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Resumen

Introduccion

La labor principal de un laboratorio nacional de metrologia es la de establecer las unidades del sistema
de medicion de su pais. Para el caso de México, €l laboratorio en cuestion es €l centro nacional de metrologia

(CENAM), y el sistema adoptado es el sistemainternacional de unidades (SI).

En particular laradiometria se encarga de establ ecer |as unidades de medicién de variables dpticas. Las
magnitudes radiométricas que nos interesan en este trabajo son la radiancia [W/(cnf sr)] y la irradiancia

[W/cn], las cuales seran implementadas en el CENAM.

Un patrén primario de radiancia es el radiador de cuerpo negro. Su radiancia es conocida y esta dada
por la ley de Plank. Sin embargo un radiador de cuerpo negro es un instrumento costoso tanto en su
adquisicibn como en su operacion. Ademés, la estabilidad que éste alcanza en su emision limita la

incertidumbre que se puede alcanzar en las mediciones.

Un sistema alterno para materializar una escala de radiancia es mediante un banco radiométrico con
dos aberturas como €l mostrado en la Fig. R.1. El banco radiométrico consta de las siguientes componentes;

unalampara, un detector de respuesta conociday de dos aperturas colocadas entre lafuentey el detector.
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Computadora

&
Fuente

Fig. R.1. Banco Radiométrico.

La primera abertura limitala cantidad de luz que proviene de laldmparay eliminacasi por completo la
luz extraviada que llega al detector. La segunda abertura define el cono de luz proveniente de la lampara y

guellegaraal detector.

La proyeccion geométrica de la segunda abertura (S) sobre el plano del detector define los pardmetros
geomeétricos necesarios parael calculo delaradiancia. Si lailuminaciéon de la abertura es homogénea entonces

el modelo de laradiancia se reduce a una expresion muy simple, dada en la siguiente expresion 1.

L=——, (R.1)
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donde f es el flujo dptico que llega al detector considerando que toda la energia radiante se encuentra
dentro de lazonailuminada'y que en la sombra geométrica la energia es cero. A es el &readelafuentey We

angulo sélido subtendido por laabertura S.

Sin embargo, este modelo geométrico de la radiancia sufre algunas desviaciones en el experimento,
debido aladifraccion en cada una de las aberturas. Dado que el modelo geométrico de laradianciaes el Gnico
modelo aceptado actualmente en los |aboratorios primarios de metrologia, debemos hacer correcciones a las
mediciones de flujo que pasa a través de las aberturas. En una serie de publicaciones se discuten las
correcciones que deben tomarse en cuenta debido a la redistribucion de lairradiancia en el plano de deteccion

por efectos de ladifraccion.

Para calcular las correcciones es necesario conocer la irradiancia en el detector. La irradiancia esta
dada por el patrén de difraccion de dos aberturas consecutivas e iluminadas por una fuente extendida

monocromatica incoherente.

Tal patrén de difraccion no ha sido reportado por nadie (hasta donde sabemos), aunque existe una
teoria general que dalas bases pararesolver este problema, conocida como lateoria de coherencia parcial. Por
lo tanto, en este trabajo nos dedicamos a resolver el problema de la doble difraccion por dos aberturas en

aproximacion de Fresnel, aplicando lateoriade coherenciaparcial.

Teoria basica

En a teoria de coherencia espacial se generaliza el concepto de la irradiancia, la magnitud

generalizada resultante se Ilama la intensidad mutua. A la intensidad mutua se le denota por G(Xi, X, t),

7
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donde X;, y X, son vectores cuyas coordenadas describen los puntos del campo Optico que se estan

comparando, y t esladiferenciatemporal entre los puntosXj, y X».

Cuando evaluamos a la intensidad mutua en el mismo punto, X;=X,, regresamos al concepto de la
irradiancia; E(X1)= G(X1, X1, t). Otra magnitud importante en la teoria de coherencia espacial es la densidad
espectral mutua, denotada por WXy, Xp, W). Los vectores X1, y X, son los mismos que para €l caso de la
intensidad mutua, y w es la frecuencia angular de la radiacion Optica. La densidad espectral mutua es la
transformada de Fourier de la intensidad mutua. Y las variables wy t son las variables conjugadas de la

transformada de Fourier. De tal manera que las dos magnitudes estan rel acionadas por

W(X,, X, w)=AG(X,,X,t)} (R1)

La propagacion de la densidad espectral mutua esta dada por la siguiente ecuacion integral cuatro

dimensional,

ik(r-15)

WeR, P n)= = OOV(S, S0 Jeosla,)ooslg, ) €——dsids,
SS9 172

donde W es la densidad espectral mutua del campo propagado y W es la densidad espectral mutua del

campo inicia, finamente k es el nimero de onda. Para e caso que queremos resolver necesitamos dos

propagaciones, por |o que aplicando dos vecesla Ec. (R.2) tendremos
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1

WG(Ul,Uz,n)zl

OOCOV(P,, P, n )eos(g, ) cos{a;, Jeos(g dcos(ag)
QQRR
ik(P1Q1' PzQz) ik(Qlul -Q z)

F)].Ql >4:)ZQZ QlUl >QZU 2

dPdP,dQ,dQ,

(R3)

donde W' es la densidad espectral mutua resultante de la segunda propagacion. La Ec. (R.3) se
encuentra reportada en la literatura y es nuestro punto de partida para resolver el problema planteado en la

introduccion.

Planteamiento del problema

La radiancia de una fuente plana extendida se define como la cantidad de flujo radiante que emite la

fuente por unidad de érea proyectaday por unidad de &ngulo sélido, es decir,

df

L= (R4
dA.dW

donde df es el diferencia de flujo radiante emitido por el diferencial de érea proyectada dA~ de la fuente en

ladireccién del diferencial de angulo solido dW.
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En la Fig. R.1 la fuente S representa una fuente extendida lambertiana con una radiancia L que
queremos medir. En el caso de fuentes lambertianas la emision de radiacion dptica es homogénea en toda la
superficie de emision de la fuente, por lo que el elemento de area puede ser toda la fuente. El angulo sélido
gueda definido por la segunda abertura S, y d flujo radiante emitido en el dngulo sdlido llega al detector D y

es medido.

En una primera aproximacién, con los datos anteriores podemos calcular laradiancia de la fuente dada
por la Ec. (R.4). Sin embargo para mediciones de muy alta exactitud, éste modelo no es suficiente. Los
efectos de la difraccién tanto por la primera abertura s como por la segunda abertura S, pueden causar una
concentracion o una dispersion de la energia que pasa por la segunda abertura. Causando que la energia que

llegaal detector sea hasta un 0,5% diferente de la esperada si no hubiera ninguna pantalla con abertura.

El efecto de las aberturas se puede corregir conociendo el patron de difraccién en el detector. En este
caso en particular necesitamos conocer el patrén de difraccion (de Fresnel) de dos aberturas circulares
sucesivas. Hasta donde sabemos, nadie a reportado tal patron de difraccién. Por 1o que el objetivo de este

trabajo es calcular dicho patron de difraccién.

El punto de partida es una ecuacion integral ocho dimensional publicada por K. D. Mielenz, ya

mencionada en lateoria basica, Ec. (R.4).

En la Fig. R.2, se muestra un esquema del banco radiométrico con la notacién usada en el presente

trabgjo.

10
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W(U1,Uz,w)

Fig. R.2. Notacion del arrego experimental.

Reescribiendo la Ec. (R.4) usando la notacion de la Fig. R.2 tendremos

_ 1 co3(n,QiUs) cos(n, QUz) cos(n, P1Q1) cos(n, P2Qy)
WL Uzm) =75 0000 RRS RR,

W(P,P,.w)e "R #¥gp dp,dQ,dQ,

(R.5)
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La solucion de esta ecuacién es 1o que ocupa a resto del presente trabajo. En la siguiente seccion se

muestralaformaen que seresolvié laEc. (R.5).

Desarrollo

En el presente trabajo se muestra como la Ec. (R.5) puede ser resuelta mediante un cambio de variables

en coordenadas polares fuera del origen.

Como primer paso se reduce laintegral a caso de la aproximacion de Fresnel, luego se hace un cambio
de coordenadas polares. Posteriormente se hace un segundo cambio de variables para usar coordenadas

polares normalizadas, mediante |as siguientes definiciones

u=k2*% R?, (R.6.1)
47,
R .
v, =k—r;, j=12 (R.6.2)
ZZ
kRl
= —L ji=12 (R.6.3)



Introduction

Usando las Ecs. (R.6) se puede reducir laintegral (R.5) ala siguiente expresion

4 i—2|v2- 2 idlr2-r2) i 212 -
WU ) = e oy p e ez
"2z, QQ PP,

i[(1$cosf , +v,cosb, )r , cosa, +(1%sinf , +vosinb, )r ,sima,
e

e—i [(1ffcosf , +v, cosb, )r ycosa,+(Ifinf , +vysinb, )r sina,]

L4
"fegk%?g | @if I df ,dI @ g .1 ,da,dadr dr , .

(R7)

Para continuar proponemos el siguiente cambio de variables, las cuales forman un sistema de

coordenadas polares fuera del origen:

L, cosY, =Ifcosf, +v, cosb,,
L, snY, =1@&nf, +v,Snb,,

L, cosY , =I$cosf , +v, cosb,,
L,dnY, =1g&nf , +v,snb,.

(R.8)

con sus correspondientes jacobianos

13
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J, = L
[z +vz2Lvcosly .- b, )2 (R9)
J = |

2 [L22 +v2-2L,v,codlY , - bz)]}/2 '

Sustituyendo este cambio de variables se puede demostrar que la Ec. (R.7) se reduce a la siguiente

expresion
WU, U, w)=gW(R,P,w)K(U,,P,w)K" U,,P,w)dRdP, (R10)
donde
.2 Atz 2 iz—lgL—z—choiY b)ﬂ
K(16f ;v,b) = - ——Z10 gomi" gRI%? ey L)- is(u L),

il ’°z,z, ﬁ,‘a

(R.11)

resultando ser la funcién de transferencia del sistema 6ptica. La Ec. (R.10) es la solucién buscada. En

|a siguiente secci6n mostramos algunos €jemplos numéricos de la Ec. (R.10).

