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DIMEMEX dataset of subtask 1 (Jarqúın-Vásquez et al., 2024). . . . 113

5.7. Samples of memes that were incorrectly classified by the proposed CM-

DA and Bi-contextual architecture. These memes were taken from the

DIMEMEX dataset of subtask 2 (Jarqúın-Vásquez et al., 2024). . . . 114

A Dual Attention-Based Representation for the Detection of Abusive Language in Texts and Memes



xii LIST OF TABLES

Coordinación de Ciencias Computacionales Instituto Nacional de Astrof́ısica, Óptica y Electrónica
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Abstract

In recent years, deep neural networks have gained widespread popularity for a

variety of unimodal and multimodal classification tasks. Among these, Transformer-

based models have emerged as a dominant approach due to their adaptability across

diverse tasks through fine-tuning and their outstanding performance in text classi-

fication, image analysis, and multimodal tasks involving both text and images. One

of the key components of these architectures is the self-attention mechanism, which

enables the measurement of relevance among elements within an input sequence. This

mechanism is particularly effective in modeling long-range dependencies, making it a

cornerstone of modern neural architectures.

In addition to self-attention, the literature has introduced various other attention

mechanisms, which can be broadly categorized based on how they compute the simi-

larity between elements in two main branches. Self-attention measures the similarity

among elements within the same sequence, while the contextual attention mechanism

calculates the similarity of elements with respect to a contextual vector learned du-

ring the training process. Despite their utility, these mechanisms have complementary

limitations: self-attention disregards the contextual relationships of elements with the

global context learned during training, whereas contextual attention neglects internal

relationships within the elements of a sequence. These limitations highlight the need

for a mechanism that combines the strengths of both approaches.

To address these challenges, this doctoral research proposes the Dual Attention

(DA) mechanism, which integrates both contextual and internal relationships within

a sequence to create a more comprehensive representation. The DA mechanism was

evaluated on the task of abusive language detection in both textual data and memes.

This task was selected due to its inherent complexity, requiring both local and global

contextual understanding to accurately interpret instances. Abusive language often

relies on subtle contextual cues and multimodal signals, making it an ideal testbed

[xv]



xvi Abstract

for the proposed mechanism.

The proposed DA mechanism was rigorously tested across multiple datasets for

abusive language detection in text and memes, achieving outstanding results in the

majority of cases. To further extend its applicability, the mechanism was adapted

for scenarios involving pairs of sequences, particularly for the multimodal task of AL

detection in memes. This extension, known as Cross-Modal Dual Attention (CMDA),

incorporates the relationships between elements of two sequences, such as textual

and visual modalities, enhancing the model’s ability to interpret complex multimodal

interactions.

The experiments conducted demonstrated the advantages of the proposed DA

and CMDA mechanisms across various encoding architectures. Notably, the proposed

mechanisms not only achieved state-of-the-art results but also offered significant me-

mory efficiency, being over 1,000 times more memory-efficient than one of the leading

vision-and-language models. This efficiency underscores the practical applicability of

the mechanisms in real-world scenarios where computational resources are limited. In

addition, the proposed mechanisms enable the extraction of relevant elements—such

as words or image regions—that are critical for detecting abusive language. This

capability provides valuable insights into the decision-making process of the models.
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Chapter 1

Introduction

The pervasive integration of social media platforms into the daily lives of billions

of users has transformed the landscape of global communication. These platforms

facilitate a vast number of social interactions, enabling the creation and dissemina-

tion of a wide array of content, as well as the exchange of different opinions and

points of view. Unlike traditional media, social media empowers individuals to voi-

ce opinions that might otherwise remain unheard. However, this democratization of

communication comes with significant challenges. Among these is the proliferation of

Abusive Language (AL), a phenomenon that has escalated with the growth of social

media usage. This increase in AL is often exacerbated by the anonymity afforded to

users and the lack of effective regulation provided by these platforms (Guberman and

Hemphill, 2017).

Although there is no global consensus on the definitions of key terms such as

Hate Speech (HS) and AL, for the purposes of this research, we adopt the definition

of AL as verbal messages that employ harsh, rude, offensive, and/or insulting words

in an inappropriate manner, which may also include profanity and slurs intended to

demean the dignity of an individual or group of people (Cecillon et al., 2019). The

term AL is often used as an umbrella expression encompassing a range of related

phenomena, from the use of simple obscenities and profanities to threats and severe

insults (Kiritchenko and Nejadgholi, 2020).

Recent studies have explored the interrelationships between various phenomena

such as HS, offensive language, aggressiveness, abusiveness/toxicity, and other ma-

nifestations of hatred targeting specific groups, including misogyny, racism, and ho-

mophobia (Poletto et al., 2021). As illustrated in Figure 1.1, AL encompasses these

diverse manifestations. Specifically, in this research, we concentrate on the detection

of AL in social media.

[1]



2 1. Introduction

Figure 1.1: General taxonomy in abusive language phenomena. Figure inspired by
Poletto et al. (2021).

The widespread dissemination of AL on social media has garnered significant

attention from both governments and supplier companies due to its severe social

implications (Kumar et al., 2018). On an individual level, AL can cause direct harm

to users who are targeted, potentially leading to psychological trauma or, in extreme

cases, suicide. On a broader societal level, the prevalence of AL contributes to the

deterioration of public discourse, fostering a more polarized and fragmented society

(MacAvaney et al., 2019; Naseem et al., 2019).

The task of detecting AL on social media presents substantial challenges. Tradi-

tional approaches, such as employing content filters or human moderators, are neither

efficient nor scalable given the sheer volume of content generated daily on these plat-

forms. As a result, more sustainable and automated solutions are necessary. In recent

years, multiple initiatives have been undertaken to mitigate the proliferation of AL.

These efforts include the implementation of content regulations and policies on social

media platforms (Corazza et al., 2020), as well as the adoption of Machine Learning

(ML) techniques for the automated analysis of social media content (Schmidt and

Wiegand, 2017; Wenjie and Arkaitz, 2021).

Regarding the norms and regulations, different countries have implemented res-

trictions on the dissemination of potentially offensive content. For instance, the Euro-

pean Union, in collaboration with social media platforms such as Facebook1, Twitter2,

Microsoft3, and YouTube4, has recently signed a code of conduct5. This agreement

1https://time.com/5739688/facebook-hate-speech-languages/
2https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
3https://opensource.microsoft.com/codeofconduct/
4https://www.youtube.com/howyoutubeworks/policies/community-guidelines/
5http://ec.europa.eu/justice/fundamental-rights/files/hate_speech_code_of_

conduct_en.pdf
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3

commits these companies to review the majority of valid notifications for the removal

of AL content within 24 hours. While these efforts represent a significant step towards

combating online HS and AL, they are not scalable or sustainable in the long term,

as they rely heavily on manual moderation and oversight. Moreover, the constant

evolution of offensive content presents further challenges to ensuring compliance and

effective moderation at scale.

On the other hand, ML approaches to detecting AL have predominantly been ad-

dressed from a supervised learning perspective, where most solutions focus on analy-

zing AL within text-based content (Poletto et al., 2021). Natural Language Proces-

sing (NLP) has played a crucial role in this task, with a wide array of methods being

proposed, ranging from traditional approaches using bag-of-words (BoW) and classi-

cal machine learning classifiers (Fortuna and Nunes, 2018; MacAvaney et al., 2019),

to more advanced techniques such as Deep Learning (DL) architectures, Attention

Mechanisms (AM), and Transformer-based neural language models. These models,

particularly the Transformer-based ones, represent the current state-of-the-art in the

AL detection task (Chakrabarty, Gupta, and Muresan, 2019; Mutanga, Naicker, and

Olugbara, 2020; Jahan and Oussalah, 2023).

Despite the encouraging results achieved by these models in detecting AL, a signi-

ficant limitation remains: the vast majority of current approaches have been primarily

focused on the analysis of textual information alone. This text-centric approach over-

looks the multimodal nature of social media, where content often includes not just

text, but also images, audio, and video. As a result, these approaches may fail to

capture the full context or intent behind potentially offensive content, leading to low

performance in complex, multimodal scenarios.

One of the most prevalent examples of multimodal information found on social

media is memes (Kiela et al., 2020). Memes are defined as the combination of text

and an image that together convey a specific meaning (often humorous or ironic), and

where the absence of one of these elements (text or image) may result in a different

interpretation (Sharma et al., 2020). Despite its daily use in humorous and ironic

publications, the use of memes to transmit AL transcends the social media platforms

(Suryawanshi et al., 2020). The detection of AL in memes presents a particularly

challenging task, as the interpretation of a meme relies heavily on both its textual

and visual components. This inherent complexity makes it difficult for traditional text-

based or image-based approaches to fully capture the intended meaning of memes. In

A Dual Attention-Based Representation for the Detection of Abusive Language in Texts and Memes



4 1. Introduction

an effort to advance the field, this research focuses on the detection of AL in both text

and memes. By addressing the challenges posed by the multimodal nature of memes,

we aim to develop a more comprehensive solution to AL detection in social media.

1.1. Motivation and Justification

The use of deep architectures has gained widespread popularity in recent years

for various classification tasks (Zhang et al., 2023). In particular, Transformer-based

pre-trained models have emerged as the state-of-the-art approach for detecting AL

in both unimodal (text) and multimodal (memes) scenarios (Mogadala, Kalimuthu,

and Klakow, 2021; MacAvaney et al., 2019; Afridi et al., 2020; Khan et al., 2021;

Wenjie and Arkaitz, 2021; Jahan and Oussalah, 2023). The remarkable performance of

Transformer Neural Network (TNN)-based architectures can be primarily attributed

to the use of the Self-Attention (SA) mechanism (Chaudhari et al., 2021), which

plays a pivotal role in capturing the internal relationships between elements within a

sequence.

In the context of NLP, SA is particularly effective in capturing the intricate de-

pendencies between each pair of words in a sentence, allowing for a more nuanced and

comprehensive representation of textual data. Similarly, in multimodal applications

involving both vision and language, SA excels in capturing the relationships between

textual components and the corresponding visual regions within a paired image and

text input. This capability is especially relevant to the domain of this doctoral re-

search, which focuses on the detection of AL in memes, as it allows the model to

effectively represent the internal relationships between the text and visual elements

present in the memes.

Given the outstanding results achieved through the SA mechanism in both uni-

modal and multimodal tasks, this research extends the SA mechanism’s capabilities.

The goal was to explore how enhancing the SA mechanism, in conjunction with the

Contextual Attention (CA) mechanism, can lead to improved performance in the de-

tection of AL in complex multimodal data like memes. By leveraging and extending

these attention-based techniques, we developed a more robust, scalable, and efficient

approach to addressing the challenges posed by AL detection in social media contexts.
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1.2. Problem Statement

The use of Attention Mechanisms (AMs) has gained considerable relevance within

DL approaches, primarily due to their ability to enable classification models to focus

selectively on a subset of inputs or features, while also effectively modeling long-term

dependencies between elements of a sequence (Chaudhari et al., 2021). AMs have been

successfully applied across a wide range of DL architectures, consistently delivering

state-of-the-art results in various domains. According to (Niu, Zhong, and Yu, 2021),

AMs can be classified into two main categories based on how similarity between

elements is calculated: 1) Self-Attention mechanisms, and 2) Contextual Attention

(CA) mechanisms.

Despite their impressive performance, both SA and CA mechanisms have inhe-

rent limitations. On the one hand, CA mechanisms do not account for the internal

relationships between elements within a sequence, focusing primarily on the external

context, which is represented by patterns learned during the training process. On the

other hand, SA mechanisms excel at modeling local dependencies within a sequen-

ce but fall short in considering global relationships between elements from different

sequences. This oversight can result in the loss of relevant information, particularly

in application domains where both local and global contexts are critical for accura-

te interpretation. Interestingly, these limitations are complementary, suggesting the

potential for improvement through their integration.

The integration of SA mechanisms into DL architectures, such as Transformer

Neural Networks (TNNs), has proven highly effective in tasks where correct interpre-

tation depends heavily on the internal context of elements within a sequence (i.e.,

local dependencies) (Kora and Mohammed, 2023; Zhang et al., 2023). However, this

type of integration is often insufficient in the context of AL detection, particularly in

memes, where both textual and visual modalities are present. The challenge here lies

in the need to incorporate not only local dependencies but also global context, which

is crucial for correctly interpreting multimodal content. This limitation can lead to

the loss of important information necessary to enhance the representations of both

image and text.

For instance, in the memes shown in Figure 1.2, global contextual information is

essential for accurate interpretation. In the meme on the left, understanding the strong

smell of a skunk is key to grasping the irony and abusive nature of the content. To

A Dual Attention-Based Representation for the Detection of Abusive Language in Texts and Memes
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address this issue, this work introduces the extension of SA mechanisms through the

development of novel approaches that integrate CA mechanisms, aiming to combine

the strengths of both. This novel integration of SA and CA mechanisms is referred

to as Dual Attention (DA) mechanisms. Formally, the DA mechanism is defined as

follows:

Let S ∈ Rn×d be the representation obtained from the SA mechanism, where n

represents the number of features (e.g., the number of words in a sequence) and d is

the embedding dimension. Similarly, let C ∈ Rn×d be the representation obtained from

the CA mechanism. The goal of the DA mechanism is to combine both representations,

S and C, into a unified representation D ∈ Rn×d.

Formally, this combination is defined as a differentiable function f ∶ Rn×d×Rn×d →
Rn×d, which merges the local dependencies captured by SA and the global dependen-

cies captured by CA, resulting in a contextually enriched representation:

D = f(S,C)

The function f can be any operation that ensures the combination of both repre-

sentations, resulting in a high-level representation D that leverages both local (SA)

and global (CA) contexts.

Figure 1.2: Examples of offensive memes. Figure taken from: (Kiela et al., 2020)

1.3. Hypothesis

The integration of SA and CA mechanisms in the form of a novel dual attention

mechanism within deep encoding architectures could significantly enhance the per-

formance of AL detection tasks in both textual content and memes. This approach
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has the potential to generate a model that is not only modular and scalable but al-

so efficient to train, particularly in terms of the number of parameters to optimize.

Compared to the current state-of-the-art pre-trained Vision & Language models, the

proposed mechanism aims to reduce the computational complexity while maintaining

or even improving detection performance.

1.4. Research Questions

This doctoral research addressed the following key questions:

1.- Which fusion approach yields the best performance in the integration of SA and

CA mechanisms for the task of AL detection?

2.- Which deep learning architectures are best suited to incorporate the proposed

attention mechanisms in terms of maximizing performance for detecting AL in

both textual data and memes?

3.- What are the most significant textual and visual features that contribute to the

deep representation of text and images in the context of AL detection?

4.- Is the unique integration of textual and visual modalities sufficient for the effec-

tive detection of AL in memes, or are additional sources of information required?

1.5. Objectives

The general objective of this doctoral research was:

To develop a novel dual attention mechanism based on the integration of the CA

mechanism into the SA mechanism, aimed at extracting both internal and contextual

relationships between the elements of a sequence. This mechanism was subsequently

evaluated in the detection of AL in text and memes using a variety of DL architectures,

with the goal of surpassing the results achieved by traditional and state-of-the-art

approaches.

To achieve this general objective, the following specific objectives were proposed:

1.- Propose a novel dual attention mechanism based on the integration of SA and

CA mechanisms, enabling the extraction of internal and contextual relationships

within the elements of a sequence.

A Dual Attention-Based Representation for the Detection of Abusive Language in Texts and Memes



8 1. Introduction

2.- Integrate the proposed dual attention mechanism into a variety of standard and

well-established DL architectures, including pre-trained Transformer models,

in both unimodal (text) and multimodal (text and image) scenarios for the

detection of AL in text and memes.

3.- Extend the dual attention mechanism to a cross-modal approach, aiming to

obtain a better alignment of features from the text and image modalities by

incorporating contextual information (learned during the training stage) from

one modality into the other.

4.- Integrate the cross-modal dual attention mechanism into unimodal pre-trained

Transformer models, with the aim of enhancing the representation of both text

and image modalities for improved AL detection in memes.

5.- Evaluate the effectiveness of the proposed dual attention mechanism both qua-

litatively and quantitatively, using a wide range of AL datasets for text and

memes, and assess its performance compared to existing approaches.

1.6. Contributions

In this doctoral thesis, we made the following contributions:

1.- A novel attention-based mechanism that improves the alignment of features

between the elements of a sequence. This mechanism incorporates the relevance

of each element in the sequence with respect to the training task, allowing for

a more accurate representation of contextual relationships.

2.- A new cross-modal attention mechanism is introduced, enhancing the alignment

between textual and visual features. This mechanism improves the model’s abi-

lity to capture and leverage the intricate interplay between text and images,

particularly in scenarios where understanding the context of both modalities is

crucial for interpretation.

3.- A deeper understanding of the advantages that both unimodal and multimodal

attention mechanisms offer in the detection of AL in text and memes. This

insight helps elucidate how each modality contributes to the overall performance
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and highlights the potential benefits of leveraging multimodal approaches in

complex AL detection tasks.

1.7. Overview of the Research and Main Findings

Throughout this doctoral research, three different dual attention mechanisms were

proposed. The first approach involved the early fusion of features obtained by applying

both SA and CA mechanisms to a sequence of encoded features derived from a Gated

Recurrent Unit (GRU) network. In the initial evaluation phase, this mechanism was

tested on four different English datasets to detect AL in text. This first mechanism,

called the Self-Contextualized Attention (SCA) Mechanism, was presented at the

Ninth International Workshop on Natural Language Processing for Social Media in

2021. The results were promising, as the SCA mechanism demonstrated improvements

over the independent use of SA and CA mechanisms. Moreover, the SCA mechanism

was able to correct some of the errors made by both SA and CA in AL detection. For a

detailed explanation of the SCA mechanism, we refer the reader to the corresponding

paper (Jarqúın-Vásquez, Escalante, and Montes, 2021).

The second dual attention mechanism introduced a transversal combination ap-

proach, by integrating input sequences at every stage of the representation to unify

both SA and CA representations. Additionally, we extended this dual attention me-

chanism with a hierarchical perspective to leverage the multi-level feature encoding

capabilities of different deep learning architectures, particularly focusing on Recurrent

Neural Networks (RNNs) and Transformer-based architectures. The evaluation of this

second attention mechanism was conducted on six English-language datasets for AL

detection in text and three multimodal datasets for AL detection in memes—two in

English and one in Spanish. The results were encouraging, achieving state-of-the-art

performance on four out of the six text-based datasets and yielding consistently im-

proved results across all three meme-based datasets. The incorporation of the dual

and hierarchical attention mechanisms led to noticeable performance gains, demons-

trating their effectiveness across both textual and multimodal contexts.

Finally, the third dual attention mechanism builds on the second by incorpo-

rating cross-modal attention, enabling the combination of different modalities. This

mechanism is referred to throughout this research as the Cross-Modal Dual Attention

mechanism. It was evaluated using the same three datasets for AL detection in me-
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mes that were used to assess the second mechanism. The results were promising: the

CMDA mechanism outperformed state-of-the-art approaches on one of the three da-

tasets while achieving competitive results on the remaining two, all while maintaining

a lower number of parameters compared to other leading models. A comprehensive

description of the second and third attention mechanisms is provided in Chapters 4

and 5, respectively.

1.8. Scope and Limitations

This research focused on the design, implementation, and evaluation of the pro-

posed dual attention mechanisms, along with their adaptation into different DL ar-

chitectures. The effectiveness of the proposed contributions was evaluated in the task

of detecting AL in both text and memes, using various publicly available English

datasets as well as collections from different evaluation campaigns. Given the nature

of these evaluation datasets, where labels are manually annotated, there is a poten-

tial for inherent social biases in the annotators’judgments. Consequently, the various

configurations of the proposed models could inadvertently learn and propagate these

biases, which might lead to errors when applied to data of a different nature or from

diverse contexts.

Additionally, the proposed dual attention mechanisms were integrated and eva-

luated using a specific set of pre-trained Transformer models. It is important to note

that integrating these mechanisms into alternative pre-trained models may yield var-

ying performance levels in the task of detecting AL, as different models have different

capacities for feature extraction and representation.

1.9. Publications Derived from this Doctoral Re-

search

Below are the publications that have been derived from this doctoral research,

which reflect the key findings and contributions made throughout this work.

1.- Horacio Jarqúın-Vásquez, Hugo Jair Escalante, and Manuel Montes. (2021).

Self-Contextualized Attention for Abusive Language Identification. In Procee-

dings of the Ninth International Workshop on Natural Language Processing for
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Social Media, pages 103–112, Online. Association for Computational Linguis-

tics.

2.- Horacio Jarqúın-Vásquez, Hugo Jair Escalante, and Manuel Montes. (2023).

Improving the Identification of Abusive Language Through Careful Design of

Pre-training Tasks. In: Rodŕıguez-González, A.Y, Pérez-Espinosa, H, Mart́ınez-

Trinidad, J.F, Carrasco-Ochoa, J.A, Olvera-López, J.A. (eds) Pattern Recog-

nition. MCPR 2023. Lecture Notes in Computer Science, vol 13902. Springer,

Cham.

3.- Horacio Jarqúın-Vásquez, Hugo Jair Escalante, Manuel Montes-y-Gómez.

(2024). Enhancing abusive language detection: A domain-adapted approach

leveraging BERT pre-training tasks, Pattern Recognition Letters, ISSN 0167-

8655, https://doi.org/10.1016/j.patrec.2024.05.007.

4.- Horacio Jarqúın-Vásquez, Itzel Tlelo-Coyotecatl, Marco Casavantes, Delia

Irazú Hernández-Faŕıas, Hugo Jair Escalante, Luis Villaseñor-Pineda, Manuel

Montes-y-Gómez. (2024). Overview of DIMEMEX at IberLEF 2024: Detection

of Inappropriate Memes from Mexico. Procesamiento de Lenguaje Natural, vol.

72.

5.- Horacio Jarquin-Vasquez, Hugo Jair Escalante, Manuel Montes-y-Gomez and

Fabio A. Gonzalez. (2024). GHA: a Gated Hierarchical Attention Mechanism

for the Detection of Abusive Language in Social Media. In IEEE Transactions

on Affective Computing, pp. 1-14, https://10.1109/TAFFC.2024.3483010.

Additionally, the publications in which active collaboration took place throughout

this doctoral research are listed.

1.- Flor Miriam Plaza-del-Arco, Marco Casavantes, Hugo Jair Escalante, M. Te-

resa Mart́ın-Valdivia, Arturo Montejo-Ráez, Manuel Montes-y-Gómez, Horacio

Jarqúın-Vásquez, Luis Villaseñor-Pineda. (2021). Overview of MeOffendEs at

IberLEF 2021: Offensive Language Detection in Spanish Variants. Procesamien-

to del Lenguaje Natural, vol. 67.

2.- Horacio Jarqúın-Vásquez, Delia Irazú Hernández-Faŕıas, Luis Joaqúın Arellano,

Hugo Jair Escalante, Luis Villaseñor-Pineda, Manuel Montes-y-Gómez, Fernan-

do Sanchez-Vega. (2023). Overview of DA-VINCIS at IberLEF 2023: Detection
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of Aggressive and Violent Incidents from Social Media in Spanish. Procesamien-

to del Lenguaje Natural, Vol. 71.

1.10. Organization of the Document

The remainder of this document is structured as follows: Chapter 2 presents and

describes in detail the background concepts and techniques necessary for understan-

ding this research. Chapter 3 introduces the related work on attention mechanisms

and the detection of AL in text and memes, and highlights the key differences bet-

ween this doctoral research and prior studies. Chapter 4 presents the dual attention

mechanism, along with its adaptations to various DL architectures, as well as the

respective results. Chapter 5 introduces the cross-modal dual attention mechanism,

its adapted architectures, and the corresponding results. Finally, Chapter 6 addresses

the research questions, and presents the conclusions and future work.
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Chapter 2

Background

This section provides an overview of the various techniques and core concepts

essential for understanding the key ideas presented in this doctoral thesis. Given that

the scope of this thesis encompasses both unimodal (text) and bimodal (text and

image) representations, the section is structured as follows: first, an overview of Text

Classification (TC) and Multimodal Machine Learning (MML) is presented. Then, the

concept of Deep Learning (DL) is introduced, along with some of the main underlying

ideas and relevant Deep Neural Network (DNN) architectures used for representing

and classifying text and image modalities. Finally, the different evaluation metrics

and statistical significance tests employed to assess the various approaches proposed

throughout this doctoral thesis are discussed.

2.1. Text Classification

TC is the process of assigning categories or labels to a text or document based on

its content. TC can be used to categorize and structure a set of documents by topics,

languages, or conversations. It has a broad range of applications, including sentiment

analysis, intent detection, and information filtering (Aggarwal and Zhai, 2012).

Formally, given a text document x ∈ X and a predefined set of categories C =
{c1, c2, . . . , cn}, the task of text classification is to find a function f ∶ X → C that

maps each document x to a category c ∈ C. This function f can be constructed

through different methodologies, most commonly using machine learning techniques

that learn patterns from labeled training data.

TC can be performed in two ways: i) automatically, where machine learning al-

gorithms are used to classify text more quickly and cost-effectively, and ii) manually,

[13]
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where a human annotator reviews the text and categorizes it based on their interpre-

tation of the content (Zhou, 2020). TC has become a crucial tool in business, enabling

companies to derive insights from data and automate the analysis of various proces-

ses. Figure 2.1 illustrates the general process for supervised TC. In this process, the

model receives a set of documents and their corresponding categories as input. The

model is then trained using a machine learning algorithm. Once trained, the model

is used to classify new documents, producing the assigned categories as output. For

a more detailed reference on TC, we direct the reader to the following survey (Li et

al., 2022).

Figure 2.1: General process for supervised text classification.

2.2. Multimodal Machine Learning

MML aims to build models that can process and relate information from multiple

modalities (e.g., text, image, video, audio). According to Baltrusaitis, Ahuja, and

Morency (2019) there are five core technical challenges surrounding the MML, Figure

2.2 presents this taxonomy.

Figure 2.2: Taxonomy of the Multimodal machine learning.

The following outlines the five core technical challenges in MML:
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Representation: The first fundamental challenge is learning how to effecti-

vely represent and summarize multimodal data in a manner that leverages the

complementarity and redundancy inherent in multiple modalities. Due to the

heterogeneity of multimodal data where different modalities have distinct cha-

racteristics, it is particularly difficult to design representations that can accom-

modate this diversity while capturing meaningful patterns and relationships

between the modalities. Successful representation should capture shared infor-

mation across modalities while preserving modality-specific details.

Translation: The second challenge involves translating or mapping data from

one modality to another. For example, translating visual information into tex-

tual descriptions (image captioning) or converting speech into text (speech re-

cognition). This task requires not only understanding the inherent features of

each modality but also learning how information from one can be faithfully ren-

dered into another, preserving its meaning and context while adapting to the

target modality’s format and constraints.

Alignment: The third challenge is to establish direct relations between the

elements from two or more different modalities. This involves determining how

components of one modality (such as words in a sentence) correspond to com-

ponents in another modality (such as regions in an image or frames in a video).

Alignment is crucial for tasks like image-text retrieval or video-text synchro-

nization, where the correct matching between elements of different modalities

plays a central role in the performance of the system.

