


 

 

 

 

  
 

 

 
[In the beginning...] 

 

"Chen ta yaan ma’ tu péek yeetel ch’een le éek’joch’e’enil, le alkab." 

Popol Vuh 
 

("There were only immobility and silence in the darkness, in the night.") 



 

 

 

 

 ABSTRACT 
 

 

 
This dissertation is devoted to the study of photonic crystals in one 

dimension. The structure under analysis is a ternary stack dielectric-dielectric-

metal and here it is named Metallo-Dielectric Photonic Crystal (MDPC). A 

brief review of the pure Dielectric Photonic Crystal (DPC) is given for 

establishing a context and comparing the results of this research. The 

quarter-wave stack is the core of all the discussion along the manuscript and 

the key equivalent analytical expressions are derived for the MDPC, such as 

the dispersion relation, maximum absorption, band diagrams and band gap 

width, in the case of normal incidence. Also, for the MDPC the region of 

validity of the band structure is defined comparing it with the transmittance. 

Then, some of these results are extended for the condition of oblique 

incidence, calculating formulas for the transversal electric and magnetic 

modes. The transfer matrix methodology was used in all the investigation. 

 



 

 

 

 

 RESUMEN 
 

 

 
Esta tesis está dedicada al estudio de cristales fotónicos en una 

dimensión. La estructura bajo análisis es un "stack" ternario dieléctrico-

dieléctrico-metal y en este trabajo es nombrado Cristal Fotónico Metalo-

Dieléctrico (MDPC, por su siglas en inglés). Un breve resumen del Cristal 

Fotónico Dieléctrico (DPC, por sus siglas en inglés) es dado con el fin de 

establecer un contexto y poder comparar los resultados de esta 

investigación. El "stack" de cuarto de longitud de onda es el núcleo de toda la 

discusión presentada a lo largo de este manuscrito y las expresiones clave 

equivalentes analíticas han sido derivadas para el MDPC, tales como la 

relación de dispersión, la absorción máxima, el diagrama de bandas y el 

ancho del band gap, en el caso de incidencia normal. Además, para el MDPC 

la región de validez de la estructura de bandas ha sido establecida 

comparándola con la transmitancia. Posteriormente, algunos de estos 

resultados son extendidos para la condición de incidencia oblicua, calculando 

fórmulas para los modos trasversal eléctrico y magnético. El método de 

matriz de transferencia es utilizado en toda la investigación. 
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 PREFACE 
 

 

 
Periodicity plays a very important role in the universe and in particular in 

our world. Dimension and order have a major role in a variety of phenomena 

that can be seen in the nature. For example, beautiful colors in the feathers of 

some birds or the wings in butterflies are due to the microscopic ordering of 

their surfaces. Another case is the composed eyes of some insects and 

crustacean which allow to them sense the polarization of light.  

The order, and other factors, of the atoms or molecules that form different 

substances define fundamental macroscopic features such as hardness, 

conductivity, refraction index and so on. A specific case where this happens 

is in the carbon atoms, when they are in an amorphous phase they are 

graphite but when they are in a particular order they made diamond. The first 

one is useless in high-tech applications and the second one can be used 

inclusive as an active material for lasing. 

Superconductivity is another circumstance which illustrates our point. In 

this situation crystallinity, in combination with extremely low temperatures, 

allows the propagation of electrons with almost not scattering in the material 

avoiding in this manner losses for heating, i. e., there is not resistance in the 

material to the flux of current. 
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Then, different behavior is obtained in some situations depending on the 

presence or absence of periodicity. For electromagnetic radiation, and in 

particular light, it is well-known that when it propagates in some solid state 

crystals birefringence occurs. What happens then with the propagation of 

electromagnetic radiation in a periodic medium, if it is possible to design a 

crystal with specific dimensions and refraction indices? Some interesting 

behavior is presented by light propagating in such structures in some sense 

analogue with the behavior of electrons propagating in solid state crystals. In 

this case the periodic structures are made of dielectric materials and their 

dimensions are typically in nanometers or micrometers, they were named 

Photonic Crystals.   

Photonic crystals are periodic artificial structures designed to control light, 

guiding and bending it. A crystal is a theoretical concept, it is defined as a 

periodic medium of infinite extension that fills all the space. Of course, in 

reality photonic crystals have defined sizes but they shared almost all the 

features with the theoretical ones. These properties make possible the design 

and construction of optical devices. 

Nowadays the basic and common features and all possible Brave lattices 

of the photonics crystals are well-known and understood. However, the 

engineering of the photonic band gaps, the materials themselves and the 

combination of dielectric and metallic components in the photonic crystals are 

an active field of research and development of new devices and technologies. 

This dissertation is devoted to photonic crystals in one dimension with at 

least one material with refraction index depending on the frequency. In the 

present case, the material with a refraction index as a function of frequency is 

modeled following Drude model and also takes account of the absorption. 

This means that our material is a metal. Therefore, the problem of calculate 

dispersion relation and band structure is more complicated by traditional 

procedures, as is discussed along the manuscript.  
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Chapter one of this dissertation is an introduction that explains the basic 

concepts on photonic crystals and background of the research, situating the 

context and importance of the work. 

Next chapter starts with a review of the known features in one dimensional 

dielectric photonic crystals under the propagation of an electromagnetic wave 

for normal incidence. Two different approaches, transmittance and band 

diagrams, are compared and their coincidences and discrepancies pointed 

out. Then, the introduction of metal in the crystal is discussed for just two 

materials. As mentioned above, Drude model is used to describe the 

refraction index of the metal considering absorption. Finally, we analyze a 

ternary structure dielectric-dielectric-metal and our original results are 

presented. 

The third chapter is an extension of the results found in chapter two but 

now we considered oblique incidence. This condition generates two possible 

states of polarization: transversal electric and transversal magnetic modes. 

Again, the dispersion relation is calculated for both modes and 

omnidirectional band gaps are found. Our results suggest the possibility of 

plasmon polariton propagation in the case of transversal magnetic mode. 

 As final chapter the conclusions of this work are exposed. Also, a future 

research direction is suggested and the principal steps and how to deal with 

the problem are outlined. Finally, an appendix is included with a detailed 

development of the transfer matrix methodology. 
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CHAPTER ONE 

INTRODUCTION TO PHOTONIC CRYSTALS 

 

 

 Fundamental concepts and definitions on photonic crystals, and related 

fields, are introduced in this chapter to benefit the lector unfamiliar with these 

topics and for the selfconsistency of the document. The origin and analogies 

that generated the term “Photonic Crystal” are explained and commented. 

Also, some applications and possible uses for photonic crystals are 

mentioned. Lastly, the organization of this work and general remarks of its 

content are given. In the same way the principal and original results for each 

chapter are briefly mentioned.   

 

1.1 What is a Crystal? 

A crystal is, in essence, a theoretical concept because it is defined as a 

periodic structure of fundamental building blocks that fills the whole space [1]. 

In Solid State Physics these fundamental blocks are atoms, groups of atoms 

or molecules whereas a Photonic Crystal (PC) is made of nanoscopic or 

mesoscopic structures depending on the design wavelength. 

Any crystal can be described in terms of a lattice with a group of 

fundamental building blocks attached to each lattice point.  These blocks are 

called “the basis” and their infinite repetition in the space form the crystal 

structure. 
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A lattice is a regular periodic arrangement of points in space. It is a 

mathematical abstraction. So, the crystal structure is formed only when a 

particular basis is attached identically to each lattice point, with every basis 

identical in composition, arrangement and orientation. An example of a 

crystal, a possible lattice and a possible basis to generate it, is sketched in 

Fig. 1.1. As the lector can see in the same figure, more than one lattice is 

always possible for a given structure. It is not feasible to select a basis until 

we have selected the lattice. 

 

 

Fig. 1.1. The crystal, a possible lattice and one possible basis. 

 

The lattice allows symmetry operations that carry the crystal structure into 

itself, like the lattice translation operation. Also, there are rotation and 

reflection operations. In some crystals it is possible to combine both types of 

operations. The symmetry operations for a particular crystal can be consulted 

in Ref. 1. 

In one dimension (1D) there is only one possibility for a lattice and it is 

with all the lattice points on line. However, it is also possible to have any 

length between the lattice points. For the two dimensional case, the lattice 

has more freedom. In the same sense, that in the 1D, there is still an infinite 

number of lengths between two points of the lattice and also the angle 

between them does not have any natural restriction. 
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On the other hand, for a two dimensional (2D) space there are only five 

special types of lattices that allow symmetry operations. These special lattices 

are named Bravais lattices or two dimensional nets. This dissertation is 

limited to one dimension, but for completeness we would like to mention that 

in 3D there are fourteen Bravais lattices. An excellent introduction to 

crystallography can be consulted in Kittel’s classic book [2] and in Ref. 3. 

 

1.2 Why Photonic? 

Electrons in atomic crystals interact with the ionic nucleuses which form 

the basis in some lattice. These electrons have still quantized states of 

energy and depending on the material result in defined energy bands. 

Another form of explaining the energy band corresponds with the fact that 

electrons have wavelike behavior in a periodic medium and that the 

wavelength is defined by the De Broglie relation. This wavelength is on the 

order of the separation between the lattice points and their interference on the 

crystal atomic planes generates the energy bands and consequently the 

regions without propagation of electrons, i.e., energy band gaps. 

Thus in atomic crystals the wavelike propagation of electrons into the 

crystal (periodic medium) generates energy band gaps. This is the case of an 

electromagnetic wave propagating in a periodic medium. This is the case of 

photonic crystals. 

 When a periodic medium is under the propagation of electromagnetic 

waves, the propagating “particles” are photons. The analogy between atomic 

crystal and dielectric crystals, as a periodic structure, is almost direct. The 

first case arises energy band gaps and the second one photonic band gaps. 

