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Statements 
 

It is feasible to utilize a two-phonon as well as a three-phonon acousto-optical 

interaction for improving the frequency resolution of acousto-optic spectrum 

analyzers. 

 

The transfer function can be formulated in analytical form for a two-phonon 

light scattering. 

 

The dynamic range of an acousto-optical spectrometer can be determined by 

the second or another lobe instead of the first one. 

 

Acousto-optical coupled states exist and can be observed in a collinear 

interaction regime even with acoustic losses and the corresponding 

localization conditions can be formulated as well. 

 

Five-wave non-collinear acousto-optical coupled states exist and can be 

experimentally observed under the corresponding localization conditions. 
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Chapter 1 
 

1.1 Introduction: Historical survey 
 

Acoustic waves were studied extensively in the 19th century; surface acoustic 

waves were first described by Lord Rayleigh in 1885 as they pertained to 

earthquakes [1]. The acousto-optical effect was first studied or predicted by 

Brillouin in 1922 [2]. Physically, this effect describes the interaction between light 

and sound waves. This interaction produces the diffraction of light from the 

medium which was first perturbed by an acoustic wave. Later, in 1932 Debye and 

Sears [3] and Lucas and Biquard [4] verified it experimentally when optical 

sources of sufficiently high coherence become available. Surprisingly, a large 

number of diffracted orders were observed, symmetrically spaced about the 

undiffracted beam. Brillouin proposed that this effect was due to rescattering of 

light from the acoustic beam, it was quantified until a theoretical treatment using 

Feynman diagrams was presented in 1980 by Korpel and Poon [5]. This 

established a rigorous physical description of the multiple scattering of plane 

waves; a similar concept had been employed in a mathematical formalism first 

presented in 1960 [6]. 

 

The presence of multiple diffracted orders was first explained in a classic series of 

papers by Raman and Nath in 1935-1936 [7], who modeled the sound column as 

a phase grating acting in transmission to give rise to many diffracted orders by 

interference. They also considered the problem of oblique and arbitrary angle of 

incidence of light on the acoustic beam. Debye and Sears [3], who also derived a 

criteria for single- and multiple-order diffraction phenomena (Debye-Sears ratio).  

 

A more quantitative distinction between single- and multiple-order diffraction was 

derived by Klein and Cook [8,9]. They derived the so-called Q-parameter or the 

Klein-Cook parameter, which is widely used today;  it  is  interesting to note the Q- 
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parameter is simply a constant multiple of the Debye-Sears ratio. Many other 

investigators contributed to this early work, both theoretically and experimentally, 

a review of this is in [10]. 

 

However, it was not until the development of the laser in 1960s that acousto-

optical techniques began to receive practical consideration. The earliest 

contemporary, published description of a light modulator is probably from Lieben 

in 1962 [11]. The first acousto-optic signal processing device, a correlators using 

a sound cell and a transmission mask was proposed in 1961 [12]; this work 

helped lay the foundation for the development of modern heterodyning 

techniques, which were demonstrated independently by Kind et al. [13] and 

Whitmann, Korpel, and Lotsoff, who investigated this effect in an interesting series 

of papers [14-16]. 

 

Beam deflectors were studied in 1965 [17]; this work was the first to note that the 

angular resolution of an AO deflector is related to the time bandwidth product. By 

the late 1960s, with the development of suitable materials for AO devices and 

transducer photolithography for surface acoustic wave (SAW) designs. In 

particular, diffraction of single order (Known as Bragg interaction [18]) has 

become increasingly important for optical signal processing applications. These 

diffraction phenomena were first demonstrated for acoustic fields by Korpel in 

1966 [19], and developed independently by other authors [20, 21]. 

 

The fundamental concept of wave vector diagrams, previously presented by 

Debye and Sears [3], was more formally developed [22]. A generalized coupled-

mode theory was proposed for arbitrary sound and light fields [23], and the 

Raman-Nath theory was extended to the important case of Gaussian sound fields 

[24]. The acousto-optics figure of merit now known as M2 was proposed [25]. 

Earliest attempts were made to predict the elasto-optic coefficients [26]; tabulated 

of these parameters are available today [27]. 
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Many researchers have studied the dependence of the diffracted light intensity on 

the angles of incidence, interaction lengths, and acoustic power [28, 29]. For 

anisotropic materials the diffraction efficiency is dependent on both the 

polarization of incident light [9] and of the acoustic wave [30]. For the case of 

SAW interaction, diffracted light intensity in the Bragg regime was observed to 

follow a sin functional dependence on the incident angle [31]. 

 

A great deal of theoretical work has been done, as reviewed [32-34]; most of the 

engineering applications concentrate on acousto-optic modulators and deflectors 

and optical spectrum analyzers [32, 33, 35, 36]. 

 

1.2 Propagation of plane polarized optical waves in 

crystalline materials 
 

The electromagnetic propagation characteristics are determined by the 33 ×  

symmetric permittivity matrix. This fact and the form of the Maxwell equations lead 

to a somewhat simpler form for the electromagnetic modes. 

 

1.2.1 Electromagnetic waves in an anisotropic medium 
 

When light travels through a crystal the birefringence or double refraction may 

manifest itself. Birefringence can be natural as a result from natural crystal 

anisotropy or can be artificial, which is produced by an electric field (electro-optic 

effect) or by a stress (photo-elastic effect). If the medium is isotropic the dielectric 

properties at optical frequencies are given by 
 

a)   ,            b)   ,   (ED~
rr

ε= jjii ED~ ε= 3,2,1j,i = ) ,                    (1.1) 

 

where  represents the components of the electric induction vector,  is the 

light electric field, 

iD~ jE

( )ji0ji 1 χ+ε=ε  is the dielectric tensor of the medium, and 0ε  is  

 3



the dielectric constant in vacuum. It means that in any direction of the medium the 

relation between D~
r

 and E  from Eq.(1.1) holds. But this is not true for all 

materials; a crystal structure imposes severe constraints on the possible modes of 

propagation. Optical propagation in an arbitrary direction is, in general, only 

possible for two plane waves with the defined directions of 

r

E,H,B
rrr

, and D~
r

. 

 

As it can be seen from Eq.(1.1), E
r

 and D~
r

 are not in the same direction. The 

convention of summation over repeated indices is observed, ε  is a  

symmetric matrix. The dielectric tensor is symmetric and has, in general, only six 

independent elements. This is assuming that the dielectric tensor 

33 ×

ε  is real. 
 

ijji ε=ε .                                                    (1.2) 

 

In the event that a lossless medium is described by a complex dielectric tensor, 

we have that 

ij*
ji ε=ε ,                                                   (1.3) 

 

where the asterisk denotes complex conjugate. Thus, the dielectric constant and 

refractive indexes both are complex in general, and one have only six 

independent elements. One can always find a coordinate system in, which the 

real system dielectric tensor is diagonal. Thus, one may redefine our coordinate 

system such that the constitutive relation simplifies to 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ε
ε

ε
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

33

22

11

3

2

1

E
E
E

00
00
00

D~
D~
D~

.                                (1.4)

 

The coordinate axes along, which the dielectric matrix becomes diagonal are 

called “the principal axes”.  
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1.2.2 Polarization of light waves in anisotropic medium 
 

Since the crystal is made up of a regular periodic array of atoms with certain 

symmetry, the induced polarization will depend, both on its magnitude and its 

direction, and on the direction of the applied field. So, one has 
 

,EP jji0i χε=                                              (1.5) 

 

where the capital letters denote the complex amplitudes of the corresponding 

time-harmonic quantities. The 33 ×  array of the coefficients  is called the 

electric susceptibility tensor. It is always possible to choose a coordinate system 

in such a way that the off-diagonal elements vanish. 

jiχ

 

In anisotropic medium, the phase velocity of light depends on its state of 

polarization as well as its direction of propagation. The polarization state of a 

plane wave may vary as it propagates through the crystal. However, for a given 

direction of propagation in the medium, there exist, in general, two eigen-waves 

with well-defined eigen-phase-velocities and polarization directions. A light wave 

with polarization parallel to one of these directions will remain in the same 

polarization state as it propagates through the anisotropic medium. 

 

The electric induction vector ( )t,rD
rr

 passing through a crystal is given by 
 

( ) ( ) [ ])()( iexpeiDt,rD αα
α ϕρ=

rrr
,                                 (1.6) 

 

where  are the complex amplitudes, ( ) [ )(iexpD α
α ϕ ] cnk )()( αα ω= , and α  is 

the number of interacting electric induction vectors. Here, ρ  is the measure of 

ellipticity for the polarization state, so that 0=ρ  for the linear polarization and 

 for the circular polarization, right or left. With its moduli one can calculate 

the orts of  polarization  and can obtain  the  eigen-vectors  of  polarization  for  an  

1±=ρ
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arbitrary polarized light beams incident on a crystal, which must have orthogonal 

states of polarization. 

 

One can assume to have a pair of the electric induction vectors, that are passing 

through a crystal, Eq.(1.6) yield 
 

                a)  ( ) ( )[ ]13121
)1()1( txkiexpeieDD ϕ+ω−ρ+=

rrr
 , 

 

       b)  ( ) ( )[ ]23221
)2()2( txkiexpeeiDD ϕ+ω−+ρ=

rrr
 .                    (1.7) 

 

It follows from Eqs.(1.7) that the vectors of polarization have the form 
 

a)   ,            b)  .                    (1.8) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

=ρ+
i
1

eie 21
rr

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ρ
=+ρ

1
i

eei 21
rr

 

Their moduli can be calculated as  
 

                a)  ( ) , ( ) ( ) 2
2121 1

i
1

i,1eieeie ρ+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

ρ−=ρ+ρ−
rrrr

 

         b)  .                   (1.9) ( ) ( ) ( ) 1
1
i

1,ieeieei 2
2121 +ρ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ρ
ρ−=+ρ+ρ−

rrrr

 

Using Eqs.(1.9), one can normalize the vectors in Eq.(1.8) by 21 ρ+  and write 

the orts of polarization as 
 

a)  ( ) ( )21
212

1 eie1
rrr

ρ+ρ+=ν
−

 ,        b) ( ) ( )21
212

2 eei1
rrr

+ρρ+=ν
−

. 

