Aé&%/ggﬁg

Analysis of wave- diffusion
transitions in the Young’s
topological interferometer

By

Elizabeth Saldivia Gémez

Thesis submitted in partial fulfillment of the requirements
for the degree of

Doctor of Optics

at the

Instituto Nacional de Astrofisica
Optica y Electronica
February 2024

Tonanzintla, Puebla
Advisored:
INAOE

Dr. Gabriel Martinez Niconoff

©INAOE 2024
All rights reserved.
The author grant INAOE permission

to reproduce and distribute partial or total copies
document provided that the source is mentione

W/’_

INA

\\\\\\\




ii



To Co-Cosas



IT



Acknowledgements

Agradezco enormemente a mi madre, porque sus ensenanzas fueron mi
motivacion e impeti.

Gracias a la familia que tuve la oportunidad de elegir a lo largo del camino, su
apoyo siempre ha sido constante e incondicional.

Finalmente gracias a mi asesor por compartir sus ideas, su conocimiento, Su
amistad y su paciencia durante estos anos de maestria y doctorado, y gracias al

CONACYT por el apoyo brindado para la realizacion de este trabajo, y de varios
mas.

IT1



IV



Contents

Dedication
Acknowledgements
Abstract

Resumen
Objective

1 Introduction

2 Mathematical generalities in the light propagation

2.1 Geometrical approach . . . . . . . ...
2.2 Serret- Frenet equations . . . . . ... ..o
2.3 Diffraction . . . .. ..o

2.3.1 Huygens- Fresnel principle . . . . . . ... ... ..

2.3.2  Angular spectrum model . . . . .. ...
2.4 Introduction to focusing regions . . . . . . . .. ... ...
2.5 Description of the generalized wave equation . . . . . . . .
2.6 Wave- diffusion processes . . . . . . ... ... ... ...
2.7 Green’s function method . . . . . ... ..o

2.8 Focal region: Extreme analysis. . . . . .. ... ... ...

111

VII

IX

XI



CONTENTS

3 Topological Young interferometer

4 Stability of focusing regions and its vortex-solitonic properties

4.1 PDE and focusing regions

5 Conclusions

Publications

List of figures

Bibliography

VI

17

27
28

37

39

39

44



Abstract

In this work, the physical properties that occur in the vicinity of the focal regions
are analyzed, particularly in places where the irradiance function acquires prop-
erties similar to mechanical particles. As a prototype, interferometric systems in
which the boundary condition is controlled are described, and multivalued phase
regions are identified. This enables us to establish a connection between the phase
function and a vector field, providing insight into the physical phenomena linked
to the irradiance distribution.
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Resumen

En este trabajo se analizan las propiedades fisicas que ocurren en la vecindad de
las regiones focales, de manera particular en los lugares donde la funcién de irra-
diancia adquiere propiedades similares a particulas mecanicas. Como prototipo,
se describen sistemas interferométricos en los cuales, controlando la condicién de
frontera, se identifican regiones multivaluadas de fase. Esto nos permite asociar un
campo vectorial a la funcién de fase y describir el comportamiento fisico asociado
a la distribucién de irradiancia.
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Objective

To analyze and describe the wave-diffusion transition processes that occur during
the propagation of an optical field and under what conditions such effects can
be induced. The study is carried out through the calculation of the dispersion
function. This allows for a physical analysis of focal regions as areas of organization
of wave phenomena. In particular, self-regulated processes are examined involving
the study of the physics of interfered fields.
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Chapter 1

Introduction

It begins with the relativity principle, which says that the laws of nature must
remain invariant, independently of any frame of reference; this was very impor-
tant to the posterior development of mathematical optics because the variational
principle, used to explain the geometrical approach, automatically satisfies this
condition [1]. Originally, the variational principle has a mechanical origin; the link
between the mechanical problem and the light description was the Jacobi principle.

Interesting physical properties may appear during the spatial/temporal evo-
lution of the optical field. A very well-known phenomenon that appears during
light propagation is the diffraction effect. The diffraction consists of a redistribu-
tion of the amplitude and phase of the optical field; when the field is compressed,
the phase changes; one example of this is known as the Gouy phase; if the phase
function collapses, we say that the adiabatic phase appears [2].

A relevant part of this work is the study of the wave-diffusion optical transi-
tions, and the conditions under this are possible, through an extremal analysis we
will prove that in the neighborhood of the focusing regions it is possible to identify
like-electrical charge behavior; from this, we can say that the focusing region acts
as a source or as a sink for the optical structure fields.

The focusing region is defined as the optical region formed by the envelope of
a trajectory family; over this kind of region, important physical effects emerge, for
example, wave-diffusion phenomena. The analysis can be implemented using the
Green method function; from this, the dispersion relation function will be derived,
and it is possible to deduce that the diffusive effect is the primary behavior in
the focusing region; this implies complex values of the phase function and an
evanescent behavior. During this transition, self-regulated phenomena are present
and are modeled by a logistic model with harvesting terms.

This work analyzes the physics that takes place in the neighborhood of the
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CHAPTER 1. INTRODUCTION

focusing regions and puts particular attention to the places where the irradiance
function acquires like-mechanical particle properties, in interferometric systems;
where changing the curvature of the boundary condition function was possible to
identify 3 kinds of region in the interference pattern; which, until our background
information, this was not reported before.

Also, we examine the case where the focusing region is generated in a random
index refraction media, obtaining like-solitonic/vortex behavior, which is consis-
tent with the diffusive transition because it implies the ”stretching” of the caustic.

