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AAAbbbssstttrrraaacccttt   
 

The design of low-complexity linear-phase Finite Impulse Response 

(FIR) filters is investigated in this thesis. The proposals developed here 

are particularly useful for digital communication applications.  

An efficient and essential method to achieve low complexity is to split 

the filters into simple subfilters, and among the most important 

subfilters for such purpose are the comb and cosine filters. These filters 

have a low computational complexity and a low utilization of hardware 

resources but very poor magnitude characteristics. In this sense, novel 

architectures have been developed in the present thesis using the comb 

and cosine filters as a basis. The resulting architectures, especially 

useful for low-pass narrowband filtering in sampling rate conversion, 

achieve better magnitude characteristics and better trade-offs in power, 

area and speed compared with previous systems recently developed in 

literature that rely in simple subfilters as well.    

For filters with constant coefficients, an effective method to realize 

low-complexity filters is to express the coefficients without multipliers, 

which are the most expensive elements in terms of area, power and 

speed. For this case, the proposed contribution focuses on the 

implementation of the constant multiplications as a network of 

additions and shifts. Novel theoretical lower bounds for the number of 

pipelined operations that are needed in Single Constant Multiplication 

(SCM) and Multiple Constant Multiplication (MCM) blocks have been 
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developed here. These lower bounds have been stablished under the 

consideration that every operation (addition or subtraction) can have n 

inputs, and the cost of a pipelined operation is the same as the cost of a 

single pipeline register. The aforementioned consideration is 

particularly important because it occurs in the newest families of Field 

Programmable Gate Arrays (FPGAs), which currently are a preferred 

platform for the implementation of DSP algorithms. 
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RRReeesssuuummmeeennn   
 

En esta tesis se llevo a cabo la investigación del diseño de filtros de  

fase lineal con respuesta al impulso finita (FIR, Finite Impulse 

Response) de baja complejidad. Las propuestas desarrolladas son 

particularmente útiles para aplicaciones en comunicaciones digitales.  

Un método para disminuir la complejidad, que ha resultado 

fundamental y eficiente, consiste en dividir los filtros en subfiltros 

simples, dentro de los subfiltros más importantes para tal propósito se 

encuentran los filtros comb y coseno. Estos filtros tienen baja 

complejidad computacional y utilizan pocos recursos de hardware sin 

embargo presentan una característica en magnitud pobre. Por tal 

motivo, nuevas arquitecturas han sido desarrolladas en esta tesis 

usando los filtros comb y coseno como base. Las arquitecturas 

resultantes, especialmente útiles para filtrado pasa bajas de banda 

angosta para conversión de tazas de muestreo, presentan mejor 

característica de magnitud y mejor trade-offs en potencia, área y 

velocidad en comparación con sistemas previos recientemente 

desarrollados en la literatura que también dependen de subfiltros 

simples.  

Para filtros con coeficientes constantes, un método que ha resultado 

efectivo para diseñar filtros de baja complejidad consiste en expresar 

los coeficientes sin multiplicadores, los cuales son los elementos más 

costosos en términos de área, potencia y velocidad. Para este caso, la 

contribución aquí propuesta está enfocada en la implementación de las  
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multiplicaciones por constantes como una red de adiciones y 

desplazamientos. Se desarrollaron nuevos límites inferiores teóricos 

para el número de operaciones con pipelining que son necesarias en 

bloques de multiplicaciones por una constante (SCM, Single Constant 

Multiplication) y multiplicaciones por múltiples constantes (MCM, 

Multiple Constant Multiplication). Estos límites inferiores se 

establecieron bajo la consideración  que cada operación (suma o resta) 

puede tener n entradas, y el costo de una operación con pipelining es 

igual al costo de un registro simple de pipelining. El argumento anterior 

es particularmente importante porque así se considera en las familias 

más nuevas de arreglos de compuertas programables en campo (FPGAs, 

Field Programmable Gate Arrays), cuya plataforma es preferida 

actualmente para la implementación de algoritmos DSP .  
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Introduction 

Digital Signal Processing (DSP) has multiple applications, for 

example in mobile communications, audio processing, image processing 

or instrumentation, among others [1]-[4]. Because of that, the 

popularity of DSP has increased in the last years. Only in 2016, around 7 

billion of subscriptions to mobile communications were calculated, 

which represents the 96% of world’s population [5].  Cell phones, hard 

drives, Digital Subscriber Line (DSL), satellite television, Global 

Navigation Satellite System (GNSS), are examples of communication 

systems where data are digitally transmitted [6]-[8]. In these systems, 

digital filters are widely used and play an important role.  

A digital filter is a system whose objectives are improving the 

quality of the signal, extracting information of the signals or separating 

previously combined signal components, among others. Due to these 

reasons, the filter is a vital block in DSP [6], [9]-[10]. Since today´s 

society increasingly use mobile devices which are battery-powered, it is 

desirable that the battery charge lasts as long as possible [6], [10]. The 

high demand of low power consumption in portable devices restricts 

the permitted number of hardware components. Because of this, the 

current research is focused on the development of new digital filter 

techniques that meet characteristics like low power consumption and 

low utilization of hardware resources [11].  

CCChhhaaapppttteeerrr   
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In wireless communication systems, successive generations have 

increased their bandwidth and data rates. Current systems offer 100 M-

bit/sec data rates in 20 MHz bandwidth links, but future generations of 

wireless systems are expected to offer 1 G-bit/sec data rates in 500 

MHz bandwidth links [12]. Moreover, in the future it is expected to 

perform most of the signal processing in the digital domain, being the 

digital filters an important part of this processing. Nevertheless, taking 

into consideration the high rates at which these systems would operate, 

the filtering tasks can saturate the capacity of the hardware processing. 

Additionally, digital filters can be computationally expensive (in terms 

of required arithmetic operations to be implemented) causing the 

reduction of lifespan of the batteries. For this reason, developing 

algorithms and architectures of high-performance digital filters is 

necessary. These filters should be able to operate at higher sampling 

rates, with less number of arithmetic operations and with as low as 

possible power consumption, so they can function in such 

communications systems. 

Finite Impulse Response (FIR) filters are preferred in 

communications although they have higher order than the Infinite 

Impulse Response (IIR) filters for the same magnitude response 

specifications. This preference is due, among other characteristics, to 

the fact that the FIR filters have guaranteed stability, can have lineal 

phase and can perform less arithmetic operations in multirate blocks 

due to their simple and direct polyphase decomposition. 

The transfer function of a FIR filter is given by 





 
0

( ) ( )
N

n

n

H z h n z ,                                      (1.1) 
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where h(n) are the filter coefficients and N is the order of the filter. 

Particularly, when the filter has linear phase, the condition h(n)= h(N–

n) holds. If the sign is positive, the condition is called symmetry, or 

anti-symmetry if the sign is negative. 

The order of linear-phase FIR filters depends on the magnitude 

response specifications, i.e., the band edge frequencies (passband edge, 

ωp, and stopband edge ωs) and the allowed deviation from the ideal 

amplitude in the bands of interest (stopband deviation, δp, and 

passband deviation, δs). The formula for estimating the minimum order 

necessary to satisfy a particular specification, given in [13], is  

  




20log 13

14.6( / 2 )

p s
δ δ

N
ω π

,                                       (1.2) 

where Δω is the transition band of the filter, i.e., the difference 

between  the passband edge and the stopband edge. As we see, the 

order is inversely proportional to the transition band.  

The computational complexity  of a digital FIR filter is given in 

terms of the number of multipliers, Mult, and the number of adders, 

Sum, which can be estimated as follows: 

 ,Sum N                                                 (1.3) 

 
   




1; linear phase,
2

;           otherwise.

N

Mult

N

                                  (1.4) 

Clearly, the computational complexity is proportional to the order of 

the filter. Thus, from (1.2), (1.3) and (1.4), we easily can see that the 

filter becomes more computationally complex when its transition band 

becomes narrower. The multipliers are the most expensive elements as 
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they increase the area utilization, latency and power consumption [11]. 

Figure 1.1 shows two low-pass FIR filters with the same deviation 

specifications but different transition bands, namely, Δω1 and Δω2, 

along with the ideal magnitude response. The filter with wider 

transition band has a lower order (N1 = 10), but its magnitude response 

is less close to the ideal response. The filter with the best magnitude 

response between these two needs an order N2 = 36, which implies a 

higher computational cost.    

 

Figure 1.1. Magnitude response of two digital low pass filters. 

When the classical design methods are employed, digital filters are 

usually designed by minimizing the maximum error in their passband 

and stopband deviations (minimax criterion). The resulting filter 

satisfies the desired magnitude response characteristics with the 

minimum order [14]. However, the use of these classical methods can 

result in filters with high order and high computational complexity, 

which is inconvenient in high performance communication systems. 
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1.1 Objective  

The main purpose of this thesis is the investigation of effective 

methods to design low-complexity FIR filters. This research is based, on 

the one hand, in decomposing the overall filter in simple subfilters and, 

on the other hand, in simplifying the constant coefficients of the filters 

by eliminating multipliers. These are the most effective solution 

schemes according to the state of the art.  

The following is a review of some special FIR filters with great 

demand in communications that can benefit from the research 

developed here. 

Multirate filters: In several applications it is necessary to decrease 

or to increase the sampling rate of a signal. These processes are 

respectively known as downsampling or upsampling, and they may 

affect the information contained in the signal if that signal is not 

properly filtered. Filtering a signal and then applying downsampling is 

known as decimation, whereas applying upsampling and then filtering a 

signal is known as interpolation. Figure 1.2a shows the resulting 

samples of a decimated signal with dowsampling factor equal to 2. The 

reduction of the sampling rate makes the aliasing effect to appear in the 

signal spectrum. The aliasing consists in the insertion of undesirable 

information inside of the band of interest of a signal. Figure 1.2b shows 

how it affects the spectrum. With the aim of protecting the information 

prior to downsampling, decimation filters (commonly known as anti-

aliasing filters) must be used [15]. Figure 1.3 illustrates a proper 

decimation process, which consists in a decimation filter cascaded with 

a downsampling stage. 
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Figure 1.2. (a) Samples of a downsampled signal and (b) spectrum of a 

downsampled signal. 

       Figure 1.3. Structure of decimation process. 

On the other hand, in general terms, the interpolation consists in 

the calculation of new samples between the existing samples of a 

signal, see Figure 1.4a. Usually, the interpolation is needed to increase 

the sample rate of a signal. Due to the increased sampling rate, replicas 

of the spectrum of the original signal appear. This is known as imaging, 

as shown in Figure 1.4b. To remove these unwanted copies, a low pass 

filter is used, which is called interpolator filter [16], Figure 1.5. When 

the replicas of the spectrum of the original signal are removed, the 

resulting effect is that new samples appear. These samples are points 

that interpolate the original samples. The interpolation process is dual 

to the decimation process, and the methods to design decimators can be 

straightforwardly extended to design interpolators. 

 

H(z) M X(z) Y(z) 
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Figure 1.4. (a) Samples of an upsampled signal and (b) spectrum of an 

upsampled signal. 

       Figure 1.5. Structure of interpolation process. 

Filters with constant coefficients: Examples of filters with constant 

coefficients h(n) are frequency-selective filters, pulse-shaping filters, or 

minimum-phase filters, among others. Frequency-selective filters pass 

certain frequency components of the input signal and attenuate other 

components of that signal according to a given specification. An 

example of this is the filter whose magnitude response is shown in 

Figure 1. A particular case of these filters are pulse-shaping filters, 

which are used to avoid the intersymbol interference (ISI). In this case, 

the impulse response of the filter shapes the form of every pulse to be 

transmitted, such that the pulse can be detected at the receiver and 

simultaneously its frequency response characteristic can fit into a 

spectral mask previously specified. Thus, pulse-shaping filters are 

applied to avoid the distortion problems for high speed transmissions 

H(z) M 
X(z) Y(z) 
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[17]. On the other hand, a Minimum-Phase (MP) FIR filter has its zeros 

on or inside the unit circle and this characteristic makes it to have the 

minimum group delay among other filters with the same magnitude 

response, at expenses of a non-linear phase response [18]-[20]. Thus, 

MP FIR filters find application in cases where high group delay, usually 

caused by Linear-Phase (LP) FIR filters, is not allowed. These cases 

include communication systems or audio processing, among others.  

1.2 Contributions 

The following contributions have been developed in this thesis. 

 A mathematical proof that a filter formed with cascaded 

cosine subfilters in a sharpening scheme based on Chebyshev 

polynomials can have Minimum Phase (MP) characteristic. 

The demonstration that cascaded and expanded Chebyshev-

sharpened cosine filters are also MP filters is provided as 

well, and it is shown that they can have a lower group delay 

for similar magnitude characteristics in comparison with 

traditional cascaded expanded cosine filters. Improvements 

in the group delay at the cost of a slight increase of usage of 

hardware resources can be achieved. Moreover, for an 

application of a low-delay decimation filter, the proposed 

scheme exhibits lower group delay, less computational 

complexity (in Additions Per Output Sample, APOS) and 

slightly less usage of hardware elements.      

 A method to design low-complexity wide-band compensators 

to improve the passband characteristic of comb and comb-

based filters sharpened with Chebyshev polynomials. The 

proposed method is based on the amplitude transformation 
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approach, and a simple formula to obtain the coefficients of 

the compensator is also provided. Design examples and 

comparisons show that the proposed compensation filters 

have better frequency characteristics compared to other 

wide-band compensators recently presented in the literature. 

 A method to design comb-based decimation filters with 

improved magnitude response characteristics, based on 

compensation filters and Chebyshev polynomials. It is shown 

that the filters designed with the proposed method exhibit 

better characteristics than the traditional comb filter and 

other recent methods from literature. 

 A comb-based decimator that consists of an area-efficient 

structure aided with an embedded simplified Chebyshev-

sharpened section. The proposed scheme improves the worst-

case aliasing rejection of comb filters and preserves a low-

complexity design that requires fewer hardware resources 

and consumes less power. The proposed system exhibits 

regularity, a desirable characteristic not present in other 

comb-based recent methods from literature that have 

pursued the same goals. 

 A method to design comb-based decimation filters with 

improved magnitude response characteristics, which consists 

in applying the Hartnett-Boudreaux sharpening technique 

(so-called improved sharpening) to simultaneously increase 

the worst case attenuation and correct the droop in the 

passband region. The coefficients of the sharpening 
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polynomials are expressed as Sum of Power of Two (SPT), 

leading to multiplierless implementations. 

 Comb-based decimation architectures split in stages, based 

on the Harnett-Boudreaux sharpening. The non-recursive 

comb-based decimation architecture is employed when the 

downsampling factor is a power of two, whereas two and 

three stages are employed for other composite downsampling 

factors, with non-recursive structure in the first stage and 

recursive structure in subsequent stages. To improve the 

passband characteristic, a simple compensator is applied in 

the last stage. Then the Hartnett-Boudreaux sharpening 

technique is applied to decrease the passband droop induced 

by the comb filter placed in the first stage. As a result, 

computationally efficient comb-based decimation filters are 

obtained with better magnitude characteristics than previous 

proposed sharpening methods. 

 New theoretical lower bounds for the number of operators 

needed in fixed-point constant multiplication blocks. The 

constant multipliers are constructed with the shift-and-add 

approach, where every arithmetic operation is pipelined, and 

with the generalization that n-input pipelined 

additions/subtractions are allowed, along with pure 

pipelining registers. These lower bounds, tighter than the 

state of the art theoretical limits, are particularly useful in 

early design stages for a quick assessment in the hardware 

utilization of low-cost constant multiplication blocks 

implemented in the newest families of Field Programmable 

Gate Array (FPGA) integrated circuits.   
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1.3 Organization 

This thesis is organized in five chapters. An introduction on the 

research developed here is given in Chapter 1. Chapter 2 presents a 

review of the state of the art and introduces the techniques used as a 

basis to carry out this investigation. The proposed methods and 

architectures that employ comb and cosine filters as basic building 

blocks are detailed in Chapter 3. Then, Chapter 4 presents the proposed 

contribution on the implementation of the constant multiplications as a 

network of additions and shifts, namely, the novel theoretical lower 

bounds for the number of pipelined operations that are needed in Single 

Constant Multiplication (SCM) and Multiple Constant Multiplication 

(MCM) blocks. Finally, Chapter 5 provides the general conclusions and 

suggestions for future research.    
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Review of techniques for FIR 
filter design  
This section presents a selection of recent methods to design FIR 

digital filters with great demand in communications. These methods 

have been efficient because they generate filters with a minimum error 

in the frequency response and with smaller number of arithmetic 

operations in comparison with the classic methods. Among these 

techniques, the ones used as a basis to develop the proposals of this 

thesis are emphasized. Sections 2.1 and 2.2 provide, respectively, an 

overview of multirate and subfilter-based techniques. Finally, Section 

2.3 details the methods related to the proposals introduced in this 

thesis.   

2.1 Multirate techniques 

Multirate systems are those that use multiple sampling frequencies 

in the processing of digital signals. It has been proved that using 

multirate techniques in the design of a filter generates a reduction in 

the number of adders and multipliers required for its implementation 

[1]-[12]. There are several techniques in digital signal processing 

available to optimize multirate filters. For example, for M-th band FIR 

filters design, an algorithm was developed in [1] to optimize a 

polyphase structure based on two stages for different integer sampling 

rate conversion. It was demonstrated in that scheme that conversions 

CCChhhaaapppttteeerrr   
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by odd factors are more efficient than conversions by even factors. A 

new design method to design differentiators and wide-band filters, that 

offers a dramatic complexity reduction, was presented in [2]-[3]. In this 

approach there is a two-frequencies system that takes advantage of the 

Frequency Response Masking Technique (FRM) to accomplish sharp 

transition bands with reduced computational load. 

 A common application of multirate techniques is in filter bank 

systems [4]-[7]. Method [4] employs Fast Fourier Transform (FFT) and 

its inverse to achieve computationally-efficient filter banks, whereas a 

recent design method of cosine modulated filter bank (CMFM) and 

transmultiplexers uses the Interpolated Finite Impulse Response (IFIR) 

technique to design the prototype filter [5]. The use of nature-inspired 

metaheuristics for the optimization of coefficients in filter banks and 

transmultiplexers was proposed in [6]-[7].   

Splitting into q stages the decimation and interpolation processes 

by an integer D is a proper strategy for computational efficiency, i.e., D 

is factorized in q factors. For example, for q = 2, we have D = M×R. The 

Cascaded Integrator-Comb (CIC) structure can be used in the first stage 

with downsampling by M and is efficient in terms of chip area but 

requires integrators working at high rate, thus having high power 

consumption. Because of this, multi-stage comb-based decimation 

schemes have gained great popularity. In methods [8]-[9] the value of q 

is 3 (i.e., M = M1×M2), while q greater than 3 is set in the works [10]-

[12], where D is constrained to be a power of 2 or a power of 3. By using 

multistage structures, the first-stage filter can be implemented in a 

non-recursive form and the polyphase decomposition can be applied, 

thus resulting in power savings at expenses of an increase of chip area.  
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2.2 Techniques based on simple filters 

The use of simple subfilters to design FIR filters has been 

demonstrated to be efficient. The decomposition of an overall filter into 

simple subfilters allows to obtain filters with narrow transition band 

and lower number of arithmetic operations than the direct methods. 

Thus, these methods are ubiquitous in different applications where the 

computational complexity must be reduced. 