Fusion: The fourth challenge focuses on the integration of information from

multiple modalities to make a unified prediction. Fusion requires the effective

combination of multimodal data streams to create a more robust and informed

decision-making process. Various fusion strategies can be employed, such as

early fusion (combining data at the feature level), late fusion (combining data

at the decision level), or hybrid approaches that blend both strategies.

Co-learning: The fifth challenge is co-learning, which addresses the transfer

of knowledge across modalities. This encompasses the joint learning of repre-

sentations and predictive models where knowledge obtained from one modality

can inform and enhance the learning in another. Co-learning strategies, such
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as cross-modal supervision or multitask learning, allow the system to exploit

shared structure across modalities, enabling improved generalization, especially

in cases where one modality is underrepresented or noisy.

In this research, we focus on the fusion and alignment of the vision and language

modalities. Our approach is grounded in identifying relationships between elements

from both modalities by employing an attention-based DL approach. The goal is to

effectively capture the interactions between visual and textual features, leveraging the

attention mechanism to highlight the most relevant components across modalities.

2.3. Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the way

neurons in the human brain process and transmit information (Bengio, 2009). Each

neuron in these models processes incoming signals and passes an output to subse-

quent layers, enabling the network to learn complex patterns and capture intricate

relationships between inputs and outputs (Alzubaidi et al., 2021). Over the years,

ANNs have evolved from simple perceptron-based systems to sophisticated architec-

tures that drive modern breakthroughs in a wide variety of tasks (Li and Dong, 2014).

One of the most common types of ANNs is the Multi-Layer Perceptron (MLP).

According to Aggarwal (2018), a typical MLP consists of three main components: an

input layer, one or more hidden layers, and an output layer. Each layer in an MLP

is made up of interconnected neurons, which pass data from one layer to the next.

The connections between neurons are governed by weights that are adjusted during

training to optimize the network’s performance. Figure 2.3 illustrates the architecture

of a typical MLP, showing how multiple layers interact to process and transform the

input data, ultimately producing a final prediction or decision.

A neural network architecture consists of a multi-layer representation that applies

activation functions to perform non-linear transformations of the inputs which can

be described as follows:

fW,b
l = fl(

Nl

∑
j=1

WljXj + bl),1 ≥ l ≤ L (2.3.1)

Where the number of hidden units is given by Nl. The predictor is in charge of

modeling a high-dimensional mapping F through the composition of functions, as can
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Figure 2.3: Representation of a multi-layer perceptron, Figure inspired by Aggarwal
(2018).

be defined in Equation 2.3.2.

Y (X) = F (X) = (fW1,b1
1 ○ ... ○ fWL,bL

L ) (2.3.2)

The final output is the answer of Y , this can be categorical or numerical. The

explicit structure of the prediction rule is:

Z(1) = f (1)(W (0)X + b(0)),
Z(2) = f (2)(W (1)Z(1) + b(1)),

...

Z(L) = f (L)(W (L−1)Z(L−1) + b(L−1)),
Y (X) =W (L)Z(L) + b(L)

(2.3.3)

Where Z(L) is defined as the L-th layer, W (L) is the weight matrix and b(L) is the

bias. Z(L) contains the extracted hidden features, in other words, the deep approach

uses hierarchical predictors that comprise a series of non-linear transformations in L

applied to X. Each of the L transformations refers to a layer where the original input

is X, the output of the first transformation is the input of the second layer and so

on until the output Y as the layer (L + 1). l ∈ {1, ..., L} is used to index the layers,
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which are called hidden layers. The number of layers L represents the depth of the

deep architecture.

2.4. Deep Learning

DL is a subfield of ML that focuses on learning hierarchical models with multiple

layers of representation and abstraction from raw input data, such as images, audio,

and text. The fundamental idea behind DL is to automatically discover the underl-

ying structures and patterns in data by progressively extracting higher-level features

through successive layers of neural networks.

Over time, the family of DL methods has grown substantially, encompassing a

wide range of algorithms designed for both supervised and unsupervised learning.

These methods can address a variety of tasks, from classification and regression to

more complex challenges such as image generation, language translation, and reinfor-

cement learning. The increasing diversity of DL techniques has made them powerful

tools in fields as varied as Computer Vision (CV), NLP, speech recognition, and

beyond (Abdel-Jaber et al., 2022). As a result, DL has become a cornerstone of mo-

dern artificial intelligence, enabling breakthroughs in many applications that were

previously unattainable.

Deep Neural Networks (DNNs) are a prominent example of DL models. They can

be understood as an extension of traditional multi-layer perceptrons, where the ar-

chitecture consists of multiple hidden layers, enabling the network to solve complex

problems that are not linearly separable. Unlike simpler neural networks, DNNs le-

verage these additional layers to capture deeper patterns and hierarchies within the

data, making them highly effective for tasks that involve high-dimensional, non-linear

relationships.

Several notable approaches have emerged in deep learning, including the use of

attention mechanisms, CNNs, RNNs, Auto-Encoders (AEs), Deep Belief Networks

(DBNs), Generative Adversarial Networks (GANs), Deep Reinforcement Learning

(DRL), and Transformer Neural Networks (TNNs). For more details on these and

other deep learning architectures, refer to Alom et al. (2019). In this research, we

specifically focus on extending AMs by utilizing architectures based on Transformer

and RNN models. These architectures are applied to both unimodal and bimodal

classification tasks, aiming to improve the performance of models by leveraging the
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power of attention in scenarios involving a single modality or the combination of

multiple modalities.

2.4.1. Attention Mechanisms

One of the most widely used approaches in deep learning is the application of

attention mechanisms (AMs). The core idea behind AMs is to equip classification

models with the ability to focus selectively on a subset of inputs or features, thereby

prioritizing features based on their relevance to the context. This selective atten-

tion allows the model to better handle the varying importance of different features

within the data. Due to their exceptional performance in numerous NLP and CV

tasks, several attention mechanisms have been developed in recent years (Chaudhari

et al., 2021). These mechanisms can generally be divided into two main categories

based on how they compute similarity: Self-Attention (SA) (Vaswani et al., 2017) and

Contextual Attention (CA) (Yang et al., 2016).

SA focuses on capturing the relationships among features within the same se-

quence, making it highly effective for modeling long-range dependencies in sequential

data. In contrast, CA selectively emphasizes features with respect to an external

query vector, which is dynamically adjusted based on the specific training task. The

more important the feature is in determining the answer to that query, the more focus

it is given, allowing the model to effectively weigh contextual relevance. Figure 2.4

illustrates these two approaches.

In recent years, several variants of the SA mechanism have been proposed, ran-

ging from multi-head perspectives to its adaptation for multimodal feature alignment

(Niu, Zhong, and Yu, 2021). In the following subsections, we will delve deeper into

the foundational principles behind the attention mechanisms used in this research.

We begin with the Self-Attention mechanism, exploring its multi-head extension and

cross-modal adaptation. Finally, the last subsection will cover the Contextual Atten-

tion mechanism in detail.

Self-Attention Mechanism

The self-attention mechanism, introduced by Vaswani et al. (2017) in their pa-

per “Attention is All You Need”, is a core component of modern DL architectures,

particularly in the Transformer model. It has proven to be highly effective in tasks
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Figure 2.4: Contextual attention vs. self-attention representations, where each hi re-
presents the encoding of a feature, typically corresponding to a word or token. In
contextual attention (left figure), the relevance score αi of each feature is computed
through a dot product with a context vector uh. In contrast, in self-attention (right
figure), the relevance is calculated based on the relationships between elements within
the same sequence. Figure inspired by (Yang et al., 2016).

involving NLP and CV, due to its ability to capture long-range dependencies within

sequences. The self-attention mechanism is based on the idea of allowing each element

in a sequence to focus on, or “attend” to, other elements of the sequence. Figure 2.5

illustrates the self-attention process, below, we describe this process in detail.

Figure 2.5: Illustration of the self-attention mechanism, Figure taken from (Vaswani
et al., 2017).

Step 1: Input Sequence Representation

The process begins with an input sequence consisting of multiple elements, such

as words in a sentence or pixels in an image. Each element is represented as a vector,

resulting in a matrix X ∈ Rn×d, where n is the number of elements in the sequence
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and d is the dimensionality of the feature vector for each element.

For instance, in NLP, X might represent a sentence with each word encoded as

a vector (i.e., word embeddings), and in CV, it might represent an image with each

pixel encoded as a feature vector.

Step 2: Linear Projections to Query, Key, and Value

The SA mechanism requires three sets of vectors for each element in the sequence:

Query (Q), Key (K), and Value (V). These vectors are derived by linearly projecting

the input matrix X into three different subspaces using learned weight matrices WQ,

WK , and WV . Mathematically, this can be expressed as:

Q =XWQ, K =XWK , V =XWV (2.4.1)

Here, WQ ∈ Rd×dq , WK ∈ Rd×dk , and WV ∈ Rd×dv are the learned weight matrices for

the Query, Key, and Value, respectively. These projections allow the model to repre-

sent the input data in three different spaces that will be used to compute attention

scores.

Step 3: Computation of Attention Scores

Once the Query, Key, and Value vectors are obtained, the next step is to compute

the attention scores, which measure the similarity between the Query and the Key

vectors. These scores indicate how much focus each element should place on other

elements within the sequence. The similarity between the Query and Key vectors is

calculated using the dot product, followed by a scaling factor to ensure numerical

stability. This is expressed as:

Attention Scores = QKT

√
dk

(2.4.2)

Here, dk is the dimensionality of the Key vectors, and the scaling factor 1√
dk

is

used to prevent excessively large values in the dot product, which could otherwise

destabilize the softmax function in the following step.

Step 4: Softmax Normalization

The attention scores are then passed through a softmax function to normalize

them into probabilities. This ensures that the attention weights are non-negative and

sum to 1. The softmax operation converts the raw attention scores into a distribution

over the different elements of the sequence:
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Normalized Attention Scores = softmax(QKT

√
dk
) (2.4.3)

Step 5: Weighted Sum of Values

Once the attention weights are computed, the next step is to compute the weighted

sum of the Value vectors. This is done by multiplying the attention weights with the

corresponding Value vectors V . The resulting matrix is the output of the self-attention

mechanism:

Attention(Q,K,V ) = softmax(QKT

√
dk
)V (2.4.4)

This operation effectively allows each element in the sequence to aggregate in-

formation from other elements based on the computed attention weights. In other

words, the model dynamically focuses on the most relevant parts of the sequence

when generating the output for each element.

Multi-Head Attention

To enhance the model’s capacity to capture diverse relationships between sequence

elements, the self-attention mechanism is often implemented as multi-head attention.

In this approach, the self-attention mechanism is applied multiple times in parallel,

each with a different set of learned weight matrices. The outputs from each “head”

are concatenated and then projected back into the original feature space. This pro-

cess enables the model to gather a more comprehensive understanding of the input

sequence by considering multiple perspectives simultaneously. The multi-head atten-

tion mechanism is formalized in Equation 2.4.5.

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)WO (2.4.5)

Here, WO is the final learned projection matrix, and each head independently cap-

tures different types of relationships between the sequence elements. Multi-head at-

tention improves the model’s ability to attend to information from different subspaces

and perspectives. Figure 2.6 illustrates the structure of the multi-head self-attention

mechanism.
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2.4 Deep Learning 23

Figure 2.6: Illustration of the multi-head self-attention mechanism, Figure inspired
by (Vaswani et al., 2017).

Cross-Modal Attention Mechanism

The cross-modal attention mechanism was introduced by Ye et al. (2019). This

mechanism extends the principles of self-attention to scenarios where information

from different modalities, such as text and images, must be integrated. While self-

attention allows elements within the same modality to attend to one another, cross-

modal attention facilitates the interaction between elements from two or more distinct

modalities. This mechanism is particularly effective in tasks where multimodal data

is used, such as image captioning, visual question answering, or multimodal retrieval.

Below, we describe the cross-modal attention mechanism step by step. Figure 2.7

illustrates the cross-modal attention process, below, we describe this process in detail.

Figure 2.7: Illustration of the cross-modal attention mechanism. Figure inspired by
(Ye et al., 2019).

Step 1: Input Modality Representations
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The process begins with two different input modalities, such as text and images.

Each modality is represented as a sequence of feature vectors. For example, let T ∈
Rn×dt represent the sequence of text features (with n as the number of words and dt the

dimensionality of the word embeddings), and let I ∈ Rm×di represent the sequence of

image features (with m as the number of visual regions and di the dimensionality of the

image embeddings). The goal of cross-modal attention is to model the relationships

between these two sets of representations.

Step 2: Linear Projections to Query, Key, and Value

Similar to the self-attention mechanism, cross-modal attention requires projecting

the inputs into Query (Q), Key (K), and Value (V) vectors. However, in cross-modal

attention, the Query typically comes from one modality (e.g., text), while the Key

and Value come from the other modality (e.g., image). Mathematically, this can be

expressed as:

QT = TWQ, KI = IWK , VI = IWV (2.4.6)

where WQ ∈ Rdt×dq , WK ∈ Rdi×dk , and WV ∈ Rdi×dv are learned weight matrices that

project the text features into Queries and the image features into Keys and Values,

respectively.

Step 3: Attention Score Calculation

The next step is to compute the attention scores, which measure the relevance

between elements in the Query modality (text) and elements in the Key modality

(image). These scores are computed using the dot product between the Query vec-

tors and the Key vectors, scaled by the dimensionality of the Key vectors to ensure

numerical stability:

Attention Scores = QTKT
I√

dk
(2.4.7)

These attention scores indicate how much focus each text element should place

on each image element based on their computed similarity.

Step 4: Softmax Normalization and Weighted Sum of Values

The attention scores are passed through a softmax function to normalize them

into probabilities:
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softmax(QTKT
I√

dk
) (2.4.8)

Once the attention weights are computed, they are used to perform a weighted

sum over the Values, which originate from the image modality. This is achieved by

multiplying the attention weights with the corresponding value vectors VI . As a result,

a new representation is generated for each element in the text modality, enriched with

relevant information from the image modality. This process is formalized in Equation

2.4.9.

Attention(QT ,KI , VI) = softmax(QTKT
I√

dk
)VI (2.4.9)

Contextual Attention Mechanism

The contextual attention mechanism was introduced by Yang et al. (2016) in their

proposal of a hierarchical attention network for document classification. This network

operates at two different levels: the first level extracts the importance of individual

words with respect to sentences, and the second level extracts the importance of

sentences with respect to the entire document. Since this research does not employ

a hierarchical attention approach, we will focus on describing the first level of the

contextual attention mechanism in detail.

Step 1: Encoding the Sequence

Before extracting the importance of elements in a sequence using contextual atten-

tion, it is crucial to first apply a sequence encoding process to capture the context of

each element of the sequence. This can be achieved using either an RNN architecture

or a Transformer-based neural network. For each word xi in the sequence, the enco-

ding network generates a hidden state hi. This hidden state is then passed through a

fully connected layer (or multilayer perceptron) to produce a hidden representation

ui for the word. This process is applied to all elements of the sequence, as formalized

in Equation 2.4.10.

ui = tanh(Wh ⋅ hi + bh) (2.4.10)

Here, Wh and bh are learnable parameters of the neural network. The hidden

representation ui captures a non-linear transformation of the hidden state hi, which
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provides a richer representation of the word in context.

Step 2: Calculating Word Importance

Once the hidden representation ui is computed for each word, the next step is to

calculate the importance of each word in the sequence. This is done by measuring the

similarity between the word’s representation ui and a context vector uc, using a dot

product. The context vector serves as a global indicator of word importance in the

text. The importance score is then normalized using the softmax function to produce

the attention weight αi. This process is formalized in Equation 2.4.11.

αi =
exp(uT

i ⋅ uc)
∑j exp(uT

j ⋅ uc)
(2.4.11)

The context vector uc is randomly initialized and its parameters are learned during

the training process. It acts as a global reference vector that helps the model determine

which words or features in a document are more relevant to the overall task. During

training, uc is learned through an optimization process alongside the model’s other

parameters using backpropagation. As the model learns, uc is gradually fine-tuned

to improve its ability to identify relevant patterns in the data. The backpropagation

process updates the values of uc, optimizing it so that the model can effectively

highlight the most important words based on the downstream task.

Step 3: Calculating the Overall Message Representation

After calculating the attention weights αi for each word, the final step is to compu-

te a weighted sum of the encoded-word representations hi, which results in a general

representation of the message, denoted by z. This weighted sum allows the network

to focus on the most important words in the text, providing a more meaningful global

representation of the sequence. This is formalized in Equation 2.4.12.

z = ∑
j

αjhj (2.4.12)

Here, z represents the overall context-aware representation of the sequence, which

is a weighted combination of the hidden states hj produced by the encoding architec-

ture, and the attention weights.

Figure 2.8 illustrates the structure of the contextual attention mechanism based

on an encoding sequence. The mechanism dynamically assigns importance to different

words within a sentence, ultimately producing a contextually enhanced representation

that captures the most relevant information for text classification.
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Figure 2.8: Illustration of the contextual attention mechanism, Figure inspired by:
(Yang et al., 2016).

2.4.2. Recurrent Neural Network

A Recurrent Neural Network (RNN) is a class of ANNs with connections between

nodes form either directed or undirected graphs along a temporal sequence (Alzubai-

di et al., 2021). This architecture enables the network to exhibit dynamic temporal

behavior, making it particularly suitable for processing sequential data. Unlike tradi-

tional feed-forward neural networks, RNNs leverage their internal state (also referred

to as memory) to process variable-length sequences of inputs (Yu et al., 2019a). By

maintaining information from previous inputs, RNNs are especially effective in tasks

that require sequence analysis, as they can extract contextual information by defining

dependencies across various time steps.

RNNs preserve sequential information within the hidden states of the network,

which influences the processing of each new input in the sequence. This allows the

network to capture correlations between events that may be separated by time. Si-

milar to how human memory influences behavior without relying on all available in-

formation, the hidden states in RNNs carry information that affects decision-making

without fully exposing the learned knowledge at each step. The process of preser-

ving memory within these networks is represented mathematically by the following

equation:

ht = ϕ(Wxt +Uht−1) (2.4.13)

Here, ht is the hidden state at time step t, xt represents the input at the same time

step, and W and U are weight matrices that determine how the input and previous

hidden state interact. The hidden state from the previous time step ht−1 is multiplied
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by the matrix U , and this product is added to the weighted input. The function ϕ is

typically a non-linear activation function (e.g., tanh or ReLU) that introduces non-

linearity into the model. Figure 2.9 illustrates a simple example of a recurrent neural

network unit.

Figure 2.9: Example of an RNN unit.

While RNNs are highly effective at capturing dynamic dependencies in sequential

data, they face challenges when dealing with long sequences. Specifically, the issue of

vanishing gradients arises during backpropagation, where the gradients shrink with

each time step and eventually vanish after many steps, making it difficult to maintain

long-term dependencies (LeCun, Bengio, and Hinton, 2015). To address this limi-

tation, specialized architectures that incorporate explicit memory mechanisms were

developed. The two most prominent architectures are the Long Short-Term Memory

(LSTM) networks and the Gated Recurrent Unit (GRU) networks (Asakawa, 2016).

Both of these neural network variants utilize specialized hidden units, often referred

to as memory cells, that are capable of learning to retain information over extended

periods.

LSTM and GRU networks introduce memory cells that can regulate the flow of

information through a gating mechanism. These cells have a self-loop at the next time

step, which allows them to carry forward their state and accumulate new informa-

tion. Additionally, the memory cells feature multiplicative gates that learn to decide

whether to retain or discard information from the memory. This enables the network

to selectively preserve important information while discarding irrelevant details. The

gated structure helps mitigate the vanishing gradient problem, allowing LSTM and

GRU networks to capture long-term dependencies in the data (Yu et al., 2019a).

For more comprehensive details on the structure and operation of LSTM and

GRU networks, we refer the reader to the foundational works of (Hochreiter and

Schmidhuber, 1997; Bahdanau, Cho, and Bengio, 2015).
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2.4.3. Transformer Deep Neural Network

The Transformer Neural Network (TNN) is a neural network architecture built

upon the self-attention mechanism, forgoing the traditional use of recurrence and con-

volutions typically employed in sequence modeling. The Transformer was introduced

by Vaswani et al. (2017) in the context of sequence-to-sequence learning, particularly

in the Neural Machine Translation (NMT) task. Prior to the Transformer, RNNs

were the dominant architecture in sequence modeling tasks, especially within the

Encoder-Decoder framework for NMT. However, subsequent research (Devlin et al.,

2019; Brown et al., 2020; Cohen and Gokaslan, 2020) demonstrated that the Trans-

former architecture not only surpassed RNNs in NMT but also improved performance

across a variety of sequence-related tasks, including sentence classification and other

NLP tasks.

The Transformer model comprises two primary components: the encoder and the

decoder, both of which are composed of identical layers that can be stacked Nx times.

Figure 2.10 provides a visual representation of the Transformer architecture, illustra-

ting the encoder and decoder stacks. Notably, both the encoder and decoder share

the same number of layers Nx.

Encoder Process

The encoder in the Transformer architecture plays a crucial role in processing the

input sequence and transforming it into a continuous representation that captures

the contextual information across the entire sequence. The encoder is composed of a

stack of Nx identical layers, each containing two essential sub-layers: a multi-head self-

attention mechanism and a position-wise feed-forward network. Below, we describe

these components in detail:

1. Input Embedding and Positional Encoding: Before the input sequence en-

ters the encoder, each token in the sequence is mapped to a fixed-dimensional vector

via an embedding layer. However, unlike RNNs and CNNs, the Transformer does not

inherently capture the sequential order of the tokens. To address this, the Transformer

adds positional encodings to the token embeddings. The positional encoding vector,

denoted as PE, is designed to inject information about the position of each token in

the sequence.
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Figure 2.10: Transformer DNN architecture. Figure taken from Vaswani et al. (2017).

As described in Vaswani et al. (2017), the positional encoding is computed using

sine and cosine functions of different frequencies:

PE(pos,2i) = sin( pos

100002i/d
) , PE(pos,2i+1) = cos ( pos

100002i/d
) (2.4.14)

Here, pos is the position of the token in the sequence, i is the dimension index, and

d is the dimensionality of the embedding. These encodings are added element-wise

to the token embeddings, ensuring that each token now has a unique representation

that reflects both its content and its position within the sequence.

2. Multi-Head Self-Attention Mechanism: The first sub-layer of the encoder

is the multi-head self-attention mechanism, which allows the model to attend to all

other tokens in the sequence when processing each token. Given a sequence of token

embeddings, the multi-head attention mechanism first generates Query (Q), Key (K),

and Value (V) vectors for each token by applying learned weight matrices.
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For each token, attention scores are computed between the Query vector of that

token and the Key vectors of all tokens in the sequence, as described previously.

The attention scores are used to weight the Value vectors, and the final output is a

weighted sum of these Value vectors. This enables the model to capture contextual

information by focusing on the most relevant parts of the sequence for each token. The

multi-head attention mechanism allows the model to attend to different aspects of

the sequence in parallel, which improves its ability to capture complex dependencies.

The output of the multi-head attention sub-layer is passed through a residual

connection, followed by a normalization layer, as shown in Equation 2.4.15.

Attention Output = LayerNorm(MultiHeadAttention(Q,K,V ) + Input) (2.4.15)

3. Position-Wise Feed-Forward Network: The second sub-layer of each encoder

layer is a position-wise Feed-Forward Network (FFN). This fully connected network

is applied independently to each position in the sequence and consists of two linear

transformations with a ReLU activation function in between, this process is defined

in Equation 2.4.16.

FFN(x) =max(0, xW1 + b1)W2 + b2 (2.4.16)

Here, W1 and W2 are learned weight matrices, and b1 and b2 are biases. This

network introduces non-linearity and further refines the representation of each to-

ken. Like the multi-head attention sub-layer, the output of the FFN sub-layer passes

through a residual connection and a normalization layer:

FFN Output = LayerNorm(FFN(x) + Input) (2.4.17)

After processing through all Nx layers, the encoder outputs a continuous repre-

sentation of the input sequence that encapsulates its contextual information.

Decoder Process

The decoder is responsible for generating the output sequence, which could be in

a different modality or language, depending on the task. Similar to the encoder, the

decoder is composed of a stack of Nx identical layers, but with an additional sub-layer
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compared to the encoder. The following details the components and process of the

decoder:

1. Input Embedding and Positional Encoding: As in the encoder, each token

in the target sequence is mapped to a fixed-dimensional vector through an embedding

layer. The target sequence embeddings are also combined with positional encodings

using the same sinusoidal function to provide positional information.

2. Masked Multi-Head Self-Attention Mechanism: The first sub-layer in the

decoder is a masked multi-head self-attention mechanism. The masking ensures that

the decoder can only attend to earlier positions in the output sequence when genera-

ting a prediction for a given token. This is essential for autoregressive tasks, such as

translation, where the model should not have access to future tokens during training.

The masked multi-head attention works similarly to the encoder’s multi-head at-

tention, except that it prevents information flow from future tokens by applying a

mask that blocks certain positions from being attended to. The output of this sub-

layer is passed through residual connections and layer normalization.

3. Multi-Head Cross-Attention Mechanism: The second sub-layer in the deco-

der is a multi-head cross-attention mechanism, which allows the decoder to attend to

the encoder’s output. Here, the Query vectors are derived from the decoder’s previous

sub-layer, while the Key and Value vectors come from the encoder’s final output. This

allows the decoder to focus on relevant parts of the encoded input sequence while ge-

nerating each token in the output sequence. As before, residual connections and layer

normalization are applied after this sub-layer.

4. Position-Wise Feed-Forward Network: The final sub-layer in the decoder is

a position-wise feed-forward network, identical to the one used in the encoder. This

network processes each token’s representation individually and further refines the

output. As with the other sub-layers, residual connections and layer normalization

follow this sub-layer.

5. Final Linear and Softmax Layer: After passing through all Nx decoder layers,

the output is transformed by a linear layer followed by a softmax function to produce
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a probability distribution over the target vocabulary. This distribution is used to

predict the next token in the sequence. The decoding process continues iteratively

until the entire sequence is generated.

Summary of the Encoder-Decoder Interaction

The interaction between the encoder and decoder is crucial for sequence-to-

sequence tasks, where the input and output sequences may differ in length or modality.

The encoder processes the entire input sequence to produce a fixed-length representa-

tion, which the decoder attends to during its autoregressive generation of the output

sequence. The use of multi-head attention mechanisms in both the encoder and deco-

der, along with the cross-attention between them, enables the Transformer to capture

complex dependencies and relationships across sequences, making it a powerful archi-

tecture for a wide range of tasks.

Transformer Architecture and Applications

The Transformer’s architecture, characterized by its parallelizable structure and

the ability to capture long-range dependencies more efficiently than RNNs, has revo-

lutionized sequence modeling in NLP and beyond. Its encoder-decoder design allows

it to handle complex sequence-to-sequence tasks such as machine translation, text

summarization, and question answering, while the self-attention mechanism enables

rich context modeling across entire input sequences.