In Chapter 2 we describe the theoretical background of the work, review the
mathematical tools that we will use, and give an introduction to the problem
under consideration; in Chapter 3 we do a brief review of the calculus of the Green
solution to the diffraction problem, we obtain the dispersion relation function in
the limit of the wave- diffusion transition, in Chapter 4, the results of the focusing
regions in a dynamical media will be presented, in chapter 5 the generalized Young
interferometer is addressed using the Airy and Pearcy functions as a prototype,
demonstrate, first, that the caustic region acts as attractor/sink for the interference
fringes, second, the focusing region generates irradiance flow redistribution through
interference fringes until all the pattern gets uniform energy. Finally, in Chapter
6 the conclusions are enounced and future work is presented. For the study of the
global interference pattern, we associate the phase function with a vector field,
driven by the curvature function, this proposal being analogous to the Ricci flow.
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Chapter 2

Mathematical generalities in the
light propagation

2.1 Geometrical approach

One of the most valuable concepts in optics involves visualizing light as a collec-
tion of geometric paths. This approach has proven essential to solving practical
problems and to improving our understanding of various phenomena. However,
it is important to recognize that light is fundamentally an electromagnetic phe-
nomenon. The geometric perspective becomes particularly useful when the wave-
length of light is significantly smaller than the scales at which the material prop-
erties, such as frequency v and refractive index n, exhibit noticeable variations. In
other words, this perspective is valid when we are operating within the scale where
medium inhomogeneities become apparent. Within this context, optical laws can
be formulated in a purely geometric manner. However, it is crucial to keep in mind
that this is an approximation, and it becomes less accurate when the mentioned
conditions are not satisfied, as wave effects then become impossible to disregard.

In geometric optics, the energy is considered transported along certain curves
(light rays), and these curves or light rays have the property of always being
perpendicular to the wavefronts, defined as constant phase surfaces Fig.2.2.

Figure 2.1: The effect of a refractive index that not have a constant value.



CHAPTER 2. MATHEMATICAL GENERALITIES IN THE LIGHT
PROPAGATION

Around 1621 Snell found experimentally that the sine of the ’angle of incidence’
and the "angle of refraction’ have a relationship that depends only on the two media
involved, in 1661 Fermat shows that when light propagates through a medium, its
speed changes according to the optical density of the medium or refractive index;
In free space (the speed of light has a constant value) or in any medium whose
refractive index has a constant value, light rays propagate in a straight line, when
the medium is different, light travels m slowly, and the rays follow curved paths
that according to Fermat are paths whose optical path length has a minimum
value [3] and with this he deduces Snell’s law.

However, some drawbacks with this principle were soon noticed, since the law
of reflection was sometimes consistent with the path in which the propagation
time was greatest, therefore the rays. that obey the law of reflection occasionally
minimize or maximize their travel time, apparently economizing time [4], these
difficulties were eliminated by expanding the “principle of minimum time” al “sta-
tionary time principle” or “Fermat principle”, in which the aforementioned cases
and those in which the propagation time turned out to have a stationary value
are already considered. The mathematical construction of the “stationary time
principle” is due to Joseph L. Lagrange and Leonhard Euler [5], who developed
variational calculus as a method to find curves that minimize or maximize some
integrals.
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Figure 2.2: The trajectories (rays) are perpendicular to the wavefront.

The construction of this last family of trajectories is parallel to the construction
of orthogonal trajectories of the surface a S = const as follows: the surface of equal
time in optics is analogous to the surface of equal action in mechanics; the Fermat
principle of least time is the optical interpretation of the principle of least action
or Jacobi principle [1].

From this point is possible to say that the rays of light describe different types
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CHAPTER 2. MATHEMATICAL GENERALITIES IN THE LIGHT
PROPAGATION

of curves in the 3D space, but this is so hard if we try to express it from the
classic fixed reference system; historically, to make this description easier, the
curve is described from a reference system that is moving over a curve in the
three-dimensional space, the mathematical expression of this is a set of differential
equations known as the Frenet-Serret equations.

2.2 Serret- Frenet equations

Figure 2.3: A curve in the 3D space.

Suppose that e;, e;, e, are the unitary vectors in the positive direction of the
x, y, and z axes, from the Fig.2.3, is possible to describe the curve C as the the
radius vector AB = x of a point P as a function of u in the following way:

X = 1€ + xj€; + The) (2.1)
Where P is not only P(z;), is also P(x) or P(u). Thus the length of the vector x

is given by
x| = \/2} + 23 + 23, (2.2)

the arc length of a segment of the curve between points A (u,) and P(u) can be
calculated by means of:

s(u):/ \/:’E2—|—y'2+z‘2du:/ Vi - xdu. (2.3)

. The dot in Eq.(2.4) indicates differentiation with respect to u, which implies

3



CHAPTER 2. MATHEMATICAL GENERALITIES IN THE LIGHT
PROPAGATION

that the arc length s is always positive. This means that the curve is oriented and
increases with increasing u..

The arc length remains the same when the parameter on the curve is altered
from u to u;, and this invariance can be expressed by substituting Eq. (2.4) with

the equation.
ds* = da” + dy® + d2° = dx - dx, (2.4)

which is independent of u. We can substitute s for u as a parameter, which is
valid since ds/du # 0. This is demonstrated in Eq. (2.5).

dx dx _ 1 (2.5)
ds ds

we can see that the vector dx/ds is a unit vector, the geometrical interpretation
is as follows: The vector Ax joins two points P(x) and Q(x + Ax) on the curve.
The vector Ax/As has the same direction as Ax and for As — 0 passes into a
tangent vector at P

o*

Figure 2.4: Arc lenght between P and () points .