The FRM technique has received considerable attention for digital 

filters design due to its capabilities. The principal blocks in the FRM 

technique are the model filters and the masking filters. The model 

filters are also known as sparse filters (or filters with sparse 

coefficients) because they have many zero-valued coefficients. These 

filters provide the shape of the transition band of the overall filter at 

expenses of introducing unwanted frequency response images in the 

bands of interest, whereas the masking subfilters cancel these 

unwanted images. Recent improvements to the FRM method have been 

introduced in [13]-[14]. A FRM-based design method where the model 

filter was implemented in hybrid form, allowing the reduction of 

critical path with low computational complexity and low utilization of 

hardware resources in the design, was presented in [13]. On the other 

hand, a unified design framework based on a convex-concave 

optimization procedure has been recently provided in [14]. 

The Frequency Transformation (FT) to design linear phase Type I 

FIR filters with narrow transition band and small error in the passbands 

and stopbands is another efficient method based in subfilters. The total 

filter is implemented as a cascaded interconnection of identical 

subfilters. This interconnection includes structural coefficients that 
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appear in parallel to the subfilters. The method consists in mapping into 

the bands of interest the amplitude response of a prototype filter, which 

generates the structural coefficients, using the amplitude response of 

the subfilter as a mapping function. Recently, a method to design 

Hilbert transformers based on this technique, which results in few 

multipliers, was presented in [15], where the FT method is applied in 

nested levels. On the other hand, a unified view of the frequency 

transformation method for FIR filters was proposed in [16], where the 

frequency response of the overall filter is considered as a function 

composed by simpler identical functions.    

2.3 Techniques related to the proposals of this thesis 

During the development of this thesis some methods were a main 

tool to get the resulting proposals:  

a) The sharpening methods, an special case of frequency 

transformation methods, were employed and modified to obtain 

excellent trade-offs between the computational complexity and the 

improvement in the magnitude response of FIR decimation filters.  

b) The multiplierless methods influenced the elaboration of the 

new theoretical lower bounds for the number of operations required in 

Pipelined Single Constant Multiplications (PSCM) and Pipelined 

Multiple Constant Multiplications (PMCM).  

Subsections 2.3.1 and 2.3.2 present the respective fundamentals 

and state of the art of the aforementioned methods. 

2. 3. 1 Sharpening techniques 

The Sharpening technique improves the magnitude characteristics 

of a filter, i.e., decreases the error in the passband region and improves 
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the attenuation in the stopband region, by cascading identical copies of 

that filter, and including structural coefficients that are connected in 

parallel to these cascaded filters. The sharpening technique has been 

proved to be successful in the design of digital filters. The resulting 

filters save multipliers significantly compared with the direct form 

designs.  

The first method known as sharpening technique was proposed in 

[17] by Kaiser and Hamming, where the structural coefficients are 

obtained from simple polynomials referred as Amplitude Change 

Functions (ACFs). Many applications of the sharpening technique have 

been made to FIR filter design, particularly for comb-based decimation 

filters, corroborating the effectiveness of this method, see for example 

[18]-[22]. Years later, a method based on the sharpening of Kaiser and 

Hamming was proposed by Hartnett and Boudreaux [23]. In this 

approach, called Improved Sharpening, there are more design 

parameters that allow to generate better magnitude response 

improvements in comparison with the traditional sharpening. 

In the improved sharpening, which is a generalization of the 

traditional sharpening, the ACF is a polynomial denoted by Pm,n,σ,δ(x) 

which maps the amplitude x into a different amplitude y = Pm,n,σ,δ(x). In 

this notation, x is the amplitude response of the simple filter to be 

improved and y is the resulting amplitude response after cascading the 

simple filter several times (the number of cascaded sections is given by 

the degree of the ACF, and the structural coefficients are the 

coefficients of the ACF). The improvement in amplitudes near to the 

passband increases with m, the order of tangency of the ACF at the 

point (x, y) = (1, 1) to a line with slope equal to σ. Similarly, the 

improvement in amplitudes near to the stopband increases with n, the 
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order of tangency of the ACF at the point (x, y) = (0, 0) to a line with 

slope equal to δ. 

The desired piecewise linear ACF is illustrated in Figure 2.1 along 

with the real ACF, i.e., the polynomial Pm,n,σ,δ(x). In that figure, xpl and 

xpu are, respectively, the minimum and maximum amplitude in the 

passband of the original filter, and xsl and xsu are the minimum and 

maximum amplitude in the stopband of the same filter, respectively. In 

the same way, ypl, ypu, ysl, and ysu are the minimum and maximum 

amplitudes in the passband and the minimum and maximum amplitudes 

in the stopband of the sharpened filter, respectively. 

 

Figure 2.1.  The Amplitude Change Function (ACF) given as Pm,n,δ,σ(x). 

A general formula was deduced in [24] to obtain directly the 

desired ACF from the design parameters. The polynomial Pm,n,σ,δ(x) is 

given as 
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The traditional sharpening is an special case where δ and σ are both 

equal to zero. Thus, with the parameters σ and δ, the improved 

sharpening provides more flexibility in the design process. 

The Chebyshev sharpening approach was recently introduced in 

[25] for comb-based decimation filters with integer downsampling 

factor M. This approach is based on Chebyshev polynomials and allows 

to obtain equiripple stopbands. The ACF in Chebyshev sharpening is 

obtained as 
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where Ck is the coefficient of the k-th power of a K-th degree Chebyshev 

polynomial of first kind, R is the integer downsampling factor of the 

decimation stage that is placed after the Chebyshev-sharpened 

decimator (it is usually R = 2), and r is the precision for the fractional 

part of γ. A new method for two-stage comb-based decimation filters 

that uses Chebyshev sharpening technique to improve the magnitude 

response characteristics of the traditional comb filter was presented in 
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[26]. In [27], the Chebyshev sharpening approach was applied to linear-

phase FIR filters design. The resulting filters present equiripple 

stopbands and the subfilters are constituted by small integer 

coefficients. 

Methods to design filters with improved magnitude characteristics 

using sharpening approaches are a current research topic specially 

useful in comb-based decimation filters (i.e., CIC-based structures). In 

this context, besides of the aforementioned sharpening methods, other 

sharpening polynomials, i.e., ACFs, have been introduced in [28] and 

recently in [29]-[34]. These ACFs can not be explicitly expressed with 

simple formulas, but they have to be found via optimization. An useful 

implementation structure for sharpened CIC decimators was presented 

by Saramaki-Ritoniemi in [28], and it has been the basis for all 

sharpened CIC decimators. Without loss of generality, Figure 2.2(a) 

illustrates the direct structure for a sharpened comb filter followed by a 

downsampling factor M. Its transfer function is 
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where βk represents the coefficient of the k-th power of the sharpening 

polynomial. The resulting CIC-based decimation structure is shown in 

Figure 2.2b, which is obtained after applying multirate identities.  

2.3.2 Multiplierless techniques 

In all the digital signal processing based systems, multiplication of 

digital signals by a single constant (Single Constant Multiplication, 

SCM) or by multiple constants (Multiple Constant Multiplication, MCM) 

is a common operation, found for example in digital filtering, Discrete 
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Fourier Transform (DFT), Discrete Cosine Transform (DCT), among 

others [35]-[39]. There is currently abundant research activity focused 

on developing efficient blocks of multiplications by constants where 

multipliers, the most power- and area-consuming elements in a DSP 

arithmetic block, are avoided since their full flexibility is not needed 

[35]-[57]. In these cases, multiplications are performed using only 

additions and subtractions, and only scaling by powers of two is 

allowed. These powers of two are implemented using hardwired shifts 

and therefore are considered with no cost. This scheme of constant 

multiplications is so-called shift-and-add multiplication or 

multiplierless multiplication.  

 

 

Figure 2.2.  (a) Direct structure for a sharpened CIC filter. (b) Efficient 

implementation structure of a sharpened CIC filter. 
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The SCM case is when an input is multiplied by a constant 

coefficient, see Figure 2.3(a), and the MCM operation is when an input 

is multiplied by a set of constant coefficients, see Figure 2.3(b). 

Theoretical lower bounds for the number of adders and for the number 

of depth levels, i.e., the maximum number of serially connected adders 

(also known as the critical path), in SCM, MCM and other constant 

multiplication blocks that are constructed with two-input adders under 

the shift-and-add scheme have been presented in [53], and an extension 

to these lower bounds in the SCM case was recently given in [54].     

The constant multiplications referred here are expressed in fixed-

point arithmetic because implementations in this number 

representation have higher speed and lower cost, thus being usually 

employed in DSP algorithms [37]-[57]. 

 

Figure 2.3. Block diagram of constant multiplications: (a) SCM and (b) MCM. 

Only integer, positive, odd constants are considered since this is a 

useful simplification that does not affect the formulation of constant 

multiplication problems. In this sense, a constant can be expressed 

simply in binary form, as follows,  
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where bi{0, 1} is the i-th bit and B is the word-length [54]. We can 

express a product of a variable input X by a constant c with the shift-

and-add approach using the binary representation of that constant to 

dictate the multiplier structure. For example, the product 47X, with 47 

=  25 + 23 + 22 + 21 + 20 (i.e., a binary string "101111"), needs four 

additions and has a critical path of three additions, as show in Figure 

2.4.  The implementation cost of a shift-and-add constant multiplier is 

the number of arithmetic operations since products by powers of two 

are implemented as hardwired shifts with no practical cost.  

 

Figure 2.4.  Implementation structure of the product 47X with constant 47 

expressed in binary. 

It is worth to highlight that additions and subtractions require 

practically equal amount of resources in hardware implementation. 

Hence, Signed Digit (SD) representations of a constant can reduce the 

aforementioned implementation cost because they employ negative 

digits, which represent subtractions. An SD representation of a constant 

is given in the form, 
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where di{–1, 0, 1}, with '–1' usually expressed as 1 [55]. Among them, 

the Canonical Signed Digit (CSD) representation is convenient since its 
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number of non-zero digits is the Minimum Number of Signed Digits 

(MNSD) [54]. Besides, each non-zero digit is followed by at least one 

zero, which makes the representation unique. The CSD form of a 

constant can be found from binary  by iteratively substituting every 

string of k digits '1' (say, "1111") with a string of k–1 digits '0' between 

a '1' and a '–1' (the string "1111" becomes "10001 "). In this case, the 

product 47X, with 47 =  26 – 24 –20 (i.e., a CSD string "1010001 "), 

needs two subtractions and has two operations in its critical path, as 

shown in Figure 2.5.      

 

Figure 2.5. Implementation structure of the product 47X with constant 

47 expressed in CSD. 

In a constant multiplication block, the A-operation [56] represents 

two-input addition or subtraction along with shifts, and it is defined as,   
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where l1 ≥ 0, l2 ≥ 0 are left shifts, r ≥ 0 is a right shift, s2 is a binary 

value, i.e., s2{0,1}, q is the set of parameters (so-called the 

configuration) of the A-operation, i.e., q = {l1, l2, r, s2}, and u1, u2 are 

odd integers.  

An array of interconnected A-operations form a SCM or a MCM 

block. The MCM is built upon SCM because the latter is the simplest 
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case. The SCM array is represented using directed acyclic graphs 

(DAGs) with the following characteristics [57]: 

 The output of each A-operation is called fundamental. 

 For a graph with m A-operations, there are m + 1 vertices and m 

fundamentals.  

 Each vertex has an in-degree n, except for the input vertex which 

has in-degree zero. 

 A vertex with in-degree n corresponds to an n-input A-operation. 

 Each vertex has out-degree larger than or equal to one except for 

the output vertex which has out-degree zero.  

 The constant resulting from the last A-operation is output 

fundamental (OF). The constants resulting from previous A-

operations are non-output fundamentals (NOFs).  

In the MCM case, there are several OFs.  

The Directed Acyclic Graph (DAG) representation is the most useful 

for saving arithmetic operations because it allows to exploit structures 

to interconnect A-operations that can not be seen in the CSD 

representation. This expands the opportunity to optimize the constant 

multiplication blocks. For example, the product 45X, with 45 =  26 – 24 – 

22 + 20 (i.e., a CSD string "1010101"), needs three 2-input additions and 

has a critical path of two additions, as show in Figure 2.6(a).  However, 

by using the DAG approach, the multiplication 45X requires two 2-input 

additions and has a critical path of two additions. In this case it is 

possible to factorize the constant in two factors, namely, 5 and 9, as 

shown in Figure 2.6(b).   
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Figure 2.6. Structure of the product 45X (a) constant 45 expressed in 

CSD and (b) constant 45 in graph representation. 

Particularly, in the last two decades many efficient high-level 

synthesis algorithms have been introduced for the multiplierless design 

of constant multiplication blocks. The usual cost function to minimize in 

these algorithms has been the number of arithmetic operations 

(additions and subtractions) needed to implement the multiplications, 

which is representative of the computational complexity and the chip 

area required in that implementation. Nevertheless, the number of 

operations connected in series, i.e., the number of depth levels forming 

a critical path, has the main negative impact in the speed and power 

consumption [41]-[44]. Therefore, substantial research activity has 

been carried out currently targeting both, Application-Specific 

Integrated Circuits (ASICs) [45]-[47] and Field-Programmable Gate 

Arrays (FPGAs) [48]-[52], where the minimization of the number of 

arithmetic operations subject to a minimum critical path is the ultimate 

goal. 

The design of efficient multiplierless constant multiplication blocks 

is conjectured to be an NP-complete problem [47]. Thus, the existing 

algorithms are heuristics that aim to maximize the sharing of partial 

products. They are generally grouped in two categories based on the 

search space where they look for a solution. 
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On the one hand, the Common Sub-expression Elimination (CSE) 

methods [35], [39]-[41], [46]-[48] define the constants under a number 

representation, such as binary, Canonical Signed Digit (CSD), or 

Minimal Signed Digit (MSD). Then, considering possible sub-

expressions that can be extracted from the nonzero digits in 

representations of constants, the “best” sub-expression, generally, the 

most common, is chosen to be shared among the constant 

multiplications. The main drawback of these methods is their 

dependency on a number representation, which can lead to sub-optimal 

solutions. 

On the other hand, the Graph-Based (GB) techniques [36]-[38], 

[42]-[45], [49]-[52], [56]-[57] are not restricted to any particular 

number representation and aim to find intermediate sub-expressions 

that enable to realize the constant multiplications with minimum 

number of operations. They consider a larger number of realizations of 

a constant and obtain better solutions than the CSE methods. However, 

the main drawback of these methods is that they require more 

computational resources for a proper search due to the larger search 

space. 
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Methods and architectures 

that employ comb and cosine 

filters as basic building 

blocks 

The central idea of the research here developed is a method to 

design FIR filters with minimum possible number of arithmetic 

operations for a desired magnitude characteristic. Usually, the main 

aspects taken into account in filters for communications are a passband 

close to the ideal and an acceptable attenuation. For that reason, the 

contributions developed in this thesis are based on these crucial points. 

Considering that the use of simple filters in the low complexity FIR 

filter design results effective, it is hypothesized here that a filter with 

comb and cosine filters as basic building blocks will benefit from their 

magnitude characteristics by adding low complexity. Although these 

filters are practical, they have passpband droop and poor attenuation. 

Using compensator filters in cascade helps to improve the passband 

characteristic. Complementary to this, the Sharpening techniques can 

enhance the magnitude characteristics of cosine and comb filters by the 

tapped cascaded interconnection of these simple filters. With regard to 

the computational complexity, by using multirate approaches it is 

possible to reduce the number of arithmetic operations to be 

implemented, particularly in sampling rate conversion cases. 

CCChhhaaapppttteeerrr   
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This chapter is organized as follows. First, the use of Chebyshev 

sharpening to design cosine-based prefilters is presented in Section 3.1. 

The proof that the Chebyshev sharpening technique provides filters 

with Minimum Phase (MP) characteristic when it is applied to cosine 

filters is given. Additionally, a mathematical demonstration that 

cascaded expanded Chebyshev-Sharpened Cosine Filters (CSCFs) are 

also MP filters is established. Then, from Sections 3.2 to 3.6, the 

subfilter-based approaches are particularly developed for comb-based 

decimators. Sections 3.2 to 3.4 follow the scheme of increasing the 

attenuation of comb filters and correcting their passband droop in 

separate ways, whereas Sections 3.5 and 3.6 follow the scheme of 

improving these magnitude characteristics in a unified way via 

sharpening. In Section 3.2, a method to design low-complexity wide-

band compensators to improve the passband characteristic of comb and 

comb-based filters sharpened with Chebyshev polynomials is developed. 

Subsequently, in Section 3.3, a method to design comb-based decimation 

filters with improved magnitude response characteristics, based on 

compensation filters and Chebyshev polynomials is derived. In Section 

3.4, a comb-based decimator that consists of an area-efficient structure 

aided with an embedded simplified Chebyshev-sharpened section is 

proposed. A method to design comb-based decimation filters with 

improved magnitude response characteristics, which consists in 

applying the Hartnett-Boudreaux sharpening technique (so-called 

improved sharpening) is explained in section 3.5. Finally in 3.6, Comb-

based decimation architectures split in stages, based on the Harnett-

Boudreaux sharpening, are detailed. The developed proposals are 

explained and illustrated with examples.  
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3.1 Minimum phase property of Chebyshev-sharpened Cosine 

filters 

A Minimum Phase (MP) digital filter has all zeros on or inside the 

unit circle [1]. The basic building block analyzed here, the cosine filter, 

is a simple FIR filter whose transfer function and frequency response 

are, respectively, given by  

cos

1
( ) (1 )

2
LH z z   ,                              (3.1) 

cos
( ) cos( /2)jωH e ωL .                          (3.2) 

This filter is of special interest because of the following main 

reasons: 

(a) It has MP property because its zero lies on the unit circle. 

(b) It has a low computational complexity because it does not 

require multipliers, which are the most costly and power-consuming 

elements in a digital filter [2]. 

(c) It has a low usage of hardware elements, which can be 

translated into a low demand of chip area for implementation. 

When applied to comb filters, the Chebyshev sharpening approach 

provides solutions with advantages like a simple and elegant design 

method, a low-complexity resulting LP FIR filter and improved 

attenuation characteristics in the resulting filter [3]. However, filters 

from [3] are not guaranteed to have MP characteristic. In that method 

the sharpening is performed with a N-th degree Chebyshev polynomial 

of first kind, defined as  
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0
( )

N n

nn
P x c x


  .            (3.3) 

Demonstrating the MP characteristic of Chebyshev-Sharpened 

Cosine Filters (CSCFs) is motivated by the following facts: 1) Cosine-

based prefilters may result in high delay, which is not tolerated in many 

applications —particularly, in MP FIR filters the reduction of the group 

delay is a priority—; 2) The use of cosine filters results in low-

complexity multiplierless FIR filters; 3) The recent Chebyshev 

sharpening method from [3] can improve the attenuation of cosine 

filters and is a potentially useful approach to preserve a simple 

multiplierless solution with a lower group delay in comparison with 

simple cascaded expanded cosine filters. Thus, the demonstration of MP 

characteristics in CSCF-based prefilters is developed in the following. 

Subsection 3.1.1 presents the definition of CSCFs and cascaded expanded 

CSCFs. The proofs of MP characteristic in CSCFs and cascaded expanded 

CSCFs are given in subsections 3.1.2 and 3.1.3, respectively. In 3.1.4 

details on the characteristics and applications of the cascaded expanded 

CSCFs are provided, and a design example is included. 