Recent works (Devlin et al., 2019; Brown et al., 2020) have extended the Transfor-

mer model to tasks beyond translation. Notable examples include the development of

large pre-trained language models like BERT (Devlin et al., 2019) and GPT (Brown et

al., 2020), which have achieved state-of-the-art performance on a wide range of NLP

tasks. These models leverage the Transformer’s capacity for contextual understanding

and have set new benchmarks in language modeling, question answering, and text ge-

neration. The following section provides a general overview of BERT’s architecture

and its pre-training tasks1.

1Pre-training tasks refer to unsupervised learning objectives that allow the model to learn general
language representations from large amounts of data before being fine-tuned on specific tasks.
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2.5. BERT: Bidirectional Encoder Representa-

tions from Transformers

Building upon the foundation of the Transformer architecture (Vaswani et al.,

2017), BERT (Bidirectional Encoder Representations from Transformers) represents a

significant advancement in pre-trained language models. BERT’s architecture consists

solely of the Transformer encoder stack, allowing it to fully capture bidirectional

context from text, in contrast to previous models that were limited to unidirectional

or shallow bidirectional contexts (Mohammed and Ali, 2021).

BERT employs a multi-layer bidirectional Transformer encoder, where each layer

is composed of self-attention and feed-forward sub-layers. The model comes in two

variants: BERTBASE, with 12 layers (transformer blocks), 768 hidden units per layer,

and 12 attention heads; and BERTLARGE, with 24 layers, 1024 hidden units, and 16

attention heads. The input to BERT consists of a sequence of tokens, each represented

by a sum of token embeddings, segment embeddings, and positional embeddings.

Additionally, the model processes text in a manner that allows it to attend to all

words in the sequence during both pre-training and fine-tuning.

Figure 2.11: Architecture of the BERT model. Figure taken from Devlin et al. (2019).

BERT is pre-trained using two primary unsupervised tasks: Masked Language

Modeling (MLM) and Next Sentence Prediction (NSP). In MLM, 15 % of the tokens

Coordinación de Ciencias Computacionales Instituto Nacional de Astrof́ısica, Óptica y Electrónica
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in each input sequence are randomly masked, and the model is trained to predict

these masked tokens based on their bidirectional context. This contrasts with previous

models that could only predict tokens from a unidirectional context. The NSP task

trains BERT to predict whether two given sentences follow each other in a document,

further enhancing its ability to understand relationships between sentences. Figure

2.11 illustrates the overall architecture of the BERT model. The model takes as input

a pair of unlabeled sentences, which are first tokenized and segmented using the

[SEP] token as a separator. These tokenized inputs are then passed through multiple

layers of Transformer encoders, and the outputs from these encoders are used for the

pre-training tasks.

BERT was pre-trained on large corpora, namely the BooksCorpus (800M words)

and English Wikipedia (2,500M words). This extensive pre-training enables BERT to

capture a wide range of linguistic nuances and syntactic features, making it highly

effective across a variety of tasks, including question answering, text classification, and

language inference. For a more detailed explanation of the architecture, the reader is

referred to the original paper by Devlin et al. (2019).

2.6. Evaluation Metrics and Statistical Test

To evaluate the performance of the proposed methods, ensure a fair comparison

with state-of-the-art approaches, and comprehensively analyze the obtained results,

this section introduces the various evaluation metrics and the statistical test used.

The considered metrics include: precision, recall, F1 score, weighted F1 score, macro-

average F1 score, the maximum possible accuracy, and diversity of coincidental failu-

res. These metrics were chosen to provide a robust evaluation of the proposed methods

and to ensure meaningful comparisons with other approaches.

In order to compare the performance of the different proposed methods, we em-

ployed the Bayesian Wilcoxon Signed-Rank Test, which is presented at the end of

this section.

The used evaluation metrics rely on the following terms:

TP (True Positive): A case where the classifier correctly predicts a positive

instance.

FP (False Positive): A case where the classifier incorrectly predicts a positive
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instance.

TN (True Negative): A case where the classifier correctly predicts a negative

instance.

FN (False Negative): A case where the classifier incorrectly predicts a negative

instance.

2.6.1. Accuracy

The value is calculated as the number of correctly classified positive and negative

elements, divided by the total number of correctly and incorrectly classified elements.

The formula for obtaining accuracy is shown below.

A = TP + TN
TP + FP + TN + FN

(2.6.1)

2.6.2. Precision

The value is calculated as the number of correctly classified positive elements,

divided by the total number of classified positive elements. The formula for obtaining

precision is shown below.

P = TP

TP + FP
(2.6.2)

2.6.3. Recall

The value is calculated as the number of correctly classified positive elements,

divided by the total number of actual positive elements. The formula for obtaining

recall is shown below.

R = TP

TP + FN
(2.6.3)

2.6.4. F1 Score

The F1 score is a measure that combines precision and recall. These measures

help understand the performance of the classifier when there are more elements of
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one class than another. The formula for obtaining the F1 score is shown below.

F1 =
2 ⋅ P ⋅R
P +R (2.6.4)

2.6.5. Weighted F1 Score

The weighted F1 score is employed to evaluate the performance of a multi-class

classifier, particularly in situations where class imbalance is present. To compute this

metric, the F1 score for each class is first calculated independently. Each F1 score

is then multiplied by a weight Wi, which corresponds to the proportion of instances

belonging to that class. The weighted F1 scores are subsequently summed, providing

a performance metric that accounts for the distribution of classes within the dataset.

weighted F1 =W1 ⋅ F1class1 +W2 ⋅ F1class2 + . . . +Wn ⋅ F1classn (2.6.5)

2.6.6. Macro-average F1 Score

The macro-average F1 score is utilized to assess the performance of a multi-class

classifier without taking class imbalance into account, ensuring that no class is given

preferential treatment. To compute this metric, the F1 score for each class is calculated

independently, and then an average is taken across the n classes. This results in a

single performance measure that treats each class equally, regardless of the number

of instances in each class.

macro-average F1 =
F1class1 + F1class2 + . . . + F1classn

n
(2.6.6)

2.6.7. Maximum Possible Accuracy

The use of Maximum Possible Accuracy (MPA) is introduced to evaluate the

complementarity between different classifiers in ensemble or multi-classifier systems

(Hossin and Sulaiman, 2015). This metric is particularly useful in understanding how

the combined efforts of multiple classifiers can enhance overall performance. MPA is

defined as the ratio of correctly classified instances to the total number of instances in

the dataset. An instance is deemed correctly classified if at least one of the classifiers

within the ensemble is able to assign the correct label to it. By analyzing MPA, we can

A Dual Attention-Based Representation for the Detection of Abusive Language in Texts and Memes



38 2. Background

gain valuable insights into the extent to which different classifiers complement each

other, identifying cases where one classifier compensates for the weaknesses of another.

This metric is especially useful in diverse ensembles where individual classifiers may

have different strengths and weaknesses, thus enabling a better understanding of the

potential benefits of combining multiple classifiers to improve classification accuracy.

2.6.8. Coincident Failure Diversity

The Coincident Failure Diversity (CFD) is a metric designed to quantify the

diversity of errors among different classifiers (Tang, Suganthan, and Yao, 2006). This

metric is particularly important for evaluating the robustness of ensemble methods or

multi-classifier systems by assessing how differently each classifier behaves when faced

with challenging patterns. The CFD metric ranges from 0 to 1. A value of 0 indicates

minimal diversity, meaning all classifiers either correctly classify or simultaneously

misclassify the same instances, exhibiting identical behavior. On the other hand, a

value of 1 signifies maximum diversity, where all classifiers make distinct classification

errors, ensuring that every misclassified instance is unique across the classifiers.

CFD is valuable in ensemble learning because diversity among classifiers is often

associated with improved generalization. When classifiers make different mistakes, the

ensemble can capitalize on this diversity to potentially correct those errors, leading to

better overall performance. The formal calculation of the CFD metric is presented in

Equation 2.6.7, where L represents the total number of classifiers, p0 is the probability

that all L classifiers correctly classify a randomly selected instance, and pi denotes

the probability that i randomly selected classifiers fail to classify a randomly selected

instance correctly.

CFD =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, p0 = 1

1

1 − p0

L

∑
i=1

L − i
L − 1

pi, p0 < 1
(2.6.7)

2.6.9. Inter-Annotator Agreement

In many ML and NLP tasks, datasets must be labeled by human annotators.

However, the subjective nature of labeling can introduce variability among different

annotators (Nowak and Rüger, 2010). To ensure the reliability and consistency of
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labeled data, it is essential to quantify the level of agreement between annotators. A

high level of agreement indicates that the annotations are reliable and can be used

confidently in downstream applications, whereas a low agreement may suggest the

need for further clarification of annotation guidelines or re-evaluation of the dataset.

In the following subsections, we introduce Cohen’s Kappa and Fleiss’Kappa values,

two widely used statistical measures for assessing inter-annotator agreement.

Cohen’s Kappa

Cohen’s Kappa (κ) is a statistical measure that quantifies the agreement between

two raters who classify items into mutually exclusive categories, this measure was

originally proposed by Cohen (1960). It accounts for the agreement occurring by

chance. The formula for Cohen’s Kappa is presented in Equation 2.6.8.

κ = po − pe
1 − pe

(2.6.8)

where:

po is the observed agreement between the two raters, calculated as:

po = ∑
i

Pii (2.6.9)

where Pii represents the proportion of items classified in category i by both

raters.

pe is the expected agreement due to chance, computed as:

pe = ∑
i

Pi+P+i (2.6.10)

where Pi+ and P+i are the marginal probabilities of category i for the first and

second rater, respectively.

The Kappa coefficient ranges from -1 to 1: where κ = 1 indicates perfect agreement,

κ = 0 suggests agreement equivalent to chance, and κ < 0 implies disagreement worse

than chance. Table 2.6.9 presents the interpretation of Kappa values.
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Kappa Interpretation

< 0,00 Poor agreement
0,00 − 0,20 Slight agreement
0,21 − 0,40 Fair agreement
0,41 − 0,60 Moderate agreement
0,61 − 0,80 Substantial agreement
0,81 − 1,00 Almost perfect agreement

Table 2.1: Interpretation ranges of Kappa values.

Fleiss’ Kappa

Fleiss’ Kappa is an extension of Cohen’s Kappa for multiple raters, this measure

was introduced by Fleiss and others (1971). It measures the reliability of agreement

among N raters classifying items into k categories. Equation 2.6.11 presents the for-

mula for Fleiss’ Kappa.

κ = P − Pe

1 − Pe

(2.6.11)

where:

P is the observed agreement, computed as:

P = 1

N

N

∑
i=1

[
k

∑
j=1

p2ij − 1] (2.6.12)

where pij is the proportion of raters who classified item i into category j.

Pe is the expected agreement, defined as:

Pe =
k

∑
j=1

p2.j (2.6.13)

where p.j is the overall proportion of ratings assigned to category j.

Similar to Cohen’s Kappa, Fleiss’ Kappa values range between -1 and 1, with simi-

lar interpretations regarding the level of agreement. For a more detailed explanation

of the calculation of Cohen’s Kappa and Fleiss’ Kappa measures, we refer the reader

to the following papers (Cohen, 1960; Fleiss and others, 1971).
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2.6.10. Bayesian Comparison of Classifiers Using the Wilco-

xon Signed-Rank Test

In order to evaluate the performance of different machine learning classifiers across

multiple datasets, it is essential to utilize robust statistical methods that account for

the inherent variability of the data. Traditional methods, such as the frequentist paired

t-test or the Wilcoxon signed-rank test, can help determine whether there are signi-

ficant differences in classifiers’performance. However, these approaches only provide

p-values, which offer limited information regarding the magnitude and uncertainty of

the differences between classifiers (Gardner and Brooks, 2017).

To address these limitations, we employ the Bayesian Wilcoxon signed-rank test

as a means of comparing the performance of the proposed approaches. The Bayesian

framework allows for richer probabilistic interpretations of the differences, including

credible intervals that reflect uncertainty. By utilizing the Bayesian Wilcoxon signed-

rank test, we can infer the probability that one classifier outperforms another and

estimate the extent of this superiority. This method is particularly useful when the

assumption of normality is not met or when we wish to incorporate prior knowledge

about the performance of the classifiers.

Bayesian Wilcoxon Signed-Rank Test

The classical Wilcoxon signed-rank test is a non-parametric test used for compa-

ring two related samples, which, in the context of this research, refers to the perfor-

mance of two classifiers on the same set of datasets (Rey and Neuhäuser, 2011). Given

that the test does not assume normality of the differences between the paired sam-

ples, it is particularly well-suited to handling performance metrics such as accuracy,

precision, or F1-score, which may not follow a normal distribution.

The Bayesian adaptation of the Wilcoxon signed-rank test enhances this classical

approach by replacing hypothesis testing with probability modeling. Instead of de-

termining whether there is sufficient evidence to reject a null hypothesis, it estimates

the posterior distribution of the difference between the performances of the two clas-

sifiers, providing a more detailed insight into the nature of these differences (Benavoli

et al., 2014).

Let di denote the difference in performance between two classifiers for dataset

i, where di = Xi − Yi, and Xi and Yi represent the performance of classifiers A and
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B on the same dataset, respectively. The classical Wilcoxon test ranks the absolute

differences ∣di∣, assigns signed ranks, and computes a test statistic. The Bayesian

approach, however, treats the differences di as random variables and models them

using a probability distribution.

The aim of the Bayesian Wilcoxon signed-rank test is to estimate the posterior

distribution p(θ∣D), where θ represents the central tendency (e.g., median) of the

differences, and D is the observed data. This is done by combining a prior distribu-

tion p(θ) with the likelihood of observing the data given the model parameters. The

resulting posterior distribution is given by Bayes’theorem:

p(θ∣D) = p(D∣θ)p(θ)
p(D) , (2.6.14)

where p(D∣θ) is the likelihood of the data given the parameter θ, and p(D) is the

marginal likelihood.

Priors and Likelihood

In the Bayesian framework, prior distributions reflect our beliefs about the para-

meters before observing the data. For example, if we have no strong prior information

about the performance differences between classifiers, we may use a non-informative

prior such as a uniform distribution. If, on the other hand, we have reasons to believe

that one classifier generally performs better, we may use an informative prior that

reflects this belief.

The likelihood function p(D∣θ) in the Bayesian Wilcoxon signed-rank test is cons-

tructed based on the ranks of the differences di. Since the test is non-parametric,

it does not assume a specific distribution for the differences but rather models the

likelihood based on the signed ranks.

Posterior Distribution and Credible Intervals

Once the prior and likelihood are defined, the posterior distribution of θ is com-

puted. This posterior distribution provides a full probabilistic description of the pa-

rameter, allowing us to make statements such as “there is a 95 % probability that the

difference in performance between classifiers A and B lies within a certain range”.

The posterior distribution also allows us to compute credible intervals, which are

the Bayesian equivalent of confidence intervals in frequentist statistics. A credible
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2.6 Evaluation Metrics and Statistical Test 43

interval provides a range within which the true value of θ is likely to lie with a

specified probability, say 95 %.

For example, if the 95 % credible interval for θ is [−0,02,0,05], we can state with

95 % probability that the performance difference between classifiers A and B lies

within this range. If the interval includes zero, it suggests that there is a significant

probability that the classifiers perform similarly.

Posterior Probability of Superiority

In addition to estimating credible intervals, the Bayesian Wilcoxon signed-rank

test allows us to compute the posterior probability that one classifier outperforms the

other. Let P (θ > 0) denote the posterior probability that the difference in performance

is positive, meaning that classifier A outperforms classifier B. If P (θ > 0) = 0,90, we

can state that there is a 90 % probability that classifier A is superior to classifier B.

This type of probabilistic interpretation provides a more intuitive understanding of

the performance differences compared to classical p-values, which only give a measure

of the likelihood of observing the data under the null hypothesis.

The Bayesian Wilcoxon signed-rank test provides a powerful and flexible tool for

comparing the performance of classifiers, particularly when the data do not meet

the assumptions of traditional parametric tests. By incorporating prior information

and providing a full posterior distribution of the differences, this method allows for

richer inferences about the superiority of one classifier over another. Specifically, it

returns probabilities that, based on the measured performance, one classifier is better

than another, or that they are within the region of practical equivalence. A concise

way to view this is that the test produces a posterior distribution over the possible

differences in performance between the two classifiers. In practice, one draws random

samples from this posterior distribution typically via a Markov Chain Monte Carlo

(MCMC) routine (Benavoli et al., 2014), where each draw corresponds to one plausible

“scenario” in which the difference A −B is a specific value.

Assuming we compare two classifiers, A and B, the test then returns the proba-

bility that the first classifier is better than the second P (A > B), the probability of

a tie P (rope), and the probability that the second classifier is better than the first

P (B > A). As proposed by Benavoli et al. (2014), to help visualize these results, n

MCMC samples are usually mapped in barycentric coordinates, where each vertex

of the triangle is associated with one of the Bayesian test scenarios, and each point
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represents a statistical comparison between the two classifiers. As an example, Fi-

gure 2.12 compares two different classifiers. As can be observed, there is a strong

tendency for classifier B to outperform classifier A, along with a smaller tendency to-

ward a tie between the two classifiers. In this example, 150,000 samples were drawn,

resulting in 150,000 points in the barycentric plot. Each point’s location is determined

by whether the sampled difference favors A, favors B, or falls within the region of

practical equivalence.

Figure 2.12: Example of the visualization of the Bayesian Wilcoxon signed-rank test
when comparing two classifiers. The Figure was generated using the library provided
by Benavoli et al. (2014).

For more details on the implementation and theory behind the Bayesian Wilcoxon

signed-rank test, we refer the reader to (Benavoli et al., 2014, 2017).
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Chapter 3

Related Work

This section presents a comprehensive description and analysis of previous work

related to attention mechanisms, as well as various techniques and approaches used

for the detection of AL in social media. The section is divided into four main sub-

sections, each addressing a different aspect of the topic. The first subsection provides

an overview of the different attention mechanisms and the various Transformer archi-

tectures proposed in the literature. The second subsection focuses on both unimodal

and multimodal approaches for the detection of abusive language in social media. The

third subsection presents an overview of some of the most significant evaluation cam-

paigns and benchmarks related to AL detection in social media. Finally, the fourth

subsection discusses the current limitations of the main approaches in the detection

of abusive language within both unimodal and multimodal scenarios.

3.1. Attention Mechanisms and Transformer-

based Approaches

Several variants of attention mechanisms have been proposed, each contributing

to significant advancements in the state of the art across a wide range of tasks, inclu-

ding machine translation (Vaswani et al., 2017), text classification and representation

(Chakrabarty, Gupta, and Muresan, 2019), image captioning (Xu et al., 2015), video

captioning (Pu et al., 2018), visual question answering (Kanakamedala et al., 2021),

and generative modeling (Zhang et al., 2019a). The effectiveness of attention me-

chanisms has been substantiated by extensive empirical evidence (Niu, Zhong, and

Yu, 2021), which has motivated the research community to explore and refine these

mechanisms further.

[45]
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According to Chaudhari et al. (2021), attention mechanisms can be categorized

into four primary categories, which are not mutually exclusive. These categories in-

clude:

1.- The use of single or multiple input sequences simultaneously (Bahdanau, Cho,

and Bengio, 2015; Lu et al., 2016), where the attention weights are jointly

learned to capture interactions between these input sequences. This approach

allows for the integration of information across different sequences, enhancing

the model’s ability to capture complex relationships.

2.- The use of single or hierarchical levels of abstractions, where attention weights

are computed either for the original input sequence alone or across multiple

levels of abstraction within an input sequence (Yang et al., 2016; Zhao and

Zhang, 2018). This enables the model to focus on different levels of detail, which

can be crucial for tasks requiring nuanced understanding, such as hierarchical

text classification.

3.- The application of the attention mechanism at different positions within the

input sequence. This can be divided into soft and hard attention mechanisms.

In soft attention, a weighted average of all hidden states in the input sequence

is used to build the context vector (Bahdanau, Cho, and Bengio, 2015), whereas

in hard attention, the context vector is computed from stochastically sampled

hidden states within the input sequence (Xu et al., 2015). This distinction allows

models to either focus broadly on the entire sequence or selectively concentrate

on specific parts.

4.- The use of single or multiple input sequence representations, where the latter is

employed to assign importance weights to different representations. This helps

in identifying the most relevant aspects of the input while filtering out noise and

redundancies (Maharjan et al., 2018; Kiela, Wang, and Cho, 2018). By focusing

on the most salient features, this approach can enhance the model’s ability to

make accurate predictions, especially in complex, multi-modal tasks.

Among single- and multi-sequence attention mechanisms, the most widely adop-

ted are the contextual attention mechanism (Yang et al., 2016) and the self-attention

mechanism (Vaswani et al., 2017). These mechanisms have been predominantly ap-

plied in tasks such as document classification, text representation, and neural machine
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3.1 Attention Mechanisms and Transformer-based Approaches 47

translation (Hu, 2020; Chaudhari et al., 2021). The key distinction between these two

lies in how they utilize the query vector or matrix: in self-attention, the query is deri-

ved from a linear projection of the same sequence, whereas in contextual attention, it

is jointly learned during the training process of the neural network. This distinction

enables the contextual attention mechanism to calculate the similarity of the elements

of the sequence with respect to the context learned during training.

In this doctoral research, we introduce a novel Dual Attention (DA) mechanism

that unifies both self-attention and contextual attention mechanisms. The proposed

DA mechanism generates a contextualized representation by leveraging the strengths

of these approaches, thereby preserving the relevance of each element within the

sequence relative to both the entire sequence and the context learned during the

training process. This dual perspective allows for a more nuanced understanding of

the relationships between elements, enhancing the model’s ability to capture complex

patterns in data.

It is important to note that the term DA has been previously employed in various

studies to describe the weighted combination of different modalities or sources of in-

formation through attention mechanisms. For instance, (Fu et al., 2019) combined

features from image regions across different channels for the task of scene segmenta-

tion. Similarly, (Li et al., 2019b) introduced a dual attention mechanism for Dialogue

Act classification, where the mechanism integrates information extracted from dialo-

gues with the different topics addressed within them. Furthermore, (Xiao et al., 2019)

proposed a dual attention mechanism that combines features of objects and actions

for reasoning about human-object interactions. More recently, in (Li et al., 2023b),

a dual attention mechanism was proposed, combining representations obtained by

independently applying attention mechanisms to two feature sets that measured tem-

porality and readings from a sensor array for Remaining Useful Life (RUL) detection.

Unlike these existing approaches, our proposed DA mechanism integrates repre-

sentations from two distinct attention mechanisms. To the best of our knowledge, our

proposed DA mechanism is the first to integrate both self-attention and contextual

attention mechanisms across single-modal and cross-modal settings. This combina-

tion allows the mechanism to focus on the relationships between each pair of elements

in the sequence and the relevance of each element with respect to the context learned

during training. This context is specifically related to the application domain, ma-

king the DA mechanism highly adaptable to various tasks where understanding the
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interplay between sequence elements and their contextual relevance is crucial.

To provide a clearer overview of the main differences between our proposed DA me-

chanism and various single- and multi-sequence attention mechanism variants based

on self-attention and contextual attention, Table 3.1 presents a comparative analysis.

As shown, our work leverages both attention mechanisms, not only by combining

attention representations but also by integrating both self-attention and contextual

attention mechanisms. The application of our DA mechanism differs based on the

input type: for single input sequences (texts), it applies the dual attention mecha-

nism, while for multiple input sequences (memes), it employs the cross-modal dual

attention mechanism.

Reference
Single(S)/

Multiple(M)
Input

Sequence

Self-
Attention

Contextual
Attention

Single(S)/
Hierarchical(H)

Level
Attention

Combine
Attention

Representations

Combine
Self and

Contextual
Attention

(Yang et al.,
2016)

S - ✓ H ✓ -

(Vaswani et al.,
2017)

S ✓ - H ✓ -

(Ye et al., 2019) M ✓ - H ✓ -

(Fu et al., 2019) M ✓ - S ✓ -

(Li et al., 2019b) S ✓ - S - -

(Xiao et al.,
2019)

M ✓ - S ✓ -

(Chakrabarty,
Gupta, and

Muresan, 2019)
S - ✓ S - -

(Yan et al.,
2022)

S ✓ - H ✓ -

(Li et al., 2023b) M ✓ - H ✓ -

Dual Attention
(ours)

S/M ✓ ✓ S/H ✓ ✓

Table 3.1: Comparative table of our dual attention mechanism versus various single- and multi-
sequence attention mechanism variants, based on self-attention and contextual attention mechanisms.

The use of self-attention has gained significant popularity in recent years, largely

due to its integration into Transformer-based neural network models (Lin et al., 2022).

The Transformer model is a prominent DL architecture that has been widely adopted

across various fields, including NLP (Gulati et al., 2020; Ramprasath et al., 2022)

and Computer Vision (CV) (Khan et al., 2022). One of the primary applications of

the Transformer models in NLP is text classification, which has become popular in

recent years due to its outstanding performance in a diverse array of domains. These

domains include sentiment analysis (Durairaj and Chinnalagu, 2021; Tabinda Kokab,

Asghar, and Naz, 2022), depression detection (Haque et al., 2020; Malviya, Roy, and

Saritha, 2021), deception detection (Wawer and Sarzyńska-Wawer, 2022), sentence
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pair classification (Devlin et al., 2019; Ding et al., 2021), and the identification of AL

content (Mutanga, Naicker, and Olugbara, 2020; Bindra, Sharma, and Bansal, 2022),

among others.

As detailed in Section 2.4.3, the Transformer architecture consists of both encoder

and decoder layers. Among the most widely used pre-trained NLP models that utilize

only the encoder layers are BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019),

ERNIE (Zhang et al., 2019b), and DistilBERT (Sanh et al., 2019). On the other hand,

models that leverage the decoder for text sequence generation include GPT-2 (Cohen

and Gokaslan, 2020), GPT-3 (Brown et al., 2020), BART (Lewis et al., 2020), and

LLaMA (Touvron et al., 2023). These pre-trained models are distinguished by two

key factors: 1) the datasets used for training, and 2) the pre-training tasks, which

refer to specific tasks designed to train a model on large amounts of unlabeled data

before fine-tuning it for a particular downstream task. The goal of pre-training is to

enable the model to learn general and useful representations of language (or other

modalities, such as images) that can be transferred to various downstream tasks with

less labeled data (Zhang et al., 2023).

In the context of CV, pre-trained models have adapted the Transformer architec-

ture originally proposed by Vaswani et al. (2017), where each token is now represented

by a region of the image. Some of the most popular pre-trained models in this area

include ViT (Dosovitskiy et al., 2020), Swin Transformer (Liu et al., 2022), and the

BLIP model (Li et al., 2023a). In addition to these unimodal models, in recent years,

multimodal pre-trained models have been developed by integrating both text and

image modalities. Among the most widely used models are ViLBERT (Lu et al.,

2019), VisualBERT (Li et al., 2019a), VL-BERT (Su et al., 2020), CLIP (Radford et

al., 2021), Gemini 1.5 (Gemini-Team et al., 2024), and GPT-4 (OpenAI et al., 2024).

