results in terms of average precision in the following datasets: a) gasch2, b)
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complement is the unlabeled data. (Best seen in color.)
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Conclusion and Future Work

Supervised classification often suffers from a lack of labeled data due to the time-
consuming and costly nature of hand-labeling. This issue is exacerbated in hierar-
chical classification, where data is split among nodes, leaving deeper nodes with even
less data. To address this, semi-supervised learning can be employed, utilizing both
labeled and unlabeled data to train classifiers. Additionally, transfer learning can be
applied, allowing upper nodes to share their general information with lower nodes.
Therefore, our objective was to develop a semi-supervised hierarchical classifier that
can be trained with labeled and unlabeled data to perform classification on datasets
where the hierarchy is of DAG type and the instances can be associated to multiple
paths of labels of partial depth.

Regarding our proposed method on semi-supervised hierachical classification where
hierarchies are of tree type, we can conclude that:

* Use unlabeled data along labeled data can help to improve the performance of
a hierarchical classifier trained only on labeled data.

e Our proposed method method, SSHC-BLI, is statistically better than its su-
pervised counterpart and it is competitive with related methods.

Regarding our study on hierarchical classification where the hierarchies are of DAG
type and the instances can be associated to multiple paths of labels of partial depth,
we can conclude that:

* Use unlabeled data along labeled data can help to improve the performance of
a hierarchical classifier trained only on labeled data.

* Our proposed method, SSHMC-BLI, is statistically better than its supervised
counterpart and standard semi-supervised methods.

79
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* Making use of a Bayesian network to post-process the output of a hierarchical
classifier can boost its performance.

Regarding our study of incorporating transfer learning between neighboring nodes,
we can conclude that:

» Transfer learning between neighboring nodes can help to improved the perfor-
mance of a hierarchical classifier.

* Our proposed method, SSHMC-BLI, is statistically better when TL is carried
out than when it is not.

Finally, the contributions of this research are summarized below:

e The similarity function SISI.

* The semi-supervised hierarchical classifier SSHC-BLI for hierarchies of tree
type.

* The semi-supervised hierarchical classifiers SSHMC-BLI for hierarchies of DAG
type; and its extension with Bayesian networks, SSHBMC.

* The supervised hierarchical classifier BCNN for hierarchical classification of
images.

e The algorithm HSp for transfer learning among neighboring nodes.

9.1 Future Work

Different lines of research can be followed:

* Constructing datasets with hierarchies of DAG type to organize data in a
structure where each node can have multiple parents, allowing for more flexible
and complex relationships compared to tree structures; for various sources,
such as text, images, and videos.

* Extension of the semi-supervised methods to handle images, videos and au-
dios by solving the pre-processing requirements of these types of data. This
extension could significantly enhance the versatility and applicability of the
semi-supervised hierarchical classifier in various domains.

* With respect to transfer learning in hierarchical classification:
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— In hierarchies of DAG type, nodes may have multiple parents, hence
strategies to transfer learning from multiples parents in a LCN approach
may be explored; also strategies that choose the best parent to transfer
knowledge may be explored.

— Transfer learning in the LCPN approach: in similar way than HSp, TL
may be carried out from parent to child, but using LCPN classifiers.

— Transfer learning in the LCL approach: in similar way that HSp, TL may
be carried out from upper to bottom levels.
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Appendix A

Text preprocessing

The preprocessing applied to the 20 newsgroup is described next:

1. Punctuation marks were removed: period, comma, parentheses...
2. Lemmatization of the words.

3. Stop words were removed: a, an, do, in, for, by...

4. Words with a frequency lower than 2 were removed.

5. The representation Term Frequency * Inverse Document Frequency (Tf-1df)
was calculated, where rare features in the corpus have their value increased.

6. The Tt-1df representation was transformed into a latent space of lower dimen-
sionality. Latent semantic indexing (LSI) was applied with 50 latent dimen-
sions.

The model for preprocessing was built from the training set, which was later applied
to the test set. Finally, the training set was divided into training and validation
sets, with proportions of 80% and 20%, respectively.
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Appendix B

Similarity measures

In this appendix, several similarity measures are compared against SISI.

Table B.1 describes several similarity measures. Measures from Manhattan to
Canberra are used to measure the similarity between two points. Cosine is used
to measure the cosine of the angle between two points, however, it is not a metric
since it does not comply the triangle inequality. Nevertheless, none of the previous
measures is able to measure the similarity of a point with a set of points.

On the other hand, Mahalanobis is able to measure the distances between a
point and a distribution, which requires a significant amount of data to estimate the
probability distribution D, i.e. the mean u and the positive semi-definite covariance
matrix S, amount of data that is not available in the present work, considering that
number of labeled neighbors is at most five. Moreover, none of the above similarity
measures return a value in the interval [0, 1].

Therefore, SISI is proposed as an option to measure the similarity of a point
with a small set of points, which takes into account the distances among the set of
points, and the distances of the point with the points of the set. Furthermore, SISI
returns a score in [0, 1].
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Table B.1: List of similarity measures, where a, b € R™ are two points, D is a probability
distribution on R" with mean p = (u1, pto, ..., i4,) and S is a positive semi-definite covari-

ance matrix.

Name Equation

Description

Manhattan  d(a,b) => ., | a; — b; |

Euclidean d(a,b) = /> (a; — b;)?

Minkowski  d(a,b) = />0, | ai—b; P

Chebyshev  d(a,b) = max; | a; — b; |

Canberra  d(a,b) = Y77, {7l

Cosine d(a,b) = i

Mahalanobis  d(a, D) = \/(a — p)S~1(a — p)T

Measures the sum of absolute differences
between two points.

Measures the straight-line distance
between two points in a feature space.
Generalization of Manhattan and
Euclidean distances.

Special case of the Minkowski distance
where p goes to infinity

Weighted version of the Manhattan
distance.

Measures the cosine of the angle between
two vectors.

Measure of the distance between a point
and a distribution

SISI Equation 5.6

Similarity of an instance with a set of
instances




Appendix C

Metric

Let X be a set, and let d be a function defined on pair of elements of X. d is a
metric of space X if the following axioms are satisfied for all x1, x5, 23 € X:
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Appendix D

Image augmentation

Data augmentation is carried out to balance the leaf nodes. It consists on applying
some operations to the available images, such as flip, scale, rotation, etc., to obtain
different images.