The last one owns its name to the quantization of the field of radiation, this 

means photons. Because, there are some regions where photons of specific 
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frequencies cannot propagate through the dielectric crystal and then the 

natural analogy is named photonic band gap and to the structure, photonic 

crystal. 

Like atomic crystals, PCs can have defects of different types. However, in 

this case, defects can be controlled and engineered without difficulty at the 

will of the designer arising in this way photonic devices as technological 

applications that will be briefly commented in the following section.  

 

1.3 Photonic Crystals: Importance and Technological 

Potential 

It is almost impossible to start the study of photonic crystals without 

mentioning the pioneering work of Yablonovitch [4]. In that paper, he 

established the parallelism mentioned previously in this section. Therein, 

hundreds of papers and reviews have been written and new fields of research 

have appeared. However, that was the beginning of new composite material 

structures with new and special engineered properties based on its 

architecture.  

Such is the case of the combination of PCs with thin metals that gave birth 

to Metallic-PCs [5]. A few years later, metamaterials started to become 

another important field of research with the fabrication and demonstration of 

the negative refractive index at a particular spectral range of frequencies [6]. 

Metamaterials are artificial periodic structures designed to have a strong 

response to the presence of electromagnetic fields. These special materials 

are composed of a mixture of different standard materials in a way that the 

effective index of refraction for a specific wavelength of design is negative 

(negative permittivity  and permeability µ). Usually, the elements that 

constitute a metamaterial have smaller dimensions than the wavelength of 
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design and they have new electrical and magnetic features. They are also 

called negative index materials or left-handed materials. 

The fundamental physical phenomena in those structures has demanded 

a growing attention. Such is the case of plasmons, a density of charge, 

coupled to an EM wave, which oscillates at optical frequencies in 

metallic/dielectric interfaces. MPCs and metamaterials are closely related to 

the current study of plasmon polariton devices. They started, a few years ago, 

combining periodic structures to enhance the plasmon’s propagation [7].  

 All these topics are related trough the concept of periodicity but it is not 

just this feature, but the constructive interference of transmission and 

reflection and collective response. In addition, these kinds of nanostructures 

are capable of controlling light (electromagnetic radiation) in ways that 

previous devices were not. Thus, technological applications and expectations 

for optical devices based in these structures are high as a viable option to 

become a post-silicon technology. 

 In some applications, PCs devices have superior performance those 

traditional optical components. That is the case of PC filters with a very 

specific window of frequencies at the will of the designer. Another application 

is an optical splitter, dividing a waveguide into two. Also, with PC guiding, the 

light can be deviated to a right angle without theoretically leaking in contrast 

with the case of optical fibers where after some critical angle, light starts to 

escape. Mirrors with high reflectivity at a specific wavelength can be made 

essentially lossless. These mirrors can be used to generate cavities with a 

very high quality factor Q and their use in Cavity Quantum Electrodynamics is 

prominent. The fine details and some simulations of the devices described 

here can be consulted in Ref. 8 and 9 and references therein. 
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1.4 About This Manuscript 

  The present research is devoted to PCs in 1D in the presence of 

dissipative materials, in particular metals. The inclusion of metals in a 

composite of dielectric materials open new possibilities in the field of 

optoelectronic devices and often could be the substitutes of silicon technology 

because, in fact, many dielectrics used in PCs could be replaced by 

semiconductors. 

 There are four chapters altogether. The current one is a brief and general 

introduction to PCs, explaining the basic and fundamental concepts to their 

understanding and their technological implications. Nevertheless, each 

chapter has a short introduction to the particular case under discussion, 

resembling the state of the art and after that, original results which sustain 

this dissertation. 

 In the second chapter is discussed a ternary material ensemble with two 

different dielectrics and metal. Transmittance and band structure are 

calculated, analyzed and compared for the case of normal incidence. 

Chapter three presents an extension of the methodology followed in the 

previous chapter, allowing in this manner the calculation of band structures 

for oblique incidence for both polarizations: Transversal electric and 

transversal magnetic modes. Omnidirectional band gaps are found due to the 

absorption in the metallic layers. 

Finally, the conclusions of this work are presented and some remarks for 

future research on a two dimensional structure, which is a rare case where an 

analytical closed solution for the dispersion relation can be written using 

transfer matrix methodology in contrast to series-like with a lot of Fourier 

components resulting from the plane-wave method. 
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Also, an appendix with the Transfer Matrix Method is included at the end 

with the notation and modifications used along this manuscript. We strongly 

recommend to the reader unfamiliarized with the transfer matrix methodology 

to read appendix before the reading of chapter two. In the same way, 

perhaps, would be useful to read the basic concepts of crystallography 

discussed in chapters one and two from Ref. 2. 
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CHAPTER TWO 

ONE DIMENSIONAL METALLO-DIELECTRIC 

PHOTONIC CRYSTAL NORMAL INCIDENCE  

 

 

 The difference besides a “pure” dielectric photonic crystal just called 

photonic crystal, one that contain metal and dielectric and finally a particular 

structure made of two different dielectrics and one metal is established on the 

context of this manuscript. Well-known facts are presented and discussed for 

the two first types of crystals mentioned before and compared with the 

original results found for the ternary material dielectric-dielectric-metal. 

 For this ternary material, that will be called metallo-dielectric photonic 

crystal, the dispersion relation is found analytically just in the case of normal 

incidence. Then the band structure is plotted and compared with the 

transmittance for validation. An enhancement effect is found in the 

transmittance, besides the presence of the metal, due to the existence of the 

periodicity and there is an increment in the band gap width. Also, new 

structural very thin band gaps appear due to the metal at frequencies beyond 

the plasma frequency. These band gaps are additional to the original ones of 

the basic photonic crystal and the ones of the metallic photonic crystal for low 

frequencies before the plasma frequency. Therefore both features coexist in 

the ternary structure that is proposed. 
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2.1 One Dimensional Dielectric Photonic Crystal 

In essence a one dimensional dielectric photonic crystal (1D-DPC) is a 

stack made of two different dielectrics with, preferably, high contrast between 

their permittivity constants. A stack is a succession of parallel layers, with at 

least two different materials which alternate one after the other.  The 

thickness of each layer in the stack could be constant or could follow a 

specific function.   

Dielectric photonic crystals have been widely studied experimentally [1] 

since Second World War under the concept of thin-films. Thin-films are very 

important because their direct application in optical filters, antireflection films 

and coatings, but all their development was in some sense empiric 

knowledge of the materials and their combinations despite this kind of 

stratified media was first theoretical studied by Lord Rayleigh in 1887 [2]. 

General properties of periodic stratified media were investigated 

theoretically by Yeh and co-workers [3] setting the ground for the transfer 

matrix method (TMM) in Optics. The following results, for a stack dielectric-

dielectric, are well-known in literature [4].  However, their inclusion here is 

essential to point out and to compare new results and contributions of this 

dissertation. 

In Fig. 2.1 we show the dielectric-dielectric structure.  It is constituted of 

two different dielectrics with indices n1 and n2, the thickness of each layer is a 

and b respectively. Then, the length of a unit cell is L = a + b, i.e., a period. A 

unit cell or primitive cell is a cell that fills all the space by the action of suitable 

crystal translation operations; a primitive cell is a minimum-volume cell. 
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Fig. 2.1. Stack of two different dielectrics with indices n1 and n2. 

 

The stack is engineered as a quarter-wave stack. Choose the /4 stack is 

not a fortuity one. This particular configuration of layered media is a special 

type named Bragg reflector because it exhibits resonance in the same way 

that the crystal lattice planes when are exposed to x-rays. Quarter-wave 

stacks are known for having high reflectance and the bigger stop gap in the 

transmittance curve. This occurs because the reflected waves for each layer 

are all exactly in phase at the midgap frequency [2]. A stop gap means a 

region in the transmittance where no frequencies are allowed to propagate 

through the structure.  

 

Fig. 2.2. Transmittance for a quarter-wave stack normalized to the design frequency. 
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A curve of transmittance for a quarter-wave stack, which only has ten unit 

cells, is shown in Fig. 2.2. For plotting this figure we use the Eq. (A22) and 

the following numerical values. The central wavelength has been chosen as 

B = 1.55 m (B = 1.22 x 1015 rad/s), a telecommunication frequency, the 

thickness of each dielectric layer as /4 (due to the reason exposed before), 

i.e., a = 0.1082 m, b = 0.2654 m for the indices n1 = 3.58 (Si) and n2 = 1.46 

(SiO2), respectively. In this graph, we can appreciate the peculiarity that the 

first zero in transmittance (the stop gap) is centered at the wavelength of 

design (Bragg frequency) and the harmonics are exactly at two units of 

distance. Then, the stop gaps in this crystal are perfectly well-known. 

 Transmittance and reflectance are well-known concepts in Optics. 

However, in some particular topics, that are still considered branches of 

Optics, new concepts should be introduced, borrowed from other fields of 

Physics. Photonic crystals field is a good example of this need and a relative 

new concept that was adapted from Solid State Physics is band structure, as 

was exposed in chapter one. In the rest of this section, we will compare and 

discuss similarities and differences between transmittance and band 

structure. 

 Band structure is the plot of the dispersion relation. Roughly speaking, the 

dispersion relation establishes a mathematical function between the 

frequencies allowed in the crystal and special wave numbers that 

corresponds with those frequencies. These special wave numbers that can 

propagate trough the crystal are named Bloch wave numbers. Dispersion 

relation has only meaning for a crystal, this is, an infinity periodic medium. 

Thus, using transfer matrix method, we derived the dispersion relation for 

the dielectric PC shown in Fig. 2.1. It is given by: 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2

1 2
1 2 1 2 1 2

1 2

, cos cos cos sin sin ,
2

k kf k k L k a k b k a k b
k k

k
+

= = -  (2.1) 
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where  is the Bloch wave number, the wave numbers ki are defined in the 

usual way ki = (/c)ni   (i = 1, 2). The details of the Eq. (2.1) derivation can be 

consulted in the appendix.  