(1.10) 

The following scalar products illustrate the mutual orthogonality for the orts of 

polarization 

( ) ( ) ( ) ( ) ( ) 0ii1eeieie1
12

2121
12

21 =ρ−ρρ+=+ρρ−ρ+=νν
−−+ rrrrrr  , 

 

(1.11) 
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( ) ( ) ( ) ( ) ( ) 0ii1eieeei1
12

2121
12

12 =ρ+ρ−ρ+=ρ++ρ−ρ+=νν
−−+ rrrrrr  . 

(1.12) 

The eigen-vectors of polarization for a pair of arbitrary polarized incident light 

beams whose states of polarization are, nevertheless, orthogonal to each other 

can be found as follows. If the main axes of the corresponding orts 01σ
r  and 02σ

r  

coincide the main axes inherent in the elliptic polarization eigen-states in a crystal 

as 

a)  ( ) ( )2i1
212

i01 eie1
rrr

ρ+ρ+=σ
−

 , 

 

b)  ( ) ( 21i
212

i02 eei1
rrr

+ρρ+=σ )−
 ,                          (1.13) 

 

where  is the ellipticity of the incident light polarization.  iρ
 

When the incident light is incoming in a crystal, the orts 1σ
r  and 2σ

r  become to be 

decomposed along the eigen-state orts, see Eq.(1.11). By this it means that one 

has 

             =ν⋅+ν⋅=σ 22,112,12,1 ba rrr  

( ) ( ) ( ) ( )21
212

2,121
212

2,1 eei1beie1a
rrrr

+ρρ+⋅+ρ+ρ+⋅=
−−

. 

(1.14) 

It can be easily shown that the factors  and  related to the case of an 

elliptic polarization of the incident light beams are 

2,1a 2,1b

 

a)    ( ) ( )[ ]*
i

*
i

2
i

2
E1 sinicos1

)1()1(

1a φρ+ρ−φρρ+
ρ+ρ+

=  , 

 

b)    ( ) ( )[ ]*
i

*
i

2
i

2
E1 cosisin1

)1()1(

1b φρ−ρ+φρρ−
ρ+ρ+

=  . 

(1.15) 
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a)    ( ) ( )[ ]*
i

*
i

2
i

2
E2 cosisin1

)1()1(

1a φρ−ρ+φρρ−
ρ+ρ+

−=  , 

 

b)    ( ) ( )[ ]*
i

*
i

2
i

2
E2 sinicos1

)1()1(

1b φρ+ρ−φρρ+
ρ+ρ+

=  , 

(1.16) 

where  is an angle of rotation of the orts *φ 1σ
r  and 2σ

r  main axes. 

 

When the incident light is linearly polarized, i.e. 0i =ρ , Eqs.(1.15) and (1.16) give 

[19] 
 

a)  [ ]**
2

L1 sinicos
1

1a φρ−φ
ρ+

=  ,        b)  [ ]**
2

L1 cosisin
1

1b φρ−φ
ρ+

=  , 

 

c)  [ ]**
2

L2 cosisin
1

1a φρ+φ
ρ+

−=  ,        d)  [ ]**
2

L2 sinicos
1

1b φρ+φ
ρ+

=  . 

(1.17) 

When the incident light is circularly polarized, i.e. 1i=ρ , Eqs.(1.15) and (1.16) 

give 

a)  [ ]**
2

C1 sinicos
12

1a φ−φ
ρ+

ρ+
=  , 

 

b)  [ ]**
2

C1 cosisin
12

1b φ+φ
ρ+

ρ−
=  , 

 

c)  [ ]**
2

C2 cosisin
12

1a φ+φ−
ρ+

ρ−
=  , 

 

d)  [ ]**
2

C2 sinicos
12

1b φ+φ
ρ+

ρ+
=  .                        (1.18) 
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Thus, Eqs.(1.14 – 1.18) realize the eigen-vectors of  polarization for an arbitrary 

polarized incident light. 

 

In summary, propagation of light in a uniaxial crystal in general consists of an 

ordinary and an extraordinary waves. The electric field vector E  (and the 

induction vector D

r

~r ) for the ordinary wave is always perpendicular to both the 

crystal principal axis and the propagation vector. The phase velocity for the 

ordinary wave is always onc , regardless of the direction of propagation. The 

induction vector D~
r

 of the extraordinary wave, is perpendicular to the propagation 

vector, as is the electric field vector E
r

 of the ordinary wave. The electric field 

vector  of the extraordinary wave, however, is in general not perpendicular to 

the propagation vector. It lies in the plane formed by the propagation vector and 

the displacement vector. The electric field vectors of these two waves are 

mutually orthogonal. 

E
r

 

1.3 Propagation of elastic waves through crystalline materials 
 

1.3.1 Elasticity 
 

Let us consider a homogeneous solid body; in which under the influence of 

external forces, the distances separating the different material points in a medium 

become modified; it is then said that it has undergone a ‘deformation’. The strain 

is a response of the crystal to an influence. This influence may be a stress 

(elasticity) or it may be to an electric field (piezoelectricity). In both cases, the 

magnitudes and directions of the principal strains are determined by the 

magnitude and orientation of the influence, as well as by the physical properties 

and the symmetry of the crystal. A strain may also be caused by a temperature 

change. In this case, the influence does not have an orientation, and is 

represented by a scalar. The relationship between stresses and strains for a given  
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medium inside the elastic limit can differ according to the intensity of the strain. 

Stresses and strains are represented by second rank tensors. When the strains 

are weak enough for the relation between stresses and strains to be linear; i.e. 

within the domain of validity of Hooke’s law, these two tensors are related by a 

tensor of rank 4 known as a stiffness tensor. One can suppose that each 

component of a stress is a linear and homogeneous function of all the 

components of the strain tensor. The set of all these relations is 
 

lklkjiji cT γ=  ,                                              (1.19) 

 

which constitutes what is known as the generalized Hooke’s law, which is an 

extension of the simple Hooke’s law ( x/uYT ∂∂=  with Y  being Young’s 

modulus) relating to isotropic elastic bodies. The set  (stiffness) is a tensor of 

rank 4. The  (strain) and  (stress) components can vary from one point to 

another; on the other hand, in elastic media considered to be homogeneous, the 

 are independent of spatial coordinates. Like all tensors of even rank, the 

stiffness tensor is centrosymmetric. Furthermore, the stress matrix is symmetric; 

i.e., 

lkjic

lkγ jiT

lkjic

ji,TT ijji ≠=                                         (1.20) 

 

Because there are three of these off-diagonal terms for each of the remaining six 

equations, the number of independent  values is further reduced by 18 for a 

total of 36. Thus the symmetry conditions for the stress matrix (which are valid for 

all materials) result in the constraint 

lkjic

 

lkijlkji cc =  .                                           (1.21) 

 

The stiffness tensor of the stress matrix is symmetrical as regards both the i  and 

j and the k  and l  suffixes, this symmetry is for the stress T  tensor. 
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There exists an easier form to write the stress and strain tensors, this is the matrix 

or Voigt notation, in which the i  and j suffixes are grouped into one 

( ); and in the case of the stiffness tensor, the k  and l  suffixes are 

abbreviated according to Table 1.  

6...,,3,2,1=μ

 

Tensor notation I j or k l 11 22 33 23, 32 31, 13 12, 21 

Matrix notation μ or λ  1 2 3 4 5 6 

 

Table 1. Voigt notation. 

 

It follows from Eq.(1.21) that the number of independent components can be 

reduced from 81 to 36. Thus, the relationship between  and  in a 

compact form is [37] 

ijklc λμc

λμ= ccijkl                                               (1.22) 

The relation between the tensor and the matrix notation for the stress tensor has 

the form  , with μ= TTij 6,5,4,3,2,1=μ ; and for the strain tensor has the form 

, with , and λγ=γkl 6,5,4,3,2,1=λ λγ=γkl2 , with 6,5,4=λ .  

Hence Eq.(1.19) may be written as 
 

[ ] [ ] [ ] 6,...2,1
6,...2,1cT =μ

=λλλμμ γ=  .                              (1.23) 

[ ]μT  and [  are then matrices with 6 rows and one column and ]λγ [ ]λμc  is a 

 square matrix. To transform the tensors into another axes, it is necessary to 

go back to the tensor notation in Eq.(1.19). 

66×
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1.3.2 Propagation of the plane acoustic waves in a non-piezoelectric 

medium 
 

The stress and the strain tensors have been defined, and thus the physical 

property which relates them under conditions where the generalized Hooke’s law 

applies Eq.(1.19). The equation of motion for material particles in an elastic 

medium is given by 

2
i

2

j

ji

t
u

x
T

∂

∂
ρ=

∂

∂
.                                           (1.24) 

 

By taking ijT  from Eq.(1.19) and inserting it into Eq.(1.24), taking into account  

and its symmetry in k  and l , yields the wave equation 

klγ

 

jl,klkjii ucu =ρ && .                                          (1.25) 

 

Thus, a set of differential equations is obtained which governs the propagation of 

elastic waves, i.e., acoustic waves. The solution of Eqs.(1.25) completely defines 

the mechanical state of the crystal. 

 

The polarization of the acoustic modes is defined as the direction of particle 

displacement and they have three orthogonal polarizations. Considering a 

monochromatic elastic wave in a crystal with a solution of the equations of motion 

in the form ( )[ ]trKiexpuu i0i Ω−⋅=
rr

, where  are constants, the relation 

between the wave vector K  and the frequency 

i0u
r

Ω  being such that this function 

actually satisfies Eq.(1.26). By substituting this solution into Eq.(1.26) one may 

obtain [38] 

mlkiklmi
2 uKKu λ=Ωρ .                                     (1.26) 

 

Then, putting , Eq.(1.26) can be rewritten as mimi uu δ=
 

( ) 0uKK mlkiklmim
2 =λ−δΩρ .                               (1.27) 
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This is a set of three homogeneous equations of the first degree for the unknowns 

, , . Such equations have non-zero solutions only if the determinant of 

the coefficients is zero. Thus one must has 

xu yu zu

 

0KK im
2

lkiklm =δΩρ−λ .                                  (1.28) 

 

The dispersion equation determines the relation between the wave frequency and 

the wave vector, called the dispersion relation. Equation (1.28) has three roots 

(K2
j

2 )rΩ=Ω , which are in general different; so the dispersion relation has three 

branches. Substituting each root into Eqs.(1.27) and solving, one can find the 

directions of the displacement vector u
r

 in these waves – the directions of 

polarization of the waves; since the Eqs.(1.27) are homogeneous, they do not 

determine the magnitude of u
r

, which remain arbitrary.  