First, let LM AX be the largest number of associated images to the leaf nodes.
Then, for each [ leaf node with m; instances associated: generate n images, where
n = LMAX % 0.95 — my; the n generated images will be associated to [ and all
its ancestors given by the hierarchy. Image generation follows the next pipeline
(iterating over the images associated with the [ node):

1. Flip (either horizontal or vertical) with a probability of 0.5.

2. Shift both x and y axis in the range [-10, 10] (percent) with probability one.
3. Scale in the range [-30, 30] (percent) with probability one.

4. Rotate in the range [0, 360] (degrees) with probability one.

5. To fill the voids that may appear in the images due to the different transfor-
mation, the strategy border reflect! is used to fill those pixels.

6. Resize to 300x300 pixels.

An example is shown in Fig. D.1. Two images are generated from the image on the

left.

'BORDER _REFLECT_101 from opencv.org
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Figure D.1: example of generation of artificial images. The image on the left is the avail-
able one; the two on the left are generated images after applying some operations to the
image on the left.



Appendix E

DAGs Standard Methods for
Semi-Supervised Hierarchical
Classification

Beyond comparing the proposed semi-supervised methods (for DAG hierarchies)
with a supervised classifier, a couple of semi-supervised methods were developed.
They are described next:

o Self-Training for Multi-Label classification (STML): for each label a binary
classifier is self-trained using the whole unlabeled set; the prediction for a new
instance is the union of the predictions of the binary classifiers (which can also
be probabilities). This method (as any multi-label classifier) ignores the hier-
archy, and its predictions do not guarantee to comply neither the hierarchical
constraint nor the hierarchical probability constraint.

o Self-Training Hierarchical Classifier (STHC): each node of the hierarchy is self-
trained like STML, but in the prediction phase, the predictions of the local
classifiers are post-processed such that they comply the hierarchical probability
constraint, that is, if the probability in a node is greater than the probability
of its parent with the lowest probability, its probability is reduced down to the
probability of that parent. STHC is introduced as a standard semi supervised
classifier for hierarchical classification where the hierarchy is a DAG and the
instances are associated to multiple paths of labels. Furthermore, it can be seen
as an extension of self-train A [Metz and Freitas, 2009] where the predictions of
the binary classifiers are post-processed to comply the hierarchical probability
constraint instead of applying the top-down procedure.
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Appendix F

Tables of Results on Datasets with
Hierarchies of Tree Type

Table F.1 shows the results of the SSHC-BLI variants (V1, V2, V3) and the related
methods with the evaluation measure exact match. Table F.2 shows the results with
hF. Finally, Table F.3 shows the results with the evaluation measure MCC.

Table F.1: Results in the datasets with the evaluation measure exact match of the SSHC-
BLI variants (V1, V2, V3) and related methods.

Dataset TD Vi V2 V3 STA HMC-SSBR
EA_01_FD_b_10 100 98.333 98.333 98.333 93.889 100
EA_01_FD_b_30 98.889 99.444 99.444 99.444 96.111 100
EA01_.FD_b.50 99.444 98.889 98.889 98.889 95.556 100
EA01_FD_b_70  98.889 98.889 98.889 98.889 95.556 100
EA 01 FD_b90 98.889 98.333 98.333 98.333 96.667 100
EA_01_FD_ub_10 100 100 100 100 95.256 100
EA_01_FD_ub_30 99.872 100 100 100 96.795 100
EA_01_FD_ub_50 99.872 100 100 100 97.308 100
EA01_FD_ub_70 99.872 100 100 100 98.333 100
EA_01_FD_ub90 99.872 100 100 100  98.205 100
EA 02 FD_b_10 96.667 97.778 98.333 98.333 72.222 100
EA 02 FD_b30 95.556 97.778 97.222 97.222 77.222 100
EA 02 FD_b.50 96.111 98.333 98.333 98.333 81.111 100
EA_02.FD_b_70 95556 97.222 97.222 97.222 83.889 100
EA_02_.FD_b_90 96.111 97.222 97.222 97.222 85.556 100

EA 02 FD ub 10 95.641 99.231 99.487 99.487 77.051 99.487
EA 02 FD_ub 30 97.949 99.103 99.231 99.231 83.333 99.615
(Continues in the next page)
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Table F.1: Results in the datasets with the evaluation measure exact match of the SSHC-
BLI variants (V1, V2, V3) and related methods, TD: Top-Down, STA: self-train A, HMC-
SSBR: Hierarchical Multi-label Classification using Semi-Supervised Binary Relevance.