14
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Ejemplos Numéricos

Se realizaron varios célculos numéricos donde se muestran los efectos de difraccion de las dos
aberturas. En el primer ejemplo se calcula la distribucion de irradiancia en el detector debido a una fuente
puntua y una abertura. En el segundo gjemplo se calcula el caso de una fuente incoherente expandida. Y para

el tercer caso sele agrega a segundo €emplo una segunda abertura.

Los valores numéricos de los pardmetros son los siguientes, se considera una fuente circular
incoherente de radio a;=0,3mm, una abertura s de radio a=4mm, y una abertura S de radio R=1,06mm. La
distancia entre la fuente y la abertura s es z=1m, la distancia entre las aberturas s y S es z=1m, y finamente
la distancia entre la abertura Sy el plano del detector es 2=0,5m. La presente configuracion corresponde a un
valor de u en la Eq.(R.6.1) igual au=28,9306. En el calculo se usaron las expresiones dadas en la Ec. (4.24) 6

(R.10). En €l tercer caso la densidad espectral mutual en laabertura s esta dada por

W('Dl’Pz,W):E—zszjl(d)ap[ii ], (R12)
z; d
donde
d=2% 2312201, codY, - V,), (R13
z,R
y

15
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2
j :%%[Lf- 2- 2Lveos(Y, )+ 2L,veos(Y, )], (R14)

Y se ha aproximado el término exponencial a uno. Se muestra en la Fig. 4.8 los perfiles de irradiancia que se
obtuvieron numéricamente; en la Fig. 4.8A se presenta el perfil deirradiancia en el detector para el primer
caso, enlaFig. 4.8B se presenta el perfil correspondiente para el segundo caso, y finalmente en laFig. 4.8C se

presenta el tercer caso.

1.4E-02

1.2E-02

1.0E-02

1
k
8.0E-03 \k f\ {\/\

6.0E-03

40803 13— \—

2.0E-03

Irradiancia, Au

0.0E+00 T T T T T
0 10 20 30 40 50 60 70 80
\

Fig. 4.8A. Distribuciéon de irradiancia debido a una fuente

puntual, u=28,9360.
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Fig. 4.8B. Distribucién de irradiancia debido a una fuente

incoherente extendida, u=28,9360.
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Fig. 4.8C. Distribucion de irradiancia debido a la misma

fuente incoherente extendiad y dos aberturas, u=28,9360.

Se observa que |la diferencia en considerar una fuente puntual y una fuente extendida es un efecto de
suavizado, figures 4.8A 'y 4.8B. Mientras que €l uso de una segunda abertura intermedia (abertura s) produce

efectos de difraccién significativos.
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Resultados Experimentales

Se redizo un experimento utilizando un patron de radiancia. La fuente se gjusté a un diametro de
0,5mm. Un filtro de banda angosta se us6 para obtener [uz cuasimonocromética. La abertura S, se coloc6 a
una distancia z=1m, la cual tiene un diametro de 2,12mm. El detector se colocd a una distancia z; = 0,56m

(see Fig. 4.1). Esta configuracion éptica corresponde aun valor de u en laEc. (4.16.1) de 35,49.

Se muestra en la Fig. 5.2a la imagen de la irradiancia en el plano del detector. En la Fig. 5.2b se
muestra el perfil normalizado de la irradiancia. El perfil se obtuvo de un varrido de perfiles de la fotografia

del patron deirradiancia. El ruido que muestra el perfil es debido al proceso de escaneado

18
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Fig. 5.2a Resultado experimenta para una fuente expandida de
didmetro 0.5 mm con zz=1m, 2=0.56m, un didmetro de abertura

de 2.12mmy unalongitud de onda de 550nm.

Au

Scaleinmm.

Fig. 5.2b. Perfil normalizado de la distribucion deirradiancia experimental que se muestraen laFig. 5.2a
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Se redizo en seguida el cllculo numérico de la irradiancia para esta configuracion experimental
usando la Ec (5.11). Se muestra en la Fig. 5.2c el perfil de irradiancia correspondiente. Notamos que a pesa

del ruido ambos perfiles son practicamente |os mismos.

12

1.0 4
0.8
0.6 1
0.4

u= 3549
0.2 4

0.0

Fig. 5.2c. Evaluacion numérica de la Ec. (5.11) usando los

pardmetros experimentales de la Fig. 5.2a.

Lo anterior muestra que nuestra ecuacion simplificada (5.11) reproduce bastante bien los resultados

experimentales. Esto es entonces una demostracién de la consistencia de nuestros resultados analiticos.
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Chapter 1.

1. Introduction.

The main task of a National Laboratory of Metrology is to establish, to preserve and to offer
benchmarks for measurement, in industry and commerce. For radiometric measurements one also needs to
establish a benchmark. The goal for establishing a radiometric standard is to understand the use of limiting
apertures within an optical system. The use of those apertures is necessary to eliminate the stray light and to
specify a measurement surface on a detector. For example, the radiance of alamp can be measured with the
help of a detector. We need to know the response of the detector & well as geometrical parameters: as the
detection surface, the solid angle, the radiating surface of the lamp, distances, etc. All these parameters can be

established with the help of apertures.

According to geometrical optics, an aperture selects a set of rays (coming from the source) into an
illuminated zone and a shadow zone. Hence the illuminated zone is the geometrical projection of the aperture,
see Fig. 1.1. If we assume an isotropic angular distribution (of the rays coming from the source), then the
bright zone is uniformly illuminated. One can observe experimentally that along the projection of the edges,
there is a penumbra. Here the illumination decays to zero. The extension of the penumbra is proportional to

the size of the source.

21
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Aperture

[

[

However, this basic model (based on geometrical projections) is only useful until alimited level of

accuracy. For high precision radiometry ! one must take into account departures from the geometrical model.

—

Illuminated zone

Fig. 1.1 Schematic diagram of the geometrical model.

Consequently diffraction effects must be considered, see Fig. 1.2.

Aperture

Irradiance
distribution of the
Fresnel difraction
pattern

(1

Irradiance measurement, on the detector’ s plane, may be smaller than or bigger than those predicted

by using the geometrical model.

! For example, in the establishment of national standards of radiance with lamps, or in the realization of the

photometric unit the candela.

Fig. 1.2 Schematic diagram of the wave model.
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For example, on the one hand, Sanders et. a [1] and Blevin [2] reported that the flux density in the
bright zone was smaller than the expected, by using purely geometrical considerations. On the other hand,

Boivin [3] reported an excess of flux density.

Another interesting feature is the following. In the shadow zone the flux density is not strictly zero.
And sometimes it is necessary to make an estimation of the proportion of light that goes out the detector. The
departure from the geometrical model is a consequence of the diffraction effects of the edges of the aperture.
The diffracted light is redistributed into both the bright zone, and the shadow zone. It is clear that errorsin the

measurements are significant if the diffraction effects are not considered.

For example, Sanders et al. employed Fraunhofer diffraction theory, for evaluating this effect. They
found that the illumination at the center of the image was 0,25% smaller than that predicted by the

geometrical optics. Two years later, this prediction was experimentally confirmed by Ooba[4].

In the case of Blevin, he reported that when measuring the Stefan-Boltsman’s constant, there was a
difference up to 0,5% between the measured value and the value predicted when using geometrical optics.
Blevin, in his publication, makes a clear explanation of the problem. He stated that in case for very high
accurate measurements it is necessary to apply a correction factor, to the radiance measurements due to the
use of alimiting aperture. He proposed some approximations to evaluate these errors, from the viewpoint of

radiometry.

Therefore, in radiometry the so-called “diffraction errors’ are usually associated to any departure of

the irradiance distribution (on the plane of the detector) from that obtained by using the geometrical model.

23
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In the calculus of the correction factor, one needs to evaluate Fresnel diffraction of the aperture when it

isilluminated by a point source. In this manner one obtains the Lommel’ s functions.

Now if one assumes that the extended source is composed by a collection of point sources, mutually
incoherent to each other, then the irradiance distribution due to an extended source is obtained adding the

irradiance distributions of all point sources.

An important limitation to the above approach is the following. The Lommel’s functions are infinite
series, that one needs to truncate. The accuracy of the truncation depends heavily of the geometry of the

extended source; aswell as onthe form and position of the aperture.

Several researches have reported different approximations, which are valid for special geometrical
arrangements. These approximations have been compiled to offer guidelines, when making radiometric

measurements; see for instance references[5] to[10].

The above dilemma becomes more delicate if requires two or more apertures [3-10].

The calculus for a system with two apertures results in a form so complicate, that only some
estimations are reported based on the model of one aperture and particular conditions are recommended where
the diffraction errors due to a second aperture are minimized. For example, Boivin [3] in his system uses two
apertures of radii 2,5 cm and 0,3 cm respectively. His experimental setup uses a tungsten lamp as the

illuminating source. The radius of the first aperture is 2,5 cm. This aperture is located at 50cm after the
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source, and 50 cm away the second aperture is placed finally, 20cm after the second aperture, the detector is
located. The wave model predicts that the first aperture produces an excess of irradiance in the second
aperture of approximately (1 + 1,5) x 10 per cent, of an oscillatory nature [3]. Furthermore, if one ignores
the first aperture and evaluates the influence of only the second aperture, then the wave model predicts an
error of 4,4 x 10™ per cent smaller that the irradiance expected in the detector. The difference between the two
effects is a factor of 20. And consequently Boivin claims that the effect of the first goerture over the second

one can be negligible.

In reference [3] evaluations are reported on the amount of energy that passes through the second
aperture. Working hypothesis as the one proposed by Boivin are commonly used in radiometric
considerations [3, 10]. To our knowledge, it does not exist numerical evaluations that take into account the

presence of the whole set of aperturesin an optical setup.

The main limitation to an approach that considers the whole set of aperturesis that it does not exist a

practical formulation for performing this type of evaluations.