 

The directions of polarization of the three waves with the same wave vector K
r

 are 

mutually perpendicular. Equations (1.27) determine the principal directions of 

, which are known to be mutually perpendicular. None of these 

directions is, however, in general either purely longitudinal or purely transverse 

with respect to the direction of K

lkiklm KKλ

r
. 

 

The velocity with which the energy of wave is propagated (i.e. the group velocity) 

is given by [38] 

KU
rr

∂Ω∂= .                                               (1.29) 
 

In crystals, the direction of propagation of the wave is in general different form that 

of . Only certain exceptional directions (the symmetry axes of the crystal) can 

be those of both K  and U

K
r

r r
. It  is seen from the dispersion equation that, in a 

crystal,   is a first-order homogeneous function of the components of  .  Thus, Ω K
r

U
r

  is a  zero-order  homogeneous  function of  , , .  In other words,  the  iK jK kK
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velocity of propagation of the wave depends on its direction but not on the 

frequency. 

 

If one constructs in -space a surface of constant frequency, K
r ( ) =Ω K

r
constant, 

for any branch of the dispersion relation, then the vector Eq.(1.29) is along the 

normal to the surface. If this surface is everywhere convex, a definite direction of 

U
r

 corresponds to each direction of K
r

, and vice versa. If, however, the constant-

frequency surface is not everywhere convex, there is a gain one direction of U
r

 for 

each direction of K , but a particular direction of U
r r

 may occur for various 

directions of K . 
r

 

1.4 General explanation about acousto-optic effect 
 

Practically, the most important phenomenon associated with the interaction of 

light with elastic waves is the diffraction of light by the acoustically perturbed 

medium. When an acoustic wave propagates in a medium, there is an associated 

strain field. The strain results in a change in the index of refraction. This is 

referred to as the acousto-optic effect. The strain field is a periodic function of 

position for a plane acoustic wave. The index of refraction of the medium 

becomes periodically perturbed, and therefore Bragg coupling takes place. In a 

crystalline solid, the acoustic wave produces regions of compression and rotation 

in the crystal lattice, followed by regions in which the lattice is relaxed. Similar 

phenomena occur in liquids, where compression waves propagate through the 

fluid. The modulation of light by acousto-optic interaction is used in a number of 

applications, including light modulators, beam deflectors, signal processors, 

tunable filters, and spectrum analyzers. 
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1.4.1 Acousto-optic effect 
 

It is well known that the variations, ( ) ji
2n1Δ , are related to the strain 

components , by the centrosymmetric photo-elastic tensor of fourth-rank, 

which has the components , so one has that 

klγ

lkjip
 

lklkji
ij

2 p
n
1

γ=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ .                                     (1.30) 

 

Equation (1.30) is not sufficiently general to describe all phenomena. Nelson and 

Lax [39,40] have shown that not only shear but also local rotation may cause 

changes in ( 2n1 ) if the medium is optically birefringent. Using Table 1.1, 

Eq.(1.30) can be written as 

λλμ
μ

γ=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ p

n
1
2 .                                    (1.31) 

 

In isotropic media, the photo-elastic tensor p can be written in components  

as 

λμp

( )
( )

( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

2pp00000
02pp0000
002pp000
000ppp
000ppp
000ppp

1211

1211

1211

111212

121112

121211

. 

 

(1.32) 

It contains only two independent non-zero components  and . 11p 12p
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1.4.2 Thick grating model: Bragg acousto-optic interaction regime 
 

As it has been mentioned in Section 1.1, there are two models to explain the 

propagation of a light beam passing through a sound column, i.e., single- and 

multiple-order of diffraction; the thick and the thin grating models, respectively. In 

reality, the grating often intentionally is made much thicker to improve the 

interaction efficiency. To analyze the thick grating problem, the wave equation has 

to be solved 

( )
2

2

2

2
2

td
Ed

c
t,xn

E
r

r

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=∇ ,                                       (1.33) 

 

where ( ) ( )Φ+−ΩΔ=Δ zKtsinnt,xn o  is the refractive index. To solve Eq.(1.24), 

the electric field of the diffracted light E
r

 must be in terms of the incident light 0E
r

. 

The solution can be expressed quite general by the following Fourier series 

expansion as 

( ) ([∑
∞

∞−

⋅−ω= rktjexpzAEE qqq0
rrrr )] ,                          (1.34) 

 

where  is the amplitude of the ( )zAq −q th Fourier component of light, and the 

propagation vector is given as 
 

( ) xKqsinxcoszkrk 1q +θ+θ=⋅
rr

 ,                           (1.35) 

 

where  indicates a general propagation vector, and it was assumed that the 

incident light is propagating in the 

r
r

zx −  plane at an angle θ  with respect to the 

optic axis. Substituting Eq.(1.34) into Eq.(1.33) yields  
 

( ) ( )
L2

A2qQqj
AA

n
dz

dA q
1q1q

0

0q α−
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ
Δπ

− +− ,                 (1.36) 

 

where  0
2

0 nL2Q Λλπ=   is  the  Klein-Cook  parameter,  ( ) θλΛ−=α sinn 00 ,  
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0λ  is the wavelength of light in vacuum, Λ  is the acoustic wavelength, and L  is 

the interaction length. 

 

It was assumed that the second derivate of  with respect to z  is negligible in 

comparison with other terms. Eq.(1.36) defines a set of coupled-difference 

differential equations that relate the amplitudes of the Fourier series expansion. 

These plane wave amplitudes represent the diffracted modes, and the parameter 

qA

( 00n λΔπ )  is the coupling coefficient between adjacent modes. Any given mode 

can couple energy only into the adjacent modes. The amount of energy transfer 

between adjacent modes depends not only on the coupling coefficient, but also on 

the degree of phase matching between them. If two adjacent modes are not 

phase matched, then there can not be an energy transfer between them 

regardless of how large the coupling coefficient becomes. The degree of phase 

matching is given by the right-hand side of Eq.(1.36); if this part of the equation is 

large, i.e.,  is large, then adjacent diffracted modes are poorly phase matched. 

If the phase mismatch is large, energy will not be transferred between diffracted 

modes; conversely, if the phase difference between orders is small, then energy 

can be transferred readily between diffracted orders. This can be accomplished in 

two ways: 

Q

 

1. by taking  very small and Q θ  near zero, 
 

2. by operating at angles of incidence such that 2
1±=α  so that Q  can be 

arbitrarily large. 

 

The first case is known as Raman-Nath interaction, whereas the second is called 

Bragg diffraction. This Q  parameter was first proposed by Klein and Cook, 

building on earlier work of Debye and Sears. These represent the two 

fundamental cases of acousto-optic interaction. 
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In Eq.(1.36), when , the zero-th order can couple only to the plus and 

minus orders if 

1Q >>

2
1±=α  . If this condition is satisfied, the right-hand side of 

Eq.(1.36) goes to zero, and one has phase matching between the zero and the ± 

first orders. The light cannot be transferred from the first order into the second 

order or higher order because there is no phase matching between these orders.  

 

An observer in the output plane behind the acousto-optic device will see only the 

undiffracted beam and a single diffracted order. Because the phase grating is 

thick, multiples diffraction occurs at every cross-section plane throughout the 

interaction length of the sound column. Only the single order that is phase 

matched will emerge as a diffracted beam; the other orders will be cancelled by 

destructive interference within the device interaction length. This type of 

interaction can be understood by visualizing the phase grating as a series of 

parallel, partially reflective planes, as shown in Fig.1.1. One may consider the 

grating as essentially stationary during the interaction, because the velocity of the 

acoustic wave is much less than the velocity of light. If one consider the incident 

plane wave AB and the diffracted wavefront CD, the optical path difference, 

( )ri coscosxCDAB θ−θ=− , to have phase matching, or constructive 

interference, must be an integral multiple of the optical wavelength 
 

( ) nmcoscosx 0ri λ=θ−θ ,                                  (1.37) 
 

where  is the angle of the incident light, and iθ rθ  is the angle of the light reflected 

from the acoustic plane wavefront, and m  is an integer. The preceding equation 

may be satisfied for all values of  if x ri θ=θ , this is the case of isotropic 

materials; if the medium is anisotropic, these two angles will not be equal in 

general. The diffraction from other planes parallel to the acoustic wavefront and 

separated by one acoustic wavelength must add constructively. Thus, the path 

difference (AO + OB) in Fig.1.1 must equal to n0λ , this yields the relation 
 

nsin2 0B λ=θΛ ,                                           (1.38) 
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where the angle of incidence Bθ  is now defined as the Bragg angle. Note that this 

expression for the Bragg angle also results by setting 2
1=α  in Eq.(1.36).  

 

           
                                         a)                                                                        b) 
 

Fig.1.1. Bragg interaction geometry. 

 

Although Bragg interaction produces only a single diffracted order, one can 

choose one of two possible cases depending on the direction of incident light on 

the acoustic column. In Fig.1.1a, the incident light is up-shifted in frequency by the 

propagating acoustic wave. In Fig.1.1b, the diffracted light must be frequency 

down-shifted to preserve phase matching.  

 

In optically isotropic media, the wave vector diagrams for Bragg interaction are 

isosceles; note that the Bragg angle condition follows directly from Fig.1.2 in the 

form 
 

k2Ksin B
rr

=θ ,                                            (1.39) 
 

where  and k  are the wave vectors of the acoustic wave and the light, 

respectively. 

K
r r
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                                           a)                                                        b) 
 

Fig.1.2 Wave vector diagram for Bragg interaction: a) frequency upshifted, 

b) frequency downshifted. 

 

One can apply these geometric results to the coupled-mode theory derived 

previously. From Eq.(1.36) and considering the case 2
1=α  yields the set of 

equations 

                              a)  ( )( ) 0AndzdA 1000 =λΔπ+  
 

b)  ( )( ) ( ) 10001 A21jQAndzdA α−=λΔπ− .                (1.40) 
 

The solution for Eqs.(1.35) with the angle of incidence exactly equal to the angle 

of Bragg is 

( ) ( )θλΔπ= 00
2

00 LncosILI  ,                                  (1.41) 
 

( ) ( )θλΔπ= 00
2

01 LnsinILI  ,                                   (1.42) 
 

where  is the incident optical power. Note that with no acoustic beam present, 

 and there is no diffracted beam; all of the optical power is transmitted in 

the zero order. 