Dataset TD A\’ V2 V3 STA HMC-SSBR
EA 02 FD_ub 50 98.718 99.103 99.231 99.231 86.026 99.615
EA_02_.FD_ub_70  98.59 99.231 99.359 99.359 87.436 99.615
EA_02.FD_.ub 90 98.846 98.974 98.974 98.974 87.179 99.615
HA 01 FD b 10 85476 98.333 99.048 99.048 86.19 99.048
HA 01 .FD_b30 95714 98.571 99.286 99.286 89.048 100
HA 01_.FD_b.50  98.571 99.048 99.286 99.286 90.714 100
HA 01.FD_b_70  99.286 98.81 99.048 99.048 92.857 100
HA 01.FD_b 90 98.81 98.571 98.571 98.571 91.905 100
HA 01 FD_ub_ 10 96.465 99.394 99.394 99.394 87.778 99.697
HA 01 FD_ub_30 98.182 99.293 99.192 99.192 92.323 99.596
HA 01 FD_ub_50 98.586 99.192 99.495 99.495 93.636 99.697
HA 01_FD_ub_70 98.788 98.99 99.091 99.091 95.354 99.899
HA 01 FD_ub 90 99.091 99.192 99.192 99.192 95.455 100
HA 02.FD_b_10 10 11.905 8.571  7.857 8.333 14.048
HA 02.FD_b.30 10.238 10 12.381 11.667 12.143 13.333
HA 02 FD_b50 13.571 12.143 14.286 14.286 12.381 11.429
HA_02_.FD_b_70 15 16.667 14.286 14.286 14.286 9.524
HA 02 FD_b 90 15 17.381 16.667 16.667 15.714 7.619
HA 02 FD_ub_10 13.583 13 13.25  12.583 13.333 14.667
HA 02.FD_ub 30 15.75 15.25 15 15.667 14.833 13.75
HA_02_.FD_ub.50 16.667 15.5 15.167 15.583 16.917 12.75
HA_02_FD_ub_70 16.833 17.667 15.667 17.333 16.833 11.833
HA 02 FD_ub 90 18.25 18.667 1875 18.75 18.5 9.833
HA_03_.FD_b_10 9.762 12.857 10.952 11.429 9.286 9.048
HA 03 FD_b 30 12.857 14.524 13.333 12.143 13.333 9.286
HA 03 FD_b.50 14.524 13.81 16.19 15 13.571 10
HA03_.FD_b_70  14.762 15.714 16.19 16.19 12.619 11.429
HA_03_-FD_b_90 16.19 15.714 15476 15476 13.333 10.714
HA 03 FD_ub_10 155 14.917 12 10917  13.25 14.583
HA 03_.FD_ub_30 16.333 16.5 15.833 14.25 14.75 14.5
HA_03_FD_ub_50 19.833 20.417 18.833 19.583 16.583 15.583
HA_03_.FD_ub_70 18.417 20.417 19 19 18.25 15.083
HA_03_-FD_ub_90 20 20.583 20.417 20.417 19.083 15.917
HA 09 FD_b_10 4.091 3.807 3939 3.788  3.655 0.303
HA_09_FD_b_30 4943 4.867 5076 4.886  4.223 0.057
HA_09_FD_b_50 2.095 5284 5.871 5701 4.413 0

(Continues in the next page)
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Table F.1: Results in the datasets with the evaluation measure exact match of the SSHC-
BLI variants (V1, V2, V3) and related methods, TD: Top-Down, STA: self-train A, HMC-
SSBR: Hierarchical Multi-label Classification using Semi-Supervised Binary Relevance.

Dataset TD A\’ V2 V3 STA HMC-SSBR
HA_09_FD_b_70 5.568  4.962 4981 5.284  4.886 0.038
HA_09_-FD_b_90 5.246  5.511 5417 5417  5.398 0.038
HA 09 FD ub_ 10 5.143 4.789  4.745  4.59 5 2.345
HA 09 FD_ub 30 5.821 5933 5914 5.715 4.956 1.748
HA_ 09 FD_ub50 574  6.119 5927 6.082 5.429 1.275
HA_ 09 FD_ub.70 6.057 6.412 6.231 6.256  5.628 0.964
HA_09_.FD_ub_90 6.287 6.604 6.598 6.598  5.902 0.759
HA_10_.FD_b_10 7.073 7297  7.093 7.886  6.077 3.089
HA_10_FD_b_30 9.634 10.061 9.329 9.756  7.215 4.167
HA_10.FD_b.50 10.671 11.138 10.285 10.63  8.415 2.419
HA_10.FD_b_70  11.098 11.585 11.89 11.89 9.126 2.256
HA_10.FD b 90 11484 11.809 11.809 11.809  9.37 2.033
HA_10.FD_ub_ 10 9.903 10.603 9.546 10.149 8.601 9.866

HA_10.FD_ub 30 12.567 13.08 12.969 13.266 10.789 10.878
HA_10.FD_ub 50 14.04 14.442 13.772 14.673 11.235 10.737
HA_10_.FD_ub_.70 14.576 15.26 15.149 14.94 12.054 10.625
HA_10_.FD_ub 90 16.012 16.287 16.369 16.369 11.897 9.643
VH_01_FD_b_10 10.37  12.593 12.593 12.593 11.852 10.37
VHO01.FD b 30 13.704 11.852 14.074 13.704 11.852 10.741
VH.01.FD_b.50 13.704 13.333 13.333 14.074 14.444 11.852
VHO1.FD_b_70  10.741 13.333 12.593 12.593 10.37 10

VHO01.FD_b90 11.111 11.481 11.481 11.481 10.37 5.185
VHO01_.FD_ub_10 8.081 12.323 13.535 14.343 11.515 14.141
VH 01 .FD ub 30 8.687 10.505 10.303 10.707 10.909 14.343
VH.01.FD_ub50 7.071 9.293 9.293 9.293 10.101 11.717

VHO01.FD_ub_70 6.465 7.677 7879 7.879  9.899 4.848
VHO1.FD_ub 90 5.859 6.667 6.263 6.263 8.283 3.838
VH02_.FD_b_10  30.476 32.381 30.952 20.476 30 27.143

VH 02.FD_ b 30 45.714 52.381 47.619 45.238 34.762 38.571
VH_02_FD_b_.50  55.714 55.714 56.667 55.714 40.952 37.619
VH.02_.FD_b_70  59.048 60.952 60.476 61.429 40.952 42.381
VH 02.FD_b 90 64.762 65.238 66.19 66.19 45.238 49.048
VH.02_.FD_ub_10 47.03 50.061 49.939 25.333 38.424 47.273
VH 02.FD_ub 30 62.182 63.879 62.182 55.152 43.758 47.273
VH_02_FD_ub_50 68.364 69.333 68.606 65.818 48.242 54.303
VH.02_FD_ub_70 71.03 73.212 71.273 72.364 50.667 60.242
(Continues in the next page)
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Table F.1: Results in the datasets with the evaluation measure exact match of the SSHC-
BLI variants (V1, V2, V3) and related methods, TD: Top-Down, STA: self-train A, HMC-
SSBR: Hierarchical Multi-label Classification using Semi-Supervised Binary Relevance.