Due to the lenght is equal to 1, the unit tangent vector to the curve at point

P is given by:
dx

t= ——
ds

(2.6)

we can say that in the limit, when P — (), the tangent passes through two
consecutive points on the curve [6]. The plane that passes through 3 consecutive
points of the curve is called the osculating plane and is defined by

X =x+ A\X + pX, A\, pu arbitrary constants (2.7)

4



CHAPTER 2. MATHEMATICAL GENERALITIES IN THE LIGHT
PROPAGATION

The line perpendicular to the tangent line at point P in the osculating plane
is called the principal normal, in this direction we place a unit vector mathbfn,
the sense of which may be arbitrarily selected, provided it is continuous along the
curve. Taking the arc length as parameter, we have:

x=x(s), t=dx/ds=x, t-t=1 (2.8)

prime means differentiation respect to s, then we obtain by differentiating t-¢ = 1:

t-t'=0 (2.9)
This shows that the vector t' = dt/ds is perpendicular to t, and since

t=x =xu, t' =%(u)" +xu" (2.10)

we see that t' lies in the plane of x and X, and hence in the osculating plane,
introducing a proportionality factor x

k = dt/ds = kn. (2.11)

Eq. (2.11) expresses the rate of change of the tangent when we proceed along
the curve and is called the curvature vector with x the curvature; || is the length
of the curvature vector. . The direction of n can be chosen freely, however the
direction of dt/ds is completely determined by the curve, regardless of its orien-
tation; when s is reversed, t also reverses. If n is taken in the same direction as
dt/ds (which is often done), then k is always positive.

Curvature measures the rate of change of the tangent as it moves along the
curve. To measure the rate of change of the osculating plane, we use the normal
at P to the osculating plane named the binormal. In it we place the unit binormal
vector b since t, n, are mutually perpendicular unit vectors, we define the vector
b as:

b=t xn. (2.12)

The vectors n, t, b form a new reference frame which is moving along the curve
and is known as the mowing trihedron, and satisfies the following:

t-t=ln-n=1b-b=1, (2.13)
t-n=0n-b=0,b-t=0. (2.14)



CHAPTER 2. MATHEMATICAL GENERALITIES IN THE LIGHT

PROPAGATION

As t' = kn and b’ = —7n, in order to complete this information, it can be
expressed n’ = dn/ds in terms of the unit vectors of the moving trihedron. Since
n’ is perpendicular to n, n-n’ = 0, and we can express n’ linearly in terms of t

and b :
n' = ot + ayb.

Since according to Eq. (2.14) and

/

a=t-n"=-n-t'=—-n-kn=—x,
a,=b-n"=-n-b'=+n-tn=r1,
we find for dn/ds :
n' = —xt + 7b.

The three vector formulas known as the Serret- Frenet formulas:

dt B

ds m

d

d_z = —kt+7b
db —

ds g

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
(2.20)

(2.21)

The three planes formed by the three sides of the moving trihedron are called:
the osculating plane, through the tangent and principal normal, with equation
(y — ) - b = 0, the normal plane, through principal normal and binormal, with
equation (y — x) -t = 0 and the rectifying plane, through binormal and tangent,

with equation (y — x) -n = 0.

rectifying normal
plane nh plane
Pl”
2
t n
osculating
plane

Figure 2.5: Frenet Serret reference system.



CHAPTER 2. MATHEMATICAL GENERALITIES IN THE LIGHT
PROPAGATION

2.3 Diffraction

2.3.1 Huygens- Fresnel principle

The physical phenomenon that occurs when the light finds an obstruction during
its propagation is known as diffraction and can be aboard by two ways, the first
one is the Huygens- Fresnel principle, which says that every point of the wavefront
can be described as point source of spherical waves, so, the field that emerges later
the obstruction is the superposition of these spherical waves.

Figure 2.6: Spherical waves emerge from a set of point sources over the wavefront

Mathematically was developed by Kirchoff, Rayleigh and Sommerfeld through
the diffraction integral:

O = // Uy (1, y1) exp(ikr)dz, dy, (2.22)

where U, (x1,y;) is the amplitude and phase of the wave that emerge from (z,y,)
and 1/iAz is a constant value. The field in the x,y, plane is given by:

1 )
Us (9527y2) = By // Uy (xbyl) exp(zkr)dxldyl (2-23)

2.3.2 Angular spectrum model

Very close to the Huygens- Fresnel principle, the angular spectrum model proposes
that any optical field can be described as a set of plane waves whose propagation
vectors are in distinct directions and satisfies the wave equation given by:
viy - o (2.24)
& ot '

7



CHAPTER 2. MATHEMATICAL GENERALITIES IN THE LIGHT
PROPAGATION

The classic solution consists of separating the spatial components from the tem-
poral ones, proposing a solution of the form:

substituting ((2.25)) in ((2.24)) we obtain the equation for the complex amplitude
of the Helmholtz wave or equation:

VA (x,y, 2) + K (z,y,2) = 0 (2.26)

where k is the wave direction vector; The simplest solution to this equation is a
plane wave represented by:

w(x’ v, Z) _ Aez’cosa+ycosﬁ+zc05'y _ Aei?ﬂ'(xu—}—yv-l—zp) (227)

with «, 8 y v are the directors angles of k such that:

1

= (2.28)

W+ 0 4 p? =

(2.28) represents a sphere in frequency space, for the case in which u, v, p are real.
Therefore, the diffraction field, in its modal representation, is expressed as follows.