3.1.1 Definition of Chebyshev-sharpened cosine filter (CSCF) and 

cascaded expanded CSCF 

We define the transfer function and the frequency response of an 

N-th order Chebyshev-Sharpened Cosine Filter (CSCF) respectively as, 

( )/2

, 0
( , ) [ ( )]

N N n n

C N nn
H z γ z c γH z 


   ,              (3.4) 

/2

, 0
( , ) [ cos( /2)]

Njω n jωN

C N nn
H e γ c γ ω e



  
   ,               (3.5) 

with 
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2 4

1

cos( )π π
R

γ 


,               (3.6) 

where cn are the coefficients of the Chebyshev polynomial of first kind, 

represented in (3.3), and H(z) is given in (3.1). To obtain a low-

complexity multiplierless implementation, the constant γ must be 

expressible as a Sum of Powers of Two (SOPOT). To this end, we set  

2 4

2
2 ,  1

cos( )

B
B

π π
R

γ f 
  
   
    

,                     (3.7) 

where f(a, b) denotes “the closest value less than or equal to a that can 

be realized with at most b adders” and  x    denotes rounding x to the 

closest integer less than or equal to x. To provide an improved 

attenuation around the zero of the cosine filter, γ must be as close as 

possible to its upper limit [2]. This is achieved by increasing the integer 

B. The value R in (3.6)-(3.7) is usually set as an integer equal to or 

greater than 2 for applications in decimation processes [3].  

The transfer function and frequency response of a cascaded 

expanded CSCF are respectively defined as 

        
,

1

( ) [ ( , )] m

m

M
Km

C N m
m

G z H z γ
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  ,         (3.8) 
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 ,       (3.9) 

where the integer M indicates the number of cascaded CSCF blocks, 

each of them repeated Km times, with  m = 1, 2, ..., M. Every value of m 

is a distinct factor that expands a different CSCF whose corresponding 

order is Nm. These CSCFs have different factors γm, which can be 
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obtained using (3.7), just replacing B by Bm and R by Rm, where Bm and 

Rm are integer parameters that correspond to the m-th CSCF in the 

cascade.  Figure 3.1(a) shows the structure of the CSCF, where we have 

that di = c2i+v, with i = 0, 1, 2, ..., D = (N – v)/2 and with v = 1 if N is odd 

or v = 0 if N is even. Dashed blocks in Figure 3.1(a) appear only if N is 

odd. Figure 3.1(b) presents the structure of the cascaded expanded CSCF 

whose transfer function is given in (3.8).   

 

(a) 

 

(b) 

Figure 3.1. General structure of the filters: (a) Chebyshev-Sharpened Cosine 

Filter (CSCF); (b) Cascaded expanded CSCF.  

3.1.2 Proof of minimum phase property in CSCFs   

The proof starts with the expression of the Chebyshev polynomial 

from (3.3) in the form of a product of first-order terms as [4]  

 
0 1

( ) ( )
NN n

n nn n
P x c x x σ

 
     ,            (3.10) 
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 2 1
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n N
σ   .                             (3.11) 

On the other hand, we re-write the transfer function of the CSCF 

from (3.4) as   

/2 1/2

, 0
( , ) [ ( )]

NN n

C N nn
H z γ z c z γH z


  .              (3.12) 

Using (3.10), and after simple re-arrangement of terms, we express 

HC,N(z, γ) as follows, 

1/2

, 1
( , ) [ ( ) ]

N

C N nn
H z γ γH z z σ


  ,          (3.13) 

which can be rewritten 

 as

/2
1/2

1

1/2

( 1)

, /2 1

1/2 1/2

/2
1

1/2

( 1)

{[ ( ) ]

          [ ( ) ]};  even,
( , )

[ ( ) ] {[ ( ) ]

              [ ( ) ]};  odd,

N

n
n

N n

C N N

nN
n

N n

γH z z σ

γH z z σ N
H z γ

γH z z σ γH z z σ

γH z z σ N







 

  
 

  




 


 


 

 
  



 





    (3.14) 

where x    denotes rounding x to the closest integer greater than or 

equal to x. 

At this point, it is worth highlighting that the anti-symmetry 

relations 

( 1)n N n
σ σ

 
  ,      n = 1, 2, ...,  / 2N   ,      (3.15) 

/2
0

N
σ

  
   for N odd,            (3.16) 

hold [4]. Thus, replacing (3.15) and (3.16) in (3.14), and after simple 

manipulation of terms, we have 
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/2

1

, /2 1

1

( );  even,
( , )

( ) ( );  odd,

N

nn

C N N

nn

Q z N
H z γ

γH z Q z N



  






 





      (3.17) 

2 2 2 1( ) ( )
n n

Q z γ H z σ z  .       (3.18) 

From (3.17) we have that HC,N(z, γ) consists of a product of either 

several terms Qn(z) if N is even or several terms Qn(z) and a term γH(z) 

if N is odd, with n = 1, 2, …, N. Thus, to prove the MP property of the 

CSCF it is only necessary to ensure that Qn(z) and γH(z) have MP 

characteristic for all values n.  

Using (3.1), it is easy to see that the term γH(z) has a root on the 

unit circle and thus it corresponds to a MP filter. On the other hand, 

after simple re-arrangement of terms we get   

22

2

4 1 2

4
( ) [1 ( 2) ]nσγ

n γ
Q z z z     .            (3.19) 

From (3.19) it is easy to show that the roots of Qn(z) are placed on 

the unit circle, i.e.,   

2 21 1( ) (1 )(1 )n nj φ j φ

n
Q z e z e z

    ,      (3.20) 

1arccos( )
n n

φ σ γ  ,                           (3.21) 

if the argument σn 
. γ–1 in (3.21) is preserved into the range [–1, 1]. From 

(3.11) we have that –1σn 1 holds. Additionally, by setting 

 R0.5                    (3.22) 

in (3.6)-(3.7), we ensure γ1. Under this condition for R, we have that –

1γ–1
1 holds. In this case, Qn(z) has its roots on the unit circle for all 

the valid values n and, as a consequence, the filter HC,N(z, γ) has a MP 

characteristic.   ■ 
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Figure 3.2 shows the pole-zero plots for the filters HC,2(z, γ), HC,3(z, 

γ), HC,4(z, γ) and HC,5(z, γ). For all these filters, we have γ = 2–3
 15, 

which is implemented with just one subtraction. 
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Figure 3.2. Pole-zero plots for CSCFs HC,2(z, γ), HC,3(z, γ), HC,4(z, γ) and HC,5(z, 

γ), where γ=2
–3 
15.

          

3.1.3 Proof of minimum phase property in cascaded expanded 

CSCFs  

The proof starts with the expression of every CSCF of the cascaded 

expanded CSCF from (3.8) in the form of a product of second-order 

expanded transfer functions using (3.17) and (3.19), i.e., 

/2

1

, /2 1

1

( );  even,
( , )

( ) ( );  odd,

m

m m

N m

n mm n

C N m Nm m

m n mn

Q z N
H z γ

γ H z Q z N



  






 





          (3.23) 

2 2

2

4 2

4
( ) [1 ( 2) ]m n

m

γ σm m m

n γ
Q z z z     .           (3.24) 

where m = 1, 2, …, M and n = 1, 2, …, Nm. Since the transfer function of 

the cascaded expanded CSCF from (3.8) consists of a product of several 
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terms [HC,Nm(zm, γm)]Km with different values m, it is only necessary to 

ensure that HC,Nm(zm, γm) has a MP characteristic for all values m. 

Moreover, from (3.23) we see that HC,Nm(zm, γm) is expressed as a 

product of either several terms Qn(zm) if Nm is even or several terms 

Qn(zm) and γmH(zm) if Nm is odd. Thus, to prove the MP property in 

cascaded expanded CSCFs we only need to ensure that Qn(zm) and 

γmH(zm) have MP characteristic for all values n and m . 

By replacing (3.1) in the term γmH(zm) and then making the resulting 

expression equal to zero, we can find the m roots of γmH(zm). These 

roots turn out to be the m complex roots of –1, which have unitary 

magnitude. Thus, γmH(zm) has MP characteristic, since its roots are 

placed on the unit circle. On the other hand, using (3.20) we can 

express (3.24) as follows,   

2 2
( ) (1 )(1 )n nj φ j φm m m

n
Q z e z e z

    ,                (3.25) 

1arccos( )
n n m

φ σ γ  .                               (3.26) 

To preserve the argument σn 
. γm

–1 in (3.26) into the range [–1, 1], we 

set 

 Rm0.5,   m = 1, 2, ..., M.               (3.27) 

Under this condition for Rm, we have that –1γm
–1
1 holds. In this 

case, the respective m roots of factors (1 – ej2φnz–m) and (1 – e–j2φnz–m) in 

(3.24) are the m roots of the complex numbers ej2φn and     e–j2φn, which 

have unitary magnitude for all the valid values n. Therefore, Qn(zm) has 

MP characteristic, since its roots are placed on the unit circle. Finally, 

since Qn(zm) and γmH(zm) have MP characteristic, the overall cascaded 

expanded CSCF from (3.7), G(z), also has MP characteristic.    ■   
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Figure 3.3 shows the pole-zero plots for the filters HC,2(z5, γ), 

HC,3(z4, γ), HC,4(z3, γ) and HC,5(z2, γ). For all these filters, we have γ = 2–

3
 15, which is implemented with just one subtraction.  
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Figure 3.3. Pole-zero plots for cascaded expanded CSCFs HC,2(z
5
, γ), HC,3(z

4
, γ), 

HC,4(z
3
, γ) and HC,5(z

2
, γ), where γ=2

–3 
15.

 

3.1.4 Characteristics and applications of cascaded expanded 

CSCFs  

A cascaded expanded CSCF has both, MP and LP characteristics. 

The former was proven in subsection 3.1.3, whereas the latter is easily 

seen from the frequency response G(ejω) given in (3.9). A consequence 

of this is that the cascaded expanded CSCF has a passband droop in its 

magnitude response. Due to this passband droop, the cascaded 

expanded CSCF should be employed only to provide a given attenuation 

requirement of an overall LP or MP FIR filter over a prescribed 

stopband region (depending on the application). The cascaded expanded 

CSCF, with transfer function G(z) defined in (3.8), can be used as 
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prefilter. Note that, since a cascaded expanded cosine filter also has 

both, LP and MP properties, it is used as prefilter in [5]. 

Since a FIR equalizer with LP characteristic has its zeros placed in 

quadruplets around the unit circle, it does not accomplish the MP 

characteristic. Therefore, a MP FIR equalizer (i.e., that filter whose 

zeros appear inside the unit circle) does not have a linear phase.  

In method [5] the delay D has been removed to obtain an MP FIR 

equalizer. Thus, a first option would be to use the same approach of [5] 

to design a FIR equalizer. Besides of method [5], other design methods 

for MP FIR filters have been introduced for example in [6]-[8]. 

However, in general, these methods have the inconvenience of 

producing filtering solutions that require multipliers, which are the 

most costly elements in a digital filter [1]. To solve this problem, the 

cascaded expanded CSCF can be used as a prefilter to implement an 

overall MP FIR filter using several multiplierless CSCFs.  

Example 1 

The comparison is made in terms of: 

a) Group delay, measured in samples and defined as follows 

( ) {arg[ ( )]}jωd
τ ω F e

dω
  ,                       (3.28) 

where F(ejω) is the frequency response of the corresponding filter.  

b) Implementation complexity, measured in the required number of 

adders and delays for a given attenuation over a prescribed stopband 

region.  

Design a MP FIR filter with minimum attenuation equal to 60 dB 
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over the range from ω = 0.17π to ω = π (see Fig. 1 of [5]).     

In [5], the filter employed to accomplish such characteristic is 

obtained using K = 5 and L = 3. The group delay is obtained by replacing 

these values in the transfer function of the cascaded expanded CSCF in 

(3.28).  This filter requires 15 adders and 45 delays, but it has a group 

delay of 22.5 samples.  

If we use M = 4, N1 = N3 = N4 = 3, N2 = 4, R1 = 3, R2 = 1.5, R3 = 0.9, 

R4 = 2, with Bm = 4 and Km = 1 for all m in (3.8), we get a filter whose 

group delay, obtained by replacing the aforementioned parameters in 

(3.9) and then using (3.9) in (3.28), is 16 samples, i.e., nearly 30% less 

delay than that of [5]. Since this filter uses 30 adders and 44 delays, the 

price to pay is 100{[(30+44)/(15+45)]–1} 23% of additional 

implementation complexity. Figure 3.4 shows the magnitude responses 

and group delays of both filters. Moreover, Table 3.1 and Table 3.2 

present, respectively, the first half of the symmetric impulse response 

of the filter designed with method [5] and the proposed filter. Table 3.3 

summarizes the results from the previous examples. From them we 

observe that the cascaded expanded CSCFs achieve a lower group delay 

in comparison to the cascaded expanded cosine filters from [5]. 

Table 3.1. First half of the symmetric impulse response of the filter 

designed with method [5] in Example 1. 

n hA(n) n hA(n) n hA(n) 

1 0.000030517578125    9 0.004943847656250    17 0.037902832031250    

2 0.000091552734375    10 0.007110595703125    18 0.043304443359375    

3 0.000183105468750    11 0.009887695312500    19 0.048431396484375    

4 0.000396728515625 12 0.013275146484375 20 0.052825927734375 
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5 0.000732421875000    13 0.017272949218750    21 0.056488037109375    

6 0.001281738281250    14 0.021881103515625    22 0.058959960937500    

7 0.002136230468750    15 0.026916503906250    23 0.060241699218750    

8 0.003295898437500 16 0.032409667968750   

 

Table 3.2. First half of the symmetric impulse response of the proposed 

filter in Example 1. 

n g(n) n g(n) n g(n) 

1 0.000365884150812    7 0.014876445801089    13 0.055883940227800    

2 0.001024551768820    8 0.020473561194634 14 0.061849547506437    

3 0.002122204221257    9 0.027011012207314    15 0.066392852921837    

4 0.003834694340150 10 0.034112182959393    16 0.069389704077153 

5 0.006627799290290    11 0.041585018019638    17 0.070269686319927    

6 0.010243501009105    12 0.049072257144308   

 

Table 3.3. Comparison of results in Example 1. 

 

Example 1 

Proposed 
Method 

[5] 

Group delay (samples) 16 22.5 

Complexity of Implementation  
(No. adders/ No. delays) 

30 / 44 15 / 45 

% improvement in group delay  
(compared with method [5]) 

30% — 

% increase in complexity of implementation 
(compared with method [5]) 

23% — 
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Figure 3.4. (a) Magnitude responses and (b) group delays of the cascaded 

expanded CSCF (eq. (3.8)) and the cascaded expanded cosine filter from [5], 

accomplishing the attenuation required in Example 1. 

3.2 Low-complexity compensators based on Chebyshev 

polynomials 

The design of compensator filters is an important branch of research in 

digital filters design area. To improve the passband region of any digital 

filter a compensator filter is helpful. Usually, the compensators are 

simple filters with low order and low arithmetic complexity. By using a 

compensator filter in cascade of specific filter the magnitude response 
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is enhanced. The aim of this proposals is introducing a formulation to 

easily design compensation filters specifically for improving the 

passband characteristic of decimators. In subsection 3.2.1 the use of 

amplitude transformation technique applied to comb compensators 

design is detailed. Then in 3.2.2 the design of low-complexity second-

order compensators to improve the passband characteristic of 

Chebyshev Comb Filters is introduced. This formulation is based on the 

amplitude transformation method recently presented in [9] to design 

traditional comb compensators. A simple formula to obtain the 

coefficients of Chebyshev Comb Filters compensators is provided, which 

makes straightforward the design of these filters. Next in subsection 

3.2.3, the design of a wide-band compensation filters for improving the 

passband behavior of Cascade Integrator Comb decimators is presented. 

The framework hinges on the amplitude transformation method [9]. 

3.2.1 Design of Comb compensators using Amplitude 

Transformation 

The approach of designing comb compensators by modifying the 

amplitude response of a cosine-squared filter with transfer function 

F(z) and frequency response F(ejω) = F(ω)e–jω, where  

2 1 2( ) 2 (1 2 )F z z z     ,                            (3.29) 

2( ) cos ( /2)F ω ω ,                              (3.30) 

was introduced in [9]. The resulting compensator has the transfer 

function  

( )

0
( ) ( )

N N i i

ii
C z z p F z 


 ,                          (3.31) 
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where pi is the coefficient of the i-th power (with 0 iN) of a N-th 

degree polynomial used to transform the amplitude response of the 

cosine-squared filter into an amplitude characteristic proper for 

compensation (such polynomial is referred hereafter as transformation 

polynomial). The frequency response of the compensator is C(ejω) = 

C(ω, p)  e–jωN, where    

0
( , ) ( ) [1 ( ) ... ( )]

N i N T

ii
C ω pF ω F ω F ω


  p p ,             (3.32) 

with   p = [p0  p1 … pN].                      

For an arbitrarily chosen N, the vector of optimal polynomial 

coefficients, p*, is found by minimizing the passband error solving the 

following optimization problem under the Lp-norm, 

11

0 /

arg  min 1 ( , ) ( )K

p

K

M Lω π R

C ω H ωM 

 

 
    

 

*p p ,             (3.33)    

where the scaling 1/MK is introduced to achieve a gain of 0 dB in zero 

frequency.  

3.2.2 Design of low-complexity second-order compensators to 

improve the passband characteristic of Chebyshev Comb Filters 

To design a compensation filter for a K-th order Chebyshev Comb 

Filters (CCFs), the optimization problem is no longer that introduced in 

(3.33). The passband error must consider in this case the amplitude 

characteristic of the K-th order CCF, resulting in the following 

optimization problem,  

   1

,
0 /

arg  min 1 ( , ) ( )
p

C K Lω π R

C ω S H ωM 

 

   *p p .             (3.34)    
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In (3.34), S is a scaling constant that allows having unitary gain at 

zero frequency, given by 

  
, 00

[1 / ( )] 1 / ( )
K k

C K kkω
S H ω c γM



   
   .             (3.35)    

Since the cosine-squared filter is a second-order filter, it must 

undergo a linear transformation in order to obtain a second-order CCF 

compensator, i.e., the order of the transformation polynomial must be N 

= 1. Using this value of N and replacing (3.30) in (3.32) we obtain 

2 2

0 1
( , ) cos ( /2) [1 cos ( /2)]TC ω p p ω ω   p p ,           (3.36)   

with p = [p0   p1]. Substituting (3.28), (3.35) and (3.36) in (3.34), the 

optimization problem becomes    

    2 1

0 1 0 0
0 /

arg  min 1 cos ( /2) 1 / ( ) .
p

K Kk k

k kk k
Lω π R

p p ω c M c H ωM

 
 

           
 *p

     (3.37) 

For ω = 0, the passband error is ε = 1 – p0 – p1. By arbitrarily 

setting ε = 0, we can express p0 in terms of p1 as follows, p0 = 1 – p1. In 

this way, p1 becomes the unique unknown coefficient of the 

transformation polynomial. Replacing p0 = 1 – p1 in (3.37), the 

maximum error in the passband can be minimized by solving the 

following problem, 

   
 

* 2

1 1 1 0
0 /

1

0 0

arg  min 1 1 cos ( /2) 1 /

       1 / ( ) .

K k

kk
ω π R

K Kk k

k kk k
L

p p p ω c M

c M c H ωM



 



 

     
  

       



 

       (3.38)   
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Using (3.29), (3.31) and replacing p0 = 1 – p1, we have that for a given K, 

M and R, the transfer function of the optimal (in the minimax sense) 

second order compensation filter is 

2 1 * 1 2

1
( ) 2 [4 (1 2 )]C z z p z z       .                 (3.39) 

Instead of solving (3.38) for any set of parameters K, M and R 

given by the problem at hand, we can consider the following 

observations: 

1. The shape of the amplitude response H(ω) changes very little with 

M [10]. Therefore, we can give in advance an arbitrary value to M 

without affecting the optimization results. Thus, we set M = 16.  

2. Most of the times, K ranges from 2 to 7. Additionally, R usually 

ranges from 2 to 4.  

From the first point, we have that the problem (3.38) needs only 

two parameters to be specified in advance (K and R) and from the 

second point we have the usual values of these two parameters. 