Dataset TD A\’ V2 V3 STA HMC-SSBR

VH_02_.FD_ub 90 74.303 75.879 75.515 75.515 51.758 63.758
VH03_.FD_b_10  28.571 38413 36.19 17.619 23.016 27.302
VH03_.FD_b 30 46.667 48.095 47.143 40.476 28.73 28.254
VH.03_.FD_b_50  50.952 54.762 53.492 53.492 34.444 27.778
VH.03_.FD_b_70  57.143 60.952 60.317 60.317 37.778 28.889
VH03_FD_b90  62.222 63.492 63.651 63.651 39.683 31.27
VH_03_FD_ub_10 34.288 42.059 34.015 14.656 28.903 29.039
VH.03_FD_ub_30 55.283 59.646 58.078 50.784 33.674 32.515
VH.03_.FD_ub_50 60.191 61.486 61.213 61.213 39.877 32.993
VH.03_.FD_ub_70 64.213 66.667 66.599 66.2568 41.581 33.061
VH_03_FD_ub_90 68.439 69.257 69.53 69.53 41.65 34.697

VH_08_FD_b_10 7.249 7381 7434 7.249 5132 7.116
VH_08_FD_b_30 9.365 9.788 9.735 8386 6.376 8.148
VH.08_FD_b.50  10.026 11.19 10.556 11.19  7.46 8.466
VHO08_FD_b_.70  11.243 11.931 11.481 11.481 8.148 8.677
VH08_.FD_b90  11.587 11.481 11.693 11.693 8.704 8.651

VH.08_FD_ub_10 892 9.091 9451 8.068 7.519 10.199
VH 08 FD_ub 30 11.809 12.358 12.311 10.994 9.555 12.434
VH 08 FD_ub 50 13.475 14.148 14.46 14.025 10.994 12.898
VH.08_FD_ub_70 15.246 15.095 14.962 15.36 11.117 13.153
VH.08_.FD_ub 90 16.335 16.496 16.241 16.241 12.121 13.144
020NG_50t_10 60.67 59.904 58.559 51.779 41.591 56.103
020NG_50t_30 63.75 64.007 63.98 63.193 45.512 08.147
020NG_50t_50 64.5011 65.1 64.795 64.467 47.57 59.112
020NG_50t_70 65.312 65.817 65.538 65.401 48.628 59.785
020NG_50t_90 65.711 65.959 66.016 66.016 50.212 60.139

cellcycle_10 12.657 14.709 15.583 16.914 11.288 9.806
cellcycle_30 15.279 16.914 16.724 16.154 13.569 5.511
cellcycle_50 18.206 19.08 19.156 18.662 12.961 14.253
celleycle_70 19.574 19.46 19.916 19916 13.873 13.227
celleycle_ 90 20.601 21.171 21.817 21.817 15.013 13.759
derisi-10 10.46 11.786 11.418 10.755 11.565 3.757
derisi-30 13.37 13.076 12.634 12.67 11.823 6.298
derisi_b0 13.996 14.659 14.401 14.328 12.265 7.035
derisi_70 14.659 15.101 15.359 15.028 13.517 7.182
derisi_ 90 14.401 14.659 14.954 14.954 12.634 T7.477

(Continues in the next page)
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Table F.1: Results in the datasets with the evaluation measure exact match of the SSHC-
BLI variants (V1, V2, V3) and related methods, TD: Top-Down, STA: self-train A, HMC-
SSBR: Hierarchical Multi-label Classification using Semi-Supervised Binary Relevance.

Dataset TD A\’ V2 V3 STA HMC-SSBR
eisen-10 19.176 18.965 17.961 18.806 15.689 6.339
eisen_30 21.659 22.081 20.285 21.712 15.214 9.667
eisen_50 23.719 28473 26.36 25.885 17.908 16.27
eisen_70 28.209 29.847 29477 29.477 18.014 17.433
eisen_90 28.473 30.005 30.375 30.375 19.915 16.852
gasch1_10 15.929 18.842 18.426 19.485 13.583 7.491
gasch1_30 18.313 22,777 21.302 20.621 15.778 9.118
gasch1_50 20.507 24.064 23.761 23.345 16.799 17.745
gaschl_70 23.042 23.004 24.518 24.518 16.875 18.35
gasch1_90 23.61 25.123 25.161 25.161 18.464 17.707
gasch2_10 14.393 16.911 16.084 16.272 13.867 8.643
gasch2_30 15.859 18.076 18.489 18.113 13.303 7.516
gasch2_50 16.46 18.452 17.926 17.738 16.234 7.967
gasch2_70 19.015 20.068 18.414 18.715 16.761 12.815
gasch2_90 18.527 19.805 19.654 19.654 15.483 15.145

(End exact match results)

Table F.2: Results in the datasets with the evaluation measure hF of the SSHC-BLI vari-
ants (V1, V2, V3) and related methods, TD: Top-Down, STA: self-train A, HMC-SSBR:
Hierarchical Multi-label Classification using Semi-Supervised Binary Relevance.

Dataset TD A\’ V2 V3 STA HMC-SSBR
EA01.FD_b_10 100 99.167 99.167 99.167 95.278 100
EA 01 FD b30 99444 99.722 99.722 99.722 96.389 100
EA 01 FD b50  99.722 99.444 99.444 99.444 95.556 100
EA 01 FD b.70  99.444 99.444 99.444 99.444 96.111 100
EA01_.FD_b90  99.444 99.167 99.167 99.167 96.667 100
EA 01 .FD_ub_10 100 100 100 100 96.731 100
EA 01_.FD_ub_30 99.936 100 100 100 97.628 100
EA 01 FD_ub50 99.936 100 100 100 98.077 100
EA 01 FD_ub_70 99.936 100 100 100 98.782 100
EA_01_.FD_ub_90 99.936 100 100 100 98.718 100
EA_02.FD_b_10  98.333 98.333 98.889 98.889 80.278 100
EA02.FD b330 97.222 98.333 98.056 98.056 83.611 100
EA_02_.FD_b_50 97.5 98.889 98.889 98.889  87.5 100

(Continues in the next page)
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Table F.2: Results in the datasets with the evaluation measure hF of the SSHC-BLI vari-
ants (V1, V2, V3) and related methods.

