

Improving Fingerprint Recognition Using
Image Processing and Machine Learning

Techniques

by

Andres Bolivar Rojas Bustos

A dissertation submitted in partial fulfillment of the
requirements for the degree of:

MASTER OF SCIENCE IN ELECTRONICS

in the

National Institute for Astrophysics,
Optics and Electronics

August 2021

Santa Maria Tonantzintla, Puebla

Under the supervision of:

Dr. Gordana Jovanovic Dolecek, INAOE

©INAOE 2021
All rights reserved

The author grants to INAOE permission to reproduce and to

distribute parts or complete copies of this thesis.

2

3

Abstract

This thesis presents a fingerprint recognition system based on ensemble classifiers

with linear discriminants, a type of supervised learning algorithm that has not been reported

so far for fingerprint recognition systems.

First, a graphical application composed of several simple and interesting examples

on the main topics of the image processing area is presented. This was used as a foundation

to understand and apply the fundamentals of image processing in the recognition system.

Subsequently, important concepts about biometrics are introduced, specifically about

fingerprints and why they are used for recognition systems. Then there is a brief description

of the fingerprint image databases used in this work. Next, the preprocessing algorithm is

described, which applies several image processing techniques such as enhancement,

binarization, segmentation, etc., in order to eliminate noise and improve the appearance of

images. The different types of transformations applied to the enhanced images are also

reported in order to calculate representative features that will be used to train supervised

learning algorithms. These algorithms are briefly described comparing their advantages and

disadvantages.

After, the results obtained by the recognition system that has been implemented in

MATLAB and Python are presented. Finally, the conclusions of this research are reported,

as well as future work that could improve the general results obtained.

4

Resumen

En este trabajo se presenta un sistema de reconocimiento de huellas digitales basado

en clasificadores de conjunto con discriminantes lineales, una clase de algoritmos de

aprendizaje supervisado que no ha sido reportado hasta el momento para este tipo de

sistemas de reconocimiento.

Primero se presenta una aplicación grafica compuesta de varios ejemplos simples e

interesantes sobre los temas principales del área de procesamiento de imágenes, Esta se

utilizó como base para comprender y aplicar los fundamentos de esta área en el sistema de

reconocimiento. Posteriormente se introduce conceptos importantes sobre biometría,

específicamente sobre huellas digitales y porque se usan para sistemas de reconocimiento.

Luego se tiene una breve descripción de las bases de datos de imágenes de huellas digitales

utilizadas en este trabajo. A continuación, se describe el algoritmo de preprocesamiento

implementado, el cual aplica varias técnicas de procesamiento de imágenes como mejora,

binarización, segmentación, etc., con el fin de eliminar el ruido y mejorar el aspecto de las

imágenes. También se reportan los diferentes tipos de transformaciones aplicadas a las

imágenes mejoradas con el objetivo de calcular características representativas que serán

utilizadas para entrenar a los algoritmos de aprendizaje supervisado. Estos algoritmos son

descritos brevemente comparando sus ventajas y desventajas.

Posteriormente se presentan los resultados obtenidos por el sistema de

reconocimiento que ha sido implementado en MATLAB y Python. Finalmente, se reportan

las conclusiones de esta investigación, así como el trabajo futuro que podría mejorar los

resultados generales obtenidos.

5

CONTENTS

Abstract .. 3

Resumen ... 4

CONTENTS ... 5

Preface .. 9

CHAPTER 1 . HANDS-ON APPROACH TO IMAGE PROCESSING FUNDAMENTALS . 11

1.1. MOTIVATION .. 11

1.2. GENERAL DESCRIPTION .. 11

1.3. DETAILED DESCRIPTION ... 13

1.3.1. General operation of each demo .. 13

1.3.2. Presentation of Images Module ... 16

1.3.3. Image Enhancement Module ... 21

1.3.4. Image Restoration Module .. 32

1.3.5. Image Compression Module ... 35

1.3.6. Morphological Image Processing Module .. 38

1.3.7. Image Segmentation Module... 41

CHAPTER 2 . BIOMETRICS ... 45

2.1. MOTIVATION .. 45

2.2. FINGERPRINT IMAGES.. 46

2.3. FINGERPRINT RECOGNITION SYSTEM ... 46

CHAPTER 3 . FINGERPRINT DATABASES .. 48

3.1. FVC2000 .. 48

3.2. FVC2002 .. 49

3.3. FVC2004 .. 49

CHAPTER 4 . PREPROCESSING ... 51

4.1. NORMALIZATION .. 53

4.2. LOCAL ORIENTATION ESTIMATION ... 53

4.3. LOCAL FREQUENCY ESTIMATION .. 55

6

4.4. REGION MASK ESTIMATION ... 56

4.5. GABOR FILTERING .. 57

4.6. BINARIZATION ... 58

4.7. EXAMPLES ... 58

4.7.1. FVC2000 ... 58

4.7.2. FVC2002 ... 60

4.7.3. FVC2004 ... 61

CHAPTER 5 . FEATURE EXTRACTION OF FINGERPRINTS... 63

5.1. DISCRETE WAVELET TRANSFORM ... 63

5.2. GRAY LEVEL CO-OCCURRENCE MATRIX ... 64

5.3. SPATIAL DOMAIN .. 67

5.4. FOURIER DOMAIN ... 68

5.5. DISCRETE COSINE TRANSFORM .. 69

5.6. STATISTIC MEASURES ON THE DWT .. 70

5.6.1. Maximum .. 70

5.6.2. Euclidean norm ... 70

5.6.3. Skewness ... 71

5.6.4. Kurtosis ... 71

5.7. WAVELET-BANDS SELECTION FEATURES .. 72

5.8. TOTAL NUMBER OF FEATURES ... 74

CHAPTER 6 . MACHINE LEARNING ALGORITHMS .. 75

6.1. SUPERVISED MACHINE LEARNING ALGORITHMS ... 76

6.1.1. k-Nearest Neighbors .. 76

6.1.2. Support Vector Machines .. 77

6.1.3. Naive Bayes... 77

6.1.4. Discriminant Analysis ... 79

6.1.5. Decision Trees ... 80

6.1.6. Ensemble Classifiers ... 81

6.2. COMPARISON OF SUPERVISED MACHINE LEARNING ALGORITHMS 84

CHAPTER 7 . FINGERPRINT RECOGNITION SYSTEM IN MATLAB 85

7.1. CLASSIFICATION LEARNER .. 85

7.2. RESULTS FOR THE FVC2000 DATABASE .. 87

7.3. RESULTS FOR THE FVC2002 DATABASE .. 90

7

7.4. RESULTS FOR THE FVC2004 DATABASE .. 92

7.5. DISCUSSION .. 94

7.5.1. FVC2000 ... 95

7.5.2. FVC2002 ... 97

7.5.3. FVC2004 ... 99

7.5.4. NOISE COMPARISON .. 101

7.5.5. COMPARISON OF ACCURACIES .. 104

7.5.6. COMPARISON WITH STATE OF THE ART .. 105

CHAPTER 8 . FINGERPRINT RECOGNITION SYSTEM IN PYTHON 108

8.1. LIBRARIES ... 108

8.1.1. OpenCV-Python .. 108

8.1.2. NumPy ... 108

8.1.3. SciPy ... 109

8.1.4. Scikit-learn .. 109

8.1.5. Pandas ... 109

8.1.6. PyWavelets .. 109

8.1.7. Scikit-image .. 109

8.1.8. DCTfunctions .. 110

8.2. FEATURE EXTRACTION IN PYTHON ... 110

8.3. SUPERVISED LEARNING ALGORITHMS ... 110

8.3.1. Linear Discriminant Analysis in Python ... 110

8.3.2. Ensembles in Python ... 111

CHAPTER 9 . CONCLUSIONS AND FUTURE WORK ... 114

9.1. CONCLUSIONS .. 114

9.2. FUTURE WORK ... 114

LIST OF FIGURES .. 116

REFERENCES…………………………………………………………………………………...119

8

9

Preface

 Fingerprint recognition is of vital importance in many areas of industry, academia,

security, banking, personal identification, etc. There is a wide variety of fingerprint

recognition systems on the market, and each has its advantages and disadvantages. In this

thesis, the main objective is to explore new types of fingerprint classification based on

machine learning algorithms. We started the development of this work by creating a

graphical approach to the fundamentals of image processing (IP). This application

exemplifies many basic concepts of the image processing area, which are necessary to

implement or design any system that works with images, as it is a fingerprint recognition

system in this case.

The Image Processing Toolbox extends MATLAB’s ability to handle IP problems

by providing a collection of specific functions that create an environment suitable for

solving digital image processing problems. Other toolboxes used to supplement the Image

Processing Toolbox in this work include Wavelet, and the Statistics and Machine Learning

Toolboxes.

 The design and evaluation of a fingerprint recognition system are also implemented

in MATLAB with the novelty of using machine learning models, specifically ensemble

classifiers, obtaining promising results for some public fingerprint databases used in the

current work.

The biometrics behind fingerprints and relevant concepts regarding their application

and morphology are presented in Chapter 2. To evaluate the performance of the system

designed in this work, it was decided to use several public fingerprint databases, which are

described in Chapter 3. Chapter 4 presents the preprocessing of fingerprint images covering

many image processing techniques like enhancement, binarization, etc. Another important

section is feature extraction, presented in Chapter 5, where the types of transformations

applied to fingerprints are listed and explained to obtain representative features of them,

thus creating a training set that will serve as input to a classifier. Chapter 6 briefly defines

the machine learning algorithms evaluated in this paper.

After having defined all the necessary components for the classification process, the

results obtained from the system implemented in MATLAB are presented in Chapter 7.

From another point of view, we decided to implement an analogous system in Python,

which is evaluated in Chapter 8 reporting its corresponding results. Finally, the conclusions

of this research and the future work are exposed in Chapter 9.

10

11

CHAPTER 1 . HANDS-ON APPROACH

TO IMAGE PROCESSING

FUNDAMENTALS

1.1. MOTIVATION

In this work, a tool has been developed to learn basic image processing (IP)

techniques in a friendly way to provide a stable foundation to develop a fingerprint

recognition system.

Since we are very familiar with MATLAB, the application has been created using

this software in conjunction with the Graphical User Interface Development Environment

(GUIDE). This MATLAB-based tool is used as a helpful fundament to understand and

apply several image processing techniques, which later will be used to develop a

preprocessing algorithm to enhance fingerprint images.

The tool includes the following topics of IP: Presentation of Images (histogram,

noise, and frequency representation of images), Image Enhancement, Image Restoration,

Image Compression, Morphological Image Processing, and Image Segmentation.

1.2. GENERAL DESCRIPTION

 The following figure shows the main GUI for this platform indicating the general

content. The following groups of demo programs (modules) are included: Presentation of

Images, Image Enhancement, Image Restoration, Image Compression, Morphological

Image Processing, and Image Segmentation. Clicking on each module opens the

corresponding menu. The more detailed content of each menu is presented below.

12

Figure 1.1. Main GUI for the proposed platform.

Presentation of Images: The Presentation of Images module includes examples for

histogram of an image, noise in images, and frequency domain representation of images.

Image Enhancement: The Enhancement module includes 4 subsections each with

two examples:

- Histogram Processing: Histogram Equalization and Contrast-limited adaptative

histogram equalization (CLAHE).

- Spatial Filtering: Laplacian filter (Linear) and Median filter (Non-linear).

- Fuzzy Techniques: Contrast Enhancement and Edge Detection.

- Frequency Filtering: Filters in the Frequency Domain and Notch filters (Moire

Pattern).

Image Restoration: The Restoration module includes examples for Wiener

Filtering and Lucy-Richardson Algorithm.

Image Compression: The Compression module includes examples for

Compression by Quantization, and JPEG and JPEG 2000 Compression.

Morphological Image Processing: The Morphological Processing module presents

examples for Smoothing using openings and closings and Compensating for a nonuniform

background.

Image Segmentation: The Segmentation module includes examples for Local vs

Global Thresholding and Segmentation using gradients and the watershed transform.

All demo presentations are primarily based on [1]. Clicking on each module in the

menu opens the corresponding demo presentation. The typical configuration of the demo

presentations is shown in the following figure, presenting different sections that appear in

the GUI.

13

Figure 1.2. General configuration of each demo in the platform.

At the top left of the window is a brief description of the current demo that provides

a brief introduction to the IP technique used in this example and explanations of the

parameters used. The name of the implemented MATLAB function is also presented.

The Choice of parameters section provides the choice of default parameters or user

input.

Another feature of the platform is the ability to select images for each demo. This

platform provides a menu with five different images that can be selected and analyzed.

There are two command buttons. The first button functions as the "Start", "Next",

"Finish", and "Restart" button depending on the state of the demo. The second command

button serves as a “Return to the Previous Menu” that closes the current window allowing

the user to return to the main menu.

There are different main sections including the initial image(s), processed image(s),

and characteristics of each, in the center of the window. The user can view, step by step, the

processed images and the effect that the parameters have on each procedure.

A conclusion on the IP technique(s) used in the current example is provided at the

bottom left.

1.3. DETAILED DESCRIPTION

This section describes in detail all the examples of this platform.

1.3.1. General operation of each demo

14

All demos use a “Start” button that changes to “Next” after pressing it. Depending

on the number of cases for each demo, this button will eventually change to the “Finish”

state. This last window will be shown in the next descriptions for the rest of the demos, to

reduce the number of figures that are all similar in their functionality, but each one with a

different conclusion. As an example, the first appearance for the Histogram of an Image

demo is presented in Figure 1.3. The “Number of bins” parameter can be changed before

pressing the “Start” button if desired. After pressing the button, this will change to “Next”

as can be seen in Figure 1.4. This figure presents an overexposed image (high-intensity

gray levels for the pixels), this can be noticed in the corresponding histogram also

presented in Figure 1.4. By pressing the “Next” button in this GUI, the following case will

appear, as can be seen in Figure 1.5. This image has a low contrast showing low gray level

intensity values, which justifies the dark appearance of the image. This characteristic is

visible on the histogram, composed mainly of low levels. By pressing the “Next” button

one more time, the GUI will change as shown in Figure 1.6. This is the final case in this

demo, where all gray levels in the image span the entire range of the histogram. A

conclusion text will appear in the GUI, giving a final inference on image histograms. The

button will change to “Finish” and when pressed, the final GUI displays all the above cases

as a summary for a final contrast and histogram comparison. This GUI is presented in

Figure 1.8. The button will change to “Restart”, indicating a reset of the example to the

original window presented in Figure 1.3.

Figure 1.3. First appearance of the Histogram of an Image demo.

15

Figure 1.4. Overexposed image in the Histogram of an Image demo.

Figure 1.5. Low contrast image in the Histogram of an Image demo.

16

Figure 1.6. High contrast image in the Histogram of an Image demo.

1.3.2. Presentation of Images Module

Figure 1.7 presents the Presentation of Images menu showing three demos that serve

as an introduction to important concepts such as histograms, noise, or frequency domain

representation of images. Each menu has a button to return to the main menu, closing the

current window and going back to the main GUI.

The three demos included in this module are Histogram of an Image, Noise in

Images, and Frequency Domain Representation.

Figure 1.7. Presentation of Images GUI.

17

1.3.2.1. Histogram of an Image

This demo introduces image histograms and their use in image processing. This

example deals with three different versions of the same image and their respective

histograms, the idea is to analyze the general distribution or shape of the histogram and its

correspondence with the contrast of each image. Figure 1.8 presents the comparison of the

three versions of this demo using the “Sunflower” image. The contrast change between the

three images is noticeable, which translates into the general distribution of each histogram.

Another example with the “Cheetah” image is presented in Figure 1.9.

Figure 1.8. Histogram of an Image GUI, "Sunflower" example.

Figure 1.9. Histogram of an Image GUI, "Cheetah" example.

18

1.3.2.2. Noise in Images

This demo presents an introduction to some types of noises commonly found in

corrupted images. These noises can be caused by interference with the imaging process or

defective sensors. Figure 1.10 shows an example of this demo using the “Cat” image with

the default values applied for each type of noise. The idea is to add artificial noise to an

image and analyze the result for each type of noise. The four types of noises and their

respective parameters are summarized in the following table:

Table 1.1 Different types of noises included in this demo.

Type of Noise Noise Density Mean Variance No parameters

Salt & Pepper X

Gaussian X X

Poisson X

Speckle X

The three parameters can be changed during the demo operation. Another example

using the “Flowers” image is presented in Figure 1.11.

Figure 1.10. Noises in Images GUI, "Cat" example.

19

Figure 1.11. Noises in Images GUI, "Flowers" example.

1.3.2.3. Frequency Domain Representation

This demo introduces the Fast Fourier Transform (FFT) for images. Each example

features two different images, including a normal image and a Moire pattern image. The

respective magnitude and phase responses are presented, including a logarithmic magnitude

transformation for better resolution and contrast of this response when the range of values

is too wide (this explains why the Original Spectrum image is mostly dark). The parameters

included in this demo are 𝑃 and 𝑄, the number of rows and columns of the FFT,

respectively (this transformation is a matrix of size 𝑃 × 𝑄). Figure 1.12 shows the final

window of this demo for the example “First Case: Bulbs - Second Case: Lady”.

20

Figure 1.12. Frequency Domain Representation GUI, "First Case: Bulbs - Second Case:

Lady" example.

Figure 1.13. Frequency Domain Representation GUI, "First Case: Giraffe - Second Case:

Girl" example.

The previous image presents another example that compares a “Giraffe” image,

completely free of noise, with a “Girl” image corrupted by a Moire pattern. The difference

is noticeable in the Log Transformation images that show the distribution of high-intensity

peaks in the spectrum of the Moire pattern image (white dots in the image area), strictly

related to the periodic noise introduced by this effect. This problem occurs mainly when

scanning newspaper pictures or images.