¢(v,y,2) = / / A(u, v)e® TR qydy (2.29)

where the boundary condition or transmittance function, determined by the diffract-
ing object is given by:

o(x,y,z=0)=t(x,y) = // Alu, v)e? @) gy dy (2.30)

t is possible to note that equation ((2.30)) has the form of a Fourier transform, so
we can obtain the amplitude distribution by calculating the inverse function:

Au,v) = //f(x,y)ei%(wﬂ”)dxdy (2.31)

we can obtain the amplitude of the field.

2.4 Introduction to focusing regions

For many years the study of caustics was aboard by catastrophe theory; in large
measures, structural stability is a useful mathematical tool for caustics whose
topology survives the perturbations, for example, the caustic formed as a result of

8
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refraction or reflection of light by wavy water surface Fig. 2.7 [7].

Figure 2.7: weavy

During light propagation, diffraction or focusing are some of the phenomena
that may occur; the last effect is characterized by the formation of areas or re-
gions where the light intensity is very high, and non-linear effects can be present.
Mathematically, the focusing regions are represented by the envelope of the center
of curvature of the boundary condition function Fig. 2.8.

Figure 2.8: envolvente

We are interested in the study of the physical properties of each of the regions
in Fig. 3.1 which we will carry out through the study of interference effects.

Two types of interference are proposed:

e Interference with a plane wave.

e Interference with a field of the same species.

Using a Mach-Zehnder interferometer, we obtained the following images that
demonstrate different observed effects:
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Region I

Figure 2.9: Geometric description of a focal region.

N

Figure 2.13: Behavior of the optical field in the vicinity of the focal region.
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Figure 2.11: [Diffraction from a parabolic slit.

Figure 2.12: Interference from the diffraction of a parabolic slit with a plane wave.
Physical effects produced in a Mach Zender interferometer with a parabolic slit in
one arm of it.

2.5 Description of the generalized wave equation

From the previous experimental results, important behaviors are identified, one of
them is the sink characteristic of the focal regions, and the bifurcation effects, for
their study it is convenient to start with the study of the characteristics of the
electromagnetic field, beginning with Maxwell’s equations:

0B

E=-2_ 2.32
V x 5t (2.32)
V-E=-" (2.33)

€
VxB=puJ+ ,ue%—]f (2.34)
V-B=0 (2.35)

11



CHAPTER 2. MATHEMATICAL GENERALITIES IN THE LIGHT

PROPAGATION
Through some mathematical manipulations, we arrive at:
OF OE?
V’E = po—— + pie—— 2.36
Hoop HHE (2.36)

The above equation decomposes into 3 scalar equations, one for each component,

and they take the form:

o; 1 9¢°
i + ¢2
ot v° ot

Vi, =b (2.37)

where pie = 1/v* y b= po.
This is known as the wave-diffusion equation. We are interested in understanding
the conditions under which one of the effects becomes predominant.

2.6 Wave- diffusion processes

We are interested under what conditions the diffusive effects are dominant with
respect to the wave effects and vice versa, for this, the proposed analysis for a
solution of Eq. (2.37) is in the form:

¢ = Yexp(—iwt) (2.38)

we obtained
V2 + (K* + ibw) = 0 (2.39)

in the last v is the wave velocity and b is known as the diffusion parameter. This
equation is similar to the Helmholtz equation with complex parameters.

k* = ¢ —n® where o =¢+41in (2.40)

Figure 2.14: Graph of the dispersion relation k.

12
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From the figure is possible identify two limit cases, first, the two points over
the £ axes, which corresponds to the classic case, wave behavior. The other case
is where & — 7, which is possible only when the effective refractive index tends to
0, so the resultant equation takes the form:

V¢, + iwbpy = 0 (2.41)

Since this solution corresponds to a harmonic solution in time, so we can propose
a Green-type solution.

2.7 Green’s function method

The Green’s function method is widely used to analyze various physical phenom-
ena, including scalar and vector wave fields. This method is based on the premise
that, given a geometry, any field satisfying a source distribution, kind Dirac delta
function, and arbitrary initial and boundary conditions can be constructed from
spatial and temporal integrals. In the case of waves with harmonic time depen-
dence, this method allows us to eliminate the temporal variable from the calcula-
tion; this last state allows us to consider only boundary value problems [[8]]. The
Green’s function, which accounts for both wave and diffusion effects, is given by:

B 1 / / e’LO”I”
C A4r r

recalling that o is in the form o = € +in = (kK* + iwb)l/Q, substituting it
into(2.42), we arrive at:

iorf _oré
_ i//% [(5(@ ) - %W - w} . fids, (2.43)

%w, equation (?7?) represents the amplitude behavior for the case

{<_Z~a _ %W _ Vcb} Ads, (2.42)

where 7 =

where the dominant behavior is diffusion. For the diffusive case, as k& — 0 the
Green’s function solution is written as:

Ou(P) =0 = limy o~ / / { (ik — = gbr—ng] chds  (2.44)

- L

13
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which implies:

Vo = —%ﬁ (2:45)

The expression above represents a focal region [9]. Another point of view is the
extremal analysis, where we focus our attention on the eikonal equation.

2.8 Focal region: Extreme analysis

The variational principle or the principle of least action determines the geometry
of the trajectories that a particle follows, extremizing ”the action of all possible
trajectories”, because the action of a particle s trajectory is mathematically similar
to the length of the optical path of a ray of light. light, the principle of least action
is the mechanical interpretation of Fermat’s principle [5]. Fermat’s principle says
that the path followed by a ray of causes the optical path length to take an extreme
value. Also, we can express the amplitude of the optical field as:

¢ = Aexp(iKyL)con L =h+ig (2.46)

Substituting into the Helmholtz equation and separating the real and imaginary
parts,

V2= K 2 2 K
g = Kol|VhI* = [VgP") - 1=
0
b
V?h = 2(Vh - Vg) — % (2.47)

For the case in which we want to recover only wave effects, this can be achieved
by setting b = 0 6 g = 0, which reduces equations (2.47) to the following expres-
sions:

Vig=0 VhQ—ﬁz— 2 2.48
g= y oo I—Kg—n (2.48)
0

The above expressions correspond to the well-known models, indicating that the
model is consistent with traditional optics.