These multimodal models represent a significant advancement in the field, as they

harness the strengths of both text and image representations, enabling the creation

of more robust and contextually aware models. The integration of multiple modalities

within a single model architecture not only enhances performance but also broadens

the range of applications, making these models highly versatile and effective for tasks

that require a deep understanding of both visual and textual information.
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3.2. Abusive language detection in social media

A wide variety of research related to the detection of AL focuses on the detection

of sexist, racist, hateful, aggressive, and offensive content on social media platforms

(MacAvaney et al., 2019; Wenjie and Arkaitz, 2021). Much of this research has been

conducted from a supervised learning perspective, utilizing various data preprocessing

techniques, a range of text representations, and a diverse array of machine learning

algorithms, including both traditional and deep learning approaches (Schmidt and

Wiegand, 2017). These studies often focus on optimizing the detection performance

through the careful selection of features and model architectures, tailored to the

specific characteristics of the dataset and the type of AL being targeted.

The following subsections provide a detailed overview of the most relevant ap-

proaches to the detection of AL, categorized by their focus on unimodal (text-based)

and multimodal (meme-based) content. This categorization highlights the differences

in methodologies and challenges encountered when dealing with pure text versus the

more complex, multimodal nature of memes, where both textual and visual elements

contribute to the overall meaning and potential harmfulness of the content.

3.2.1. Detection of abusive language in text

Various methods have been proposed for the detection of AL using textual infor-

mation. These approaches range from traditional NLP techniques to more advanced

deep learning-based models, which currently constitute the state of the art in this

domain (Poletto et al., 2021; Jahan and Oussalah, 2023). The range of features em-

ployed to address this challenge is broad, reflecting the evolution of techniques over

time.

Initial methods often relied on bag-of-words representations, utilizing word and

character n-grams as input features to build classifiers (Burnap and Williams, 2016;

Nobata et al., 2016; Zeerak and Dirk, 2016; Gaydhani et al., 2018). Although effective

in certain contexts, these approaches sometimes struggle with generalization.

To enhance the generalization capabilities of classifiers, subsequent approaches

have integrated word embeddings as input features for their models. Word embed-

dings, which capture semantic relationships between words in a continuous vector

space, have proven to be more effective in representing linguistic nuances compared
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3.2 Abusive language detection in social media 51

to traditional n-gram methods (Nobata et al., 2016; Zhang, Robinson, and Tepper,

2018; Chakrabarty, Gupta, and Muresan, 2019).

More recently, the field has witnessed a shift towards the use of sophisticated text

representations generated by pre-trained Transformer-based neural language models.

These models, including ELMo (Peters et al., 2018), GPT-2 (Radford et al., 2019),

BERT (Devlin et al., 2019), and RoBERTa (Liu et al., 2019), provide deep contex-

tualized word representations that capture complex patterns in language. By fine-

tuning these pre-trained models for the specific task of AL detection, researchers

have achieved significant performance improvements (Liu, Li, and Zou, 2019; Nikolov

and Radivchev, 2019; Mozafari, Farahbakhsh, and Crespi, 2019a; Mutanga, Naicker,

and Olugbara, 2020; Shrivastava, Pupale, and Singh, 2021; Yigezu et al., 2023). The-

se Transformer-based models have become the benchmark for AL detection tasks,

offering robust and adaptable solutions across a wide range of datasets and contexts.

Regarding the classification stage, various approaches and techniques have been

proposed to enhance the detection of AL. These approaches can be broadly cate-

gorized into two main groups. The first group comprises traditional classification

algorithms, such as Support Vector Machines (SVMs), Naive Bayes, Logistic Regres-

sion, and Random Forest. These methods have been widely used in earlier studies due

to their effectiveness in handling structured data and their relatively straightforward

implementation (Zeerak and Dirk, 2016; Burnap and Williams, 2016; Davidson et al.,

2017; Schmidt and Wiegand, 2017; Gaydhani et al., 2018; MacAvaney et al., 2019;

Abro et al., 2020).

The second group includes deep learning-based approaches, which have gained

prominence in recent years due to their ability to automatically extract and learn

complex patterns from data. These approaches typically employ Convolutional Neu-

ral Networks (CNNs) for feature extraction at the word and character levels (Bad-

jatiya et al., 2017; Gambäck and Sikdar, 2017; Ashwin, Irina, and Dominique, 2020;

Roy et al., 2020), and RNNs for capturing word and character dependencies, thereby

enhancing the model’s ability to understand sequential information (Badjatiya et al.,

2017; Saksesi, Nasrun, and Setianingsih, 2018; Pitsilis, Ramampiaro, and Das, 2018;

Chakrabarty, Gupta, and Muresan, 2019; Ashwin, Irina, and Dominique, 2020). Ad-

ditionally, some approaches combine CNNs and RNNs to create hybrid architectures

that effectively capture both spatial and temporal features, leading to more powerful

models for AL detection (Zhang, Robinson, and Tepper, 2018; Huynh et al., 2019;
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Duwairi, Hayajneh, and Quwaider, 2021).

Recent advancements in AL detection have increasingly incorporated deep lear-

ning architectures enhanced with attention mechanisms. These mechanisms enable

models to automatically weigh the importance of different features, thereby impro-

ving their ability to focus on the most relevant aspects of the input data (Chaudhari

et al., 2021). One of the pioneering works in this area employed the self-attention

mechanism to detect abusive language in portal news and Wikipedia, marking a sig-

nificant step forward in the field (Pavlopoulos, Malakasiotis, and Androutsopoulos,

2017). Following this, the contextual attention mechanism, first introduced by Yang

et al. (2016), has shown promising results in enhancing sentence representations for

AL detection tasks (Chakrabarty, Gupta, and Muresan, 2019; la Peña Sarracén et al.,

2018; Jarqúın-Vásquez, Montes-y Gómez, and Villaseñor-Pineda, 2020).

Moreover, the use of Transformer-based models has become increasingly popular

in recent years, representing the current state of the art in AL detection. These

approaches range from fine-tuning pre-trained Transformer models (Rani et al., 2020;

Kovács, Alonso, and Saini, 2021), to employing ensembles of Transformers to boost

performance further (Mnassri et al., 2022; Mazari, Boudoukhani, and Djeffal, 2023).

Recent approaches have focused on retraining pre-trained Transformer models with

social media data containing offensive content, aiming to better adapt these models to

the specific domain of AL detection (Caselli et al., 2021; Jarqúın-Vásquez, Escalante,

and Montes-y Gómez, 2023).

3.2.2. Detection of abusive language in memes

The detection of AL has predominantly been addressed through the use of tex-

tual resources (Schmidt and Wiegand, 2017; Naseem et al., 2019). However, in recent

years, there has been growing interest in expanding AL detection to a multimodal

perspective. This shift is particularly evident in the detection of abusive memes on

social media, where both textual and visual information are combined to create con-

text (Afridi et al., 2020). The classification of memes represents a Vision & Language

(V&L) multimodal problem, where diverse approaches have been developed to tackle

the challenges posed by this task.

These approaches can be broadly categorized into two main strategies: 1) the

fusion of multimodal features, and 2) the use of pre-trained multimodal models (Bal-
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trusaitis, Ahuja, and Morency, 2019; Kiela et al., 2020). The first strategy involves ex-

tracting features separately from the text and visual components and then combining

them to form a unified representation, which is subsequently used for classification.

This fusion process is critical, as it enables the model to leverage the complementary

information present in both modalities. The second strategy leverages pre-trained

multimodal models, which have been trained on large-scale datasets to understand

the interplay between text and images. These models have demonstrated significant

improvements in the accuracy of AL detection in memes (Hermida and Santos, 2023).

Figure 3.1 illustrates a general framework for the detection of AL in memes, ba-

sed on the aforementioned approaches. In this framework, unimodal and multimodal

pre-trained models can be employed directly for classification through a fine-tuning

strategy or can undergo a feature fusion process before classification. This flexibility

allows for the integration of various techniques to optimize performance, depending

on the specific characteristics of the dataset and the task at hand.

Figure 3.1: General scheme for the detection of AL in memes.

Regarding the proposed approaches for the detection of AL in memes, a significant

number of them adhere to the classification scheme illustrated in Figure 3.1. Among

these approaches, those based on feature fusion have been widely explored, utilizing

a variety of techniques including early, late, and hybrid fusion of image and textual

features (Oriol, Canton-Ferrer, and i Nieto, 2019; Keswani et al., 2020; Gomez et

al., 2020; Constantin et al., 2021; Kirk et al., 2021). Early fusion, particularly in the

form of concatenation or cross-modal fusion, has been extensively employed due to

its ability to achieve better alignment between textual and visual features (Hermida

and Santos, 2023; Yang et al., 2024).

The features used in these fusion approaches are often extracted from unimodal

pre-trained models. For linguistic features, models such as BERT (Devlin et al., 2019),

ELMo (Peters et al., 2018), GPT-2 (Radford et al., 2019), RoBERTa (Liu et al., 2019),

and ERNIE (Zhang et al., 2019b) are commonly used. For visual features, popular
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models include AlexNet (Krizhevsky, Sutskever, and Hinton, 2012), VGG (Simonyan

and Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), ViT (Dosovitskiy et al.,

2020), and Swin Transformer (Liu et al., 2022). Recent studies have also incorporated

image captions as an additional modality, with most of these captions generated by

the BLIP model (Li et al., 2023a) and integrated through an early fusion process

(Maqbool and Fersini, 2024).

On the other hand, some approaches have opted for the use of pre-trained multi-

modal models, which leverage joint multimodal information (image and text) for AL

detection (Suryawanshi et al., 2020; Lee et al., 2021; Kirk et al., 2021; Zhou, Chen,

and Yang, 2021; Kumar and Nandakumar, 2022; Arya et al., 2024). These multimodal

models have demonstrated superior performance in AL detection, as they are trained

to process both modalities simultaneously, allowing for a more effective alignment

between text and image (Sharma et al., 2020; Yu et al., 2019b). Among the multimo-

dal models, transformer-based representations such as ViLBERT (Lu et al., 2019),

VisualBERT (Li et al., 2019a), VL-BERT (Su et al., 2020), CLIP (Radford et al.,

2021), Gemini 1.5(Gemini-Team et al., 2024), and GPT-4 (OpenAI et al., 2024) have

been the most widely used.

3.3. Evaluation campaigns for abusive language

detection in social media

Considering the well-acknowledged rise of AL on social media platforms, a subs-

tantial number of datasets, workshops, and evaluation campaigns have been developed

to mitigate the impact of such content (Poletto et al., 2021). The majority of these

efforts have centered around the detection of abusive messages, with a predominance

of resources created in the English language.

In 2018, the first workshop on Trolling, Aggression, and Cyberbullying (TRAC-

1)1 was held at the Eleventh International Conference on Language Resources and

Evaluation (LREC 2018). This workshop aimed to classify text data into categories

such as Overtly Aggressive, Covertly Aggressive, and Non-aggressive, providing a

focused approach to addressing varying levels of aggression in online communication

(Kumar et al., 2018).

1https://sites.google.com/view/trac1/shared-task
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Similarly, the Automatic Misogyny Identification (AMI)2 task was introduced as

part of the Sixth Evaluation Campaign of Natural Language Processing and Speech

Tools for Italian (EVALITA 2018). This task specifically targeted the automatic iden-

tification of misogynistic content in English and Italian tweets, expanding the focus

of abusive language to include gender-based hate speech (Fersini, Nozza, and Rosso,

2018).

In addition to these efforts, the OffensEval shared tasks on Identifying and Ca-

tegorizing Offensive Language in Social Media34 were presented at the International

Workshop on Semantic Evaluation (SemEval) in 2019 and 2020. These tasks emphasi-

zed not only the identification of offensive language but also the automatic categoriza-

tion of offense types and the identification of offense targets, contributing significantly

to the broader understanding and handling of offensive content (Marcos et al., 2019;

Zampieri et al., 2020).

In parallel with these efforts, the HatEval shared task on Multilingual Detection

of Hate Speech Against Immigrants and Women in Twitter was presented at SemEval

2019 (Basile et al., 2019). This task focused on detecting hate speech in both English

and Spanish, specifically targeting immigrants and women. Additionally, it aimed to

identify the presence of aggressive attitudes and to classify the nature of the target,

distinguishing between individuals and groups.

Additionally, the shared task on Hate Speech and Offensive Content Identification

in Indo-European Languages5 (HASOC) has focused on detecting hate speech and

offensive content, encompassing a wide range of subtasks. These subtasks include

binary classification and fine-grained classification, distinguishing whether the texts

target an individual, a group, or are untargeted. This shared task has been conducted

annually since 2019, organized within the framework of the annual meeting of the

Forum for Information Retrieval Evaluation (FIRE) (Satapara et al., 2024).

Furthermore, the shared task sEXism Identification in Social neTworks6 (EXIST)

has been dedicated to detecting sexism, incorporating various subtasks focused on

binary and multi-class classification of different types of sexism, in both English and

Spanish. This task has been held since 2021, with its last three editions presented at

2https://amievalita2018.wordpress.com/
3https://competitions.codalab.org/competitions/20011
4https://competitions.codalab.org/competitions/22917
5https://hasocfire.github.io/hasoc/2024/index.html
6https://nlp.uned.es/exist2024/
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the Conference and Labs of the Evaluation Forum (CLEF) (Plaza et al., 2024).

In recent years, shared tasks focused on the Spanish language have also been

developed, primarily within the context of the Iberian Languages Evaluation Forum

(IberLEF). Notable among these is the MEX-A3T shared task7, which focuses on the

detection of fake news and aggression in Mexican Spanish tweets (Aragón et al., 2020).

Another relevant task is MeOffendEs8, centered on the detection of offensive content in

various Spanish variants (del Arco et al., 2021). Furthermore, the HOMO-MEX task9

has been dedicated to the detection of LGBTQ+ phobic content in Spanish tweets,

highlighting the importance of addressing homophobic and transphobic language in

social media (Bel-Enguix et al., 2023). Similarly, the HODI shared task was proposed

in the context of EVALITA 2023 (Nozza et al., 2023). This task focuses on detecting

hate speech targeting the LGBTQIA+ community in Italian, as well as identifying

the specific tokens within the sequence that contribute to the hateful nature of the

message.

Regarding the detection of AL in memes, in recent years, there has been a growing

interest from both the research community and industry in addressing this complex

issue. One notable example is the 2020 Hateful Memes Challenge10 organized by

Facebook, which focused on the detection of hate speech within memes. This challenge

utilized a manually annotated dataset of 10k memes, providing a valuable resource

for the development of robust detection approaches (Kiela et al., 2020).

In the 14th International Workshop on Semantic Evaluation (SemEval-2020) was

introduced the Memotion Analysis11 shared task, which aimed to classify memes

based on their sarcastic, humorous, and offensive content. This task highlighted the

multifaceted nature of meme analysis, where the boundary between humor and offense

can be particularly challenging to delineate (Sharma et al., 2020).

Further advancing the field, in the 16th International Workshop on Semantic Eva-

luation (SemEval-2022) was presented the Multimedia Automatic Misogyny Identifica-

tion (MAMI)12 shared task. This task was divided into two main sub-tasks: Sub-task

A focused on the identification of misogynistic memes, while Sub-task B required par-

7https://sites.google.com/view/mex-a3t/home
8https://competitions.codalab.org/competitions/28679
9https://codalab.lisn.upsaclay.fr/competitions/10019

10https://ai.facebook.com/blog/hateful-memes-challenge-and-data-set/
11https://competitions.codalab.org/competitions/20629
12https://competitions.codalab.org/competitions/34175
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ticipants to recognize the specific type of misogyny portrayed, including categories

such as stereotyping, shaming, objectification, and violence. This nuanced approach

underscores the importance of understanding the diverse forms of misogynistic con-

tent in online media (Fersini et al., 2022).

Finally, within the framework of IberLEF, the Detection of Inappropriate Me-

mes from Mexico (DIMEMEX)13 task was proposed. This task focuses on detecting

inappropriate content and hate speech in Mexican Spanish memes, reflecting the gro-

wing need to develop culturally and linguistically specific tools for meme analysis

(Jarqúın-Vásquez et al., 2024).

3.4. Discussion

A wide array of approaches has been proposed for the detection of AL in text

and memes, ranging from traditional fusion and classification techniques (Schmidt

and Wiegand, 2017; MacAvaney et al., 2019; Poletto et al., 2021; Wenjie and Arkaitz,

2021) to more advanced approaches based on DL (Kiela et al., 2020; Zhou, 2020;

Rani et al., 2020; Kovács, Alonso, and Saini, 2021; Wenjie and Arkaitz, 2021). Due

to their powerful representational capabilities and ability to capture multiple levels

of abstraction, DL-based approaches have gained significant traction in recent years

(Guo, Wang, and Wang, 2019; Li et al., 2019a). In particular, V&L representations

have shown remarkable promise. The TNN architecture (Vaswani et al., 2017) is

built upon many of these models and has been pivotal in creating pre-trained V&L

representations. By leveraging the self-attention mechanism, these models effectively

capture the relationships between pairs of image regions and words, leading to state-

of-the-art results across a wide range of V&L tasks, including the detection of AL in

memes (Su et al., 2020; Lu et al., 2019; Li et al., 2019a).

In the context of AL detection in text, DL-based approaches also represent the

cutting edge of current research (Zhou, 2020; Wenjie and Arkaitz, 2021). Specifically,

pre-trained language models such as BERT, RoBERTa, ERNIE, and GPT-2, which

are based on the TNN architecture, have become increasingly popular. This popularity

is largely due to two factors: 1) the fine-tuning strategy, which simplifies the training

process by adapting pre-trained models to specific tasks, and 2) the use of the self-

attention mechanism, which allows these models to effectively capture relationships

13https://codalab.lisn.upsaclay.fr/competitions/18118
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between pairs of words (Mozafari, Farahbakhsh, and Crespi, 2019a; Mutanga, Naicker,

and Olugbara, 2020).

Despite the encouraging results achieved with Transformer-based pre-trained re-

presentations in both unimodal and multimodal scenarios, several areas for improve-

ment have been identified in these models (Mohammed and Ali, 2021; Khan et al.,

2021, 2022; Zhang et al., 2023). Among the most pressing issues are: 1) the challenge

of handling missing data, such as out-of-vocabulary words; 2) the lack of contextual

information in domain-specific tasks, such as AL detection, where non-vulgar words

can be used offensively to target individuals or groups; and 3) the growing number

of parameters in pre-trained Transformer models, particularly in multimodal models,

which significantly increases the computational cost of inference, pre-training, and

retraining.

The first two challenges arise primarily because these pre-trained models are trai-

ned on general-purpose datasets and pre-training tasks (Devlin et al., 2019; Li et al.,

2019a; Su et al., 2020), which limits the effectiveness of the self-attention mechanism

in extracting relevant relationships between different features. Some approaches have

attempted to address these limitations by training models using domain-specific data

(Beltagy, Lo, and Cohan, 2019; Mohammed and Ali, 2021; Aragon et al., 2023). For

example, in the context of AL detection in text, the HateBERT pre-trained model

was introduced in Caselli et al. (2021), which was retrained using potentially offen-

sive social media data. However, creating these domain-specific pre-trained models

requires vast amounts of data and incurs high computational costs (Radford et al.,

2019; Lu et al., 2019; Mohammed and Ali, 2021).

This doctoral research introduces the DA Mechanism to address these specific

challenges while maintaining low computational costs by avoiding retraining. This

mechanism incorporates contextual information specific to the training task into the

self-attention mechanism during the fine-tuning stage. The central idea of this me-

chanism extends to address the third challenge by proposing an extension of the DA

Mechanism to a cross-modal perspective. This extension aims to achieve a more ef-

fective alignment between image and text features by creating an architecture that

replaces multimodal pre-trained models. It does so by combining the unimodal repre-

sentations of text and image, thereby significantly reducing the number of parameters

typically required by multimodal pre-trained models, all without compromising per-

formance.
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Chapter 4

Proposed Dual Attention

Mechanism

This chapter introduces the proposed DA mechanism, as well as its extension

to a multi-level perspective to leverage the multiple encoding levels present in cu-

rrent Transformer-based architectures. As an initial step in this doctoral research, we

previously proposed an initial version of the DA mechanism, which focused on the

early fusion of features obtained from the SA and CA mechanisms. This mechanism

was named the Self-Contextualized Attention (SCA) mechanism. Unlike the SCA

mechanism, the DA mechanism performs a cross-level combination of SA and CA

representations derived from an encoded matrix. For more details on the initial ver-

sion of this mechanism, we refer the reader to the following paper (Jarqúın-Vásquez,

Escalante, and Montes, 2021).

This chapter is divided into five sections. Section 1 introduces the DA mecha-

nism and the adapted architectures used for its evaluation. Section 2 presents the

multi-level DA architectures along with their respective adapted approaches for its

evaluation. Following this, Section 3 describes the evaluation datasets and implemen-

tation details. Section 4 presents the quantitative results of the proposed approaches.

Finally, Section 5 provides a qualitative analysis of the results obtained with the

proposed DA mechanism.

4.1. Dual Attention Mechanism

This section is divided into the following subsections: in the first subsection, we in-

troduce the proposed DA mechanism for the incorporation of distinctive (contextual)

[59]
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and local (self) sequential information in encoding features. The second subsection

presents the adapted architectures for the evaluation of the DA mechanisms in detec-

ting AL in text and memes.

4.1.1. Construction of the Dual-Attention Mechanism

This subsection introduces the proposed DA mechanism. This mechanism can be

applied to any sequence of encoding features H. For the sake of explanation, each

element of the sequence is represented by the word/token/image region encoding

features hi, which are extracted from a deep neural network, e.g. either from the

hidden states of a RNN or the encoding representations of a Transformer neural

network.

Given a sequence of encoding features H = {h1, h2, ..., hn}, where H ∈ Rd×n, where

d represents the dimensionality of the encoding features, n is the number of elements

in the sequence and hi refers to the i-th encoding element (either a word, a token,

or an image region) of H, the purpose of our proposed DA mechanism is to generate

a global context-aware representation G ∈ Rd×n, that considers both the internal

(self) and external (contextual) relationships between the encoding features of H.

Figure 4.1 illustrates the general architecture of our proposed DA mechanism. This

architecture is divided into three major stages, each of them is illustrated by the top

3 rectangles in Figure 4.1, corresponding to the SA, CA and DA stages. In order

to unify the proposed mechanism with the current literature Vaswani et al. (2017),

as a first step, different linear projections of the encoding features H were obtained,

with the intention of capturing different representations of H, while maintaining their

same dimensionalities. Specifically, the following matrices were obtained: a matrix of

queries Q, two matrices of keys (Ks and Kc), and one matrix of values V . As in

Vaswani et al. (2017), the intuition behind the use of these matrices is inspired by

the information retrieval systems, where a similarity matrix is obtained through the

use of a dot product between the matrix of keys K and queries Q, this to obtain the

relevance between the pairs of elements of the sequence, finally, a new representation

is obtained with the multiplication of the similarity matrix and a matrix of values

V . Unlike Vaswani et al. (2017), in our proposed DA mechanism we use two different

key matrices (Ks and Kc) due to the integration of the SA and CA mechanisms. The

aforementioned linear-projected matrices are used as input to the different stages of
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the proposed DA mechanism, each of the following stages is described in detail below.

Figure 4.1: General Visualization of our Proposed Dual Attention Unit.

The first stage is the CA stage, it uses a context vector Cv ∈ Rd, this vector is

randomly initialized and jointly learned during the training process, Cv is used as a

query vector in order to obtain the attention values αc ∈ Rn by measuring the simila-

rity between the projected elements of the sequence Kc and the application domain

represented by Cv. This similarity, defined in Equation 4.1.1, is calculated by the

scalar dot product of CT
v and Kc; the resulting values are smoothed with the use of

a softmax function. Contrasting the CA mechanism proposed by Yang et al. (2016),

instead of using a weighted sum between each attention value and its corresponding

encoding features for the final sequence representation, our context-aware represen-

tation C ∈ Rd×n shown in Equation 4.1.2, takes all the information of the attention

values, by doing an element-wise multiplication ⊙, within each scalar of αc and its

corresponding projected encoding feature Vi. The use of element-wise multiplication

allows for the generation of a matrix representation, enabling the combination of the

CA and SA stages, in comparison to the original mechanism, which generates an

output vector through a weighted sum.

αc = softmax(CT
v ⋅Kc) (4.1.1)

C = αc ⊙ V (4.1.2)
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The second stage is the SA stage, as in Pavlopoulos, Malakasiotis, and Andro-

utsopoulos (2017); Vaswani et al. (2017) the main purpose of SA is the building of

connections within the elements of the same sequence, but at different positions. The

use of SA allows the modeling of both long-range and local dependencies, this is cap-

tured by the attention filter αs ∈ Rn×n defined in the Equation 4.1.3. This attention

filter is calculated by the dot product similarity between all the pairs of projected

elements of Q and Ks, later these values are smoothed with the use of a softmax fun-

ction. Finally, the context-aware representation S ∈ Rd×n shown in the Equation 4.1.4,

is calculated with the matrix multiplication of αT
s and V , where αs is used to highlight

and filter out the most and less relevant projected encoding features, respectively.

αs = softmax(Q ⋅KT
s ) (4.1.3)

S = αT
s V (4.1.4)

The third stage corresponds to the DA stage, whose purpose is to merge these

representations in order to create a global context-aware representation G ∈ Rd×n that

integrates both, the internal and external relationships. These relationships are cap-

tured with the global attention filter αg ∈ Rn×n, which is calculated by the smoothed

dot product similarity between C and S, as shown in Equation 4.1.5. This attention

filter can be seen as a high-level attention representation, since its calculation is ba-

sed on the relevance of local and contextual extracted features, of both previously

defined attention mechanisms. Finally, the global context-aware representation G is

calculated in Equation 4.1.6 with the matrix multiplication of V and the attention

filter matrix αg; the resulting matrix is normalized by multiplying it by the scalar
1

sqrt(d) , as proposed in Vaswani et al. (2017).

αg = softmax(CT ⋅ S) (4.1.5)

G =
V αT

g√
d

(4.1.6)

Figure 4.2 presents the extended visualization of the previously explained DA

mechanism. As can be seen, the three different stages are connected by the linear

projection V obtained from the initial encoding sequence H, this with the intention
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Figure 4.2: Extended Visualization of our Proposed Dual Attention Unit, where the
⊗ symbol denotes matrix multiplication and the ⊙ symbol denotes element-wise mul-
tiplication.

of unifying the obtained representation in the CA, SA, and DA stages. The general

equation of the proposed DA mechanism is presented in Equation 4.1.7. Since all the

operations in our proposed DA mechanism are differentiable, this model can be easily

coupled with other neural network architectures.

G =
V softmax((softmax(CT

v ⋅Kc) ⊙ V )T ⋅ (softmax(Q ⋅KT
s )

TV ))T
√
d

(4.1.7)

4.1.2. Adapted Architectures for the Evaluation of the DA

Mechanism

Since the proposed DA mechanism can be applied to any sequence of encoded

features, two neural network architecture approaches were adapted according to its

use and outstanding performance in the AL detection task (Yang et al., 2016; Cha-

krabarty, Gupta, and Muresan, 2019; Nikolov and Radivchev, 2019; Mozafari, Farah-

bakhsh, and Crespi, 2019b). The first architecture, based on Recurrent Neural Net-

works (RNNs), is used for AL detection in text, while the second architecture, based

on Transformers, is employed for detecting AL in both text and memes. These archi-
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tectures are illustrated in Figure 4.3, where the left-hand side figure illustrates the

RNN-based architecture, and the right-hand side figure illustrates the Transformer-

based architectures, respectively.