Therefore, for this layered media, the band structure and the transmittance 

are shown in Fig. 2.3. For the numerical simulations we use the same 

numerical values that in the case of the transmittance in Fig. 2.2. In fact, to 

the right, we are reproducing again Fig. 2.2 but now it is rotated and the 

frequency axis rescaled at the same fashion that in photonic crystal literature 

and additionally it is normalized to the Bragg frequency B. This means that 

we are using dimensionless variables in both axes. 

On the other hand, in the left of Fig. 2.3, the band structure can be 

interpreted as follows. In the y axis there is a dimensionless frequency that is 

understood as the frequency which is illuminating the crystal whereas in the x 

axis the spatial frequency or wave number is plotted in the same way 

dimensionless. This wave number is the Bloch wave number and it is 

identified with the possible wave numbers that can be propagated through the 

crystal. Then, if a point in the x axis is chosen and it is possible to find a 

corresponding point in the frequency axis, this frequency can be propagated 

in the crystal with the Bloch wave number chosen before. In contrast, if it is 

not possible to find a frequency associated to one Bloch wave number, then, 

this frequency is not allowed in the crystal and will be reflected or will form a 

standing wave inside the crystal, not being transmitted to the other side of the 

material. These regions are named band gaps in the case of band structure 

diagrams and stop gaps in the case of transmittance graphs as can be seen 

in Fig. 2.3. 



13 

 

0 0.5
0

ΩB

2.0

3.0

4.0

5.0

6.0

ΚL�2Π
Ω
L
�2
Πc

0 1
0

ΩB

2.0

3.0

4.0

5.0

6.0

Tn

Ω
L
�2
Πc

 

Fig. 2.3. Band structure and transmittance for the stack shown in Fig. 2.1. 

 

We can appreciate from the above figure that the stop gap at the 

transmittance and the band gap in the band diagram match exactly in the 

case of dielectrics. A remarkable detail here is the fact that transmittance is 

just calculated for ten periods and the full stop gap is formed due to the high 

contrast between the dielectrics. In contrast, band structure is ad infinitum 

calculation. 

Hence, we are comparing to different approaches that for one dimension 

proportionate, in some sense, the same information about the allowed 

frequencies in the crystal. However, transmittance is always valid and can be 

calculated for any specific number of layers and band structure is, in essence 

for an infinite crystal or semi-infinite crystal when superficial effects are 

considered. This will be a major difference when metal will be introduced in 

the structure as we will see in the next sections. 

Mathematically, the band gaps are formed when the dispersion relation 

Eq. (2.1) takes values bigger than one. In that case, there are not solutions in 

the field of the real numbers for the dispersion relation and in the absence of 

absorption the band gaps just meaning frequencies not allowed in the crystal. 

However, when the band gaps are correlated with the transmittance we can 

see that the physical meaning is clearly a reflection of this range of 

frequencies. In contrast, stop gaps are just the zeros of the transmittance 
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function. Now, we will see what happened when metal is introduced in a 

photonic crystal and how the concept of band gap and absorption are 

modified by it. 

 

2.2 One Dimensional Metallic Photonic Crystal 

Often, a stack formed of a dielectric material and a metallic layer is called 

metallic photonic crystal (MPC) [5-10]. In all the works cited before, except 

one, for this kind of stack, metallic layers are thin (less than the skin depth) 

and the dielectric material is air (na = 1). One of the first works in MPC was 

due to Kuzmiak and Maradudin [5]. They presented two methods to deal with 

the metallic components in the case of 1D-DPC, the TMM model and 

perturbative plane-wave method (PWM). These authors calculated band 

structure for thin metallic layers in a regimen where band diagrams are still 

valid. In contrast, Yablonovitch and co-workers explored the opposite regimen 

of thick metallic layers where the inclusion of metal cannot be considered a 

perturbation and band structures are no longer valid.  Therefore, in this 

section, we will discuss some features of the metallic photonic crystal 

described above and in the next one we will point out which of these features 

coexist in the structure that we are proposing and we will show that there is a 

particular dominion where band structure and transmittance are 

complemented.  

As it is well-known, metals are highly dispersive and reflective in a wide 

range of frequencies, from microwave to far-infrared. Therefore, the 

penetration of electromagnetic waves into metals is negligible. But at higher 

frequencies towards the near-infrared and visible part of the spectrum, field 

penetration increases significantly and then dissipation too. In the range of 

ultra-violet frequencies, metals behave as dielectrics and allow the 

propagation of electromagnetic radiation. However there is still some degree 
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of attenuation, depending on the metal itself. In the case of noble metals, as 

gold or silver, there is strong absorption in this regime meanly due to 

transitions between electronic bands. 

The dispersive properties can be described via a complex dielectric 

function m() = R() + iI(). Thus, the index of the metal is given by nm = 

m()1/2, and can be modeled through 

    

2

1 p
m i


 

  
 


 (2.2) 

which is the Drude model with the following parameters: p = 1.6 x 1016 rad/s 

(p =  117.80 nm, UV) is the plasma frequency and  = 0.001 p  is the 

damping coefficient, these are typical values for metals such as copper, gold, 

silver and aluminum. The model is in good agreement with alkali metals up to 

the ultraviolet and provides an acceptable description of the dielectric 

constant (index of refraction plus absorption) for noble metals, in a range of 

frequencies that includes low-frequency, radio waves and high-frequency, 

near-ultraviolet light. 

 Nevertheless, this model has problems when is compared to real values of 

noble metals [11]  (such as gold and silver) in the visible due to the interband 

transitions for noble metals when  > p, then a correction is needed that 

basically consists in the substitution of the unit in Eq. (2.2) by an effective 

dielectric constant ∞ (usually 1≤ ∞ ≤10) [12]. Additionally, it appears that 

below 20 nm it is difficult to grow a uniform film by evaporation and there are 

not bulk properties, which means that the dielectric constants are not 

independent of film thickness [11]. 

Moreover, in the case of composites, when the dimension of metallic 

components is on the order of few nanometers there are very interesting and 

unexpected phenomena such as nonlinearities. These nanoparticles can be 

modeled through and effective nonlinear refractive index [13] and via this 
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relation a new kind of soliton is found that in the limit case reduces to the Kerr 

soliton and in general is an amplitude oscillating soliton [14]. Further 

discussion about this nonlinearity and the new kind of soliton that it generates 

is beyond the scope of this dissertation and can be found in the reference 

cited before.  

 Now, returning to the discussion of the index for metals, their inclusion as 

layers in the structure implies losses which are the meaning of the damping 

coefficient  in Eq. (2.2) and in optics, it is related directly with absorption as 

we will see after. For this binary stack the dispersion relation is the same that 

in Eq. (2.1) but with the appropriate changes. For DPCs, where all the 

components are non-absorbent dielectric materials, the Bloch wave number is 

a pure real number in the frequency range of transmission bands in the first 

Brillouin zone. However, in the band gaps the Bloch wave number is 

complex, with the real part in the limit of the Brillouin zone and the imaginary 

part varying as function of the frequency. Other circumstances with a complex 

Bloch wave number are modes allowed, due to defects, inside the range of 

frequencies in the band gap and surface modes. 

  In the MPC case there is a complex wave number for the metal with real 

(imaginary) part k2R (k2I) and the same happens for the Bloch wave number . 

That is  is no longer a real number but a complex one: 

 .R Ii     (2.3) 

The real part of the Bloch wave number R is associated with the index of 

refraction as well as the imaginary part I is directly related to the absorption 

coefficient  as the inverse of the attenuation length according to the 

following definition: 

 
1

2 .Il
    (2.4) 
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 Thus Eq. (2.1), for this MPC, was solved by previous authors [5-9] 

numerically to determine a complex band structure, which, in addition the 

dispersion relation curves  =  (k), also yield the absorption coefficient  of 

the corresponding mode. Band Structure and absorption are shown in Fig. 

2.4 for a MPC with a = 0.1082 m and b = 0.01 m (metallic layer in this 

case). 

 

Fig. 2.4. Band structure and absorption for a metallic photonic crystal. 

 

 It is clear from Fig. 2.4 that there are band gaps for this particular 

combination of thickness and materials. The band gap at the bottom is mainly 

due to the absorption of the metal. There is a threshold frequency before 

which for low frequencies, almost all is absorbed. The other band gaps are 

structural band gaps, associated to the periodicity of the stack. It is interesting 

the fact that now there are band gaps at the beginning of the first Brillouin 

zone and not only at the end. However, there is also too much absorption in 

this structure and this band gaps are not periodic which made very difficult to 

describe them analytically. 

 A second approach, the PWM commonly used in PC topics, takes the 

calculation of the band structure to the generalized eigenvalue problem. It can 

be reduced to an equivalent set of nonlinear equations [5] which correspond 

to the diagonal terms of the matrix equation in the plane-wave representation. 
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However, it requires the diagonalization of a high-dimensional matrix of order 

3NG, where NG is the number of plane waves used in the expansions, which 

makes the evaluation of the eigenvalues highly computer-intensive. The 

plane-wave approximation has problems for the additional modes below the 

lowest frequency band. Thus, we concluded that for this particular case of 

photonic crystal, the use transfer matrix method is the better approach for 

band diagrams calculation. 

 On the other hand, some experimental research has been done for this 

specific MPC (air and metal). Scalora and co-workers [7] have shown that the 

structure remains transparent even if the total amount of metal is increased to 

hundreds of skin depths in net thickness. This is, the concept of skin depth 

loses its meaning in the case of a periodic structure where the presence of 

spatial discontinuities of the index of refraction, alters the physical properties 

of the structure as a whole. Also, the coefficients of transmission and 

reflection could be engineered and the absorption is partially suppressed in 

the structure due to a coherent effect.  