0I

0n0 =Δ

 

1.4.3 Particle picture of acousto-optic interactions 
 

The diffraction of light by sound can be deduced if we take advantage of the dual 

particle-wave nature of light and sound. A light beam with a propagation vector 0k
r

 

and frequency  can be considered  to consist of a stream of particle ( photons )  0ω
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with the momentum 0k
r

h  and energy 0ωh . The sound wave, likewise, can be 

thought of as made up of particle (phonons) with momentum K
r

h  and the energy 

.  Ωh

 

The diffraction of light by an approaching sound beam, can be described as a sum 

of single collisions, each of which involves the annihilation of one incident photon 

at  and one phonon and simultaneous creation of a new (diffracted) photon at a 

frequency , which propagates along the direction of the scattered 

beam. The conservation of momentum requires that the momentum 

ω

Ω+ω=ω 01

( )Kk0
rr

h +  of 

the colliding particles be equal to the momentum 1k
r

h  of the scattered photon, so 

that 

Kkk 01
rrr

±= ,                                                 (1.43) 
 

which is is equivalent to the Bragg condition. The conservation of energy takes 

the form 

Ω+ω=ω 01 .                                                 (1.44) 
 

Thus the diffracted beam is shifted in frequency by an amount equal to the sound 

frequency. Since the interaction involves the annihilation of a phonon, 

conservation of energy implies that the shift in frequency is such that 01 ω>ω  and 

the phonon energy is added to that of the annihilated photon to form a new 

photon. Or, the scattered process could be considered as one in which a new 

photon (diffracted photon) and a new phonon are generated while the incident 

photon is annihilated. In this case, the conservation of energy principle yields 
 

Ω−ω=ω 01 .                                               (1.45) 
 

The relation between the sing of the frequency change and the sound propagation 

direction is consistent with the Doppler-shift arguments. 
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The linkage between wave vectors of interacting particles can be expressed in the 

form of wave vector diagrams on cross-sections of the wave vector surfaces 

inherent in a crystal. Similar diagrams represent a graphic version of the 

conservation laws, see Eqs.(1.43)-(1.45), and they may be exploited for the 

analysis of scattering. For example, Fig.1.3a illustrates an opportunity for one-fold 

scattering of the incident photon by one acoustic phonon in a single-axis crystal, 

when the initial and ultimate states of polarization for these photons are different. 

Then, under certain conditions, i.e. at set angles of light incidence on the phonon 

beam and at fixed angular frequencies of phonons, one can observe the 

phenomenon of two-fold scattering of light caused by participating two acoustic 

phonons [41]. 

 

The main peculiarity of this phenomenon lies in conserving both the energy and 

the momentum for two transitions simultaneously. In their own turn, these laws 

determine the angular frequencies and wave vectors of all three interacting waves 
 

a)  Ω+ω=ω p0p ,            b)  Kpkk 0p
rrr

+= ,                        (1.46) 

 

where  and ( ) are the angular frequencies and wave vectors of 

interacting photons. This fact leads to originating two orders of scattering, apart 

the zero-th one, each by itself satisfies the conservation laws, described by 

Eqs.(1.46). Figure 1.3 presents the diagram of wave vectors, dealing with the two-

and three-phonon scattering of light quanta in a uniaxial crystal. Such a diagram 

offers rather small angles of deflection and occurs at the specific angular 

frequency of acoustic phonons, which can be determined as 

pω pk
r

3,2,1p =

 

a)  2
1

2
0

1
2 nnV2 −λπ=Ω − ,          b)  2

1
2
0

1
3 nn2V −λπ=Ω − . 

(1.47) 

Here  is the corresponding refractive index, so pn 120 nnn ≠= .  
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                                   a)                                                                      b) 
 

 
 

c) 

Fig.1.3. Wave vector surfaces and wave vector diagrams inherent in a one-fold (a), two-fold (b), 

and three-fold (c) light scattering of a photon by acoustic phonons in a uniaxial crystal. 

 

The polarization states of light in various orders of scattering can be orthogonal to 

each other, whereas the frequencies of light beams in the first, second, and third 

orders are shifted by  and 2Ω 22Ω  or 3Ω , 32Ω , and , as the case 

requires, relative to the zero order light beam, see Fig.1.4. 

33Ω

 

                 
a.                                                                               b. 

Fig.1.4. General arrangement of optical beams in a two-phonon (a) and three-phonon (b) 

processes of light scattering; light arrows show the corresponding acoustic waves passing through 

crystals from the piezo-electric transducers to the absorbers. 
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In an anisotropic medium, the refractive index associated with a light beam is, in 

general, dependent on the direction of propagation. Since the diffracted light 

beam, in general, propagates in a different direction from the incident beam, the 

magnitudes of the wave vectors are no longer nearly the same. In some cases, 

there may even be a change of the polarization state between the incident and the 

diffracted beam. And, since they are in general different, the triangle is not 

isosceles even if we neglect the small differences between 0ω  and . Assuming 

that a pure shear wave with linear polarization propagates in the direction of the 

optical -axis. The shear wave causes orthogonal scattering of extraordinary 

incident wave, propagating in the 

1ω

z
zy −  plane, into an ordinary wave propagating 

in the same plane. Such a construction is shown in Fig.1.5a.  

 

        
 

a)                                                                              b) 
 

Fig.1.5. Anisotropic interaction in positive uniaxial crystal. 

a) shear wave along optical axis, light wave in xy plane, b) all waves in xy plane. 

 

Note that for a given  , two ’s are possible: ik
r

1k
r

a1k
r

 mediated by aK
r

 and b1k
r

 

mediate by bK
r

. When  increases, iφ aK
r

 will decrease, indicating Bragg angle 

behaviour for frequencies down to zero. In this limit, 1k
r

 and a1k
r

 are parallel and 

opposite to aK
r

. In Fig.1.5a, for instance, there does not exist, in general, a 

second wave vector  aK
r
′ , equal  in  length  to aK

r
 and directed upward, that would  
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re-scatter the a1k
r

 on the circle into a1k
r
′  on the ellipse, in this case the light is non-

collinear incidence, that means the light wave and the acoustic wave are 

interacting in orthogonal directions [10]. 

 

Anisotropic interactions generally offer an increase in efficiency and in both 

acoustic and optical bandwidth. They are used almost universally in large aperture 

devices. The reduction in the acoustic velocity, seen in shear-mode tellurium 

dioxide, lends this material to be used in high resolution deflectors. 

 

1.4.4 Collinear acousto-optic interaction 
 

Collinear acousto-optical interaction was initially predicted and studied by Dixon in 

the middle of 1960s [1] and then, starting form the 1970s has been successfully 

exploited in various applications [2-6]. During the process of collinear interaction 

of stationary Bragg light scattering by a coherent wave in an optically uniaxial 

crystal [7,8], the polarizations of the incident and scattered light beams are 

orthogonal to each other, while their wave vectors 0k
r

 and  lie along the 

acoustic wave vector K . Recently the existence of a new branch of studies an 

applications of collinear acousto-optical interaction, which is associated with 

three-wave coupled states, has been manifested [10,11]. 

1k
r

r

 

An example of an acousto-optic collinear interaction is sketched in Fig.1.5a which 

shows two orthogonally polarized optical beams propagating along the x-axis 

coupled by an acoustic wave in a calcium molybdate crystal. The collinear phase 

matching condition for this case is, ( )( ) ( )Vnnc eo Ω=−ω , where  is the 

ordinary index of refraction, and  is the extraordinary index of refraction. For 

the two waves to be coupled by the acoustic one, it is necessary that the photo-

elastic tensor . Since in CaMoO

on

en

0p lkji ≠ 4, 45lkji pp =  is finite, the coupling can be 

accomplished.  
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                                                a)                                                                         b) 

Fig.1.6. a) Collinear coupling between a z-polarized and a y-polarized optical beams by  

a shear acoustic, b) collinear phase matching in a birefringent crystal [49]. 

 

Figure 1.6b shows the vector diagram for the phase matching condition which has 

to be fulfilled in order to collinear interaction in anisotropic medium takes place. 

 

1.5 Acousto-optical coupled states 
 

1.5.1 Collinear acousto-optic coupled states 
 

In many cases the analysis of three-wave processes leads to finding various 

solitary waves in the form of coupled states, where waves of the same or even 

different nature become to be mutually trapped and propagate together [42-44]. 

The dynamics of localization the acousto-optical coupled states with collinear 

scattering has been studied both theoretically and experimentally [43,45,46]. They 

can be shaped via stationary co-directional collinear interaction of two optical 

modes with some non-optical third wave in a dispersive waveguide due to the 

balance action of the square-law nonlinearity. The profiles of all the waves are 

steady at three different current frequencies, because the interaction exhibits itself 

as a mechanism of stabilizing self-action. The reduced set of three combined 

nonlinear partial differential equations which describe the stationary coupled 

states can be written as [44] 
 

a)  ( xi2expCC
dx

dC *
21

0 η−= ) ,          b)  ( )xi2expCC
dx

dC
20

1 η−= , 

 

 26



c)  ( xi2expCC
dx

dC *
01

2 η−= ) ,                               (1.48) 

 

where  is the spatial coordinate,  (x kC 2,1,0k = ) are the normalized complex 

amplitudes; and  is the wave numbers mismatch. Assuming that 

 then Eqs.(1.48) can be converted into equations for real 

amplitudes  and real phases 

η2

( kkk iexpaC ϕ= )

ka kϕ , which have the following solutions [47] 
 

                  ,                               2
k

2
k

2
k ba +α= ( )[ ]κ−μσ= ˆ;xxcnb 0

222
0 , 

 

( )[ ]κ−μσ= ˆ;xxsnb 0
222

1 ,          ( )[ ]κ−μμ= ˆ;xxdnb 0
222

2 . 
 

where  are parameters that specify the background, the parameters σ , kα μ , and 

μσ=κ  are independent of the coordinate x. They are determined by the 

boundary conditions and the mismatch. The  terms represent the oscillating 

portions of solutions, evaluating the extent of localization for the coupled states. 