Therefore, the aim of this work is to calculate the irradiance distribution in the plane of a detector
taken into account two successive apertures. Thisformulation allowsto cal culate the corresponding correction
factors. The main idea in our proposal is to consider the first aperture as a partially coherent source. Hence,
we can apply the Theory of Partial Coherence to calculate the Cross Spectral Density in the plane of the
detector. As aparticular case, the irradiance distribution in the plane of the detector can be calculated with

this formalism, which represent our main objective.
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In order to achieve our goal, we have organized this work in the following manner. In chapter 2 and 3
we are going to review the fundaments of partial coherence theory. More than a formal discussion, chapters 2

and 3 are meant to set acommon notation for thisthesis.

In chapter 4 we establish the radiometric problem in terms of partial coherence theory. And then we
obtain the general solution. We also discuss the general form of the transmission function of the two aperture
system. In chapter 5 we analyze the interesting and important case of an incoherent source. We show also
experimental results that confirm our calculations. Finally, in chapter 6, we summarize our work with some

conclusions.
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CHAPTER 2

Partial Coherence Theory.

2.1 Partial Coherence Theory.

In this section we will review some aspects of the theory of Partial Coherence as well as important
definitions useful for this work. We begin by pointing out the following. In principle, Maxwell’s
electromagnetic theory is a rigorous mathematical treatment for explaining the macroscopic phenomena of
electromagnetic fields, and in particular of optical fields. However, if we have a system formed by a big
number of electromagnetic components, then the rigorous solution is practically impossible to be handle. A

better approach isto treat such systems with a statistical theory.

One example where we see the statistical character of radiometric quantities is the optical irradiance.
This concept has only an average meaning, since it is the time average of the electric (or magnetic) vector. In

partial coherence, this quantity finds anatural generalization.



Partial Coherence Theory

Partial Coherence theory deals with the statistical aspects of electromagnetic phenomena. This theory
can help us to obtain a better approximation of the average process observed in many optical systems. Two
formulations of the partial coherence theory have been reported; one due to Wolf in 1955 [11] and other given
by of Blanc-Lapierre and Dumontet also in 1955 [12]. The essential difference between these two
formulations is that Wolf treats the subject in terms of complex functions as introduced by Gabor [13],
whereas Blanc-Lapierre and Dumontet deal mainly with real functions. We use here the generalization given

by Wolf. Thisformulation begins with the concept of analytic signals, which we define in the next section.

2.2. Analytic Signal.

As mentioned above, there are two Formulations of the Theory of Partial Coherence. Both
formulations are rigorous and general. The difference between them is that the one given by Wolf treats the
subject with carefully defined complex functions as we will see in this chapter, whereas in the second work,

Blanc-Lapierre and Dumontet treat with real functions.

In Wolf’s formulation the real signal of an electromagnetic field is associated with an analytic signal.
The analytic signal was introduced by Gabor [13] to treat problems arising in communication theory. Thisisa
generalization of the strict monochromatic case, where we associate to a real function a monochromatic

complex function. In the case of analytic signals, they are an association to polychromatic fields.

Since the importance of analytic signals in our discussion, we summary, in what follows, the main

features of the analytical signals. For athorough discussion, to refer to [14] and [15].
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Let V'(t) be areal function of the real variable t such that it possesses a Fourier transform, which we

denote by V' (w). Hence the real function can be written as

¥ .

oV w)e™adw ; 2.1)
¥

where V(W) = [V "(-w)]*; it is a hermitian function.

Conseguently, from the inversion theorem of the Fourier transform, we have that

"(t)e™at . 2.2)

<
S
I
kQ,K

Now, let a(w) and f (w) be two real functions such that the Fourier transform V'(w) can be written in

theform

V' (w)=afw)e" ) = [Vr(- W)I =a(- w)e'" (v, (2.39)

hence
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aw)=a(-w) f (w)=-f (-w). (2.3b)

If we substitute Eq. (2.3) in Eq. (2.1) we obtain that

V' ()= galwleod: v+ (o X

Thus, any real function that has a Fourier transform can be represented as a Fourier cosine integral.
The physical implication of this result is simply that all the information about the real function is contained in

the positive (or negative) frequencies only.

We now define a new real function V'(t) by changing the cosine by sine in the integral of Eq. (2.4),

that is

V' (t)=

ploa( wsin[- wt +F (w)fdw 25)

The difference between Eq. (2.4) and Eq. (2.5) is a phase constant p/2. In terms of this function, the

analytic signal V(t) associated with the real functionV'(t) may be defined as
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V(t)=vr(t)+ivi(t). (2.6)

Or expressed in terms of frequency
1 ¥\ -i [wt- £ (w)] 17 - iwt
V(t) =— Oa(w)e dw =— Ov(w)e dw , 2.7
P o 2p

where V(w) = 2V "(w), see Eq. (2.2). From Eq. (2.7) it is clear that the analytic signal representation is simply
a generalization to polychromatic fields of the technique of replacing a cosine by an exponential for simply
periodic functions (monochromatic wave). In other words, V(w) represents the spectrum of a polychromatic
optical field, wis the angular frequency, w=2 p/ I, V(t) is the irradiance of the polychromatic optical field, t
is the time. Note also that the analytic signal contains only positive frequencies, which is an important

property for a representation of areal disturbance. From Eq. (2.7), the inversion theorem for analytic signals

gives

— iwt
Viw)= ¢y/(te™dt w20, 29

'
w

=0 w <0.

Other equivalent way to define analytic signals is with the Hilbert transforms theory as follow. Let us

again V'(t) be any real function such that its Hilbert transform exist, which we will denote by

31



Partial Coherence Theory

1_YVr(td
"t)==pP¢ ¢ .
Hv " ()] pp_emdt' (2.9)

where the symbol P denotes Cauchy’s principal value. In terms of Hilbert transforms, an analytical signal V(t)

associated with V' (t) is defined as

V(t)=v' ) +iHV (). (2.10)

The equivalence between both definitions is not difficult to demonstrate [16]. The main argument is

that the function V/(t) as defined in Eq. (2.5) is related to V' (t) by means of a Hilbert transform, that is

1Y vr(td
'"t)==P ¢ ¢ .
V() . thdt 2.12)

The definition of analytical signals with Hilbert transforms gives a useful notation to define the Cross

Correlation of analytical signals. Such definition is the subject of the next section.
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2.3. Cross-Correlation of an analytical signal.

The cross-correlation of two complex functionsf; and f, istypicaly defined as

(2.12)

wheret isonly an integration variable andt is atranslation of the coordinate t

In the case of analytical signals we need to proceed as follows. Let V'(rt) represents some
polychromatic optical field. The function V'(r,t) can be defined in all the temporal space. To assure that the

Hilbert transform of the function V/(r,t) exist, and that the Hilbert transform is square integrable (at least in a

finite interval), we define the following real function (see reference [14])

M-
—

Vi (r,t) =V (r, trect

|

D
N
o iy anid

(2.139)

Since V '(r,t) is finite in all the space, then the function of Eq. (2.13a) is square integrable. Lets
Vi(zn(r,t) be the Hilbert transform of V "o (1 t), that is
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Vi (1) =HVE (9], (2.130)

which is square integrable too. Hence we can now define the analytical signal V.t (r, t) asfollows
Vi (r,8) =V (1, t)+Vor, (1 ). (2.13¢)

The cross correlation of the analytical signalsV(rq,t) and V(r», t) isdefined as

T®¥

. 1Y .
(v t+t v (r,.t)) = lim— ar (r, t+t )V, (r,,t) ot (2.13)
-¥

where the function V(r, t) is the analytical signal associated to the function V '(r, t). One important property of

the cross correlation of two analytic signals is that the resultant function is again an analytical signal [14]. In

consequence, all the necessary information of the Fourier transform is contained in the positive frequencies.

In the next section we are going to define quantities related to the irradiance and the spectral irradiance.

2.4 The Mutual Coherence Function and the Cross Spectral Density.

In Radiometry, the irradiance is defined as the optical flux per unit area [watt/cm?], and the spectral

irradiance as flux per unit area per unit of wavelength [watt/cm?nm]. These two radiometric quantities are

A
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generalized in the Theory of Partial Coherence as the Mutual Coherence Function and the Cross Spectral

Density, respectively.

The Mutual Coherence Function (of V(r, t)) isdefined as
Gt )= (rt+t V" (r, 1)), (2.16)

where Vis an analytical signal associated with areal functionV " that describes the optical field.

The Cross Spectral Density is defined as the Fourier transform respect to t of the Mutual Coherence

Function, that is

[ it
% (ﬁlz(t )e dt w >0, 217

Note that Wj»(W) is equate to zero for w<0 since Wi,(w) is an analytic signal. The simplest example

of aCross Spectral Density isthe one associated to an incoherent source. It is given by

W, (w)=2bE, W)d(r, - r,), (2.18)
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where E; (W) is the spectral irradiance and b is a constant that allow E;(w) to retain the units of a spectral
irradiance. In consequence the Mutual Coherence is the inverse Fourier transform with respect to w, denoted

asF!{}, thais

Gyt )= F {25 Whd(r,- 1)

=Gt d(r,-r,). (2.19)

where G(t )= F H{2E, (w)}.

The definition of the Mutual Coherence given in Eq. (2.16) is valid only for sources that are stationary
and egodic’. A more general definition of the Mutual Coherence can be find in reference [14]. For our

purposes the definition given in Eq. (2.16) is enough.

The irradiance of the optical field is obtained by evaluating the Mutual Coherence in the same point

and for t = 0. In other words

G,(0)=2€(r,), (2.20)
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where we denote by E the irradiance distribution. In the same way, the spectral irradiance is obtained from

Eq. (2.18), if wemake I =T, ,togive

W, (w) =2E, (r,,w). 2.21)

These particular examples of Cross Spectral Density and Mutual Coherence are used in the following

chapters.

2.5. Summary of Symbolsand Definitions.

In table 1 we display a summary of symbols, definitions and names to be used in this work. For the

sake of completeness we add other definitions found in discussions of partial coherence theory.