21

1.3.3. Image Enhancement Module

Figure 1.14. Image Enhancement GUI.

The image enhancement module implements four different IP enhancement

techniques. In the Demo selection section, there are two options for each technique, these

options will change according to the corresponding button. For example, Figure 1.14 shows

the Histogram Equalization and Contrast-limited adaptative histogram equalization

(CLAHE) options, which belong to the Histogram Processing button. Using the Spatial

Filtering button, the options will change to Laplacian filter (Linear) and Median filter (Non-

linear) as shown in Figure 1.15.

Figure 1.15. Image Enhancement GUI after pressing the Spatial Filtering button.

22

The same behavior applies to the Fuzzy Techniques and Frequency Filtering

buttons. In total, there are 8 different demos for this image enhancement module, detailed

in the following section.

1.3.3.1. Histogram Processing

1.3.3.1.1. Histogram Equalization

The first demo presents an example of histogram equalization. The “gray levels”

parameter specifies the number of bins for the histogram calculation, this value has a direct

impact on the number of gray levels for the equalized image. Figure 1.16 shows this demo

in its final step for the “Cheetah” example. A comparison between the original image and

the equalized one concludes that the latter shows a better contrast due to the equalization of

the histogram. This process produces a “broader” histogram, an indicator of an image with

more variety of gray-level intensity pixels.

Figure 1.16. Histogram Equalization GUI, "Cheetah" example.

Another example with a “Boat” image demonstrates how the equalization process

works. The equalized image presents more contrast by enhancing the darkest and lightest

areas. This example is presented in the following figure.

23

Figure 1.17. Histogram Equalization, "Boat" example.

1.3.3.1.2. Contrast-limited adaptative histogram equalization (CLAHE)

This technique consists of processing small regions of the image, called tiles, using

histogram specifications for each tile individually. Contrast, especially in areas of

homogeneous intensity, can be limited to avoid amplifying noise. The user must enter a

value for the “Clip Limit” parameter, which specifies a contrast enhancement limit. Higher

numbers result in greater contrast; however, it can produce an overexposed or “washed out”

appearance. Figure 1.18 presents an example for this demo using the “Ben” image with a

user-entered value of 0.03 for Clip Limit.

Figure 1.18. CLAHE GUI, "Ben" example.

24

Another example with the “Kid” image is shown in Figure 1.19 using the default

value for Clip Limit. The enhancement is slightly softer in comparison with the first

example of the “Ben” image because the Clip Limit is 0.01 by default.

Figure 1.19. CLAHE GUI, "Kid" example.

1.3.3.2. Spatial Filtering

1.3.3.2.1. Laplacian filter (Linear)

The spatial filtering demos use two approaches. The first is a linear filter,

specifically a Laplacian filter. This is a derivative operator with the ability to sharp an

image by zeroing constant areas and magnifying details. Figure 1.20 presents the window

GUI for this demo using the “Hands” image. The filtered version has sharper details

compared to the original. A better result is presented for comparison, this image was

obtained using a mask defined with a matrix. The filtered version was produced with the

fspecial function in MATLAB.

The Laplacian filter implements the following spatial mask:

0 1 0
1 −4 1
0 1 0

The “better result” utilizes a slightly different spatial mask:

25

1 1 1
1 −8 1
1 1 1

Figure 1.20. Laplacian filter GUI, "Hands" example.

A similar example is presented in Figure 1.21 using a “Van Gogh” image with

multiple strikes that are highlighted as the spatial filtering increases.

Figure 1.21. Laplacian filter GUI, "Van Gogh" example.

26

1.3.3.2.2. Median filter (Non-linear)

The second approach in the spatial filtering module is a non-linear technique using a

median filter. This type of filter has practical importance in MATLAB, for this reason, it

has its function called medfilt2. In this demo, the user can modify the noise density added

to the image. Figure 1.22 presents an example of this demo with the “Tropical” image. A

comparison between the two filtered images allows us to understand the importance of

padding the border of the image.

Figure 1.22. Median filter GUI, "Tropical" example.

Figure 1.23. Median filter GUI, "Cat 1" example.

27

Several “pepper” pixels are still present in the filtered result for the first case, in the

second image this problem is avoided. A symmetric padding was configured for the second

case, this procedure handles the border problems inherent in spatial filtering. The

“symmetric” approach extends the image by mirror-reflecting it across the border [1].

Figure 1.23 presents another example with a higher noise density, which results in a

noisier image. However, the median filter is capable of recovering the initial image, which

in this case is called “Cat 1”. The median filter is considered non-linear because its

response is based on ordering (ranking) the pixels contained in an image neighborhood and

then replacing the value of the center pixel in the neighborhood with the value determined

by the ranking result [1].

1.3.3.3. Fuzzy Techniques

1.3.3.3.1. Contrast Enhancement

The fuzzy techniques used in this demo provide better results for some images

compared to the histogram equalization technique. This demo presents a comparison

between these two approaches. The fuzzy variables are the intensities of the pixels, which

are handled by membership functions that create darker and brighter intensities, increasing

the separation of dark and light on the grayscale. Figure 1.24 shows an example (“Street”

image) of contrast enhancement using fuzzy techniques, the middle image shows a washed

appearance, however, the Fuzzy Logic Image has a better appearance while enhancing

contrast at the same time. This image has rich gray tonality, which is desirable instead of an

“overexposed” appearance such as the regular histogram equalization result.

Figure 1.24. Fuzzy Contrast Enhancement GUI, "Street" example.

28

Figure 1.25. Fuzzy Contrast Enhancement GUI, "Grains" example.

The other example in this demo presents a “Grains” image in Figure 1.25, this case

demonstrates a different type of use for the fuzzy contrast enhancement. For this specific

image, the algorithm is not capable of producing a successful enhancement like the

equalized version. However, another use for this technique is to remove foreground

elements (such as some dark grains) that have similar gray levels to the background, a

different approach to image segmentation.

1.3.3.3.2. Edge Detection

An interesting application of fuzzy techniques is edge detection. This method is not

used as often as the Laplacian, because its results are dependent on fuzzy membership

functions, which can change for different images. However, in this demo, the images are

predefined meaning that the performance of the technique is not affected by the different

images. When using fuzzy techniques, the basic approach is to define fuzzy neighborhood

properties based on uniform regions and intensity differences. The following figures

present examples of this demo using the “Tropical” and “Leaf” images, respectively.

29

Figure 1.26. Fuzzy Edge Detection GUI, "Tropical" example.

Figure 1.27. Fuzzy Edge Detection GUI, "Leaf" example.

1.3.3.4. Frequency Filtering

1.3.3.4.1. Filters in the Frequency Domain

This demo implements filter design directly in the frequency domain. The main

parameters include the spectral distance “D0” a positive number that specifies the diameter

of the passband, for low pass filters; or reject band, for high pass filters. Each example

features two initial images, one for low pass filtering which blurs the details, and a high

pass filter that extracts the high-frequency details (basically made up by edges). The

following figures show two examples (“Elephants” and “Dog”) of the general operation of

this demo using the default distance value of 50 pixels.

30

Figure 1.28. Filters in the Frequency Domain GUI, "Elephants" example.

Figure 1.29. Filters in the Frequency Domain GUI, "Dog" example.

1.3.3.4.2. Notch Filters (Moire Pattern)

A Moire Pattern is a periodic noise that is added to an image in a scanning process

generally of newspapers. This demo shows an example of how to eliminate this noise using

notch filters, the user has the option to modify the radius of the “notches” and analyze the

effect that these filters have on the general appearance of the recovered image. The notch

filters have gaussian shapes. Figure 1.30 presents an example using the “Lanterns” image

with the default value for the notch radius of 20 pixels.

31

Figure 1.30. Notch Filters GUI, "Lanterns" example.

This demo compares two filtered results using a smaller and a larger number of

notches. In general, by using more notches, the recovered image will look better as can be

seen in the previous figure, and the example of the “Asian girl” image in the following

figure.

Figure 1.31. Notch Filters GUI, "Asian girl" example.

32

1.3.4. Image Restoration Module

Figure 1.32. Image Restoration GUI.

The application implements two demos for image restoration. Figure 1.32 presents

both options, including the Wiener Filtering and Lucy-Richardson Algorithm, two well-

known algorithms used in image restoration.

1.3.4.1. Wiener Filtering

Figure 1.33 shows a comparison between the initial image and its degraded version,

in this case for the “Checkerboard” image. The user controls the linear motion used to

create a PSF (Point Spread Function) that corrupts the original image and the Gaussian

noise that finally produces the degraded version. This demo compares several restoration

techniques including Inverse filtering, Wiener filtering using a constant ratio, and Wiener

filtering with autocorrelation functions.

Figure 1.33. Wiener Filtering GUI, "Checkerboard" example.

33

This demo is useful for analyzing noise induced by linear motion where the user

modifies the number of pixels translated and the angle at which the motion occurs. The

following figure presents an example of this type of degradation in the “Star” image with

the restored versions concluding that the autocorrelation functions approach produces the

best results.

Figure 1.34. Wiener Filtering GUI, "Star" example.

1.3.4.2. Lucy-Richardson Algorithm

The Lucy-Richardson (L-R) algorithm is a nonlinear and iterative restoration tool.

This demo provides better results than a linear method, however being an iterative

algorithm, it is necessary to define the number of iterations. This decision depends on

several outputs (trial and error) accepting the best result. Figure 1.35 presents the

restoration results using the same “Checkerboard” image. For this specific example, 10

iterations of the algorithm are sufficient to produce an acceptable restoration.

34

Figure 1.35. Lucy-Richardson Algorithm GUI, "Checkerboard" example.

Another example using the “Leaf” image demonstrates the variability of restored

versions based on the number of iterations. For this case, the best-restored image

corresponds to 5 iterations because the dark area of the leaf is not corrupted by gray pixels

like the other restored versions with a higher number of iterations. This example is

presented in Figure 1.36.

Figure 1.36. Lucy-Richardson Algorithm GUI, "Leaf" example.

35

1.3.5. Image Compression Module

Figure 1.37. Image Compression GUI.

For image compression, the application offers two demos. Figure 1.37 presents both

options, including Compression by Quantization and, JPEG and JPEG 2000 Compression,

the latter being a comparison between the most known compression standard for images.

1.3.5.1. Compression by quantization

An image has psychovisual redundancy and it is desirable to reduce this information

as it is not essential for normal visual processing. This removal is called quantization

because it creates a reduced number of discrete levels for gray level intensities in an image,

this process is not reversible. This demo shows an example of this procedure using portrait

images and their quantized versions for comparison purposes. Figure 1.38 shows the

operation for the “Marilyn Monroe” image with 2 bits used in compression by two

methods: Uniform quantization and IGS (Improved Gray Scale) quantization. The original

image has 8-bit intensity levels. The difference between the quality of the compressed

images is remarkable.

36

Figure 1.38. Compression by quantization GUI, “Marilyn Monroe” example.

The following figure shows another example with the image called “Audrey

Hepburn” with 2 bits. This demo confirms the advantage of using the IGS approach, as it

recognizes the eye’s interest sensitivity to edges and divides them by adding a

pseudorandom number to each pixel, generated from the lower-order bits of neighboring

pixels. False edges are more noticeable in the uniform quantization result, as can be seen in

Figures 1.38 and 1.39.

Figure 1.39. Compression by quantization GUI, “Audrey Hepburn” example.

37

1.3.5.2. JPEG and JPEG 2000 Compression

Joint Photographic Experts Group (JPEG) is the most popular compression standard

used in multiple files including images. This demo applies a version of the original JPEG

compression with the difference of not including Huffman coding. The demo features a

portrait and its compressed version using both JPEG standards. This demo provides a

comparison between both results and the improvement of JPEG 2000 over the original due

to the implementation of the Wavelet transform in this method. Figures 1.40 and 1.41 show

the operation of this demo for the “Boy” and “Dog” images, respectively. The differences

between the two approaches are more noticeable in the Zoom for Details images (square

regions in the JPEG version). The parameters have a direct impact on the quality of the

compressed image.

Figure 1.40. JPEG and JPEG 2000 Compression GUI, "Boy" example.

38

Figure 1.41. JPEG and JPEG Compression GUI, "Dog" example.

1.3.6. Morphological Image Processing Module

Figure 1.42. Morphological Image Processing GUI.

The morphological image processing module contains two demos. Figure 1.42

presents both options, including Smoothing using openings and closings and Compensating

for a nonuniform background. Both approaches are common examples of methods used in

morphological image processing, such as openings and closings. The combination of these

methods provides important tools for IP.

1.3.6.1. Smoothing using openings and closings

This demo explains the definition of openings and closings and applies these

techniques to smooth dark streaks in an image. The GUI provides all the steps required to

perform the smoothing process. This type of processing is common for many IP

39

applications. Figure 1.43 shows an example using the “Plugs” image. The final processed

image is free of wood grain (they appear as dark streaks on the wood dowels).

Figure 1.43. Smoothing using openings and closings GUI, "Plugs" example.

Figure 1.44. Smoothing using openings and closings GUI, "Van Gogh" example.

Figure 1.44 shows another example of this demo. The initial “Van Gogh” image

features dark, hard strokes around the portrait. This image is a good example of how

smoothing using morphological operators removes such strokes, as the result of alternating

sequential filter demonstrates.

40

1.3.6.2. Compensating for a nonuniform background

Figure 1.45 shows an example (“Grains” image) of segmentation using

morphological operators to compensate for a nonuniform background. This type of image

needs preprocessing to obtain a suitable segmentation, the radius of the structuring element

is the parameter that the user applies to change the segmented results. This compensation

applies openings and closings to enhance foreground details over the background,

providing a better template image for segmentation, which in this demo is a simple

threshold. A morphological reconstruction removes the white areas in the image that are

smaller than the structuring element, this approach improves the segmentation results.

Figure 1.45. Compensating for a nonuniform background GUI, "Grains" example.

The second example in this demo utilizes the “Vessels” image that shows another

case of a nonuniform background image. Figure 1.46 presents this image. This effect makes

it difficult to segment the elements in the foreground from the background. This demo

works by finding a background estimate and subtracting this image from the original, this

operation creates a template image that can be better segmented (by thresholding in this

case).

41

Figure 1.46. Compensating for a nonuniform background GUI, "Vessels" example.

1.3.7. Image Segmentation Module

Figure 1.47. Image Segmentation GUI.

The image segmentation module offers two demos. Figure 1.47 presents both

options including Local vs Global Thresholding and Segmentation using gradients and the

watershed transform.

1.3.7.1. Local vs Global Thresholding

Thresholding is one of the most widely used segmentation techniques, this demo

shows two approaches of this method. Global thresholding techniques often fail when the

background illumination is highly uneven (as discussed in the previous section). To solve

42

this problem, another approach in which there is more than one dominant object intensity

(in which global thresholding also presents difficulties) is to use variable or local

thresholding. As the name suggests, this type of technique computes a threshold value at

each point in the image based on one or more properties of the pixels in its neighborhood.

The main parameters for local thresholding are nonnegative scalars that create a

proportional relationship between the local mean and the standard deviation, with the

threshold value indicating whether a pixel is assigned a value of 1 or 0. The user can

modify these constants in this demo. Figure 1.48 presents the comparison between both

thresholding approaches with the “Quantum” image. The comparison shows the advantages

of using a local approach versus a global threshold based on the Otsu method. This global

approach maximizes the variation between classes between two sets of intensity levels.

Since the images in this demo have three differentiated intensity levels, Otsu’s method fails

to segment the highest intensities from their surroundings, which is not the case for local

thresholding.

Figure 1.48. Local vs Thresholding GUI, "Quantum" example.

The following figure presents another example of this demo using the “Cells”

image. In this case, the constants 𝑎 and 𝑏 have different values. These values were found by

trial and error, which is common in applications like the one presented in this demo.

43

Figure 1.49. Local vs Thresholding GUI, "Cells" example.

1.3.7.2. Segmentation using gradients and the watershed transform

In geography, a watershed is a ridge that divides areas drained by different river

systems. The watershed transform applies these ideas to gray-scale image processing to

solve a variety of image segmentation problems [1]. This demo presents an introduction to

the watershed transform and the application of gradient magnitude for segmentation. The

magnitude of the gradient is often used to preprocess a gray-scale image before using the

watershed transform for segmentation. The gradient magnitude image has high pixel values

along object edges and low pixel values elsewhere. Then, the watershed transform would

result in watershed ridge lines along the edges of the objects. It is easier to segment a

gradient image than its original version, which is demonstrated in this demo. Figure 1.50

shows this demo with the “Particles 1” image using the default values for the “length”

parameters of the structuring elements for opening and closing.

44

Figure 1.50. Segmentation using gradients and the watershed transform GUI, "Particles 1"

example.

The Watershed transform image in the previous figure represents an example of

over-segmentation. This is not a good result because there are too many watershed ridges

that do not correspond to the boundaries of the objects of interest (“Particles”). To solve

this problem, the gradient image was smoothed before calculating the watershed transform

using a close-opening approach. The last image represents the smoothed version with some

improvement, however, there are still some extraneous ridge lines. This behavior can be

further refined by using a limited number of segmented regions. Another example of this

demo with the “Particles 2” image is presented below.

Figure 1.51. Segmentation using gradients and the watershed transform GUI, "Particles 2"

example.

45

CHAPTER 2 . BIOMETRICS

Biometric recognition is the automatic recognition of individuals based on their

biological and behavioral characteristics. These types of tools are helpful to establish the

confidence that we are dealing with individuals who are already known (or not known)

meaning that they belong to a group with certain rights or privileges [2].