 In the next section we will expose some of the key results of this 

dissertation for the case of a ternary structure composed of dielectric-

dielectric-metal layers typically named metallo-dielectric photonic crystal 

(MDPC). 

 

2.3 One Dimensional Metallo-Dielectric Photonic Crystal 

The study of stacks could appear to be an old problem… but it is not! New 

effects and interesting phenomena [15] could be studied and modeled in this 

“well-known” structure, for example, combinations of positive and negative 

indices [16, 17], or linear with nonlinear and nonlinear-nonlinear stacks 

[18,19]. Also, new geometries, as for example Bragg fibers [20] or Bragg 
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onion [21, 22] can be explored beginning from the basic 1D-DPC. Only 

recently ternary systems in PCs have started to be studied in their different 

combinations. Stacks formed by three dielectrics were also anticipated by 

Yeh [3] and now engineering of the gaps [23] is a hot topic due to our actual 

technology and control of materials. In the case of 1D-MDPCs some work has 

been done before for a spherical shell onionlike in terms of transmittance [24]. 

The structure, that we proposed and investigated, is a 1D-MDPC formed 

of two dielectrics and metallic inserts. This is a ternary stack dielectric-

dielectric-metal, i.e., a DPC is used as a substrate and the metallic layers 

inserted do not modify the periodicity but the length of period. The stack is 

shown in Fig. 2.5 and the index of refraction has the profile 

 ( )
( )

1

2

3

,

,

, 1

n nL x nL a
n x n nL a x nL a b

n nL a b x n L

ì £ < +ïïïï= + £ < + +íïï + + £ < +ïïî

 (2.5) 

as well as it satisfies the relation of periodicity 

    .n x n x L   (2.6) 

 

 

Fig. 2.5. Schematic representation of the MDPC stack. 
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The methodology followed to derive the dispersion relation and the 

transmittance of the system is the TMM. For the numerical simulations the 

same parameters that in section 2.1 are been used. As we said in the 

previous section, metal is modeled through Drude model and the thickness of 

the metallic layers will be changed as a parameter. First we will show some 

interesting phenomena found experimentally by Scalora [7] and after that 

commented by Yablonovitch [6], in both cases for metallic photonic crystal. In 

our case, Fig. 2.6 is presenting the transmittance for the metallo-dielectric 

photonic crystal. This transmittance is for different number of periods n, 

special attention should be taken to the enhancement in the transmission 

between two and ten periods in a finite stack, i.e., the structure has a total of 

thirty layers for ten periods. This plot corresponds to the case of 10 nm of 

thickness in each metallic layer, thus the total thickness of metal is 100 nm 

which in the case of silver with a central wavelength of 500 nm corresponds 

to a skin depth of approximately 10 nm. As was pointed before, this 

phenomena has its origin in a coherent feedback due to the periodicity of the 

structure and for the same reason to the discontinuities of the refraction 

index. 
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Fig. 2.6. The periodic metal array changes the concept of skin depth and partially suppresses 

the absorption as the field propagates within the material. 
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Also, it is  notable the formation of an additional very thin stop gap in the 

neighborhood of L/2c ~ 4. These stops gaps are associated to the metallic 

layers but this will be discussed in detail in the sequence of graphs shown 

below.  

Due to the high contrast between the indices of refraction in the dielectrics 

a full stop gap is formed before ten unit cells as can be appreciated in Fig. 2.7 

(a), where there is not metal present and transmittance is shown for different 

number of periods. If we would like to take more unit cells the only variation in 

the stop gap will be faster oscillations and with less amplitude beside it. 

The rest of the sequence in Fig. 2.7, not only shows the variation in the 

stop gap with respect to the number of periods but also shows how the 

change in the thickness of the metal, generates a full metallic stop gap which 

is thin at the beginning and gradually becomes thick. Furthermore, there is a 

shift in the central point of the stop gap and a broadening. The shift in the 

central point of the stop gap can be explained as a fundamental detuning, 

introduced in the resonance frequency due to the absorption or damping 

coefficient  in Eq. (2.2). Further details can be consulted in Ref. 25. The 

broadening has its ground in the fact that the index of refraction of the metal 

is negative in a determinate range of frequencies and in this way, in average, 

the difference between the dielectric indices is larger. Then, as it is well-

known, the larger the difference between the dielectric constants the bigger 

the stop gap and vice versa. It is interesting to mention that medium theories 

[26] cannot see the metallic stop gap as well as the effective index of 

refraction approach [27]. 
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Fig. 2.7. Formation of a full stop gap with only ten primitive cells. The thickness of the 

dielectrics is fixed but in the metallic layers is changed: (a)  = 0, (b)  = 0.0001 m, (c)  = 

0.001 m, (d)  = 0.01 m, (e)  = 0.04 m and (f)  = 0.07 m. 

 

 Now the discussion about band structure will be continued for this kind of 

PC. In general, band structure is a calculation that implies an infinite periodic 

medium: a crystal. As was proved in the first section of this chapter, when 

there is not absorption, stop gaps in the transmittance coincide exactly with 

the band gaps in the band diagram. For semi-infinite or finite crystals band 
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diagrams suffer minor changes that are associated with the boundaries of the 

crystal generating superficial modes which could be engineering to the needs 

of the designer [2]. 

 So, it is valid the band structure for a dissipative crystal? With this, there is 

an important implication, intuitively, if there is infinite or semi-infinite crystal 

with absorption at the end of the structure should not be anything transmitted. 

The answer is that this is true for a pulse but not for a continuum wave as will 

be seen later. 

 In contrast, transmittance is always valid, even in presence of absorption 

and can be calculated for any number of layers or unit cells. This can be 

strictly done also for the band structure for sufficiently large PC using FDTD 

techniques but it requires high computational resources. Thus transmittance 

will be used for validating the band diagrams. 

 Something that was not mentioned before is, that in the case of absorption 

in the PC there are two approaches. The first one corresponds to consider a 

complex frequency  = R + iI, where the complex frequency is associated 

with amplitude decaying in time and the Bloch vector is real and it extends 

infinitely in space. Conversely, the wave number is a complex quantity 

R Ii    , which in this case represents evanescent waves that decay as 

they propagate inside the crystal, whereas the frequency  remains real. In 

general, one propagates an electromagnetic wave through the PC with a 

theoretical fixed real  or a pulse with a determined spectral width. Thus, for 

this reason the second scheme was chosen. 

 Following the same methodology described in appendix (using TMM), just 

considering one more material, we derived the dispersion relation for normal 

incidence. Thus, the dispersion relation for the crystal shown in Fig. 2.5, is  
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where the wave number is defined in the usual way 

   1, 2,3 .i ik n i
c


   (2.8) 

Also, remember that k3 = k3R + ik3I, because n3 follows the Drude model. 

Dispersion relation, after some simple but cumbersome algebra can be 

expressed as two non-redundant [5] transcendental and coupled equations 
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This is the real part of the dispersion relation, whereas the imaginary part is 

given by 
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 (2.10) 

In equations (2.9) and (2.10), the function f(k1, k2) is the original dispersion 

relation of the DPC substrate, Eq. (2.1). Other terms are introduced by the 

metallic layer and  and  are given by,  

        1 1 2 2 1 2sin cos cos sin ,k k a k b k k a k b    (2.11) 

        2 1 2 1 1 2sin cos cos sin .k k a k b k k a k b    (2.12) 
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 The system of coupled transcendental equations (2.9) and (2.10), is 

typically solved numerically [28] but this procedure requires a high 

computational resource and shows some problems of convergence as we 

can appreciate in Fig. 2.8. This graph was obtained by using the 

computational procedure from Mathematica [29]. The explanation of this 

curve will be postponed until the introduction of our methodology to find the 

solutions of the system of equations that, to our best knowledge, is the first 

time that is proposed.  
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Fig. 2.8. Band structure and absorption, solving the system of equations for normal incidence 

and the thickness of each metallic layer is  = 0.001 µm. 

 

First, it is necessary to point out that p and q in Eqs. (2.9) and (2.10) are 

real for any physical parameters that can be evaluated. Then Eq. (2.7) can be 

expressed as follows 

   cos .R Ii L p iq     (2.13) 

Thus we can calculate the function arccos of a complex number by  

  2arccos ln 1 ,           ,          ,
2

w i iw w w p iq p q
        (2.14) 
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which can be consulted in Ref. 30 but at there, it is incomplete and shifted 

with arcsin function. After some algebraic manipulation 

 arccos ln
2 2

iw       (2.15) 
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and 
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the angle  is calculated in the usual way 
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 (2.18) 

 After this, it is extremely easy to find the Bloch wave number just 

evaluating Eqs. (2.16) and (2.17) for different frequencies. Band structure of 

the MDPC under discussion will be shown and explained in the next figures. 

In Fig. 2.9 is compared how the variations on thickness in the metallic 

layers modify absorption and the band structure and the last one is 

contrasted with the transmittance. It is necessary to say again that the band 

structure is ad infinitum calculation whereas the transmittance is only for ten 

unit cells and it is perfectly valid for these amounts of metal. So band 

structure reflex appropriately the behavior of the light in the crystal for thin 

metal layers as can be seen from Fig. 2.9 (a) to (c). 
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Fig. 2.9. Band structure, absorption and finally transmittance for different thickness of metal. 

(a)  = 0.0001, (b)  = 0.001, (c)  = 0.01, (d)  = 0.04 and (e)  = 0.07 µm. 
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If Fig. 2.9 (a)-(d) is seen, it is appreciated in all the sequence a gradual 

change at the bottom of the first band, this is purely an effect of the 

absorption of the metal for low frequencies, i. e., before the plasma frequency 

all the frequencies will be attenuated or completely absorbed depending on 

the thickness of the metal; and after that, frequencies can propagate without 

problems.  