Dataset TD V1 V2 V3 STA HMC-SSBR
EA_02_.FD_b_70 97.5 98.056 98.056 98.056 88.889 100
EA_02.FD_b 90 97.222 98.056 98.056 98.056 90 100

EA02.FD_ub_10 96.987 99.615 99.744 99.744 83.141 99.744
EA_02_.FD_ub_30 98.718 99.487 99.551 99.551 88.718 99.808
EA 02 FD_ub.50 99.167 99.487 99.615 99.615 90.705 99.808
EA 02 FD_ub_70 99.038 99.615 99.679 99.679 91.282 99.808
EA_02_.FD_ub_90 99.295 99.359 99.359 99.359 91.41 99.808
HA 01.FD_b_10  93.464 99.326 99.678 99.678 94.677 99.766

HA 01 FD b330 98.236 99.356 99.737 99.737 96.034 100
HA 01 .FD_b50 99.531 99.649 99.737 99.737 96.327 100
HA 01 FD b.70  99.766 99.502 99.59 99.59 97.088 100
HA 01.FD_b90 99.444 99.356 99.356 99.356 96.676 100

HA 01 FD_ub_10 98.438 99.785 99.811 99.811 95.338 99.962
HA 01 FDub30 99.19 99.76 99.748 99.748 97.094 99.937
HA 01 . FD_ub 50 99.38 99.684 99.811 99.811 97.823 99.962
HA 01 FD_ub_70 99.443 99.621 99.672 99.672 98.291 99.987
HA 01.FD_ub 90 99.57 99.608 99.608 99.608 98.391 100

HA_02_.FD_b_10 45.58  53.147 48.322 46.809 40.275 06.1

HA 02 FD b 30 48316 52.056 52.361 51.378 44.382 55.589
HA 02 FD b 50 48925 51.705 52.607 52.971 45.432 54.981
HA 02 FD b.70 49.965 50.902 51.013 51.013 46.638 55.498
HA 02.FD_b90 49.956 51.391 51.117 51.117 46.12 54.829
HA_02_.FD_ub_10 45.299 51.063 51.333 50.507 42.124 53.006
HA_02_.FD_ub_30 47.506 52.246 51.482 50.994 43.767 53.467
HA 02 FD_ub. 50 48.64 50.708 50.722 50.67 46.999 54.67
HA 02.FD_ub_70 48.869 50.558 50.321 51.275 45.331 55.525
HA 02.FD_ub 90 49.633 50.32 50.428 50.428 45.733 55.935
HA_03_.FD_b_10 28994 33.031 33.901 33.789 32.784 36.95
HA_03_.FD_b_30  29.725 34.445 33.462 32.179 34.161 37.835
HA 03 FD b50 31.114 33.594 33.803 33.853 34.214 37.502
HA 03 FD_b_70 31.031 33.33 32.425 32425 32.224 36.681
HA_03_FD_b_90 31.97  31.379 31.098 31.098 33.056 36.769
HA_03_.FD_ub_10 29.06 33.051 34.098 33.227 32.496 37.496
HA_03_.FD_ub_30 28.282 31.801 32.699 33.12 32.933 37.281
HA 03 FD_ub. 50 30.566 31.868 31.44 30.836 33.013 37.694
HA 03 FD_ub_70 28.493 30.127 29.493 29.098 33.836 38.376
HA 03_ FD_ub 90 28.525 29.825 29.823 29.823 32.789 37.283

(Continues in the next page)
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Table F.2: Results in the datasets with the evaluation measure hF of the SSHC-BLI vari-
ants (V1, V2, V3) and related methods.

Dataset TD V1 V2 V3 STA HMC-SSBR

HA 09 FD b 10 62.797 66.918 66.911 66.874 64.056 71.405
HA09.FD b30 62238 6543 65.612 65.685 63.97 72.993
HA_09.FD_b.50 62.365 64.765 65.148 65.054 63.861 73.643
HA 09 FD b 70 62548 63.439 63.637 63.642 64.181 74.256
HA 09 FD b 90 61.665 62.289 62.313 62.313 64.529 74.631
HA_ 09_FD_ub_10 63.239 66.11 66.138 66.154 64.755 71.19
HA_09_FD_ub_30 62.823 65.465 65.407 65.321 64.631 72.731
HA_09_FD_ub_50 63.158 64.881 64.908 65.037 64.941 73.462
HA 09 FD ub.70 63.078 64.276 64.231 64.201 64.743 73.884
HA 09 FD_ub 90 63.61 64.221 64.242 64.242 64.878 74.306
HA_10.FD_b_10  69.744 75.021 74.756 74.893 70.101 74.969
HA_10.FD_b 30 72467 75.212 75.261 75.111 70.512 75.875
HA_10_.FD_b.50  72.675 74.877 74.868 74.69 71.976 76.776
HA 10 FD b 70  73.312 74.436 74.589 74.589 72.243 T77.187
HA_10.FD_b 90  73.554 73.87 73.948 73.948 72.501 77.919
HA_10_FD_ub_10 71.908 76.066 75.846 75.692 71.017 75.284
HA_10_.FD_ub_30 73.509 76.255 76.368 75.962 72.516 76.106
HA_10_.FD_ub_50 74.211 75.949 75.867 75.826 72.784 76.504
HA_ 10 FD_ub.70 74.403 75.43 75.392 75.223 73.15 76.86
HA_ 10 FD_ub 90 74.987 75.301 75.246 75.246 73.484 77.411
VH.01.FD_b .10 24915 39.894 41.301 40.764 35.502 44.384
VHO01.FD_b_30 29.126 33.775  34.7 34.51  31.065 44.061
VH.01_.FD_b.50  24.233 29.035 28.287 29.279 27.835 44.006
VHO01.FD_b_70  20.042 24.33 23.539 23.539 23.074 44.153
VHO01.FD b 90 18542 19.256 19.354 19.354 19.124 41.314
VH.01_.FD_ub_10 31972 43.498 44.178 44.63  36.09 49.212
VH.01_.FD_ub_30 29.764 39.133 38.912 38.964 34.139 50.338
VH.01_.FD_ub 50 25941 32.477 32.208 32.208 30.426 50.921
VH.01_.FD_ub_70 23.018 26.86 27.133 27.133 28.941 52.213
VH 01 .FDub 90 19.11 20.595 20.251 20.251 23.435 51.853
VH.02_FD_b_10 35,501 36.776 34.192 20.32 38.548 49.408
VH.02.FD_b_30 49.672 53.13 50.13 49.517 43.556 55.147
VH_02_FD_b_50 61.03 57.39 58.258 58.064 48.791 55.073
VH_02_.FD_b_70 62.59 63.86 61.704 62.844 46.276 58.794
VH 02.FD b 90 67123 67.682 70.234 70.234 49.95 62.662
VH_02_FD_ub_10 58.751 61.875 61.782 35.002 53.656 60.994
VH_02_FD_ub_30 70.226 71.397 70.393 63.552 54.34 63.669
(Continues in the next page)
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Table F.2: Results in the datasets with the evaluation measure hF of the SSHC-BLI vari-
ants (V1, V2, V3) and related methods.