Figure 4.3: Adapted architectures for the integration of the proposed DA mechanism,
both architectures integrate the proposed DA mechanism at the last encoding level.
The left-hand sided architecture is based on the Bi-GRU network, on the other hand,
the right-hand sided one is based on Transformer NNs.

As illustrated, the RNN-based architecture receives as input an embedding ma-

trix X ∈ Rk×n, which is represented by a sequence of n k-dimensional word vectors xi.

Subsequently, the embedding matrix X passes as input to the encoding layer, which

is conformed by a Bidirectional RNN layer, specifically, we used a Bidirectional Gated

Recurrent Unit (Bi-GRU) layer Chung et al. (2014). The Bi-GRU layer accomplishes

the sequence encoding task by summarizing the information of the whole sequence X

centered around each word annotation; the producing encoding layer generates a se-

quence of encoding features H ∈ Rd×n, where d denotes the encoding dimensions. Since

not all words contribute equally to the meaning and representation of a sequence, the

sequence encoded features H are passed as input to the proposed DA mechanism,

which generates a global context-aware representation G; since the next layers of this

architecture are conformed by the classification layers, the matrix G is reduced with

an average pooling layer, generating a high-level representation vector g ∈ Rd, which

summarizes the most relevant information from G. Finally, the classification layers

receive the representation vector g as input, specifically two layers handle the final

classification, a dense layer with a Rectified Linear Unit (ReLU) activation function,

and a fully-connected softmax layer to obtain the class probabilities and get the final

classification.
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Regarding the Transformer-based architecture, we chose to adapt the pre-trained

BERTBASE
1 model (with 12 layers, 768 hidden units, and 12 attention heads per

layer) for the task of detecting AL in text. This model was selected due to its strong

performance across a wide range of NLP tasks, including AL detection (Nikolov and

Radivchev, 2019; Mozafari, Farahbakhsh, and Crespi, 2019b). For the task of detecting

AL in memes, we adapted the pre-trained VisualBERT2 model, which also consists of

12 layers, 768 hidden units, and 12 attention heads per layer. VisualBERT was chosen

based on its effective performance in multimodal classification tasks, including meme

classification (Kiela et al., 2020).

Both adapted architectures receive a sequence of n elements as input. In each

model, the first token in the sequence represents the classification token ([CLS]). In the

BERT model, the sequence elements are represented by tokens derived from textual

input. In contrast, for VisualBERT, the sequence elements are composed of text tokens

followed by encoded image regions, allowing for a multimodal representation. In both

pre-trained models, the input sequence is initially processed by the embedding layer

of the Transformer neural network, generating an embedding matrix E ∈ Rk×n, where

k represents the dimensions of the embeddings. The embedding matrix E, passes as

input to the Transformer encoding layers, where we obtain the last encoding layer

HL and pass it as input to the DA layer, in order to contextualize all the sequence

representation into the matrix G. Finally, the first column vector of G (G[CLS]) passes

as input to a fully-connected softmax layer to obtain the class probabilities and get

the final classification. Section 4.3.4 provides the implementation details for all the

proposed and adapted architectures, including the hyperparameters and the size of

all architectures.

4.2. Multi-Level Dual Attention

Inspired by the outstanding results obtained from the multiple levels of enco-

ding representations in deep neural networks (Alzubaidi et al., 2021; Abdel-Jaber et

al., 2022), we propose the extension of our proposed DA mechanism from a multi-

level perspective architecture. This section is divided two-folded, the first subsection

introduces our proposed Gated Hierarchical Attention (GHA) architecture, which in-

1https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-768_A-12/1
2https://huggingface.co/docs/transformers/model_doc/visual_bert
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tegrates the DA mechanism into different levels of encoding features from a weighted

perspective. Correspondingly, the second subsection presents the adapted architectu-

res for the evaluation of the GHA architecture.

4.2.1. Gated Hierarchical Attention Architecture

Recent studies have shown that the contributions of the different encoding levels

in deep neural networks, specially the Transformer-based ones contribute differently

depending on the specific instance inputs and tasks (Clark et al., 2019). We hypothe-

size that the relevance of words and image regions in certain contexts may have a

better interpretation at certain encoding levels, thus aiming to capture these patterns,

we propose a weighted fusion scheme that combines the DA mechanism obtained re-

presentations from a multi-level perspective.

In order to combine in a weighted manner the representations obtained from the

use of multiple DA mechanisms, we proposed the adaptation of the Gated Multimodal

Unit (GMU) (Arevalo et al., 2020) into a multi-level architecture. Originally, the GMU

was designed to fuse information coming from distinct data modalities (e.g., text

and images) to produce an intermediate representation. However, in our adaptation,

rather than fusing data from different modalities, the GMU is adapted to combine the

intermediate representations produced by the DA mechanism at multiple encoding

levels of a deep neural network. In other words, these multi-level features are treated

as if they were separate modalities, allowing the GMU to learn a weighted fusion

of the hierarchical representations. This design enables our architecture to capture

richer contextual information by integrating features from various layers. Figure 4.4

illustrates the proposed GHA architecture.

As illustrated in Figure 4.4, the GHA architecture is designed to be coupled with

deep neural networks with multiple levels of encoding features, specifically, we will

focus our adaptation on stacked-RNN (Chakrabarty, Gupta, and Muresan, 2019; Lan

et al., 2020) for detecting AL in text, and Transformer-based neural networks (Vas-

wani et al., 2017; Devlin et al., 2019; Li et al., 2019a) for detecting AL in both text

and memes.

This architecture receives as input a pre-trained embedding layer E ∈ Rk×n, where

k represents the dimensionality of the embeddings and n represents the number of

elements in the input sequence, either represented by words or by words and image
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Figure 4.4: Illustration of the Proposed GHA Architecture, this architecture is de-
signed to be applied to any stacked-based encoding architecture (e.g. RNN and
Transformer-based architectures).

regions for AL detection in memes. This embedding matrix E passes as input to the

multi-level encoding-based architecture, specifically L levels encode the input matrix

E, this generates L different encoding representations (H1, H2, H3, ..., HL). Each

generated encoding representation Hi ∈ Rd×n is contextualized by our DA mechanism,

specifically, an arrangement of L different DA mechanism layers matched its corres-

ponding encoding layer, that is, the Hi encoding representation passes as input to

the i-th DA layer, this generates L different context-aware representations (G1, G2,

G3, ..., GL), where Gi ∈ Rd×n maintains the same dimensionalities of the previous

codification.

As shown in Figure 4.4, each matrix Gi captures the contextual information of

each sequence element across the L encoding levels. In order to create an intermediate

representation of these contextualized representations, we use an arrangement of n

different GMU layers, where each layer learns an intermediate representation ui ∈ R
for the i-th sequence element at the L different encoding levels, these intermediate

representations are concatenated in order to create an intermediate context-aware

representation ug ∈ Rn, as shown in Equation 4.2.1. Finally, the vector ug passes as

input to a fully-connected softmax layer to obtain the class probabilities and get the

final classification.

ug = [u1, u2, u3, ..., un] (4.2.1)
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Figure 4.5: Illustration of the adapted Gated Multimodal Unit (GMU) for the inter-
mediate representation of the encoding levels in RNN and Transformer-based neural
networks. Each GMU layer is applied to an individual word/token/image region, ge-
nerating an intermediate representation with respect to its L different encoding layers.
This Figure is inspired by Arevalo et al. (2020).

Figure 4.5 presents the overall architecture of the adapted GMU layer, as illus-

trated, each GMU layer receives as input the different encoding levels of a specific

word/token/image region (G1,i, G2,i, ..., GL,i), where Gj,i ∈ Rd represents the j-th

encoding level features of the i-th sequence element. To obtain the intermediate re-

presentation ui, the GMU extracts hidden features for each encoding level Gj,i, as

shown in Equation 4.2.2, where Wi ∈ Rd are learnable weights, tanh is the default

activation function and, hj,i ∈ R is the resultant hidden representation of the Gj,i

encoding representation. Aiming to capture the relevance of the different encoding

levels, the GMU contains a third internal feature zj,i ∈ R, this relevance is captured

through equation 4.2.3, where [, ] denotes the concatenation operator, Wzi ∈ Rd1+...+dL

are the learnable weights and σ represents the sigmoid activation function. Finally,

the intermediate representation ui (defined in Equation 4.2.4) is obtained through

a weighted sum between the product of each hidden representation hj,i and its co-

rresponding relevance zj,i. For more details of the GMU, we refer the reader to the

following paper (Arevalo et al., 2020).

hj,i = tanh(WiGj,i) (4.2.2)

zj,i = σ(Wzi[G1,i,G2,i, ...,GL,i]) (4.2.3)
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4.2 Multi-Level Dual Attention 69

ui = ∑
j

zj,i ⊙ hj,i (4.2.4)

4.2.2. Adapted baselines for the Evaluation of the GHA Ar-

chitecture

To evaluate the previously proposed GHA architecture, we adapt two baseline

architectures. The first architecture is based on stacking various RNN encoding layers

for detecting AL in text. In contrast, the second architecture is based on Transformers

for detecting AL in both text and memes. This adaptation allows us to integrate the

proposed DA mechanism at each encoding level and to compare its performance

against the weighted fusion mechanism of the proposed GHA architecture. From this

point forward, we refer to these two architectures as Additive Hierarchical Attention

(AHA) architectures.

As described in Section 4.1.2, we used a Bi-GRU model for the RNN-based enco-

ding representation. For the Transformer-based encoding representations, we utilized

the BERTBASE and VisualBERT pre-trained models, incorporating all encoding le-

vels from each pre-trained model into the final representation. A general overview of

the AHA architectures is provided in Figure 4.6.

Figure 4.6: Adapted AHA architecture for the evaluation of the proposed GHA ar-
chitecture, the DA mechanism is used at each encoding level of the architecture, and
the output of each DA mechanism is combined with the addition and normalization
layer.
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The different encoding levels of the adapted architecture can be obtained with

an arraignment of stacked layers of an RNN or with the use of a Transformer-based

approach. Specifically, this architecture receives an embedding matrix X ∈ Rk×n as

input, where k represents the dimensions of the embedding and n represents the

number of elements of the input sequence, this embedding matrix passes as input to

the first encoding layer. Regarding the obtained encoding representations of all the

encoding layers (H1, H2, ..., HL), each output representation Hi passes as input to: 1)

the next encoding layer Hi+1 (with the exception of the last encoding layer), and 2) to

the DAi layer, where we obtain a context-aware representation Gi for each encoding

layer. All contextualized representations (G1, G2, ..., GL) pass through the Addition

and Normalization (Add and Norm) layer to obtain an intermediate representation

G of all the contextualized representations, while maintaining the same encoding

dimensions. Unlike the Add and Norm layer proposed by Vaswani et al. (2017), instead

of having a residual connection, our implementation sums all the representations Gi.

Finally, the matrix G is reduced with the average pooling layer, generating a high-

level representation vector g ∈ Rd, which summarizes the most relevant information

from the previous matrix G. Vector g is received as input to a fully-connected softmax

layer to obtain the class probabilities and get the final classification.

4.3. Evaluation and Implementation Details

This section presents the implementation details for the proposed DA mechanism

and GHA architecture. This section is divided into four subsections, the first subsec-

tion introduces the evaluation datasets for the detection of AL in text and memes;

the second subsection discusses the evaluation metrics for evaluating our proposed ap-

proaches in the detection of AL in text and memes. The third subsection presents the

adapted baseline architectures used to evaluate the proposed DA mechanism in AL

detection for text and memes. Finally, the fourth subsection provides the implemen-

tation details, regarding the text pre-processing phase, the model hyperparameters,

and the used libraries for the implementation of the proposed approaches.
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4.3.1. Evaluation Datasets for the Detection of Abusive Lan-

guage

AL can be of different types, its main divisions are distinguished by the target

and severity of the insults (Mandl et al., 2019). Accordingly, different collections and

evaluation campaigns have considered different kinds of AL for their study (Schmidt

and Wiegand, 2017; MacAvaney et al., 2019). The following two subsections provide

a brief description of the six English evaluation datasets used in our experiments for

AL detection in text and the three datasets used in our experiments for AL detection

in memes.

Datasets for Abusive Language Detection in Text

The first three datasets: Waseem (Zeerak and Dirk, 2016), Davidson (Davidson

et al., 2017) and Golbeck (Golbeck et al., 2017) were some of the first large-scale

datasets for abusive tweet detection. Specifically, the Davidson dataset focuses on the

identification of offensive language and hate speech in tweets, the Waseem dataset

focuses on the identification of racist and sexist tweets; whereas the Golbeck dataset

focuses on the detection of harassment in tweets.

On the other hand, the SE 2019 T 6 (Marcos et al., 2019) and AMI 2018 (Fersini,

Nozza, and Rosso, 2018) datasets were presented at the SemEval-2019 Task 6, and at

the Evalita 2018 Task on Automatic Misogyny Identification (AMI) respectively. The

SE 2019 T 6 dataset focuses on identifying offensive tweets, whereas the AMI 2018

dataset focuses on identifying misogyny in tweets. Finally, the HASOC 2019 (Mandl

et al., 2019) dataset was presented at the 11th Forum for Information Retrieval Eva-

luation (FIRE), in the Hate Speech and Offensive Content Identification (HASOC)

shared-task, where the main goal is the classification of Hate Speech and non-offensive

online content in Indo-European Languages. Although these shared tasks encompass

a variety of evaluation subtasks and languages, our experiments focus solely on binary

classification in English.

The selection of these datasets is based on their well-established annotation gui-

delines and/or moderate to strong inter-annotator agreement. The Waseem dataset

has an inter-annotator agreement of 0.57 across its three classes, while the Golbeck

dataset shows a Cohen’s Kappa of 0.84 between harassment and non-harassment.

The AMI 2018 dataset reports an agreement of 0.81 for misogyny, and the SemEval

A Dual Attention-Based Representation for the Detection of Abusive Language in Texts and Memes



72 4. Proposed Dual Attention Mechanism

2019 task 6 dataset has a Fleiss’ kappa of 0.83 for offensive and non-offensive classes

in a trial set. The HASOC 2019 dataset shows an agreement of 0.77 for hate speech

detection in English. Although the Davidson dataset lacks specific agreement metrics,

it is widely recognized for its large size and clear distinction between hate speech and

offensive language.

Figure 4.7 presents the classes distributions of the six evaluation datasets; as

shown, there is a great class imbalance, where in most cases the least abundant class

is the one containing some form of AL.

Figure 4.7: Classes distribution of the evaluation datasets for the detection of AL in
text, this Figure presents the distribution of all the training sets.

Datasets for Abusive Language Detection in Memes

Regarding the datasets focused on AL detection in memes, we utilized three diffe-

rent collections. The first collection is the dataset from the Hateful Memes Challenge3

(HMC), organized by Meta4 (Kiela et al., 2020). This dataset targets hate speech de-

tection in English-language memes and comprises a collection of 10K instances.

The second collection is the Multimedia Automatic Misogyny Identification5 (MA-

3https://ai.meta.com/blog/hateful-memes-challenge-and-data-set/
4https://ai.meta.com/
5https://competitions.codalab.org/competitions/34175
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MI), introduced in Task 5 of SemEval 2022 (Fersini et al., 2022). This dataset focuses

on detecting misogynistic content in English-language memes and includes two sub-

tasks. The first subtask involves basic classification, where a meme is labeled as either

misogynistic or non-misogynistic. The second subtask is more advanced, requiring the

identification of specific types of misogyny within overlapping categories such as ste-

reotype, shaming, objectification, and violence. This dataset contains a total of 11K

instances, with 10K instances for training and 1K instances for testing.

The third dataset, Detection of Inappropriate Memes from Mexico6 (DIMEMEX),

is a Spanish-language meme dataset developed by us and introduced as a shared-task

at IberLEF 2024 (Jarqúın-Vásquez et al., 2024). This shared task comprises two

subtasks: the first subtask is a three-way classification to distinguish between ha-

te speech, inappropriate content, and harmless content; the second subtask involves

a fine-grained classification to distinguish different types of hate speech, including

sexism, racism, classism, and others. For a detailed description of this dataset’s cons-

truction, we refer readers to (Jarqúın-Vásquez et al., 2024). Figure 4.8 presents the

class distributions for the three evaluation datasets. As illustrated, there is a signifi-

cant class imbalance in the HMC and DIMEMEX datasets, where, in most cases, the

least frequent class is the one containing some form of AL.

Figure 4.8: Classes distribution of the evaluation datasets for the detection of AL in
memes, this Figure presents the distribution of all the training sets.

6https://codalab.lisn.upsaclay.fr/competitions/18118
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To evaluate our proposed approaches on these datasets, we conducted binary clas-

sification experiments on the first two datasets. For the DIMEMEX dataset, however,

we applied both a three-way classification approach and a finer-grained classification

scheme based on the two subtasks. The first two evaluation datasets were chosen due

to their extensive use and recognition in the literature (Hermida and Santos, 2023).

4.3.2. Evaluation Metrics for the Detection of Abusive Lan-

guage

A wide variety of metrics have been employed to evaluate the performance of clas-

sifiers in the task of AL detection, both in unimodal and multimodal scenarios (Kumar

et al., 2018; Kiela, Wang, and Cho, 2018). In order to make a fair comparison and

evaluate the performance of our proposed DA mechanism, GHA architecture, and the

adapted architectures, we used several evaluation metrics inspired by the aforementio-

ned shared tasks and standard metrics in the AL detection domain. Specifically, the

metrics used to evaluate our proposed approaches included accuracy, as well as the

weighted and macro-average F1 scores. In all experiments, we report the mean and

standard deviation across five training runs, each initialized with different random

seeds.

For AL detection in text datasets, such as the Waseem, Davidson, and Golbeck

datasets, we evaluated performance using the weighted-average F1 score to ensure fair

comparison with state-of-the-art (SOTA) approaches. Regarding shared task datasets,

we adhered to the evaluation metrics specified by the task organizers. Specifically, the

SemEval 2019 Task 6 and HASOC 2019 datasets were evaluated using the macro-

average F1 score, while the AMI 2018 dataset was evaluated using accuracy. For AL

detection in memes, we used the evaluation metrics specified in the shared tasks.

For the MAMI and DIMEMEX datasets, we used the macro-average F1 score, as the

objective of these shared tasks was to assign equal importance to all classes to ensure

a balanced evaluation. In contrast, accuracy was used as the evaluation metric for the

HMC dataset.

The Waseem, Davidson, and Golbeck datasets were split into 80 % for training,

10 % for validation, and 10 % for testing. Results were reported on the test partition

to maintain consistency with the partitioning practices of SOTA approaches discussed

in the results section. For shared task datasets in both text and memes (SE 2019 T6,
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AMI 2018, HASOC 2019, HMC, MAMI, and DIMEMEX ), we used the test partition

results provided by the task organizers to ensure a fair comparison.

To test for statistical significance in the performance improvements of our DA

mechanism and GHA architecture for AL detection in text and memes, we utilized

macro-average F1 scores in a Bayesian Wilcoxon signed-rank test (Benavoli et al.,

2017).

4.3.3. Adapted baselines for the Evaluation of the DA Me-

chanism

To compare the robustness of integrating the proposed DA mechanism into the

RNN -based architectures and the BERTBASE model in the detection of AL in text,

we consider three baseline architectures: the first is a simple Bi-GRU network that

receives words as input but does not use any attention layer; the second employs a

three-layer Bi-GRU stack without adding any attention layer; and the third is a fine-

tuned BERT model without using any DA and GMU layers. As described in Devlin

et al. (2019), we take the last encoding layer of the classification token <CLS> and

use it as input for the softmax classification layer. These three baseline architectu-

res are referred to in the experiment results as Bi-GRU, Bi-GRUS, and BERTBASE,

respectively. It is important to mention that the first two baseline architectures used

the same hyperparameter settings for the RNN-based architectures, while the third

one uses the same settings for Transformer-based architectures.

To assess the robustness of integrating the DA mechanism into the VisualBERT

model for AL detection in memes, we considered four baseline architectures. The first

two baselines were adapted to measure the impact of the text and vision modalities in

detecting AL in memes. The first baseline is a fine-tuned pre-trained language model

without using any DA or GMU layers. Specifically, we used the BERTBASE model

for English datasets (HMC and MAMI) and the BETO model7, a Spanish-adapted

version of BERT, for the DIMEMEX dataset. The second baseline involves fine-tuning

the pre-trained Vision Transformer8 (ViT) model. As with the text-based baseline,

we take the last encoding layer of the classification token <CLS> and use it as input

to the softmax classification layer.

7https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
8https://huggingface.co/docs/transformers/model_doc/vit
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The third baseline integrates both modalities (visual and textual) using an

Early Fusion (EF) technique, which concatenates the classification vectors obtai-

ned from the BERTBASE/BETO and ViT models. Finally, the fourth baseline is a

fine-tuned VisualBERT model without employing any DA or GMU layers. Similar

to other Transformer-based baselines, the last encoding of the classification token

<CLS> is used as input to the softmax classification layer. These four baseline ar-

chitectures are referred to in the experimental results as BERTBASE/BETO, ViT,

EF(BERTBASE/BETO, ViT), and VisualBERT, respectively.

4.3.4. Implementation Details

This subsection provides the implementation details, including the neural network

architecture configurations and hyperparameter settings. This subsection is divided

into two parts: the first part presents the implementation details of the approaches

for detecting AL in text, and the second part focuses on the implementation details

for detecting AL in memes.

Implementation Details for Detecting AL in Text

Regarding the text preprocessing phase, different operations were applied: in or-

der to avoid biases, user mentions and links were replaced by the default tokens:

<user> and <url>; in order to enrich the vocabulary, all hashtags were segmented

by words (e.g. #BuildTheWall - build the wall) with the use of the ekphrasis li-

brary (Baziotis, Pelekis, and Doulkeridis, 2017); in addition to this, all emojis were

converted into words using the demoji9 library. All text was lowercased and non-

alphabetical characters, as well as consecutive repeated words, were removed. For the

RNN-based approaches, we used pre-trained fastText embeddings (Mikolov et al.,

2018) as word representation, trained with subword information on Common Crawl,

which has been recognized as useful for this task (Corazza et al., 2020). All the text

preprocessing steps were applied consistently across all evaluation datasets. NOTE:

for some instances from the HASOC 2019 dataset that originated from Facebook, the

user normalization operation was not applied due to the absence of the ‘@’symbol.

Concerning the hyperparameter settings of the adapted RNN-based architectures,

Table 4.1 presents their configurations; all these architectures are based on a Bi-GRU

9https://pypi.org/project/demoji/
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neural network, due to its great performance in the short-text encoding task (Yang et

al., 2016; Chakrabarty, Gupta, and Muresan, 2019). The first version of this architec-

ture uses one Bi-GRU layer, and one DA layer on top of the encoded representation

of the Bi-GRU layer. The hierarchical version of this architecture uses three different

Bi-GRU and DA layers, which maintain the same input and output sizes (as shown

in Table 4.1). On the other hand, for the weighted fusion of all the contextualized

levels extracted from the three DA mechanisms, via de GHA architecture, we used

an arrangement of n GMU layer on top of each word multi-level representation, the

three aforementioned approaches are referred in the evaluation results as DA, AHA,

and GHA, respectively. These architectures were trained for a total of 15 epochs, with

a learning rate of 1e–4, using the Adam optimizer (Kingma and Ba, 2015), a Dropout

rate of 15 %, and a batch size 32.

Vectors, Matrices and Variables Size

n 50
k 300
d 128
Cv 128

Q, Kc, Ks, V 50x128

Layer Input size Output size

Embedding 50 50x300
Bi-GRUi 50x300 50x128
DAi 50x128 50x128
GMUi 3x128 1
Avg Pooling 50x128 128
Dense1 128 64
Dense2 64 #Classes

Table 4.1: Hyperparameters of the RNN-based encoding architectures.

The hyperparameter settings of the Transformer-based architectures are presented

in Table 4.2. Regarding the text pre-processing phase, we kept the steps described

above, in addition to this, we used the WordPiece10 tokenizer in order to tokenize each

instance sentence, as described in Devlin et al. (2019). Regarding the integration

of the DA mechanism into the last encoding layer on the pre-trained BERTBASE

model, no GMU, Avg Pooling, and Add-and-Norm layers were used; instead, we

only used one DA layer on top of the last encoding layer of BERT. On the other

10https://huggingface.co/course/chapter6/6?fw=pt
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hand, for the hierarchical integration of the DA mechanism at all the encoding levels

of BERT, we used an arrangement of 12 DA mechanisms, an Add-and-Norm layer

for the integration of all the previously contextualized encoding levels, and an Avg

Pooling layer. For the weighted fusion of all the contextualized levels extracted from

the DA mechanisms, we used an arrangement of n GMU layers on top of each token

multi-level representation, as previously described in the RNN-based architectures,

the three aforementioned approaches are referred in the evaluation results as DA,

AHA, and GHA, respectively. All these architectures were trained for a total of 3

epochs, with a learning rate of 5e–5, using the Adam optimizer, and a batch size of

32.

Vectors, Matrices and Variables Size

n 70
d 768
Cv 768

Q, Kc, Ks, V 70x768

Layer Input size Output size

Embedding (BERT) 70 70x768
BERTi 70x768 70x768
DAi 70x768 70x768
Add-and-Norm 12x70x768 70x768
Avg Pooling 70x768 768
GMUi 12x768 1
Concatenation 1,70 70
Dense1 70/768 #Classes

Table 4.2: Hyperparameters of the Transformer-based encoding architecture.

Implementation Details for Detecting AL in Memes

Regarding text preprocessing in memes, we applied all the operations described

in the previous subsection across the three evaluation datasets. For the baseline that

relies solely on textual information (using either the BERTBASE model for English

datasets or the BETO model for the Spanish dataset), a maximum token length n

of 40 was used. This is in contrast to the 70 tokens used in baselines and proposed

Transformer-based architectures for AL detection in text. The reduction in token

length was due to the fact that the text in memes did not exceed 40 tokens across all

training instances in the three evaluation datasets. Both models were trained for a
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total of 2 epochs, with a learning rate of 5e–5, using the Adam optimizer, a dropout

rate of 15 %, and a batch size of 24.

For the ViT baseline, which uses only the visual modality, we employed the model

configured with a patch size of 16 and an image resolution of 224x224 pixels. To utilize

this model, the following preprocessing steps were applied to each image: all images

were converted to RGB scale, and all images were resized to a resolution of 224x224

pixels. Since the ViT model processes all regions of the image based on the patch size,

a total of 196 visual tokens were generated by dividing the 224x224 pixel image into

regions of 16x16 pixels (patch size). These visual tokens were then used to create the

input embedding matrix for the Transformer model, including the classification token

[CLS] followed by the 196 visual tokens, resulting in an input sequence n of size 197.

This baseline was trained for a total of 2 epochs, with a learning rate of 1e–5, using

the Adam optimizer, a dropout rate of 15 %, and a batch size of 24.