Therefore, we substituted M = 16 in (3.38) and solved (3.3.38) for K[2, 

15] and R[2, 5], finding the proper values of p1
* in every case. Figure 

3.5 shows in grey marks the values of the resulting optimal coefficients, 

p1
*. These values can be used as input information to obtain a formula 

to approximate a given p1
* in terms of K and R. Using the MATLAB Curve 

Fitting Tool, this formula is obtained as follows, 

* 3.3 2.578 2

1
( , ) 0.00185 0.544 0.1717 0.088 .p p K R R K R K         (3.40) 

The four curves p(K, 2), p(K, 3), p(K, 4) and p(K, 5) are also shown 

in Figure 3.5. Note that the formula has a very accurate approximation 

to the optimal values. Finally, to obtain a multiplierless compensator, 
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the approximate optimal coefficient can be rounded as p1
*
2–

r
 round{p(K,R)/2–r}, with 2r6, where round{x} means rounding x to 

the nearest integer. 

Example 2 

In the following example shows that the proposed compensated 

CCFs provide a better solution for decimation filtering comparing to the 

traditional compensated comb filters from [11] and [12] in terms of 

computational complexity measured in Additions Per Output Sample 

(APOS).  
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Figure 3.5. Optimal values p1
*
 and their approximations using p(K,R) from 

(3.52).  

Consider M=32, R=4 and 60 dB of desired attenuation in the folding 

bands.  

To obtain the desired attenuation, a CCF with order K = 3 is used. 

From (3.40) and with r=4 for rounding, we obtain p1
*
2–

4
 round{p(3,4)/2–4}=–2–4(23+1). From (3.39), the transfer function of 

the compensator is C(z)=2–2[4z–1–(2–1+2–4)(1–2z–1+z–2)], which needs 

only 4 addition/subtraction operations. Figure 3.6 shows the magnitude 

response of the compensated 3rd-order CCF. The overall compensated 
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CCF has three additions working before the downsampling by 32 and 12 

additions working after the downsampling, as shown in Figure 3.7. 

Thus, the overall computational complexity is (332)+12=108 APOS.       

In order to get a filter with the desired attenuation, methods [11] 

and [12] use 4 cascaded comb filters employing the traditional Cascaded 

Integrator-Comb (CIC) structure (see Figure 3.8), with respective 

compensation filters having the transfer functions C1(z)=–2–3[1–(23+2)z–

1+z–2)] and C2(z)=[(1+2–1–2–3–2–9)z–1+(–2–3–2–4+2–13)(1+z–2)]. Figure 3.6 

also shows the magnitude responses of these filters.  

Note that the proposed filter and the filter from [12] have similar 

passbands, but the compensation filter C2(z) (used in [12]) requires 7 

addition/subtraction operations and almost twice the word-length of 

the proposed compensator. Moreover the overall filter using method 

[12] requires (432)+10=138 APOS. On the other hand, the compensator 

C1(z) used in [11] requires only three additions, and the computational 

complexity of the overall filter from method [11] is (432)+6=134 

APOS. However, the passband compensation is poor and the 

computational complexity is still higher than that of the proposed 

method. Finally, Table 3.4 summarizes the aforementioned results. 
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Figure 3.6. Magnitude responses of the proposed filter and filters designed 

with methods [11] and [12]. 

 

Figure 3.7: Block diagram of 3
rd

-order compensated CCF. Multipliers by 

powers of two do not have hardware cost. 

 

Figure 3.8. Block diagram of 4 cascaded compensated comb filters using the 

traditional Cascaded Integrator-Comb (CIC) structure (methods [11] and [12]). 

Note that i = 1 for method [11] and i = 2 for method [12].  
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Table 3.4. Computational complexity of filters from methods [11], [12] and 

proposed. 

Method 
Computational 

Complexity (APOS) 

Method [11] 134 

Method [12] 138 

Proposed 108 

     

3.2.3 Wide-band compensation filters design for improving the 

passband behavior of Cascade Integrator Comb decimators  

Method [9] offers acceptable wide-band compensation with a 

simple second-order filter (N=1) requiring only four additions. 

However, the passband deviation may still be high. By using N=2, a 

much noticeable improvement can be obtained at the cost of little 

additional complexity. This is the starting point of this proposal. The 

following presents the proposed design method, the compensation filter 

structures and the details for composite decimation factors. 

 Optimization and near-optimal solution 

Let us start by substituting (3.29) in (3.31) with N=2. After some 

re-arrangement of terms, we get  

2 1 2 1 2 2 1 2 2

0 1 2

4 2 3 2

0 1 2

( ) [2 (1 2 )] [2 (1 2 )]

       (1 ) ( ) ,                                      

C z z p z p z z p z z

c z c z z c z

       

   

      

    
 (3.41) 

4 2 3

0 2 1 1 2 2 2 1 0
2 ,   2 ( ),    2 (3 4 8 )c p c p p c p p p        .           (3.42)   

Using N=2, and replacing (3.30) in (3.32), we obtain 

2 4( , ) [1 cos ( /2) cos ( /2)]TC ω ω ω p p ,                (3.43)   
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with p = [p0   p1   p2].  

For ω = 0, the passband error to be minimized in (3.33) can be 

written as ε(0) = 1 – p0 – p1 – p2. By arbitrarily setting ε(0) = 0, we can 

express p0 in terms of p1 and p2 as 

0 1 2
1 ( )p p p   .                                  (3.44) 

Upon replacing (3.44) in (3.43), and then (3.43) in (3.33), the maximum 

error in the passband can be minimized by finding the optimal values 

p1
* and p2

* that solve (3.33) under the minimax criterion. After 

performing such optimization, p0
* is found by substituting p1 by p1

* and 

p2 by p2
* in (3.44).  

Since the shape of the amplitude response H(ω,M) changes very 

little with M [10], we set M = 16 in (3.33) beforehand without affecting 

the optimization results. Moreover, K can be considered in the range 2 

to 7 from a practical point of view. Thus, we solve (3.33) for the values 

of p1
* and p2

* by setting M = 16 and K{2,…,7}. Figure 3.9 shows in grey 

marks the values of the resulting optimal coefficients. These values can 

be used as input data to obtain formulas to approximate p1
* and p2

* in 

terms of K. Using the MATLAB Curve Fitting Tool, these formulas are 

p1(K) = –0.08K2 – 0.22K – 0.17,                      (3.45) 

p2(K) = 0.043K2 + 0.025K + 0.093.                (3.46)  

Curves p1(K) and p2(K) are shown in Figure 3.9 as well. Note that 

formulas (3.45)-(3.46) represent a very accurate approximation to the 

optimal values. Finally, to obtain a multiplierless compensator, the 

approximate optimal coefficients can be rounded as  

p1
*
2–r1

 round{p1(K)/2–r1},                     (3.47) 



Miriam Guadalupe Cruz Jiménez 

61 

p2
*
2–r2

 round{p2(K)/2–r2},                     (3.48) 

with 2r1, r26. In the two previous equations round{x} means 

rounding x to the nearest integer. 
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Figure 3.9.  Optimal values p1
*
 and p2

*
 along with their approximations using 

p1(K) and p2(K) from (3.45) and (3.46).  

 Wideband compensator structures 

From (3.41), we can see that filter F(z)=2–2[1+2z–1+z–2] is repeated 

twice, resembling the well-known sharpening architecture from [13]. 

The repeated use of the same subfilter can be avoided with the 

Pipelining-Interleaving (PI) technique in [14]. In this case, the subfilter 

F(z2) is implemented only once, and its clock operates at twice the 

output sampling rate. Figure 3.10 shows the resulting PI-based 

structure.  

 

Figure 3.10. PI-based structure with a multiplexed subfilter. 
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Equation (3.41) presents the symmetric transfer function of the 

compensator as well. Upon replacing (3.44) in (3.42), it can be shown 

that c2 = 1–2(c0+c1). This leads to the structure presented in Figure 3.11. 

Whenever the number of adders required by the coefficients c0 and c1 is 

equal or less than the number of adders required by coefficients p1 and 

p2, it is better to use the structure shown in Figure 3.12. These 

structures are convenient if the compensator is expected to operate at 

the output sampling rate. Note that coefficients c0, c1 and c2 are 

determined by first finding p1
 and p2 using (3.47) and (3.48), then 

finding p0 with (3.44), and finally using p0, p1
 and p2 in (3.42). 

 

Figure 3.11. Single-rate structure. 

 

Figure 3.12. Single-rate structure with coefficients c0 and c1 that should be 

used if the number of adders required by c0 and c1 is equal or less than the 

number of adders required by p1 and p2.   

 The case of a composite decimation factor 

When M can be factorized into M = M1M2, we propose to use the 

two-stage approach presented in [15], where the downsampler M is 

split into two downsamplers, M1 and M2, and a comb-based decimator 
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HTS(z)=HK1(z,M1)  HK2(zM1,M2)G(zM) is adopted (G(zM) is a 

compensator).  

From multirate identities, HK2(zM1,M2) can be moved after the 

downsampler by M1 and G(zM) after the downamplers by M1 and M2. The 

worst-case attenuation of the overall filter HTS(z) is improved by 

increasing K2. 

The guidelines that we follow to choose M1 and M2 are the same as 

proposed in method [15], namely, selecting these values to be as close 

integers as possible. Thus, the improvements to method [15] consist in 

the following: 

1) Choice of K1 and K2: Considering that a desired attenuation |A| in 

dB must be met in all the stopbands, in [15] the authors proposed to 

increase K2 at least by 1 for each 10 dB increment of |A| and to 

choose K1 such that K1 2 / 2   K +1. However, we propose to use: 

1 10 1 1
| |/20log {| ( , )|}K A H ω M    ,                 (3.49) 

2 10 2 2
| |/20log {| ( , )|}K A H ω M    ,                 (3.50) 

ω1=(2π/M1 – ωp),       ω2=(2π/M2 – M1ωp).            (3.51) 

2) Choice of the compensator: In [15], the compensation filter is 

designed with method [16]. On the other hand, we use the method 

detailed above. The coefficients p1 and p2
 are obtained from (3.47) 

and (3.48) by replacing K by K2.   

Example 3 

In the following example is showing how the proposed wide-band 

compensation filters provide a better solution in comparison to others. 
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For a fair comparison, we assume that all the compensators are 

operated at the output sampling rate. Therefore, single-rate structures 

are used.    

Consider M=17 and K=5 cascaded comb filters to attain an 

attenuation A=45dB in the stopbands. 

In this example, we compare the proposed compensator with filters 

from [9], [12] and [17]. Methods [9] and [17] offer the best near-optimal 

wide-band second-order compensators, whereas method [12] presents 

fourth-order multiplierless optimal solutions for values of K up to 5. 

Figure 3.13 shows the passband magnitude characteristics of the comb 

filter, the proposed filter and filters from [9], [12] and [17]. 
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Figure 3.13. Magnitude responses of filters from [9], [12], [17] and proposed. 

Using r1 = r2 = 3 in (3.47)-(3.48), we obtain p1 = –2–2
 (24–22+1) and 

p2 = 2–2
 (22+1). Replacing these values in (3.44) and putting that 

substitution in (3.42), we get c0 = 2–6
 (22+1) and c1 = –2–1. Note that 

coefficients p1 and p2 need 3 additions while coefficients c0 and c1 can be 

implemented with 1 addition. Thus, we use the structure of Figure 3.12. 

The resulting compensator requires 7 additions and 4 delays. The 
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solutions from [9] and [17] are actually the same, but method [9] 

requires only 4 adders, whereas 5 adders are used in [17]. The proposed 

technique and method [12] present 4-th order filters with much better 

passband characteristics at the cost of increased complexity. Even 

though the filter from [12] has a slightly better frequency response, it 

needs 14 adders and a specialized optimization to obtain the filter 

coefficients. The proposed method provides a near-optimal solution 

with 50% of savings in arithmetic complexity when compared to [12].  

3.3 Computationally-efficient CIC-based filter with embedded 

Chebyshev sharpening 

In this proposal the scheme Chebyshev-sharpened comb filter was 

introduced. The proposed filter uses a low-complexity passband droop 

compensator and the Chebyshev sharpening technique to improve the 

magnitude response. In this way this method improves the worst-case 

aliasing rejection and simultaneously decreases the passband deviation 

of traditional comb decimation filters. The magnitude response 

improvement of the comb filter was made by the following: 

 The efficient use of the Chebyshev sharpening scheme from [2], 

performed to improve the attenuation in the folding bands. 

 The efficient adaptation of the recent simple compensation filter 

from [9] with the aim to decrease the passband droop.  

3.3.1 Embedding a filter into a CIC structure 

Let us consider a decimation filter with M = M1M2M3. The first stage 

consists of K1 cascaded comb filters, the second stage of K2 cascaded 

comb filters and the third stage is an auxiliary filter G(z). The overall 

decimation filter has the transfer function referred to high rate given 

by  
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2

1 2 3
1

1 1 2

1

1

0

1
( ) ( )

1

K
M M MK

M M Mi

D Mi

z
H z z G z

z


 



         
             (3.52)  

The first-stage can be implemented in a non-recursive form and the 

polyphase decomposition can be applied, thus resulting in power 

savings [9]. The polyphase decomposition is denoted by P1(z) to PM(z) 

as shown in Figure 3.14. The K2 cascaded comb filters are implemented 

in a traditional CIC structure. The filter G(zM1M2) can be  moved  after  

the  downsampler  by  M2. This results in the structure of Fig. 3.14. 

 

Figure 3.14. Efficient Comb-based structure aided with an auxiliary filter 

G(z). 

 The auxiliary filter  G(z) has the following tasks: 

1) Decrease the passband droop in the band of frequencies spanning 

the interval from 0 to ωc, where ωc is given by 

 
3

c

π
ω

M R
 .                                     (3.53) 

where R is the residual factor. 

2) Improve the attenuation at least in the band of frequencies 

spanning the interval from ω1,a to ω1,b, with these frequencies given 

by 
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,

3 3

2
k a

πk π
ω

M M R
  ,                                 (3.54)    

,

3 3

2
k b

πk π
ω

M M R
  ,                                          (3.55)    

  31,2,..., .
2

M
k

 
  

  

                                          (3.56)         

(The aforementioned bands of frequencies are referred to the 

downsampled-by-(M1M2) sampling rate and x  means rounding to 

the nearest integer less than or equal to x.) 

3) Have a simple and regular structure with few adders. 

Consider the filter G(z) given as: 

3

3
( ) ( ) ( )

M
G z H z C z ,                                (3.57) 

where H3(z) is a comb filter given by   

3
3

3 1

1
( )

1

K
M

z
H z

z





 
  

  

,                               (3.58)   

and C(zM3) is the compensation filter with the following desirable 

properties:  

 It works at low sampling rate, 

 It is a multiplierless filter. 

Additionally, according to (3.58), filter G(z) has the following 

characteristics:  
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 Introduces K3 zeros in the center of all the bands defined by the 

frequencies (3.54) and (3.55).  

It is worth highlighting that, in general, C(zM3) can be any 

compensator from literature, whereas H3(z) can be any filter that 

improves the attenuation at least in the band delimited by the 

frequencies ω1,a and ω1,b, i.e., the first folding band. This opens the 

options for the choice of the filter H3(z), which might be, for example, 

any comb-based filter with zero-rotation characteristic or the recent 

Chebyshev-sharpened CIC filter from [2]. Obviously,  G(z) must 

preserve simplicity and it must use modulo arithmetic for overflow-

handling characteristics.  

3.3.2 Chebyshev sharpening applied into the proposed structure 

Chebyshev sharpening is applied to the filter into the proposed 

structure with M = M1M2M3. We use H3(z) as Chebyshev-sharpened 

filter in (3.57). Similarly, we choose the compensator C(z) in (3.57) 

from recent method [9]. In this way, H3(z) improves the attenuation in 

the first folding band where the worst-case attenuation occurs, whereas 

C(z) compensates for the passband droop.  

The transfer function H3(z)  is given by [2] 

3( ) /2 1

3 30
( ) ( )

kN N k M

k bk
H z z c γz H z

  


   
  ,                    (3.59) 

where ck is the coefficient of the k-th power (with 0  k  N) of a N-th 

degree Chebyshev polynomial of first kind. 

3

31

3

1

3

1
;  2,

( ) 1

(1 );     2,

M

b

z
M

H z z

z M







 
 

   


 

                             (3.60) 
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1 1 1,

1, 3

sin( /2)
2 2

sin( /2)

L L a

a

ω
γ

ω M


 

  
  

.                            (3.61) 

where L1 is the word-length for the fractional part of the Signed Powers 

of Two (SPT) representations of γ. Moreover, L1 is usually equal or 

greater than 2. 

The transfer function C(z) is given by [9] 

2 1 1 2( ) 2 [4 ( 1 2 )]C z z B z z        ,                     (3.62) 

where B is the compensation parameter.  

Placing (3.57) in (3.52), our proposed decimation filter is given by  

2
1 2 3

1
1 1 2 31 2

1 2

1

30

1
( ) ( ) ( )

1

K
M M MK

M M M MM Mi

D M Mi

z
H z z H z C z

z


 



         
 ,           (3.63)                                                                           

where H3(z) is given in (3.59) and C(z) is given in (3.62). 

The design method consists in finding the values of K1 (the number 

of cascaded comb filters in the first stage), K2 (the number of cascaded 

comb filters in the CIC structure), N (the order of the Chebyshev-

sharpened filter H3(z)), B (the compensation parameter) and M1, M2 and 

M3 (the decimation factors) that allow accomplishing the following 

goals: 

 A droop correction in the passband given by 

p

π
ω

MR
 .                                  (3.64) 

where M = M1M2M3. 

 A desired attenuation A in the folding bands.  
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A heuristic solution consists in choosing M2 ≥ M3 ≥ M1, with M2 and 

M3 close in values as much as possible. To find K1 we use the smallest 

value that satisfies 

1

10 1

| |

20log {| |}

A
K

v

 
  
 

,                                 (3.65)             

1 1
1 1

1 1 1 1 2 3

sin( /2) 2
,           

sin( /2)

M ω π π
v ω

M ω M M M M R
   .                 (3.66)    

Then, we find K2 as the smallest value that satisfies  

2

10 2

| |

20log {| |}

A
K

v

 
  
 

,                                (3.67)             

2 3 2

2 2

2 3 2 3 2 3

sin( /2) 2
,           

sin( /2)

M M ω π π
v ω

M M ω M M M R
   ,             (3.68)    

and to find N we use the smallest value that satisfies  

10

6

(6 20log {| |})

v
N v

w

 
   

 

,                               (3.69) 

2 10 3
| | 20log {| |}A K v

v
w

  
  
  

,                               (3.70) 

2 3 3

3 3

2 3 3 2 3 2 3

sin( /2) 2
,           

sin( /2)

M M ω π π
v ω

M M ω M M M M R
   ,                (3.71)    

3 4

4

3 4 3 3

sin( /2) 2
,           

sin( /2)

M ω π π
w ω

M ω M M R
   ,                   (3.72)    

where x  means rounding to the nearest integer greater than or equal 

to x. Finally, the compensation parameter B can be found in terms of K2 

and N, since the contribution on the passband droop of the first-stage 
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filter due to K1 can be neglected. Table 3.5 shows typical values for B 

when the residual decimation factor is R = 2. 

Table 3.5  Rounded compensation parameter B for a residual decimation 

factor R = 2. 

K2 + N B 

2 2
–1

 

3 2
–1 

+ 2
–2

 

4 2
0
 

5 2
0 

+ 2
–2

 

6 2
0 

+ 2
–1

 

7 2
0 

+ 2
–1

 

8 2
1 
 

 

Example 4 

Let us consider the following examples to show the magnitude 

response characteristics obtained with the proposed method in 

comparison with the traditional CIC filter, a three-stage CIC-based 

structure, method [18] and a three-stage filter based on method [18]. 