Biometric recognition is promoted as a technology that can help to identify

criminals, provide better control of access to physical facilities, patient tracking in medical

informatics, personalization of social services, banking, and many more applications [2].

The main biometric characteristics used for identification are fingerprint, iris, face,

voice, hand geometry, retina, handwriting, and gait [3].

A biometric characteristic requires two important attributes for unambiguous

recognition: uniqueness and stability over time. The fingerprint is one of the biometrics that

fulfills both requirements, the other two are the face and iris [4].

Fingerprints are accessible and they do not provide more information than

necessary, such as an individual’s race or health, and they perform relatively well [3].

2.1. MOTIVATION

There are many reasons to use biometrics, including improving the convenience and

efficiency of routine access transactions, reducing fraud, improving public safety and

national security [2].

The fingerprint has more discriminators than any other biometric feature currently

in use. Fingerprints remain unchanged for life. The fingerprints of even identical twins are

different [5]. One of the main reasons for the popularity of fingerprints is the relatively low

price of fingerprint sensors [3]. Today our own devices have finger-imaging sensors that

provide better ways to protect them from intruders, another security measure in addition to

the typical password, or even face recognition.

46

2.2. FINGERPRINT IMAGES

Most of the early research work on fingerprint recognition was based on minutiae

points (ridge ending and bifurcation) of the fingerprint which does not work well for poor

quality images. Nowadays, researchers explore non-minutiae representations of fingerprints

by considering fingerprint images as oriented textures that combine the global and local

information present in a fingerprint [5].

Figure 2.1 presents an example of global and local features in a fingerprint image.

Figure 2.1. Global and local features of a fingerprint image [5]

In this work, the main focus is on non-minutiae techniques, which implies that there

is no need to analyze every local feature in the fingerprint, but rather texture-based features

are calculated. A complete image of a fingerprint cannot be used or processed every time

because the memory required to perform that task can be large. This problem slows down

the processing speed of the system for recognition. For this reason, only prominent features

are extracted from each image, and a feature set is created [5].

2.3. FINGERPRINT RECOGNITION SYSTEM

The typical architecture of a fingerprint recognition system is presented in Figure

2.2. This system has two phases: enrollment and fingerprint matching. The first phase

consists of an image sensor that captures the fingerprint image from which multiple

features will be extracted, processed, and stored in a feature set or database. This process is

repeated for the second phase by creating a query template that is used in the matching

process to determine a similarity score between the two fingerprints. A decision is made

based on the corresponding score allowing access to an enrolled subject or denying access

to an intruder [5].

47

Figure 2.2. Typical architecture of a fingerprint recognition system

The current work uses public fingerprint databases that provide the images avoiding

the need to find a sensor to capture the fingerprint images. The rest of the architecture was

designed in MATLAB and is described in more detail in the following chapters.

48

CHAPTER 3 . FINGERPRINT

DATABASES

Three public fingerprint databases were used in this work and a brief description is

given below.

3.1. FVC2000

FVC2000 was the First International Competition for Fingerprint Verification

Algorithms held in August 2000. This competition was organized by professors from

various laboratories at the University of Bologna, San Jose State University, and Michigan

State University. The results of 11 participants were presented at the 15th International

Conference on Pattern Recognition [6]. From this database, we only used the set “B”

compose with 4 subsets with 80 images each. The subsets belong to 10 different subjects

with 8 impressions each. The following table presents detailed information for this set.

Table 3.1. Information for subsets in the FVC2000 database [6].

Subset Sensor Type Image Size

DB1 Low-cost optical sensor 300x300

DB2 Low-cost capacitive sensor 256x364

DB3 Optical sensor 448x478

DB4 Synthetic generator 240x320

The following figure presents four examples from this database.

Figure 3.1. Examples of fingerprints from the FVC2000 database with one image from each

subset [6].

49

3.2. FVC2002

FVC2002 was the Second International Competition for Fingerprint Verification

Algorithms held in April 2002. This competition was organized by the same professors

from the FVC2000 competition. The results of 31 participants (21 industrial, 6 academic,

and 4 others) were presented at the 16th International Conference on Pattern Recognition

[7].

Similar to the FVC2000 database, we only use the set “B” composed of 320 images

in total. The next table presents a detailed description of the subsets in this database:

Table 3.2. Information for subsets in the FVC2002 database [7].

Subset Sensor Type Image Size

DB1 Optical sensor 388x374 (142 Kpixels)

DB2 Optical sensor 296x560 (162 Kpixels)

DB3 Capacitive sensor 300x300 (88 Kpixels)

DB4 Synthetic generator 288x384 (108 Kpixels)

The following figure presents four examples from this database.

Figure 3.2. Examples of fingerprints from the FVC2002 database with one image from each

subset [7].

3.3. FVC2004

FVC2004 was the Third International Fingerprint Verification Competition and like

the two previous competitions, it was organized by the same laboratories. The results of 43

participants (29 industrial, 6 academic, and 8 independent developers) were presented at the

First International Conference on Biometric Authentication [8]. As in the previous two

databases, we only use the set “B” with the same number of fingerprint images. The

following table summarizes this database.

50

Table 3.3. Information for subsets in the FVC2004 database [8].

Subset Sensor Type Image Size

DB1 Optical sensor 640x480 (307 Kpixels)

DB2 Optical sensor 328x364 (119 Kpixels)

DB3 Thermal sweeping sensor 300x480 (144 Kpixels)

DB4 Synthetic generator 288x384 (108 Kpixels)

The following figure presents four examples from this database.

Figure 3.3. Examples of fingerprints from the FVC2004 database with one image from each

subset [8]

51

CHAPTER 4 . PREPROCESSING

This chapter discusses the different image processing techniques used to enhance

the ridge-valley patterns of fingerprints. First, we need to define some concepts about the

characteristics of the shape of a fingerprint [3]:

- Directional field: Defined as the local orientation of the ridge-valley structures, it

provides an approximate definition of the structure or shape of the fingerprint.

- Singular points: They are the discontinuities of the directional field separated into

two classes: core and delta. The core is the uppermost point of the innermost

curving ridge, and a delta is a point where three ridge flows meet.

- Minutiae: These are points with specific details about the ridge-valley structure, for

example, the ridge endings and bifurcations. There are several other types of

minutiae points, but they will not be considered as this work is primarily focused on

classification using non-minutiae features.

The directional field is used in this work as an input fingerprint image enhancement

method together with Gabor filters based on the fast enhancement algorithm proposed in

[9]. The authors developed an algorithm capable of adaptively enhancing ridge-valley

structures using both local ridge orientation and local frequency information [9] which are

part of the directional field. This section presents brief definitions that will be used later to

enhance fingerprints [9].

- A gray-level fingerprint image I is defined as a 𝑀 ×𝑁 matrix, where 𝐼(𝑖, 𝑗)

represents the intensity of the current pixel located in the ith row and jth column.

The mean and variance of this image are defined as:

 𝑀(𝐼) =
1

𝑀 ×𝑁
∑ ∑ 𝐼(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑀−1

𝑖=0

, (4.1)

52

 𝑉𝐴𝑅(𝐼) =
1

𝑀 ×𝑁
∑ ∑(𝐼(𝑖, 𝑗) − 𝑀(𝐼))

2
𝑁−1

𝑗=0

𝑀−1

𝑖=0

. (4.2)

- An orientation image O is defined as a 𝑀 ×𝑁 image, where 𝑂(𝑖, 𝑗) represents the

local ridge orientation at pixel (𝑖, 𝑗). The local ridge orientation is generally

specified for a block of pixels rather than one. This implies that the fingerprint

image is divided into 𝑤 ×𝑤 non-overlapping blocks and a single local ridge

orientation is defined for each block. When analyzing a fingerprint, we can notice

that the local ridge orientations of 90° and 270° are the same, since the ridges

oriented at these angles in a local neighborhood cannot be differentiated from each

other.

- A frequency image F is a 𝑀 ×𝑁 image, where 𝐹(𝑖, 𝑗) represents the local ridge

frequency defined as the frequency of the ridge-valley structure in a local

neighborhood along the normal direction to the local ridge orientation. This image

is specified in blocks as the orientation image.

- A region mask R is a 𝑀 ×𝑁 image, where 𝑅(𝑖, 𝑗) indicates the category of a pixel.

There are two possible categories:

o Recoverable pixel: Where ridges and valleys are corrupted by a small

amount of noise, this could be in the form of scars, creases, smudges, etc.

However, neighboring regions or pixels can provide information about the

true ridge-valley structures. These pixels are labeled with a value of 1.

o Unrecoverable pixel: Where ridges and valleys are corrupted with a

significant amount of noise and distortion making the structures not visible.

The neighboring regions are not capable to provide information to recover

the true ridge-valley structures. These pixels are labeled with a value of 0.

The following diagram presents the main steps in the enhancement algorithm used

in this work:

Figure 4.1. Flow diagram of the enhancement algorithm implemented [9].

These steps are detailed in the following sections.

Input Image Normalization
Local

Orientation
Estimation

Local
Frequency
Estimation

Region Mask
Estimation

Gabor Filtering Binarization

53

4.1. NORMALIZATION

Let 𝐼(𝑖, 𝑗) denote the gray-level value of the pixel (𝑖, 𝑗), 𝑀 and 𝑉𝐴𝑅 the mean and

variance of 𝐼, respectively, and 𝑁(𝑖, 𝑗) denote the normalized gray-value in the pixel (𝑖, 𝑗)

defined as:

 𝑁(𝑖, 𝑗) =

{

𝑀0 +√

𝑉𝐴𝑅0(𝐼(𝑖, 𝑗) − 𝑀)2

𝑉𝐴𝑅
, 𝑖𝑓 𝐼(𝑖, 𝑗) > 𝑀

𝑀0 −√
𝑉𝐴𝑅0(𝐼(𝑖, 𝑗) − 𝑀)2

𝑉𝐴𝑅
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (4.3)

where 𝑀0 and 𝑉𝐴𝑅0 are the desired mean and variance values, respectively. The

normalization is a pixel-wise operation, and its objective is to clarify ridge-valley structures

by reducing variations in gray-level values throughout the image, facilitating the next steps

in preprocessing.

4.2. LOCAL ORIENTATION ESTIMATION

An orientation image provides information about a fingerprint in terms of oriented

texture, an intrinsic property defined by invariant coordinates of ridges and valleys in a

local neighborhood. Based on [9], and starting with a normalized image 𝑁, the following

steps were implemented to create an orientation image applying a least mean square

estimation algorithm:

1. Divide the normalized image N into blocks of size 𝑤 ×𝑤. The size has a direct

impact on the estimation since a higher value will cover a bigger area of the image

producing a wider estimation, not local as needed. In this case, it was implemented

a size of 𝑤 = 16 as recommended by the authors.

2. Calculate the gradients 𝜕𝑥(𝑖, 𝑗) and 𝜕𝑦(𝑖, 𝑗) for each pixel (𝑖, 𝑗). In this case, the 5-

tap 1st derivatives were implemented using coefficients given by Farid and

Simoncelli [10].

3. Estimate the local orientation of each block centered at pixel (𝑖, 𝑗) using the

following equations:

 𝑉𝑥(𝑖, 𝑗) = ∑ ∑ 2𝜕𝑥(𝑢, 𝑣)𝜕𝑦(𝑢, 𝑣)

𝑗+
𝑤
2

𝑣=𝑗−
𝑤
2

,

𝑖+
𝑤
2

𝑢=𝑖−
𝑤
2

 (4.4)

54

 𝑉𝑦(𝑖, 𝑗) = ∑ ∑ (𝜕𝑥
2(𝑢, 𝑣) − 𝜕𝑦

2(𝑢, 𝑣))

𝑗+
𝑤
2

𝑣=𝑗−
𝑤
2

𝑖+
𝑤
2

𝑢=𝑖−
𝑤
2

, (4.5)

𝜃(𝑖, 𝑗) =
1

2
tan−1 (

𝑉𝑦(𝑖, 𝑗)

𝑉𝑥(𝑖, 𝑗)
) ,

(4.6)

where 𝜃(𝑖, 𝑗) is the least square estimate of the local ridge orientation at the block

centered in (𝑖, 𝑗). In the mathematical sense, this value represents the orthogonal

direction to the dominant direction of the Fourier spectrum of the 𝑤 × 𝑤 window.

4. The local ridge orientation varies slowly in a local neighborhood where singular

points do not appear, this implies that a lowpass filter can be used to modify a

corrupted local ridge orientation altered by the presence of noise. Before applying a

low pass filter, the orientation image must be converted to a continuous vector field

defined as:

 Φ𝑥(𝑖, 𝑗) = cos(2𝜃(𝑖, 𝑗)), (4.7)

Φ𝑦(𝑖, 𝑗) = sin(2𝜃(𝑖, 𝑗)).
(4.8)

Using these values, the lowpass filtering is performed as:

 Φ𝑥
′ (𝑖, 𝑗) = ∑ ∑ 𝑊(𝑢, 𝑣)Φ𝑥(𝑖 − 𝑢𝑤, 𝑗 − 𝑣𝑤)

𝑤Φ
2

𝑣=−
𝑤Φ
2

𝑤Φ
2

𝑢=−
𝑤Φ
2

, (4.9)

Φ𝑦
′ (𝑖, 𝑗) = ∑ ∑ 𝑊(𝑢, 𝑣)Φ𝑦(𝑖 − 𝑢𝑤, 𝑗 − 𝑣𝑤)

𝑤Φ
2

𝑣=−
𝑤Φ
2

𝑤Φ
2

𝑢=−
𝑤Φ
2

,
(4.10)

where 𝑊 is a two-dimensional lowpass Gaussian filter and 𝑤Φ × 𝑤Φ is the size of

this filter, in this case, 5 × 5.

5. Finally, the local ridge orientation at (𝑖, 𝑗) is calculated as:

 𝑂(𝑖, 𝑗) =
1

2
tan(

Φ𝑦
′ (𝑖, 𝑗)

Φ𝑥
′ (𝑖, 𝑗)

). (4.11)

55

4.3. LOCAL FREQUENCY ESTIMATION

The gray level intensities along ridges and valleys create a local neighborhood

where no minutiae or singular points appear. This can be modeled as a sine-shaped wave

along the normal direction to the local ridge orientation. This indicates that the local ridge

frequency is another intrinsic property of a fingerprint image. If 𝑁 is the normalized image

and 𝑂 is the orientation image, the following steps calculate the local ridge frequency

estimation:

1. Divide 𝑁 in blocks of size 𝑤 ×𝑤, in this case, this value was set to 𝑤 = 16.

2. For each block centered on (𝑖, 𝑗), calculate an oriented window of size 𝑙 × 𝑤

(32 × 16) defined in the ridge coordinates system.

3. For each block centered on (𝑖, 𝑗), calculate the x-signature, 𝑋[0], 𝑋[1], … , 𝑋[𝑙 − 1],

of the ridges and valleys within the oriented window, where:

 𝑋[𝑘] =
1

𝑤
∑ 𝑁(𝑢, 𝑣)

𝑤−1

𝑑=0

, 𝑘 = 0,1, … , 𝑙 − 1, (4.12)

 𝑢 = 𝑖 + (𝑑 −
𝑤

2
) cos𝑂(𝑖, 𝑗) + (𝑘 −

𝑙

2
) sin𝑂(𝑖, 𝑗). (4.13)

 𝑣 = 𝑗 + (𝑑 −
𝑤

2
) sin 𝑂(𝑖, 𝑗) + (

𝑙

2
− 𝑘) cos𝑂(𝑖, 𝑗). (4.14)

If there are no singular points or minutiae within the oriented window, the x-

signature forms a discrete sinusoidal-shaped wave with the same frequency as the

ridge-valley structure in the oriented window. Hence, the frequency of the ridges

and valleys can be estimated from this x-signature. If 𝑇(𝑖, 𝑗) is the average number

of pixels between two consecutive peaks in the x-signature, the frequency Ω(𝑖, 𝑗) is

calculated as Ω(𝑖, 𝑗) = 1/𝑇(𝑖, 𝑗). If there are no consecutive peaks in the x-

signature, the frequency is assigned a value of -1 to differentiate it from valid

frequency values.

4. If minutiae and/or singular points appear in a block, the x-signature does not form a

well-defined sinusoidal-shaped wave. This also happens for ridge-valley structures

that are corrupted by any kind of noise. The frequency values for these blocks must

be interpolated from the frequency of the neighboring blocks that have valid values.

The x-signature behaves as an indicator of the presence of minutiae or singular

points depending on the shape of the wave that this technique produces.

56

5. The distances between the ridges can change slowly in a local neighborhood which

means that a lowpass filter can be used to remove outliers in the interpolated

version. The following equation applies this filter to the interpolated version of the

frequency called Ω′ to create the local ridge frequency:

 𝐹(𝑖, 𝑗) = ∑ ∑ 𝑊𝑙(𝑢, 𝑣)Ω
′(𝑖 − 𝑢𝑤, 𝑗 − 𝑣𝑤)

𝑤𝑙
2

𝑣=−
𝑤Ω
2

𝑤𝑙
2

𝑢=−
𝑤Ω
2

, (4.15)

where 𝑊𝑙 is a two-dimensional lowpass filter and 𝑤𝑙 = 7 is the size of the filter.

4.4. REGION MASK ESTIMATION

A fingerprint image has pixels or blocks that could be in a recoverable or

unrecoverable region. This classification process can be done by evaluating the wave shape

created by local ridges and valleys. The algorithm applied in this work uses three

characteristics to describe the sinusoidal-shape wave:

- Amplitude, denoted by 𝛼

- Frequency, denoted by 𝛽

- Variance, denoted by 𝛾

If 𝑋[1], 𝑋[2], … , 𝑋[𝑙] is the x-signature of a block centered on (𝑖, 𝑗), the three

characteristics are computed as:

 𝛼 = 𝐻𝑝 − 𝐷𝑝, (4.16)

where 𝐻𝑝 is the average height of the peaks, and 𝐷𝑝 is the average depth of the valleys.