2 That asource is ergodic means that; the time average of aradiating entity of the source equals the ensamble
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Table 1. Symbols and names used normally in Partial Coherence Theory.

Symbol Name
Glz(t ) =G (r1 00t ) Mutual Coherence Function.
glz(t ) = m%—(tc);zzo Complex Degree of Coherence.
Gh(t ) =G (rl,rl’t ) Self-Coherence Function.
Ci_l(O) = 2E(r1) Radiant Flux Density, or Irradiance.
G, (0) =J (I’l, I’z) Mutual Intensity Function.
1) Cross Spectral Density Function.
W, (W) =W(rl, rz,W) 2 Mutual Power Spectrum.
3) Cross Power Spectrum.
2E, (r,w)=w(r,r,w) Spectral Radiant Flux Density.

In the next chapter we will discuss the propagation of the Cross Spectral Density.

average of the source.



CHAPTER 3

Free space propagation of the cross spectral density.

3.1 Free space propagation of Gy(t).

In this section we introduce the wave equation governing the propagation of the mutual coherence

function Gpo(t).

We start assuming that the functionV '(r, t) represents an optical field, which satisfies the wave

equation’

12V (r,t)

Nav " (r,t)

I
ON| =
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The analytic signal V(r, t) =V '(r, t) + iV i(r, t) also satisfies the wave equation, Eq. (3.1), since V(r, t)

isalinear combination of two solutions. Then

_‘nz\/(r,t) . (3.2)

N2V (r,t) = i

0N| -

We show next that the Mutual Coherence satisfies the wave equation, too. Let us suppose that the

mutual coherenceisgiven by (see Eqg. (2.16))
Gyt )= (rt+t M (r.t)), (3:3)

where Vis an analytic signal associated with a specific optical field. Then, we take the Laplacian with respect

to the point r; of the mutual coherence function Gp(t), that is

NG )= NEV (4t V(1,0
=<\/*(r2,t)|§|fb/(r1,t+t )]> (3.4)

From Eq. (3.2) we obtain that

3 Although the units system isirrelevant for the present work, we mention that all radiometric measurements
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Nf\/(rl,tﬂ):izﬂzv(rl’t”) 1 9%Vv(r, t"‘t)

 qt+t) 2 it 2 (3.5)
Substituting Eq. (3.5) in Eq. (3.4) we have
- é1 2\/ (r, t+t
REGy(t )= < L M >
&c’ u
1 9° R
:? t 2 <V(r1’t+t )‘/ (rz’t)>'
N (t) 3.6
=g el (3.6)
On the other hand, if we apply the Laplacian with respect tor,, we obtain
NZGL(t )= N5V (r t+t v (r,.t)),
=(V(r, t+t N3V (1, 1)),
1 1V(r, t
=<V(r1 t+t )F ﬂgzz )>
:Ilmii)/ (r, t+t )i‘ﬂz\/z}(rz 0
T® ¥ ZT 5 2T \'1 2 ﬂt2
3.7

made in CENAM are related to the SI (MKYS).

41



Free Space Propagation of the Cross Spectral Density

Integrating by partstheintegral in Eq. (3.7), it follows that

1V tHt) e
lime =gV ()

* T
o .1 r,t
NZG,,(t ):T|'®VQ2—TV (r t+t )Wcz(ﬂ%[ )

1 AV (et ),
+ _!_I(gg E-WVZT (rz ,t)dt . (3.8

Considering that both V and its derivative are finites, the two first limits tend to zero. Therefore we

obtain
REG, ):<wv*(rz,t)>_ @9
cqt
Since
ﬂzvc(gf”’tt;t )- ﬂzvc(zr%’tt; Y (310)
then we have
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Czﬂtz
1 92
:C_Zﬂtz ). (3.12)
Summarizing, we have that
- 1 9°
N2G.,(t) :?ﬂt_zGlz t). (312

where s is a subindex that takes the value 1 or 2. This demonstrates that Gy,(t) is a solution of the wave

equation. In other words, the mutual coherence of an optical field propagates identically as awave. And given
a mutual coherence function of an optical field, we can know the new mutual coherence function after a

displacement of the optical field.

We can write the complete equation as

~ 1 94
NG, ) == G, ). (313)
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3.2. Wave Equation solution in terms of Wy (w).

It is straightforward to obtain the solution of Eq. (3.12) if we work with the Fourier time transform of

Gua(t), that is Wip(w).

Let Wio(w) be the Fourier time transform of Gpo(t). Since Gio(t) is an analytic signal we have

Substituting Eq. (3.14) in Eq. (3.12), we obtain

%Hﬂi +K ()W, (W)™ dw =0,

where k(W) =

o.|§

Since Eq. (3.15) must hold for all t, we have

(3.14)

(3.15)
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N2+ k2 @w)w,W)=0. (3.6)

Thus, we see that the cross-spectral density satisfies the Helmholtz equation. It is known that Eq.

(3.16) with s =1 has the formal solution [14]

Wep, S, w)=- dv(sl,sz,w)w ds,, (317)
S S

L RES,

where ng; is the normal to the surface of integration. And ﬂi is the partial derivative with respect to the
n
s

normal. Here G, is a Green’ s function satisfying the equation
N2 + k2 (w)jG, (P, Pow) = - d (P, - PJ. (318)
with the boundary condition,
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In the same way, the solution for s=2 can be written as

ds,, (3.20)
PE=S,

WER,P.w)= av(a,sz,w)w
%2 s

where G, is a Green’s function satisfying the same boundary condition as G;. Combining Egs. (3.17) and

(3.20) we obtain

WER,Pw) = gV(s., S, )t TG,

dsds, . (321
S ng, s,

Thus W (P1,P,,w) is obtained formally in terms of W(S;,S,,w).

3.3. Cross-Spectral density from a plane sour ce.

The Eq. (3.21) takes a particular form for planar sources. Let us suppose that we have a finite plane
source s, on the system X"-Y” at z = 0. The source has a cross-spectral density given by WS;,S;,w) (S, and S,

are vectors) inside the source, and O outside it, see Fig. 3.1.
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Fig. 3.1. Notation used in the Green’s functions.

The optical field propagates along the zaxis. And we want to obtain the cross spectral density at the
points P; and P,. They are at the planes z and 2 respectively. The distance P;-S; is denoted as ry, and the

distance P,-S is denoted asr».

The Green’s functions G, and G, that satisfy the boundary conditions (at the source) are respectively,

ike. kg

4pny ] Kﬁ‘w

(3.22)

and
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ik, kg
G,=2_.€ | (3.23)

wherer;”” andr,”” are the distances to the mirror points of r; andr,, respectively. That is

n= \/(21 - ZP)Z + (Xl - X?)Z + (Y1 - yg)z ) (3.24)

r@= \/ (z + ZF)Z +(% - X?)z +(yy - yg:)z - (3.29)

And in the same manner forr, and r” ,.

The normal derivative of G is

1G, _(1- ikrl)e”‘zrl T, (L ikrges e (3.26)
ﬂnﬁ 4p r ﬂng 4p rl‘lg ﬂnSl

and
L =- ﬂ_rlJ :i = Ir (3.27)
ﬂnsi S, T s h 12 S
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Thus, if we define cos(ql) = % , we find that
1

ﬂG]_ - 1 IkIEL 4 Ikrl ) (328)
ﬂ”sl 5

In the same manner, we obtain
ﬂGZ — 1+ | kr2 4 (329)
s, s 4p

Substituting Eq. (3.28) and Eg. (3.29) into Eq. (3.21) yields,

ik(r-n)
5 (\ﬁN(SuSzyW)(l' ikrl)(1+ikr2 )COS( 1)COS(QZ)eI_2r2 dsSds, .

$ S 1

WEPR, R w) =

(3.30)
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We now use the approximation (1-ikr) @-ikr for r much longer than the wavelength of radiation |,

obtaining finally the next relation

ik(r;-15)

OOV (S,,S,.w )oos(a, ) cos(a, ) €

$S

1
|

W¢R, P w)= dsds,. (331

nr,

We arrive to the final Eq. (3.31), which describes the free propagation of the cross spectral density. In
the next section we will apply this equation in two successive propagations to obtain the diffraction equation

in terms of the Cross Spectral Density.

3.4 Diffraction Equation in terms of Wi,(w).

As was shown in the previous section, we have in Eq. (3.31) a mathematical way to calculate the free
propagation of the cross spectral density Wi»(W). In this work we analyze the problem of diffraction in the
general case of partially coherent sources. To do so a diffraction equation relating the cross spectral density
would be helpful. Such an equation has been already discussed by K. Mielenz [17]. We can obtain it by
applying two times the propagation equation. Let us consider the optical setup of Fig. 3.2. Here we have a
plane source s described by WP1,P,,w), where P; and P, are the vectors of two points at the plane of the

source.
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Z; | ¥)

Initial W(P1,P,,w) Intermediate W (Q1,Qo,w) Final W7 (U1,U,,W)

Fig. 3.2. Notation for the diffraction Equation. R and B are the vectors of two points at the
source’s plane. Q; and @, are the vectors of two points at the plane of the aperture S. And U; and

U, are the vectors of two points at the plane of the aperture S .

In free propagation we can calculate W (Qy,Qz,W) in the aperture S by applying Eq. (3.31) as follows

1 ik(RQi- RQ)

wW¢Q,Q, w) | OV (P, P, ,w)cos(a; )cos( 2)%Q—PQdPlsz. (3.32)
R 1122

ey

If we apply once again Eqg. (3.31) using Eq. (3.32) to calculate W (Uy,U,,w), we have
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1 N N\ N\
WEU,,U,,w) =75 000V (R, P, w)cos(a; )eos(a, )cosiaficos(ag)
QQ PR
i(11'22) i(11'22)
ek RQ,- RQ k(QU,-Q,U

RQRQ, QU,Q,U,

dP.dP,dQ,dQ,

(3.33)

Eqg. (3.33) describes the relationship between the final crossspectral density, W', in terms of theinitial
cross spectral density, W, through an integral transform. This is the basic relationship that is used in this

thesis.
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CHAPTER 4

Cross Spectral Density propagated through a Circular Aperture,

We are interested in calculating the irradiance distribution produced by two successive apertures. The
apertures are circular and with different diameters. They are concentric respect to the propagation axis. In
metrology it is common to assume that the source is spatially incoherent, polychromatic, and it has a circular

shape. For the sake of simplicity, here we restrict our numerical results to monochromatic sources.