For a fair comparison, we have adapted the compensator from [9] to 

these filters, in order to obtain passband droop correction in all the 

cases.  

In the first example we compare with the traditional CIC structure 

and also with a three-stage structure based on the architecture of 

Figure 3.14, where G(z) is given in (3.57) and H3(z) is given in (3.58), 

with H3(z) implemented in recursive form.     

Consider a decimation factor M = 20, a residual decimation factor R 

= 2 and a desired attenuation A = 80 dB.  
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We factorize M into M1=2, M2=5 and M3=2. Using L1=2 in (3.73) we 

obtain γ=2–2
5 (γ2=2–4

25). From (3.65)-(3.72) we obtain K1=3, K2=5, 

and N=3. The compensation parameter is B = 21. The proposed scheme 

has 10 adders working at the downsampled-by-M1 sampling rate, 3 

adders working at the downsampled-by-(M1M2) sampling rate and 13 

adders working at the output sampling rate, resulting in 119 Additions 

Per Output Sample. 

The traditional CIC filter requires K = 9 integrators working at high 

rate and 9 comb filters working at low rate, plus 4 adders for the 

compensator, resulting in 193 APOS. On the other hand, the three-stage 

CIC-based scheme has 10 adders working at the downsampled-by-M1 

sampling rate, 5 adders working at the downsampled-by-(M1M2) 

sampling rate and 14 adders working at the output sampling rate, 

resulting in 124 Additions Per Output Sample.  

Figure 3.15 shows the magnitude responses of the proposed filter, the 

original CIC filter and the three-stage CIC-based filter. Note that these 

filters accomplish the desired attenuation,  whereas the passband 

characteristic of the proposed filter is slightly better. Table 3.6 

summarizes the results for this example.  

Table 3.6. Comparison of characteristics of Example 4. 

Method APOS 

Max. 

passband 

deviation 

Min. 

stopband 

attenuation 

CIC filter 193 -0.94 dB -87 dB 

Three-stage CIC-based 

filter 
124 -0.9 dB -84.2 dB 

Proposed 119 -0.76 dB -84.1 dB 
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Figure 3.15. Magnitude responses for traditional CIC filter, three-stage CIC-

based filter and proposed, with M = 20 and R = 2. 

3.4 Implementation of a Comb-based decimator that consists of 

an area-efficient structure aided with an embedded simplified 

Chebyshev-sharpened section 

As a result of this research the implementation of, single-rate 

version,  recursive Chebishev-CIC filter was carried out. A CIC-based 

structure was achieved with premodified subfilter modified using a 

Chebyshev of second order. Through an appropriate modification of the 

simplest case of the Chebyshev sharpening method, partially regulated, 

a structure for low complexity decimation was obtained, where it is 

allowed to independently change M1 and M2. In order to obtain 

adequate attenuation, only a simple configurable coefficient expressed 

in power of two needs to be adjusted when M2 varies. Due to the above 

characteristics, the proposed method is considered partially regular. It 

was found that, for the same attenuation in the folding bands, the bus 

width is smaller than the bus widths of the traditional CIC filter and the 

recursive two-stage CIC-based filters where decimation factor can be 

modified online. Compared to the original CIC structure as well as other 
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partially regular methods the proposed architecture performs fewer 

operations per output sample. 

Reducing the sampling rate by an integer factor is an ubiquitous 

process in multi-standard reconfigurable receivers [19]. This 

decimation is performed in stages, usually as shown in Figure 3.16. In 

order to reduce the hardware utilization of the power-efficient but 

area-demanding polyphase arrays, F is typically set to a fixed small 

integer, whereas the last stage is a half-band decimator. Hence, the 

middle stage is based on a compact Cascaded Integrator-Comb (CIC) 

filter to allow M to be large and able to change with little hardware 

utilization even if on-line reconfiguration is needed. 

 

Fig. 3.16. Typical decimation chain. 

A new solution for the aforementioned CIC's two problems is 

presented, with the following characteristics: 1) M is non-prime (M = 

M1 M2) in order to operate some integrators at a lower rate (decreased 

by M1) and thus reducing their power dissipation; 2) M2 is an small 

prime between 2 and 7 in order to bound the bus width growth. The 

resulting system does not compromise the regularity in a great deal 

because many downsampling factors can be used in the proposed 

structure.      
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Proposed solution: Let us split into two terms the transfer function 

(referred to high rate) of a traditional CIC with K cascaded stages, i.e., 

 
1 2 1 1 2

11 1

1 1 1
( ) .

1 1 1

K K K
M M M M M

M

z z z
H z

z z z

  

  

       
       

            

                   (3.73) 

Since the term [(1–z–M1M2)/(1–z–M1)] contributes more to the 

attenuation in the 1st folding band, where the worst-case attenuation 

occurs, we arbitrarily set K2+2 cascaded stages for that term and K1 

cascaded stages for the 1st term, with K2 > K1. We denote the resulting 

filter as G(z),      

1 2
1 1 2 1 2

1 1

2

1

1 1 1
( ) .

1 1 1

K K
M M M M M

M M

z z z
G z

z z z

  

  

       
       

            

            (3.74) 

In order to improve the worst-case attenuation, we strategically 

spread two zeros around the first folding band by replacing the term 

[(1–z–M1M2)/(1–z–M1)]2 of (3.74) with a CIC filter sharpened with a 

second-degree Chebyshev polynomial of first kind (that polynomial is 

denoted by T2(x) = –1+2x2, see eq. (2.57) in [20]). The transfer function 

of the sharpened filter is  

1 2

1 2 1

1

2

( 1) 1
( ) 2 .

1

M M
M M M

M

z
C z z γz

z


  



   
     

    

                  (3.75) 

   The coefficient γ is introduced to keep the zeros into the desired 

folding band and it must be tuned for every value M2. Thus, for the sake 

of regularity, we constrain M2 to be any small prime between 2 and 7, 

and we look for a simple power-of-2 representation of γ that can be 

reconfigured for these values M2 without needing multipliers or adders, 

but just an adjustable arithmetic shift called S. With the 
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aforementioned modifications, we arrive to the proposed transfer 

function (referred to high rate), 

1 2 1
2

1 2

1

1 2

1 2 1

1

1

2

( 1)

1 1
( ) 1

1 1
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           2 ,
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

   
             

   
     

    
    

   (3.76) 

where S can be chosen according to Table 3.7. The proposed fully 

pipelined architecture, presented in Figure 3.17 with details in Figure 

3.18, is obtained after 1) applying multi-rate identities, 2) cancelling 

numerators and denominators of the form [1–z–M1] and 3) inserting 

pipeline registers. That structure uses K2+2 integrator-comb pairs and 

it is efficient because, for the common desired attenuations, K2+2 < K 

usually holds, making our system to need fewer integrators than a CIC. 

Moreover, just K1 integrators work at the high-rate section.  

Table 3.7. Values of the shift S for the first four prime factors M2 

M2 S M2 S M2 S M2 S 

2 1 3 0 5 -1 7 -2 

 

 

Figure 3.17. Proposed CIC-based fully pipelined structure. 

Embedded simplified Chebyshev core 
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Figure 3.18. Detail of the blocks A and B that compose the Chebyshev core. 

   The number of integrator-comb pairs in the proposed structure 

(K2+2) and the number of integrators working at the high-rate section 

(K1), necessary to accomplish 60 dB, 70 dB, 80 dB and 90 dB of worst-

case attenuation, are presented in Table 3.8 for values M ranging from 

8 to 512. The number of integrator-comb pairs for the classical CIC 

filter (K, which is the number of integrators working at the high-rate 

section in the CIC structure) is also shown. M1 and M2 were chosen 

depending on what structure needed the less overall amount of 

integrators, and this choice turned out to obey a simple rule: M2 must 

be as large as possible (for instance, for M = 2p, with 3 < p < 9, we use 

M2 = 2, whereas for M = 14 we use M2 = 7). From Table 3.8 we observe 

that in most cases the number of integrator-comb pairs used in the 

proposed structure is less than the number of pairs used in the classical 

CIC, and the number of integrators working at the high-rate section is 

reduced by a half on average.  

The aforementioned advantages can not be exploited neither for 

values M where the smallest prime factor M2 is greater than 7 nor for 

prime factors M (which in total is just about 23% of all the values M 

between 8 and 512). However, the usefulness of the proposed structure 

can be extended if we keep decreasing the arithmetic shift S (see Table 

1) for primes M2 greater than 7, taking into account that the bus grows 

one bit for every decrement in S.  
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Example 5 

Finally, an example for M = 33 (M1 = 11 and M2 = 3), with 80 dB of 

desired attenuation, has been synthesized into the Altera's Cyclone-IV 

FPGA chip (device EP4CE115F29C7) for a detailed comparison. This chip 

is currently used on the DE2-115 development kit, popular at most 

universities. The operation of the proposed filter was simulated with an 

8-bit 608 KHz cosine signal as input, sampled at 160 MHz. Power Play 

Power Analyzer was employed for the estimation of power dissipation, 

using the Value Change Dump data generated by ModelSim to get an 

estimation with high level of confidence. TimeQuest Timing Analyzer 

was employed for the estimation of performance, using the slow 85C 

timing model (the worst-case scenario). Post place-and-route results 

are presented in Table 3.9, where we notice the benefits of the 

proposed system.  

Table 3.8. Number of integrator-comb pairs used in the CIC and proposed 

structures for values M between 8 and 512. 

 
M2 = 2  

(116 cases) 

M2 = 3  

(114 cases) 

M2 = 5  

(87 cases) 

M2 = 7  

(72 cases) 

60 dB 

K=6 

K1=4 

K2+2=6 

K1=3 

K2+2=5 

K1=3  

K2+2=5 

K1=2  

K2+2=5 

70 dB 

K=7 

K1=4 

K2+2=6 

K1=4 

K2+2=6 

K1=3 

K2+2=6 

K1=3 

K2+2=6 

80 dB 

K=8 

K1=5 

K2+2=7 

K1=4 

K2+2=7 

K1=3 

K2+2=7 

K1=3 

K2+2=7 

90 dB 

K=9 

K1=5 

K2+2=8 

K1=4 

K2+2=8 

K1=4 

K2+2=8 

K1=5 

K2+2=7 
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 Table 3.9. Comparison of the proposed structure with other CIC-based 

decimators in terms of synthesis results (Note: LE = Logic Element). 

 CIC [2] [21] Proposed 

Worst-case 

attenuation 

83.68  

dB 
86.3 dB 

84.84 

dB 

87.95  

dB 

Hardware utilization 1238 LEs 1432 LEs 
5007 

LEs 

842  

LEs 

Estimated power 

dissipation 

188.78 

mW 

195.58 

mW 

279.97 

mW 

172.96 

mW 

Maximum frequency 

of operation 

191.46 

MHz 

168.83 

MHz 

166.97 

MHz 

214.73 

MHz  
 

3.5 Comb-based decimation filter design based on Improved 

sharpening 

To improve both passband and stopband characteristics of a comb 

filter the improved sharpening approach of Hartnett an Boudreoux [22] 

is adopted. In [23] a general formula was deduced to obtain directly the 

desired amplitude change function from the design parameters.  The 

formula is given by 

, , , ,0 ,1 ,2
1

( ) ( )
R

j

σ δ m n j j j
j n

P x δx α σα δα x
 

    ,                       (3.77) 

where R = n + m + 1 and 
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 



    (3.78) 

By taking advantage of the two-stage decomposition of the comb 

filter to apply the sharpening technique only in the second stage. The 

resulting transfer function is given by: 
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,                                 (3.79) 
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 

 
   

 
,                      (3.80) 

where M = M1M2  is the decimation factor, L and K are the number of 

cascaded filters H1(z) and H2(zM1), respectively, and Sh{H(z)} means 

that sharpening has been applied to H(z). The value K must be even 

[15].  

      The advantages of this approach are the following: 

 The down-sampling block M can be divided into two separated 

down-sampling blocks, M1 and M2. Since the first folding band, 

where the worst case attenuation occurs, is essentially 

determined by H2(zM1), it is only required to apply sharpening 

to this filter. As a result we get better passband and stopband 

characteristics with lower complexity than applying sharpening 

to the original single stage comb filter. 

 The filter H2(zM1) can be moved after the down-sampling by M1, 

resulting in lower power consumption because H2(z) works at a 

lower rate. 

 The filter H1(z) can work at a lower rate after the down-

sampling by M1 using polyphase decomposition [23]. 

However, regardless of the passband improvement by the 

sharpened filter of the second stage, the resulting filter has always a 

passband droop that is a consequence of the first-stage comb filter. This 

can not be solved using the traditional sharpening proposed by Kaiser 

and Hamming [13]. In this proposal we will apply the improved 
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sharpening technique to the compensated comb filter of the second 

stage. As a result, we can take advantage of taking into account the 

slope parameter σ, and thus correcting the aforementioned effect.  

 Sharpening of the second-stage comb filter 

Observe in the Figure 3.19(a) that, by setting a negative slope σ, 

the amplitude values over the axis x, that are slightly less than one, can 

be mapped into values greater than one. Since the comb filters have 

amplitude values slightly less than one in their passband region, they 

will have values greater than one after being sharpened. Thus, after 

cascading the sharpened second-stage comb filter with the first-stage 

comb filter a compensated droop in the passband region can be 

obtained. On the other hand, knowing that the desired stopband 

amplitude values are zero, the slope δ has to be equal to zero.  
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(a)                                    (b) 

Figure 3.19. (a) The traditional sharpening polinomial P0,0, 1, 1(x) = 3x
2
 – 2x

3
 

and the generalized sharpening polinomial P-1,0, 1, 1(x) = 4x
2
 – 3x

3
. (b) 

Magnitude responses of a comb filter, a sharpened-comb filter with the 

traditional polynomial 3x
2
 – 2x

3
 and a sharpened-comb filter with the 

polynomial 4x
2
 – 3x

3
, obtained from the generalized approach. 
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Figure 3.19(a) shows a comparison of the traditional 3rd-order 

polynomial of Kaiser and Hamming with parameters σ = 0, δ = 0, m = 1 

and n = 1, P0,0, 1, 1(x) = 3x2 – 2x3, and a polynomial with parameters σ = –

1, δ = 0, m = 1 and n = 1, P-1,0, 1, 1(x) = 4x2 – 3x3, obtained from the 

generalized sharpening approach. Note that the value 0.88 is mapped to 

a new value greater than one, 1.05. Figure 3.19(b) shows a comparison 

between the magnitude responses of a comb filter, a comb filter 

sharpened with the polynomial 3x2 – 2x3 and a comb filter sharpened 

with the polynomial 4x2 – 3x3. Observe that the attenuations around the 

zeros are very similar for both sharpened comb filters. However, the 

sharpened comb which uses the generalized approach, has a resulting 

passband with increased amplitudes over the frequencies ω = 0 to ω   

0.05π. This characteristic can be used to compensate the droop 

introduced by the first-stage comb filter.  

 Sharpening of the compensated second-stage comb filter 

In Figure 3.20 we have, on the right side, the amplitudes of three 

filters: a comb filter and two different compensated comb filters. One of 

them has been compensated with a wideband compensator and the 

other with a narrowband compensator. On the left side we have the 

mapping from the original values to new values through the polynomial 

4x2 – 3x3. Observe that, at the frequency point ωp, which represents the 

upper edge of the passband of interest, the amplitude of the comb filter 

is mapped to a value that is away from the desired line with slope σ. 

Moreover, since this line only approximates the necessary values to 

compensate the droop of the first-stage comb filter, it is not convenient 

to map values of the original amplitude that are too far from 1. 

Additionally, it can be seen that the original amplitude values of the 

comb filter compensated with a wideband compensator (which are 
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greater than one), are mapped to new amplitude values less than one. 

For this reason it is not convenient to use a wideband compensator. On 

the other hand, the original amplitude values of the comb compensated 

with a narrowband compensator are mapped to values greater than one 

that closely follow the values of the desired line.  
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Figure 3.20.  Amplitude changes of a comb filter and two compensated 

comb filters through the sharpening polynomial 4x
2
 – 3x

3
. 

  A simple multiplierless compensator with only one parameter b, 

which depends on the number of K stages, was proposed in [24]. This 

filter has a low complexity and provides a good compensation in a 

narrow passband. Therefore, we adopt this compensation filter in this 

proposal. The transfer function of this compensator is 

( 2) 2 2( ) 2 1 (2 2)M b b M MG z z z          
.               (3.81) 

The compensated second-stage filter becomes, 

1

2 2
( ) ( ) ( )

K
MM

C
H z G z H z 

 
.                          (3.82) 

Applying the generalized sharpening technique to the compensated 

filter H2C(z) we obtain the proposed decimation filter whose transfer 

function is 
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Using (3.77), (3.78), (3.80) and (3.83) we arrive at: 
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 (3.84) 

where τ is equal to M1(M2 – 1)K/2 + M1M2. The coefficients αj,0 and αj,1 in 

(3.84) are calculated from (3.78). Thus, the design parameters are the 

tangencies m and n, the slope σ, and the compensator parameter b, 

along with the number of cascaded filters L for H1(z) and K for H2(z). An 

efficient structure for decimation is presented in Figure 3.21, 

straightforwardly derived from [25]. Note that the filter preceding the 

down-sampler by M1 can be decomposed into polyphase components to 

avoid operations at high rate. 

 

 

 

 

 

Figure 3.21. Efficient structure for decimation. 
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possible, whereas n is variable. Considering that K must be an even 

value, we set K = 2. As a consequence, the compensator parameter 

becomes b = 2 [15]. Furthermore, the slope σ controls the values of the 

ideal ACF that approximate the desired values necessary to compensate 

the passband droop introduced by the first-stage comb filter, H1(z). A 

simple way to assure multiplierless sharpening coefficients is by 

expressing the slope σ as σ = 2–c. The constant c must be decreased as 

the droop introduced by H1(z) increases. Additionally, the tangency of 

the sharpening polynomial to the line with slope σ at the point (1, 1) is 

enhanced by increasing the parameter m. This results in a better 

passband characteristic but also in a higher complexity of the overall 

filter. Finally, the parameter L does not have implication in the 

improvement of the attenuation in the first folding band (where the 

worst-case attenuation occurs). However, L increases the droop of 

H1(z). For this reason, even though it is often considered arbitrary in 

most two-stage comb-based decimation filters, L should be kept as 

small as possible. 

A simple design procedure for a given stopband specification is 

presented as follows: 

1. Consider the decimation factor as M = M1M2, and that L and a 

residual decimation factor v are given. Set K = 2, b = 2, δ = 0, n = 

0, c = 0 and m = 1. 

2. Increase n until the stopband requirement is satisfied. 

3. Decrease c until an acceptable passband is obtained. 

4. Increase m until the passband characteristic in step 2 can not be 

improved further.  
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Example 6 

A design example to show the effectiveness of the proposal in 

comparison to other two-stage sharpening-based methods is presented 

below.  

Consider a decimation process with overall decimation factor D = M1 

M2 v = 272, with M1 = 4, M2 = 17 and v = 4. Assume that the passband 

edge frequency is ωp = 0.9π/D, and a desired stopband attenuation of 100 

dB.  

The polynomial used in this filter is Pσ,δ,m,n(x) = 5.125x4  – 4.125x5, 

obtained with m = 1, n = 3, and  σ = – 2–3. On the other hand, Stuart and 

Stephen use the traditional Kaiser and Hamming polynomial Pm,n(x) = 

3x2 – 2x3, obtained with m = 1, n = 1, and their filter accomplishes the 

100 dB attenuation with K = 4. Figure 3.22 shows the magnitude 

characteristics for both designs. Note that the proposed method 

achieves a much better passband characteristic.  