 𝛽 =
1

𝑇(𝑖, 𝑗)
, (4.17)

where 𝑇(𝑖, 𝑗) is the average number of pixels between two consecutive peaks.

 𝛾 =
1

𝑙
∑(𝑋[𝑖] −

1

𝑙
∑𝑋[𝑖]

𝑙

𝑖=1

)

𝑙

𝑖=1

2

. (4.18)

57

These features create three-dimensional patterns that are classified using a 1NN

classifier into two clusters: recoverable and unrecoverable. If a block centered on (𝑖, 𝑗) is

recoverable, then 𝑅(𝑖, 𝑗) = 1, else 𝑅(𝑖, 𝑗) = 0.

4.5. GABOR FILTERING

An interesting characteristic of fingerprints is their inherent configuration of parallel

ridges and valleys, which have a well-defined frequency and orientation providing useful

information that helps eliminate unwanted noise. Since the sinusoidal-shape waves from

ridge-valley structures vary slowly in a local orientation, a well-tuned bandpass filter at a

specific frequency and orientation can remove noise while preserving true ridge-valley

structures.

Gabor filters are suitable for use as bandpass filters because they have frequency-

selective and orientation-selective properties, giving them optimal joint resolution in the

spatial and frequency domains [11]. These characteristics help to eliminate undesired noise

while preserving true ridges and valleys. The even-symmetric Gabor filter has the general

form:

ℎ(𝑥, 𝑦: 𝜙, 𝑓) = 𝑒

−
1
2
[
(𝑥 cos𝜙)2

𝜎𝑥
2 +

(𝑦 sin𝜙)2

𝜎𝑦
2]

cos(2𝜋𝑓𝑥 cos𝜙),
(4.19)

where 𝜙 is the orientation of the Gabor filter, 𝑓 is the frequency of the sinusoidal plane

wave, and 𝜎𝑥 and 𝜎𝑦 are the space constants of the Gaussian envelope along the 𝑥 and 𝑦

axes, respectively.

To apply Gabor filters to an image, three parameters must be specified:

- The frequency of the sinusoidal plane wave

- The filter orientation

- The standard deviations of the Gaussian envelope

The first parameter corresponds to the local ridge frequency and the second

parameter is the local ridge orientation. The third parameter involves a trade-off of values,

since the higher these values, the more resistant to noise the filters, but this is more likely to

create spurious ridges and valleys. In contrast, the smaller the values, the filters will not

create spurious ridge-valley structures but will be less effective at removing noise. In this

work, both values were implemented as 0.5.

58

Using the estimated images, 𝐺 as the normalized fingerprint, 𝑂 as the orientation

image, 𝐹 as the frequency image, and 𝑅 as the region mask, the enhanced image 𝐸 is

calculated as:

 𝐸(𝑖, 𝑗) =

{

255, 𝑖𝑓 𝑅(𝑖, 𝑗) = 0

∑ ∑ ℎ(𝑢, 𝑣: 𝑂(𝑖, 𝑗), 𝐹(𝑖, 𝑗))𝐺(𝑖 − 𝑢, 𝑗 − 𝑣)

𝑤𝑔
2

𝑣=−
𝑤𝑔
2

𝑤𝑔
2

𝑢=−
𝑤𝑔
2

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.20)

where 𝑤𝑔 = 11 is the size of the Gabor filters.

4.6. BINARIZATION

This last step is implemented using a threshold in the enhanced image 𝐸 using the

following criteria:

 𝐵(𝑖, 𝑗) = {
1, 𝑖𝑓 𝐸(𝑖, 𝑗) ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (4.21)

where 𝐵(𝑖, 𝑗) is the binarized version of the fingerprint, concluding the preprocessing of the

input images.

The concepts and procedures discussed in this chapter were implemented in

MATLAB based on the functions developed by Dr. Peter Kovesi [12].

4.7. EXAMPLES

The following figures present several examples of the preprocessed fingerprint

images, one for each subset in the three databases:

4.7.1. FVC2000

The fingerprint preprocessing is presented from left to right: original, normalized,

orientation field, Gabor filtering, and binarized images; using one impression per subset

from the FVC2000 database [6]:

59

Figure 4.2. DB1 subset from the FVC2000 database.

Figure 4.3. DB2 subset from the FVC2000 database.

Figure 4.4. DB3 subset from the FVC2000 database.

Figure 4.5. DB4 subset from the FVC2000 database.

60

4.7.2. FVC2002

Fingerprint preprocessing using one impression per subset from the FVC2002

database [7]:

Figure 4.6. DB1 subset from the FVC2002 database.

Figure 4.7. DB2 subset from the FVC2002 database.

Figure 4.8. DB3 subset from the FVC2002 database.

61

Figure 4.9. DB4 subset from the FVC2002 database.

4.7.3. FVC2004

Fingerprint preprocessing using one impression per subset from the FVC2004

database [8]:

Figure 4.10. DB1 subset from the FVC2004 database.

Figure 4.11. DB2 subset from the FVC2004 database.

62

Figure 4.12. DB3 subset from the FVC2004 database.

Figure 4.13. DB4 subset from the FVC2004 database.

63

CHAPTER 5 . FEATURE EXTRACTION

OF FINGERPRINTS

In the fingerprint recognition literature, minutiae points have always been used as

features for fingerprint classification. However, nowadays we have other approaches, in

this work we will focus on texture-based features, specifically using the Discrete Wavelet

Transform (DWT) in combination with various transformations detailed in the following

sections. This procedure creates a hybrid fingerprint recognition system that uses a

significant component of the rich discriminatory information available in the texture of

fingerprint images that contains local and global information [5].

5.1. DISCRETE WAVELET TRANSFORM

The Fourier Transform applied to an image provides information regarding the

image’s frequency attributes. In contrast, the Discrete Wavelet Transform (DWT) provides

powerful insight into the spatial and frequency characteristics of an image [1]. This

advantage of the DWT provides a highly intuitive framework for the representation of

fingerprint images in terms of their texture components. The Fast Wavelet Transform

(FWT) is an iterative computational approach to the DWT using filter banks as can be seen

in the following figure.

Figure 5.1. 2-D FWT filter bank [1].

64

where 𝑊(𝑗,𝑚, 𝑛) and {𝑊𝑖(𝑗,𝑚, 𝑛) 𝑓𝑜𝑟 𝑖 = 𝐻, 𝑉, 𝐷} are the DWT coefficients at scale 𝑗.

The blocks that contain the time-reversed vectors ℎ𝐿𝑃(−𝑛) and ℎ𝐻𝑃(−𝑚) are low pass and

high pass decomposition filters, respectively. The blocks with a 2 and a down arrow

represent downsampling. The input to the filter bank is decomposed into four lower

resolution components. The 𝑊 coefficients are created via two low pass filters and are

called approximation coefficients, and {𝑊𝑖 𝑓𝑜𝑟 𝑖 = 𝐻, 𝑉, 𝐷} are the horizontal, vertical,

and diagonal detail coefficients, respectively. The output 𝑊(𝑗,𝑚, 𝑛) can be used as a

subsequent input 𝑊(𝑗 + 1,𝑚, 𝑛) to the block diagram to create even lower resolution

components. The image 𝑓(𝑥, 𝑦) is the highest resolution representation available and serves

as the input for the first iteration. The three transform domain variables involved are the

scale 𝑗, and the horizontal and vertical translation, 𝑛 and 𝑚 [1].

The Wavelet Toolbox is a package of functions and applications for analyzing and

synthesizing signals and images. The toolbox includes algorithms for continuous and

discrete Wavelet analysis [13]. In MATLAB, the DWT is implemented through the

Wavelet Toolbox, specifically using the wavedec2 function with the following syntax:

[c, s] = wavedec2(f, j, wname)

where 𝑓 is the preprocessed image, 𝑗 is the number of scales to be calculated, and wname

specifies the name of the FWT filter family name. In this case, the DWT was applied twice

to extract features, the following table details the parameters used for both cases.

Table 5.1. Parameters of the DWT computed in this work.

References Features j wname

[14] GLCM 1 ‘db1’

[15, 16] Statistics, Wavelet-Bands Selection Features 5 ‘db12’

Both DWTs were calculated to obtain the Wavelet representation of the

preprocessed fingerprint that will then be used to produce the feature specified in the table.

The wavedec2 outputs provide information about the Wavelet decomposition vector

in 𝑐, and a bookkeeping matrix 𝑠, containing the number of coefficients per level and

orientation [17].

5.2. GRAY LEVEL CO-OCCURRENCE MATRIX

Texture analysis characterizes the spatial variation of the pattern in an image based

on mathematical models and procedures [18]. The approach applied in this work is based

on one of the earliest and most widely used methods known as the Gray Level Co-

65

occurrence Matrix (GLCM). The GLCM is a square matrix that provides certain properties

about the spatial distribution of gray levels in the texture of an image [18]. This matrix

shows how often a reference pixel value with intensity 𝑖 occurs in a specific relationship

with another neighboring pixel with intensity 𝑗. In other words, each element (𝑖, 𝑗) of the

GLCM is the number of occurrences of the pixel pair at a distance 𝑑 relative to each other

[18]. This spatial relationship can be defined in multiple forms with different offsets and

angles. For an image 𝐼 of size 𝑀 ×𝑁, the elements of the corresponding GLCM for a

displacement vector 𝑑 = (𝑑𝑥, 𝑑𝑦) are defined as:

 𝐺𝐿𝐶𝑀 =∑∑{
1, 𝑖𝑓 𝐼(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁

𝑦=1

𝑀

𝑥=1

, (5.1)

The following figure illustrates the four spatial relationships used in this work,

considering one neighboring pixel 𝑑 = 1 along with the four possible directions [0 1] for

0°, [-1 1] for 45°, [-1 0] for 90°, and [-1 -1] for 135° [14].

Figure 5.2. Gray level co-occurrence matrix directions [18].

Each element of the GLCM is the number of times that two pixels with gray values

𝑖 and 𝑗 are neighbors in distance 𝑑 and direction 𝜃 [18]. A regular histogram does not carry

information about the relative position of the pixels with respect to each other, that is why

for texture measurements, the GLCM is mainly used since it incorporates in the texture

analysis not only the distribution of intensities but also the relative position of pixels in an

image [1]. The number of possible intensity levels in the original image determines the size

of the GLCM. In this case, we work with 8-bit images, which means that there are 256

possible levels [1].

In MATLAB we apply the graycomatrix function from the Image Processing

Toolbox to compute the co-occurrence matrices. The syntax used was:

GLCM = graycomatrix(A, ‘NumLevels’, 256, ‘Offset’, offsets)

66

where 𝐴 is the approximation image obtained from the first DWT using the appcoef2

function from the Wavelet Toolbox. This matrix is a representation of the approximation

coefficients for the first scale calculated from the preprocessed fingerprint image. The other

two parameters specify the number of levels applied in the GLCM calculation and the

vector of offsets that provides the four directions detailed previously. The number of levels

was specified as 256 for the best possible representation, as this is the highest possible

value for an 8-bit image.

The GLCM is computed on the approximation image because the Wavelet

transform decomposed the original image into these lower frequency coefficients ignoring

the noise signals that are related to the higher frequencies, which are present in the detail

coefficients [14]. Since this approximation has a lower resolution, it provides a compressed

representation of the fingerprint image, allowing to ignore several extra details that are not

relevant to the texture information for this specific application.

So far, we have only calculated the GLCM, but we need to compute the texture

descriptors that will be a part of the feature set used for fingerprint recognition. To

accomplish this objective, we apply the graycoprops function to generate four descriptors

using the following syntax:

stats = graycoprops(GLCM, ‘all’)

where ‘all’ specifies that all available descriptors must be calculated including contrast,

correlation, energy, and homogeneity; whose equations are presented below:

 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑|𝑖 − 𝑗|2

𝑖,𝑗

𝐺𝐿𝐶𝑀𝑖,𝑗, (5.2)

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝐺𝐿𝐶𝑀𝑖,𝑗

𝜎𝑗𝜎𝑗
𝑖,𝑗

, (5.3)

 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑𝐺𝐿𝐶𝑀𝑖,𝑗
2

𝑖,𝑗

, (5.4)

 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝐺𝐿𝐶𝑀𝑖,𝑗

1 + |𝑖 − 𝑗|
𝑖,𝑗

, (5.5)

where the first-order statistics 𝜇 and 𝜎 are the mean and variance, respectively [14]. In this

case, because we use four different orientations, the total number of features per fingerprint

is 16 as texture descriptors. For each orientation, the GLCM is calculated applying its

respective offset, which means that equations (5.2) – (5.5) need to be applied four times,

because the GLCM variable will have four different values, one for each offset.

67

5.3. SPATIAL DOMAIN

In the spatial domain, five different features are calculated including the pixel

density, the mean of standard deviations (𝜇𝜎), the standard deviation of the means (𝜎𝜇), the

mean of the variances (𝜇𝐷), and the standard deviation of the variances (𝜎𝐷) [19]. The pixel

density is calculated using a binarized fingerprint obtained from the preprocessing. The

other four features were calculated in a normalized version of the original fingerprint [19].

For an image of size 𝑀 ×𝑁 with pixel values {𝑝𝑖,𝑗|𝑖 = 1,2, … ,𝑀; 𝑗 = 1,2, … ,𝑁}, the pixel

density is defined as:

 𝑃𝑖𝑥𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
1

𝑀𝑁
∑∑𝑝𝑖𝑗 = 1

𝑁

𝑗=1

𝑀

𝑖=1

. (5.6)

The mean of the standard deviations is defined as:

 𝜇𝜎 =
1

𝑁
∑√∑ (𝑝𝑖,𝑗 − 𝜇𝑗∗)

𝑀
𝑖=1

2

𝑀

𝑁

𝑗=1

, (5.7)

where

 𝜇𝑗∗ =
1

𝑁
∑𝑝𝑖,𝑗

𝑀

𝑖=1

| 𝑗 = 1,2, … ,𝑀. (5.8)

The standard deviation of the means is:

 𝜎𝜇 = √
1

𝑁
∑[(

1

𝑀
∑𝑝𝑖,𝑗

𝑀

𝑖=1

) − 𝜇𝑖𝑗∗]

𝑁

𝑗=1

2

, (5.9)

where

 𝜇𝑖𝑗∗ =
1

𝑀𝑁
∑∑𝑝𝑖,𝑗

𝑁

𝑗=1

𝑀

𝑖=1

. (5.10)

The mean of the variances is:

 𝜇𝐷 =
1

𝑁
∑[

1

𝑀
∑|𝑝𝑖,𝑗 − 𝜇

𝑗∗|

𝑀

𝑖=1

]

𝑁

𝑗=1

. (5.11)

68

Finally, the standard deviation of the variances is defined as:

𝜎𝐷 =

√∑ [
∑ |𝑝𝑖,𝑗 − 𝜇𝑗∗|
𝑀
𝑖=1

𝑀 − 𝜇𝐷]𝑁
𝑗=1

2

𝑁
.

(5.12)

In MATLAB, the previous equations were implemented using native functions

including bwarea, mean, std, and var. A brief description of each function is presented

below.

The bwarea function estimates the area of a binary image by counting the total

number of white pixels (intensity value of 1). The syntax is:

total = bwarea(BW)

where 𝐵𝑊 is the binary image and total is the number of white pixels. This value is divided

by the product of the number of rows and columns of the image, obtaining the pixel density

feature.

The other statistical functions have the following syntax:

M = mean(A)

S = std(A, 1)

V = var(A, 1)

where it is self-explanatory that the 𝑀, 𝑆, and 𝑉 variables are the mean, standard deviation,

and variance, respectively. The parameter 𝐴 is the vector or matrix to apply the current

statistics. Since the default computation in MATLAB for the std and var functions utilizes

𝑁 − 1 or 𝑀− 1, it was necessary to include the parameter 1 which specifies that the

calculation of the standard deviation and the variance is normalized by the number of

observations 𝑁 or 𝑀 to have correspondence with equations (5.7) to (5.12) [20, 21]. From

this section, 5 features of each fingerprint have been calculated.

5.4. FOURIER DOMAIN

The Discrete Fourier Transform (DFT) is one of the most important image

processing tools used to create a frequency representation of an image by decomposing it

into its sine and cosine components [5]. In this case, because we use two-dimensional

69

matrices, the DFT must be implemented in 2-D. If 𝑓(𝑥, 𝑦) is the normalized fingerprint

image of size 𝑀 ×𝑁, the 2-D DFT is defined by:

 𝐹(𝑢, 𝑣) = ∑ ∑𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑒−𝑗2𝜋(
𝑢𝑥
𝑀
+
𝑣𝑦
𝑁
)

𝑀−1

𝑥=0

, (5.13)

for 𝑢 = 0,1,2, … ,𝑀 − 1 and 𝑣 = 0,1,2,… ,𝑁 − 1. The Fourier or frequency domain is the

coordinate system spanned by 𝐹(𝑢, 𝑣) with 𝑢 and 𝑣 as (frequency) variables [1]. In this

work, these frequency variables provide different information about fingerprints and

therefore are used as features for recognition. Specifically, the features derived from the

resulting DFT are 𝜇𝜎𝐹 , 𝜎𝜇𝐹 , 𝜇𝐷𝐹, 𝜎𝐷𝐹, where 𝐹 stands for the 2-D frequency transformation.