We begin by assuming that the first illuminated aperture is a partially coherent source, which &
described by its respective cross spectral density. The next aperture is then a diffracting aperture. Our task is

to find the correspondent cross spectral density behind the diffracting aperture.

Previous work in this direction is obviously the expression that describes the diffraction produced by
acircular aperture illuminated with a point source; as given by Lommel [18] and independently by H. Struve
[18]. For the case of an extended incoherent source the superposition principle in intensity is used. The total
intensity is obtained integrating over the entire source. These two cases must be cover by our generalization.
We start this chapter by giving the expressions of these two cases. The cases of a circular aperture,
illuminated by a point source and illuminated by a extended source, serve as a benchmark (or reference

frame) to compare our result.
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4.1. lllumination with a monochromatic point sour ce.

In the past century E. Lommel, and independently H. Struve, reported the diffraction pattern
produced by a circular aperture when it is illuminated by a point source [18]. Lommel and Struve were
interested in evaluating the out-of-focus images of a monochromatic point source. The knowledge of the
Fresnel distribution near focus was of particular importance for estimating the tolerances when setting the
observation plane in an image forming system. In particular, Lommel presented a solution in terms of infinite

series.

E(u,v)

4

Fig. 4.0. Optical Arrangement showing the notation used in the Fresndl diffraction.

The irradiance distribution was described as

E(u,v) = Eo|C?(u,v)+S%(u,v), 4.1)
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where the variable u is a geometrical parameter related to the system. And it gives the radio (in dimensionless
units) of the geometrical projection of the aperture, see Fig 4.0. The variable v is a normalized radial distance
from the center of the diffraction pattern. The constant E; is the irradiance at the origin and the functions

C(u,v) and S(u,v) are the real and imaginary parts of the Fresnel integral in polar coordinates. These functions

have the next solutions

. , .
c(u,v) —Eggsnaa/——+ sn@ O, (u,v)- cosB oV, (u,v) ﬂ for v<u,
ueu 8 g 0
4.2)
——écosc{— u,(u, v)+sn8€£9U2(u,v)3 for v>u,
20 a
and
~ 2 . .. N
S(u,v):ggcosg—aa/ 2 02O, (u,v)- sin{:w;gvl(u,v)g for v<u,
ug 2U e2g e2g Q 43
2¢. 0 u
=—aAng¢g-=U co: for v>u,
L Eines-U, (uv)- St; U,(uv )H

where \4(u,v), Vi(u,v), U(u,v) and Uy(u,v) are the Lommel functions [19]; which he developed for this

purpose. These functions are defined as

¥ ..n+2s
U (uv)=3 (- 1)38&19 J,...(v), (4.4)
s=0 eve
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and

Vn = é. (' 1)864\%_/2 ‘]n+25(v)’ (4.5)

where n isthe index of the Lommel function and sisthe index of the series. These functions are complicate to
evaluate. In fact, their convergence is slow for large values of u. This is the reason why some authors
developed axintotic approximations. Nevertheless, the recent development of powerful personal computers,

together with efficient mathematical software makesit possible to evaluate the Lommel functions.

In the case of an extended incoherent source, the irradiance distribution is calculated by using the

superposition principle. The resulting expression is

E(u.v) = OFs(Vs)[C(uV - V) + (¥ - V) vodvedy 46)

S

where the integration is performed over the surface of the source. (vs, g) are polar coordinates at the plane of

the source.

We note that, the expression given in Eq. (4.6) is a particular case of a more general problem. The
general problem is the diffraction pattern of a circular aperture, illuminated by a partially coherent source.

The solution to this general problem is the subject of the rest of the present chapter, and it constitutes one of

56



Cross Spectral Density Propagated Through a Circular Aperture

the interesting contributions of this work. In the next section we switch from the concept of irradiance to the

concept of cross spectral density.

4.2. Cross Spectral Density propagated through a Circular Aperture (in the Fresnel Approximation).

The setup to be analyzed is shown in Fig. 4.1, where we have a Radiometric Bench consisting of a

thermal source followed by two limiting aperturess and S, and a detector.

Computer
s S
" red
ISource
Detector

A A

Fig. 4.1. Radiometric bench.

The main idea of our proposal isthat the aperture s can be thought of as a secondary partially coherent
source with a cross spectral density denoted as W(P,P,,w), which can be easily calculated by using the van
Cittert-Zernike theorem [20]. The aperture S is acting as a diffracting aperture, and the plane of the detector is

the observation plane. As mentioned before we are interested to find the cross spectral density, W' (U1,Uz,w),
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in the plane of the detector. The irradiance distribution can be obtained by setting the cross spectral density at

the same point. That isE(U)=(1/2)W "(U,U,w).

The notation used in this work is shown schematically in Fig. 4.2, where the scheme shows a circular
geometry with its respective polar coordinates. In our setup s represents a circular aperture of radiusa, placed
in front of an incoherent source, the radiation that passes through the aperture s illuminates other circular
aperture of radius R, denoted by S. This second aperture is placed at a distance z; in front of s . Finaly, S’

represents the active area of the detector with radiusc, placed at a distance z, from the circular aperture S.

Let us choose two arbitrary points P; and P, over the aperture s, with coordinates (x;,y1) and (xz,y»)
respectively. These points have also polar coordinates (1,f1) and (,,f2). In the same way, we denote two
arbitrary points in the aperture S by Qq(x,h;) and Qx(%,h,) with polar coordinates (Rr 1,a;) and (Rr 5,a5)
respectively; where r ; is a dimensionless parameter that varies between Oand 1. Finally, let us consider two
arbitrary points in the aperture S’ given by U(s;,hy) and Ux(sp,h2), with polar coordinates ¢4,b1) and
(r2,bz). We denote by Ry, Ry, R'; and R'5, the distances between each pair of pointsP;Qq, P2Q,, Q:U;and Q,U,

respectively.
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W(U11U21W)

Fig. 4.2. Schematic diagram showing the notation.

The equation that relates the cross spectral density, W~ (Uy,U,,W), in the plane of the detector with
the cross spectral density, W(P1,P2,w), in the plane of the aperture s was discussed in chapter 3, and it is given

by Eq. (3.31). In order to perform our calculation, we rewrite Eq. (3.31) using the new notation; namely

1 ....cos(nQ1U1)cos(n,QUz2) cos(n, P1Q1) cos(n, P2Q:2
1 S( ) cos( ) cos( ) cos( )

WU, U, W)=
! QQ PR Rl@éb R1R2

W(P, P, w)eHrRReRgp 4P dQ,dQ, |

4.7)
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where as indicated before the function W{P1,P2,w) is the cross spectral density at the aperture s, the function

cos(n, PiQ;) (withi = 1, 2) is the cosine of the angle between the vector P,Q; and the normal n in the point P,.

The same description applies for cos(n, QU;).

Next, we make a simplification of Eq. (4.7) by assuming the following geometrical approximations:

cos (n,P1Q1) » cosqs, (4.8.1)
cos (n,P2Qz) » cosqy, (4.8.2)
cos (n,Q.U;) » cosq'y, (4.8.3)
cos (nN,QUy) » cosq'z, (4.8.4)

where q; and g, are the angles between the optical axis and the vectors OsQ; and OsQ, respectively (see
fig.4. 3). The same geometry applies for the angles g& and g, with vectors that can be formed between OsU;

and OsUs.

Q
P1
Os d1
o)
P>
Q

Fig. 4.3. Approximation of the angle (n, P1Qu) by a1, (n, P.Q) by o, ec.
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Even more, we consider these four cosines approximately equal to unity, as was taken in the paraxial

approximation. Using this, we can reduce the last equation as follows

WdﬁUl,Uz,W):i““ 1 1

l QQ PP ;(RS:RiRZ
(4.9)
W(R, R, w )RR+ %R gp dp dQ,dQ,

Now, in the same manner as the developed used in the Fresnel approximation, we can estimate the

distancesR;-R, and R'1-R’5> as

RR, @217[()(1 - X1)2 + (hl } yl)z - (Xz - % )2 - (hz - Y )2] (410.1)
RERS@—[f- ) - ) - b= 5. - (- )] @102

And the products R;R, and R';R’; can be expressed as

RiR, @z° andR R, @z, (4.10.3)
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Consequently, we have that

R R, +RE R?=%%§M+hf-x§-h§]+é[xf+yf- K- ¥i)
1 [512"'hlz'52 hz] g7 %4'22%2
2

_69( ('j /.
gé Zzﬂ gzl Zzﬂ

(4.11)

Hence, by substituting Eg. (4.11) into Eg. (4.9) and rearranging terms, the expression for

W’ (Uq,Up,w) resultsin

.k
EAU L keztz |y »

2 2 2
e < x Zg 2% ux1 +hy-x5-h )
———— O0COOV(P.R, w)e

wéU. U, w)= ’
a( 1 2 ) |42122 oORP

b ayi- - v2)
e

iké +——x + g, - —+—;x - —+—':' u
kr e s g
dR,dP,dQ,dQ,

(4.12)
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Eq. (4.12) is the Fresnel approximation of Eq. (4.7). The integrals with respect to Q; and Q, are easy
to evaluate, if we employ cylindrical coordinates. With this goal in mind, let us change to polar coordinates by

using the following transformations

Xj = |j COSfJ' s

yj =1 sinf; i=1, 2, (4.13.2)
% =Rrj cosa;,

hj = Rrj sinaj, j:]., 2, (4.13.2)
§ =rj cosb; ,

hj =T sinbj ) j:]., 2, (4.13.3)

where the notation was explained previously, see Fig. 4.2.