For both designs, the first-stage comb filter can be decomposed in 

polyphase components, resulting in the same complexity. The second-

stage comb filter of the proposed filter is implemented with the 

decimation architecture of Figure 3.21, whereas the one of [24] uses the 

structure of [25]. Note that the proposed filter has a lower 

computational complexity, as shown in Table 3.10.   
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Figure 3.22. Gain in dB of the Example 6 applying the proposed method and 

the method of [24]. 

Table 3.10. Comparison of computational complexity of the sharpened filters 
in Examples 6. 

Method Additions Per Output Sample (APOS)  

in Example 6 

Method [24] 3KM2+3K+3 = 219 

Proposed 2RM2+6R–1+coefficient adders = 202  

 

3.6 Sharpening of multistage comb decimator filter 

A particular case of the above method, is the improvement of the 

comb decimators filters with decimation factor equal to power of two, i. 

e., M= 2p. Namely, the use of p decimation stages. In this proposals to 

improve the worst case attenuation of the comb filter the improved 

sharpening is applied in last stage. In subsection 3.6.1 the filters of each 

stage are implemented in non-recursive form followed by a 

downsampler by 2. In order to improve both passband and stopband 

regions simultaneously it is convenient to apply the improved 

sharpening technique from [22]. Later, in subsection 3.6.2 an extension 

to the previous works a modification of the two-stage structure 

introduced in 3.6.1 is presented. The proposed scheme is a more regular 

CIC-based structure that provides also savings in chip area. A three-

stage decimation structure for cases where M can be factorized in q = 3 
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arbitrary factors is proposed. The application of a compensator which 

works at the lower rate results in a passband improvement.  

3.6.1 Sharpening of non-recursive comb decimation structure 

We proposed to apply the improved sharpening described in 

Section 3.5, in last stage of the non-recursive structure,  

 1 2( ) [(1 ) /2]
Sh

H z Sh z  ,                     (3.85) 

where Sh{[(1+z–1)/2]2} denotes the improved sharpening to a filter (the 

cascade of 2 is chosen to avoid fractional delays and keeps the same to 

any value of cascades filter in all the stages). 

 Now, let us define L as the number of cascaded comb filters in the 

last stage as 

2L N l  .                                      (3.86) 

where l has value 0 or 1. For l equal to 1, an additional comb filter is 

cascaded to the sharpened filter. This filter is shown in Figure 3.23 by 

the dashed box. As result, an odd number of cascaded filters is obtained.   

 

Figure 3.23. Proposed structure. 

The number of cascaded comb filters in all stages, except in the last 

one, is K1. Moreover, the number of extra comb filters that are cascaded 

in the last stage is K2  = L–K1. 

 The transfer function in the last stage becomes: 

 
...
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 1 2 ( ) 1 2

0
[(1 )/2] [(1 )/2]

N N j j

jj
Sh z z q z   


   ,                    (3.87) 

,0 ,1 ,2j j j j
q α σα δα   ,                                (3.88) 

with αj,0, αj,1 and αj,2 given in (3.78).  

 In proposed structure the comb filter of the last stage is replaced 

by a filter with the following transfer function: 

   1 1 2( ) 1 [(1 ) /2] [(1 ) /2]
S

H z l l z Sh z        .        (3.89) 

 We write the transfer function of the proposed filter, at the input 

sampling rate as:  

( 1)

1
2

1 2 2

0
( ) 2 (1 ) ( )

i p

K
p

P S
i

H z z H z



  



 
   
 

.              (3.90)  

 Using multirate identity, some delays elements can be moved to 

lower rate. Figure 3.24 shows the obtained structure for this section by 

using (3.85), (3.86) and (3.87), where the dashed box indicates the case 

when the number of coefficients is odd, i.e. N is even, and the solid box 

indicates even coefficients, i.e. N is odd.   

The total number of required APOS is given as: 

  1
2 2 2 ( 1)2p

P
APOS K m n l c       

 
          (3.91) 

where c denotes the number of adders required for the multiplierless 

sharpening coefficients. 
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Figure 3.24. Structure of the sharpened section. Note that, if N is even, only 

the structure enclosed in the dashed box is used and in this case i = –1. If N is 

odd, the complete structure is used and i = 0.   

 Choice of the Design parameters 

 The design parameters are:  

1) The sharpening parameters σ, δ, m and n (see 3.5).  

2) The value l. 

3) The number of cascaded filters in all the stages except for the last 

one, K1. 

 Choice of parameters n and δ 

 The attenuation in all odd folding bands depends on the last stage 

of the structure. Let us refer to the desired ACF in Figure 2, specifically 

to the desired line with slope δ. By setting δ = 0 we observe that, as the 

tangency n increases, the polynomial Qσ,δ,m,n(x) becomes closer to the 

line. The amplitude values of the last stage filter that are near to zero 

are mapped to new amplitude values closer to zero in the sharpened 

version of this filter, and its attenuation becomes better. Thus, we set δ 

= 0 and consequently n must be increased to improve attenuation. 

...

...

1iq iq 2iq 

1 2(1 )z
1 2(1 )z 1 2(1 )z

2

1

2

N

z

  
  
  

2

1z

1

2

N

z

  
  
  

2

1z

1
1

2

N

z

  
   

  

2

1
1

2

N

z

  
   

  

3iq 

2

1z

1Nq 

2

Nq

even, 1N i  

1 2(1 )z

odd, 0N i 



Miriam Guadalupe Cruz Jiménez 

91 

 Choice of parameters m and σ 

 It is possible to take advantage of the slope parameter σ to obtain 

a passband compensation by filters in the last stage. This can be seen by 

observing the line with slope σ in Figure 3.19. If this slope is chosen to 

be negative, the amplitude values of the last stage filter that are close 

to and less than 1 are mapped to new amplitude values closer to and 

greater than 1 in the sharpened version of this filter. As a consequence, 

a passband compensation is obtained. The tangency of the sharpening 

polynomial to the line with slope σ at the point (1, 1) is enhanced by 

increasing the parameter m. This results in a better passband 

characteristic, but also in higher complexity of the overall filter. 

Consequently, we set m = 1. For higher passband droops absolute value 

of slope σ must be increased. 

 Choice of parameter l 

 When the desired attenuation can not be accomplished by a given 

polynomial degree N, the parameter l is set to 1 before increasing N. 

The extra filter adds a zero into the first folding band and the 

attenuation can be slightly increased.  

 Choice of parameter K1 

 To obtain a value of number of APOS less than in the 

corresponding traditional non-recursive structure, with parameter K, 

the parameter K1 must be less than K. The smaller the value of K1, the 

smaller attenuation in the second folding band is achieved in the 

proposed filter.  

By substituting  m = 1 and δ = 0 in (3.77) we have: 
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2
1

, , , ,0 ,1 1
1

( ) ( )
n

j N N

σ δ m n j j N N
j n

Q x α σα x q x q x





 

    ,           (3.92) 

where the coefficients qN –1 y qN are obtained from 3.78 as, 

1
2

N
q n σ


   ,                                          (3.93) 

 1
N

q n σ    .                                        (3.94) 

To assure multiplierless coefficients in the improved sharpening 

polynomial, the slope σ is expressed as, 

2
2

prec_infB

B

σ
σ round



 
   

 
 

,                           (3.95)  

where σprec_inf is an infinite-precision value and B is an arbitrary word-

length for the fractional part of σ. 

 The Worst-Case Passband (WCP) in the magnitude response of a 

comb filter occurs at the frequency, [25]: 

p

π
ω

MR
 ,                         (3.96) 

where R is the residual decimation factor. Similarly, the Worst-Case 

Attenuation (WCA) among the odd folding bands occurs in the first 

folding band at the frequency, [25]: 

2
s p

π
ω ω

M
 .                           (3.97) 

The WCA in the even folding bands occurs in the second folding band at 

the frequency: 

4
s p

π
ω ω

M
 .                              (3.98) 
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To assure a WCA equal or higher than a desired minimum attenuation A 

(given in dB), the factor K can be calculated as: 

 10
20log ( )

sω ω

A
K

H ω


 
  
  

,                                 (3.99) 

where   x  is the nearest integer equal or greater than x.  

 Figure 3.25 shows the WCAs in dB, for different values of K1 and 

K2, along with the value K of an original cascaded-by-K comb filter, 

when R = 2 and M = 24. From this diagram we can choose the 

parameters on design. Suppose that we want to design a decimation 

filter with a minimum WCA equal to –60dB. Then using (3.99) the 

parameter K of the comb filter must be K=6. From Figure 3.25 we can 

find the set of possible values K1 and K2 for which the proposed 

structure achieves a WCA of –60dB. These values are found as the 

intersections of the horizontal line of –60dB with the plots of Figure 

3.25, and they are presented in Table 3.11. 
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Figure 3.25. Worst case aliasing attenuation for comb filter and proposed 

filters. 
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Table 3.11. APOS for filters that accomplish  WCA = –60 dB. 

Structure σ l WCP (dB) APOS 

Non- Recursive Comb  

 (K=6) - - -5.4318 180 

Proposed 

 (K1=4 y K2=7) -3.6250 1 -0.5496 139 

(K1=5 y K2=5) -3 0 -0.4679 162 

(K1=5 y K2=6) -3.9375 1 -0.5842 166 

(K1=5 y K2=7) 4 0 0.6668 167 

                             

 Design Steps in the Proposed Method 

The residual decimation factor R and a desired WCA denoted as A are 

given. A simple design procedure is presented as follows: 

5. Calculate an approximated value of K from (3.99) substituting ωs 

from (3.97). Estimate also K1 using (3.99), substituting ωs from 

(3.98).  

6. Set δ = 0, σprec_inf = 0, l = l and m = 1. Then estimate K2 as K2 = K – 

K1 + l + 1 and obtain n = 
2 1( 4 ) / 2    K K l . 

7. Compute the sharpening polynomial using (3.92)-(3.94) and form 

the transfer function HS(z) of (3.89).  

8. Choose the value of B in (3.95). Obtain σ by decreasing σprec_inf 

using (3.95) until an acceptable passband is obtained. 

9. If the desired attenuation is not achieved in the first folding band, 

increase n if l = 1 and reset l = 0, otherwise set l = 1, and repeat 

from step 3 until the WCA equal to A is accomplished in the first 

folding band.  
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Example 7  

Consider a comb-based filter with the minimum attenuation given as 

A = –80dB and R=8, with M = 16. 

The resulting polynomial for this filter is Qσ,δ,m,n(x) = 4x2 - 3x3, where 

m = 1, n = 1, and  σ = –1. Additionally, l = 1, K1 = 3 and K2 = 4. Figures 

3.26 and 3.27 show the magnitude characteristics of the proposed 

design along with the solution of method [26], where K1 = 3 and K2 = 1. 

Note that the proposed method achieves a much better passband 

characteristic, with a slight increase of the computational complexity, 

as shown in Table 3.12.  

Table 3.12. Comparison of computational complexity and magnitude 

characteristics for example 7. 

Structure APOS WCA WCP 

Method, [26] (K1=3 and K2=1) 92 -89.2169 -0.2168 

Proposed (K1=3 and K2=4) 100 -89.0144 -0.0044 

 

 

 

 

 

 

 

 

Figure 3.26. Magnitude responses in dB of filters in the Example 7. 
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Figure 3.27. Detail of first and second folding bands with passband detail of 

the magnitude responses in dB of filters in the Example 7. 

3.6.2 On compensated three-stages sharpened comb decimation 

filter 

First, as started point consider the two-stage scheme, i.e., where M 

= M1M2, with {M1, M2} > 1. The transfer function of the proposed 

decimation filter is   

1 1

1 2
( ) ( ) ( )

K M
G z H z H z  ,                                (3.100) 

where  

1 1
( ) ( , )H z H z M ,                                    (3.101) 

 2 2 2 2

2 , , , 2
( ) ( , )

NM M

σ δ m n
H z z P z H z M

 
  .                 (3.102) 

By substituting the following recursive form 
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in (3.100) and (3.101) and using 

sin( /2)
( )

sin( /2)
jω

comb

ωD
H e

D ω
                                (3.104) 

 

, we have 
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     

.


         (3.105) 

In order to map the amplitudes of the comb filter that are near to 

zero to values closer to zero after sharpening, the slope δ must be equal 

to zero. Thus, setting δ=0 in (3.104) and splitting the filter H1(z) in its 

integrator and comb parts, we obtain:   

1 1 1 1

1 2 2
( , , ) ( ) ( ) ( , )

K K M M

I C S
G z M M H z H z G z M                    (3.106) 

1

1
( )

(1 )
IH z

z



,                                                         (3.107) 

1( ) (1 )CH z z  ,                                                         (3.108) 

2 2

2 2

2

( 1) ( 1)

2 1

( 1) ( 2) ( 2)

2

( 1) ( 1)

1

( , ) ( ) ( )

         ( ) ( ) ...
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mM Mn n

S n

m M Mn n
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 

    

  
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                  (3.109)
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2
1

1
( )

1

z
A z

z





 
  

 

,                                                          (3.110) 

1 2( ) (1 )B z z  .                                                           (3.111) 

Splitting the downsampling M into to two factors M1 and M2,  the 

filters HC
K1(zM1) and GS(zM1) can be moved after the downsampling by 

M1, resulting in the structure shown in Figure 3.28.    

 

Figure 3.28. Two-stage decimation structure.  

The efficient structure of the dashed block of Figure 3.32 is shown in 

Fig. 3.29.  

 

Figure 3.29. Efficient structure for the filter Gs(z). 

When the structure of Figure 3.29 is used in the dashed block in Figure 

3.28, the filter A(n+1)(z) is cascaded with the filter HC
K1(z), forming an 

equivalent filter D(z) = HC
K1(z)A(n+1)(z). From (3.108) and (3.110) we 

can see that this product results in an equivalent filter with transfer 

function: 

 D(z) = z–2(n+1)[1/(1 –z –1)]2(n+1)–K1 = z–K1A(n+1)–K1(z).               (3.112) 
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 This structural modification allows us to save 2K1 adders compared to 

the original cascade HC
K1(z)A(n+1)(z).  

Finally, replacing the structure of Figure 3.29 in its corresponding 

equivalent dashed block of Figure 3.28, we arrive to the proposed two-

stage structure presented in Figure 3.30. The corresponding coefficients 

βi are obtained from (3.88) being qj equal βi and N from n + m + 1  , 

whereas HI(z), A(z) and B(z) are respectively given in (3.107), (3.110) 

and (3.111). 

 

Figure 3.30. Proposed two-stage structure. 

We consider here that the decimation factor M can be written as : 

M= M1M2M3.                             (3.113) 

The transfer function of the proposed decimation filter is given as 

1 2 1 1 2

1 2 3
( ) ( ) ( ) ( )

K K M M M

p
G z H z H z H z   ,              (3.114) 

where H1
K1(z) is given as (3.101), and with 

2 2
( ) ( , )H z H z M ,                                      (3.115) 

 3 3 32 2

3 , , , 3
( ) [ ( , ) ( )] .

NM M M

σ δ m n
H z z P z H z M C z

 
  ,               (3.116) 
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where C(z) is the comb compensator proposed in [9]. 

The number of cascaded filters K1 and K2 can be chosen with different 

values. Using the form of (3.106) and setting δ=0 we arrive to the 

proposed transfer function, 

1 2 1 2 1 2

1 2

1 2 3 1

3

( , , , ) ( ) ( ) ( )

                             ( , ) ( )

K K M K M M

p I C

M M M

pS

G z M M M H z H z H z

G z M C z

   


             (3.117)

 

where HI(z) and HC(z) are given in (3.107) and (3.108). Similarly, GpS(z, 

M3) is expressed as, 
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                      (3.118) 

where A(z) and B(z) are given in (3.110) and (3.111).  

The filter H1
K1(z) is implemented in nonrecursive form. The 

polyphase decomposition can be applied to this stage. The filter 

HI
K2(zM1) can be moved after the downsampling by M1 and the filters 

HC
K2(zM1M2) and GpS(zM1M2, M3) can be moved after the downsampling by 

M2. Applying the compensator filter of [9] in the last stage, the 

resulting structure is given in Figure 3.31. 

 

Figure 3.31. Proposed decimation structure with a CIC scheme used for H1
K1

(z) 

and H2
K2

(z
M1

).  
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The dashed section of Figure 3.31 is implemented in a similar way as 

that of Figure 3.29, just replacing M2 by M3. In the same way, an 

equivalent filter D1(z) = HC
K2(z)A(n+1)(z) is obtained. Using (3.112) we 

get: 

D1(z) = z–K2A(n+1)–K2(z).                        (3.119)  

 Finally, the resulting structure, obtained by replacing 

HC
K2(z)A(n+1)(z) with D1(z), and using the non recursive form of H1

K1(z), 

is given in Figure 3.32.  

 

Figure 3.32. Proposed structure with all the filters working at low rate (the 

first nonrecursive comb filter is implemented in polyphase decomposition). 

The filters A(z) and B(z) can be implemented with two adders and 

two delays. Thus, the proposed structure requires an amount of 

Additions per Output sample (APOS) given by: 

2 3 1 1 1 1 2

1 1 1

2 ( 1) ( )

2( ) 2 ( ) ( ),

APOS i

N

i ii n

N M M M S H K M M

N K M N m S β S C
 

   

     
              (3.120) 

where S(βi) means the number of adders required to implement the 

coefficient βi, S(Ci) means the number of adders required to implement 

the coefficient of the compensator, and S(H1i) means the number of 

adders required to implement the coefficient of the filter H1
K1(z). 
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The design steps of the proposed filter are: 

1. Consider the decimation factor M expressed as (3.113). Choose M2 

> M3 > M1. 

2. Set K1 =K2 = 1, K3 = 2, δ = 0, n = l and m = 1.  

3. Design the compensator of [9] such that the passband deviation is 

as low as possible but preserving a monotonic passband characteristic. 

4. Obtain σ = 2-B[round(σinf/2-B)], where σinf is a positive slope if the 

passband characteristic is monotonically increasing or a negative slope 

if the passband characteristic is monotonically decreasing. Increase 

the absolute value of σinf proportionally to the passband deviation until 

the passband improvement is appropriate. Choose B as small as 

possible (it is usual to have B < 6).  

5. Compute the sharpening polynomial given in (3.77) and design the 

filter Gp(z) of (3.117). 

6. If the attenuation in the first folding band is not satisfied, then 

increase n, K1, K2 and repeat the procedure until the desired 

attenuation is obtained.   

Example 8 

Consider the decimation process with residual factor equal to v = 2 and 

decimation factor M = 81. The minimum attenuation of 80 dB in the first 

folding band is required.  

The decimation factor M = 81 = 34 = 9 ·3·3. We choose M1 = 3, M2 = 9, M3 

= 3.  
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The obtained sharpening polynomial is Pσ,δ,m,n(x)=3.3750x3 - 2.3750x4. 

The parameters are: n = 2, K1= 2, K2= 4 and σ = 0.6250. The resulting 

compensator is given as C(zM)= 2-2[-1/2 + 5z-M - 1/2z-2M].
  

Figure 3.33 shows the magnitude response of the proposed filter along 

with the response of method [26]. The response of that filter is obtained 

using parameters K1=4, K2=4, K3=4 and K4=5 (it uses 4 stages) and it is 

shown with dashed line.  

 

 

 

 

 

 

Figure 3.33. Magnitude response of the filter of Example 8. The resulting 

magnitude response by using the proposed design and the design by method 

[26]. 

Table 3.13. Comparison of characteristics and computational complexity for 

example 8. 