These features were already defined for the spatial domain subsection in the equations

(5.7), (5.9), (5.11), and (5.12), but instead of using 𝑝𝑖,𝑗 its analog Fourier variable 𝐹(𝑢, 𝑣) is

applied.

In MATLAB, the Fast Fourier Transform (FFT) in two dimensions is applied to the

input normalized fingerprints as a way to calculate the DWT efficiently. The fft2 function

has the following basic syntax:

F = fft2(f)

where 𝑓 is the input image, and 𝐹 is the 2-D Fourier transform using the FFT algorithm.

The output transform is the same size as the input image [22].

A total of 4 new features from each fingerprint are calculated in the frequency

domain.

5.5. DISCRETE COSINE TRANSFORM

The Discrete Cosine Transform (DCT) is another transformation in frequency, but

this one only uses the cosine terms, i.e., the real coefficients [19]. If 𝑓(𝑥, 𝑦) is the enhanced

fingerprint image of size 𝑀 ×𝑁, the 2-D DCT is defined as:

 𝐷𝐶𝑇(𝑢, 𝑣) = 𝛼(𝑢)𝛼(𝑣) ∑ ∑𝑓(𝑥, 𝑦) cos (
(2𝑥 + 1)𝑢𝜋

2𝑀
) cos (

(2𝑦 + 1)𝑣𝜋

2𝑁
)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

, (5.14)

for 𝑢 = 0,1,2, … ,𝑀 − 1 and 𝑣 = 0,1,2,… ,𝑁 − 1. The DCT is a real, orthogonal, fast, and

separable transform [5]. From this transformation, four features were computed from the

resulting DCT called 𝜇𝜎𝐷𝐶𝑇 , 𝜎𝜇𝐷𝐶𝑇 , 𝜇𝐷𝐷𝐶𝑇, 𝜎𝐷𝐷𝐶𝑇, where DCT stands for the 2-D DCT

70

transformation. These features were calculated according to equations (5.7), (5.9), (5.11),

and (5.12) using the 𝐷𝐶𝑇(𝑢, 𝑣) instead of 𝑝𝑖,𝑗.

In MATLAB, the 2-D DCT is implemented by the dct2 function with the syntax:

DCT = dct2(f)

where 𝑓 is the input image, and 𝐷𝐶𝑇 is the 2-D DCT. This matrix is the same size

as the input [23].

From the DCT representation, 4 features are calculated for each fingerprint image.

5.6. STATISTIC MEASURES ON THE DWT

Based on a trial-and-error method, the number of scales or decompositions applied

to the second DWT in this work is 𝑗 = 5 which creates a total of 3𝑗 + 1 = 3(5) + 1 = 16

lower resolution images. The Wavelet mother applied, in this case, was ‘db12’, also found

based on trial-and-error. For each of these images, excluding the approximation image,

seven statistical measures were computed including maximum, mean, standard deviation,

Euclidian norm, variance, skewness, and kurtosis [15, 19].

5.6.1. Maximum

In MATLAB, native functions were applied to compute these features. The max

function provides the maximum elements of a vector or matrix 𝐷 with the following syntax

[24]:

M = max(D)

In this case, since we use matrices, the max function needs to be applied twice, first

to the columns and then to the rows of the detail image.

5.6.2. Euclidean norm

For an image of size 𝑀 ×𝑁 with pixel values {𝑝𝑖,𝑗|𝑖 = 1,2, … ,𝑀; 𝑗 = 1,2, … ,𝑁} the

Euclidean norm is defined by the following equation:

 𝑛 = ‖𝐷‖ = √∑∑|𝑝𝑖,𝑗|
2

𝑁

𝑗=1

𝑀

𝑖=1

, (5.15)

the square root of the sum of all the squares in the detail image. The norm function returns

the Euclidean norm, the following syntax was used:

71

n = norm(D)

where 𝐷 is the detail image, and 𝑛 is the Euclidean norm, also called the vector magnitude

[25].

5.6.3. Skewness

Skewness is a measure of the asymmetry of the data around the sample mean. If the

skewness is positive, the data spread out more to the right of the mean, if it is negative, the

data is extended further to the left. By logic, this implies that, for example, for a normal or

Gaussian distribution (or any perfectly symmetric distribution) the skewness is zero [26].

The skewness of a distribution is defined as:

 𝑠 =
𝐸(𝑥 − 𝜇)3

𝜎3
, (5.16)

where 𝜇 is the mean of 𝑥, 𝜎 is the standard deviation of 𝑥, and 𝐸(𝑡) is the expected value of

𝑡. The skewness function in MATLAB, which belongs to the Statistics and Machine

Learning Toolbox, computes a sample version of this population value. By default,

MATLAB uses a biased skewness and applies the following equation:

𝑠1 =

1
𝑛
∑ (𝑥𝑖 − 𝑥̅)
𝑛
𝑖=1

3

(√
1
𝑛
∑ (𝑥𝑖 − 𝑥̅)
𝑛
𝑖=1

2
)

3, (5.17)

where 𝑠1 is the sample skewness of the input vector 𝑥 [27]. The skewness function has the

following syntax:

y = skewness(D)

where 𝑦 is the sample skewness of 𝐷. Since we use images (matrices), we apply the

skewness function twice to produce only one value as the current feature for the input detail

image.

5.6.4. Kurtosis

Kurtosis is a measure of how outlier-prone a distribution is. In other words, it

measures how prone a distribution is to have atypical values. By definition, the kurtosis of

the normal distribution is 3 [28]. This means that distributions that are more prone to

72

outliers than the normal distribution will have kurtosis greater than 3, and distributions that

are less outlier-prone have a value less than 3 [28]. The kurtosis of a distribution is defined

as:

 𝑘 =
𝐸(𝑥 − 𝜇)4

𝜎4
, (5.18)

where 𝜇 and 𝜎 are the mean and standard deviation of 𝑥, respectively; and 𝐸(𝑡) is the

expected value of 𝑡. The kurtosis function in MATLAB, which is also part of the Statistics

and Machine Learning Toolbox, calculates a sample version of this population value. By

default, MATLAB uses a biased kurtosis and applies the following equation:

 𝑘1 =

1
𝑛
∑ (𝑥𝑖 − 𝑥̅)
𝑛
𝑖=1

4

(
1
𝑛
∑ (𝑥𝑖 − 𝑥̅)
𝑛
𝑖=1

2
)
2, (5.19)

where 𝑘1 is sample kurtosis of the input vector 𝑥 [28]. The kurtosis function has the

following syntax:

k = kurtosis(D)

where 𝑘 is the sample kurtosis of 𝐷. In the same way, as for the skewness function, the

kurtosis was calculated first for columns and then for the rows to obtain a single value per

detail image.

From this sub-section, we have a total of 105 new features per fingerprint. This

value is obtained by computing the seven statistics for each level of decomposition and

each of the detail coefficients (horizontal, vertical, diagonal). The total is calculated in the

following equation:

7 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 3 𝑑𝑒𝑡𝑎𝑖𝑙 𝑖𝑚𝑎𝑔𝑒𝑠 ∗ 5 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

= 105 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠.
(5.20)

5.7. WAVELET-BANDS SELECTION FEATURES

Based on the work reported in [16], another set of features has been calculated with

the objective of improving recognition rates. In this method, new Wavelet features called

Wavelet-Band Selection Features (WBSF) are extracted from the five decomposition levels

(the second DWT applied in this work). An example of this Wavelet decomposition is

presented in the following figure using a fingerprint from the FVC2000 database [6].

73

Figure 5.3. Example of 5-decomposition levels of the 2-D DWT applied to a fingerprint

[6].

The idea is to divide the Wavelet bands shown in the previous figure into sub-bands

as can be seen in Figure 5.4. These features provide information about the fingerprint image

in both horizontal and vertical directions. The added features are the shaded cells shown in

the following figure. The colored lines represent the original five-level divisions analogous

to Figure 5.3.

Figure 5.4. Wavelet channel decomposition (5-levels) indicating the number of new

features calculated [16].

74

The length specified in the previous figure represents an image of size 256 × 256,

however, these limits can be generalized by taking the height of each level and divide it by

4, 3, and 2 in the case of the first, second, and third level of decomposition, respectively.

The last two resolution levels (four and five) and diagonal detail images are not considered

in this procedure [16]. A total of 18 new sub-bands were calculated for each fingerprint

from the same DWT applied for the statistics features. From these sub-bands, two statistics

were calculated, the mean and the standard deviation [16]. These two statistics create a total

of 36 new features for each fingerprint.

5.8. TOTAL NUMBER OF FEATURES

The following table summarizes the total number of features calculated per

fingerprint image in this work. The feature set has a total of 170 features to be used with

supervised learning algorithms for fingerprint recognition.

Table 5.2. Total number of features.

Method Features

of

features

per

fingerprint

2-D DWT (1 scale, ‘db1’),

GLCM

Contrast, correlation, energy,

homogeneity
16

Preprocessed image

(normalization, binarization)
Pixel density, 𝜇𝜎, 𝜎𝜇 , 𝜇𝐷 , 𝜎𝐷 5

2-D FFT 𝜇𝜎𝐹 , 𝜎𝜇𝐹 , 𝜇𝐷𝐹 , 𝜎𝐷𝐹 4

2-D DCT 𝜇𝜎𝐷𝐶𝑇 , 𝜎𝜇𝐷𝐶𝑇 , 𝜇𝐷𝐷𝐶𝑇 , 𝜎𝐷𝐷𝐶𝑇 4

2-D DWT (5 scales, ‘db12’),

statistics measures

Maximum, mean, standard deviation,

Euclidean norm, variance, skewness,

kurtosis

105

2-D DWT (5 scales, ‘db12’),

WBSF
Mean, standard deviation 36

 TOTAL 170

75

CHAPTER 6 . MACHINE LEARNING

ALGORITHMS

Machine learning is an engineering approach whose main objective is to study,

design, and improve mathematical models which can be trained (once or continuously) with

context-related data, to infer the future and make decisions without complete knowledge of

all the influencing elements (external factors) [29]. A software entity receives information

from the environment and chooses the best action to achieve a specific goal by adopting a

statistical learning approach, trying to determine the correct probability, and use it to

compute an action (value or decision) that is most likely to have success (the smallest

possible error) [29]. Machine learning teaches computers to learn from experience, in other

words, algorithms use computational models to “learn” information from data without

relying on a specific equation used as a model [30]. Machine learning algorithms find

natural patterns in data, and this helps to make decisions and predictions. This behavior has

been applied in various real-world applications, including computational finance, computer

vision and image processing, computational biology, energy production, natural language

processing, etc. [30]

The machine learning approach applied in this work is supervised learning. This

makes sense because there are public fingerprint databases available online, these databases

act as a supervised scenario providing a training set made up of pairs (input and expected

output) [29]. From the information provided by the fingerprint images, which indicate the

corresponding subject to who they belong, a supervised machine learning algorithm

corrects its parameters to reduce the magnitude of a global loss function, after each

iteration, if the algorithm is flexible enough and data elements are coherent the overall

accuracy increases, and the difference between the predicted and expected value

approaches zero [29].

However, in a supervised scenario, the goal is to train a system that has to work

with never-before-seen samples. This means that the model must have a generalization

ability and avoid the undesired problem called overfitting [29]. This problem is avoided in

this work by using 10-fold cross-validation. This overfitting could lead to overlearning due

76

to an excessive capacity to correctly predict only the samples used for training, while the

error for the remainder is always very high [29].

For fingerprint recognition, the primary goal of a supervised machine learning

algorithm is to classify an input fingerprint image into a discrete number of possible

outcomes (subjects) or categories. In this work, we use a system labeled: “Subject-One”,

“Subject-Two”, and so on; to indicate the correspondence of a query input fingerprint to the

predicted outcome computed by machine learning algorithms.

In terms of which algorithm to use for a certain application, there are dozens of

supervised machine learning algorithms, each with a different approach to learning [30].

The right algorithm is usually found through trial and error, and it also depends on the size

and type of data.

6.1. SUPERVISED MACHINE LEARNING ALGORITHMS

In this work, multiple supervised algorithms have been tested using a native

application called Classification Learner. The application performs automated training to

find the best type of classification model among a group of supervised machine learning

models including decision trees, discriminant analysis, Support Vector Machines (SVM),

nearest neighbors, naive Bayes, and ensemble classifiers [31]. A description of each

classification model is presented below.

6.1.1. k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm is one of the simplest classifiers because

the model only needs to store the training set for it to work [32]. The k-NN algorithm

categorizes the outputs according to the class defined by their “nearest neighbors” in the

dataset. This implies that k-NN assumes that the outputs near each other are similar [30].

The two parameters of a k-NN algorithm are the number of neighbors and the distance

measure. There are multiple variations for distance metrics, including Euclidean, city block,

cosine, and Chebyshev [30]. An advantage of k-NN is the reasonable performance obtained

without many adjustments, however, this algorithm has high costs in terms of memory and

prediction speed. This explains why it is not used very often in practice [32]. The following

figure shows a representation of this algorithm.

77

Figure 6.1. k-NN algorithm [30].

6.1.2. Support Vector Machines

Support Vector Machines (SVM) classify data by finding a hyperplane (linear

boundary) that separates all data points in one class from another. The best hyperplane is

the one with the largest margin between the two classes when the data is linearly separable

[30]. If the data cannot be separated linearly, a loss function is used to penalize the points

on the wrong side of the hyperplane. Often, this type of algorithm uses a kernel transform

to convert separable non-linear data into higher dimensions where a linear decision

boundary can be found [30]. The largest margin between the two classes can also be

thought of as the hyperplane that maximizes the distance between the classes using a

limited number of samples called support vectors, which are closer to the separation margin

[29]. Although SVMs are usually applied for two classes, these algorithms can be used for

multiclass classification with a technique called error-correcting output codes [30]. This

type of classifier is useful for non-linear separable high-dimensional data and when the

system needs a simple easy-to-interpret and accurate classifier [30]. The representation of

how an SVM works is presented below, the hyperplane separates the data points of two

different classes.

Figure 6.2. Support Vector Machine [30].

6.1.3. Naive Bayes

Naive Bayes is a family of powerful and easy-to-train classifiers that determine the

probability of an outcome given a set of conditions using Bayes' theorem [29]. This type of

78

classifier assumes that the presence of a particular feature is unrelated to the presence of

another [30]. It works by classifying new data by calculating the probability that it belongs

to a particular class and choosing the highest value. These classifiers are suitable for small

datasets with many parameters and are easy to interpret [30].

Considering two probabilistic events A and B the Bayes’ theorem is defined by the

following expression:

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
, (6.1)

where 𝑃(𝐵) is the marginal probability of 𝐵, and 𝑃(𝐴|𝐵) and 𝑃(𝐵|𝐴) are conditional

probabilities. This is one of the fundamental equations used in statistical learning [29] and

provides a weight between a prior and a posterior probability considering equation (6.1) in

the general discrete case as:

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)𝑖
, (6.2)

since the denominator is a normalization factor, this equation can be expressed as a

proportionality relationship [29]:

 𝑃(𝐴|𝐵) ∝ 𝑃(𝐵|𝐴)𝑃(𝐴). (6.3)

Replacing the normalization factor with 𝛼, equation (6.3) becomes:

 𝑃(𝐴|𝐵) = 𝛼𝑃(𝐵|𝐴)𝑃(𝐴). (6.4)

Considering the case when there are more concurrent conditions (more realistic

approach for real-life problems):

 𝑃(𝐴|𝐶1 ∩ 𝐶2 ∩ …∩ 𝐶𝑛). (6.5)

The problem becomes extremely complex if the joint probability is considered;

instead, it is easier to consider the impact of individual factors, but the problem can become

intractable expressed as:

 𝑃(𝐴|𝐶1 ∩ 𝐶2 ∩ …∩ 𝐶𝑛) = 𝛼𝑃(𝐶1 ∩ 𝐶2 ∩ …∩ 𝐶𝑛|𝐴)𝑃(𝐴). (6.6)

Therefore, a common assumption of conditional independence allows simplifying

the previous expression as:

79

 𝑃(𝐴|𝐶1 ∩ 𝐶2 ∩ …∩ 𝐶𝑛) = 𝛼𝑃(𝐶1|𝐴)𝑃(𝐶2|𝐴)…𝑃(𝐶𝑛|𝐴)𝑃(𝐴). (6.7)

It is easier to compute the singles 𝑃(𝐶𝑖|𝐴) and multiply them, instead of finding the

joint probability [29].

The adjective "naive" has been attributed not because these algorithms are limited or

less efficient, but because of the fundamental assumption of the previous equation. This

naive condition implies the conditional independence of causes (events, features,

parameters, etc.). In many contexts, this assumption can be difficult to accept because the

probability of one particular feature could be strictly correlated with another [29]. However,

under particular conditions (which are not so rare to happen), the different dependencies

clear one another, causing that the Naive Bayes classifier succeeds in achieving high

performances even if the conditional independence is not assured [29].

In general, naive Bayes models are very fast to train and to predict, also they work

well with high-dimensional sparse data and are relatively robust [32]. The following figure

shows a graphic representation of how these algorithms work.

Figure 6.3. Naive Bayes [30].

6.1.4. Discriminant Analysis

The discriminant analysis finds linear combinations of features to classify them; it

assumes that the different classes generate data based on Gaussian distributions [30]. The

training process consists of finding parameters for a Gaussian distribution that describes

each class, this distribution acts as boundaries and can be a linear or quadratic function

[30]. These boundaries determine the class of new data. These models are simple and easy

to interpret, they can also improve memory use in the training process and are fast models

to predict [30]. The following figure presents a quadratic discriminant analysis as an

example of how this algorithm works.

80

Figure 6.4. Discriminant Analysis (quadratic version) [30].