For the case where diffusive effects are present, we have K = 0 and the transver-
sality condition (Vh - Vg) = 0, leading to:

Vh=|-— (a)
Vg = (b) (2.49)
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The equation 2.49(a) implies that in the region where diffusion processes occur, it
behaves like a source for the wave field. A preliminary set of conclusions at this

point are:

e Wave-diffusion processes are possible and occur in the vicinity of the focal
region of an optical field.

e [t was found that wave-diffusion transitions imply a complex wave number.

e Focal regions act as sources or sinks of the field.

15
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Chapter 3

Topological Young interferometer

Given our interest in the study of optical fields and proposing focal regions as areas
of organization. A focal region is defined as a region of maximum irradiance (a
singularity of the optical field), which can generate non-linear effects. Mathemat-
ically, these regions are represented by the envelope of all curvature centers of the
boundary condition of the transmittance function. Remember Fig. 3.1, from this
is possible to identify 3 kinds of distinct regions as follows:

Slit shape curve

Figure 3.1: Geometric description of a focal region.

e Region I: Univalued phase region.
e Region [I: Multivalued phase region, self-induced effects occur.

e Region I11: Envelope of all trajectories, field organization zone.

To implement this analysis, we will use the Young interferometer as a prototype.

17



CHAPTER 3. TOPOLOGICAL YOUNG INTERFEROMETER

‘II
o d
a
C
51
52 -
F

Figure 3.2: Scheme of the Young interferometer.

The main difference between the classical Young interferometer and what we
call the topological interferometer is that, in the aperture plane, we apply a
"topological” transformation. This transformation generates quadratic and cu-
bic curves, whose diffraction produces an optical field related to Airy beams and
Pearcy beams.

Figure 3.3: Decomposition of a 3D curve in the planes of the trihedral reference
system.

We can perform a generic decomposition of the 3D curve using the trihedral
reference system, which is mounted on the curve and is independent of the observer.

18



CHAPTER 3. TOPOLOGICAL YOUNG INTERFEROMETER

This decomposition results in a quadratic curve in the osculating plane, a cubic
curve in the rectifying plane, and a cusp-like curve in the normal plane. It is
important to emphasize that these transformations depend on how the curve is

illuminated.

Figure 3.4: Transformations to circular apertures.

Figure 3.5: Decomposition of the generalized 3D Young interferometer in the os-
culating, rectifying, and normal planes.

The amplitude of the optical field can be represented as the sum of two spherical

19



CHAPTER 3. TOPOLOGICAL YOUNG INTERFEROMETER

wavefronts; using Euler’s identity, the amplitude function can be represented as:

sink |7 | + sink |ry|
cos k |rq] +cosk|r2|>)

(3.1)
The expression inside the square root represents the irradiance function, where
the argument of the cosine term contains information about the geometry of the
interference fringes. It is convenient to rewrite the phase function as:

bl - Iy = (S22 ) (32)

@ (ri,m) = \/A2 + B* 4+ 2ABcosk (|ry] — |ra]) exp (z tan~"! (@

It can be observed that the vector field r; + ro defines an interference fringe, and
the vector field r; —r, defines the irradiance flow between two neighboring fringes.
Interference fringes are accurately described through the envelope of constructive
points placed on the ellipses defined by |ry| 4 [r3] = ¢;, where j = 1,2,..n. Apply-
ing a transformation to the transmittance function, we obtain the following.

t(z,y) =6y — flz —a)) +0(y — f(z +a)), (3.3)

Therefore, the amplitude function becomes:
o (rprs) = e [ 8y f)) + 8l — gla)) explibr)dody.  (34)

The selected functions are: f(z) = 2° 2% 2% + y** = ¢, which generate the
Pearcey, Airy, and cusp beams, respectively.

¢ (15, Tag) = / VF(z) exp (z tan ™! (z sink ey | + sin k ‘rg| ) dx (3.5)

cosk ;| + cos k |rag|

Considering that now the transmittance function has an associated caustic:

k([rig] = |rag|) = & <(rlf ~ o) - (g ng)> (3.6)

gl + fra|
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Figure 3.6: Geometric description of interference fringes with the caustic region as
a reference.

It is possible to identify two interesting properties:

e A phase jump occurs when the tangent vectors pass through the cusp point.

e In areas where three or more trajectories pass (multivalued regions), the
interference structure generates bifurcation effects.

b (el = Jrel) = <(r” ~tie) (o ng)) Li=12..n (37

! |rie| + ‘rjg|

The focal region act as source/sink of the optical field

21



CHAPTER 3. TOPOLOGICAL YOUNG INTERFEROMETER

Figure 3.7: Young-Pearcey interferometer in different configurations and its corre-
sponding interference pattern.
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Figure 3.8: Young-Airy interferometer in two possible configurations and its cor-
responding interference pattern.
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Figure 3.9: Young-cusp interferometer in two possible configurations and its cor-
responding interference pattern.

The fringe folding process cannot be analyzed from the amplitude function, so
an analysis in irradiance is proposed.

Figure 3.10: Irradiance interaction between the interference fringes and the caustic
region. Each lobe of the focal region acts as a sink for the interference fringe.