For the third baseline, based on the early fusion of text features (obtained from

either BERTBASE or BETO) and image features (obtained from the ViT model), the

same text and image preprocessing steps as in the previous baselines were applied. A

fine-tuning process was performed in parallel for the BERTBASE/BETO model and

the ViT model. During this process, the [CLS] classification vectors from both models

were extracted and concatenated into a new vector of size 1536, which was then used

as input to the softmax classification layer. This baseline was trained for a total of

3 epochs, with a learning rate of 1e–5, using the Adam optimizer, a dropout rate of

15 %, and a batch size of 24.

The hyperparameter settings of the VisualBERT model configurations are presen-

ted in Table 4.3. Regarding the text pre-processing phase, we kept the steps described

above. Regarding the integration of the DA mechanism into the last encoding layer

on the pre-trained VisualBERT model, no GMU, Avg Pooling, and Add-and-Norm

layers were used; instead, we only used one DA layer on top of the last encoding

layer of VisualBERT. On the other hand, for the hierarchical integration of the DA

mechanism at all the encoding levels of VisualBERT, we used an arrangement of

12 DA mechanisms, an Add-and-Norm layer for the integration of all the previously

contextualized encoding levels, and an Avg Pooling layer. For the weighted fusion of

all the contextualized levels extracted from the DA mechanisms, we used an arran-

gement of n GMU layers on top of each token multi-level representation. The three

aforementioned approaches are referred in the evaluation results as DA, AHA, and
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GHA, respectively.

Vectors, Matrices and Variables Size

n 54
d 768
Cv 768

Q, Kc, Ks, V 54x768

Layer Input size Output size

Embedding (VisualBERT) 54 54x768
VisualBERTi 54x768 54x768
DAi 54x768 54x768
Add-and-Norm 12x54x768 54x768
Avg Pooling 54x768 768
GMUi 12x768 1
Concatenation 1,54 54
Dense1 54/768 #Classes

Table 4.3: Hyperparameters of the VisualBERT encoding configurations.

For all configurations based on the VisualBERT model, a maximum input length

of 54 tokens was used. This length was determined by allocating 40 tokens to the

textual inputs, including the classification token, while the remaining 14 tokens co-

rresponded to image regions associated with objects detected by the VisualBERT

model. To determine the optimal number of objects, we experimented with various

configurations for the number of detected objects. The best results were achieved

when up to 14 objects were recognized in the images. All these architectures were

trained for a total of 3 epochs, with a learning rate of 1e–5, using the Adam optimi-

zer, and a batch size of 24. For the DIMEMEX dataset, since the text was in Spanish,

automatic translation was performed using GPT-3.5 Turbo11.

Note: All hyperparameters for the various proposed configurations for detecting

AL in text and memes were selected through a grid search, taking the best values from

three random training runs. The following values were considered: for the learning

rate {1e–4, 5e–5, 1e–5}; for the number of epochs, Transformer-based architectures

were tested with {1, 2, 3, 4}, and RNN-based architectures with {13, 14, 15, 16};

finally, for the batch size, the configurations {16, 24, 32, 40} were evaluated. All

baseline models, along with the proposed configurations of the DA mechanism and

its hierarchical adaptation for the detection of AL in text and memes, were evaluated

11https://platform.openai.com/docs/models#gpt-3-5-turbo
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on a computer equipped with an NVIDIA GTX 1080 Ti graphics card, 32 GB of

DDR4 RAM, and an Intel Core i7-7820X processor.

4.4. Quantitative Results

This section presents the quantitative results of the evaluation of the proposed

approaches across six evaluation datasets for detecting AL in text, and three data-

sets for detecting AL in memes. The section is divided into four subsections. The

first subsection presents the results of integrating the proposed DA mechanism into

different encoding architectures, as described in Subsection 4.1.2. The second sub-

section reports the evaluation results of the proposed multi-level DA architectures,

including the GHA architecture, using different encoding architectures and compares

the obtained results with state-of-the-art (SOTA) approaches. To gain insights into

the effectiveness of the proposed DA mechanism, the third subsection provides an

analysis of complementarity and error diversity of the DA mechanism compared to

the use of SA and CA mechanisms. Finally, the fourth subsection provides a statistical

significance analysis of the proposed approaches.

4.4.1. Effectiveness of the Proposed Dual Attention Mecha-

nism

To analyze the effectiveness of the proposed DA mechanism in the detection of

AL in text, as a first experiment we proposed the evaluation of its integration on the

last encoding layer of the following encoding architectures: Bi-GRU, Bi-GRUS and

BERTBASE. As baselines, we considered these architectures without the integration

of the DA mechanism; Table 4.4 reports the mean and standard deviation of the

evaluation results of this first experiment.

Focusing on the obtained results with the Bi-GRU architecture and its integration

with the DA mechanism (rows 2 and 3), better results are obtained in all datasets

with the integration of the DA mechanism into the Bi-GRU architecture, obtaining

an improvement of up to 8.4 %. Concerning the obtained results by the Bi-GRUS

architecture and its integration with the DA mechanism (rows 4 and 5), a consistent

increase in performance is obtained in all the evaluation datasets, with the integration

of the DA mechanism into the Bi-GRUS architecture, obtaining an improvement of
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AM EA Waseem Davidson Golbeck SE 2019 T 6 AMI 2018 HASOC 2019

− Bi-GRU 0.813±0.0078 0.904±0.0093 0.682±0.0091 0.735±0.0105 0.582±0.0086 0.679±0.0097
DA Bi-GRU 0.853±0.0065 0.912±0.0061 0.715±0.0074 0.762±0.0054 0.631±0.0061 0.726±0.0075

− Bi-GRUS 0.824±0.0063 0.914±0.0058 0.675±0.0081 0.742±0.0070 0.596±0.0068 0.691±0.0064
DA Bi-GRUS 0.862±0.0083 0.919±0.0082 0.715±0.0084 0.751±0.0071 0.630±0.0081 0.717±0.0097

− BERTBASE 0.853±0.0073 0.921±0.0081 0.707±0.0094 0.772±0.0079 0.696±0.0063 0.752±0.0077
DA BERTBASE 0.864±0.0074 0.926±0.0086 0.726±0.0090 0.783±0.0071 0.714±0.0065 0.763±0.0074

Table 4.4: Comparison results from our three baseline architectures, and our proposed Dual Attention
mechanism variants in six datasets for the AL detection task in text. The Waseem, Davidson, and
Golbeck datasets were evaluated with the weighted-average F1 score, the SemEval 2019 task 6 and
HASOC 2019 datasets were evaluated using the macro-average F1 score, finally, the AMI 2018 dataset
was evaluated using the accuracy. Note that “AM” and “EA” refer to Attention Mechanism and
Encoding Architecture, respectively.

up to 5.9 %. Regarding the analysis of results in the BERTBASE architectures (rows

6 and 7), better results are obtained with the integration of the DA mechanism into

the last encoding layer of the BERTBASE model, by obtaining an improvement of up

to 2.6 %. The overall improvement with the integration of the DA mechanism in all

baseline architectures is consistent in all datasets (row 2 vs 3, row 4 vs 5, and row 6

vs 7).

Centering the analysis of results on the three baseline architectures (rows 2, 4,

and 6), the results indicate that the use of Transformer models outperforms the use

of RNN-based architectures in all datasets by a wide margin of up to 13.1 %; this may

be due to the large number of parameters and pre-trained information of the BERT

model. On the other hand, regarding the addition of the proposed DA mechanism

into the three encoding architectures (rows 3, 5, and 7), the greatest improvement

is obtained with the integration of the DA mechanism in the Bi-GRU architecture,

obtaining a maximum improvement of 8.4 %; this may be due to the fact that the

BERT model integrates the SA mechanism, in contrast to the Bi-GRU architecture;

which produces a greater improvement in its integration with the DA mechanism.

Finally, the best results are obtained with the integration of the DA mechanism into

the BERTBASE model (row 7 vs. rows 3, and 5).

To analyze the effectiveness of the proposed DA mechanism in detecting AL in

memes, we conducted an initial experiment evaluating its integration into the final

encoding layer of the VisualBERT model. As a baseline, we considered the fine-tuning

of the VisualBERT model without integrating our DA mechanism. Additionally, we

evaluated the exclusive use of the text modality by fine-tuning the BERT and BETO

models and the exclusive use of the image modality by fine-tuning the ViT model.

To measure the complementarity between these two modalities, we also considered

the early fusion of the classification vectors obtained from the BERT/BETO and ViT
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models. Table 4.5 presents the mean and standard deviation of the evaluation results

for this first experiment.

AM EA HMC MAMI DIMEMEX ST1 DIMEMEX ST2

− BERT/BETO 0.601±0.0084 0.623±0.0091 0.467±0.0063 0.272±0.0081
− ViT 0.564±0.0079 0.616±0.0086 0.431±0.0094 0.286±0.0109

− EF 0.621±0.0063 0.654±0.0074 0.485±0.0081 0.296±0.0065

− VisualBERT 0.663±0.0096 0.685±0.0117 0.494±0.0103 0.316±0.0099
DA VisualBERT 0.695±0.0081 0.729±0.0077 0.528±0.0080 0.342±0.0094

Table 4.5: Comparison results of our four baseline architectures and the proposed integration of the
Dual Attention mechanism into VisualBERT across three datasets for AL detection in memes. The
MAMI and DIMEMEX datasets were evaluated using the macro-average F1 score, while the HMC
dataset was evaluated using accuracy. Note that “AM” and “EA” refer to Attention Mechanism and
Encoding Architecture, respectively.

Regarding the results obtained when evaluating the exclusive use of the text and

image modalities (rows 2 and 3), better performance was observed in 3 out of 4 da-

tasets with the text modality, achieving improvements of up to 6.5 %. This indicates

that the text modality is more effective in distinguishing instances of AL in memes.

For the DIMEMEX dataset in Subtask 2, better results were achieved with the vision

modality; however, the margin of improvement was low. When early fusion was used,

consistent improvements were observed across all datasets, surpassing the results ob-

tained with the independent use of the text and image modalities (row 4 vs. rows 2

and 3), with an improvement of up to 10.1 %. This demonstrates the complementa-

rity of both modalities and highlights the necessity of utilizing both for effective AL

detection in memes.

Table 4.5 also compares the use of VisualBERT, a vision & language model trai-

ned with multimodal data, against the early fusion approach of unimodal models

(row 5 vs. row 4). Consistent improvements were observed with VisualBERT across

all datasets, with performance gains of up to 6.7 %. This highlights the advantage

of using multimodal models over the early fusion of unimodal models. Finally, the

results of integrating the proposed DA mechanism into the VisualBERT model are

presented. Comparing the performance of the DA-enhanced VisualBERT model to

the standalone VisualBERT model (row 6 vs. row 5), consistent improvements were

achieved across all evaluation datasets, with gains of up to 6.4 %. Overall, the best

results were obtained with the integration of the DA mechanism into the VisualBERT

model.
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4.4.2. Effectiveness of the Proposed Multi-Level Dual Atten-

tion Architectures

As a second evaluation step, and aiming to evaluate the performance of the hie-

rarchical integration of the DA mechanism into the encoding layers of the Bi-GRUS,

BERTBASE, and VisualBERT encoding architectures, this subsection covers the eva-

luation of the proposed GHA and AHA architectures. Table 4.6 reports the mean and

standard deviation results of this evaluation in the detection of AL in text.

AM EA Waseem Davidson Golbeck SE 2019 T 6 AMI 2018 HASOC 2019

AHA Bi-GRUS 0.871 ±0.0074 0.924 ±0.0065 0.721 ±0.0059 0.764 ±0.0078 0.641 ±0.0063 0.736 ±0.0070
GHA Bi-GRUS 0.876 ±0.0085 0.935 ±0.0094 0.727 ±0.0104 0.771 ±0.0085 0.678 ±0.0080 0.753 ±0.0079

AHA BERTBASE 0.883 ±0.0073 0.939 ±0.0082 0.731 ±0.0063 0.802 ±0.0080 0.725 ±0.0067 0.776 ±0.0096
GHA BERTBASE 0.895 ±0.0084 0.942 ±0.0073 0.736 ±0.0085 0.824 ±0.0097 0.732 ±0.0071 0.781 ±0.0089

− SOTA 0.88012 0.92012 0.72713 0.82914 0.70415 0.78816

Table 4.6: Comparison results from our two baseline architectures, our proposed GHA architecture,
and state-of-the-art approaches in six datasets for the detection of AL in text.

Regarding the AHA integration into the multiple levels of the encoding Bi-GRUS

and BERTBASE architectures (rows 2 and 4), an improvement in all evaluation data-

sets is obtained compared to its counterpart (single-level integration) shown in Table

4.4; in addition to this, the best results are obtained with the integration of the AHA

architecture into the BERTBASE model (row 2 vs row 4). On the other hand, the

results obtained with the GHA architecture (rows 3 and 5) are superior compared

to those with the use of the AHA architecture (row 2 vs 3 and row 4 vs 5), which

indicates that the architectures benefit from the weighted fusion between the diffe-

rent encoding levels. Overall, the best results of this evaluation are obtained with the

GHA architecture, with the use of the BERTBASE model as encoding representation.

These findings are consistent according to the research conducted by Chakrabarty,

Gupta, and Muresan (2019), in which the benefit of deep stacked architectures is

demonstrated.

Finally, when comparing the results of our best approach (GHA architecture with

BERTBASE as encoding representation) against the SOTA approaches (row 5 vs 6),

better results are obtained in 4 out of 6 evaluation datasets, showing an overall im-

provement of up to 3.9 %. These results show the improvement in the detection of

12(Mozafari, Farahbakhsh, and Crespi, 2019b)
13(Chakrabarty, Gupta, and Muresan, 2019)
14(Liu, Li, and Zou, 2019)
15(Saha et al., 2018)
16(Wang et al., 2019)
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AL with the use of the proposed DA mechanism and MLDA architectures. Regarding

the SOTA results: 1) for the shared-task datasets, we select the results of the best

team within the competition, 2) for the unique datasets presented at AL research, we

selected the best results which report the dataset partition-split, as well as evaluation

metrics. To make a fair comparison with the different SOTA methods and their res-

pective configurations, the SOTA results reported in Table 4.6 were taken from their

respective papers.

Specifically, for the Waseem and Davidson datasets, we compare our results with

Mozafari, Farahbakhsh, and Crespi (2019b), where the integration of CNNs at the

different encoding levels of the BERT model was proposed. The representations ob-

tained at each level were concatenated and passed through a classification layer. For

the Golbeck dataset, we compare against Chakrabarty, Gupta, and Muresan (2019),

which proposed an architecture based on stacking RNNs and the integration of CA

at different stack levels. For the SE 2019 T6 dataset, we compare our results with

Liu, Li, and Zou (2019), where BERT fine-tuning was performed using different pre-

processing techniques, such as converting emojis to text and hashtag segmentation.

For the AMI 2018 dataset, we compare against Saha et al. (2018), which used logistic

regression as a classification algorithm and combined sentence embeddings, TF-IDF,

and Bag of Words representations as input feature vectors. Finally, for the HASOC

2019 dataset, we compare with Wang et al. (2019), which explored using a k-fold

ensemble approach based on the Ordered Neurons LSTM architecture (Shen et al.,

2019) coupled with a CA mechanism.

As can be seen, there is a wide variety of approaches among the reported SOTA

systems, which incorporate different text preprocessing techniques in various repre-

sentations, ranging from traditional Bag of Words to Transformer models, and apply

different classification algorithms from traditional machine learning ones like logis-

tic regression to deep architectures coupled in Transformer models. Unlike this wide

range of approaches, our method is based on the integration of our DA mechanism

into RNNs and Transformer-based architectures, as well as its expansion to a multi-

level perspective. These proposed approaches achieved good results in AL detection,

outperforming SOTA systems in 4 out of 6 evaluation datasets using our best configu-

ration. These results allow us to conclude that the proposed approaches are effective

in detecting different types of AL.

The results of evaluating the hierarchical integration of the proposed DA mecha-
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nism within the VisualBERT encoding architecture and the proposed baseline for the

detection of AL in memes are presented in Table 4.7. Additionally, the table includes

a comparison with SOTA approaches. The reported results for the SOTA approaches

correspond to those of the winning teams in the shared tasks of the three evaluation

datasets. All values were directly extracted from the respective overview papers of the

corresponding shared tasks (Kiela et al., 2020; Fersini et al., 2022; Jarqúın-Vásquez

et al., 2024).

AM EA HMC MAMI DIMEMEX ST1 DIMEMEX ST2

AHA VisualBERT 0.716±0.0081 0.739±0.0093 0.541±0.0090 0.363±0.0082
GHA VisualBERT 0.728±0.0075 0.747±0.0085 0.559±0.0072 0.398±0.0109

- SOTA 0.76517 0.83418 0.58319 0.44719

Table 4.7: Comparison results from our baseline architecture, our proposed GHA architecture, and
state-of-the-art approaches in three datasets for the detection of AL in memes.

As shown in the results obtained from the integration of the baseline AHA (row

2), a consistent improvement was achieved across all datasets compared to its coun-

terpart (single-level integration) presented in Table 4.5. These findings highlight the

advantages of leveraging multiple encoding levels of Transformer architectures over

exclusively using the last encoding level.

When comparing the results obtained with the weighted integration of encoding

levels from the GHA architecture against the baseline AHA (row 3 vs. row 2), an im-

provement is observed across all evaluation datasets. This demonstrates the benefits

of employing a weighted fusion of all encoding levels. The most significant improve-

ment was achieved in the dataset for Subtask 2 of the DIMEMEX shared task, which

involves multi-class classification of different types of hate speech.

The results presented in Table 4.7 also compare the performance of the reported

SOTA approaches against our proposed hierarchical integration of the DA mechanism.

When comparing our best results (obtained using the GHA architecture integrated

with VisualBERT) against the SOTA approaches (row 3 vs. row 4), it can be obser-

ved that our method did not outperform the SOTA systems on any of the evaluation

datasets. This is likely due to the fact that the winning systems rely on ensemble

techniques combining diverse pre-trained text, vision, and vision-and-language mo-

dels, while our approach is based solely on the hierarchical integration of the proposed

17(Zhu, 2020)
18(Zhang and Wang, 2022)
19(Wang and Markov, 2024)
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DA mechanism within the VisualBERT model.

Specifically, the winning approach for the HMC shared task (Zhu, 2020) applied an

inpainting model to detect and remove text from images, improving object detection

and web entity recognition. The cleaned images were then processed for bottom-

up-attention feature extraction, web entity detection, and human race identification,

enriching the input to transformer models. The team trained VL-BERT, UNITER-

ITM/VILLA-ITM, and vanilla ERNIE-Vil models on the extracted information and

averaged their predictions. For the MAMI shared task, the winning team (Zhang and

Wang, 2022) defined an ensemble model that combined deep multimodal features with

Multi-Layer Perceptrons, Extreme Gradient Boosting, and Gradient-Boosted Decision

Trees. Finally, the DIMEMEX shared task winner (Wang and Markov, 2024) explored

the integration of four SOTA language models (XLM-T, Multilingual-E5, RoBERTa-

base-BNE, BETO) with the Swin Transformer-based visual model, and employed

a Multilayer Perceptron fusion module to create a robust multimodal classification

system.

As described, the winning approaches utilize ensemble techniques and a wide array

of sophisticated pre-trained text, vision, and vision-and-language models, resulting in

significantly higher computational complexity and resource demands. In contrast, our

methodology emphasizes the hierarchical integration of the proposed DA mechanism

within a single vision & language model. This approach prioritizes simplicity and

computational efficiency, offering a more streamlined alternative. A detailed analysis

of the trade-off between performance and complexity is presented in Chapter 5.

4.4.3. On the Relevance of the Dual Attention Mechanism

In order to analyze in more detail the performance of the proposed DA mecha-

nism, we focus on the analysis of complementarity, and diversity over the SA and CA

mechanisms. This analysis is conducted using the Bi-GRU and VisualBERT encoding

architectures for detecting AL in text and memes, respectively. For measuring com-

plementarity, we utilized the MPA metric, while for assessing diversity, we applied the

CFD metric (Tang, Suganthan, and Yao, 2006). Both metrics are formally defined in

Subsections 2.6.7 and 2.6.8, respectively.

Table 4.8 presents the results of the MPA and CFD evaluation metrics across the

six AL text detection datasets and the three AL meme detection datasets. Additio-
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nally, the table reports the accuracy obtained using the SA, CA, and DA mechanisms.

When comparing the performance of the SA and CA mechanisms (column 2 vs 3),

better accuracy results are obtained in all datasets with the CA mechanism, which

shows the advantage of incorporating the general context via Cv in the detection of

AL. In order to measure the diversity of both attention mechanisms, we apply the

CFD metric in the predictions of the SA and CA mechanisms (shown in column 5),

the results show that although the diversity is low, there is complementarity in the

predictions of both mechanisms, this motivated us in the creation of the DA me-

chanism, which seeks to combine and complement the strengths of the SA and CA

mechanisms. Table 4.8 also reports the accuracy of the proposed DA mechanism in

comparison with the SA and CA mechanisms (column 6 vs columns 2 and 3), as

presented, the DA mechanism shows better performance results in all evaluation da-

tasets, showing the advantages of combining both mechanisms. Finally, we report the

MPA obtained with SA and CA predictions (column 4), as revealed, a performance

improvement is obtained in all the evaluation datasets, which indicates the comple-

mentarity of both mechanisms and the existence of a margin of improvement for the

future development of novel DA mechanisms.

Dataset SA CA MPA CFD DA

Waseem 0.8359 0.8471 0.8821 0.1825 0.8624
Davidson 0.9381 0.9476 0.9679 0.2057 0.9523
Golbeck 0.7379 0.7521 0.7893 0.2079 0.7726

SE 2019 T 6 0.8396 0.8419 0.9085 0.1827 0.8772
AMI 2018 0.6102 0.6317 0.6792 0.2138 0.6478

HASOC 2019 0.7498 0.7604 0.8062 0.2038 0.7830

HMC 0.6723 0.6842 0.7219 0.1794 0.7016
MAMI 0.7495 0.7818 0.8137 0.1952 0.8014

DIMEMEX ST1 0.7248 0.7426 0.7891 0.2018 0.7730
DIMEMEX ST2 0.5892 0.6134 0.6783 0.2192 0.6473

Table 4.8: Comparison results of the complementarity and diversity of the SA and CA mechanisms
contrasted with the performance of the DA mechanism. For evaluation, all AMs were integrated with
a Bi-GRU encoding architecture for the analysis of text datasets, while the VisualBERT model was
used for the analysis of meme datasets. The SA, CA, and DA result columns report accuracy.

4.4.4. Statistical Significance Analysis

We used a Bayesian Wilcoxon signed-rank test to assess the importance of integra-

ting the DA mechanism in the encoding architectures, as well as, the AHA and GHA
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architectures. It is advised to directly compare machine learning classifiers using this

test, which is a non-parametric Bayesian variant of the Wilcoxon signed-rank test

built on the Dirichlet process (Benavoli et al., 2017). The test calculates the posterior

probabilities of the null and alternative hypotheses given the observed data, giving a

clear probability of one approach being superior to the other (when comparing two

treatments).

For this analysis, we define methods A and B, according to the integration of

the DA mechanism in the encoding architectures, as well as the AHA and GHA

architectures. Table 4.9 displays the findings of this statistical analysis over the macro-

F1 scores, where the notation “>”denotes “better than”. We can observe that there is

a very high probability (> 0.9794) that the integration of the DA mechanism over the

Bi-GRU, Bi-GRUS, and BERT offers better results than the sole use of the encoding

architectures (rows 2, 3, and 4). On the other hand, when comparing the hierarchical

integration of the DA mechanism vs. its integration into the last encoding layer in

text encoding architectures (rows 5 and 6), there is a high probability (> 0.7224) that

its hierarchical integration obtains better results, by leveraging all the encoding levels

of the encoding architectures.

Encoding Architecture A B p(A > B) p(rope) p(B > A)

Bi-GRU DA - 0.9932 0.0059 0.0008
Bi-GRUS DA - 0.9933 0.0056 0.0009
BERT DA - 0.9794 0.0102 0.0102

Bi-GRUS AHA DA 0.7224 0.2740 0.0034
BERT AHA DA 0.8850 0.1123 0.0026

Bi-GRUS GHA AHA 0.6040 0.3669 0.0289
BERT GHA AHA 0.7225 0.2741 0.0032

VisualBERT DA - 0.8261 0.1594 0.0145
VisualBERT GHA AHA 0.7403 0.2368 0.0229

Table 4.9: Bayesian signed-rank test results for each proposed approach. The A and B columns indicate
the integration of the proposed DA mechanism, as well as the proposed approaches of their multilevel
integration, over the encoding architectures; the ‘-’symbol over the B column, denotes the absence of
the DA mechanism.

For the weighted integration of all encoding layers in text encoding architectu-

res, there is a probability (> 0.6040) of achieving better results compared to the

unweighted integration (rows 7 and 8). Regarding the integration of the proposed

DA mechanism into the VisualBERT model (row 9), there is a high probability (>
0.8261) of obtaining better results compared to its counterpart that relies solely on

fine-tuning. Finally, for the weighted integration of all encoding layers in the Visual-

BERT model vs. its hierarchical integration in the AHA architecture (row 10), there is

a high probability (> 0.7403) of achieving better results with the weighted integration
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of all encoding layers in the proposed DA mechanism.

To help visualize this analysis, in Figure 4.9 we map 150,000 Monte Carlo samples

in barycentric coordinates as proposed by Benavoli et al. (2014), where each vertex

of the triangle is associated with each Bayesian test scenario. For example, using

the data provided in Table 4.9, the Bayesian Test concluded that for 148,980 out

of 150,000 samples, the integration of the DA mechanism in the Bi-GRU encoding

architecture is advantageous to exclusively using the Bi-GRU encoding output.

Figure 4.9: Visualization of the Bayesian Test for comparing: 1) the integration of
the DA mechanism in the Bi-GRU, Bi-GRUS, and BERT architectures (subsections
a, b, and c ); 2) the AHA architectures vs. the sole use of the DA mechanism over
the last encoding layer of the Bi-GRUS and BERT architectures (subsections d and
e); 3) the GHA architecture vs. the AHA architecture using the Bi-GRUS and BERT
architectures (subsections f and g); and 4) the integration of the DA mechanism into
the VisualBERT model vs. the fine-tuned one, and the GHA architecture vs. the AHA
architecture integrated into the VisualBERT model (subsections h and i).
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4.5. Analysis of Results

This section provides a qualitative analysis of the results obtained through the

integration of the proposed DA mechanism, as well as the proposed GHA architecture.

The analysis presented in this section focuses on the detection of AL in text. A detailed

qualitative analysis of the results of AL detection in memes is provided in the following

chapter. This section is divided into two subsections. The first subsection examines

the sigma values across different encoding levels of the BERT model using the GHA

architecture. The second subsection provides an in-depth analysis of the attention

values generated by the proposed DA mechanism, contrasting its performance against

the SA mechanism.

NOTE: This section contains examples of language that may be offensive to some

readers, these do not represent the perspectives of the authors.

4.5.1. Relevance Analysis of the BERT Encoding Layers

Using the GHA Architecture

In general, the best results were obtained with the GHA architecture, using the

BERTBASE model as encoding representation. In order to analyze in detail the outs-

tanding performance of this configuration, in this subsection we propose to analyze

the leverage of the different encoding levels obtained through the GHA architecture.