Using the motion equations 

kb

iii
2 dbdUdxbd −=  for some particles in the real-

valued potentials , ( )ii bU
 

a)  kk
3
kk2

k
2

bpb2
dx

bd
+ϑ= ,             b)  ( ) k

2
k

k4
k

k
kk Hb

2
pb

2
bU +−

ϑ
−= . 

(1.49) 

For  with , Eq.(1.49b) gives the potential that has a local 

minimum at  and two absolute maxima at 

1k = ( ) 0xb 01 =

0b1 = 2Fb 11 ±= , where  is a 

constant. Substituting this potential into Eq.(1.49a) gives a kink soliton solution of 

the form, 

1F

( ) ( )[ ]0111 xx2Ftanh2Fxb −⋅±= , which represents a shock 

wave of envelope or a dark optical coupled state. In the case of , the 

potential exhibit the only one local maximum at 

( 2,0k = )
0bk = . 
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The waves  and  shape the bright components of the coupled states 0b 2b

( ) ( )[ ]0000 xxFhsecFxb −⋅±=  and ( ) ( )[ ]0222 xxFhsecFxb −−⋅−±=  with 

. At any finite distance the symmetry in these waves 

tends to be broken, because the absolute minima of the potential is degenerated 

and they can be reached in two different points instead of one. Since the 

symmetrical states with the least energy at 

( ) ( ∞+→=∞−→ xbxb kk )

0bk =  are unstable, either of two 

signs can be set in the relations ( ) ( )0k0k xbxb ±= . This is known as the 

spontaneous breaking of symmetry [48] that is inherent in topologically uncharged 

bright components of coupled states.  

 

1.5.2 Three-wave non-collinear acousto-optic weakly-coupled states 
 

The well-known set of combined differential equations of the first order that 

governs the evolution of the complex amplitudes ( )xC0  and  of light 

waves and describes a one-phonon Bragg non-collinear acousto-optic interaction 

[43] is denoted by  

( )xC1

 

a)  ( xi2expCq
dx

dC
11

0 η−= ) ,            b)  ( )xi2expCq
dx

dC
00

1 η−= . 

(1.50) 

The factors  can be approximated as 1,0q ( )θλΔπ=≈≈ cosn2qqq 210 , where 

 is the amplitude of the variations of the refractive indices due to the action of 

continuous-wave ultrasound reflects the photo-elastic properties of a crystal and 

includes the amplitude of the acoustic wave, 

nΔ

θ  is the angle of incidence of the 

wave , and  represents the angular frequency mismatch. 

Using the boundary conditions 

0C x,1x,0 kk2 −=η

( ) 10xC 2
0 == , ( ) 00xC1 == , and the 

conservation law 1CC 2
1

2
0 =+ , the solutions to Eqs.(1.50) in terms of the 

light intensities are 
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a)  ⎟
⎠
⎞

⎜
⎝
⎛ η+

η+
+

η+

η
= 222

2

2

2

22
0 qxcos

q
q

q
C , 

 

b)  ⎟
⎠
⎞

⎜
⎝
⎛ η+

η+
= 222

2

22
1 qxsin

q
qC .                                (1.51) 

 

The first summand in Eq.(1.51a) is independent on the coordinate x and exhibits 

the contribution of some background; while the second one, represents the 

oscillating portion of the solution describing the localization of the incident light 

field. Equations (1.51) yield that NqL 22 π=η+ , where L is the spatial length of 

interaction and N is an integer. When 1N =  yields one-pulse weakly coupled 

state, and when , the distribution of 1N > 2
1C  over the transverse extent of 

elastic wave has N partial peaks in its envelope, while the intensity 2
0C  has N 

holes [50], and the efficiency of localization is given as 

.  ( ) ( ) 12221
10 qqqqˆ

−− η+=ρ

 

1.5.3 Four-wave non-collinear acousto-optical weakly coupled states 
 

A set of equations for the amplitudes ( )xC m  of light waves ( ), with 

stationary two-phonon light scattering in Bragg regime is given by [10,32] 

2,1,0m=

 

                           a)  ( )x2iexpCq
dx

dC
01

0 η−−= , 

 

b)  ( ) ( )[ ]x2iexpCx2iexpCq
dx

dC
1200

1 η−−η= , 

c)  ( x2iexpCq
dx

dC
11

2 η= ).                                                  (1.52) 
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The parameters , explained in terms of x-components for 

the light wave vectors, represent the joint angular-frequency mismatches. The 

factor q describes both the material properties and the acoustic power density and 

it is set equal to a constant. Analyzing Eqs.(1.52) with the boundary conditions 

x,1mx,mm kk2 +−=η

( ) 22
0 I0xC == , ( ) 00xC 2,1 ==  and exploit the conservation law 

22
2

2
1

2
0 ICCC =++ , where  is the intensity of continuous wave 

incident light. The exact solutions to Eqs.(1.52) in this regime are [50] 
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Here the numbers  are real roots of the cubic algebraic equation ma

( ) ( ) 02qa2q2a22a 2
0

22
0

3 =η+ηη−−η+η−  and 10 η+η=η . As follows from 

Eqs.(1.53)-(1.55),  the  intensities  ( ) 2
m xC   are  periodic  in ,  such values   x nx
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exist that ( ) 22
n0 I0xC == , ( ) 00xC n2,1 == . Thus, the intensities of scattered 

waves are zero outside tue area occupied by the acoustic wave. Inside this area, 

the spatial distributions of the scattered waves contain a number of peaks, and 

simultaneously the distribution of incident light has holes at the same positions. If 

, then 010 =η=η
 

a)  ( ) ( )2xqcosxC 42
0 = ,          b)  ( ) ( )2xqsin

2
1

xC 22
1 = , 

 

c)  ( ) ( )2xqsinxC 42
2 = .                            (1.56) 

 

The condition of localization for the scattered components in Eqs.(1.56) within the 

spatial interval ( )nx,0  has the form of 2nqxn π= .  

 

1.6 Spectrum analyzers for radio-signals 
 

Usually, a spectrum analyzer displays a power spectrum over a given frequency 

range in real time, changing the output as the properties of the signal change. 

These devices are used commonly in radio-astronomy to analyze the radio-

signals detected by the radio-telescopes. Radio-signals can be from radio 

galaxies, pulsars, masers, and the cosmic microwave background radiation. 

There are different kinds of spectrum analyzers, in the next subsection it will be 

discussed two of them. 

 

1.6.1 Acousto-optical spectrum analyzers 
 

The interaction of light beams with a sound wave in a photo-elastic medium 

exhibit many interesting effects. These effects can be used to build light 

modulators, beam deflectors, tunable filters, spectral analyzers, and signal 

processors.  
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The use of acousto-optic cells to obtain the power spectra of unknown signals 

began with the early work [12, 52], using acoustic waves launched in a fluid and 

Raman-Nath diffraction. It was not until the late 1960s, with the development of 

suitable crystalline solids, that Bragg regime devices became available. Acousto-

optic interactions offer the possibility of manipulating a laser beam or processing a 

signal radiation at high speed, since no mechanical moving parts are involved. 

The idea of deflecting a beam of light by changing the frequency of the sound 

leads naturally to the concept of an acousto-optic frequency analyzer. One of the 

earliest applications for the acousto-optical spectrum analyzer was in the field of 

radio-astronomy.  

 

The principle of the acousto-optical spectrometer was first described by Lambert 

in 1962. It can be described as follows; the intermediate frequency signal from the 

telescope receiver is converted to an ultrasonic wave through a piezo-electric 

transducer bonded to an acousto-optical crystal cell (Brags cell), and the wave 

travels through the material maintaining the spectrum information of the radio 

frequency (RF) signal.  
 

 
Fig.1.7. Basic acousto-optic spectrum analyzer.[51] 

 

The Bragg cell is illuminated by laser light that has been expanded to cover the 

entire acousto-optical cell’s aperture, spatially filtered, and collimated. The 

acoustic wave diffracts the incident light into a single order via Bragg diffraction. 

Within the range of  linearity, the diffraction angle and the diffracted  light  intensity  
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are proportional to the frequency and power of the input signal, respectively. The 

first radio observations using this technique were made by Cole in 1973. 

 

Figure 1.7 shows a basic scheme of an acousto-optic spectrum analyzer. In this 

scheme, the Fourier transform lens produces the frequency transform one focal 

length from the lens, and the information is read out using a self-scanned 

photodetector array. For each beam angle out of the Bragg cell there is a discrete 

point focus in the frequency plane, and since the angle is proportional to the 

frequency, there is a one-to-one correspondence of the light image in the 

frequency plane to the input signal. The limiting resolution (or spot size) of the 

system is determined by the illumination, and the Fourier transform indicates the 

sidelobe level and skirt width of the spot.  

 

1.6.2 Bank of filters vs. acousto-optical spectrum analyzers 
 

An electronic receiver can be made to scan a desired bandwidth and measure the 

signal energy over a narrow range of frequencies. As we reduce the receiver 

bandwidth to improve the sensitivity, the scan rate must also be reduced, in a 

noisy signal environment; this means that the probability of intercepting the 

desired signal is reduced proportionally. To avoid this problem, receivers are 

design with a large bank of narrow bandpass filters operating in parallel; such 

devices also are called channelizers. However, this complicates the design and 

limits the number of frequency channels that can be implemented electronically, 

as the number of channels depends on the time-bandwidth product of the system.  

 

In contrast, the optical spectrum analyzer can use an acousto-optic cell with a 

time-bandwidth product of 1000-2000; many more channels can be realized in a 

more compact space than if an electronic implementation were used. The number 

of resolvable channels also is limited by the photo-detector array. The resulting 

parallel signal processing structure offers a high probability of intercept over a 

broad frequency bandwidth, with sharp frequency resolution.  
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Acousto-optical spectrum analyzers can be used to replace banks of filters 

constructed with conventional electronic components. This new type of radio-

spectrometer is potentially superior for millimeter-wave spectroscopy.  

 

A complete system consists of only three active components (laser, photo-

detector array, and acousto-optics device), so that the power requirements also 

are much lower than in conventional electronic systems [53]. In addition, these 

devices are usually very compact; a packaged unit can measure only about 5-15 

cubic in. in volume. A system of this size easily can be placed very close to the 

receiving microwave antenna, so that the received signals need not be conveyed 

over long distances prior to processing.  