If we use Egs. (4.13.1) to (4.13.3) then we can rewrite the two initial terms of the sum (within the

second exponential in the integrand) as follows
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k'\ +—29j(2+%+&§123=
4 Lg 4 Lg |
gﬁz (:osf2 r, cosb2:er cosa +§b , 9nf, LD smbzger sna, =
4 Z, %] L g
aRl, cosf,  kRr,cosb, 6 &R, anf , er snb, 0
+ = ,cosa, + = ,9na,
g 4 2 2 4 2 a
(4.14)

In asimilar manner we can write the relationship for the coordinates with subindex 1. By substituting

the expressions for the coordinates with subindex 1 and with subindex 2, in Eg. (4.12), we have

i kR é2,+2,0 K
wWeU,, U, w)= R* o7 28] SOVEP, W)euTgil_ZzzHrf.rg)e,Z(hz_lzz)
2 4_2_2 P,
"z QPR

i%d(Rlzcoa‘ +ker cosb. er cosa +ad<RI2 senf +ker senb er sena a
2T PR 2 g_ 2T 2zl 2 2y
e g 4 %) [} 4 %) [} *]

-i eadill cod | L cosb, e ,cosa, + g—lsenf +ﬂsen b, —r senalu
4 % ] 2 o ]

e
|,df ,I,df ,dl,dl,r,r.da,da,dr.dr,

(4.15)

Now, it is helpful to use the next normalized coordinates

+
k2t% R (4.16.1)
22,

u=
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R .
V. =k—r., j=1,2 (4.16.2)
y4

1¢= —~, j=12 (4.16.3)

If we substitute them in Eq. (4.15) we obtain

R* 7 [vlzvg] (rf-rzz) 4 ('FZ@)

u
i i— [
Wa(Ul,U 2,W):w 2Rk (\x\m\/(Pl’PZ’W)ez eZRzk
4% QPR

ei [(18cosf , +v,cosh, )r, cosa , +(I gsint , +v,sirh, )r Hsira, |

e—i [(1ffcosf , +vy cosb )1y cosay +(I firf , +vysinb; )r ssinay]

L4
&4 9| oif Igdf ,dI@llgr r ,da,da,dr dr, .
kRg

(4.17)

We continue by considering the next change of variables; let us define L and Y new polar coordinates,

given as
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L, cosY, =I{cosf, +v, cosb,,
L,snY, =1&nf, +v,snb,,

4.18
L, cosY , =Igcosf , +v, cosb,, 19
L,snY, =1¢&nf , +v,9nb,.
The respective Jacobians are given as
— Ll
R TP 7
[Ll +V; '2|-1V1COS‘(Y 1” bl)]
L (4.19)
J, = 2 7
2 2
[L2 +v2-2L2vzcos(Y . bz)] 2
From the transformations in Eg. (4.18), we obtain for I’y and |’ the identities
| 8= [Lf +v?2 - 2Lv,coslY, - bl)]% : @20

1$= [L§ +v2 - 2L,v,c0dY , - bz)]}/z.

By substituting Egs. (4.18), (4.19) and (4.20) in Eq. (4.17) we obtain
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R a2 ¢ izt ) Lo 5lri-r3)
Watul’UZ ’W) = 4_2_2 @+ € 2Rk MV(PlQPZG;W)e 2
| “z°z, ékRg .0 PFe
4 (1242. ) 2 2, N
e'ZRzk(Li vi- 2LvicodY -by } L3-v3+2L,v,cosfY , bz))

ei[chos(Y 2)1 2 cosfa,)+LosinY 5)r pcos(ay )]

e’ [Lycos{Y)r 1 cos{a )+Lysin(Y 1)r scosfa; )]

%I{df 1';—;I§Idf ,dLdL,r ;r ,da,da,dr.dr, ,
1

(4.21)

where the point P¢ represents the point P;, but now given in terms of the new coordinatesL; y Y.

With the help of the Bessel functions [21] we can integrate Eq. (4.21) with respect to a; and a; to

obtain
1 2 i=dev) fezrz) A5 3) A2 )
W¢U1,U2,W): (2p )4 %e 2R% (xxﬂv(ququ;W)ez e 2R% e 2R
QQ, PERS

i%(szzcos(Y 2bo)-Lyvcosly -by ))

ei [Lyr c0s(a,-Y )]
e-i[Llrlcos(al-Yl)]
LdY,L,dY,dLdL,r,r,da,da,dr dr, |,
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2 4tz VZ-\3 4 2,13 -4 o008l 5-b, )-Lyvscosty 1-by
Wa(Ul’UZ’W) i (2;-)4 %e ZRZk( \F)c\ﬂV(PﬂPz‘EW)e ZRZ"(L - )e Rzk(L sl 2-b2)-Lavscosfy 1-by))
PgRe

N ig(rlz'rzz) i[Lr ,cos(a,-Y,)] Aiflyr cos(a,-Y,)]
wZ el 2 2”2l @ Lry 17T
QQ

r,r,da,da,dr dr,LdY, LdY,dLdL, .

(4.22)

The integrals with respect to r; (j=1,2) in Eq. (4.22) have a known solution in terms of Lommel

functions. Let us denote by C(u,v) and S(u,v) the real and imaginary part of the integral

.U 2
d—r

20%(Lr o= 1 ar = cluL)- isluL)

(4.23)
0

The functions C and S are the same defined in Eq. (4.1); and their solutions are given in Eqg. (4.2) and
Eq. (4.3). By using Eq. (4.23) in EqQ. (4.22) we have finally that

2 iﬂvlz'vzz i—2 13 i~ 2V2LOS\Y 2-Dp FLV4COS(Y 1-D g,
W¢U1’U2’W):(2;-)4 %e 2R2k( )dyV(qu:Pz@W)emzk(L L)eﬁ(L £08{Y by } Livicos(Y 1-b))
PgPE
p?[CluL,)- iS(uL,)l[CluL,)+is(uL, )
LdY,L,dY ,dLdL, ,

(4.24)
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where as mentioned above the notation WP'1,P',,w) means that the function Wis given in terms of the new
variables of integration. Eq. (4.24) gives the cross spectral density in a plane behind the diffracting aperturein
terms of the cross spectral density of the illuminating source. As an important particular case, with this
relation we obtain straightforward the diffraction of this circular aperture for the general case, where it is

illuminated by a partially coherent source.

The demonstration that Eq. (4.24) contains two particular cases: the diffraction pattern due to a point
source, and that due to an extended, circular, incoherent source. These two cases are discussed in chapter 5.
Here we conclude that the general expression, given in EQ. (4.24) describes the cross spectral density

propagated through acircular aperture.

Next, we address a subtle problem arising when we make the change of variables, in Eq. (4.18). Care
must be taken to use the right integration limits. Basically there are two conditions. The first condition is
when v<a’, where a’'=kRa/z;, and the second when v 3a’. The first case is depicted in Fig.4.4. In the scheme
we show the source with a normalized radio a’, which in the new coordinate system is centered at the point v

(without loss of generality we have selected the angular coordinate b = 0).
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Fig. 4.4. Schematic representation of the integration area.

A point P in the source has the polar coordinates (I,f) respect to the old coordinate system (X, y). In the
new system it has the coordinates (L,Y ). We must integrate then over the enter circle of radioa’ centered at v.
We see that Y varies between 0 and 2p, and the variation of L isafunction of Y. It iseasy to show that any

point P’ along the edge of the source has aradial coordinate given as

L{r )= vcosfr )+[v2 cos?(y )- v2 +a'2]}/2. (4.25)

The second case is depicted in Fig. 4.5, wherenow 2 a’. In this case we seethat Y varies between two

maxima values.
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Fig. 4.5. Schematic representation of the integration area, case\2 a'.

Let us denote by Y o the maximum value of Y, which is reached when the vector L is tangent to the

circumference of the source. Such a maximum is shown in Fig. 4.6.

Fig. 4.6. Maximum value Yo. ThevariableY can take values betweenY gand -Y o.
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The maxima and minima limits of Y are Y o, and Y ( respectively. From Fig. 4.6 is it easy to deduce

that Ygisgivenas

Y, = acsin &2, (4.26)

evg

Once again L is function of Y, and given a constant Y’ we can define a minimum Lo(Y’) and a

maximum LY ') asdepicted in Fig. 4.7.

Fig. 4.7. Possible values of L foragiven Y.
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From Fig. 4.7 we see that any value of L(Y) aways lies between these two limits. With the help of a

simple cal culus we can deduce the next relations for the two limitsLo(Y ") and L{Y "),

LO(Y ,): 1 v-(vz- (1+th 'sz- atl?))”/Z

cosy 1+tan?y ’ w2
L )= 1 v+(v2 - (1j- tan®Y ')(y2 - aﬂ?))% '
7 cosy [L+tan’y )

The relations given in (4.27), (4.26) and (4.25) can be used in any numerical simulation of Eq. (4.24).
The use of these relations increments the efficiency of the algorithm. In the next section we return to Eq.

(4.24) to discuss some important properties of the transmission function of the system.

4.3. Transmission Function.

We can associate to any imaging system (in the more general concept) a transmission function [22]
denoted by K(U;, P;, w) which describes the system’s response evaluated at the point U; in the image plane,

due to a point source situated at P,.. In such away that the image of an extended object can be constructed by

means of the transfer function with the relation

WU, U,,w)= @V (R, Pw)K (U, Pw)K" (U,, P, w)dRdP,, (4.28)
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where W(Uy,Uz,w) and W(P1,P,,w) are the cross spectral densities of the image and the object respectively.
Obviously the function K(U;, P;, w) depends of the geometry of the system. In case of our system we can
deduce the functional form of such a function by simple comparing Eq. (4.28) with our general solution given

in Eq. (4.24).
From the comparison between both equations we obtain for the transmission function the relationship

2 7tz 5 Aa— éLZ-chos(Y b)ﬂ
1 aaloe'szkV eRzkéz

1722, Sk 5 “euL)-is(u L),

K(1¢f ;v,b) =-

(4.29)

where L isgiven by

L =[I¢ +v? +2l ¢cosff - b)]}/2 (4.30)

Here EqQ. (4.30) is obtained directly from Eq. (4.18). We describe next some features of the
transmission function given in Eq. (4.29). We notice that it is proportional to the complex amplitude of the
Fresnel diffraction due to a circular aperture and illuminated by a point source. We see, too, that this complex
amplitude is a function of the projected distance in the image plane between a point P of the source and a
point U in the image plane. The last is easy to demonstrate with the help of Eq. (4.30), where we have that L

is the projected distance between the points P and U. The transmission function depends also of the square of
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the projected distance L?, and of the product Lv. We can conclude here that since the transmission function
K(U, P, w) is not a function only of the projected distance K(U-P, w), the condition of isoplanatic region is

not satisfied.