Also, in the same figure the formation of a very narrow stop gap starts to 

appear between the dielectric stops gaps when the amount of metal is 

increased. This new stop gaps are clearly visible around 2.0 and 4.0 in the 

frequency axis of the transmittance (see Fig. 2.9 (b)). At the beginning these 

stops gaps are not visible in the band diagrams but when the metal thickness 

is 0.01 µm, we can see them also in the band diagrams as a band gap. Fig. 

2.9 (c) shows a full band gap centered near 2.0, one more around 4.0 and 

another one close to 6.0 in the frequency axis. This means that the metallic 

layers generate an additional band gap between the usual structural band 

gaps originated by the DPC substrate, fact that is very remarkable because it 

is not predicted neither by medium theories [26] nor effective index of 

refraction approaches [27]. 

On the other hand, in Fig. 2.9 (d) and (e) there are no coincidence 

between the band gaps and the transmittance. As transmittance is completely 

valid for these amounts of metal, then band structures are no longer trusted 

and do not describe appropriately the behavior of the electromagnetic wave 

propagating in this medium. This is precisely the regimen where Ref. 6 is 

situated. The thickness of the metallic layers is big enough that cannot be 

considered a perturbation any longer. 

However, in the transmittance we can appreciate the formation of full stop 

gaps and the fusion of the dielectric ones with the metallic ones originating a 

new stop gap wider than the original ones. Also, we can appreciate the 
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extinction of the low frequencies and the behavior reported by Yablonovitch 

and co-workers [6] for thick layers of metals in a MPC. The behavior that we 

are pointing out is the decay that the transmittance is suffering, adopting the 

form of isolated peaks that are no longer reaching the value of total 

transmittance. 

Therefore, we showed the existence of metallic band gaps not only in the 

lowest band but also at high frequencies. These gaps are structural ones but 

different and additional to the dielectric ones in the DPC substrate as it was 

mention before. Moreover, comparing Fig. 2.8 with Fig. 2.9 (b) (reproduced 

together in Fig. 2.10), substantial differences can be seen due to the problem 

of solving numerically the equations and the need of techniques of 

convergence for the solutions which are not required using Eqs. (2.16) and 

(2.17). In the latter case the computational time is, for all purposes, negligible 

and the density of points can be increased as large as wanted. 
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Fig. 2.10. Absorption, to the left solving the system of equations and right calculated through 

Eq. (2.17). Both graphics are for normal incidence (ky = 0) and the thickness of the metallic 

layers  = 0.001 µm. 

Until now, we have been doing a phenomenological description of the 

band gaps and their localization. The next section will be focused in the 

development of analytical expressions which predict the position of the band 

gaps and estimate their widths. 
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2.4 Localization and Estimated Width of the Band Gaps 

Our analytical description of the band gaps will be in terms of the 

dispersion relations and crystallographic concepts. However, we will also be 

doing reference to the transmittance graphs because in some cases it is 

easily to visualize a fact there. 

This section will start with a very complete review of the methodology 

applied by Yeh [4] to estimate the width of the band gap and the approximate 

absorption in the band gap for a pure dielectric stack. After that we will extend 

this procedure to our ternary structure the MDPC and in this way predicts the 

approximated absorption and width of the dielectric and metallic band gaps 

which are formed in the MDPC. 

For a 1D-DPC the band gaps are present when k1a = k2b = /2, which is 

the /4 condition and according to our previous discussion this is happening 

for only a particular frequency, named Bragg frequency B. Another fact is, in 

the band gap the absorption changes and has a maximum exactly at the 

center, this can be seen in Fig. 2.9 and in Fig. 2.10, we are going to represent 

the absorption with the letter “x”. Now, the boundary of the Brillouin zone is 

located at  Re / L  , thus 

 ,L ix    (2.19) 

which means that the real part of the cosine function in the left part of Eq. 

(2.19) is close to 1 and the imaginary part x (absorption) will change along the 

band gap region, but in the boundaries will be cero. Therefore, at the 

frequency B, condition (2.19) holds and the dispersion relation for two 

dielectrics Eq. (2.1), yields 

 
2 2

1 2

1 2

arccosh .
2

k kx
k k

 
  

 
 (2.20) 
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Eq. (2.20) gives the maximum value for the absorption in the middle of the 

band gap. Nevertheless, the last expression can be manipulated to obtain an 

easily one, as follows. First, we will use the identity 

    2arccos ln 1           1f f f f     (2.21) 

where in our case f will be the argument of the inverse hyperbolic cosine 

function in Eq. (2.20). Then, 

 1

2

ln
kx
k

 
  

 
 (2.22) 

and taking account of the expansion  

 
1

ln ln 2
1

g g
g

  
    

  (2.23) 

where  1 / 1g      and also 1 2/k k  , we finally arrive to 

 
2 2

1 21 2 1

1 2 2 1 2

arccosh ln 2 .
2

k kk k kx
k k k k k

   
         

 (2.24) 

This is the usual form in which it is found in the literature. 

On the other hand, for calculating the approximate width of the band gap 

we will consider a small shift in the central frequency B of the band gap, this 

shift will be named w, thus 

 1 2 ,
2

k a k b w
    (2.25) 

additionally, the band gap is in the border of the Brillouin zone and 

consequently it should satisfy condition (2.19), therefore the dispersion 

relation takes the form 

  
2 2

2 21 2

1 2

cos sin cos .
2

k kix w w
k k

 
    (2.26) 

Simplifying the trigonometric functions: 



32 

 

 1 2 1 2

1 2 1 2

arcsin .
k k k k

w
k k k k

   
      

 (2.27) 

However, w is a number and we need a frequency quantity. Our small 

displacement really means 

 1 1 1
1 ,

2
B

B
n a n a n ak a w
c c c

   
      (2.28) 

and from the last equality 
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2
.B

B
B

c w w wn an a
c

  
    (2.29) 

The combination of the last relation with Eq. (2.27) yields: 

 1 2

1 2

2
.B

k k
k k

 



 


 (2.30) 

This omega has two signs because one defines the superior limit in the 

band gap and the other one the inferior value of it. Then, the total band width 

will be 

 1 2

1 2

4
.B

k k
k k

    
  


    


 (2.31) 

Following this procedure we will apply an analogous one to calculate the 

maximum absorption for the 1D-MDPC and the width of the band gap. This 

can be done for both kinds of band gaps, the ones that appear in the odd 

harmonics (associated to the dielectric crystal) and in the same way the band 

gaps that correspond to the metallic layers in the even harmonics of the 

Bragg frequency. 

The dispersion relation for the ternary structure is given by Eq. (2.7), also 

we will suppose that the metallic contribution to the phase will be small and 

condition k1a = k2b = /2 is still valid. 
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To close this chapter we will proceed to describe the new type of band 

gap, found in this research due to the use of exact dispersion relations 

instead of medium theories. 

The dielectric band gaps are formed when k1a = k2b = /2 and between one 

harmonic and the next one there is a phase separation of 2. Thus, as the 

metallic band gap is exactly at the middle of two dielectric ones, the condition 

should be modified to 

 1 2

3
,

2 2
k a k b       (2.32) 

because the half of 2 is , plus the original phase of /2 from the /4 

condition. This condition is valid whenever the thickness of the metal  is 

small.  

Eq. (2.32) reduces the dispersion relation of the MDPC to: 

    
2 2

1 2
3

1 2

1
cos cos .

2

k kL k
k k

 
   (2.33) 

In this case, the Eq. (2.19) still holds ,IL i L     and therefore the 

dispersion relation changes to 

           
2 2
1 2

3 3 3 3
1 2

1
cos cos cosh sin sinh .

2I R I R I
k ki L k k i k k

k k
     
       (2.34) 

Separating the last relation into real and imaginary parts, we arrive to the real 

part 

      
2 2
1 2

3 3
1 2

1
cosh cos cosh

2I R I
k kL k k

k k
  

  (2.35) 

and the imaginary part is 

    3 3sin sinh 0R Ik k    (2.36) 

From the imaginary part relation we find, 

  3   ,Rk n n    (2.37) 
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this is because the hyperbolic sine function is only zero for 3 0Ik   . When 

this result is used in Eq. (2.35), yields  

      
2 2
1 2

3
1 2

1
cosh cos cosh

2I I
k kL n k

k k
  

  (2.38) 

and so, we have an additional restriction for n, and it should be an even 

number because I  is defined positive according to our equations. With this 

new assumption we  arrive to the solution 

  
2 2
1 2

3
1 2

arccosh cosh .
2I I

k kL k
k k

 
 

  
 

 (2.39) 

This represents the maximum absorption from the metal in the middle of the 

band gap. It is worth to mention that this expression is very similar to the one 

found before only for the dielectric crystal in Eq. (2.20), in our case we can 

see that there is a correction introduced for the metal and it depends directly 

to the thickness of the metallic sheet. 

In analogy with the dielectric calculation, we will proceed to calculate the 

width of the metallic band gap. If a small shift to the low frequencies is 

considered on the neighborhood of the Bragg frequency for the metallic stop 

gaps, then 

 1 2

3

2
k a k b y

    (2.40) 

and 

  3 2       .Rk n y n     (2.41) 

Again evaluating this expression in the dispersion relation (2.7), also we 

should take account that we are working in the boundaries of the first Brillouin 

zone ( I  = 0), thus it reduces to 
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(2.42) 

After doing some cumbersome algebra, this expression can be separated 

in real and imaginary part. The real part is 
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and the imaginary one yields 
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 (2.44) 

Until this point we were working with exacts equations, in fact we can 

solve the last equations exactly but the solution will be very complicated and 

large. Therefore, we need to make an approximation to find an analytical 

solution not so cumbersome for y. Then, we are taking the expansions of the 

sine and cosine functions to order cero. For Eq. (2.44), this approximation 

results in 
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which can be immediately solved to 
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In this last step we only change    1,2,3i ik n i   in the fraction because 

all the constants will be canceled. Finally, the width of the metallic band gap 
will be 

 
4

.
3

B
Mgap y


   (2.47) 

This last relation is plotted in Fig. 2. 11 and compared with direct 

numerical measurements of the metallic band gap and also with the 

numerical fit, as can be seen the agreement is excellent. 