 

The dynamic range, which is fundamentally limited by the square law photo-

detection process, can be increased by using heterodyne detection; a separate 

optical path is provided to deliver a reference beam to the detector. In practice, we 

may think of the output as representing a sampled version of the actual Fourier 

transform. Additionally, it is possible to integrate in both space and time as done 

in the so-called hybrid spectrum analyzers [54]. Several detailed treatments of 

various acousto-optic spectrum analyzer designs are available in the literature 

[14-16, 55-57].  

 

A summary of the features of different types of spectrometers used for radio-

astronomy are presented in Table I.  

 

 

 

 

 

 

 

 

 34



Table I. 
 

Bank of filters 
 

Autocorrelators Acousto-optics 
 
It is the most direct form  

to obtain the spectrum  

of a radio-signal 
 

Each filter must be 

designed individually 
 

It is cheap 
 

It has problems with 

stability due to the 

number of filters 
 

It needs a constant 
maintenance or to 
restrict the bandwidth 
 

It is fast and cheap 

 

It can reach wider 

bandwidths at higher 

frequencies (hundreds 

of GHz) 

 

It requires high energy 

levels 

It has a high spectral 

resolution 

 

It does not require high 

energy levels 

 

It is not so versatile with 

respect to resolution 

and bandwidth 

 

As can be inferred from Table 1, acousto-optical spectrum analyzers are one of 

the best choices in terms of energy levels, size, and spectral resolution. In the 

other hand, the resolution and the bandwidth must be enhanced or improved.  
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Chapter 2 
 

Acousto-optical interaction in TeO2 crystals 
2.1 Introduction 
 

Usually, the Bragg acousto-optical process includes three waves, the incident and 

scattered light modes as well as the acoustic mode. In general, a specially chosen 

geometry of acousto-optical interaction in anisotropic medium, i.e., tellurium 

dioxide (TeO2) crystal, allows a two- as well as a three-fold light scattering by the 

acoustic wave. Under certain conditions, i.e. at a set of the angles of light 

incidence on selected crystal cut and at a specially fixed frequency of the acoustic 

wave, one will be able to observe the Bragg multi-fold light scattering. These 

effects can be exploited for creating optical modulators with improved frequency 

and/or angular resolution [1]. The analytical models for multi-phonon acousto-

optical interaction without phase mismatches are briefly discussed for a TeO2 

crystal; attention is paid to the two- and three-fold scattering regimes. In a two-fold 

light scattering the effective anomalous light diffraction is involved in this process, 

whereas for the three-fold light scattering includes both anomalous and normal 

mechanisms of scattering whose ratio should be estimated, in which the account 

contributions from the phenomenon of optical activity are considered. The 

feasibility of applying such a phenomenon to upgrading the frequency resolution 

of spectrum analyzers for radio-astronomy spatial modulation of light is analyzed.  

 

2.2 Analytical model for a multi-fold Bragg acousto-optical 

interaction 
 

Attention will be focused on a novel approach to the Bragg regime of N-fold, 

namely, a one-, two- or three-fold light scattering in an optically anisotropic media 
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[2,3]  caused by multi-phonon processes, wherein a plane elastic wave with the 

angular frequency Ω and wave number K is traveling along the y-axis. Under 

action of such an elastic wave the dielectric permeability ε becomes to be a 

function of the coordinate y and time t, so it is varied as  
 

( ) ( )Φ+Ω−ε+ε=ε tyKsint,y 10 ,                                 (2.1) 
 

where ε0 is the dielectric permeability for a non-perturbed medium, ε1 is the 

amplitude of variations in the dielectric permeability, Φ  is the phase of the 

acoustic wave which is constant for a uniform plane wave. Then, let us assume 

that the area of propagation for the elastic wave is bounded by two planes 0x =  

and , and interacts with N  plane electromagnetic waves of the form Lx =
 

( )[ ]∑
=

ϕ+ω−θ+θ=
N

0p
pppppppin tsinykcosxkiexpAE ,            (2.2) 

 

which strike the plane , at θ 0x = p angles with respect to the x-axis. Here, 

; while , , N...,,2,1,0p = pA pϕ pω , and  are the normalized real amplitude, 

initial phase, angular frequency, and wave number of the p-th incident light wave, 

respectively; where 

pk

Ω+ω=ω p0p  and 121
0ppp ckk −εω==

r
. Without lossing 

generality, one may put that all the fields are independent of the third coordinate. 

Because the directions of the light waves are pre-assigned by the Bragg 

conditions, a scalar version of the wave equation, governing the electric 

component  of the electromagnetic wave in the area of interaction, may 

be used. It would be natural to represent the project solution in the area  

as a sum of partial waves with the normalized complex amplitudes , so one 

have that  
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b)   ,               (2.3) ( ) ( )[ ]∑
=

ω−+=
N

0p
py,px,pp tykxkiexpxCE

 

where  and Kpsinkk 00y,p +θ= 2
y,p

2
px,p kkk −= , which are the wave 

numbers of the p-th incident light wave in the y and x directions, respectively. 

Equation (2.3b) does not contain any waves, being reflected by the dynamic 

acoustic grating in the medium. The reflected waves become to be essential when 

the angles of scattering are close to 90°, for instance, for the collinear acousto-

optical interaction. In the chosen approximation, we obtain the following set of 

ordinary equations [2] 
 

( )
( ) ( )[ ] ( ) ( )[ ]Φ+η−Φ+η= ++−−− x2iexpxCqx2iexpxCq

dx
xdC

p1p1p1p1p1p
p , 

(2.4) 

a)  ,          b)  ( 1
0x,p

2
p1p k4kq −εε= ) x,1pxx,pp kKk2 +−+=η ,               (2.5) 

 

where  is a parameter which describes the efficiency of the acousto-optical 

interaction,  is the dielectric constant for a non-perturbed medium,  is the 

amplitude of variations in the dielectric constant, and 

pq

0ε 1ε

Φ  is the initial phase of 

elastic wave. It follows from Eqs.(2.4) that only the neighboring pairs of orders 

govern the redistribution of optical energy in each p -th order of scattering. When 

the angles  of incidence for all the light beams are chosen in an arbitrary way, 

all the values  far exceed 

pθ

L2 pη π , so the scattering is not sufficiently effective. 

Nevertheless, for specific angles pθ , being close to the above-mentioned Bragg 

angles, a few values  turn out to be small, so rather effective scattering into 

the corresponding p -th order takes place. 

L2 pη
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2.3 General approach to the analysis of acousto-optical 

interaction 
 

One way of finding the general solution to Eqs.(2.4) and (2.5) in isotropic medium 

[2] lies in exploiting a ( - dimensional vector )1NM ++ ( )xC
r

 with the components 

 together with  M01NN C,...,C,...,C,C +−−
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 ,                 (2.6) 

 

which is a square matrix with rank equal to )1NM( ++  and where 

; )xi2(expqa 1ppp −η= )xi2(expqb ppp η−−=  with . Then, 

Eqs.(2.4) can be written as 

NpM −≥≥

)x(C)x(ĤxdCd
rr

=  and by integrating them from  

to L , one has 

0

∫+=
L

0

xd)x(C)x(Ĥ)0(C)L(C
rrr

.                                 (2.7) 

 

The boundary condition for the current consideration is taken in the form of 

. The solution to Eq.(2.7) can be found with the 

help of the following recurrent formula 

)0,,0,1,0,,0,0()0(C KK=

 

∫ −+=
L

0

)1i()i( xd)x(C)x(Ĥ)0(C)L(C
rrr

,                            (2.8) 

 

where one can select )0(C)x(C )0( rr
=  at the zero approximation. In this 

approximation, only the zero-order amplitude with 0p =  is initially non-zero. Each 

next approximation gives  two additional non-zero amplitudes,  so that a  p-th non- 
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zero amplitude appears in the p-th approximation. Figure 2.1 illustrates the 

process of originating the non-zero amplitudes for a few steps of sequential 

approximations in Eq.(2.10). Generally, one can see from Fig.2.1 that each p-th 

amplitude can be represented in the form of the series, as follows 
 

∑
∞

=

+=
0i

)i2p(
pp C)L(C ,                                         (2.9) 

 

where the an i-th term of this series is proportional to ( ) i2p
01

+εε  being the 

parameter of smallness. The first term of series in Eq.(2.9) is the p-fold integral 
 

p21

x

0

x

0
1122

x

0
1p1p

L

0
pp

)p(
p xdxdxd)x(a)x(a)x(a)x(a)L(C

3 2p

KK ∫ ∫∫∫ −−= , 

(2.10) 

which describes the shortest path form zero to p-th order of scattering via the 

scheme . The second term in Eq.(2.9) corresponds to all the 

paths from zero to p-th order of scattering path. The general form of the second 

term in Eq.(2.9) is given by 

p210 →→→→ L

 

   ∑ ∫
+

=
+

+ ⋅⋅⋅=
1p

0m

L

0
2pp

)2p(
p )x(a)L(C

2p21

x

0

x

0
11

x

0
1m1m2mm xdxdxd)x(a)x(b)x(a

3m 22m

++−+∫ ∫∫
+ +

⋅⋅⋅ K . 

(2.11) 

The third term in Eq.(2.9) characterizes all the paths from zero to p-th orders of 

scattering with two-fold back-scattering paths and so on. It should be noted that 

all the integrals could be calculated analytically, although these calculations are 

rather cumbersome due to a large amount of multi-fold integrals. Nevertheless, 

such an approach gives the algorithm for general solution to the problem of 

acousto-optical interaction in isotropic medium. To illustrate how it works lets 

consider the simplest description for the limiting case of a one-phonon Bragg light 
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scattering in isotropic medium. In this case, only two orders of scattering with p = 

0,1 exist and one can put 01 qq ≈ . A few steps of originating the non-zero 

amplitudes for sequential approximations in Eq.(2.8) are shown in Fig.2.2. Then, 

for simplicity one can assume that the Bragg angular condition is satisfied exactly, 

see Fig.2.3a, so  and the matrix 00 =η ( )xĤ  takes the form  
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

0q
q0

xĤ
0

0 .                                        (2.12) 

 

 
Fig.2.1 General diagram of originating the orders of scattering governed by Eq.(2.8) 

with the boundary condition )0,,0,1,0,,0,0()0(C KK= . 