The irradiance interaction between the focal region and the interference fringe
can be modeled using the logistic equation with harvesting

dl

d—tl = —al, — bl,1, (3.8)
di
d—; =cl, +dI, I, (3.9)
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Where [, is the irradiance of the focal region and I, is the irradiance of the interfer-
ence fringe. The irradiance transfer should depend on the value of the irradiance
of the interference fringe (form factor), which can be described by the correla-
tion function between the caustic region and the interference fringe. The minus
sign indicates that the irradiance should transfer from the focal region (maximum
energy) to the interference fringe.

d (1, — 1)

= (I — L) (h+e (I, — L)) + (917 + mI3) +cl,. (3.10)
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Chapter 4

Stability of focusing regions and
its vortex-solitonic properties

As previously mentioned, focusing regions are the singular solutions to the am-
plitude function of optical fields and are generated by the envelope curve of a set
of critics points, which can be of attractor or repulsor type; its nature depends
on the refractive index; a relevant property of these points is that they present
charge-like features.

During the time/spatial evolution of the optical field, morphogenesis processes
can appear; these processes are associated with effects, such as the Gouy phase,
which consists of a shift in the phase function when the optical field is compressed
[10, 11]. In our case, maximum compression occurs in the focus regions, and the
irradiance function acquires particle-like properties that may generate diffusion
features [12, 13].

For a better understanding, it is important to analyze diffusion when it occurs
in a random media refraction index. When a focusing region is in a random
refractive index medium, current-like effects appear and its evolution acquires
diffusive behavior; its morphology may generate vortices or “eternal solutions” of
solitonic type in a non-linear medium.

Moreover, the fact that the non-linearities evolve, generating focusing regions,
allows us to associate these non-linearities with the boundary condition by chang-
ing the curvature function. Through interference effects and the resulting fringes,
the behavior of the critical points, which can be of attractor or repulsor type
[14], can be revealed and the charge-like properties appear. This last statement is
corroborated by the interaction between two types of optical fields Pearcey [15].
Here, the condition under which these effects occur is analyzed and experimentally
corroborated.
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4.1 PDE and focusing regions

Wave properties are associated with hyperbolic partial differential equations that
have two characteristic curves; so, to generate wave diffusion transitions it is nec-
essary to induce bifurcation effects on the characteristic curves [16]. Furthermore,
diffusion processes are associated with parabolic partial differential equations that
possess only one characteristic curve, which is in keeping with the one-dimensional
character of the focusing regions [17].

The refractive index can modify the nature of the critical points and induce
bifurcation effects. Hence, attractor points can become repulsor critical points and
inversely. The other case is when the attractor points can cancel with repulsor
critical points. The proposed physical model on where the phase term disappears
implies that the irradiance distribution does not satisfy the wave partial differential
equation, but a diffusion equation, commonly proved by using Fick’s law, does it.
Its known that all physical systems evolve towards an equilibrium configuration.
In this context, the critical points must reach a stable configuration.

To reach this configuration, we propose to modify Fick’s law by adding some
non-linear terms. These terms will be associated with a canonical form of three dif-
ferent kinds [14]: node-point, Pitchfork bifurcations, and transcritical bifurcations.
Experimentally, a node-point means that the interaction between the attractor and
repulsor points cancels one another. Thus, no singularities exist and the focusing
region must be dissipated in the media. Pitchfork bifurcations occur when the
stability term is cubic, and the optical fields can be associated with the generation
of vortex-like behavior. Lastly, in the transcritical bifurcations, the canonical form
is of the logistic type. Thus, the asymptotic behavior generates “eternal solutions”
as described in [18, 19, 20], which correspond to soliton-type solutions. Therefore,
the stability points reverse their behavior from attractor to repulsor.

The switch in their behavior generates a current of critical points. In a dy-
namical system, the attractor points move in opposite directions of the repulsor
points, corresponding to two characteristic curves, and the optical field presents
wave effects. Once the system reaches a stable configuration, the solitonic solu-
tion appears. The latter is in agreement with the Gaponov-Grekhov statement:
“Caustics are the first cousin of solitons” [21].

We describe this dynamic by performing two types of experiments. The first
one analyzes the interaction between two optical fields and shows that focusing
regions act as attractors or repulsors for the interference fringes presenting charge-
like properties. The second experiment describes the propagation of FR in a ran-
dom refractive index media; this makes it evident that the three kinds of canonical
form can occur. For this study, the optical field is described by a set of trajec-
tories with an associated vector field that satisfies the continuity equation. Each
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trajectory must satisfy extremal features, and global properties of the vector field
must satisfy the transversal condition [22]. The interference effects, generated
in the neighborhood of the focusing region, produced charge-like properties, and
the transversal condition cannot be fulfilled, and the diffusion effects acquire one-
dimensional behavior. The study analyzes the geometrical evolution of an optical
field. The amplitude function is generated using a slit-shaped curve as a boundary
condition, and it has associated a vector field F given by

F = Ve, (4.1)

where p(n) is function of the refractive index and ¢ is the phase function. Taking
the divergence of (4.1) we obtain
I —

V-(qub)—E— Vo+Vu-Vo. (4.2)
The (4.2) has a simple geometric interpretation as is shown in Fig. 4.1, where two
regions are identified. In region I, none of the trajectories intersect each other.
Therefore Vi - Vo = 0, which is the mathematical representation of the transver-
sal condition. Consequently, the phase function satisfies the Laplace equation
23], and (4.2) is rewritten as V?¢ = 0. In region II, some trajectories intersect
each other. The intersection generates interference effects. Thus, the resulting
optical field divergence is different from zero and the transversal condition is not
fulfilled. This effect can be deduced in a polarized plane wave propagating along z
coordinate given by E(z) = (a,b) exp(ikz), where a and b are complex constants.
Implementing a rotation along the y axis, it is easy to show that the expression
for the sum of two plane waves whose resultant wave vector is placed on the z — z
plane is given by:

—

E(r,z) = (E,,E,, E,) = (acos,b, —asin ) exp(iky)

. . (4.3)

+ (dcos b, e,dsin0) exp(ikf),
where v = xsinf + zcosf and f = —xsinf + zcosf. The expression for the

resulting wave is:
E,(z,z) = cos 9\/|a|2 + |d|?* + 2|ad|cos(2kx sin 0)

_1 { asiny + dsin 8 (4.4)

exp |tan .

acosy + dcosf3

The expressions for the £, and E, components are analogous to E,. We em-
phasize the fact that the divergence of the resulting interfered field is different
from zero, this means that charge-like effects are induced. We can identify the
charge features from the periodical distribution of the interference fringes. We
will show that by controlling the boundary condition, a charge distribution oc-
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curs in focusing regions. The fact that divergence is different from zero results
from the complex function not being analytical. Consequently, it does not satisfy
the Cauchy-Riemann conditions. This means that the derivative of the amplitude
function depends on the trajectory. This can be understood from Fig. 4.1. In
region II two or more trajectories are intersected generating interference and the
derivative on the intersection point depends on the trajectory chosen. (4.2) can
be rewritten as

V. F = h(z), (4.5)
or equivalently

V2 = %(hm V-V, (4.6)

where the phase function for the interfered optical field presents charge-like prop-
erties. It must be noted that Vu - V¢ # 0. So, the transversal condition for the
flow of F is not satisfied, because all trajectories of F are tangent to the focusing
region [24].

Region I

Figure 4.1: The trajectories emerge perpendicular to the slit shape curve. The
envelope of the trajectories corresponds to the focusing region. Two regions can
be identified: In region I no trajectory intersects. In region II some trajectories
are intersected generating interference effects and charge-like features.

A relevant point consists of identifying the charge-like properties by analyzing
the interference between two Pearcey-kind optical fields. This type of optical field
emerges from a transmittance that consists of a slit-shape parabolic curve [25],
whose representation is:

B [[ &ty -2 guay

) (4.7)
= /f(m) exple(2)(z" + zo2® + ypz)]da,
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—

where £(x) = (a(x), b(x), ¢(x)) is an amplitude vector. The interference expressions
for the interference between two Pearcey-kind optical fields are obtained when
we put two slit shape curves as the transmittance function, given by t(z,y) =
§(y — (z* —a)) + 6(y — (z* + a)). The expression for the resulting electric field is:

—

E = /ﬁexp B\—Z(:p‘l + $2(1 — 2yo) — 2xx) + a2)} (4.8)
2am
cos {V(:EQ — yo)} dz,

77(x) is the resulting amplitude vector. We used a Michelson interferometer, where
the incident optical field was a Pearcey-kind beam generated by illuminating a
transmittance containing a parabolic slit with a He-Ne laser. The experimental
results are shown in Fig. 4.2 for different mirror tilts. It is evident that the focusing
region acts as a source or a sink for the interference fringes, corroborating the
charge-like properties. The next point consists in analyzing the stability properties
of focusing regions in a media with a time-dependent refractive index, (4.1) can
be related to irradiance properties, noting that

pNG - AlygN =Ty — Iy (4.9)

where Al 45 is a length element on the wavefront and Nisa unitary vector normal
to Al,p. Dividing by a differential arc length As of the focusing region.

NA _[/—_[/
Vo — las _, Lz (4.10)

must be noted that the terms Al 45, As have different metrics, consequently, when
the wavefront is mapped on the focusing region, an irradiance distribution is gen-
erated. Taking the limit when As — 0 (4.10) acquires the form

%_f([)_a1+b12+c13+... , (4.11)
where the linear term of this equation constitutes the optical version of Fick s
law. Satty has proposed a similar description to describe the diffusion effects of
the Liouville flow in cryptodeterminism processes [25]. Considering only linear
features and supposing that the flow is changing with time, then (4.10) takes the
form

’1 oI

ds> Ot

which corresponds with the diffusion equation. The Fick “s law can be related with

(4.12)
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Figure 4.2: (a) Focusing region of a Pearcey- kind optical field emerging from a
parabolic slit shape transmittance. (b)-(d) Experimental results of the interfer-
ence between two focusing regions. The interference fringes are organized around
focusing regions which can act as sources or sinks.

temporal changes, noting that

o _otor_1or oy
ds Otds wvot

The relevance of (4.12) is that the irradiance distribution has particle-like proper-
ties. This is expected because the irradiance function does not carry information
about the phase function. Solving the linear diffusion equation (4.12), the irradi-
ance function takes the form of

I(s,t) = m(t) exp(as). (4.14)

When the parameter a is negative, the irradiance is reabsorbed in the media. In-
teresting features appear when the nonlinear terms are considered: the decreasing
exponential behavior can be balanced when the nonlinear terms are considered.
This generates an asymptotic behavior for the irradiance function, which is ana-
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lyzed from Fick’s law with nonlinear terms.

In dynamic systems, different types of singularities can appear of atractor or
repulsor kind. To corroborate the behavior of the critical points, we experimentally
analyzed the propagation of an incoherent plane wave through a medium with a
random refractive index, we make use of this kind of source to avoid interference
effects. This is due to the fact that the proposed theoretical model is based on
irradiance behavior. The medium with a random refractive index was generated
by continuously adding isopropyl alcohol drops to a water container ( 1 drop per
second). The medium was illuminated with an incoherent plane wave, and the
irradiance evolution was recorded with a CCD camera Fig.4.3.