The Linear Discriminant Analysis (LDA) finds the projection hyperplane that

minimizes the variance between classes and maximizes the distance between the projected

means of the classes. These two objectives can be achieved by solving an eigenvalue

problem with the corresponding eigenvector that defines the hyperplane of interest. This

characteristic enables fast and massive processing of data samples. The intuition behind the

method is to determine a subspace of lower dimension compared to the original data, in

which the data points of the original problem are “separable”. This behavior is represented

in Figure 6.5 where a two-dimensional set of samples is projected on a line (one

dimension), this line is chosen so that the projection maximizes the “separability” of the

projected samples. The separability is defined in terms of the statistical measures: mean and

variance. This hyperplane can be used for classification, dimensionality reduction, and

interpretation of given features [33].

Figure 6.5. How LDA works, example of two-dimensional data samples projected on a line

(lower dimension) [33].

6.1.5. Decision Trees

The decision tree is one of the most popular classification models because it can

predict responses by following the decisions in a tree, a path from the root (beginning) to a

leaf node [30]. The tree consists of branching conditions in which the value of a predictor is

81

compared to a trained weight. The total number of branches and weight values are

determined during the training process. In other words, a decision tree learns a hierarchy of

if/else questions, leading to a decision [32]. Advantages of this model include ease of

interpretation, fast to fit, and minimal memory usage [30]. Compared to other algorithms, a

decision tree classifier can be easily visualized and understood by nonexperts (at least for

smaller trees) and is invariable to scaling of the data [32]. However, even when using

techniques to manage the number of nodes, such as pre-pruning, these algorithms tend to

overfit and provide poor generalization performance, this is why in most applications, an

ensemble of decision trees is used instead of a single tree [32]. The following figure

presents a decision tree to represent the main operation of this type of model.

Figure 6.6. Decision Tree [30].

6.1.6. Ensemble Classifiers

As the name suggests, ensemble classifiers apply several “weaker” models

combined into one “stronger” ensemble [30]. The types of ensembles most used in machine

learning are bagging and boosting, we also talk about the random subspace method. They

all modify the training data set, build classifiers on these modified training sets, and then

combine them into a final decision rule by simple or weighted majority voting [34]. Below

is a description of each type of ensemble.

6.1.6.1. Bagging

It was proposed by [35] and is based on a combination of the concepts:

bootstrapping and aggregating. Bootstrapping means selecting a random set of samples

from the input data with replacement [34].

When doing a bootstrap replicate as follows:

 𝑋𝑏 = (𝑋1
𝑏 , 𝑋2

𝑏 , … , 𝑋𝑛
𝑏), (6.8)

the training set 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) can prevent or avoid less misleading training objects in

the bootstrap set. Consequently, a classifier with this new set may have performed better

82

[34]. Aggregating means combining classifiers. In general, when taking a bootstrap sample

from the training set, approximately 1/𝑒 ≈ 37% of the objects are not presented in the

sample, which means that possible ‘outliers’ in the training set sometimes do not appear in

the bootstrap sample. This creates better classifiers (with a smaller classification error in the

training data set) when using the bootstrap samples instead of the original training set.

Therefore, they will be more decisive than other bootstrap versions in the final judgment.

Aggregating classifiers in bagging can sometimes provide better performance than

individual classifiers. Bagging can incorporate the benefits of both approaches

(bootstrapping and aggregating) by combining the advantages of the individual classifiers

in the final solution [34]. According to [36], bagging performance improves if used with an

unstable learner, which can be defined as a learner causing significant changes by

disrupting the training set.

For example, a bagged decision tree consists of trees trained independently on

bootstrapped data from the input data [30]. These types of ensembles are also called

Random Forests. The idea behind random forests is that each tree could do a relatively

good job of predicting, but most likely overfitting some of the data. By implementing many

trees, each working well in different ways, the amount of overfitting can be reduced by

averaging the results. The name random comes from the randomness injected into the tree

building to ensure that each tree is different [32]. The following figure is a representation of

a bagged decision tree.

Figure 6.7. Bagged decision tree [30].

6.1.6.2. Boosting

First proposed in [37], boosting is another technique to combine weak learners who

perform poorly on a classifier with a classification rule that provides better performance

[34]. Unlike bagging, which uses random subsets of data independent of other steps in the

algorithm; the classifiers and training sets in boosting are obtained in a sequential

deterministic way. Boosting creates a strong learner by iteratively adding “weak” learners

and adjusting the weight of each by focusing on misclassified examples [30]. At each step

of boosting, the training data is reweighed such that incorrectly classified objects get larger

83

weights in a new, modified training set. This implies that it maximizes the margins between

training objects [34].

6.1.6.3. Random Subspace

The Random Subspace Method (RSM) was proposed by [38], it is a technique that

modifies training data in feature space. For each training object 𝑋𝑖(𝑖 = 1,2, … , 𝑛) in the

training sample set 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) defined as a 𝑝-dimensional vector 𝑋𝑖 =

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) described by 𝑝 features, the RSM randomly selects 𝑟 features 𝑟 < 𝑝 from

the 𝑝-dimensional data set 𝑋. This is considered as the 𝑟-dimensional random subspace of

the original 𝑝-dimensional feature space. The modified training set 𝑋̂𝑏 = (𝑋̂1
𝑏 , 𝑋̂2

𝑏 , … , 𝑋̂𝑛
𝑏)

consists of 𝑟-dimensional training objects 𝑋̂𝑖
𝑏 = (𝑥𝑖1

𝑏 , 𝑥𝑖2
𝑏 , … , 𝑥𝑖𝑟

𝑏)(𝑖 = 1,2, … , 𝑛) where 𝑟

components 𝑥𝑖𝑗
𝑏 (𝑗 = 1,2, … , 𝑟) are randomly selected from 𝑝 components 𝑥𝑖𝑗(𝑗 = 1,2, … , 𝑝)

of the training vector 𝑋𝑖 (the selection is the same for each training vector). The classifiers

are constructed on the random subspaces 𝑋̂𝑏 and combined by simple majority voting in the

final decision rule [34].

Another advantage of this method is that it can benefit from the use of random

subspaces for both constructing and aggregating the classifiers. If the number of training

objects is relatively small compared to the data dimensionality, building classifiers in

random subspaces can probably solve the small sample size problem. The subspace

dimensionality is smaller than in the original feature space, while the number of training

objects remains the same. Therefore, the relative size of the training sample increases.

When the data has many redundant features, it is possible to obtain better classifiers in

random subspaces than in the original feature space. The combined decision of such

classifiers may be superior to a single classifier constructed on the original training set in

the complete feature space [34].

84

6.2. COMPARISON OF SUPERVISED MACHINE

LEARNING ALGORITHMS

The following table summarizes and compares the main characteristics for each

supervised machine learning algorithm included in this chapter.

Table 6.1. Comparison of supervised machine learning algorithms [39].

Algorithm
Prediction

Speed

Training

Speed

Memory

Usage
Description

k-Nearest

Neighbors
Moderate Fast Medium

Easy interpretation and

implementation

Linear SVM Fast Fast Small
Good for small linear

problems

Non-linear SVM Slow Slow Medium
Good for high-dimensional

data

Naive Bayes Fast Fast Medium
Assumes that the Bayes’

theorem is satisfied

Discriminant

Analysis
Fast Fast Small

Simple and easy to

interpret

Decision Tree Fast Fast Small Prone to overfitting

Ensemble

Classifier
Moderate Slow Varies

High accuracy for small or

medium datasets

85

CHAPTER 7 . FINGERPRINT

RECOGNITION SYSTEM IN MATLAB

From the input fingerprint databases [6, 7, 8], the preprocessing applied to these

images allows to extract features from different fingerprints characteristics using texture

descriptors, statistic measures, and different transformations (DWT, FFT, DCT) creating a

set of 170 features for each fingerprint image complied in a table in a columns wise

manner. Each row is labeled with a categorical variable indicating the number of the

subject to which the current fingerprint belongs. This procedure has been performed for

each subset (four for each database) in the three main databases.

Several supervised algorithms have been tested using a native application called

Classification Learner, which is part of the Statistics and Machine Learning Toolbox in

MATLAB. This application trains models to classify data using various classifiers.

Provides the ability to explore input data, select features, specify validation schemes, train

models, and evaluate results. The application performs automated training that helps to find

the best type of classification model among the following models: decision trees,

discriminant analysis, Support Vector Machines (SVM), nearest neighbors, naive Bayes,

and ensemble classifiers [31].

7.1. CLASSIFICATION LEARNER

This application has a graphical user interface that allows for simple iterative

training and evaluation of the supervised machine learning models. In this case, all the

algorithms available in the MATLAB R2019b version were trained to obtain several results

and evaluate each one. The first step is to create a new session by loading the

corresponding table for each subset. A table of size 80x75 is charged in the application, the

actual size of the feature table is 80x171, this value differs from the data shown in the

figure because MATLAB counts multiple columns in the table as one, for example, the

CONTRASTS feature is four columns, but the software counts it as one. The following

figure presents the new session window.

86

Figure 7.1. New session in the classification learner app.

An important characteristic that must be defined in this step is the Validation option.

In this work, it was decided to use Cross-Validation, since it protects against overfitting and

generalizes the reported results by averaging the accuracies obtained in the folds. 10-fold

cross-validation was implemented since it is the most frequently used approach in the

literature. The Predictors section in the previous window allows choosing the predictors

(features) that should be used for the classification application, in this case, all the available

features were selected. After clicking the Start Session button, the next window will present

a scatter plot of the first two features in the set of predictors, as can be seen in the following

figure.

Figure 7.2. Scatter plot of the first two predictors.

87

On the Model Type section, the option “All” was selected, which means that all

available models will be trained. Another interesting characteristic of this application is the

possibility to visualize the current predictors and the expected output, on the right side of

the window in the Classes section these data samples can be turned on and off so that the

main clusters can be easily visualized. In the lower part of the window the main

configuration parameters are reported, including the number of observations (80, since we

have subsets with 10 different subjects each one with 8 fingerprint impressions), the

number of predictors (170, the same number of extracted features per fingerprint), and the

response classes (10, because there are only 10 possible subjects). The last step is to press

the Train button and the training process will start, a total of 24 training models are

executed sequentially in the application. The next section reports the main results for each

database.

The following flowchart presents a summary of how the Classification Learner

application works [40]:

Figure 7.3. Classification Learner application flowchart [40].

This flowchart represents the common workflow for training classification models

or classifiers in this application [40]. For the evaluation of classifiers, in this work, the

confusion matrix and accuracy value were used.

7.2. RESULTS FOR THE FVC2000 DATABASE

The FVC2000 database [6] has four subsets called DB1, DB2, DB3, and DB4. The

following images report the best accuracy obtained for the DB1_FVC2000,

DB2_FVC2000, DB3_FVC2000, and DB4_FVC2000 subsets, respectively.

Select Data
and Validation

Choose
Classifier
Options

Train
Classifier

Assess
Classifier

Performance

Export
Classifier

88

Figure 7.4. Highest accuracy for the DB1_FVC2000 subset.

Figure 7.5. Highest accuracy for the DB2_FVC2000 subset.

89

Figure 7.6. Highest accuracy for the DB3_FVC2000 subset.

Figure 7.7. Highest accuracy for the DB4_FVC2000 subset.

These results show a high accuracy for recognition in the four subsets. The

confusion matrix is also included for each case showing the correct classification in green

and the misclassifications in red.

90

7.3. RESULTS FOR THE FVC2002 DATABASE

The FVC2002 database [7] has four subsets called DB1, DB2, DB3, and DB4. The

following images report the best accuracy obtained for the DB1_FVC2002,

DB2_FVC2002, DB3_FVC2002, and DB4_FVC2002 subsets, respectively.

Figure 7.8. Highest accuracy for the DB1_FVC2002 subset.

Figure 7.9. Highest accuracy for the DB2_FVC2002 subset.

91

Figure 7.10. Highest accuracy for the DB3_FVC2002 subset.

Figure 7.11. Highest accuracy for the DB4_FVC2002 subset.

These results do not show accuracy values as high as for the previous database, the

FV2002 database is significantly more difficult to recognize.

92

7.4. RESULTS FOR THE FVC2004 DATABASE

The FVC2004 database [8] has four subsets called DB1, DB2, DB3, and DB4. The

following images report the best accuracy obtained for the DB1_FVC2004,

DB2_FVC2004, DB3_FVC2004, and DB4_FVC2004 subsets, respectively.

Figure 7.12. Highest accuracy for the DB1_FVC2004 subset.

Figure 7.13. Highest accuracy for the DB2_FVC2004 subset.

93

Figure 7.14. Highest accuracy for the DB3_FVC2004 subset.

Figure 7.15. Highest accuracy for the DB4_FVC2004 subset.

In contrast with the results of FVC2002, for some subsets in FVC2004, the accuracy

is higher, however, for others, it is lower.

94

7.5. DISCUSSION

The following table summarizes the highest accuracy values obtained for the twelve

subsets analyzed in this work.

Table 7.1. Results of the Classification Process.

Database Model Type Accuracy

DB1_FVC2000 Ensemble: Subspace Discriminant 95 %

DB2_FVC2000 Linear Discriminant 95 %

DB3_FVC2000 Ensemble: Subspace Discriminant 97.5 %

DB4_FVC2000 Ensemble: Subspace Discriminant 95 %

DB1_FVC2002 Ensemble: Subspace Discriminant 82.5 %

DB2_FVC2002 Ensemble: Subspace Discriminant 76.3 %

DB3_FVC2002 Ensemble: Subspace Discriminant 85 %

DB4_FVC2002 Ensemble: Subspace Discriminant 81.3 %

DB1_FVC2004 Ensemble: Subspace Discriminant 78.8 %

DB2_FVC2004 Ensemble: Subspace Discriminant 63.7 %

DB3_FVC2004 Ensemble: Subspace Discriminant 95 %

DB4_FVC2004 SVM: Quadratic SVM 80 %

Ensemble: Subspace Discriminant is the classifier model that produces the highest

accuracy values for ten of the twelve subsets used for fingerprint recognition. In MATLAB,

the term Subspace indicates the use of random subspace ensembles, and Discriminant

implies that this ensemble improves the accuracy of discriminant analysis classifiers. The

function fitcensemble was applied and its parameters were automatically calculated by the

Classification Learner application based on some characteristics of the input table data such

as the number of predictors, etc. The fitcensemble syntax for ensemble subspace

discriminant classifiers is [41]:

classificationEnsemble=fitcensemble(predictors,response,'Method','
Subspace','NumLearningCycles',30,'Learners','discriminant','NPredT
oSample',85,'ClassNames',labels)

where predictors is the input table, response is the final column of the input table (the

target data or the expected response from the classification), ‘Method’ specifies the current

ensemble approach (in this case is the subspace), ‘NumLearningCycles’ is the number of

ensemble learning cycles, in this case, we specified 30 cycles. The ‘Learners’ parameter

specifies the type of learners that will be used in the ensemble, in this case, is discriminant.

‘NPredToSample’ is the number of predictors to sample for each random subspace learner,

in this case, we specified 85 because it is half the total number of features (170). Finally,

‘ClassNames’ specifies the cell array with information about the names of the expected

responses (Subject-One, Subject-Two, etc.) [41].

95

This approach was analyzed since it is the model that produces the highest accuracy

values. The range of accuracy values goes from 63.7% to 97.5%, this indicates that the

subsets in each database have several differences that can be better understood by analyzing

their corresponding scatter plots. Using the application, it is possible to have a graphical

representation of how each subset behaves for the first two features which correspond to the

first two contrasts. This process could be done with any other feature in the subsets, but

always comparing the same two features selected for all subsets. The scatter plots for each

subset are presented below.

7.5.1. FVC2000

Figure 7.16. Scatter plot for the DB1_FVC2000 subset.

96

Figure 7.17. Scatter plot for the DB2_FVC2000 subset.

Figure 7.18. Scatter plot for the DB3_FVC2000 subset.

97

Figure 7.19. Scatter plot for the DB4_FVC2000 subset.

7.5.2. FVC2002

Figure 7.20. Scatter plot for the DB1_FVC2002 subset.

98

Figure 7.21. Scatter plot for the DB2_FVC2002 subset.

Figure 7.22. Scatter plot for the DB3_FVC2002 subset.

99

Figure 7.23. Scatter plot for the DB4_FVC2002 subset.

7.5.3. FVC2004

Figure 7.24. Scatter plot for the DB1_FVC2004 subset.

100

Figure 7.25. Scatter plot for the DB2_FVC2004 subset.

Figure 7.26. Scatter plot for the DB3_FVC2004 subset.

101

Figure 7.27. Scatter plot for the DB4_FVC2004 subset.

According to the scatter plots above, the database with notable divisions between

classes (Subjects) is the FVC2000. This corresponds to the high accuracy values calculated

for the subsets belonging to this database, the accuracies for this database are among the

highest of 95%, 95%, 97.5%, and 95% for the DB1, DB2, DB3, and DB4 subsets,

respectively. In contrast, the subsets with lower values have scatter plots with crowded data

samples in which it is difficult to predict a division between classes, specifically, the

DB2_FVC2004 has almost all the classes in the middle part of the plot, this translates into a

more difficult classification process, which in the current system has achieved a 63.7% of

accuracy.

7.5.4. NOISE COMPARISON

Another comparison could be made in terms of the original fingerprint images from

each database. There is a significant difference between the noise added to the FVC2002

and FVC2004 databases compared to the FVC2000 database. The same preprocessing was

performed on all three databases and the following images allow the original fingerprints to

be compared with the enhanced ones, focusing on the noisiest images in each subset.

102

7.5.4.1. FVC2000

Figure 7.28. Original fingerprints from the FVC2000 database.