 

 
Fig.2.2. Diagram of originating the scattered orders governed by Eq.(2.8) in the regime 

of a one-phonon light scattering with the boundary condition ( ) ( )0,10C = . 
 

 

The corresponding series, see Eq.(2.9), can be easily summarized, and they give 

the well-known result 

                              a)  ( ) ( ) ( ) ( )LqcosLq
!i2

1LC 0
i2

0
0i

i
0 =

−
=∑

∞

=

, 
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b)  ( ) ( )
( ) ( ) ( LqsinLq

!1i2
1LC 0

1i2
0

0i

i
1 =

+
−

= +
∞

=
∑ ) .                 (2.13) 

 

Equations (2.13) represent the amplitudes for the two orders of scattering during 

the process of a one-phonon light scattering. As one can noticed they are 

complementary trigonometric functions. 

 

2.4 A multi-fold Bragg acousto-optical interaction in 

anisotropic media  
 

Broadly speaking, Eq.(2.4) and (2.5) should be generalized to be applicable to all 

the regimes of light scattering in anisotropic media. However, leaving aside the 

most general combined regimes one can nevertheless sake the simplicity of 

mathematical description and exploit these equations in the most important 

particular regimes under some restricting conditions. In so doing, let us start from 

the surfaces’ cross-sections for the wave vectors characterizing the acousto-

optical interaction in crystals, see Fig.2.3. 

 

Attention will be focused on a two- and three-fold light scattering in optically 

anisotropic media [2] caused by multi-phonon processes, wherein the plane 

elastic wave is traveling almost normal to the incident light. In these regimes, the 

conservation laws are given by Ω+ω=ω + m1m  and Kkk m1m
rrr

+=+  

simultaneously ( , mω mk
r

 and Ω , K
r

 are the cyclic frequencies and the wave 

vectors of light and acoustic waves, respectively; and 3,2,1,0m =  as the case 

requires). 

 

Multi-phonon processes occur at various angles 0θ  of light incidence and the 

characteristic acoustic frequencies Ω , see Eqs.(1.47), peculiar to just a two- or 

three-phonon Bragg scattering of light, which are characterized by [2] 
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Two-fold scattering:                  ( ) 2
1

2
0

1
00 nnnsin −=θ −  ,                         (2.14) 

 

Three-fold scattering:               ( ) 2
1

2
0

1
00 nn2n43sin −=θ −  ,                  (2.15) 

 

where  are the refractive indices of a crystal. 10 nn ≠

 

          
                                    a.                                                                               b. 
 

           
c.                                                                           d. 

Fig.2.3. Feasible geometries of the acousto-optical interaction in a tellurium dioxide single crystal 

normal (a) and anomalous (b) one-phonon regime; a two-phonon regime (c), and  

a three-phonon regime (d). 

 

As a result, the above-used description for isotropic medium, see Eqs.(2.12) and 

(2.13), can be applied to a one-phonon Bragg light scattering in anomalous 

regime, with , so that the matrix  10 qq ≠ ( )xĤ  from Eq.(2.8) takes the form [4] 
 

( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
η

η−−
=

0xi2expq
xi2expq0

xĤ
00

01
1 .                    (2.16) 

 47



The matrix  is in correspondence with Fig.2.2 and the wave vector diagram 

in Fig.2.3b. When varying the light frequency during the process of light scattering 

can be omitted as before, the diagrams in Figs.2.3c and 2.3d give the forms of the 

matrix  in a two-phonon light scattering regime, where , and the 

regime of a three-phonon light scattering, where 

( )xĤ1

( )xĤ 210 qqq ≈≈

n21 qqq =≈  and a30 qqq =≈ , 

respectively, 
 

( )
( )

( ) ( )
( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

η
η−−η

η−−
=

0xi2expq0
xi2expq0xi2expq

0xi2expq0
xĤ

00

1000

00

2  , 

(2.17) 

( )

( )
( ) ( )

( ) ( )
( )

,

0xi2expq00
xi2expq0xi2expq0

0xi2expq0xi2expq
00xi2expq0

xĤ

2a

2a1n

1n0a

0a

3

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

η
η−−η

η−−η
η−−

=

=
 

(2.18) 

In these two cases, Eq.(2.8) leads to the diagrams presented in Fig.2.4. 
 

          
a.                                                                                      b. 

Fig.2.4. Diagrams of originating the scattered orders, Eq.(2.8): (a) two-phonon light scattering 

regime with ; (b) three-phonon light scattering regime with ( ) ( )0,0,10C =

( ) ( )0,0,0,10C = . 

 

Exploiting the procedure described in Section 2.3 to solve Eq.(2.8) for these 

regimes with , in a two-phonon light scattering regime, Eq.(2.9) gives [4] 0p =η
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             a)  ( ) ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

+
−=

+
∞

=
∑ 2

xqcos2xq
!2i2

1
2
11xqC 022i2

0
0i

00 , 

 

b)  ( ) ( )
( ) ( ) ( )2xqsin

2
12xq

!1i2
1

2
1xqC 0

1i2
0

0i

i
01 =

+
−

=
+

∞

=
∑ , 

 

c)  ( ) ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

+
=

+
∞

=
∑ 2

xqsin2xq
!2i2

1
2

1xqC 022i2
0

0i
02 .         (2.19) 

 

              
a.                                                                            b. 

Fig.2.5. Intensity distributions: (a) one-phonon light scattering regime with 10 qqq =  (dot-dashed 

line for ( ) 2
0 xqC  and solid line for ( ) 2

1 xqC ); (b) two-phonon light scattering regime (dot-

dashed line for ( ) 2
00 xqC , dashed line for ( ) 2

01 xqC , and solid line for ( ) 2
02 xqC ). 

 

Figure 2.5 shows the intensity distributions for the regimes of a one- and two-

phonon light scattering [4]. 

 

2.5 A two phonon acousto-optical interaction; the case of a 

low efficiency 
 

A two-phonon process occurs at an angle 0θ  of light incidence and the 

characteristic frequency  ,  peculiar to a two-fold Bragg scattering of  light,  2Ω=Ω
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as in Eqs.(2.14). And, having that the ( )xĤ  matrix for this particular regime is 

given by Eq.(2.17) with 210 qqq ≈≈ . 

Let us estimate the minimal contribution to the second order of scattering. When 

the efficiency of scattering is small enough, one can do just two iterative steps 

operating over Eq.(2.7). In this case, the initial amplitude of zero order can be 

taken to be unity, while the first order’s amplitude can be estimated at the first 

iterative step within a one-fold integrating in Eq.(2.7) 
 

( ) xd
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)xi2(expq
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0
0
1

xd
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1
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⎛

 , 

(2.20) 

so that partial amplitudes are given by 
 

a)   ,        b)  1C )1(
0 = ( )

L
)L(sinLiexp)Lq(C

0

0
00

)1(
0 η

η
η=  ,        c)   . 0C )1(

2 =

(2.21) 

Then, one has to make the second iterative step substituting Eqs.(2.21) in the 

right hand side of Eq.(2.7), which gives 
 

( ) ( ) xd
0

)x(sinxiexp)q(
1

xĤ
0
0
1

C
C
C

00
1

00

L

0

2
)2(

2
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1
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⎟
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⎟
⎟

⎠

⎞

⎜
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−∫  .       (2.22) 

 

Using Eq.(2.17), one can find from Eq.(2.22) that [5] 
 

          ( ) =ηηη= ∫− xd)x(sinxi3exp)q(C
L

0
00

1
0

2
0

)2(
2

                                                                 
( ) 2

0

0
2

0
22

0 )L(
)L(sinLi2expLq4

η

η
η=

 . 

(2.23) 
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The right hand side of Eq.(2.23) describes the desired minimal contribution to the 

second order of scattering within a two-phonon acousto-optical interaction. 

 

2.6 A two-fold light scattering; bandwidth of a two-phonon 

interaction 
 

Using Eq.(2.4), one obtains the evolution equations describing a two-fold light 

scattering. In this case, see Fig.2.3c, Eq.(2.4) can be considerably simplified by 

disregarding all the amplitudes ( )xCP  with the exception of , , and , so 

that 

0C 1C 2C

              a)  
( ) ( ) ( )xi2expxCq
xd

xCd
011

0 η−−= , 

 

b)  
( ) ( ) ( ) ( ) ( )xi2expxCqxi2expxCq
xd

xCd
122000

1 η−−η= , 

 

c)  
( ) ( ) ( xi2expxCq

xd
xCd

111
2 η= ) .                                              (2.24) 

 

It may be tolerated on the above-mentioned assumption that the shifts in carrier 

angular frequencies of light waves, included in the amplitude coefficients for 

different orders, can be neglected. All the parameters  with Pq 2,1,0p =  describe 

the efficiency of interaction with changing the polarization state of light, and these 

two steps of scatterings are provided by the same photo-elastic constants. That is 

why one can put qqqq 210 ≡== . The exact solution to Eqs.(2.24) with the 

simplest boundary conditions ( ) 10xC 2
0 ==  and ( ) 00xCl,2 == , related to 

 in this regime [6] can be written as ( )xC2
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( ) ( )[ ]
( ) ( )⎩

⎨
⎧

+
−−

−η−
=

2010

02
2 aaaa

xa2iexp1qixC  

                             
( )[ ]

( ) ( )
( )[ ]

( ) ( ) ⎭
⎬
⎫

−−
−η−

−
−−

−η−
+

2012
2

1012
1

aaaa
xa2iexp1

aaaa
xa2iexp1

 . 

(2.25) 

Here,  are roots of  and 

 is the mismatch. Generally, as it follows from Eq.(2.25), the intensity 

of this scattered light wave is periodic in . When 

ma 0q2a)4q2(a)(2a 2
0

22
0

3 =η+ηη−−η+η−

10 η+η=η

x 010 =η=η , one can obtain 

 and 0a0 = 2qa 2,1 ±= , so that ( ) ( )2xqsinxC 2
2 = . Consequently, even 

100% of the incident light can be scattered into the second order at 2xq π= . 