Dataset TD V1 V2 V3 STA HMC-SSBR

VH.02_.FD_ub 50 74.673 75.974 74.937 72.893 57.937 67.874
VH.02_FD_ub_70 77.507 79.171 77.791 78.818 59.92 71.647
VH02.FD_ub 90 80.34 81.533 81.597 81.597 60.438 73.642
VH_03_FD_b_10 28.81 3881 36.19 17.619 23.175 35.496
VH.03_.FD_b_30  46.667 48.095 47.143 40.476 28.81 39.568
VH.03_.FD_b_50  50.952 54.762 53.492 53.492 34.524 40.861
VH03_FD_b_70  57.143 60.952 60.317 60.317 37.778 43.05
VH03_.FD_b90  62.222 63.492 63.651 63.651 39.683 42.578
VH.03_.FD_ub_10 34.288 42.059 34.015 14.69 29.039 39.618
VH_ 03_.FD_ub_30 55.283 59.646 58.078 50.784 33.776 42.999
VH.03_.FD_ub 50 60.191 61.486 61.213 61.213 39.945 42.986
VH_03_FD_ub_70 64.213 66.667 66.599 66.258 41.616 43.844
VH_03_FD_ub 90 68.439 69.257 69.53 69.53 41.718 45.608
VHO8.FD_b 10  37.025 46.596 47.123 46.416 38.904 48.723
VH 08 FD_b_30 39.792 47.062 47.465 46.414 40.925 49.378
VH 08_FD_b_50  40.83 45.852 46.228 46.274 41.183 50.364
VHO08_FD_b_70  41.991 45.029 44.819 44.819 41.515 51.467
VH.08_FD_b 90 42271 43.208 43.184 43.184 42.343 52.239
VH.O8_FD_ub_10 41.393 49.169 49.612 49.193 43.388 51.093
VH_08_FD_ub_30 45.089 50.363 50.566 50.384 44.532 52.504

VH.08_FD_ub 50 45949 499 50.177 50.116 45.454 53.2
VH.08_FD_ub_70 47.046 48.887 48.868 49.045 45.565 53.947
VHO08_FD_ub_90 47.605 484 48397 48397 45.74 54.53

020NG_50t_10 71.409 71.049 69.961 63.048 55.568 73.974
020NG_50t_30 73.626 74.187 T74.129 73.458 58.923 75.729
020NG_50t_50 74.231 74818 74.634 74.347 60.73 76.401
020NG_50t_70 74.868 75.278 75.065 74.973 61.732 76.91
020NG_50t_90 75.134 7536 7541 7541 62.74 77.167

cellcycle_10 17.845 28.508 29.176 30.103 21.834 31.461
cellcycle_30 20.819 28.34 28.715 29.253 24.672 33.181
celleycle_50 24.454 27973 28.296 28.789 24.555 32.314
celleycle_70 25.172 25879 25.957 25.957 25.662 31.863
cellcycle 90 26.456 27.295 27.661 27.661 25.799 32.139
derisi-10 15.497 23.431 23.694 24.316 21.989 27.542
derisi_30 18.621 23.082 23.707 23.827 24.116 24.414
derisi_50 19.519 22.383 21.925 22.11 23.5 23.764
derisi_70 19.727 20.729 20.444 20.312 25.038 22.429

(Continues in the next page)
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Table F.2: Results in the datasets with the evaluation measure hF of the SSHC-BLI vari-
ants (V1, V2, V3) and related methods.

Dataset TD V1 V2 V3 STA HMC-SSBR
derisi_90 19.351 19.977 19.915 19.915 24.006 21.96
eisen_10 25.224 32.352 31.194 34.024 29.428 36.401
eisen_30 28.255 31.898 31.456 31.089 28.372 35.745
eisen_50 30.981 36.537 35.089 35.428 31.04 35.722
eisen_70 36.438 37912 37.322 37.322 30.516 36.935
eisen_90 35.913 37.877 37.967 37.967 32.69 35.914
gasch1_10 21.638 30.907 31.445 32.539 24.692 35.298
gasch1_30 24.264 32.392 31.611 30.94 27.458 36.207
gasch1_50 26.279 31.826 31.931 31.668 28.535 36.428
gasch1_70 28.9 29.746 31.033 31.033 27.969 36.804
gasch1_90 29.755 31.04 31.172 31.172 29.442 35.957
gasch2_10 21.023 29.807 29.897 30.368 25.381 34.019
gasch2_30 21.998 28.529 29.931 29.33 25.113 34.605
gasch2_50 22.288 26.372 26.046 27.181 27.543 33.16
gasch2_70 24.579 25.647 24.313 24.68 27.788 31.468
gasch2_90 23.659 25.305 25.142 25.142 27.548 32.012

(End hF results)

Table F.3: Results in the datasets with the evaluation measure MCC of the SSHC-BLI
variants (V1, V2, V3) and related methods, TD: Top-Down, STA: self-train A, HMC-
SSBR: Hierarchical Multi-label Classification using Semi-Supervised Binary Relevance.