This analysis will be performed in the detection of AL at three different levels, na-

mely: dataset, type of AL, and instance samples. In recent studies, a wide variety of

research has addressed and analyzed the contribution of the encoding layers of the

Tranformer-based architectures for a variety of tasks (Clark et al., 2019; van Aken et

al., 2019), these approaches have focused on the analysis of the multiple self-attention

heads at the different encoding layers. Unlike these approaches, we plan to analyze

them from a different perspective, using the activations captured through the GMU

units of the GHA architecture, specifically, we focus on the analysis of the zj,i values

obtained with the sigma function (as presented in Equation 4.2.3) which represent

the corresponding relevance of the i − th token at the j − th encoding layer.

Figures 4.10 and 4.11 present the activation heat map matrices of the sigma value

analysis, with respect to the three aforementioned analysis levels; in all cases, we

reported the average score of the zj,i values obtained at each of the 12 encoding
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layers of the BERTBASE model. For the sake of interpretation, each row in the heat

map matrix represents the average activation of an encoding layer, the 12 encoding

layers are presented from bottom to top, where the stronger color represents a greater

activation.

Figure 4.10: Visualization of the relevance of the encoding layers using the GHA ar-
chitecture; the left-hand side heatmap presents the relevance by dataset, on the other
hand, the right-hand heatmap illustrates the relevance by type of abusive language.

Figure 4.11: Visualization of the relevance of the encoding layers by instance samples;
the samples were taken from the Davidson and Waseem dataset, which corresponds
to an offensive and sexist sample, respectively. The left-hand heatmap presents the
offensive instance: “@user your a fucking queer fagot bitch”, while the right-hand
heatmap presents the sexist instance: “Im not sexist but bitches cannot drive”.

Figures 4.10 and 4.11 present the results of the analysis at the three proposed

levels. Regarding the sigma analysis of the datasets (left heatmap of Figure 4.10), low
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average activation values were captured in the first layers of the Transformer model,

on the other hand, the highest average activation values were obtained in the middle-

upper layers (specifically in layers 7, 8 and 9), which indicates according to Clark et al.

(2019) that the Transformer model focuses on more contextual aspects of the language

in the detection of AL. Concerning the analysis of the type of AL (right heatmap of

Figure 4.10) similar results were obtained, where low average activation values were

captured in the first layers of the Transformer model, on the other hand, the activation

of the upper layers in the detection of offensive language and hate speech stands out, in

contrast to the detection of harassment, sexism, racism, and misogyny (layers 9-11 vs.

6-8). This shows evidence that the Transformer model focuses on more semantic and

contextual aspects of the language in the detection of offensive language and hate

speech, in contrast to the detection of harassment, sexism, racism, and misogyny,

where it focuses on more syntactic aspects of language. Finally, Figure 4.11 shows

the sigma analysis in two AL samples, in which a low average activation stands out

in the upper layers, in personal pronouns, prepositions, and non-offensive words (e.g.

“not”, “a”, “your”, “@user”, and “but”), in contrast to potentially offensive words

(e.g. “fucking”, “faggot”, and “bitch”), which presented high activation values in the

upper layers, which evidence that their interpretation depends more on contextual

and semantic aspects for the detection of AL.

4.5.2. Analysis of Attention Values in the Proposed Dual At-

tention Mechanism

To measure the effectiveness of integrating the relevance of local and contex-

tual features through the proposed DA mechanism, in this subsection, we perform

an analysis of the attention values. This analysis consists of 1) extracting the top-k

most relevant words/expressions via the DA mechanisms in the AL detection task,

and 2) comparing these obtained words/expressions with the attention values of the

DA mechanism and the BERT attention values against a well-acknowledged lexicon.

Specifically, we used the Hatebase12 database, which is a specialized lexicon of po-

tentially offensive words and expressions. This comparison aims to evaluate the most

relevant words captured by the SA and DA mechanisms and validate the effectiveness

of combining the SA and CA mechanisms.

12https://hatebase.org/
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To extract these relevant words/expressions we proposed the Local Attention Score

(LAS). This score is designed to analyze the patterns captured by the DA mechanism

through attention values in the different evaluation datasets. LAS is inspired by the

combination of the Local Mutual Information (LMI) and the attention values. By

weighting both values, we take into account the number of word occurrences in the

abusive class and the relevance captured through the attention values. For interpre-

tation purposes, obtaining high values with the LAS indicates greater relevance of

the word/expression in terms of its number of occurrences in the abusive class and

its relevance captured by the attention mechanism for the detection of AL. The LAS

is shown in Equation 4.5.1, where LAS(w, c) represent the relevance score of word w

in class c (the abusive class), p(c∣w) and p(c) are calculated by count(w,c)
count(w) and count(c)

∣D∣ .

Furthermore, p(w∣c) and ᾱ(w, c) are calculated by count(w,c)
∣D∣ and 1

n ∑
n
i=1(wi, c), where n

is the number of occurrences of word w in class c, and (wi, c) is the attention value of

the i−th occurrence of word w in class c; ∣D∣ is the number of occurrences of all words

in the training set. Table 4.10 presents the results of the top-20 words/expressions

obtained with the proposed LAS metric.

top-word Waseem Davidson Golbeck SE 2019 T 6 AMI 2018 HASOC 2019

1 sexist bitch cunt shit bitch fuck
2 islam bitches nigger fuck whore fucking
3 muslims hoes cunts fucking bitches shit
4 cunt pussy fuck ass cunt ass
5 mohammed hoe niggers bitch girls liar
6 bimbos fuck muslim stupid pussy idiot
7 prophet nigga kill disgusting slut traitor
8 quran shit muslims idiot women asshole
9 women ass ass sucks ladies bitch
10 bitch faggot bitch liar girl bastards
11 religion fucking white crap vagina shame
12 drive niggas juice bullshit whores damn
13 feminist cunt pussy fucked fucking fool
14 feminists niggah whites nigga ass racist
15 bitches fag cock ignorant fuck idiots
16 islamic nigger ugly dumb female stupid
17 jews fuckin nigga racist woman moron
18 men faggots fucking disgrace suck fck
19 rape retarded burn asshole skank bullshit
20 blondes niccas stupid hypocrites sluts suck

Table 4.10: Top-20 words obtained with the proposed Local Attention Score (Equation 4.5.1) over the
abusive class, with the use of the proposed DA mechanism. The words indicated in bold, represent
the words contained in the Hatebase lexicon.

LAS(w, c) = p(w, c).log(p(c∣w)
p(c) ).ᾱ(w, c) (4.5.1)

As shown in Table 4.10, the top-20 words/expressions captured with the
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LAS using the DA values, correspond to potentially offensive words/expressions,

stereotype-based words, or specific hate target groups. The proposed score was ap-

plied to all evaluation datasets, these results are displayed in the different columns of

Table 4.10. Regarding the captured results, a clear trend can be observed in the use of

specific words/expressions according to the type of AL addressed in each dataset, for

example, the top most relevant words/expressions for the Waseem dataset (dedicated

to the detection of sexism and racism) are highly related to offenses against women

or stereotypes, or to hate target groups with regard to racism detection. Concerning

the datasets dedicated to the detection of offensive language (such as the case of

task 6 of SemEval 2019) a greater number of vulgar words/expressions were captu-

red. On the other hand, in the datasets dedicated to the detection of harassment

and misogyny (as is the case of the Golbeck and AMI 2018 datasets), the capture of

vulgar and pejorative words/expressions referring to women is shown. Finally, some

words/expressions that are not potentially offensive were also captured by the pro-

posed LAS, such as “women”, “drive”, and “blondes”. To analyze them better, Table

4.11 presents examples of some offensive instances that use some of these words, which

are used as a stereotype or as the target of an offense. For example, in the offensive

instance “I’m not sexist but BITCHES CANNOT DRIVE”, the word drive is used as

a stereotype, where its contextual interpretation is important to classify the instance

as misogynistic. The capture of these words by LAS is highly related to the type

of AL addressed in the evaluation datasets, as well as any biases they may contain.

The words indicated in bold in Table 4.10 are contained in the Hatebase lexicon as

potentially offensive words/expressions.

# Word Text

1 Drive RT NathanWassihun I’m not sexist but BITCHES CANNOT DRIVE
2 Drive HOLY FUCK IM NOT SEXIST BUT ALOT OF WOMEN CANNOT FUCKING DRIVE
3 Blondes Dumb blondes with pretty faces? You’re definitely right on one of those statements...
4 Feminism BoycottBrandy I just wanted proof that feminism sheep believe the lie.
5 Hypocrite @USER GOP, Conservatives, Evangelicals, Traditionalists Catholics are all hypocrites.
6 Ignorant @USER @USER She is a Sick Corrupt Ignorant Moron!

Table 4.11: Examples of non-offensive words captured with the local attention score, which are used
in offensive contexts.

Regarding the second analysis between the top − k most relevant words captured

via the proposed LAS using the BERT attention values and the DA values in contrast

with the well-acknowledge Hatebase lexicon, taking as our ground-truth; Table 4.12

presents the results of this comparison, between the intersections obtained with the

use of the attention values of the BERT model (reported at column 2) and with the use

A Dual Attention-Based Representation for the Detection of Abusive Language in Texts and Memes



96 4. Proposed Dual Attention Mechanism

of the attention values obtained with the proposed DA mechanism coupled with the

BERT model (shown in column 3). As reported in Table 4.12, the use of the proposed

DA mechanism in the BERT model allows capturing a greater number of potentially

offensive words/expressions, compared to the sole use of the SA mechanism in the

BERT model, in some cases almost doubling the results obtained without the use

of the proposed DA mechanism. This supports the quantitative improvement in the

detection of AL with the incorporation of contextual information (CA mechanism)

and the relationships between the elements of the sequence (SA mechanism) via the

proposed DA mechanism.

Dataset (-)BERT (DA)BERT Possible Words

Waseem 6 (42%) 11 (78%) 14
Davidson 12 (46%) 19 (73%) 26
Golbeck 9 (37%) 18 (75%) 24

SE 2019 T 6 13 (44%) 21 (72%) 29
AMI 2018 8 (34%) 17 (73%) 23

HASOC 2019 10 (47%) 16 (76%) 21

Table 4.12: The intersection percentage of the top-50 words with the highest Local Attention scores
and the Hatebase lexicon database, (-) indicates the absence of the proposed DA mechanism.
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Chapter 5

Proposed Cross-Modal Dual

Attention

This chapter introduces the Cross-Modal Dual Attention (CMDA) mechanism,

designed to adapt the proposed DA mechanism for multimodal classification approa-

ches. Its primary objective is to measure the relevance and interaction between pairs

of elements from different modalities. Specifically, the main goal of this mechanism is

to bridge the gap between the results obtained in AL detection in memes and state-

of-the-art approaches. Additionally, the CMDA mechanism has been adapted to a

bi-contextual architecture, extending its applicability to more than two modalities.

The evaluation of this proposed mechanism focuses exclusively on AL detection in

memes.

The chapter is divided into four sections. Section 1 introduces the CMDA mecha-

nism along with the bi-contextual architecture. Section 2 provides implementation

details and outlines the baselines used to compare the performance of the proposed

approaches. Section 3 presents the quantitative results obtained from evaluating the

proposed approaches against state-of-the-art methods. This section also includes a

comparison of the number of parameters in the models being evaluated. Finally, Sec-

tion 4 offers a qualitative analysis of the CMDA mechanism, focusing on attention

value visualizations and error analysis.

5.1. Cross-Modal Dual Attention Mechanism

This section is organized into the following subsections: the first subsection in-

troduces the proposed CMDA mechanism, which incorporates the DA mechanism

[97]
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into a multimodal perspective with the aim of improving the alignment between ele-

ments from two different modalities. The second subsection presents a bi-contextual

approach designed to integrate information from more than two modalities.

5.1.1. Construction of the CMDA Mechanism

To further enhance the initially proposed DA mechanism, we aimed to expand its

capabilities into a cross-modal approach. In this subsection, we introduce the CMDA

mechanism, specifically developed to improve AL detection in memes. CMDA achieves

this by integrating information from two distinct modalities in a cross-modal frame-

work. For clarity, these modalities are represented by the text and image components

of memes.

The inspiration for CMDA stems from the cross-modal attention mechanism pro-

posed by Ye et al. (2019). The core intuition of the cross-modal attention mechanism

involves the interaction between a pair of modalities in the form of sequences by

adapting the self-attention mechanism. The cross-modal attention block takes two

input modalities, α and β, along with their respective sequences, Xα ∈ RTα×dα and

Xβ ∈ RTβ×dβ . The cross-modal attention mechanism aims to adapt the modality β to

α by incorporating the contextual information from one modality into the other.

Figure 5.1 illustrates the CMDA mechanism, which processes sequential data from

two distinct modalities. Its primary contribution lies in integrating contextual infor-

mation from a given modality to enhance the latent adaptation of modality β to

modality α, thereby achieving improved alignment of relevant features during the

latent adaptation process.

Parallel to classical (single modality) self-attention, the CMDA mechanism maps

the first modality, α, into a set of queries denoted by Qα = XαWQα . While the set

of key-value pairs is obtained from the second modality, given by Kβ = XβWKβ
and

Vβ = XβWVβ
. Where WQα ∈ Rdα×dk , WKβ

∈ Rdβ×dk , and WVβ
∈ Rdβ×dv . The latent

adaptation from β to α in the CMDA mechanism is defined as:

CMDAβ→α ∈ RTα×dv = [softmax(
QαKT

β√
dk
) ⊙ cβ]Vβ (5.1.1)

Specifically, in Equation 5.1.1, the portion on the right-hand side enclosed within

the brackets calculates the general attention filter of the CMDA mechanism. This

is achieved through the element-wise multiplication of the contextualized vector cβ
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Figure 5.1: Proposed Cross-Modal Dual Attention Mechanism.

and the matrix obtained by calculating the similarity between the features of both

modalities using a normalized dot product with the softmax function. The purpose

of this process is to combine the relevance between each pair of features from the

two modalities while emphasizing the importance of each feature from modality β

in solving the task at hand (AL detection in memes). This generated representation

serves as an initial step in crafting the dual attention kernel, denoted as Dβ→α. The

purpose of this kernel is to integrate contextual information from modality β into the

latent adaptation of modality α.

Hβ = tanh(XβWHβ
) (5.1.2)

cβ = softmax(Hβkβ) (5.1.3)

The contextual information specific to modality β is stored within the attention

vector cβ ∈ RTβ , which is computed through a normalized dot product (as shown in

Equation 5.1.3) between the matrix of hidden states Hβ (obtained according to Equa-

tion 5.1.2) and the context vector kβ. It’s worth noting that the context vector kβ is
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initialized randomly and refined through joint learning during the training process.

Ultimately, the dual attention kernel Dβ→α is employed to adjust the final representa-

tion of modality α, based on the similarity of their respective features. The ultimate

representation CMDAβ→α is derived by multiplying the matrices Dβ→α and Vβ.

5.1.2. Proposed Bi-contextual CMDA Architecture

To extend the applicability of the CMDA mechanism to more than two modalities,

this subsection introduces the Bi-contextual CMDA architecture. Since the CMDA

mechanism enables the latent adaptation of one modality to another, it allows for

various combinations of inputs and outputs within the proposed CMDA mechanism.

The Bi-contextual architecture, depicted in Figure 5.2, leverages two CMDA mecha-

nisms for AL detection in memes.

Figure 5.2: Proposed Bi-contextual CMDA architecture.

Specifically, the dashed rectangle in the lower portion of the diagram represents

the foundational architecture, which processes two input modalities, denoted as α

and β. The resulting representation, CMDAβ→α ∈ RTα×dv , is subsequently treated as

a combined input modality for a second CMDA mechanism. This second mechanism

integrates the combined representation with a third modality, γ, yielding a new re-

presentation, CMDAγ→α ∈ RTα×dv . This final representation effectively combines the
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contextual information from two modalities, γ and β, to enhance the representation

of α.

The use of the Bi-contextual CMDA architecture enables flexibility in the ordering

of the modalities assigned to α, β, and γ. In the previous chapter, the modalities

employed for AL detection in memes included the text extracted from the image

and the image of the meme itself. Additionally, to fully exploit the potential of this

architecture and to provide the models with richer contextual information, a new

modality was incorporated: the description of the meme image. To integrate this

modality, we employed an image captioning task.

Figure 5.3 showcases an example generated through the image captioning task,

where the descriptions were created using the BLIP1 model. These three modalities

were utilized in our experiments.

Figure 5.3: Image captioning example.

To perform the classification process using the CMDA mechanism and the Bi-

contextual architecture, the output from these architectures is passed through an

Average Pooling layer to obtain the classification vector. Finally, the resulting repre-

sentation is fed into the classification layers.

5.2. Proposed Baselines and Implementation De-

tails

This section provides the implementation details and outlines the baselines used

to evaluate the effectiveness of the proposed CMDA mechanism. The evaluation was

conducted using the same datasets for AL detection in memes described in the pre-

vious chapter. Additionally, the same evaluation metrics were employed to assess the

performance of the CMDA mechanism. This section is structured as follows: first,

1https://huggingface.co/docs/transformers/model_doc/blip
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the baselines proposed to measure the effectiveness of the CMDA mechanism and the

Bi-contextual architecture are presented. Subsequently, the implementation details

are discussed, including the hyperparameters of the various proposed approaches.

5.2.1. Proposed Baselines for the Evaluation of the CMDA

Mechanism

To evaluate the effectiveness of the CMDA mechanism, an initial evaluation stage

was conducted to measure the impact of the modalities used. The following baselines

were proposed:

1.- Fine-tuning the BERTBASE/BETO model for AL detection in memes, using

only the text modality extracted from the memes. The BETO model is used for

the DIMEMEX dataset, while the BERT model is employed for the HMC and

MAMI datasets.

2.- Fine-tuning the BERTBASE/BETO model, using only the text modality derived

from the image captions extracted with the BLIP model.

3.- Fine-tuning the Vision Transformer (ViT) model, using only the image modality.

To enable a direct comparison of the latent adaptation of different modality pairs

using the CMDA mechanism, the CMA mechanism described in Section 2.4.1 was im-

plemented. Additionally, the CMA mechanism was integrated into the Bi-contextual

architecture to assess the impact of the proposed CMDA mechanism within the Bi-

contextual architecture. For consistency, all these configurations utilized the same

parameter settings, pre-trained models, and classification schemes.

To evaluate the effectiveness of the proposed CMDA mechanism and Bi-contextual

architecture against a robust baseline previously demonstrated to be effective in AL

detection in memes, we decided to replicate the Hate-CLIPper model proposed by

Kumar and Nandakumar (2022). This model leverages the pre-trained CLIP2 model

to extract image encodings relative to the text and text encodings relative to the

image. Both representations are passed through the CMA mechanism to evaluate

the interactions between paired elements from both modalities. Subsequently, the

diagonal of the resulting representation is concatenated to form a classification vector.

2https://huggingface.co/docs/transformers/model_doc/clip
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This vector is then fed into a fully connected layer, followed by the application of the

softmax function to produce the final classification.

Finally, to compare the effectiveness of the proposed approaches against modern

methods based on Large Language Models (LLMs) and Prompt Engineering, we pro-

posed two baselines following zero-shot and few-shot classification schemes.

In the zero-shot classification scheme, the LLM was provided with a prompt3

that included the meme to be classified, instructions to categorize it according to the

dataset’s predefined classes, the corresponding category definitions, the text extracted

from the meme, and the image caption generated using the BLIP model.

In the few-shot classification scheme, in addition to the category definitions, the

LLM was given three examples per category, each extracted from its respective trai-

ning set. Each example included the assigned label for a given meme, an explanation

justifying the label, the text contained within the meme, and the image caption ge-

nerated with the BLIP model. Due to the model’s data processing limitations, it was

not possible to load the images for each example in the few-shot configuration, only

the image of the meme to be classified.

Table 5.1 presents an example of the prompt used in the zero-shot configuration

with the MAMI dataset. As illustrated, the prompt contains the image to be classified,

followed by the classification instructions, category definitions, the text extracted

from the meme, the image caption associated with the meme, and the final instruction

“The image belongs to the category:”, which signals the part the model is expected to

complete. It is important to note that in our few-shot configuration, the only difference

compared to the prompt shown in Table 5.1 is that, between the category definitions

and the text contained in the image section, we insert the few-shot examples from

the training set under the aforementioned input constraints.

It is important to highlight that, as these schemes do not involve a training phase,

only the test examples were presented to the LLMs for evaluation in both cases. The

prompts were carefully designed to ensure that the language model generated only the

predefined labels corresponding to the dataset’s categories. For a more comprehensive

explanation of these classification schemes, we refer the reader to the following review

(Sahoo et al., 2024).

3A structured and specifically designed input to interact with a language model, guiding and
optimizing the generation of desired responses.
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Image

Prompt

You are a helpful assistant.
Classify the following meme image into one of the two categories: {misogynistic, non-
misogynistic}.
Category definitions:
Misogynistic: The image conveys, promotes, or reinforces negative stereotypes, hatred, devaluation,
objectification, or discrimination against women.
Non-misogynistic: The image does not express or promote any harmful or derogatory views toward
women. It may be neutral, humorous, or unrelated to gender issues.
Text contained in the image: “Valentine’s Day’s coming? Oh crap! I forgot to get a girlfriend
again.”
Image caption associated with the image: A cartoon man with orange hair and a red jac-
ket looks surprised and says, “Valentine’s Day’s coming? Oh crap! I forgot to get a girlfriend
again,”while standing next to a woman with purple hair and a white tank top who looks unim-
pressed.
The image belongs to the category:

Table 5.1: Example of the zero-shot classification scheme used to categorize a non-offensive instance.
The image was taken from the MAMI dataset (Fersini et al., 2022).

The LLM used for these experiments was Gemini 1.54, as this model is multimodal,

enabling the processing of images alongside the textual information provided in the

prompt.

5.2.2. Implementation Details

This subsection describes the implementation details of the proposed approaches.

Regarding the preprocessing of text and images, we utilized the same steps described

in Subsection 4.3.4. The same text preprocessing was applied to both the meme text

and the text extracted from the image captions. For the models used in the evaluation

of the CMDA mechanism, we selected BERT as the encoding architecture for the

text in the English datasets, BETO as the encoding architecture for the text in the

DIMEMEX dataset, and ViT as the encoding architecture for the images. Regarding

4https://deepmind.google/technologies/gemini/
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the sequence lengths, a maximum length of 40 tokens was used for the text extracted

from memes, while a maximum length of 70 tokens was applied to the text extracted

from the image captions.

Table 5.2 presents the hyperparameters of the proposed CMDA mechanism, as-

suming a latent adaptation of β → α, where β represents the image modality and α

represents the text modality extracted from the meme text. It is important to note

that these representations can be replaced by others or even represent a combination

previously obtained by another CMDA mechanism, as illustrated in the proposed

bi-contextual architecture.

Vectors, Matrices and Variables Size

n (α) 40
n (β) 197
d 768
kβ 768
Qα 40x768

Kβ, Vβ 197x768

Layer Input size Output size

Embedding (BERT/BETO) 40 40x768
BERT/BETO 40x768 40x768
ViT 197x768 197x768
CMDAβ→α 197x768(β), 40x768 (α) 40x768
Avg Pooling 40x768 40
Dense1 40 #Classes

Table 5.2: Hyperparameters of the proposed CMDA mechanisms, assuming a latent adaptation of
β → α, where β represents the image modality and α represents the text modality. The description of
the hyperparameters includes details of the classification layers.

Regarding the experimental configurations used for the unimodal baselines, inclu-

ding the fine-tuning of the BERT, BETO, and ViT models, we employed the same

experimental setup described in Subsection 4.3.4. For the baselines using the CMA

mechanism, these architectures were trained for a total of 3 epochs, with a learning

rate of 1e–5, using the Adam optimizer, a Dropout rate of 10 %, and a batch size of

32. The Hate-CLIPper model was trained for a total of 2 epochs, with a learning rate

of 5e–5, using the Adam optimizer, a Dropout rate of 10 %, and a batch size of 24.

All variants of the proposed CMDA mechanism were trained for a total of 2 epochs,

with a learning rate of 1e–5, using the Adam optimizer (Kingma and Ba, 2015), a

Dropout rate of 15 %, and a batch size of 24.
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All the hyperparameters described above were determined through a grid search

using the different sets of values outlined in Subsection 4.3.4. In contrast to the

experiments conducted in the previous chapter, all baseline models, as well as the

proposed configurations of the CMDA and the Bi-contextual CMDA architecture

for the detection of AL in memes, were evaluated on a computer equipped with an

NVIDIA RTX 4090 graphics card, 64 GB of DDR5 RAM, and an Intel Core i9-14900K

processor.

5.3. Quantitative Results

This section presents the quantitative evaluation results of the different baseli-

nes and proposed approaches. This subsection is divided into two parts. The first

subsection reports the evaluation results of the CMDA mechanism for AL detection

in memes and compares its performance against the proposed baselines and SOTA

models. This subsection concludes with a comparison of the number of parameters

in the proposed approaches, the considered baselines, and the SOTA models. The

second subsection provides a statistical analysis of the obtained results.

5.3.1. Effectiveness of the Proposed Cross-Modal Dual At-

tention Mechanism

Table 5.3 reports the evaluation results of the proposed baselines and the variants

of the proposed CMDA mechanism. As observed, when comparing the performance

of the unimodal baselines (rows 2, 3, and 4), the text modality extracted from memes

yields better results compared to the exclusive use of images or image captions. When

comparing the performance of the pre-trained CLIP model against the unimodal

approaches (row 5 vs. rows 2, 3, and 4), a significant improvement is observed with

the use of a vision & language pre-trained model, outperforming its counterparts by

a wide margin across all evaluation datasets.

Regarding the evaluation of the Hate-CLIPper model, a consistent improvement

is observed across all datasets compared to the exclusive use of the CLIP model (row

6 vs. row 5). Additionally, the table reports the evaluation results of the LLM Gemini

1.5 under zero-shot and few-shot classification schemes (rows 7 and 8). As shown, the

few-shot setting yields the best performance, demonstrating consistent improvements
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across all test datasets. However, it is important to note that the few-shot approach

did not outperform the Hate-CLIPper model across the four evaluation datasets.

Nevertheless, it achieved better performance compared to the best unimodal results

(row 8 vs. row 4).