 

 

Fig. 2. 11. Solid line, the width of the metallic band gap described by Eq. (2.47). Circles are 
numerical measurements and dashed line is a numerical fit. 

 

Summarizing, we demonstrated the existence of structural metallic band 

gaps in a ternary material, dielectric-dielectric-metallic, and we shown a 

manner to calculate it without the computational load that is usually required. 

Furthermore, the enhancement that is present in MPC is also presented in the 

MDPC that was studied, showing in this way that dielectric features and 

metallic ones coexist in this structure. In the next chapter this methodology 

will be extended to oblique incidence for transversal electric and transversal 

magnetic modes. 
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CHAPTER THREE 

ONE DIMENSIONAL METALLO-DIELECTRIC 

PHOTONIC CRYSTAL OBLIQUE INCIDENCE  

 

 

 All the results presented in this chapter, for the metallo-dielectric photonic 

crystal, are original and have not been published previously elsewhere. The 

chapter starts explaining the difference between normal and oblique 

incidence. Then, an extension of our methodology applied in the previous 

chapter is explained and developed. This procedure allows the calculation of 

the transversal electric and transversal magnetic modes in the structure under 

study. Lastly, band diagrams for both polarizations are presented and the 

existence of omnidirectional band gaps is pointed out.  These band gaps 

depend in the thickness of the metallic layers and in the amount of absorption 

that wish to be allowed.  

 

3.1 Oblique Incidence 

In Geometric Optics, when a ray insides in a flat surface not perpendicular 

to it but with a tilt angle, it is named oblique incidence. In the case of Physical 

Optics, the wave vector makes the analogy with the ray and it is oblique 

incidence when the wave vector is not perpendicular to the surface. 
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In contrast, a mayor difference is that, Physical Optics takes account of 

the polarization of light whereas Geometrical Optics does not. Therefore in 

the former case there are two polarizations: transversal electric (TE) and 

transversal magnetic (TM) modes. 

An s wave is another name given to the TE mode, it consists in a plane 

wave with the polarization of the electric field transversal to the plane of 

incidence. Of course for the TM mode, there is an equivalent in this 

terminology and it is known as p wave. This means that the polarization of the 

magnetic field is perpendicular to the plane of incidence, both polarizations 

are schematically shown in Fig. 3.1. 

 

Fig. 3.1. Schematic representation of TE and TM polarizations in the crystal. 

 

The analysis will be done for both, the TE and TM modes at the same 

time. Because traditionally it has been presented like that in the literature and 

the band diagrams are complemented if it is reflected through the vertical axis 

as would be seen in the next section. 
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3.2 TE and TM Modes of the One Dimensional Metallo-

Dielectric Photonic Crystal 

In the ternary structure that we proposed (Fig. 2.5), for oblique incidence 

is still applicably the TMM with the appropriate modifications, as will be shown 

below. First, as was explained in the previous section, will be two 

polarizations. For each polarization different modes can be propagated 

through the crystal depending on the angle of incidence which forms the 

wave vector with the normal to the crystal’s surface.  

There are two equivalent mechanisms to select the tilt, the first one is the 

angle of incidence and the second one, that will be used here, is considering 

the specific component in the ky direction of the wave vector. This means that 

  
2

2 ,          1, 2,3ix i yk n k i
c
    
 

 (3.1) 

is changing over all possible values of kix (the subscript x will be drop in the 

following) when the component ky is modified; and ni = i
1/2 (i = 1, 2, 3). Thus, 

the angle of incident will be modified indirectly through the component ky. In 

fact ky and the angle of incidence  are related through the trigonometric 

relation sinyk k 


, which can be easily verified from Fig. 3.1. 

A constrain is that ki, in Eq. (3.1), must be a real number for the dielectrics. 

Eq. (3.1) is very important because allows us to calculated the TE and TM 

modes for every angle of incidence. 

In the case of TE mode, the MDPC under study has the same dispersion 

relation, presented for the normal case in chapter two and deduced in the 

appendix. According to Eqs. (2.6) to (2.12), the dispersion relation is given by: 

   cos R Ii L p iq     (3.2) 
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the real part is 
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whereas the imaginary part is given by 
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 (3.4) 

We want to point out that both p and q are real. As before the wave vectors of 

the metal are complex numbers with real (imaginary) part k3R (k3I) and the 

same occurs for the Bloch wave vector R (I). In equations (3.3) and (3.4), 

the function fE(k1, k2) is the original dispersion relation of the DPC substrate, 

Eq. (2.1), reproduced again here for the comfort of the reader: 

 ( ) ( ) ( ) ( ) ( )
2 2

1 2
1 2 1 2 1 2

1 2

, cos cos sin sin .
2E

k kf k k k a k b k a k b
k k
+

= -  (3.5) 

 E and E in Eqs. (3.3) and (3.4) are defined as follows:  

        1 2
1 2 1 22 2

3 3
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and 
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1 1
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k k
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In Eqs. (3.3) to (3.7) all the wave numbers ki (i = 1, 2, 3) are given by Eq. 

(3.1) but it was not written explicitly for clarity in the expressions. The same  

should be understood for the TM case. 

Following exactly the same reasoning that in the preceding chapter it is 

found that the real part of the Bloch wave vector is  
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and the imaginary part: 
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 (3.9) 

where p and q are described according to Eqs. (3.3) and (3.4), respectively. 

As before, 
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pq
q p


 
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 (3.10) 

 On the other hand, in the case of TM modes it is necessary to recalculate 

the transfer matrix from the beginning, because the boundary conditions in 

the Maxwell’s equations are different and now the electric field is not 

analyzed but the magnetic one. This is the easy way and the dispersion 

relation is completely the same [1] that if it is calculated through the electric 

field. To calculate the dispersion relation for the TM mode using again the 

boundary conditions of the electric field implies to take account of the two 

components of this field. Therefore, the number of equations under analysis 

is duplicated.   

Hence, this means that the TMM requires the Hz and Ey components in the 

place of Ez and Hy components from Appendix, respectively.  



45 

 

 The dispersion relation for the TM modes has the same general form 

stated in Eq. (3.2), but in this case p and q have different definitions: 
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and 
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where 
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which also can be substituted in Eqs. (3.8) and (3.9) to find the real and 

imaginary parts of the Bloch vector for TM modes. 
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 With the results of this section, in the next one we will calculate, 

numerically, the band structure diagrams for different thickness of metal and 

for both cases: TE and TM modes. 

 

3.3 Numerical Results: Band Diagrams 

 As we mentioned before, to plot these band diagrams for off-axis 

propagation it is necessary to do a scan in all the ky components and by the 

same token a full band gap for both polarizations is not expected for oblique 

incidence in 1D-PC. The explanation is the fact that, oblique propagation has 

not periodic dielectric regions to coherently scatter the light which originates 

in this way a band gap [2]. However, it is still possible to generate an 

omnidirectional reflector for both polarizations for DPCs as well as for the 

structure under study in this dissertation. In fact, despite this is a very old 

problem no one has seen an omnidirectional band gap until the work of 

Joannopoulos’ group [3, 4] for a quarter-wave stack of dielectrics. 

Nevertheless, for not normal incidence, a quarter-wave stack is not the 

optimal thickness of each material in the crystal but a very good 

approximation [5]. 

 The truth is, a quarter-wave stack has not a full band gap in the same 

sense that in a 3D-PC because in this case there are some evanescent 

modes below the light line  = ck and in the former case there is not any 

mode permitted by the band gap.  

The light line is accepted for conventional dielectric photonic crystals but it 

is not a very good parameter when we are working with mixtures of materials. 

In particular, if one of the materials present in the mixture has an index of 

refraction which is a function of frequency. This is precisely the case of metals 

and, therefore, the stacks that we discuss in the previous chapter. For that 
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reason, in the case of metallic photonic crystals [6, 7] and metallo-dielectric 

photonics crystals, to discriminate between evanescent modes and the 

allowed ones, a special concept should be introduced: Wiener bounds.       

Roughly speaking, Wiener bounds are effective dielectric constants for a 

binary mixture. These effective dielectric constants are different, depending 

on the polarization of the electromagnetic wave.  The limits established by 

Wiener [8, 9] are absolute in the sense that the region delimited by them, 

contains all physical realizable quasistatic values of  for two-phase 

composites irrespective of microstructure or composition. The minimum 

screening corresponds with the TE mode, when all boundaries are parallel to 

this field. Conversely, maximum screening is achievement when all 

boundaries are parallel to the magnetic field, this is the TM case.  

The Wiener bound criteria is no longer valid when the wavelength 

becomes comparable with the microstructure’s composite. There are different 

forms for establishing the limits in the dielectric response as for example 

Hashin-Shtrikman limits [10] and others [11-13] but these are more restrictive. 

Almost all these limits can be reduced to the Wiener bounds under 

appropriated conditions. Also, Wiener bounds are often used in engineering 

where they have great importance. In biology and biomedicine as well, there 

is the problem of a liquid matrix in which a number of different inclusions, 

such as nanoparticles, appear simultaneously. The same token happens in 

nanocomposites in the field of Optics. 

 The crystal, that we proposed, is a ternary composite. Then, a 

generalization of the Wiener bound limits should be done. Luckily, few years 

ago, Peiponen and Gornov [14] derived rigorously this generalization. The 

general form of the Wiener bounds, as presented for the previous authors, is 

  min
1
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m

i i
i

f 


  (3.16) 
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and 
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where fi is the filling fraction and i is the permittivity of the m-th material that 

forms the composite. 