Figure 7.29. Enhanced versions of some FVC2000 database fingerprints.

The fingerprints included in the previous figures are in the group of the noisiest

from the FVC2000 database, this is surprising due to the fact that at a glance these images

have an acceptable quality (a nonexpert person could easily determine the ridge-valley

structures for each fingerprint and reconstruct the missing spaces that these images

present).

103

7.5.4.2. FVC2002

Figure 7.30. Original fingerprints from the FVC2002 database.

Figure 7.31. Enhanced versions of some FVC2002 database fingerprints.

The noisiest fingerprints from the FVC2002 database included in the previous

images have more difficulty in terms of reconstruction of the ridge-valley patterns than the

fingerprints from the FVC2000 database. This can be demonstrated by realizing that the

preprocessing was not able to reconstruct some areas in the images, these sections have a

high level of noise, and the algorithm fills these spaces with white pixels so that they can be

combined with the background of the fingerprint image.

104

7.5.4.3. FVC2004

Figure 7.32. Original fingerprint images from the FVC2004 database.

Figure 7.33. Enhanced versions of the fingerprints from the FVC2004 database.

The images from the FVC2004 database reported in the previous images are among

the noisiest of all subsets (FVC2000, FVC2002, and FVC2004). The preprocessing

implemented in this work has more difficulty reconstructing various sections from these

images, including white and dark areas within the fingerprint, oily smushes, and even some

frames around the fingerprints.

7.5.5. COMPARISON OF ACCURACIES

The preprocessing enhancement algorithm although it can be improved, has been

shown to have high and acceptable performance for several subsets in the three databases

included in this work. The following figure presents a final comparison between boxplots

for the validation accuracies for all subsets used in this work.

105

Figure 7.34. Boxplots of the accuracy values computed for each database utilized in this

work.

The boxplots for the FVC2000 database (first four boxplots) have a higher

distribution for the quartiles as can be noticed in the figure above. This behavior is

consistent with the average accuracy values reported, which are among the highest for all

12 subsets. On the contrary, the remaining 8 subsets have wider quartiles, but almost for

every classifier the fingerprint recognition system achieves a 100% accuracy for at least

one-fold in the cross-validation implemented.

7.5.6. COMPARISON WITH STATE OF THE ART

The “Accuracy” metric is used to compare the performance of the classifiers from

literature with the proposed method in this thesis. This comparison is presented in Table

7.2. The values included in the table correspond to the highest average accuracies obtained

for each work. In our system, an accuracy of 97.5 % was obtained for the set “B” from the

FVC2000 database subset DB3. All the works included in the table utilize the Wavelet

transform at some stage of the fingerprint recognition. The number of features used by

different methods in Table 7.2 varies from 17 up to over 1000. This implies that the system

proposed in this work considers a moderate number of features taking 170, obtained from

each fingerprint.

106

Table 7.2. Comparison of Results.

Work
Feature

Extraction

Number of

Features

Classification

Model

Training

Time
Accuracy

Iloanusi et al.

[19] (2018)

Spatial, FFT, DCT,

statistic measures
17

Manhattan

distance
n/a 96.89 %

Velapure et

al. [42]

(2020)

Ridge contours,

Gabor filter
≈ 16384 SVM

Not

reported
87.5 %

Nguyen et al.

[43] (2021)
Statistic measures 256

Random

forest

10 h 50

min
95.8 %

Akbar et al.

[15] (2014)
DWT, PCA, DCT 40 SVM

Not

reported
95 %

Tang et al.

[44] (2012)

Statistic measures,

Shannon entropy
1152

Normalize

Euclidean

distance

n/a 96.84 %

Jirandeh et

al. [45]

(2014)

Gabor Wavelet 160 SVM ≈ 170 s 95.5 %

Abdul-

Haleem et al.

[46] (2014)

Energy, local ridge

features, statistic

measures, invariant

moments

119
Absolute

difference
n/a 96.87 %

Suwarno et

al. [47]

(2019)

Haar-like

transformation
100

Hamming

distance
n/a 80 %

This work

Spatial, FFT, DCT,

GLCM, WBSF,

statistic measures

170

Ensemble

Subspace

Discriminant

13.202 s 97.5 %

The training time is another characteristic that needs to be addressed since distance

metrics are counted as instance-based learning or lazy-learning algorithms. In other words,

they require zero training time because the training instance is simply stored [48]. The

comparison of the reported training times with the time utilized in this work indicates an

improvement of several seconds related to times reported in [43] and [45], which do not use

distance metrics for classification. The proposed system also reports a slight improvement

of less than 1% in comparison with the accuracy values reported by [19, 44, 46]. However,

all these systems use distance metrics as the classification model, a much simpler approach

in comparison with the ensemble classifier. It is well known that instance-based algorithms

(distance metrics) are fast for learning but relatively sensitive to noise. Since the speed of

classification is proportional to the number of predictors, they are slow for large sets of

features. For this reason, we can justify a slight improvement in accuracy versus a secure

outcome in recognition, provided by a much stable classifier, which in this case is an

ensemble of subspace discriminant learners. It is important to notice that none of the

107

compared systems has accuracy as high as 97.5% using machine learning algorithms and

reporting a reasonable training time, in this case, 13.202 seconds.

This demonstrates that the proposed fingerprint recognition system achieves high

accuracy classification with a short time to train the ensemble subspace discriminant model,

in comparison with the methods presented in the literature.

The authors in the works compared in Table 7.2 used several databases. Iloanusi, et

al. [19] used the DB4 subset from the FVC2000 database, Velapure, et al. [42] applied the

Fingerprint Color Image Database.v1, from MATLAB Central File Exchange. Nguyen, et

al. [43] used the FVC group database, but subsets were not specified. Akbar, et al. [15]

utilized the CASIA Fingerprint Image Database Version_5.0 (Dataset1), Tang, et al. [44]

used the FVC2000 database, set A. Jirandeh, et al. [45] used the PolyU HRF database,

Abdul-Haleem, et al. [46] the DB3 subset from the FVC2004 database, set A and Suwarno,

et al. [47] used fingerprints captured by a commercial scanner, creating their own custom

set. It is worth noting that although not all databases are the same, the comparison provides

a good insight into the general performance of the proposed system inside the area of

fingerprint recognition research.

108

CHAPTER 8 . FINGERPRINT

RECOGNITION SYSTEM IN PYTHON

After developing a fingerprint recognition system in MATLAB, the next step in this

work was to design a similar system in Python since this programing language nowadays

has many applications for machine learning and image processing.

A similar preprocessing algorithm was implemented in Python 3 based on work

designed by [9, 12, 49] which follows the same steps as described in previous chapters. The

results of this preprocessing are the same as those calculated in MATLAB. However,

feature extraction had several differences in terms of the specific functions to be used in

this procedure.

8.1. LIBRARIES

The first step was to import the libraries that will be used to extract features from

the preprocessed images. The libraries included are OpenCV-Python, NumPy, SciPy,

scikit-learn, Pandas, PyWavelets, scikit-image, and DCTfunctions. Below is a brief

description of these libraries.

8.1.1. OpenCV-Python

OpenCV-Python is a Python library designed to solve computer vision problems; it

is an unofficial pre-built CPU-only OpenCV package for Python [50]. In this work, its main

use was to load (read) input fingerprint images from database files.

8.1.2. NumPy

NumPy is one of the fundamental packages for scientific computing in Python. It

provides functionality for multidimensional arrays (matrices included) and high-level

mathematical functions such as linear algebra operations and the Fourier transform. A

NumPy array is an array with the same type of data elements [32].

109

8.1.3. SciPy

SciPy is a collection of functions for scientific computing in Python including

advanced linear algebra routines, signal processing, statistical distributions, etc. [32]

8.1.4. Scikit-learn

An open-source project that is constantly being developed and improved with a very

active user community. This package contains various machine learning algorithms and is

considered the most prominent Python library for machine learning. Scikit-learn is widely

used in industry and academia, works well with various other scientific Python tools [32].

In scikit-learn, the NumPy array is the fundamental data structure, this implies that any data

used with this package must be converted to a NumPy array. From the SciPy collection,

scikit-learn extracts several functions to implement its algorithms [32].

8.1.5. Pandas

Pandas is a Python library for data management and analysis. Its basic structure is

the DataFrame which can be modeled as a table, similar to an Excel spreadsheet. Pandas

provides a good set of methods for modifying and operating on this table. In contrast to

NumPy, Pandas allows each column to have a separate data type (for example, integers,

dates, floating-point numbers, strings). A valuable characteristic of pandas is its ability to

use a wide variety of database and file formats such as SQL, Excel, and comma-separated

valued (CSV) files [32].

8.1.6. PyWavelets

PyWavelets is an open-source Wavelet transform software for Python. It combines a

simple high-level interface with low-level C and Cython (C-extensions for Python)

performance [51]. The Wavelet families included in this package are Haar, Daubechies,

Symlets, Coiflets, Biorthogonal, etc. The main advantage of this software is its simplicity to

handle equivalent functions to the Wavelet toolbox in MATLAB. For example, in this

work, we applied the wavedec function to create the multilevel Wavelet decomposition in

Python, which is analogous to the wavedec2 function in MATLAB. Similar comments

apply to the other functions that this software provides.

8.1.7. Scikit-image

It is a collection of algorithms for image processing in Python developed by an

active international team of collaborators. This open-source library implements algorithms

and utilities for use in research, education, and industry applications [52]. In this work, this

110

library was used to modify the fingerprint images to their normalized version and to

implement the GLCM and its texture descriptors.

8.1.8. DCTfunctions

In Python, the DCT is calculated by the dct function from the SciPy.fftpack

package. However, in this work, a custom function was created with the name

DCTfunctions based on [53] which performs the fast discrete cosine transform and its

inverse in two dimensions. Those functions work by wrapping the DFT function from

NumPy, rather than explicitly performing the cosine and sine transformations themselves

[53].

8.2. FEATURE EXTRACTION IN PYTHON

The feature extraction process follows the same workflow implemented in

MATLAB. However, there were several differences to be aware of, as Python applies

different libraries and functions that are not the same in MATLAB. The feature extraction

script implemented in Python generates a CSV file with the set of features extracted from

each subset, a total of 12 files were created in this step.

8.3. SUPERVISED LEARNING ALGORITHMS

The supervised learning algorithms available in the scikit-learn package include

LDA, SVM, Nearest Neighbors, Naive Bayes, Decision Trees, Ensemble methods, etc.

Since the MATLAB implementation uses machine learning algorithms for the classification

process, the Python counterpart had to be taken into consideration. However, after trial-

and-error the ensemble random subspace discriminant classifier was taken into

consideration for all subsets since this type of classifier provides the highest accuracy

values for recognition.

8.3.1. Linear Discriminant Analysis in Python

In Python the LinearDiscriminantAnalysis function implements the LDA algorithm,

this function must be invoked from the discriminant_analysis package, which in turn is part

of the scikit-learn library. In Python, the LDA function generates a classifier with linear

decision boundaries, generated by fitting conditional class densities to the input data using

Bayes’ rule. The model fits a Gaussian density to each class assuming that they all share the

same covariance matrix. This model can also be used to reduce the dimensionality of the

input by projecting it in the most discriminative directions [54]. The syntax used in this

work is:

111

classifier = LinearDiscriminantAnalysis()

where the default parameters have been used to implement the classifier, including:

- solver='svd', where svd stands for singular value decomposition, meaning that the

function does not compute the covariance matrix, which is recommended for data

with a large number of features, such as the current fingerprint feature set.

- shrinkage=None, which implies that there is no shrinkage of data.

- priors=None, which controls the class prior probabilities, by default the class

proportions are inferred from the training data.

8.3.2. Ensembles in Python

The two ensemble models in Python that are effective on a wide range of datasets

for classification and regression are: random forests and gradient boosted decision trees

[32]. However, as demonstrated in the previous chapter, the ensemble model composed of

linear discriminant learners proves to be efficient for the current feature fingerprint dataset.

For this reason, this type of classifier was implemented in Python generating interesting

results. The BaggingClassifier function which belongs to the scikit-learn package is the

heart of the classification process since it implements a bagging type ensemble. In this case,

the following syntax was applied:

ensemble = BaggingClassifier(base_estimator =

LinearDiscriminantAnalysis(), n_estimators = 30, random_state = 7)

where base_estimator specifies the “weak” learner type, in this case, LDA, n_estimators

indicates the number of base estimators in the ensemble, and random_state controls the

random number generator used to resample the original dataset. However, this type of

ensemble implementation does not consider the Random Subspace Ensemble approach,

since one of the BaggingClassifier input parameters called bootstrap is set as True,

indicating that the sampling of the predictors occurs with replacement. By setting this

parameter with the following syntax, a random subspace ensemble can be implemented:

random_subspace_ensemble = BaggingClassifier(base_estimator =

LinearDiscriminantAnalysis(), bootstrap = False, max_features =

85, n_estimators = 30, random_state = 7)

112

where bootstrap=False configures the ensemble using a random subspace of max_features

input features, arbitrarily chosen. The numbers included for several other parameters have

the same values as their corresponding parameters in MATLAB.

Then, using both approaches, the average accuracy values, with 10-fold cross-

validation for the twelve subsets, are reported in the following table.

Table 8.1. Results of the Classification Process

Database
Accuracy

Ensemble: Linear Discriminant Ensemble: Subspace Discriminant

DB1_FVC2000 86.25 % 90 %

DB2_FVC2000 85 % 84.58 %

DB3_FVC2000 96.25 % 94.16 %

DB4_FVC2000 83.75 % 86.67 %

DB1_FVC2002 67.5 % 68.75 %

DB2_FVC2002 51.25 % 52.08 %

DB3_FVC2002 56.25 % 67.5 %

DB4_FVC2002 65 % 65.42 %

DB1_FVC2004 48.75 % 47.5 %

DB2_FVC2004 38.75 % 38.75 %

DB3_FVC2004 73.75 % 84.17 %

DB4_FVC2004 63.75 % 61.25 %

In general, there is a small improvement for the calculated mean accuracy values for

the subspace case compared to the ensemble default case. A better representation of these

values for both cases is presented in the following boxplots of the 10-fold cross-validation

accuracies for fingerprint recognition in Python.

Figure 8.1. Boxplots for the default ensemble classifiers.

113

Figure 8.2. Boxplots for ensemble random subspace classifiers.

By observation, it can be said that the ensemble random subspace classifiers provide

a better recognition accuracy since their boxplots have higher values for the inter-quartile

range.

114

CHAPTER 9 . CONCLUSIONS AND

FUTURE WORK

9.1. CONCLUSIONS

In this thesis, a demo application has been designed using MATLAB GUIDE

creating a tool with more complete coverage of IP topics in comparison with works

previously presented. A great variety of examples are included to help better understand the

IP principal topics in a graphical environment.

A fingerprint recognition system has been described, with the novelty of using

random subspace ensemble discriminant classifiers. The main subsystems: preprocessing,

feature extraction, and classification; produce interesting accuracy values which

demonstrate that this fingerprint recognition system is capable to work with several

databases proving its capacity for generalization.

The machine learning approach included in this system provides better results in

comparison with simpler classifiers such as decision trees, k-NN, Naive Bayes, LDA, etc.

Both systems (MATLAB and Python) provide good frameworks for the design and

assessment of fingerprint recognition, which is why in this thesis, both programming

languages were used.

The maximum accuracy value reported for MATLAB is 97.5 % and for Python is

96.25 % which both correspond to the FVC2000 database subset DB3. This high accuracy

demonstrates an acceptable performance achieved by the image processing and machine

learning techniques applied in this thesis.

9.2. FUTURE WORK

The preprocessing algorithm implemented in this thesis must be improved to

achieve higher accuracy recognition values. In consequence, it is planned to develop a

better algorithm using different image processing techniques such as image restoration or

morphological image processing, which can produce better ridge-valley structures or even

recover missing sections from poor-quality fingerprints.

115

Additionally, another machine learning algorithms that could be implemented with

this system are neural networks, which according to the literature could produce higher

accuracy values, improving the performance of the proposed fingerprint recognition

system.

Recently, image processing along with machine learning techniques have been used

to solve problems of spectrum sensing in cognitive radio. Consequently, this would be a

possible investigation direction.