Method Worst case 

attenuation 
value 

Worst 

case 
passband 

droop 

Additions 

per 
output 

sample 

Method 

[26] 

-90.45 -7.8159 1224 

Proposed -122 -0.9048 235 

 

0 0.2 0.4 0.6 0.8 1
-200

-150

-100

-50

0

/ 

G
a
in

(d
B

)

 

 

0.015 0.025 0.035
-200

-150

-100

Proposed

Method[31]

0 0.005

-10

-5

0

Passband Zoom First foldingband Zoom

[26] 



Miriam Guadalupe Cruz Jiménez 

104 

3.7 References 

[1] Oppenheim, A. V., and Schafer, R. W. Discrete-Time Signal 

Processing, N J:Prentice-Hall International, 1989. 

[2] Aksoy, L., Flores, P.,  and Monteiro, J. “A tutorial on multiplierless 

design of FIR filters: algorithms and architectures,” Circ. Syst. 

Signal Process. 2014. 

[3] Coleman, J. O. “Chebyshev stopbands for CIC decimation filters and 

CIC-implemented array tapers in 1D and 2D,” IEEE Trans. on Circ. 

and Syst.-I, vol. 59, no. 12, pp. 2956-2968, 2012. 

[4] Rayes, M. O.,  Trevisan, V., and Wang, P. S. “Factorization properties 

of Chebyshev polynomials,” Computers and mathematics with 

applications, no. 50, pp. 1231-1240, 2005. 

[5] Dolecek, G. J.,  and Dolecek, V. “Application of Rouche’s theorem for 

MP filter design,” Applied Mathematics and Computation, no. 211, pp. 

329-335, 2009.    

[6] Kale, I., Cauin, G.D.,  and Morling, R.C.S. “Minimum-phase filter 

design from linear-phase start point via balanced model truncation,” 

IET Electronic Letters, vol. 31, no. 20, pp. 1728-1729, 1995. 

[7] Dam, H. H., Nordebo, S., and Svensson, L. “Design of minimum-

phase digital filters as the sum of two allpass functions using the 

cepstrum technique,” IEEE Trans. Signal Process., vol. 51, no. 3, pp. 

726-731, 2003. 

[8] Pei, S.-C., and Lin, H.-S. “Minimum-phase FIR filter design using 

real cepstrum,” IEEE Trans. Circ. and Syst.-II, vol. 53, no. 10, pp. 

1113-1117, 2006. 



Miriam Guadalupe Cruz Jiménez 

105 

[9] Romero D. E. T., and Dolecek, G. J. “Application of amplitude 

transformation for compensation of comb decimation filters,” 

Electronics Letters, vol. 49, no. 16, 2013. 

[10] Lyons, R. “Sample Rate Conversion,” in Understanding Digital 

Signal Processing, 2nd ed. New Jersey, USA, Prentice Hall, 2004. 

[11] Dolecek, G. J.,  and Mitra, S. K. “Simple method for compensation of 

CIC decimation filter,” Electronics Letters, vol. 44, no. 19, pp. 1162–

1163, 2008. 

[12] Pecotic, M. G., Molnar G. , and Vucic, M.  “Design of CIC 

compensators with SPT coefficients based on interval analysis,” in 

Proc. The 35th IEEE Int. Convention MIPRO 2012, pp. 123–128, 2012. 

[13] Kaiser, J., and Hamming, R. “Sharpening the response of a 

symmetric nonrecursive filter by multiple use of the same filter,” 

IEEE Trans. Acoust. Speech and Signal Process., vol. 25, no. 5, pp. 

415-422, 1977. 

[14] Jiang, Z.,  and Wilson, A. N.  “Efficient digital filtering 

architectures using Pipelining/Interleaving,” IEEE Transactions on 

Circuits and Systems- II: Analog and Digital Signal Processing, vol. 

44, no. 2, pp. 110-119, 1997. 

[15] Dolecek, G. J., and Mitra, S. K. “Novel two-stage comb decimator,” 

Computación y Sistemas, vol. 16, no. 4, pp. 481-489, 2012. 

[16] Dolecek, G. J. “Simple wideband CIC compensator,” Electronics 

Letters, vol. 45, no. 24, pp. 1270–1272, 2009. 

[17] Dolecek G. J., and Dolecek, L. “Novel multiplierless wide-band CIC 

compensator,” in Proc. IEEE ISCAS 2010, pp. 2119–2122, 2010. 



Miriam Guadalupe Cruz Jiménez 

106 

[18] Milic, D. J., and Pavlovic, V. D. “A new class of low complexity low-

pass multiplierless linear-phase special CIC FIR filters,” IEEE Signal 

Processing Letter, vol. 21, no.12, pp. 1511-1515, 2014. 

[19] Fa-Long, L. (Editor), Digital Front-End in Wireless Communications 

and Broadcasting: Circuits and Signal Processing, Cambridge 

University Press, New York, USA, 2011. 

[20] Meyer-Baese, U. “Chapter 2: Computer Arithmetic,” in Digital 

Signal Proccessing with Field Programmable Gate Arrays, Springer, 

4th Edition, pp. 142, 2014. 

[21] Stosic, B. P., and Pavlovic, V. D. “Design of new selective CIC filter 

functions with passband-droop compensation,” Electronics Letters, 

vol. 52, no. 2, pp. 115-117, 2016. 

[22] Hartnett, R. J., and Boudreaux-Bartels, G. F. “Improved filter 

sharpening,” IEEE Trans. on Signal Process, vol. 43, no. 12, pp. 2805-

2810, 1995. 

[23] Samadi, S. “Explicit formula for improved filter sharpening 

polynomial,” IEEE Trans. on Signal Process, vol. 9, pp. 2957–2959, 

2000. 

[24] Stephen, G., and Stuart, R. “High-speed sharpening of decimating 

CIC filter,” Electronics Letters, vol. 40, pp.1383-1384, 2004. 

[25] Kwentus, A., Jiang, Z., and Willson, N. “Application of filter 

sharpening to cascaded  integrator-comb decimation filters,” IEEE 

Trans. Signal Procesing, 45, pp. 457-467, 1997. 

[26] Dolecek, G. J., and Molina, G. “Low-power non-recursive comb-

based decimation filter design,” in Proc. Int. Symp. on 

Communications, Control and Signal Process. ISCCSP 2012, pp. 1-4, 

2012.  



Miriam Guadalupe Cruz Jiménez  

107 

 

 

 

Theoretical lower bounds for 

parallel pipelined shift-and-

add constant multiplications 

Multiplication with constants is a regular operation in Digital 

Signal Processing (DSP) systems. In hardware, a multiplication is 

demanding in terms of area and power consumption. However, the 

Single Constant Multiplication (SCM) and Multiple Constant 

Multiplication (MCM) operations can be implemented by using only 

shifts, additions and subtractions, with the last two being usually 

referred in general form as additions [1]-[36].  

Theoretical lower bounds for the number of adders and for the 

number of depth levels, i.e., the maximum number of serially connected 

adders (also known as the critical path), in SCM, MCM and other 

constant multiplication blocks that are constructed with two-input 

adders under the shift-and-add scheme have been presented in [3]. 

Tighter lower bounds, as well as a new bound, namely, the one for the 

number of extra adders required to preserve the lowest number of 

depth levels, were presented in [4] for the SCM case. Nevertheless, 

there are no theoretical lower bounds for the case of constant 

multiplication blocks that include multiple-input additions/subtractions 

and pipeline registers in the involved arithmetic operations. This type 

of operations has become very important mainly when the pipelined 

CCChhhaaapppttteeerrr   
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constant multiplication blocks are implemented in the increasingly 

demanded Field Programmable Gate Array (FPGA) platforms. This is 

due to the fact that logic blocks of FPGAs include memory elements, and 

thus pipelining results in low extra cost [5]-[12]. Currently, the use of 

three-input adders has started to gain importance, since the logic blocks 

of the newest families of FPGAs are bigger and allow to fit more 

complex adders using nearly the same amount of hardware resources 

[10]-[12]. 

Particularly, in the last two decades many efficient high-level 

synthesis algorithms have been introduced for the multiplierless design 

of constant multiplication blocks. The common cost function to be 

minimized in these algorithms is given by the number of arithmetic 

operations (additions and subtractions) needed to implement the 

multiplications. Nevertheless, the critical path has the main negative 

impact in the speed and power consumption [13]-[18]. Therefore, 

substantial research activity has been carried out currently targeting 

both, Application-Specific Integrated Circuits (ASICs) [19]-[21] and 

FPGAs [5]-[10], [22]-[25], where the minimization of the number of 

arithmetic operations subject to a minimum number of depth levels is 

the ultimate goal. 

This chapter introduces the theoretical lower bounds for the 

number of operations necessary to implement Pipelined Single Constant 

Multiplication (PSCM) and Pipelined Multiple Constant Multiplication 

(PMCM) blocks that are constructed with the shift-and-add scheme. For 

the derivation of these bounds we consider that either an n-input 

(where n is an integer) pipelined addition/subtraction or a single 

pipeline register have the same cost. As mentioned earlier, recently this 

assumption fits particularly well for cases where n is set equal to 3 and 



Miriam Guadalupe Cruz Jiménez  

109 

the target platforms for implementation are the newest FPGAs from the 

two most dominant manufacturers, Xilinx and Altera. However, it is 

worth highlighting that n = 2 is still under common use in many 

applications. This contribution is important because the optimality of 

different algorithms that reduce the number of operations in PSCM and 

PMCM blocks can be tested using appropriate theoretical lower bounds. 

Additionally, these bounds can be useful to develop new algorithms. 

This chapter is organized as follows. In the next section, 

definitions and methods needed to address the proposal are given. 

Section 4.2 presents the new theoretical lower bounds along with 

theorems and proofs to support the derivation of these bounds. 

Comparisons with previous theoretical lower bounds from [3] and [4] 

are provided in Section 4.3. Finally, conclusions are given in Section 

4.4. 

4.1 Definitions 

Let us express the n-input A-operation, i.e., the n-operand 

addition/subtraction along with shifts, as follows, 





  1

1 1
2

( ,..., ) 2 ( 1) 2 2i i

n
l s l r

q n i
i

A u u u u ,                            (4.1) 

where li ≥ 0 for i = 1, ..., n are left shifts, r ≥ 0 is a right shift, s2, ..., sn 

are binary values, q = {l1, ..., ln, s2, ..., sn, r} is the configuration of the 

A-operation and u1,..., un are odd integers. 

It is important to mention that a multiplicative graph is the graph 

obtained by cascading subgraphs, and the union point between two 

cascaded subgraphs in a multiplicative graph is called articulation point 

[33]. This is illustrated in Figure 4.1(a) for n-input A-operations. A 
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particular case is the completely multiplicative graph, where each 

cascaded subgraph is composed by one A-operation, as shown in Figure 

4.1(b). Other graphs without articulation points are referred as non-

multiplicative graphs [33]. A cascaded interconnection of a completely 

multiplicative graph with a non-multiplicative graph is called 

generalized graph, see Figure 4.1(c).  

 

Figure 4.1. (a) multiplicative graph, (b) completely multiplicative graph, and 

(c) generalized graph. 

The speed of a design is restricted by the critical path. The 

pipelining technique allows the reduction of a critical path introducing 

registers along the data path [34]. In FPGA implementations the 

constant multiplications involving shifts-and-add operations can be 

made fully-pipelined with a low extra cost. Pipelining has a small 

overhead due to the fact that the logic blocks in FPGAs include memory 

elements, which are otherwise unused [28], [35]-[36]. For example, 

Table 4.1 shows the amount of logic elements used to implement the 

multiplier 45X (for an 8-bit input) in an Altera Cyclone IV 

EP4CE115F29C7 FPGA. We observe that only 3 extra logic elements are 

needed in the pipelined implementation, which represents an increase 
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of 9.7% in resources utilization compared with the non-pipelined case. 

Nevertheless, the frequency of operation is increased by 31.7%. 

 

Table 4.1. Pipelined and Non Pipelined implementations of a 45X multiplier. 

Pipelined Total logic elements (LE) Maximum frequency of operation (MHz) 

No 31 285.47 

Yes 34 376.08 

 

Due to the aforementioned observation, the implementation cost 

will be accounted by the number of registered operations, called 

hereafter R-operations, where an R-operation is either an A-operation 

plus a register (an addition-register pair) or a single register. Two R-

operations with the same cost are illustrated in a simplified way in 

Figure 4.2. Hence, the PSCM problem consists in finding the pipelined 

array of A-operations that form a single-constant multiplier using the 

minimum number of R-operations. Similarly, the PMCM problem 

consists in finding the pipelined array of A-operations that form a 

multiple-constant multiplier using the minimum number of R-

operations.  

 

Figure 4.2. R-operations with the same cost. 
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To calculate the lower bounds for the number of R-operations 

required to implement PSCM and PMCM blocks, we need the following 

information from a constant:  

1) Its Minimum Number of Signed Digits (MNSD), denoted by S. We 

will also refer to this number in a more informal manner as "the 

number of non-zero digits".  

2) Its number of prime factors (it does no matter if these prime 

factors are repeated). This number is denoted by Ω. 

4.2 Proposed lower bounds 

In the following we state, in sub-section 4.2.1, Theorems 1 to 8 to 

derive the lower bounds of R-operations in PSCM, and in sub-section 

4.2.2 Theorems 9 and 10 for PMCM, along with their corresponding 

proofs. The pipelining operation, which has not been alluded in the 

previous works [3] and [4], is explicitly included in the proposed lower 

bounds with the R-operations. 

4.2.1 PSCM case 

Whenever a constant c is mentioned in the theorems of this sub-

section (Theorem 1 to 8), we consider that the MNSD of that constant is 

S and its number of prime factors is Ω.  

Theorem 1 provides the upper limit of non-zero digits that can be 

generated by any graph with a given number of depth levels, regardless 

of its number of R operations. From this, we can know the minimum 

number of depth levels that a graph must have to implement a constant 

with a given S.  
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Theorems 2 and 3 prove the properties of the completely 

multiplicative graphs, namely, generating the upper limit of non-zero 

digits mentioned in Theorem 1 with the minimum possible number of R 

operations. From them, we have that the completely multiplicative 

graph is a solution with the lower bound for the number of R 

operations. However, as it is known, this graph has articulation points, 

and every articulation point represents the union between two cascaded 

subgraphs, i.e., the product of two smaller constants. Therefore, 

Theorem 4 uses Ω to identify what constants can be implemented with 

the completely multiplicative graph (for example, prime constants can 

not be factorized into smaller constants, thus they can not be 

implemented by a completely multiplicative graph). 

Theorem 5 identifies the minimum number of R operations needed 

in any non-multiplicative graph with a given number of depth levels, 

and Theorem 6 proves that non-multiplicative graphs can generate the 

upper limit of non-zero digits mentioned in Theorem 1 with its 

minimum number of R operations. Then, Theorem 7 establish the lower 

bound for the number of R operations needed to implement a prime 

constant (Ω = 1). 

Finally, Theorem 8 completes the information of Theorems 4 and 7, 

namely, the lower bound of R operations needed to implement non-

prime constants that have fewer number of factors than the number of 

sub-graphs used in a completely multiplicative graph.  

Theorem 1. A graph with p depth levels can provide at most np non-

zero digits for a constant. 

Proof.  The proof  is given by induction (see proof of Theorem 6.9 in 

[35] for the case of 2-input A-operations): 
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1) The base case corresponds to the first depth level, where a n-input A-

operation can form a constant with at most n non-zero digits. This is 

true since the input of any graph has one non-zero digit [3]-[4], [35]. 

2) As inductive step we assume that, in the p-th level, there are np non-

zero digits at most. In the (p+1)-th level an A-operation can form a 

constant whose number of non-zero digits is the sum of the numbers of 

non-zero digits at every input of that A-operation. This is at most n 

times the maximum number of non-zero digits available in the previous 

level, i.e., n×np = np+1 non-zero digits.   

Since assuming that the theorem is true for p implies that the 

theorem is also true for p+1, and since the base case is also true, the 

proof is complete. The aforementioned observations are presented 

graphically in Figure 4.3. Note that an adder, regardless of its number 

of inputs, can not generate more non-zero digits than the sum of the 

numbers of non-zero digits in every one of its inputs. Thus, the MNSD 

can be, at most, n-plicate if the inputs of the n-input adder placed in any 

depth level come from the immediately previous depth level. ■ 

Theorem 2. A completely multiplicative graph with p A-operations 

can generate np non-zero digits. 

Proof. This proof is an straightforward extension of the proof of 

Theorem 6.8 in [35], which corresponds to completely multiplicative 

graphs with 2-input A-operations. As stated earlier, the input of a graph 

has one non-zero digit. In the completely multiplicative graph, there are 

at most n non-zero digits after the A-operation placed at the 1st depth 

level. Cascading an A-operation to that output yields at most n×n non-

zero digits, and so on. The number of non-zero digits at the depth level 

p is at most the n-tuple of the number of non-zero digits of a 



Miriam Guadalupe Cruz Jiménez  

115 

fundamental at the (p–1)-th depth level. Consequently, the maximum 

number of non-zero digits at the p-th depth level is np. Figure 4.4 

illustrates an example. ■ 

 

Figure 4.3. In the p-th depth level, a graph can not generate more than n
p
 non-

zero digits. 

Theorem 3. A completely multiplicative graph with p depth levels 

needs only p R-operations. 

Proof.  The completely multiplicative graph with p depth levels has p A-

operations, and every A-operation forms a subgraph. Pipelining 

between two subgraphs needs only one register, according to [34], 

because the pipelining occurs on the articulation point. This results in 

every A-operation being followed by a register. Since an A-operation 

followed by a register is considered an R-operation, there are only p R-

operations in total. This is illustrated in Figure 4.5.   ■ 

Depth level: 1 

Depth level: 2 

Depth level: p 

Depth level: p–1 
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Figure 4.4. The completely multiplicative graph achieves n
p
 non-zero digits 

with the minimum number of n-input adders, p, and the minimum number of 

depth levels, p. 

 

Figure 4.5. The pipelined completely multiplicative graph achieves n
p
 non-

zero digits with the minimum number of n-input R-operations, p, and the 

minimum number of depth levels, p. 

Theorem 4. A constant with  (np–1+1) < S < np  and  Ω > p  needs at 

least p R-operations.      

Highest MNSD: n
1 
 

Highest MNSD: n
2 
 

 

Highest MNSD: n
3 
 

Depth level: 1 

Depth level: 2 

Depth level: 3 

Highest MNSD: n
0 

= 1 

Highest MNSD: n
1 
 Depth level: 1 

Depth level: 2 

Depth level: 4 

Depth level: 3 

Highest MNSD: n
0 

= 1 

Highest MNSD: n
2 
 

 

Highest MNSD: n
3 
 

Highest MNSD: n
4 

 

 



Miriam Guadalupe Cruz Jiménez  

117 

Proof.  From Theorem 2 we have that a constant with (np–1+1) < S < np 

non-zero digits can be implemented with at least p depth levels, which 

implies at least p A-operations. From Theorem 3 we have that a 

completely multiplicative graph can generate those values for S with 

only p R-operations. The completely multiplicative graph with p R-

operations consists of p cascaded subgraphs, thus a constant 

implemented with that graph must have at least  p  prime factors. Since 

Ω > p holds, the completely multiplicative graph can be employed to 

implement that constant using p R-operations. ■ 

  Theorem 5. A non-multiplicative graph with p depth levels needs at 

least (2p – 1) R-operations. 

Proof.  According to Theorem 3, if a graph with  p depth levels has only 

p R-operations in total, it must be a pipelined completely multiplicative 

graph. According to Theorem 2, that graph can generate the maximum 

possible number of non-zero digits, namely, np. To make non-

multiplicative that optimal graph, the (p – 1) articulation points must be 

eliminated. From [34], it is known that at least one additional R-

operation must be added for every eliminated articulation point. 