 In our case, we calculated the specific form of the effective dielectric 

constants for both TE and TM modes. The Wiener bounds in our case are: 
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where all parameters are defined exactly as in chapter two and 3R and 3I 

correspond to the real and imaginary part, respectively, in the Drude model 

(See Eq. (2.3)). 

 With these relations we can plot, using the Wiener bounds, the analogy 

with the light line. Then, in our case 

 2 2
y eff xk k    (3.20) 

where eff is the Wiener bound given by Eqs. (3.18) or (3.19) depending on 

the mode under analysis.  

Now, we have all the necessary concepts, to discuss our results, the band 

diagrams for the TE and TM modes. The parameters used to plot the band 

diagrams of the MDPC are the same that in chapter two: a = 0.1082 m, b = 
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0.2654 m with indices n1 = 3.58 and n2 = 1.46, respectively. The index of the 

metal is modeled following Drude model whereas the thickness is still a 

parameter that we will change to study its effect over the band structure. 

Fig. 3.2 (a) shows the band diagram when there is not metal in the crystal. 

In this figure, to the left, we have the TE modes in black color and the light 

line in gray color. Here we are using the light line to delimit the evanescent 

modes from the allowed ones, because this is a pure dielectric crystal. TE 

modes were plotted using the equations that we have derived in the previous 

section, specifically the Eqs. (3.8) and (3.10) where the substitution of Eqs. 

(3.3) to (3.7) was required. In analogy, to the right, TM modes are plotted in 

gray color and the light line in black color. As before, we need Eqs. (3.8) and 

(3.10) but now using Eqs. (3.11) to (3.15) which correspond to the TM mode. 

Also, in the same figure, we can appreciate the existence of very narrow 

omnidirectional band gaps above the light line. These band gaps are thinner 

in the TM case than in the TE. However, if we continue extending the band 

diagram to bigger values of ky, probably these band gaps would be totally 

closed for some critical ky. 

 In this case, the dispersion relation is a function of the two components of 

the wave vector: (, ky). This means that the band diagrams, shown in Fig. 

3.2, are a projection. As we are interested in the oblique propagation, we 

should plot the ky component for any value of the Bloch component R but 

with the restriction that the imaginary part, absorption, will be less than IL/2 

< 0.0001. If the condition of absorption is relaxed, more states would be 

allowed and the band gaps would be thin. However, the increment in the 

absorption is not possible because the stack needs at least ten periods (thirty 

layers dielectric-dielectric-metal) for the formation of full dielectric band gaps. 

From Fig. 3.2 (b) to (d), the light line is substituted by Wiener bounds. The 

motive was explained before, and basically it is the presence of metal in the 
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crystal. Since the inclusion of very thin metallic layers,  = 0.0001 µm, we can 

see how the constrain of the absorption eliminates the TE modes under the 

corresponding Wiener bound and in the same way TM modes are modified 

and less modes admitted. For the TM case, there are modes under the 

Wiener bounds, these modes are evanescent modes. They could be 

superficial modes coupled or associated to plasmon polariton phenomena. 

 

  

  

Fig. 3.2. TE and TM modes for different metallic thickness, (a)  = 0, (b)  = 0.0001, (c)  = 
0.001 and (d)  = 0.01 µm. By changing ky different angles of incidence are selected. 

 

For high frequencies the inclusion of metal is not as dramatic as in the 

case of low ones. Fig. 3.2 (c) has a bigger band gap at the bottom but there 

are still some TM modes under the Wiener bounds. So, in this sense there is 

not an omnidirectional band gap at the bottom because there are superficial 
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modes in the crystal. But in the last band diagram, when metallic layers have 

a thickness of  = 0.01 µm, we clearly have full omnidirectional band gaps 

inclusive in high frequencies. Comparing this graph with the previous one, we 

can see an abrupt change in the wide of the band gaps. This is because for 

this amount of metal (~ 0.01 µm) the validity of band diagrams is near their 

limit, there is a lot of absorption due to the thickness of the metallic layers.  

Finally, it is interesting to mention that the physical realization of 

omnidirectional band gaps, for a particular combination of materials, in binary 

stacks is achievable with only nine films, which means four and half periods in 

total [4] but another authors report nineteen layers [5]. These differences are 

not surprising because different materials and thickness will require different 

number of layers. Also, omnidirectional band gaps were reported 

theoretically, few years ago, in 1D-PC made of one negative-index material 

and a conventional one [15, 16]. 
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CHAPTER FOUR 

CONCLUSIONS  

 

 

Photonic crystals are still a fecund field of research as was shown along 

this document. Perhaps not in the fundamental physics of this research field 

by itself but in the combinations of materials and the clever use of the 

particular features and engineering of band gaps for possible applications as 

optical devices. 

 In this dissertation has been shown the existence of a synergic behavior 

between a metallic photonic crystal and the dielectric one giving origin to a 

ternary material, named metallo-dielectric photonic crystal, with both desire 

characteristics of the original structures and new ones owned by the MDPC 

due to its geometric features and proportions when metal is combined with 

the dielectric crystal.  

 In the ternary structure, the original band gaps of the dielectric crystal are 

conserved and the width of them incremented by the presence of metal. Also, 

the band gap at the bottom, characteristic of metallic photonic crystals, is 

present. This band gap is mainly due to the absorption of metal for 

frequencies below the plasma frequency. Moreover, new band gaps appear 

in the metallo-dielectric photonic crystal additional to the ones mentioned 

before. 
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 These new band gaps are very thing and are structural ones, attributed to 

the periodicity of the stack and not just to the absorption, in contrast with the 

band gap which exists before the plasma frequency. The thin metallic band 

gaps are situated exactly between two adjacent dielectric band gaps when 

the metallic layers are thin. We use transmittance to verify the existence of 

the new band gaps and it agrees very well for low thickness of metal. 

However, when the thickness of the metallic layers is bigger than 0.01 µm, 

band gaps disagree with the transmittance. This means that band diagrams 

are no longer valid for high absorption given origin to flat bands. 

 Therefore, we compared two different approaches, transmittance and 

dispersion relation. The first one is always valid for the amounts of metal 

studied in the metallo-dielectric photonic crystal and should be calculated for 

a specific number of layers, that can be big enough but finite after all. 

Whereas band structure is understand as the modes allowed in an infinite 

structure where commonly losses are not considered. Thus, band gaps and 

stop gaps coincide in the case of a pure dielectric photonic crystal.  

In contrast, as a result of the introduction of metal, and therefore 

absorption, our results show that for ultra thin and thin metallic layers band 

gaps and stops gaps coincide. The last one guarantees us that, effectively a 

narrow band gap exists. Nevertheless, when metal is thick our results suggest 

that band diagrams cannot be trusted and transmittance should be 

considered as the real behavior of the frequencies inside the structure. 

 On the other hand, two forms for finding the Bloch wave numbers in the 

dispersion relation were discussed. The first one, is the traditional way in 

literature, consists in solving the dispersion relation numerically with iterative 

techniques. This method requires long times of computing and in our case 

shows problems with the convergence of the values.  
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The second approach, that we proposed, is an analytical procedure, 

consisting in calculate the inverse function of a cosine for complex numbers.  

This method is possible because there is a specific real and imaginary part in 

the dispersion relation since the beginning due to the presence of the metal. 

Thus, the Bloch wave numbers can be calculated just evaluating the 

analytical expressions, Eqs. (2.16) and (2.17), which we derived in chapter 

two. Using these equations there are not problems either with the time of 

computing or the convergence of the values. In contrast, the dispersion 

relation of a pure dielectric crystal is only complex for a range of values where 

the band gap is localized and cannot be separated in general in real and 

imaginary part for all values. 

 In chapter three, we extended our analytical results for normal incidence 

to the case of oblique incidence. This means, that we found the dispersion 

relation for transversal electric and transversal magnetic modes. After that, 

band diagrams for TE and TM modes were plotted for different amount of 

metal. 

 A remarkable result for oblique incidence is the existence of 

omnidirectional band gaps, which in the same manner that for normal 

incidence, they are present not only at low frequencies but also after the 

plasma frequency. 

 Therefore, the structure that we proposed and studied in this research has 

possible applications as an optical device in two different ways. For normal 

incidence we can use it as a very thin band pass filter and the opposite 

happen for oblique incidence. In that case the MDPC can be used as very 

narrow selector for only a narrow width of frequencies. 
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Future Work 

 The line of future research that we proposed is an extension of the 

metallo-dielectric photonic crystal, analyzed previously, to the two 

dimensional case. 

 With the experience developed in the 1D crystal is possible to calculate 

the band diagrams for a 2D crystal with a closed dispersion relation, using 

transfer matrix method in two dimensions. 

 Such structure is a net of infinite long rods with square cross section. For 

this crystal three or four different materials can be used in its construction. A 

top view of the unit cell is shown in Fig. 4.1 (a). Of course, this crystal only 

can be quarter-wave in some directions but not in all them. 

      

Fig. 4.1. (a) Top view of a unit cell of a two dimensional quarter-wave like crystal. (b) Top 
view of a unit cell for a metallo-dielectric photonic crystal. 1 and 2 are dielectrics while 3 and 

4 are metals. 

 

 After the study and understanding of the dielectric case, several 
possibilities can be explored. For example, metal can be introduced to the 
crystal as one of the thin rods which form the unit cell (see Fig. 4.1 (b)) or just 
conserving the dielectric unit cell of Fig. 4.1 (a) a metallic shell can be 
introduced coating in this way the dielectric structure. We believed that the 
band structure of the 2D dielectric photonic crystal will be strongly modified, 
perhaps generating a full band gap not only at low frequencies but also at 
high ones in the same way that the 1D case.    



APPENDIX  

TRANSFER MATRIX METHOD  

 

 

In this section the transfer matrix method (TMM) shall be described in 

detail. However, the procedure shown here is not exactly the standard TMM 

but a modification that mix the usual way in Quantum Mechanics (QM) and 

the procedure followed in Optics [1].  