Incoharent = .
Plane Wave _ - lsapropyl
) = Alcohol

CCD camera

Figure 4.3: Alcohol drops modify the refractive index in a random way; this modi-
fies the curvature function of the wavefront. The wavefront propagation generates
focusing regions.

With previous experimental setup was possible to identify three different types
of bifurcation: nodepoint, pitchfork bifurcations, and transcritical bifur-
cations. These appear due to the fluctuations of the refractive index, and the
bifurcations will randomly appear at a given moment. Experimental results are
shown in Fig.4.4 and Fig.4.5. The canonical forms are as follows [5]:

a) the node-point is the simplest case. The critical points disappear, and
the focusing region is reabsorbed. A repulsor point cancels an attractor point.
Mathematically, Fick’s law takes the form:

oI
5 a I +b, — I°. (4.15)
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The critical points are obtained when a,I + b, — I* = 0, and the solution to the
quadratic equation shows that two real critical points are obtained when a® —
4b, > 0 is satisfied, and a bifurcation is generated when b1 = 0. Therefore, the
critical points collide and cancel each other. For this case, the irradiance is quickly
transferred to the media.

b) Pitchfork bifurcation: for this case, Fick’s law takes the form

I
% =a, ]+ b1 +¢ I (4.16)

and therefore, there are three critical points. One of them is an attractor (I=0),
and the remaining two are repulsors. In polar coordinates, the focusing regions are
exponential trajectories rotating around the attractor point. Thus, the trajectory
of the focusing regions acquires a spiral shape, as shown in Fig. 4.4.

Figure 4.4: Generation of optical vortices for a bifurcation-type pitchfork. (a)
Initial focusing region. As time evolves, the highlighted point shows an attractor
behavior, and the trajectories of the focusing regions curve towards it, generating a
vortex effect. (b)—(d). Geometry of the focusing regions is in very good agreement
with the work presented by Strogatz [5] for the pitchfork bifurcation.

Herein, an interesting behavior can be observed in the highlighted bright point.
This point has 'zero speed’, which corroborates its attractor behavior: all trajec-

34



CHAPTER 4. STABILITY OF FOCUSING REGIONS AND ITS
VORTEX-SOLITONIC PROPERTIES

tories move towards it following vortex-like geometries.

c) Transcritical points: this case occurs when Fick’s law takes the form:

I
or _ ayI + b1+ ¢ I

- (4.17)

Here, the critical points do not disappear, but change their behavior from repulsor
to attractor and vice versa. In a dynamic system, the transcritical points generate
a current-like behavior. The asymptotic behavior generates “eternal solutions”
of the solitonic kind, as shown in Fig.4.5.

Figure 4.5: Organization of focusing region tending to generate solitonic fea-
tures. (a) Initial structure of the focusing region. After time progresses, a self-
organization appears (b), and the diffusion effects stretch the focusing region. At
a longer time period, the focusing region geometry evolves towards a linear shape,
which corresponds to solitonic properties (c), (d).

The behavior of these focusing regions is strongly similar to the Ricci solitons

[9]-
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Chapter 5

Conclusions

First, we give a brief context of what a focusing region is, how it is possible
to generate it, and what kind of properties it has. Also, we explain two different
approaches to explain it, the geometrical optics explanation and the physical optics
point of view. In both, the place that plays the curvature function is relevant to
the generation of an interesting physical effect that occurs in the neighboring of
it, this effect, is that we called wave-diffusion processes.

Also, it was possible to show that the focusing regions act as sources or sinks for
the interference fringes. Thus, the focusing regions present charge-like properties.
The theoretical model was experimentally proved with an set of interferometrical
experiments.

By means of the topological Young interferometer, performed with two quadratic
or cubic slits, it was possible to identify how the irradiance flux of an interference
finge, and the direction in which the interference finge is formed, both are in per-
pendicular directions. An interesting fact related to the geometry is that a phase
jump occurs when the tangent vectors pass through the cusp point and that in
areas where three or more trajectories pass (multivalued regions), the interference
structure generates bifurcation effects, i.a. The focal region acts as a source/sink
of the optical field. The folding process that the fringe experiment cannot be an-
alyzed by means of the amplitude function, so,in this way, irradiance analysis is
necessary.

When the optical field propagates in a medium with a random refractive index,
a current-like property is observed that satisfies the diffusion equation. Therefore,
the attractor or repulsor nature of the critical points can be controlled with the
refractive index. Hence, the geometry of the focusing regions depends on the kind
of critical points. In this work, we identify three types of critical point and describe
them by stabilizing Fick’s law. These critical points were also experimentally
detected.

37



CHAPTER 5. CONCLUSIONS

Point-node critical points showed that the focusing regions are reabsorbed by
the media. Pitchfork bifurcation critical points generate vortex-type geometries,
and transcritical critical points generate ’eternal solutions’ that correspond to
solitonic-type solutions. The experimental results agree with the non-linear terms
added to the Fick law. Future work consists of analyzing the behavior of Fick’s
law on the focusing regions propagated in nonlinear media and understanding the
conditions in which Ricci solitons are generated. Additionally, this work can be
implemented for the generation of tunable waveguides. These can be obtained by
illuminating the focusing regions with variable wavelengths. Further work needs
to be performed to demonstrate the previous statement, also the study of focusing
regions on partially coherent fields, and the interaction with stochastic/Markovian
beams being on board in future works.
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