As a complementary analysis we can obtain the transmission function in the Fraunhofer
approximation. If we approximate the exponentias in Eq. (4.22) to unity, then we obtain the far field

approximation, that is

.2
W(ULU, W)= — ?—9 (‘)d/v(acypchw)#% LdL, d, L,dL, dY,

2 =
(Zp) 5 g PERE 1 2 2
(4.31)
It follows then that the transmission function is given as
J(L
K(1¢F :v,b)=—2 A(L) (4.32)

In this case we see that the transmission function depends only of the projected distance L. Therefore,
in this case the isopanatic region condition is satisfied. We have here in polar coordinates the equivalent case

to that given by Mielenz in rectangular coordinates, Eq. (12) in reference [23].
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4.4 Numerical Simulation.

The practical application of Eq. (4.24) can be demonstrated with the next numerical example. Here we
want to see if the aperture s (which is always two or more times bigger than aperture S) can contribute
significantly in the final diffraction at the image plane or if its effect is negligible [24]. A common practice in
radiometry isto use s as an aperture that limitsthe stray light. And the aperture S is used to limit the radiation

to be measured. In such a system the aperture s must be bigger than the aperture S .

Such effects are of practical importance in the calculation of the diffraction errors (1-f;) and (1-f,),
where the functions f; and f, are the quotient of the total flux that falls on the detector (when there is an

aperture) divided by the total flux that falls when there is not an aperture [6]. These functions are given as

f, :% (v, c)E(u, vivdv, (4.33)
0
and
Taald
f, Ty ( (v,a,¢)E(u,v)vdv, (4.39)
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where the function D(v, a, c) is a convolution of the circles of the source of radio a and of the detector of
radio c (see appendix A). And the function E(u, v) isthe expression of the diffraction produced by the circular
aperture and a point source, Eq. (4.1). These two formulations were deduced using Eq. (4.6), which is the

expression for an extended incoherent circular source.

The effect of a second aperture is usually neglected arguing that the contribution to the diffraction
error is small compared to the effect of the first one. However there were no any direct way to evaluate how
small it redly is. With the formalism described by Eq. (4.24) we can take into account in a direct way the
effect of the presence of this second aperture. We show next some numerical calculations where we show that
the presence of the second aperture can become important, at least as a modification in the irradiance profile.
In order to see the effect of the use of a second aperture in Radiance Measurements (aperture s in Fig. 4.1),
we have calculated the irradiance distribution in the plane of the detector for three different cases. In the first
case we considered a point source and only one aperture, that is the aperture S. In the second case we
considered an expanded incoherent source and the aperture S. And in the last case we considered the same
expanded incoherent source but now with both apertures (s and S). For these calculations we considered a
circular incoherent source of radio a;=0,3mm, an aperture s of radio a=4mm, and an aperture S of radio
R=1,06mm. The distance between the source and the aperture s is zy=1m, the distance between the apertures
s and Sis z=1m, and finally the distance between the aperture S and the plane of the detector is z=0,5m.
The present configuration corresponds to a value of u in Eq.(4.16.1) equal to u=28,9306. The evaluation was
done by using the correspondent expressions given in Eq. (4.1), Eq. (4.6) and Eq. (4.24). In the third case, the

Cross Spectral Density in the aperture s is given as

Es 23,(d)
22 d

W(R, P,,w)= explij |. (4.35)
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where
d =%JL§ F12- 2L,L, codY,- V,), (4.363)
and
j :LZ[Li2 - L2- 2L1vcos(Y1)+2L2vcos(Y2)], (4.36b)
27,kR

and we have approximate the exponential term to unity. We show in Fig. 4.8 the irradiance profiles obtained
numerically; Fig. 4.8A represents the irradiance at the detector plane for the case 1, Fig. 4.8B corresponds to

the case 2, and finally Fig. 4.8C represents the case 3.
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Fig. 4.8A. Irradiance distribution due to a point source,

u=28,9360.
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Fig. 4.8B. Irradiance distribution due to an extended

incoherent source, u=28,9360.
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Fig. 4.8C. Irradiance distribution due to the same extended

incoherent source and two apertures, u=28,9360.
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We see that the difference between considering a point source and an extended source is only an effect
of smoothing (see graphics 4.8A and 4.8B). Whereas the use of a second intermediate aperture (aperture s)
can produce significant secondary diffraction effects. This situation is clear if we compare the graphic in Fig.
4.8C with the diffraction produced by a point source located in the center of the plane of the aperture s. Such
diffraction is shown in Fig. 4.9. We can see a coincidence between the three secondary maximum (before
v=35) of Fig. 4.8C and the three maximum of Fig. 4.9. We can say then that, despite that the aperture s is 4
times bigger than the aperture S, it can affect strongly in the calculation of diffraction errors. It is clear from
our results that the use of a second aperture could modify significantly the irradiance distribution at the
detector’s plane. In consequence, the use of an accurate model of the irradiance due to two successive
apertures is necessary. Such a model is given by Eq. (4.24). The exact evaluation of f; and f; is beyond the

scope of thiswork.

IR
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Fig. 4.9. Irradiance distribution due to a point source

located in the plane of the aperture s, u=35,4.
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In the next chapter we treat the limiting case where the secondary source s is an incoherent source.
The importance of such case will be clear because the useful results obtained can be applied to reduce current

calculations made in radiometry.
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CHAPTER 5

Cross spectral density due to an incoherent source.

Here we analyze the limiting case where the aperture s is an incoherent source. For this case, we
obtain the particular cross spectral density, from the general equation derived in chapter 4. We emphasize that
the cross spectral density here obtained contains free-space propagation and near-field diffraction by aperture
S; whereas the van Cittert-Zernike theorem only consider free propagation (see for example reference [15]).
The diffracted field is the one due to the diffraction with acircular aperture. In the development of this theme,
it will be necessary to define a Dirac delta function in terms of the variables L and Y . It is the subject of the

next section.

5.1. Representation of an incoherent sourcein polar coordinates.

It is well-known that, the diffraction pattern produced by a circular aperture illuminated by an
incoherent source. It is given by Eqg. (4.6). But up to our knowledge, no body has published expressions of the

cross spectral density for such an optical setup. The cross spectral density is useful for evaluating multiple
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successive apertures. We can obtain this expression from the general equation (4.25). To do this, we employ

the cross spectral density W(P1,P2,w), over s, on polar coordinates (L,Y ).

Let us consider the aperture s as an incoherent source. At the cross spectral density W(P1,P,,w) (see

Fig. 4.1) can be represented by a Dirac delta function asfollows
W(Pl,Pz 1W) = W(Xl’ Y1 % Y2’W) = EI (W)j (Xl-XZ’ yl_yZ)’ (CHY)

where E; (w) is the spectral exitance of the source, defined in Eq. (2.21). The Dirac delta function of Eq. (5.1)
is given in rectangular coordinates. And as mentioned above, we need to represent it in the displaced polar
coordinates. We can start with an expression given in reference [25] where the author discusses the Dirac

deltafunction in ordinary polar coordinates. It is given asfollows
o1
d(f - r,)==d(r- r,)df - f,). (5.2)
r
If we apply this definition to Eq. (5.1) we obtain

W(p,R.w)=E (w)gd(ur- 19d(F, - 7). 53
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Apart of constants, which we do not discussin thiswork. Eq. (5.3) represents the cross spectral density

of an incoherent source in polar coordinates.

Next, we require to express the Dirac delta function in terms of the proposed variables L and Y . This
in the sense that both functions must reproduce the same values, that is, infinite when I’,=l"; and f,=f;. And

zero in any other case. Let us see what valuestake L, and Y, whenI',=1"1 and f,=f ;.

From Eq. (4.19) we substitute |, =17, and f, = f; to obtain

L, cosY, =Ifcosf, +v, cosh,,
L,anY, =Il&nf, +wvsnb,,

(5.4)
L, cosY, =I8cosf, +v, cosb,,
L,snY, =1&nf, +v,snb,.
Adding and subtracting v,cosh, and v;sinb, at the two last identities in the transformation (5.3), we have
L, cosY, =I{cosf , +v, cosb, -v, cosb, +v, cosb,, 55

L,snY, =1&nf, +v,snb, -v,snb, +v,sinb,,

or
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L, cosY, =L, cosY, -V, cosh, +v, cosb,,

: : : : 5.6
L,s9nY, =L, snY,-vsnb, +v,sinb,. 50

We denote asL’; and Y " the particular valuesof L, and Y , whenl”, =1"; and f, = f;. From Eq. (5.6)

it results that

1
L= [(L1 cosY, -v,cosh, +v,cosb,)* +(L, snY, -vsnb, +vzsinb2)2]5, 5.7)

and

L,SnY, -v,9nb, +v,sinb,
Ll COSY]_ = Vl COSbl +V2 COsz

Y $=arctan (5.8)

Using L, and Y,  we propose to write an expression equivalent to Eq. (5.3) but in termsof L and Y

asfollows

W(PgPSw)= E,fu)-=d(L, - L (¥, - Y9 ©9
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This equation is, apart of constants, the cross spectral density of an incoherent source in the displaced
polar coordinates (L,Y ). The validity of this expression becomes evident in the next section; where we use it

to evaluate Eq. (4.25) for an incoherent illumination of the aperture s.