There are mayor differences between these fields of physics. In QM the 

wave packed is associated to a free particle, which is material but the atomic 

dimensions. This wave packed describes the state of the systems through a 

wave function  and the square of its modulus is interpreted as a probability 

density for a particle in the state . The wave function  has the same 

mathematical structure of a traveling wave of the exponential kind but not the 

same interpretation as was mentioned before. 

In contrast, Physical Optics describes electric and magnetic fields as a 

superposition of plane waves traveling in opposite directions. The 

mathematical representation is exactly the same that the one used in QM. 

However, the physical interpretation here is that the coefficients of the 

exponential functions (the real part) are the amplitudes of the fields traveling 

in a particular direction, and the square of its modulus is interpreted as 

intensity of the field directly related to the energy of the same. 
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In addition, when QM boundary conditions are invoked  and d/dx must 

be continuous. The first one condition, the wave function continuous, has 

physical meaning because a physical phenomena change gradually except 

possibly in a phase transition. So, the function that describes it, must be 

continuous. However, the continuity in the derivate of the wave function is a 

stronger mathematical assumption that is made principally just to justify the 

condition of normalization of the wave function. Whereas, in general, in 

Electromagnetic Theory both conditions, the continuity in the plane wave in 

the boundaries, have physical meaning and the electric field and its derivative 

are continuous not by a mathematical assumption but because the Maxwell 

equations: the electric and magnetic field satisfy each one a different 

continuity condition that results in a natural manner, after algebraic 

manipulation, in the continuity of the electric field and its derivative and also in 

the continuity of the magnetic field and its own derivative.  

Nonetheless, the differences in the methodology that we mention at the 

beginning are not located in the physics itself but in the mathematical 

procedure. The classical procedure defines an extra matrix, named 

propagation matrix, with the information of the change of phase through a 

layer. This additional matrix allowed us to calculate transmittance in a specific 

interface along the stack. Nevertheless, we are not interested in the 

transmittance in an explicit point inside the crystal but at the end of a 

particular full unit cell. Thus, in our methodology, the information of the phase 

is explicitly included in the exponential function that describes the propagating 

wave plane. 

The transfer matrix methodology will be applied to the well-known 

dielectric-dielectric stack which is shown in Fig. A.1. It is made of two different 

dielectrics with indices n1 and n2, the thickness of each layer is a and b 

respectively. The length of a unit cell is L = a + b, i.e., a period. 
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Fig. A.1. Stack of two different dielectrics with indices n1 and n2. 

 

In this case, the general electric field could be written as 

    xi t k x
zE E x e    (A1) 

where Ez(x) is the field perpendicular to this page and changing with the 

periodic direction,  is the frequency of the field, t the time, kx the wave 

number in the direction of propagation and y is perpendicular to the periodicity 

in a right-handed system.  

For a homogeneous layer we can consider the Ez(x) field as a 

superposition of two waves, one incident and the other one reflected. First the 

(n+1)-th unit cell will be considered, in this cell the electric field in the region I, 

for normal incidence, is 

 ( ) ( ) ( ) ( )1 1           ik x nL ik x nL
I n nE x A e B e nL x nL a- - -= + < < +  (A2) 

where An and Bn are the amplitudes of the fields traveling to the left and to the 

right respectively. The wave number in the x direction is k1. In the same way 

the region II has: 

 ( ) ( ) ( ) ( )( )2 2      1ik x nL a ik x nL a
II n nE x C e D e nL a x n L- - - - -= + + < < +  (A3) 
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as before Cn and Dn are the amplitudes of the fields traveling to the left and to 

the right, respectively, in this region. Here the wave number in the x direction 

is k2. 

The wave number is defined in the usual way 

   1, 2 .i ik n i
c


   (A4) 

This is because the index of refraction has the profile 

 ( ) ( )
1

2

,

, 1

n nL x nL a
n x

n nL a x n L
ì £ < +ïï=íï + £ < +ïî

 (A5) 

also it satisfies the relation of periodicity 

    .n x n x L   (A6) 

The following is to invoke the continuity conditions in the electric and 

magnetic fields, in agreement with the Maxwell’s equations,  

 
 

   
( )

.

I II

yI yII

E nL a E nL a

H nL a H nL a

  

  
 (A7) 

So, for the electric field in the boundary between region I and II, yields 

 ( ) ( ) ( ) ( )1 1 2 2 .ik nL a nL ik nL a nL ik nL a nL a ik nL a nL a
n n n nA e B e C e D e- + - + - - + - - + - -+ = +  (A8) 

Or simplifying  

 1 1 .ik a ik a
n n n nA e B e C D- + = +  (A9) 

On the other hand, for the magnetic field the y component Hy is 

    1 z
y

E x
H x

i x





 (A10) 
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where µ is the magnetic permeability which in our case and for both materials 

is µ  1 due to the materials are not magnetic. Thus, as before, in the same 

interface due to the continuity condition, 

 1 1
1 1 2 2 .ik a ik a

n n n nik A e ik B e ik C ik D-- + =- +  (A11) 

Next Eqs. (A9) and (A11) are rewritten in the matrix formalism: 

 12 12n n
AB CD

n n

A C
M M

B D
æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 (A12) 

where  

 
1 1

1 1

12

1 1

ik a ik a

AB ik a ik a

e e
M

ik e ik e

-

-

æ ö÷ç ÷=ç ÷ç ÷ç-è ø
 (A13) 

and 

 12

2 2

1 1
.CDM

ik ik
æ ö÷ç ÷=ç ÷ç ÷ç-è ø

 (A14) 

Here the superscript means from interface 1 to 2 and the subscript the 

coefficients of the field’s amplitudes. In this manner Eq. (A12) can be written 

as 

 ( ) 112 12 .n n
CD AB

n n

C A
M M

D B
-æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 (A15) 

Now the same is done with the interface between region II and I, 

evaluating the fields after a full period, in the matrix representation  

 ( ) 11 21 21

1

n n
AB CD

n n

A C
M M

B D
-+

+

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç ÷÷ çç è øè ø
 (A16) 

where 
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 21

1 1

1 1
 ABM

ik ik
æ ö÷ç ÷=ç ÷ç ÷ç-è ø

 (A17) 

and 

 
2 2

2 2

21

2 2

.
ik b ik b

CD ik b ik b

e e
M

ik e ik e

-

-

æ ö÷ç ÷=ç ÷ç ÷ç-è ø
 (A18) 

Substituting (A15) into Eq. (A16), it is obtained 

 1

1

n n
T

n n

A A
M

B B
+

+

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç ÷÷ çç è øè ø
 (A19) 

where the transfer matrix is 

    1 121 21 12 12 .T AB CD CD ABM M M M M
 

  (A20) 

Finally, it is simplified, after some algebraic manipulation, as 

 
( )

( )
( ) ( )

( ) ( )
( )

( )

1 1

1 1

2 2 2 2
1 2 1 2

2 2 2
1 2 1 2

2 22 2
1 21 2

2 2 2
1 2 1 2

cos sin sin
2 2

.

sin cos sin
2 2

ik a ik a

T

ik a ik a

i k k k kik b k b e k b e
k k k k

M
i k kk ki k b e k b k b e

k k k k

-

-

æ öé ù+ ÷ç -ê ú ÷ç ÷-çê ú ÷ç ÷çê ú ÷ë ûç ÷ç ÷= ÷ç ÷ç é ù ÷+ç - ÷ê úç ÷- +ç ÷ê úç ÷ç ÷ê úçè øë û

 (A21) 

The transfer matrix MT propagates the electric field from one cell to another 

one, or the number of cells needed just taking as many potencies of itself as 

unit cells you want to propagate the field. Through MT two important functions, 

directly related to the frequency and indices of refraction, can be calculated 

and that, in some sense, has similar physical information of the structure 

under analysis: the transmittance and the dispersion relation. 

 Due to the features of the transfer matrix it is possible to calculate the 

transmittance of the system by [2] 
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 2

22

1
,nT

M
  (A22) 

M22 is the element of the transfer matrix since the first layer to the n unit cell. 

Transmittance can be calculated for any number of layers but here the 

expression given is just applicable to a number of integer unit cells. As well, 

the reflectance can be found using MT as follows 

 
2

21

22

,n
MR
M

  (A23) 

where M21 also refers to the corresponding element of the transfer matrix for n 
unit cells. In this manner, for dielectrics with no absorption present, the next 
relation is satisfied 

 1.T R   (A24) 

  There is another way to calculate the transmittance and reflectance. This 
procedure takes account of all the reflections and refractions inside the 
structure in the different interfaces in the same fashion that in a Fabry-Perot 
interferometer. The explicit coefficients given by Fresnel’s formulas are 
summed for the rays reflected and transmitted in each interface, using a 
formula to sum all the terms in the series, arriving in this manner to the Airy’s 
formulas [1].  

 The last procedure is transparent in the TMM in the sense that all the 
contributions of the reflections and refractions are being summed through the 
process of the matrix product and as has been seen before the final transfer 
matrix, until the unit cell or layer wished, has the information of the total of the 
energy transmitted and reflected with respect to the original input.  

The dispersion relation can be calculated through 

 ( ) { }1
cos

2 TL Tr Mk =  (A25) 

where  is the Bloch wave number, L is the length of a period and Tr denotes 

the operation of trace over the transfer matrix. After the substitution of the 
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elements of the transfer matrix and doing all the algebraic procedure the 

dispersion relation is given by 

 ( ) ( ) ( ) ( ) ( )
2 2

1 2
1 2 1 2

1 2

cos cos cos sin sin .
2

k kL k a k b k a k b
k k

k
+

= -  (A26) 

The plot of the dispersion relation contains all the information about the 
frequencies that can propagate through the crystal and it is called band 
diagram or band structure in analogy to the energy band diagrams for 
electrons in Solid State Physics [3]. 
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