Therefore, at least (2p – 1) R-operations are required, i.e., the original p 

minimum number of R-operations in the form of addition-delay pairs 

plus the additional (p – 1)  R-operations in the form of pure delays. 

Figure 4.6 shows an example with p = 3. ■ 
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Figure 4.6. Non-multiplicative graph with p = 3 depth levels and p–1 extra R-

operations in the form of pure delay. 

Theorem 6. A non-multiplicative graph with p depth levels and (2p 

– 1) R-operations can generate np non-zero digits. 

Proof. Consider a graph with p depth levels formed by two completely 

multiplicative graphs of (p–1) levels each, connected in parallel from 

the input of the graph, and one A-operation placed in the p-th level 

summing up the outputs of the aforementioned graphs. The output of 

one of these graphs is connected to the n – 1 inputs of the last A-

operation and the output of the other graph is connected to the 

remaining input of the last A-operation. This is a non-multiplicative 

graph because it is not formed by cascading subgraphs, and it is 

composed by (2p –1) A-operations. According to Theorem 2 we can 

obtain np–1 non-zero digits from the completely multiplicative graphs 

and according to Theorem 3 these graphs can be pipelined without 

requiring extra registers. Since the last A-operation can add n times the 

np–1 non-zero digits in each one of its inputs and can be pipelined 

without extra cost, the resulting graph generates np non-zero digits 

using (2p – 1) R-operations. An example of this is shown in Figure 4.7. ■ 

Articulation 

point eliminated 

by dashed path 

Articulation 

point eliminated 

by dashed path 
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Figure 4.7. Non-multiplicative graph that generates the maximum number of 

non-zero digits, n
p
, with the minimum number of R-operations in non-

multiplicative graphs. 

Theorem 7. A constant with  (np–1+1) < S < np  and  Ω = 1  needs at 

least 2p – 1 R-operations. 

Proof.  Since Ω = 1 holds, the non-multiplicative graph must be 

employed to implement that constant. From Theorem 6 we have that a 

constant with (np–1+1) < S < np non-zero digits can be implemented with 

at least p depth levels and at least 2p – 1 R-operations. This is a lower 

bound for the number of R-operations, since from Theorem 5 we have 

that a non-multiplicative graph with p-levels needs at least 2p – 1 R-

operations.  ■ 

Theorem 8. A constant with  (np–1+1) < S < np  and  1 < Ω < p  

needs at least (2p – Ω) R-operations. 

Proof. From Theorem 1 we have that p depth levels are necessary to 

achieve the values of S in the specified range. Since Ω < p holds, we can 

take advantage of a completely multiplicative graph with Ω–1 R-

Depth level: 1 

Depth level: p – 1 

Depth level: p 

Depth level: 2 
Non-

multiplicative 

graph 
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operations at most, which, according to Theorem 2, generates nΩ–1 non-

zero digits at most, and represents the product of Ω–1 factors. The last 

factor can be formed with a non-multiplicative subgraph with [p–(Ω–1)] 

depth levels. According to Theorem 5, this subgraph needs at least 2[p–

(Ω–1)] – 1 R-operations, and according to Theorem 6 it can generate n[p–

(Ω–1)] non-zero digits. The total graph, illustrated in Figure 4.8, can 

generate at most nΩ–1×n[p–(Ω–1)] = np non-zero digits and uses at least (Ω–

1) + 2[p–(Ω–1)] – 1 = 2p –2(Ω–1) + (Ω–1) – 1 = 2p –(Ω–1) – 1 = (2p – Ω) 

R-operations.  ■   

Finally, from Theorem 1 we have that the number of depth levels 

necessary to achieve S is p =   log ( )
n

S . Substituting this value for p and 

using Theorems 4, 7 and 8, we obtain the lower bound for the number 

of R-operations needed to form a PSCM block as follows,  

2 log ( ) ;              log ( ) ,

log ( ) ;         log ( ) .             

n n

PSCM

n n

S S
L

S S

           
 

       

                 (4.2) 

  4.2.2 PMCM case 

The theorems in this section are stated for N constants c1, c2, ..., cN, 

whose respective MNSDs are S1, S2, ..., SN, and their respective numbers 

of prime factors are Ω1, Ω2, ..., ΩN, such that S1 < S2 < ... < SN.  

Theorem 9 indicates the lower bound for the number of n-input A-

operations needed to form an MCM block. If pipelining is added, more 

R-operations than the aforementioned lower bound may be needed 

because the constants with fewer prime factors may use non-

multiplicative graphs, which require extra R-operations (see Theorems 

5 to 8). Besides, all the outputs of the PMCM block must have equal 

number of depth levels to balance the input-output delay, which also 
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may require extra R-operations. Based on these observations, Theorem 

10 extends the lower bound provided in Theorem 9 by identifying at 

least how many extra R-operations would be needed. From these 

theorems we obtain the lower bound for the number of R-operations 

needed to form a PMCM block.              

 

Figure 4.8. Generalized graph that generates the maximum number of non-

zero digits, n
p
, with the minimum number of R-operations in a multiplicative 

graph for constants with less prime factors than the minimum number of 

depth levels. 

Theorem 9. At least K n-input A-operations are needed to build an 

MCM block, where K is given by 






    
1

1 1
1

log ( ) ( , )
N

n i i
i

K S E S S ,                           (4.3) 

with                            

Non-multiplicative 

graph 

Articulation points:  

Ω – 1 

Total depth levels: p 

Depth levels: 

[p – (Ω –1)] 
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

 



 

  

 
 

1

1 1
1

1;                    ,

( , )
log ;   .

i i

i i i
n i i

i

S S

E S S S
S S

S

                       (4.4)                                

Proof. Recall that every A-operation has only one possible configuration 

and therefore can generate only one fundamental. Simply shifted (i.e., 

scaled by a power of two) versions of that fundamental can be obtained 

from that A-operation. Since the target constants are integer and odd by 

definition, it is not possible to obtain two target constants from the 

same A-operation. Therefore, there must be at least N n-input A-

operations for the N constants. Note that, since the terms Si are sorted 

in ascendant order, S1 corresponds to the simplest constant, i.e., the one 

with the smallest number of non-zero digits. From Theorem 1 we have 

that with p depth levels we can obtain np non-zero digits at most. By 

using the relation np > S1, we have that the minimum number of levels 

necessary to generate S1 non-zero digits is   1
log ( )

n
S , which implies the 

existence of at least   1
log ( )

n
S  A-operations for that constant. Finally, if 

Si+1 > n×Si holds, we have that a single A-operation is not able to 

generate the constant ci+1 if there are only coefficients with at most Si 

digits available because the number of non-zero digits at the output of 

an A-operation is at most the sum of the number of non-zero digits at 

its inputs. Therefore, at least 


  1
log ( / )

n i i
S S  A-operations will be 

required. This proof is an straightforward extension of the proof given 

in [3] for the lower bound of 2-input A-operations that form an MCM 

block. ■ 

Theorem 10. At least L R-operations are needed to build a PMCM 

block, where L = K + F + G, with 
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             


max{ log ( ) };     such that   log ( ) ,

0;                                 otherwise.

n i i i n ii
S i S

F            (4.5) 





       
1

1

log ( ) log ( )
N

n N n i
i

G S S                                (4.6) 

and K given in (4.3). 

Proof. Consider that there is a constant cm that satisfies Ωm <   log ( )
n m

S  

and, if there are more constants that satisfy such condition, cm has the 

greatest difference [   log ( )
n m

S –Ωm]. From Theorem 8 we have that the 

constant can be formed by cascading a non-multiplicative graph with a 

completely multiplicative graph, where the non-multiplicative graph 

needs 2[   log ( )
n m

S –(Ωm–1)] – 1 R-operations. Since Theorem 9 has not 

taken into consideration the number of prime factors, only [   log ( )
n m

S –

(Ωm–1)] A-operations have been accounted in that theorem, under the 

assumption that the constant cm can be constructed with the optimal 

completely multiplicative graph. Therefore, at least [   log ( )
n m

S –(Ωm–1)] 

– 1 extra R-operations must be included when pipelining is applied, 

which explains the term F. The term G is explained by the fact that 

extra R-operations may be needed to achieve the same number of 

pipelined stages from input to output in every constant. Since the 

minimum depth level of a constant is given by   log ( )
n

S , the differences 

between the minimum depth level of the constant cN (which has the 

greatest depth level among other constants) and the minimum depth 

levels of the other constants are accumulated in the term G.   ■   
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From Theorem 10, we can express the lower bound for the number 

of R-operations in the PMCM case as 

 
 


 

               
1 1

1 1
1 1

log ( ) log ( ) log ( ) ( , )
N N

PMCM n n N n i i i
i i

L S S S E S S F ,    (4.7) 

with E(Si, Si+1) given in (4.4) and F given in (4.5). 

4.3 Results and comparisons 

In this section, comparisons of the proposed lower bounds with the 

lower bounds currently available in literature are presented, detailing 

PSCM and PMCM cases in Subsections 4.3.1 and 4.3.2, respectively. In 

all cases, two and three-input additions were considered. 

First, the PSCM case is addressed for n = 2 (i.e., 2-input additions) 

with an illustration of the lower bounds averaged over all the constants 

with a wordlength of B bits, where B goes from 1 to 14. This illustration 

compares the proposed lower bound with the existing lower bounds 

from [3] and [4], showing that the proposed lower bound is tighter. An 

example is also included, where the pipelined shift-and-add multipliers 

for constants 11467, 11093 and 13003 are constructed with 2-input and 

3-input additions.  

The effectiveness of the PMCM lower bound is demonstrated by 

examples, where pipelined shift-and-add multiple constant 

multiplication blocks are constructed using the algorithms from [7]  

—Output Fundamental Last (OFL)—, [8] —Optimal Pipelined Adder 

Graph (Optimal PAG), [22] —Reduced Slice Graph (RSG)—, [26] —

Heuristic with Cumulative Benefit (Hcub)— and [32] —Reduced Adder 

Graph (RAG)— for the case of 2-input additions, and the algorithm from 

[10] —Optimal Pipelined Adder Graph Ternary (Optimal PAGT)— for the 



Miriam Guadalupe Cruz Jiménez  

125 

case of 3-input additions. The proposed lower bound is compared with 

the lower bound from [3] in the case of 2-input additions and, in most 

of the cases, it provides better estimation of the number of required R-

operations. For n = 3 (i.e., 3-input additions), there are no theoretical 

lower bounds currently available in literature. Thus, the proposed lower 

bound is only compared with the solution from [10]. In that case, the 

proposed lower bound falls short only by one R-operation.  

4.3.1 SCM case 

The lower bounds from methods [3] and [4], as well as the 

proposed lower bound LPSCM from (4.2) are averaged for all constants 

with B bits, where B is between 1 and 14. These averages are shown in 

Figure 4.9. We can observe the tightening of the proposed lower bound, 

i.e., the proposed lower bound in general is greater than the lower 

bounds currently available in literature. Table 4.2 presents, for n = 2, 

the percentage of constants with improved lower bounds among 10,000 

14-bits random constants and among 10,000 B-bits random constants, 

with B between 15 and 32. 
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Figure 4.9. Average lower bounds for PSCM cases. 
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Table 4.2. Percentage of constants with improved lower bounds. 

Word-length LSCM [3] LSCM [4] 

B = 14 bits 54% 45% 

14< B < 32 63% 55% 

Example 1 presents the pipelined shift-and-add multipliers for 

constants 11467, 11093 and 13003, constructed with 2-input additions 

(shown in Figures 4.10(a), 4.10(c) and 4.10(e), respectively) and 3-

input additions (shown in Figures 4.10(b), 4.10(d) and 4.10(f), 

respectively). In all the cases, the optimal solutions have the number of 

R-operations predicted by the proposed lower bound. Besides, for the 

case of two-input additions, the proposed lower bound outperforms the 

ones from [3] and [4] because the lower bound from [3] falls short by 2 

R-operations and the lower bound from [4] falls short by one R-

operation.  

Example 1.  The  constants 11467, 11093 and 13003 have similar graph 

and the same lower bounds as shows in Table 4.3. The corresponding 

graphs are presented in Figure 4.10. 

Table 4.3.  Number of R-operations. 

 

Constant 

Estimated number of R- operations 

(n = 2) 

Estimated number of R- 

operations (n = 3) 

LSCM[3] LSCM[4] LPSCM LPSCM 

11467 3 4 5 3 

11093 3 4 5 3 

13003 3 4 5 3 
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 Figure 4.10. (a) Two-input adder graph of constant 11,467, (b) Three-input 

adder graph of constant 11,467, (c) Two-input adder graph of constant 11,093, 

(d) Three-input adder graph of constant 11,093, (e) Two-input adder graph of 

constant 13,003, and (f) Three-input adder graph of constant 13,003. 

4.3.2. MCM case 

Example 2.  The multiplier block with constants from the set {44, 

130, 172} (example given in [8]) has the estimate number of R-
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operations as shown in Table 4.4. The resulting graphs are shown in 

Figure 4.11. The proposed lower bound outperforms the bound from [3]. 

Table 4.4. Resulting R-operations for example 2. 

Algorithm R- operations 

Hcub (method [26] with additional 

pipelining) 

7 

PAG using heuristic pipelining 

(preliminary solution from [8]) 

7 

Optimal PAG (method [8]) 5 

LMCM [3] 3 

LPMCM 4 

 

 

Figure 4.11. (a) MCM block obtained by Hcub algorithm with pipelining, (b) 

MCM block obtained by PAG algorithm, and (c) MCM block obtained by 

Optimal PAG algorithm. 

Example 3.  The multiplier block with constants from the set {3,  

13, 21, 37} (Example given in [7]) has the estimate number of R-

operations as shown in Table 4.5. The resulting graphs are shown in 

Figure 4.12. The proposed lower bound outperforms the bound from [3]. 
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Table 4.5. Resulting R-operations for example 3. 

Algorithm R- operations 

RAG (method [32] with additional 

pipelining) 

13 

RSG (method [22]) 7 

OFL (method [7]) 6 

LMCM [3] 4 

LPMCM 6 

 

                           

Figure 4.12. (a) MCM block obtained by RSG algorithm, and (b) MCM block 

obtained by OFL algorithm. 

Example 4.  The multiplier block with constants from the set {815,  

621, 831, 105} (Example given in [7]) has the estimate number of R-

operations as shown in Table 4.6, the resulting graphs are shown in 

Figure 4.13. The proposed lower bound outperforms the bound from [3]. 

Table 4.6. Resulting R-operations for example 4. 
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Hcub (method [26] with additional 

pipelining) 

11 

OFL (method [7]) 10 

LMCM [3] 5 

LPMCM 8 

 

 

Figure 4.13. (a) MCM block obtained by RAG algorithm with pipelining, (b) 

MCM block obtained by Hcub algorithm, and (c) MCM block obtained by OFL 

algorithm. 

Example 5. The multiplier block with constants from the set {7567, 

20406} (example given in [10]) has the estimate number of R-

operations as shown in Table 4.7 for two-input adders and Table 4.8 for 

three-input adders. The corresponding graphs are shown in Figure 4.14. 
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Table 4.7. Using two-input adders 

Algorithm R- operations 

PAG (method [8]) 9 

LMCM [3] 4 

LPMCM 4 

 

Table 4.8.  Using three-input adders 

Algorithm R- operations 

PAGT (method [10]) 4 

LPMCM 3 

 

 

Figure 4.14. (a) Two-input adder graph by PAG algorithm, and (b) Three-input 

adder graph by PAGT algorithm. 
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4.4 Conclusions 

New theoretical lower bounds for the number of R-operations in 

the fully pipelined Single Constant Multiplication (SCM) and the fully 

pipelined Multiple Constant Multiplication (MCM) cases for n-input 

adders have been presented. The increase of the number of operations 

due to the use of pipelining registers was considered to develop the new 

lower bounds. It was observed that the use of articulation points allows 

a rapid increase of the number of non-zero digits from a depth level to 

the next depth level. The new theoretical lower bounds achieve better 

estimation of the number of required operations needed to implement 

an SCM block or an MCM block in comparison to theoretical lower 

bounds previously introduced in literature.  
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Conclusions 

Novel methods to design low-complexity linear-phase Finite 

Impulse Response (FIR) filters have been introduced in this thesis, as 

well as efficient architectures derived from these methods. Two specific 

cases have been investigated here: low-pass filtering for decimation 

processes and digital filters with constant coefficients implemented 

under the shift-and-add approach. The reason is that these cases are 

particularly useful for applications in digital communications.  

We have observed that splitting the filters into simple subfilters 

allows to achieve low-complexity solutions especially useful in the 

design of decimators. The comb and cosine subfilters have been 

employed here due to their low computational complexity and low 

utilization of hardware resources. First, a simple heuristic has been 

introduced to design low-pass FIR filters using a cascade of comb and 

cosine subfilters to provide the desired attenuation, along with a 

cascaded subfilter optimized to obtain a band-edge shaping 

characteristic and to correct the passband droop of the comb-cosine 

prefilter. Taking this method as starting point, we have found that 

using cosine filters sharpened with Chebyshev polynomials is an 

interesting alternative to the comb-cosine cascade when low delay is 

desired. We have presented the mathematical demonstration that the 

application of Chebyshev sharpening to cosine and expanded cosine 

filters results in filters with zeros on the unit circle, that is, with 

Minimum Phase (MP) characteristic. Thus, they can form useful 

CCChhhaaapppttteeerrr   
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prefilters that can provide the attenuation for an overall Linear Phase 

(LP) filter or for an MP FIR filter. Moreover, these filters are a general 

case where the cascaded expanded cosine filters are a subset. Besides, 

the aforementioned prefilters have a low computational complexity 

because they do not need multipliers. 

The design of comb-based decimators has been addressed from two 

approaches. In both cases, the objective has been correcting the 

passband droop and improving the worst-case attenuation with an as 

low as possible augmentation in the complexity of the resulting 

architecture. In the first approach, we have taken advantage of the 

improved sharpening of Harnett and Boudreaux to enhance the 

magnitude characteristics of previously compensated comb filters. The 

resulting proposed structures achieve better trade-offs in magnitude 

response improvement and computational complexity in comparison 

with other similar schemes where the traditional Kaiser-Hamming 

sharpening has been employed. In the second approach, we have taken 

advantage of the Chebyshev sharpening to improve uniquely the 

stopband attenuation of comb filters, whereas the passband-droop 

correction is performed at a low rate via compensation filtering. Using 

the Chebyshev sharpening as starting point, we have derived an 

efficient comb-based decimation architecture which improves the 

aliasing rejection and simultaneously consumes less power, uses less 

hardware resources and operates at higher rates in comparison with 

other recent methods from literature. Moreover, we have found that, in 

comparison with the state-of-the-art second-order compensators, the 

proposed fourth-order compensators, applied in wide passbands, can 

improve the correction of the droop by nearly four times, and the 

complexity of these compensators increases less than twice, which is a 
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useful trade-off. Between the two aforementioned approaches, the one 

based in Chebyshev sharpening offers better results.    

Finally, novel theoretical lower bounds for the number of pipelined 

operations that are needed in Single Constant Multiplication (SCM) and 

Multiple Constant Multiplication (MCM) blocks have been proposed. 

These lower bounds can be calculated for n-input 

additions/subtractions, for any n. In comparison to theoretical lower 

bounds previously introduced in literature, the proposed bounds 

achieve better estimation of the number of required operations needed 

to implement a fully pipelined SCM block or a fully pipelined MCM 

block, and this is because the pipelining registers were considered as 

costly elements, along with the n-input additions/subtractions. The 

proposed lower bounds are particularly important because they fit well 

for the implementation of pipelined SCM or MCM blocks on the newest 

families of Field Programmable Gate Arrays (FPGAs), which currently 

are a preferred platform for DSP algorithms. 
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