5.2 Cross Spectral Density due to an Incoherent Sour ce.

We can proceed to obtain the cross spectral density W’ (U1,U,,w) of the diffracted field in the
detector plane, see fig. 4.1, when the aperture s is an incoherent source. If we substitute the expression given

in Eq. (5.9) in Eq. (4.25), then the cross spectral density is

_p°R 39&94 (- )
WeU,,U,,w) 2 SRy e
" 1 2 (13-13)
mEo(W)L_d(Lz - Ll“)d& 2° Yl? e 2Rk
PERE 2

gri D (01, )- is(uL,)] [C(u,)+is(ul, )
L,dY,L,dYdLdL, ,

(5.10a)

and solving the integral in the variablesL, and Y ,, we obtain
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LA zvz (2 o oz (2 Lz
Wq(uliu W) _ p 2E0 (W) o 0 elm(Vl-VZ) |—2k(|_1- Lﬁ)elﬂ(Lplzcos(chb2)-L1vloos(Y1—b1))

(‘)e2R

12222 ék g e (5.10b)
[CluLg- isfuLd] [CluL,)+is(uL )] Ldy, du,

where L’; and Y'; are functions of L; and Y 4, see Eq. (5.9), Eq. (5.8) and Eq. (5.7). Eq. (5.10b) is our general
expression for the cross spectral density W’ (Uy,U,,w) obtained in the detector plane, if the aperture s is
considered as an incoherent source. The four-fold integral reduces to a two-fold integral. Our expression
permits us then to evaluate the cross spectral density in the Fresnel approximation of an optical field
diffracted by a circular aperture illuminated by an incoherent source. In some sense, our Eq. (5.10) is the

diffracting version of the van Citter-Zernik theorem. In fact, the last is contained in Eqg. (5.10).

In many cases we are interested in the irradiance (or the spectral radiant flux density) of the optical
field. The spectral irradiance of the present configuration is E (U) = WU, U, w). From Eq. (5.9) the spectra

irradiance reduces to

P°Es(W)az, 8" 1

E (U)="—o0/R%at
'( ) 142275 ék g

C2(uL)+S?(uL)]L dvaL - (5.12)

The two exponentials in Eq. (5.10b) become unity and the obtained spectral irradiance due to an
incoherent source depends only of the functions C(u,L) and S(u,L). Since it is only a double integral and the
values of the functions C and S can be already disposed in an array or a vector, then Eq. (5.11) is easier to
evaluate numerically. Apart of constants, Eqg. (5.11) is a simplified version of Eq. (4.6). This shows the

reproducibility of classical results [26]. In a numerical calculation the effort spend in evaluating Eq. (5.11) is
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less than the effort evaluating Eqg. (4.6). In the next section we present numerical simulations, and

experimental results of several practical situations.

5.3. Numerical Example.

We calculated numerically Eqg. (5.11) for three different examples. For that purpose we use a
conventional PC using commercially available mathematical software. In each example the diameter of
the aperture s is different. In the first case we have considered a normalized diameter a’=1, in arbitrary
units. In the second example, we set a'=10. And finally for the third case we set a'=100. For these
examples the geometrical parameter u in Eq. (4.16.1) is 250p. We show in Fig. 5.1 normalized graphics

of the examples.
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Fig. 5.1. Numerical evaluations of Eq. (5.11) for different apertureradios a': @) a'=1, b) a’=10, ¢) a'=100 and u=250p.

The curve labeled as @) belongs to a’=1, which is the one due to a point source. This numerical result
isin perfect concordance with the experimental results reported by Boivin in 1975, see ref. [7]. In this paper,
Boivin reports the measurement of the diffraction pattern of a system with the geometry above discribed. The
curve labeled b) belongs to a’=10. We see in this graphic an effect of smoothing, except at the edge where
diffraction appears stronger. Finally the curve c) belongs to a'=100. Here we can see that the diffraction
effects are reduced and that the curve follows practically the geometric projection of the aperture. Since
radiometric setups can fall in any of these three cases, it is evident the importance of making corrections with

respect to the ideal geometric projection.
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The Fresnel’s integrals are normally known in rectangular coordinates. If we substitute the
rectangular coordinates by polar coordinates for a problem with cylindrical symmetry, and solve the integrals,
then we obtain a solution in terms of the Lommel’s functions, Eq. (4.1). The Eq. (4.1) describes the
diffraction pattern produced by an aperture illuminated by a point source. In the case of an extended source,
the diffraction pattern is calculated by integrating the diffraction pattern produced by each point of the source,
see Eq. (4.6). The Eq. (5.11) is the same as the Eq.(4.6), but given with different variables. Whereas normally

the Eq.(4.6) is handle with the polar coordinates (, f) (see fig.4.2), in Eq.(5.11) we handle it with new

displaced polar coordinates (L, Y).

The advantage of handling the Eq. (5.11) with the displaced polar coordinates is that; apart of solve
the Eq. (4.17) it offers an reduced way to calculate numerically the Eq. (5.11) (it also applies to Eq.(4.24)).
For example, in the case of Eq. (4.6) we need to calculate for each pair of coordinates (, f) the projected
distance between a point U in the observation plane and a point Sin the source (normally denoted as U-S). We
see also that; the integration in the angular variable is performed always from 0 to 2p. Whereas that, in the
case of Eq. (5.11), for agiven value of Y we know the initial and final values of L (see Fig. 4.4 and Fig. 4.5).
Here it is important to note that, L is physically the distance U-S, as can be demonstrated from Eq. (4.30).
Hence, we can give directly the values of L instead of calculate them. Also, the integration over the angular
variable, in this case Y, we note that; the integration is not always performed from 0 to 2o, as it is evident

from Fig. 4.5 and Fig. 4.6.

We show in the next section atypical example of experimental results.
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5.4. Experimental Results.

The service of radiance calibrations at CENAM is based on a radiance standard that consists in a
tungsten lamp inside an integrating sphere, with stabilized flux. The radiance standard is calibrated
periodically each year in order to conserve the trazability to National References. In the case of this
instrument, the trazability is to the Primary Standard of the National Institute of Standards and Technology of

U.SA.

Actually at CENAM, a project to links the trazability of this instrument to National References of
CENAM is developed. The project consist mainly of two parts; The first one is the preparation of an optical
setup where the radiance standard is calibrated by measuring the radiant flux, that arrives into an absolute
detector; in an optical configuration similar to the one shown in Fig. 4.1. And where the diffraction effects
will be treated with the present work. The second part consists of the preparation of a detector as an absolute
reference. It can be a calibrated detector or directly the Primary Standard of CENAM [27]; which was
recently implemented at CENAM to be the basis of several radiometric measurements. The formalism

proposed and developed in this thesis gives the tools to analyze and improve the measuring system.

A preliminary experiment was carried out using as source the radiance standard. The source was
adjusted with a diameter of 0,5mm. A narrow band filter was used to obtain quasi-monochromatic light. The
aperture S, placed at a distance z=1m has a diameter of 2,12mm, and the absolute detector was placed at a
distance z, = 0,56m (see Fig. 4.1). This optical configuration corresponds to a value of u in Eq. (4.16.1) of

35,49.
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We show in Fig. 5.2a the image of the rradiance that arrives to the detector. Fig. 5.2b shows the
normalized profile of the image shown in Fig. 5.2a. The profile was obtained by directly scanning the

photograph shown in Fig. 5.2a. The noise shown in the profile is mainly due to the scanning process.

Fig. 5.2a Experimental results for an expanded source of

diameter 0.5 mm with z=1m, 2=0.56m, an aperture diameter

of 2.12mm and awavelength of 550nm.
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Fig. 5.2b. Normalized profile of the experimental irradiance distribution showing in Fig. 5.2a.

We perform next the numerical calculation of the irradiance for this experimental configuration using
Eqg. (5.11). We show in Fig. 5.2c the corresponding irradiance profile. Note that despite of the noise, both
profiles are practically the same. The respective calculation of diffraction errors with Egs. (4.33) and (4.34)
(slightly modified to be used with our Eq. (5.11)) will permit links the trazability of the radiance standard

with our National Primary Standard.
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Fig. 5.2c. Numerical evauation of Eq. (5.11) for the

experimental parameters of Fig. 5.2a.
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As we have shown, our simplified equation (5.11) reproduces quite well our experimental results. This
is an experimental demonstration of the equivalence between our formalism and classical results given by Eq.

(4.6). It isalso ademonstration of the consistence of our analytic results.



CHAPTER 6

Conclusions.

In this work we have calculated the Cross Spectral Density propagated through a circular aperture in
the Fresnel approximation. The obtained expression is a four-fold integral in terms of displaced polar
coordinates. These introduced coordinates reduce the effort spend in numerical calculations and also they are

convenient variablesto work with general conditions of partial coherence.

We have obtained also the transmission functions of our system in the Fresnel as well as the
Fraunhofer approximations. We note that, the transmission function obtained in this work takes into account
the problem of no-isoplanatic region presented in the Fresnel approximation. In the case of the Fraunhofer

approximation, the system is an isoplanatic imaging system.

We have used our general expression of the Cross Spectral density to demonstrate that the use of a
second aperture, in radiometric measurements, can produce significant deviations of the currently used
diffraction model, which is the basis for the calculations of corrections factors. Better analytic expressions for

calculations of the correction factors can now be obtained using our general expression.
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Also we have given the expression of the cross spectral density of an optical field diffracted by a
circular aperture illuminated by an extended incoherent source. It can be compared, in a certain sense, with
the van Cittert-Zernike Theorem where it gives the respective cross spectral density in free propagation of an

optical field generated by an extended incoherent source.

Finally we have shown experimental results, which are according with our formalism.
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Appendix A

The function D(v, a, c) is defined as

Dv2.c)=5T(m)+5=T(m,). A

2a’
where

m, =(v* +a’- ¢%)/2av,
m, = (v* +c® - a®)/ 2cv,
and

T(x) :Zlarccos(x)- x(1- x2 )UZJ/ p. (A.2)

T(X) isthe optical transfer function for an imaging system with acircular aperture and no aberrations,

seereference [6].