116

LIST OF FIGURES

Figure 1.1. Main GUI for the proposed platform. ... 12

Figure 1.2. General configuration of each demo in the platform. ... 13

Figure 1.3. First appearance of the Histogram of an Image demo. ... 14

Figure 1.4. Overexposed image in the Histogram of an Image demo. .. 15

Figure 1.5. Low contrast image in the Histogram of an Image demo. .. 15

Figure 1.6. High contrast image in the Histogram of an Image demo. ... 16

Figure 1.7. Presentation of Images GUI. ... 16

Figure 1.8. Histogram of an Image GUI, "Sunflower" example. .. 17

Figure 1.9. Histogram of an Image GUI, "Cheetah" example. .. 17

Figure 1.10. Noises in Images GUI, "Cat" example.. 18

Figure 1.11. Noises in Images GUI, "Flowers" example. ... 19

Figure 1.12. Frequency Domain Representation GUI, "First Case: Bulbs - Second Case: Lady"

example. .. 20

Figure 1.13. Frequency Domain Representation GUI, "First Case: Giraffe - Second Case: Girl"

example. .. 20

Figure 1.14. Image Enhancement GUI. ... 21

Figure 1.15. Image Enhancement GUI after pressing the Spatial Filtering button. 21

Figure 1.16. Histogram Equalization GUI, "Cheetah" example.. 22

Figure 1.17. Histogram Equalization, "Boat" example. .. 23

Figure 1.18. CLAHE GUI, "Ben" example. .. 23

Figure 1.19. CLAHE GUI, "Kid" example. .. 24

Figure 1.20. Laplacian filter GUI, "Hands" example. ... 25

Figure 1.21. Laplacian filter GUI, "Van Gogh" example. ... 25

Figure 1.22. Median filter GUI, "Tropical" example. ... 26

Figure 1.23. Median filter GUI, "Cat 1" example. .. 26

Figure 1.24. Fuzzy Contrast Enhancement GUI, "Street" example. ... 27

Figure 1.25. Fuzzy Contrast Enhancement GUI, "Grains" example. .. 28

Figure 1.26. Fuzzy Edge Detection GUI, "Tropical" example. ... 29

Figure 1.27. Fuzzy Edge Detection GUI, "Leaf" example. ... 29

Figure 1.28. Filters in the Frequency Domain GUI, "Elephants" example. 30

Figure 1.29. Filters in the Frequency Domain GUI, "Dog" example. ... 30

Figure 1.30. Notch Filters GUI, "Lanterns" example. ... 31

Figure 1.31. Notch Filters GUI, "Asian girl" example. ... 31

Figure 1.32. Image Restoration GUI. .. 32

Figure 1.33. Wiener Filtering GUI, "Checkerboard" example. ... 32

Figure 1.34. Wiener Filtering GUI, "Star" example. ... 33

Figure 1.35. Lucy-Richardson Algorithm GUI, "Checkerboard" example. 34

Figure 1.36. Lucy-Richardson Algorithm GUI, "Leaf" example. ... 34

117

Figure 1.37. Image Compression GUI. ... 35

Figure 1.38. Compression by quantization GUI, “Marilyn Monroe” example. 36

Figure 1.39. Compression by quantization GUI, “Audrey Hepburn” example. 36

Figure 1.40. JPEG and JPEG 2000 Compression GUI, "Boy" example. .. 37

Figure 1.41. JPEG and JPEG Compression GUI, "Dog" example. ... 38

Figure 1.42. Morphological Image Processing GUI. .. 38

Figure 1.43. Smoothing using openings and closings GUI, "Plugs" example. 39

Figure 1.44. Smoothing using openings and closings GUI, "Van Gogh" example. 39

Figure 1.45. Compensating for a nonuniform background GUI, "Grains" example. 40

Figure 1.46. Compensating for a nonuniform background GUI, "Vessels" example. 41

Figure 1.47. Image Segmentation GUI. .. 41

Figure 1.48. Local vs Thresholding GUI, "Quantum" example. ... 42

Figure 1.49. Local vs Thresholding GUI, "Cells" example. ... 43

Figure 1.50. Segmentation using gradients and the watershed transform GUI, "Particles 1" example.

 ... 44

Figure 1.51. Segmentation using gradients and the watershed transform GUI, "Particles 2" example.

 ... 44

Figure 2.1. Global and local features of a fingerprint image [8] ... 46

Figure 2.2. Typical architecture of a fingerprint recognition system .. 47

Figure 3.1. Examples of fingerprints from the FVC2000 database with one image from each subset

[9]. ... 48

Figure 3.2. Examples of fingerprints from the FVC2002 database with one image from each subset

[10]. ... 49

Figure 3.3. Examples of fingerprints from the FVC2004 database with one image from each subset

[11] .. 50

Figure 4.1. Flow diagram of the enhancement algorithm implemented [12]. 52

Figure 4.2. DB1 subset from the FVC2000 database. ... 59

Figure 4.3. DB2 subset from the FVC2000 database. ... 59

Figure 4.4. DB3 subset from the FVC2000 database. ... 59

Figure 4.5. DB4 subset from the FVC2000 database. ... 59

Figure 4.6. DB1 subset from the FVC2002 database. ... 60

Figure 4.7. DB2 subset from the FVC2002 database. ... 60

Figure 4.8. DB3 subset from the FVC2002 database. ... 60

Figure 4.9. DB4 subset from the FVC2002 database. ... 61

Figure 4.10. DB1 subset from the FVC2004 database. ... 61

Figure 4.11. DB2 subset from the FVC2004 database. ... 61

Figure 4.12. DB3 subset from the FVC2004 database. ... 62

Figure 4.13. DB4 subset from the FVC2004 database. ... 62

Figure 5.1. 2-D FWT filter bank [1]. ... 63

Figure 5.2. Gray level co-occurrence matrix directions [21]. ... 65

Figure 5.3. Example of 5-decomposition levels of the 2-D DWT applied to a fingerprint [9]. 73

Figure 5.4. Wavelet channel decomposition (5-levels) indicating the number of new features

calculated [19]. .. 73

Figure 6.1. k-NN algorithm [33]. ... 77

Figure 6.2. Support Vector Machine [33]. .. 77

Figure 6.3. Naive Bayes [33]. ... 79

Figure 6.4. Discriminant Analysis (quadratic version) [33]. ... 80

118

Figure 6.5. How LDA works, example of two-dimensional data samples projected on a line (lower

dimension) [36]. .. 80

Figure 6.6. Decision Tree [33]. ... 81

Figure 6.7. Bagged decision tree [33]. .. 82

Figure 7.1. New session in the classification learner app. .. 86

Figure 7.2. Scatter plot of the first two predictors. .. 86

Figure 7.3. Classification Learner application flowchart [43]. ... 87

Figure 7.4. Highest accuracy for the DB1_FVC2000 subset. ... 88

Figure 7.5. Highest accuracy for the DB2_FVC2000 subset. ... 88

Figure 7.6. Highest accuracy for the DB3_FVC2000 subset. ... 89

Figure 7.7. Highest accuracy for the DB4_FVC2000 subset. ... 89

Figure 7.8. Highest accuracy for the DB1_FVC2002 subset. ... 90

Figure 7.9. Highest accuracy for the DB2_FVC2002 subset. ... 90

Figure 7.10. Highest accuracy for the DB3_FVC2002 subset. ... 91

Figure 7.11. Highest accuracy for the DB4_FVC2002 subset. ... 91

Figure 7.12. Highest accuracy for the DB1_FVC2004 subset. ... 92

Figure 7.13. Highest accuracy for the DB2_FVC2004 subset. ... 92

Figure 7.14. Highest accuracy for the DB3_FVC2004 subset. ... 93

Figure 7.15. Highest accuracy for the DB4_FVC2004 subset. ... 93

Figure 7.16. Scatter plot for the DB1_FVC2000 subset. .. 95

Figure 7.17. Scatter plot for the DB2_FVC2000 subset. .. 96

Figure 7.18. Scatter plot for the DB3_FVC2000 subset. .. 96

Figure 7.19. Scatter plot for the DB4_FVC2000 subset. .. 97

Figure 7.20. Scatter plot for the DB1_FVC2002 subset. .. 97

Figure 7.21. Scatter plot for the DB2_FVC2002 subset. .. 98

Figure 7.22. Scatter plot for the DB3_FVC2002 subset. .. 98

Figure 7.23. Scatter plot for the DB4_FVC2002 subset. .. 99

Figure 7.24. Scatter plot for the DB1_FVC2004 subset. .. 99

Figure 7.25. Scatter plot for the DB2_FVC2004 subset. .. 100

Figure 7.26. Scatter plot for the DB3_FVC2004 subset. .. 100

Figure 7.27. Scatter plot for the DB4_FVC2004 subset. .. 101

Figure 7.28. Original fingerprints from the FVC2000 database. .. 102

Figure 7.29. Enhanced versions of some FVC2000 database fingerprints. 102

Figure 7.30. Original fingerprints from the FVC2002 database. .. 103

Figure 7.31. Enhanced versions of some FVC2002 database fingerprints. 103

Figure 7.32. Original fingerprint images from the FVC2004 database. .. 104

Figure 7.33. Enhanced versions of the fingerprints from the FVC2004 database........................... 104

Figure 7.34. Boxplots of the accuracy values computed for each database utilized in this work. .. 105

Figure 8.1. Boxplots for the default ensemble classifiers. .. 112

Figure 8.2. Boxplots for ensemble random subspace classifiers. .. 113

119

REFERENCES

[1] R. C. Gonzalez, R. E. Woods and S. L. Eddins, Digital Image Processing Using MATLAB,

Gatesmark Publishing, 2009.

[2] National Research Council of the National Academies, "Biometric recognition: Challenges and

opportunities," National Academies Press, Washington, 2010.

[3] A. M. Bazen, Fingerprint Identification: Feature Extraction, Matching, and Database Search,

Twente University Press, 2002.

[4] P. Schuch, "Deep learning for fingerprint recognition systems," NTNU, 2019.

[5] S. Bharkad and M. Kokare, "Fingerprint identification — ideas, influences, and trends of new

age," in Pattern Recognition, Machine Intelligence and Biometrics, Berlin, Springer, 2011, pp.

411-446.

[6] BioLab - University of Bologna, "FVC2000," 2000. [Online]. Available:

http://bias.csr.unibo.it/fvc2000/download.asp. [Accessed 8 February 2021].

[7] BioLab - University of Bologna, "FVC2002 - Second International Fingerprint Verification

Competition," 2002. [Online]. Available: http://bias.csr.unibo.it/fvc2002/download.asp.

[Accessed 8 February 2021].

[8] Biometric System Lab - University of Bologna, "FVC2004 - Third International Fingerprint

Verification Competition," 2003. [Online]. Available:

http://bias.csr.unibo.it/fvc2004/download.asp. [Accessed 8 February 2021].

[9] L. Hong, Y. Wan and A. Jain, "Fingerprint image enhancement: Algorithm and performance

evaluation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8,

pp. 777-789, 1998.

[10] H. Farid and E. P. Simoncelli, "Differentiation of discrete multidimensional signals," IEEE

Transactions on Image Processing, vol. 13, no. 4, pp. 496-508, 2004.

[11] A. K. Jain and F. Farrokhnia, "Unsupervised texture segmentation using gabor filters," Pattern

Recognition, vol. 24, no. 12, pp. 1167-1186, 1991.

[12] P. Kovesi, "MATLAB and Octave Functions for Computer Vision and Image Processing,"

2000. [Online]. Available: https://www.peterkovesi.com/matlabfns/#fingerprints. [Accessed

17 February 2021].

[13] MathWorks, "Wavelet Toolbox," The MathWorks, [Online]. Available:

120

https://www.mathworks.com/products/wavelet.html. [Accessed 17 May 2021].

[14] K. S. Jeyalakshmi and T. Kathirvalavakumar, "Haralick features from wavelet domain in

recognizing fingerprints using neural network," in International Conference on Mining

Intelligence and Knowledge Exploration, 2020.

[15] S. Akbar, A. Ahmad and M. Hayat, "Identification of fingerprint using discrete wavelet

transform in conjunction with support vector machine," IJCSI International Journal of

Computer Science Issues, vol. 11, no. 5, pp. 189-199, 2014.

[16] M. D. Al-Hassani, A. Kadhim and V. W. Samawi, "Fingerprint identification technique based

on wavelet-bands selection features (WBSF)," International Journal of Computer Engineering

and Technology (IJCET), vol. 4, no. 3, pp. 308-323, 2013.

[17] MathWorks, "2-D wavelet decomposition," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/wavelet/ref/wavedec2.html. [Accessed 17 May 2021].

[18] B. Pathak and D. Barooah, "Texture analysis based on the gray-level co-occurrence matrix

considering possible orientations," International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering, vol. 2, no. 9, pp. 4206-4212, 2013.

[19] O. Iloanusi, N. David, C. Osuagwu and S. Olisa, "Multiple domains and transform-based

features for fingerprint matching," International Journal of Scientific and Technology

Research, vol. 7, no. 9, pp. 27-34, 2018.

[20] MathWorks, "Standard deviation," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/matlab/ref/std.html. [Accessed 17 May 2021].

[21] MathWorks, "Variance," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/matlab/ref/var.html#bum7s4o-1-w. [Accessed 17 May

2021].

[22] MathWorks, "2-D fast Fourier transform," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/matlab/ref/fft2.html. [Accessed 17 May 2021].

[23] MathWorks, "2-D discrete cosine transform," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/images/ref/dct2.html. [Accessed 17 May 2021].

[24] MathWorks, "Maximum elements of an array," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/matlab/ref/max.html. [Accessed 17 May 2021].

[25] MathWorks, "Vector and matrix norms," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/matlab/ref/norm.html. [Accessed 17 May 2021].

[26] MathWorks, "Skewness," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/stats/skewness.html. [Accessed 14 May 2021].

[27] D. P. Doane and L. E. Seward, "Measuring skewness: A forgotten statistic?," Journal of

Statistics Education, vol. 19, no. 2, 2011.

[28] MathWorks, "Kurtosis," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/stats/kurtosis.html?s_tid=doc_ta. [Accessed 14 May 2021].

121

[29] G. Bonaccorso, Machine Learning Algorithms, Packt Publishing Ltd, 2017.

[30] MathWorks, "Machine Learning with MATLAB," [Online]. Available:

https://www.mathworks.com/content/dam/mathworks/ebook/gated/machine-learning-ebook-

all-chapters.pdf. [Accessed 18 May 2021].

[31] MathWorks, "Train models to classify data using supervised machine learning," The

MathWorks, Inc., [Online]. Available:

https://www.mathworks.com/help/stats/classificationlearner-app.html. [Accessed 8 February

2021].

[32] A. C. Muller and S. Guido, Introduction to machine learning with Python: a guide for data

scientists, O'Reilly Media, Inc, 2016.

[33] P. Xanthopoulos, P. Pardalos and T. Trafalis, "Linear discriminant analysis," in Robust Data

Mining, Springer, 2013, pp. 27-33.

[34] M. Skurichina and R. P. W. Duin, "Bagging, boosting and the random subspace method for

linear classifiers," Pattern Analysis & Applications, vol. 5, no. 2, pp. 121-135, 2002.

[35] L. Breiman, "Bagging predictors," Machine learning, vol. 24, no. 2, pp. 123-140, 1996.

[36] S. Agarwal and C. R. Chowdary, "A-stacking and A-bagging: Adaptive versions of ensemble

learning algorithms for spoof fingerprint detection," Expert Systems with Applications, vol.

146, 2020.

[37] Y. Freund and R. E. Schapire, "Experiments with a new boosting algorithm," in Machine

Learning: Proc. of the Thirteenth International Conference, 1996.

[38] T. K. Ho, "The random subspace method for constructing decision forests," IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 832-844, 1998.

[39] MathWorks, "Mastering Machine Learning: A Step-by-Step Guide with MATLAB," [Online].

Available: https://www.mathworks.com/campaigns/offers/mastering-machine-learning-with-

matlab.html. [Accessed 10 February 2021].

[40] MathWorks, "Classification Learner App," The MathWorks, [Online]. Available:

https://www.mathworks.com/help/stats/classification-learner-app.html?s_tid=CRUX_lftnav.

[Accessed 21 May 2021].

[41] MathWorks, "Fit ensemble of learners for classification - MATLAB fitcensemble," The

Mathworks, Inc., [Online]. Available:

https://www.mathworks.com/help/stats/fitcensemble.html#bvcj_s0-1-Mdl. [Accessed 6 April

2021].

[42] A. Velapure and R. Talware, "Performance analysis of fingerprint recognition using machine

learning algorithms," in Proc. of the Third International Conference on Computational

Intelligence and Informatics, 2020.

[43] L. T. Nguyen, H. T. Nguyen, A. D. Afanasiev and T. V. Nguyen, "Automatic identification

fingerprint based on machine learning method," Journal of the Operations Research Society of

China, 2021.

122

[44] T. Tang, "Fingerprint recognition using wavelet domain features," in 2012 8th International

Conference on Natural Computation (ICNC 2012), 2012.

[45] H. M. Jirandeh, H. Sadeghi and M. A. Javadi Rad, "High-resolution automated fingerprint

recognition system (AFRS) based on gabor wavelet and SVM," International Journal of

Scientific and Engineering Research, vol. 5, no. 5, pp. 166-169, 2014.

[46] M. G. Abdul-Haleem, L. E. George and H. M. Al-Bayti, "Fingerprint recognition using haar

wavelet transform and local ridge attributes only," International Journal of Advanced

Research in Computer Science and Software Engineering, vol. 4, no. 1, pp. 122-130, 2014.

[47] S. Suwarno and P. I. Santosa, "Simple verification of low-resolution fingerprint using non-

minutiae feature," in Journal of Physics: Conference Series, 2019.

[48] S. B. Kotsiantis, "Supervised machine learning: A review of classification techniques,"

Informatica, vol. 31, pp. 249-268, 2007.

[49] U. Deshmukh, "GitHub - Utkarsh-Deshmukh/Fingerprint-Enhancement-Python: Using

oriented gabor filters to enhance fingerprint images," 19 April 2021. [Online]. Available:

https://github.com/Utkarsh-Deshmukh/Fingerprint-Enhancement-Python. [Accessed 26 April

2021].

[50] G. Bradski, "The OpenCV Library," Dr. Dobb's Journal of Software Tools, 2000.

[51] G. R. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt and A. O’Leary, "PyWavelets: A

Python package for wavelet analysis," Journal of Open Source Software, vol. 4, no. 36, p.

1237, 2019.

[52] S. Van der Walt, J. L. Schonberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E.

Gouillart and T. a. t. s.-i. c. Yu, "scikit-image: image processing in Python," PeerJ, p. e453,

2014.

[53] M. Newman, "Functions to perform fast discrete cosine and sine transforms," 24 June 2011.

[Online]. Available: http://www-personal.umich.edu/~mejn/computational-physics/dcst.py.

[Accessed 21 April 2021].

[54] scikit-learn developers, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis," [Online].

Available: https://scikit-

learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.

html. [Accessed 27 April 2021].