Dataset TD A\’ V2 V3 STA HMC-SSBR
EA01.FD_b_10 100 100 100 100 99.111 100
EA 01 FD_b_30 100 100 100 100 100 100
EA 01_FD_b_50 100 100 100 100 99.181 100
EA 01_FD_b_70 100 100 100 100 99.311 100
EA_01_.FD_b_90 100 100 100 100 100 100
EA 01 .FD_ub_10 100 100 100 100 95.368 100
EA 01 FD ub 30 100 100 100 100 96.062 100
EA 01 FD_ub50 100 100 100 100 96.06 100
EA 01 FD_ub_70 100 100 100 100 97.129 100
EA 01 FD_ub 90 100 100 100 100 96.93 100
EA 02 FD_b.10  98.676 100 100 100 75.307 100
EA02.FDb30 99.034 100  99.556 99.556 83.805 100
EA 02 FD_b50 99.556 100 100 100 86.593 100
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Table F.3: Results in the datasets with the evaluation measure MCC of the SSHC-BLI
variants (V1, V2, V3) and related methods.

Dataset TD V1 V2 V3 STA HMC-SSBR
EA_02_.FD_b_70 100 99.556 99.556 99.556 88.223 100
EA_02.FD_b90  99.111 99.556 99.556 99.556 91.044 100
EA02.FD_ub_10 96.555 100 100 100 71.294 100
EA_02_.FD_ub_30 98.018 100 100 100 79.989 100
EA 02 FD_ub50 99.475 100 100 100 83.499 100
EA 02 FD_ub_70 99.506 100 100 100 83.645 100
EA02.FD_ub 90 100 100 100 100 85.804 100
HA01.FD_b_10 97.679 100 100 100 94.401 100
HA 01 FDb30 99.844 100 100 100 95.245 100
HA 01_FD_b_50 100 100 100 100 95.808 100
HA_01_.FD_b_70 100 100 100 100 97.403 100
HA_01_.FD_b_90 100 100 100 100 96.306 100
HA_01.FD_ub_10 98.797 100 100 100 89.199 100
HA 01_.FD_ub_30 99.333 99.966 100 100 94.027 100
HA 01 FD_ub_50 99.707 99.83 100 100 96.038 100
HA 01 FD_ub_70 99.865 99.83 99.865 99.865 97.757 100
HA 01 FD_ub 90 99.854 99.865 99.865 99.865 98.051 100

HA02.FD_b 10 51.762 43.052 38.913 36.086 41.78 27.714
HA 02 FD b 30 43.625 40.434 38.024 38.686 39.047 27.816
HA 02 FD b50 46.299 39.765 44.263 44.658 41.432 22.586
HA 02 FD b.70 48735 43.362 46.32 46.32 41.142 27.824
HA 02 FD b 90 48.096 47.401 36.907 36.907 31.868 30.473
HA_02_.FD_ub_10 31.133 32.514 35.777 29.944 30.338 19.621
HA_02_.FD_ub_30 27.579 31.431 33.481 29.565 24.596 19.658
HA 02 FD_ub 50 25.647 30.712 27.343 31.006 27.711 26.276
HA 02 FD_ub_70 31.524 31.048 30.238 28.482 29.239 27.594
HA 02.FD_ub 90 32.272 30.18 31.626 31.626 26.473 33.259

HA 03.FD_b_10  35.003 30.182 2492 32.276 31.418 35.3
HA 03.FD_b_30  35.395 31.912 27.097 32.164 27.352 32.837
HA 03_.FD_b.50  33.875 33.733 27.669 31.711 26.99 26.8

HA 03 FD_b_70 33.814 39.702 29.873 29.873 31.374 17.399
HA 03 FDb90 30.766 27.13 35.36 35.36 37.131 20.472
HA_03_.FD_ub_10 23.359 25.316 18.855 2249 18.618 10.767
HA_03_.FD_ub_30 24.433 20.428 17.521 25.188 19.298 7.805
HA 03_ FD_ub 50 28.761 21.722 23.134 27.855 18.303 12.629
HA 03_FD_ub_70 30.906 23.265 31.813 33.132 20.444 9.813
HA 03_ FD_ub 90 28.604 2841 26.677 26.677 23.423 8.322
(Continues in the next page)
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Table F.3: Results in the datasets with the evaluation measure MCC of the SSHC-BLI
variants (V1, V2, V3) and related methods.

Dataset TD V1 V2 V3 STA HMC-SSBR
HA 09 FD_b 10  48.638 45.67 41.561 45.579 44.374 5.099
HA09.FD_b30 43.051 45.344 42.717 43.18  41.58 6.187

HA_09_FD_b_50 43.99 43.337 42.452 41.139 44.987 4.583
HA 09 FD b 70 42.658 46.46 44.459 43.426 41.686 6.178

HA 09 FD b 90 45.441 41.312 43.261 43.261 36.11 6.267
HA 09 FD_ub_10 28.135 29.395 29.948 29.606 24.612 4.383
HA 09 FD_ub_30 28.778 26.012 25.701 27.505 25.798 5.38
HA_09_FD_ub_50 27.636 24.526 26.582 24.294 28.78 5.479
HA 09 FD_ub_70 29.267 26.523 26.934 25.729 25.72 6.21

HA 09 FD_ub 90 30.224 29.492 28.538 28.538 25.876 5.875
HA_10_.FD_b_10  39.187 38.505 41.392 38.755 40.064 22.59
HA_10_.FD_b_30  36.829 33.507 35.431 37.689 37.001 18.022
HA_10_.FD_b.50  35.514 32.819 33.161 33.963 35.427 16.464
HA_10.FD_b.70  35.827 33.507 32.487 32.487 34.839 18.774
HA_10.FD b 90 33.513 33.279 32.651 32.651 34.479 19.923
HA_10_.FD_ub_10 30.04 27.787 30.592 30.463 29.974 26.741
HA_10_.FD_ub_30 27.803 27.991 27.705 26.824 30.497 30.774
HA_10_.FD_ub.50 27.47 26.624 26.901 28.084 29.957 30.883
HA_10.FD_ub_.70 28.39 26.902 26.882 27.387 30.066 31.403
HA_10.FD_ub 90 27.84 28.828 28.093 28.093 28.537 30.855
VH.01.FD_b_10  30.892 19.567 24.196 26.452 31.289 2913
VH.01.FD_b30 21912 17.314 24.162 26.206 32.014 -0.183
VH.01_.FD_b.50 32117 21.209 23.836 26.826 33.383 0.284
VHO1.FD_b_70  36.878 33.641 34.278 34.278 38.913 -0.348