AM T. Approach HMC MAMI DIMEMEX ST1 DIMEMEX ST2 #P

- ViT (I) 0.564±0.0079 0.616±0.0086 0.431±0.0094 0.286±0.0109 86M
- BERT/BETO (C) 0.571±0.0073 0.608±0.0094 0.434±0.0079 0.249±0.0104 110M
- BERT/BETO (T) 0.601±0.0084 0.623±0.0091 0.467±0.0063 0.272±0.0081 110M

- CLIP 0.739±0.0085 0.768±0.0068 0.528±0.0071 0.394±0.0090 151M
- Hate-CLIPper 0.752±0.0095 0.781±0.0076 0.543±0.0086 0.410±0.0094 151M

- Gemini 1.5 (ZS) 0.696 0.754 0.486 0.340 ≈200B
- Gemini 1.5 (FS) 0.713 0.771 0.523 0.364 ≈200B

CMA AVG (T → I) 0.672±0.0071 0.705±0.0060 0.493±0.0091 0.316±0.0113 196.2M
CMA AVG (I → T ) 0.703±0.0070 0.729±0.0084 0.516±0.0093 0.325±0.0088 196.2M

CMDA AVG (T → I) 0.687±0.0079 0.720±0.0086 0.514±0.0092 0.381±0.0118 196.2M
CMDA AVG (I → T ) 0.725±0.0082 0.752±0.0090 0.547±0.0074 0.392±0.0097 196.2M

CMA BiC (I → (C → T )) 0.730±0.0067 0.752±0.0084 0.558±0.0095 0.383±0.0082 196.4M
CMDA BiC (I → (C → T )) 0.759±0.0091 0.804±0.0074 0.617±0.0086 0.452±0.0098 196.4M

- SOTA 0.7655 0.8346 0.5837 0.4477

Table 5.3: Evaluation results of the unimodal baseline architectures and the proposed approaches for
assessing the performance of the CMDA mechanism in AL detection in memes. We report the mean
and standard deviation over 5 runs for each proposed approach, except for the Gemini 1.5 baseline
due to request limitations to the server, and for the SOTA models, as we used the results reported
on the respective leaderboards. NOTE: The column “#P” indicates the number of parameters of each
approach. The letters I, C, and T refer to the use of the image modality, the captions extracted from the
image, and the text extracted from the meme, respectively.

Additionally, Table 5.3 reports the evaluation results of the CMA mechanism

applied to the latent adaptation of text over an image and vice versa (rows 9 and

10). As observed, better results are achieved when incorporating visual information

into the text modality (row 10), which aligns with the findings from the unimodal

evaluation (rows 2, 3, and 4).

Subsequently, the table presents the results obtained with the integration of the

CMDA mechanism for the latent adaptation of text over image and vice versa (rows

11 and 12). Consistently, better results are achieved when visual information is in-

tegrated into the text modality (row 12). Moreover, when comparing the results of

the CMDA mechanism against CMA, a consistent improvement is observed across

all evaluation datasets (row 12 vs. row 10 and row 11 vs. row 9). The table also

reports the evaluation results of the Bi-contextual architecture integrating both the

CMA and CMDA mechanisms (rows 13 and 14). As shown, the CMDA mechanism

achieves superior results across all evaluation datasets, significantly outperforming

5(Zhu, 2020)
6(Zhang and Wang, 2022)
7(Wang and Markov, 2024)
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its counterpart. It is worth noting that all possible permutations of the three con-

sidered modalities were tested. The best results were obtained by integrating visual

information over the inclusion of captions into the meme text (row 14).

When comparing the best results obtained using the Bi-contextual architecture

with the CMDA mechanism against the SOTA approaches, it can be observed that

the significant gap identified in the proposed approaches in Chapter 4 was notably

reduced. Furthermore, better results were achieved in 2 out of 4 datasets. For the

datasets where the results did not surpass those of the SOTA approaches, the per-

formance gap did not exceed 3.7 %. Additionally, Table 5.3 compares the number of

parameters across the different models. As shown, integrating the CMDA mechanism

into the various encoder architectures does not lead to a significant increase in the

number of parameters compared to the CMA mechanism within the same configura-

tions. Notably, our best model is over 1,000 times smaller than the Gemini 1.5 model,

a multimodal SOTA LLM. Furthermore, our best approach outperformed Gemini 1.5

across all evaluation datasets, further demonstrating the robustness of the propo-

sed CMDA mechanism and its effectiveness when integrated with the Bi-contextual

architecture.

5.3.2. On the Relevance of the Cross-Modal Dual Attention

Mechanism

To further analyze the performance of the proposed CMDA mechanism, we fo-

cus on evaluating the complementarity and diversity of its different configurations,

including the Bi-contextual architecture and its counterparts based on the CMA me-

chanism. As in Subsection 4.4.3, we use the MPA metric to assess complementarity

and the CFD metric to evaluate diversity.

Table 5.4 reports the results for both MPA and CFD across the three AL meme

detection datasets. As observed, when comparing the MPA scores of the CMA-based

configurations (column 2) with those of the CMDA-based ones (column 3), the latter

consistently achieve better complementarity, with improvements of up to 4.1 % in

MPA across all datasets.

An interesting observation is that datasets with a higher number of classes tend

to exhibit lower MPA values, likely due to the increased complexity of distinguishing

among multiple classes. This trend is evident when comparing the results of Task 1
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and Task 2 of the DIMEMEX dataset (row 4 vs. row 5).

Dataset MPA(CMA) MPA(CMDA) CFD(CMA) CFD(CMDA)

HMC 0.7972 0.8304 0.2764 0.2590
MAMI 0.9080 0.9273 0.3406 0.3104

DIMEMEX ST1 0.8823 0.9141 0.4292 0.3819
DIMEMEX ST2 0.8629 0.8856 0.4870 0.4605

Table 5.4: Comparison of the complementarity and error diversity between the proposed CMDA-based
configurations, including the Bi-contextual architecture, and their counterparts based on the CMA
mechanism.

Finally, Table 5.4 also presents a comparison of error diversity using the CFD

metric (column 4 for CMA vs. column 5 for CMDA). CMA-based configurations con-

sistently exhibit higher CFD scores, suggesting greater error diversity. In contrast, our

CMDA mechanism shows more stable behavior when distinguishing between offen-

sive and non-offensive instances. Additionally, error diversity tends to increase with

the number of classes in the dataset. For example, CFD values for Tasks 1 and 2

of DIMEMEX are significantly higher than those for the HMC and MAMI datasets,

which are based on binary classification. Consequently, the highest CFD values are

observed in Task 2 of DIMEMEX.

5.3.3. Statistical Significance Analysis

As in the previous chapter, we used a Bayesian Wilcoxon signed-rank test to eva-

luate the significance of integrating the CMDA mechanism into the encoding archi-

tectures, as well as the Bi-contextual architectures. This test calculates the posterior

probabilities of the null and alternative hypotheses given the observed data, provi-

ding a clear probability of one approach being superior to the other. For this analysis,

we define methods A and B according to the integration of the proposed CMDA

variants. Table 5.5 presents the results of this statistical analysis over the macro-F1

scores, where the notation “>”denotes “better than”.

We observe a very high probability (> 0.9274) that the CMDA mechanism outper-

forms the CMA mechanism. Additionally, when comparing the Bi-contextual architec-

ture to the standalone use of the CMDA mechanism, there is a very high probability

(> 0.9335) of achieving better results with the Bi-contextual variant, highlighting the

advantages of incorporating all three modalities. Finally, Table 5.5 also presents a

comparative analysis between the results obtained by our best approach and those

achieved by the Hate-CLIPper model, a robust and high-performing system evalua-

ted for AL detection in memes. As shown, there is a probability greater than (>
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0.8935) that our approach yields superior results, providing further evidence of its

effectiveness.

Encoding Architectures A B p(A > B) p(rope) p(B > A)

BERT/BETO and ViT CMDA CMA 0.9274 0.0723 0.0001
BERT/BETO and ViT Bi-C(CMDA) CMDA 0.9335 0.0576 0.0088
BERT/BETO and ViT Bi-C(CMDA) Hate-CLIPper 0.8935 0.0021 0.1042

Table 5.5: Bayesian signed-rank test results for each proposed approach. The A and B columns in-
dicate the integration of the proposed CMDA mechanism variants, as well as the proposed baseline
approaches, over the encoding architectures; Bi-C(CMDA) denotes the results of the Bi-contextual
architecture Bi-C (I → (C → T )).

The visual results of this analysis are presented in Figure 5.4, where each point

represents a statistical comparison between two encoding approaches. Each vertex of

the triangle corresponds to a potential outcome of the comparison for the following

strategies: Subsection a illustrates the comparison between the CMDA mechanism and

the CMA mechanism. Subsection b presents the comparison between the proposed

Bi-contextual architecture and the standalone use of the CMDA mechanism. Finally,

subsection c showcases the results of the comparison between our best approach and

the Hate-CLIPper model.

Figure 5.4: Visualization of the Bayesian Test for comparing: 1) the integration of the
CMDA mechanism vs. the CMA mechanism (subsection a), 2) the integration of the
Bi-contextual architecture with the CMDA mechanism vs. the standalone use of the
CMDA mechanism, where the best configurations obtained were compared in both
cases (subsection b), and 3) our best approach (the Bi-contextual architecture) vs.
the Hate-CLIPper model (subsection c).

5.4. Analysis of Results

This section provides a qualitative analysis of the results to gain a deeper un-

derstanding of the strengths and weaknesses of the proposed CMDA mechanism. The
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section is divided into two subsections. The first subsection presents a visualization

of the attention values for various offensive and non-offensive memes. The second

subsection offers an error analysis of the instances that were misclassified using the

CMDA mechanism and the Bi-contextual architecture.

NOTE: This section contains examples that may be offensive to some readers,

these do not represent the perspectives of the authors.

5.4.1. Visualization of Attention Values in the CMDA Me-

chanism

This subsection presents the visualization of the attention values generated by the

CMDA mechanism. These values were extracted from the attention kernel Dβ→α. It

is important to note that the attention values for each word were calculated by ave-

raging the tokens that composed the word (e.g., if the word “running”was segmented

into the tokens “run##.and “##ing”, these were averaged to improve visualization).

Similarly, the regions of the images were also averaged to enhance their visualization,

providing a clearer representation of the attention distribution. Figures 5.5 and 5.6

present examples of the visualization of attention values for an instance containing

hate speech and another non-offensive one, respectively.

Figure 5.5: Visualization of the attention values for an instance containing hate speech.
This example was taken from the HMC dataset (Kiela, Wang, and Cho, 2018).
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As observed in the heatmap distributions, particularly in Figure 5.5, words related

to the target of an offense, such as the word “black”, are highlighted along with the

image regions associated with the insult—in this case, the face of the chimpanzee. On

the other hand, in Figure 5.6, which contains no offensive content, the most relevant

regions are associated with the humorous aspect of the meme.

Figure 5.6: Visualization of the attention values for a non-offensive instance. This
example was taken from the HMC dataset (Kiela, Wang, and Cho, 2018).

5.4.2. Error Analysis

This subsection presents an error analysis to gain a better understanding of the

opportunities for improvement in misclassified instances. For this analysis, we extrac-

ted various examples that could not be correctly classified by the CMDA mechanism

in its best variant (integrating visual information into text modality) and were also

misclassified by our best approach (the Bi-contextual architecture integrated with the

CMDA mechanism). Particularly, a manual qualitative analysis was performed over

a subset of these memes. In the following paragraphs, we briefly describe the main

observed features as well as some samples of these instances.

Table 5.6 shows examples of memes misclassified by the proposed CMDA and Bi-

contextual architecture. A common denominator found in most of these memes is the

need for extra-linguistic context for correct interpretation. For instance, the second
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meme in the upper right corner adds the suffix “tl”to certain words, it is commonly

used to mock people who speak indigenous languages in Mexico. Another fundamental

aspect for detecting inappropriate content and hate speech in memes is the correct

interpretation of both image and text. This is exemplified by the third meme in the

middle left, where the textual content “Science has reached the new switches”seems

harmless, but the addition of visual content referencing intimate body parts turns it

into vulgar content with sexual connotations.

Category: Hate Category: Hate

Translation: When you see that your
parentsáddress is on Insurgentes Sur.

Translation: F**k it life goes on.

Category: Inappropriate Category: Inappropriate

Translation: Science has reached the
new switches.

Translation: Life is like a priest, you
never know what you’re going to get.5

Category: Neither

Translation: - Every time we talk,
I end up wet. - Do I turn you on?
- No, you spit when you talk.

Table 5.6: Samples of memes that were incorrectly classified by the proposed CMDA and Bi-contextual
architecture. These memes were taken from the DIMEMEX dataset of subtask 1 (Jarqúın-Vásquez et
al., 2024).

5The verb get in Spanish has various meanings. In the context of this sentence, it can be inter-
preted as “touch”.
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We also identified some instances that even labeled incorrectly by the proposed

approaches may not be considered as mistakes at all. An example is the last meme,

which belongs to the Neither category but was classified as inappropriate content by

the proposed approaches, likely due to the inclusion of an initial conversation with

sexual overtones.

Finally, Table 5.7 shows examples of memes misclassified by the proposed CMDA

and Bi-contextual architecture in Subtask 2 of the DIMEMEX dataset. Again, the

need for extra-linguistic context is evident for correctly classifying the different types

of hate speech in memes. For example, the fourth meme in the lower right corner uses

the expression “Soviet tank”to mock an overweight person. The correct interpreta-

tion of both image and text is also crucial, as seen in the third meme in the lower

left corner, where a drawing of a man practicing various strikes, combined with the

textual content, promotes violence against women. These characteristics identified in

misclassified memes reveal the complexity of this task, as well as the low performance

achieved by participating teams in Subtask 26. They also highlight the need for new

multimodal models and resources in Spanish.

Category: Classism Category: Racisms

When you’re on your phone in the
street and a kid asks if you have Free
Fire - let me guess, public school?

Translation: When she calls you ‘my
little chocolate’— when she’s mad she
says: shut up, Coke bottle with eyes.

Category: Sexism Category: Other

Translation: What do you mean you
didn’t cook anything?

Translation: The girl who weighs more
than a Soviet tank says she likes black
guys. The black guy in the class:

Table 5.7: Samples of memes that were incorrectly classified by the proposed CMDA and Bi-contextual
architecture. These memes were taken from the DIMEMEX dataset of subtask 2 (Jarqúın-Vásquez et
al., 2024).

6https://codalab.lisn.upsaclay.fr/competitions/18118#results
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Chapter 6

Conclusions and Future Work

This chapter presents the conclusions and future work obtained from this research.

This chapter is divided into three sections. The first section addresses the research

questions formulated during this doctoral research. The second section outlines the

general conclusions drawn from this research. Finally, the third section discusses fu-

ture work, highlighting opportunities identified from the results obtained through the

proposed DA and CMDA mechanisms.

6.1. Addressing the Research Questions

This section provides detailed answers to the research questions posed in this

doctoral investigation:

RQ1: Which fusion approach yields the best performance in the inte-

gration of SA and CA mechanisms for the task of AL detection?

As an initial experiment in detecting AL in textual data, an early fusion approach

was proposed. This approach involved concatenating the SA and CA representations.

While this method showed consistent improvements in AL detection for text, it was

not the most effective fusion approach for the task. Motivated by the promising results

of this preliminary approach, the research progressed to propose more sophisticated

mechanisms: Dual Attention and Cross-Modal Dual Attention.

Unlike the early fusion approach, DA and CMDA integrate the representations at

the attention computation stage, enabling the model to learn a more nuanced repre-

sentation of the relevance of elements within one or more input sequences. This deeper

integration allows the network to better capture the underlying relationships between

the input modalities. Overall, this fusion strategy yielded superior performance across

[115]
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various datasets.

It is important to note, however, that a direct comparison between the two me-

chanisms is not entirely fair due to their differing objectives: DA focuses on improving

single-sequence input processing, while CMDA aims to capture relationships between

elements of two distinct input sequences.

RQ2: Which deep learning architectures are best suited to incorporate

the proposed attention mechanisms in terms of maximizing performance

for detecting AL in both textual data and memes?

Throughout this doctoral investigation, various baseline models and encoding ar-

chitectures were evaluated to incorporate the proposed DA and CMDA mechanisms.

Among the architectures tested, the transformer-based models consistently demons-

trated the best performance across all datasets for AL detection in both text and

memes. This conclusion is supported by the results detailed in Sections 4.4 and 5.3.

Transformers, with their ability to model long-range dependencies and capture

complex relationships within the data, proved to be highly effective in leveraging

the proposed attention mechanisms. The combination of the transformer architecture

with DA and CMDA mechanisms enabled the model to achieve state-of-the-art results

in most of the tested scenarios, underscoring its suitability for this research.

RQ3: What are the most significant textual and visual features that

contribute to the deep representation of text and images in the context of

AL detection?

The most effective textual and visual features were those extracted using pre-

trained transformer models. Specifically, for AL detection in memes, three distinct

feature sets were utilized: the visual features derived from the image, the textual

content of the meme, and the image captions describing the visual content.

Among these, the textual features extracted directly from the text of the memes

yielded the highest performance. This was followed by visual features processed in

grid form by the Vision Transformer (ViT). Finally, features derived from the image

captions provided additional, though relatively weaker, contributions.

Importantly, the combination of all three feature sets enabled advanced integra-

tion strategies, such as those implemented in the Bi-Contextual architecture. This

approach allowed latent adaptation of image features to text and captions, resulting

in the best performance overall. The findings emphasize the critical role of textual

features while demonstrating the complementary value of visual and caption-based
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features.

RQ4: Is the unique integration of textual and visual modalities sufficient

for the effective detection of AL in memes, or are additional sources of

information required?

The exclusive use of textual and visual modalities for AL detection in memes has

shown encouraging results, as both modalities are complementary. However, there

remains considerable room for improvement. The sole reliance on these two modali-

ties has proven to be insufficient in several cases, as evidenced by the error analysis

presented in Section 5.4. In many instances, accurately distinguishing between offen-

sive and non-offensive content required extralinguistic knowledge beyond what was

provided in the text and image. This included understanding the irony and sarcasm

embedded in memes, interpreting polysemous words whose meaning varies with con-

text, and recognizing subtle, specific stereotypes associated with different categories

of hate speech.

This limitation was further underscored by the significant performance improve-

ments observed when incorporating image captions as an additional modality within

the proposed Bi-Contextual architecture. The integration of captions provided the

model with enriched contextual information, improving its ability to disambiguate

nuanced or complex instances of AL in memes. These findings suggest that, although

textual and visual modalities form a solid foundation, the inclusion of supplementary

extralinguistic information is often essential to achieve strong performance in this

challenging task, leaving ample room for further advancements in AL detection in

memes.

6.2. Conclusions

This doctoral research proposed extensions to the SA and CA mechanisms, addres-

sing their complementary limitations. The SA mechanism, while effective, disregards

the global context learned during neural network training. In contrast, the CA me-

chanism overlooks internal relationships between pairs of elements within a sequence.

To overcome these limitations and incorporate the strengths of both mechanisms, this

research introduced the DA mechanism and its multimodal extension, the CMDA.

Given the significant impact of AL propagation on social media and its strong

reliance on contextual understanding for accurate identification, we evaluated the
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effectiveness of DA and CMDA mechanisms for AL detection in text and memes.

Additionally, the proposed mechanisms were integrated into various encoding archi-

tectures, enabling performance comparisons across multiple models.

Performance of the DA Mechanism

The DA mechanism demonstrated promising results in AL detection for textual

data, consistently improving performance across all evaluation datasets. The mecha-

nism’s ability to dynamically capture relationships within a sequence while leveraging

global context proved beneficial in enhancing the detection of AL.

To further extend its capabilities, we proposed a multi-level application of the DA

mechanism, resulting in the GHA architecture. This architecture combines weighted

representations derived from applying DA at different encoding levels of deep neural

networks. The multi-level extension significantly improved AL detection in text by

dynamically integrating information from multiple encoding levels, thereby enhancing

the model’s ability to capture nuanced patterns.

For AL detection in memes, the DA mechanism also yielded encouraging results,

consistently improving performance across all datasets. However, there remained subs-

tantial room for improvement compared to SOTA models, highlighting areas for

further refinement.

Performance of the CMDA Mechanism

Building on these results, we developed the CMDA mechanism to more com-

prehensively model relationships between elements within a sequence. This mecha-

nism was further extended to incorporate three modalities: the visual features from

the image, the textual content of the meme, and the textual captions describing the

image.

The results obtained using CMDA were highly encouraging, demonstrating consis-

tent improvements across all evaluation datasets. Notably, the integration of CMDA

into the Bi-Contextual architecture significantly enhanced performance. This architec-

ture facilitated better alignment between features from different modalities, enabling

the creation of a more sophisticated representation for AL detection in memes. The

results underscore the effectiveness of CMDA in capturing cross-modal interactions

and improving the interpretability and robustness of the model.
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Insights from Error Analysis

The error analysis highlighted several areas of opportunity for future improve-

ments. One notable challenge was the necessity of extralinguistic context for accu-

rately classifying AL in memes. In many instances, the text and image alone were

insufficient for disambiguating offensive content from non-offensive content. This ob-

servation underscores the need for incorporating additional contextual information,

such as cultural or situational knowledge, to further enhance the effectiveness of AL

detection models.

Final Remarks

Overall, this research demonstrated the potential of DA and CMDA mechanisms

to address critical limitations in existing attention mechanisms and provided novel

contributions to the fields of AL detection and multimodal learning. The results achie-

ved with the proposed mechanisms across textual and multimodal datasets reflect

significant progress while identifying clear directions for future exploration.

6.3. Future Work

As part of future work, we outline several directions to extend and enhance the

contributions of this doctoral research:

1.- Evaluating the DA and CMDA mechanisms in other classification

tasks: One promising avenue for future research involves testing the effective-

ness of the DA and CMDA mechanisms in other classification tasks where accu-

rate contextual interpretation is crucial. For instance, sentiment classification,

both in textual and multimodal settings, could benefit significantly from these

mechanisms. Exploring these applications will help generalize the proposed ap-

proaches and assess their robustness in diverse domains where understanding

nuanced contextual information is essential.

2.- Incorporating DA and CMDA mechanisms into new training techni-

ques for LLMs: Another key direction is to integrate DA and CMDA mecha-

nisms into emerging training strategies for LLMs that focus on reducing the

number of trainable parameters, such as Low-Rank Adaptation (LoRA). This
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integration could extend the applicability of the proposed mechanisms beyond

encoding architectures, enabling their adoption in decoding-based architectures

as well. By leveraging parameter-efficient techniques, this approach may facili-

tate scaling to larger datasets and more computationally demanding tasks while

maintaining model efficiency.

3.- Combining predictions from LLMs and the proposed architectures:

We plan to explore methods for combining the predictions of state-of-the-art

LLMs with those of the proposed DA and CMDA-based architectures. Such

ensemble approaches could capitalize on the strengths of both methodologies,

leading to improved performance in AL classification for both text and memes.

This hybrid strategy has the potential to refine decision-making processes by

balancing the contextual depth of DA/CMDA mechanisms with the broader

generalization capabilities of LLMs.

4.- Enhancing image descriptions with advanced LLMs for improved AL

detection in memes: A specific area of improvement involves utilizing more

advanced LLMs, such as GPT-4, to generate richer and more accurate image

descriptions. Enhanced image captions could provide critical contextual insights,

ultimately improving the performance of AL detection in memes. In parallel, we

plan to investigate new feature fusion approaches that better integrate visual,

textual, and caption-based modalities.

These directions not only build on the strengths of this doctoral research but

also aim to address its limitations while paving the way for broader applicability and

impact in related fields.
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Constantin, M. G.; Pârvu, D.-S.; Stanciu, C.; Ionascu, D.; and Ionescu, B. 2021. Ha-

teful meme detection with multimodal deep neural networks. In 2021 International

Symposium on Signals, Circuits and Systems (ISSCS), 1–4.

Corazza, M.; Menini, S.; Cabrio, E.; Tonelli, S.; and Villata, S. 2020. A multilin-

gual evaluation for online hate speech detection. ACM Transactions on Internet

Technology 20:1–22.

Davidson, T.; Warmsley, D.; Macy, M. W.; and Weber, I. 2017. Automated hate

speech detection and the problem of offensive language. In Proceedings of the Ele-

venth International Conference on Web and Social Media, ICWSM 2017, Montréal,
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Gomez, R.; Gibert, J.; Gómez, L.; and Karatzas, D. 2020. Exploring hate speech

detection in multimodal publications. In 2020 IEEE Winter Conference on Appli-

cations of Computer Vision (WACV), 1459–1467.

Guberman, J., and Hemphill, L. 2017. Challenges in modifying existing scales for

detecting harassment in individual tweets. Proceedings of 50th Annual Hawaii

International Conference on System Sciences (HICSS).

Gulati, A.; Qin, J.; Chiu, C.-C.; Parmar, N.; Zhang, Y.; Yu, J.; Han, W.; Wang,

S.; Zhang, Z.; Wu, Y.; and Pang, R. 2020. Conformer: Convolution-augmented

transformer for speech recognition. In Interspeech 2020, 5036–5040.

A Dual Attention-Based Representation for the Detection of Abusive Language in Texts and Memes



128 BIBLIOGRAPHY

Guo, W.; Wang, J.; and Wang, S. 2019. Deep multimodal representation learning: A

survey. IEEE Access 7:63373–63394.

Haque, F.; Un Nur, R.; Jahan, S.; Mahmud, Z.; and Shah, F. 2020. A transformer ba-

sed approach to detect suicidal ideation using pre-trained language models. In 2020

23rd International Conference on Computer and Information Technology (ICCIT),

1–5.

Hermida, P. C. D., and Santos, E. 2023. Detecting hate speech in memes: a review.

Artificial Intelligence Review 56:1–19.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural compu-

tation 9(8):1735–1780.

Hossin, M., and Sulaiman, M. N. 2015. A review on evaluation metrics for data classi-

fication evaluations. International journal of data mining & knowledge management

process 5(2):1.

Hu, D. 2020. An introductory survey on attention mechanisms in nlp problems.

In Bi, Y.; Bhatia, R.; and Kapoor, S., eds., Intelligent Systems and Applications,

432–448. Cham: Springer International Publishing.

Huynh, T.; Nguyen, D.-V.; Nguyen, K.; Nguyen, N.; and Nguyen, A. 2019. Hate

speech detection on vietnamese social media text using the bi-gru-lstm-cnn model.

In Proceedings of the Sixth International Workshop on Vietnamese Language and

Speech Processing (VLSP 2019).

Jahan, M. S., and Oussalah, M. 2023. A systematic review of hate speech automatic

detection using natural language processing. Neurocomputing 546:126232.
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BIBLIOGRAPHY 141

Zampieri, M.; Nakov, P.; Rosenthal, S.; Atanasova, P.; Karadzhov, G.; Mubarak,

H.; Derczynski, L.; Pitenis, Z.; and Coltekin, C. 2020. SemEval-2020 Task 12:

Multilingual Offensive Language Identification in Social Media (OffensEval 2020).

In Proceedings of SemEval.

Zeerak, W., and Dirk, H. 2016. Hateful symbols or hateful people? predictive features

for hate speech detection on twitter. In Proceedings of the NAACL Student Research

Workshop, 88–93. Association for Computational Linguistics.

Zhang, J., and Wang, Y. 2022. SRCB at SemEval-2022 task 5: Pretraining based

image to text late sequential fusion system for multimodal misogynous meme identi-

fication. In Proceedings of the 16th International Workshop on Semantic Evaluation

(SemEval-2022), 585–596. Seattle, United States: Association for Computational

Linguistics.

Zhang, H.; Goodfellow, I. J.; Metaxas, D. N.; and Odena, A. 2019a. Self-attention

generative adversarial networks. In Proc. of ICML, volume 97, 7354–7363. PMLR.

Zhang, Z.; Han, X.; Liu, Z.; Jiang, X.; Sun, M.; and Liu, Q. 2019b. ERNIE: Enhan-

ced language representation with informative entities. In Korhonen, A.; Traum,
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