VHO01.FD b 90 35.605 40.92 34.064 34.064 48.427 -2.748
VH.01_.FD_ub_10 16.778 14.279 22.141 20.503 17.697 -0.382
VH.01_FD_ub_30 10.406 18.828 20.401 20.984 19.252 1.19

VH 01_.FD_ub 50 21985 17.164 16.511 16.511 21.025 0.864
VHO01_.FD_ub_70 35.311 21.74 16.436 16.436 30.335 3.549
VH 01.FD_ub 90 40.329 37.913 42313 42.313 27.598 0.277
VH.02_.FD_b_10  31.317 37.824 26.024 47.556 32.12 45.995
VH_02_FD_b_30 379  45.147 40.164 36.982 26.802 51.441
VH 02_.FD_b_50 49.636 53.641 46.358 45.942 34.448 46.489
VH.02.FD_b_70  53.292 57.75 51.562 54.935 32.172 49.336
VH 02.FD_b90 60.973 59.125 64.081 64.081 42.916 55.136
VH.02_FD_ub_10 40.464 45.481 42.797 51.953 30.475 35.468
VH.02_FD_ub_30 49.737 52.823 51.109 47.214 32.88 46.589
(Continues in the next page)
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Table F.3: Results in the datasets with the evaluation measure MCC of the SSHC-BLI
variants (V1, V2, V3) and related methods.

Dataset TD V1 V2 V3 STA HMC-SSBR

VH.02_.FD_ub_50 56.467 58.849 59.283 56.775 35.584 54.428
VH_02_.FD_ub_70 59.513 64.48 60.644 63.449 38.455 55.77
VH02_.FD_ub 90 64.497 68.101 67.853 67.853 37.665 99.189
VHO03_.FD_b 10  33.043 38.642 45.756 38.208 46.891 45.206
VH 03_.FD_b_30 47.099 50.171 49.684 44.547 31.621 41.358
VH.03_.FD_b_50  47.75 52.843 52.618 52.733 35.135 42.35
VH.03_FD_b_70  55.156 58.679 58.027 58.027 37.648 39.979
VH03_FD_b.90  59.838 60.997 61.047 61.047 41.77 42.775
VH 03_FD_ub_10 31.142 43.92 39.711 45.835 31.411 38.503
VH. 03_.FD_ub_30 51.833 56.882 54.813 53.714 33.082 43.687
VH.03_FD_ub 50 56.429 57.39 57.526 59.474 36.963 44.339
VH.03_.FD_ub_70 60.407 63.229 63.547 64.038 36.855 45.416
VH.03_FD_ub 90 66.64 66.945 66.955 66.955 39.353 46.73
VHO8FD_b 10  32.661 3835 35.157 36.319 37.941 12.857
VH 08 FD_b_30 30.705 28.091 30.827 34.793 32.601 12.118
VH 08_FD_b_50  31.955 27.864 30.077 31.486 25.14 16.337
VHO8_FD_b_70  30.477 30.771 31.948 31.948 25.094 17.245
VHO8_.FD_b_ 90  29.322 27.375 28.957 28.957 28.962 22.249
VH 08 FD_ub_10 27.246 22.268 21.414 22.869 21.218 15.35
VH. 08 FD_ub_30 24.456 27.139 24.892 23.118 21.967 15.255
VH.08_FD_ub_50 26.014 25.395 26.751 25.052 21.254 13.219
VH.08_FD_ub_70 25.047 26.134 26.201 25.921 21.676 10.322
VH.08_FD_ub 90 25.721 26.405 24.922 24.922 24.629 18.316
020NG_50t_10 62.788 62.568 61.492 55.629 46.562 66.827
020NG_50t_30 65.55  66.01 65.974 65.321 50.294 67.936
020NG_50t_50 66.315 66.93 66.673 66.347 51.975 68.749
020NG_50t_70 67.034 67.581 67.263 67.182 52.893 69.555
020NG_50t_90 67.434 67.688 67.722 67.722 54.359 70.022

cellcycle_10 16.896 31.258 35.983 37.875 18.299 25.053
cellcycle_30 22.184 2452 19.603 31.654 24.278 11.22
celleycle_50 18.326 18.528 19.75 16.466 20.339 25.265
celleycle_70 19.145 19.352 21.924 21.924 16.615 36.575
cellcycle 90 19.973 25214 18.63 18.63 15.956 37.146
derisi-10 12.757 23.094 32.912 24.303 15.125 2.618
derisi_30 14.608  9.343 16.4  15.808 21.006 32.109
derisi_50 18.536 16.149 10.418 11.923 15.82 33.588
derisi_70 16.411 15.672 17.071 16.908 13.894 27.946
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Table F.3: Results in the datasets with the evaluation measure MCC of the SSHC-BLI
variants (V1, V2, V3) and related methods.

Dataset TD V1 V2 V3 STA HMC-SSBR
derisi_90 16.114 14.326 17.074 17.074 12.465 16.248
eisen_10 19.949 24.826 32.204 43.079 30.691 11.155
eisen_30 24.536 23.955 17.243 28.123 16.035 25.759
eisen_50 21.091 25.453 23.08 24.412 13.523 25.898
eisen_70 25.235 26.482 25.833 25.833 22.618 27.779
eisen_90 24.854 28.182 27.203 27.203 17.718 32.67
gasch1_10 19.84 35.904 33.046 26.976 24.206 12.286
gasch1_30 17.107 22.155 17.657 30.049 21.968 12.739
gasch1_50 19.042 20.632 19.929 19.398 28.424 29.76
gaschl_70 19.81 20.0561 21.98 21.98 21.827 24.445
gasch1_90 21.141  22.21 22405 22.405 18.548 23.008
gasch2_10 18.228 35.997 28.477 32.19 30.619 10.592
gasch2_30 12.695 18.189 26.349 26.867 19.95 16.045
gasch2_50 17.906 15.904 13.211 13.251 16.699 16.88
gasch2_70 22.689 21.49 22282 22.624 21.849 21.501
gasch2_90 23.315 23463 17.166 17.166 21.485 28.037

(End MCC results)
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