One can assume a precise angular alignment and extend 0η  and  into a series 

in terms of the only frequency detuning 

1η

2ff −  for the current frequency f  relative 

to the central frequency  determined by Eq.(2.47b). In the second 

approximation with respect to 

2f

2ff − , one can obtain from Eq.(2.5b) and the wave 

vectors diagram, see Fig.2.3c, that [2] 
 

                 a)    ( )22
21

00 ffVn2 −λπ−≈η −− , 
 

b)   ( ) ( 2
2

21
022

21
01 ffVn7fffVn42 −λπ−−λπ−≈η −−−− ) . 

(2.26) 

Consequently, in the first approximation with respect to 2ff −  yields [7] 
 

a)   ,          b)  00 ≈η ( )22
21

01 fffVn2 −λπ−≈η −− .              (2.27) 
 

Exploiting Eqs.(2.27) for the sake of simplicity and substituting Eqs.(2.27) into 

Eq.(2.24), one can draw a three-dimensional distribution for ( ) 2
2 xC , see 

Fig.2.6a, and estimate the dependence of the light intensity ( ) 2
2 xC  on the 

product  , where the mismatch  x1η 1η   is connected with the frequency detuning 
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( ) ( ) 1
2

2
012 f2Vnff −λπη≈− . By taking 2x1 π=η  with Lx = , see Fig.2.6b, 

one can find the frequency bandwidth )ff(2f 22 −=Δ  of a two-phonon light 

scattering in the form 

Lf2
Vnf
2

2
0

2 λ
≈Δ  .                                            (2.28) 

 

            
a.                                                                            b. 

Fig.2.6. A three-dimensional distribution (a) for ( ) 2
12 x,xqC η  and (b) the cross-section of that 

distribution at  q x = 2π  (b).[7] 

 

It is seen from Fig.2.6a that the first maxima of unity level in this distribution can 

be reached at 2xq π±= . 

 

2.7 A three phonon acousto-optical interaction 

 

In the regime of a three-phonon light scattering, one can obtain a quartet of series 

having the form of Eq.(2.9). After summarizing these cumbersome series and 

taking na qqq = , one can obtain [4] 
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Fig.2.7. Distributions of the light intensity ( ) 2

3 xC  vs. : dashed line: q = 0.559,  xqn

solid line: q = 0.866, dotted line: q = 1.414, and dot-dashed line: q = 1.936 [4]. 

 

              
a.                                                                            b. 

Fig.2.8. Distributions of the light intensities with a three-phonon light scattering vs. :  xqn

(a) q = 0.866, and (b) q = 1.936. Dot-dashed lines for ( ) 2
0 xC ; dashed lines for ( ) 2

1 xC ; 

dotted lines for ( ) 2
2 xC ; and solid lines for ( ) 2

3 xC  [4]. 

 

As it is seen from Section 2.2, the efficiency of acousto-optical interaction is 

described by the parameter , which includes the properties of the crystal and is 

connected with the acoustic power P. The acoustic power density 

pq

( )LhP  can be 

expressed in terms of the deformation γ as ( ) 2V~LhP 23γρ= , where  is the 

material density of a TeO

ρ~

2-crystal. The deformation is connected with the variation 

 of the dielectric permeability as , where  is an effective 

photo-elastic constant, and with Eq.(2.5a) lead to 

1ε γε=ε eff
2
01 p effp
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hL2
PM

coshLV~2

Ppn
cos

q 2
p3

2
eff

6

p
p θλ

π
=

ρθλ
π

= ,                     (2.33) 

 

where  ( )32
eff

6
2 V~pnM ρ=  is the figure of acousto-optical merit inherent in a 

crystalline material. Figure 2.3 shows that there are two possible types of 

interactions, noted above as normal and anomalous regimes. It is well known [8] 

that the anomalous regime in a TeO2-crystal with the crystallographic orientation 

shown in Fig.2.3 is characterized by extremely high efficiency due to 

 and s( )1211an,eff pp5.0p −= 15
2 102.1M −⋅= 3/g. 

 

2.8 A three-fold light scattering; a simplified estimation for the 

bandwidth of a three-phonon interaction in a tellurium dioxide 

crystal 
 

Now one can disregard all the amplitudes ( )xCp  in Eq.(2.4) with the exception of 

the amplitudes  and , as shown in Fig.2.3d. In so doing, one 

obtains the following set of only four simplified ordinary differential equations for 

the amplitudes of the scattered light modes [2], 

,C,C,C 210 3C

 

               a)  
( ) ( ) ( )xi2expxCq

dx
xdC

011
0 η−−= , 

 

b)  
( ) ( ) ( ) ( ) ( )xi2expxCq~xi2expxCq
xd

xCd
122000

1 η−−η=  , 

 

c)  
( ) ( ) ( ) ( ) ( )xi2expxCqxi2expxCq~
xd

xCd
233111

2 η−−η=  , 

 

d)  
( ) ( ) ( xi2expxCq
xd

xCd
222

3 η= )  .                                              (2.34) 
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In Eqs.(2.34), the parameters  (pq 3,2,1,0p = ) can be rewritten in terms of 

normal and anomalous scattering of light in a uniaxial crystal as  

and . The factors  and  describe both the material properties 

relative to normal and anomalous processes of light scattering and the acoustic 

power density, and they can be taken to be constants at a fixed acoustic signal. 

Generally , because these factors include different components of the 

photo-elastic tensor inherent in the selected crystal. 

n21 qq~q~ ==

a30 qqq == nq aq

an qq ≠

 

As before, one assume a precise angular alignment and extend 0η , , and 1η 2η  

into a series in terms of the only frequency detuning 3ff −  for the current 

frequency f  relative to the central frequency  determined by Eq.(2.15b). In the 

first approximation with respect to 

3f

3ff − , one can obtain from Eq.(2.5b) and the 

wave vectors diagram, see Fig.2.3d, that [9] 
 

a)   ,       b)  ( 33
21

00 fffVn2 −λπ≈η −− ) 01 3η−≈η ,       c)  02 7η−≈η  . 

(2.35) 

Substituting Eqs.(2.35) into Eqs.(2.34), one can estimate the dependence of the 

light intensity ( ) 2
3 xC  on the product . The corresponding plot in Fig.2.9a 

shows the case inherent in a TeO

xqn

2 crystal [10] with the ratio 44.4qqq na ≈= . 

Such a value of the ratio  provides unfortunately a non-monotonic growing of the 

light intensity 

q

( ) 2
3 xC  with , but includes an opportunity of reaching the 

100% maximum intensity at 

xqn

82.2xqn ≈  and 46.3xqn ≈ . These two 

circumstances lead to two possibilities. The first one is connected with operating 

on an interval of  between zero and approximately 0.75, so that the efficiency 

of modulation will not exceed 15%. The second one gives potentially a chance to 

reach just 100% efficiency, but needs exploiting a bias for the incoming electronic 

signals associated with the magnitudes 

xqn

5.2xqn ≈  or π=xqn  in Fig.2.9a [7].  
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In the case of , one can consider the dependence of the light intensity 82.2xqn =

( ) 2
3 xC  on the product x2 0η , see Fig.2.9b, where 0η  is connected with the 

frequency detuning ( ) 1
3

2
003 fVn2ff −λπη≈− . 

 

             
                                       a.                                                                         b. 

Fig.2.9. (a) Distribution of the light intensity ( ) 2
3 xC  vs.  with q = 4.44;  xqn

(b) dependence of ( ) 2
3 xC  on x0η  with 82.2xqn =  [7]. 

 

By analogy with the previous section, one has to take 6x2 0 π≈η  at . Such 

a selection makes possible determining the bandwidth of a three-phonon light 

scattering as 

Lx =

( )
Lf3

Vn
ff2f

3

2
0

33 λ
≈−=Δ  .                                  (2.36) 

 

2.9 Optical activity in a tellurium dioxide crystal 
 

In the optics of crystals, it is worthwhile to analyze the dependence of the electric 

field strength )t,r(E
rr

 on the electric field induction )t,r(D
rr

, as it has been 

mentioned in Chapter 1, this relation has the form of  )t,r(D)t,r(E
rrrr

κ=  in the 

local case, where  is the dielectric impermeability tensor whose eigen-values 

are inverse squares of the main refractive indices inherent in a crystal. However, 

crystals are characterized by spatial non-locality.  

κ

 58



Physically, spatial non-locality means that the electric field strength )t,r(E
rr

 is 

determined by the electric field induction )t,r(D
rr

 not only at the point , but by 

values of the electric field induction in some vicinity of a point r

r
r

r
 as well. In the 

non-local case, it can be said that one is dealing with the spatial dispersion. When 

the electric field induction )t,r(D
rr

 is homogeneous in behavior, so that its 

magnitudes in some vicinity of a point r
r

 are equal to its magnitude at the point r
r

, 

the spatial dispersion does not manifest itself. That is why the spatial dispersion 

can be represented as the dependence of )t,r(E
rr

 on both )t,r(D
rr

 and its spatial 

derivatives [11]. The effect of the optical activity can be observed in crystals, 

which exhibit such a dependence on just the first spatial derivatives of the electric 

field induction )t,r(D
rr

, so that in the first approximation one can write 

]r)t,r(D[ĝ)t,r(D)t,r(E
rrrrrrr

∂∂+κ= , where the tensor 0ĝ ≠ .  Due to 

Dkir)t,r(D
rrrrr

=∂∂  for the monochromatic light wave with the wave vector k
r

 

yields 

a)  ( ) lmjlmjlj DkgiE +κ=  ,        b)  ( ) DkĝiE
rrr

⋅+κ=  .           (2.37) 

 

The expression in brackets is a modified tensor of the dielectric impermeability. 

This admixture has an order of the ratio λa , where  is the atomic cell size in a 

crystal, λ  is the light wavelength corresponding to the wave vector 

a

m)2(k
rr

λπ= , 

and  is unit vector of the wave normal. If the crystal is optically transparent, a 

modified tensor of the dielectric impermeability is Hermitian, so that its real-valued 

part is symmetrical and its imaginary-valued part is anti-symmetrical in behavior. 

Thus, the tensor g  is anti-symmetrical in the first pair of indices, i.e. 

, while the pseudo-tensor G , being dual to the tensor  with an 

accuracy of the scalar factor 

m
r

ˆ

ljmjlm g−g = ˆ ĝ

)2( πλ , can be introduced as 
 

a)  kjnjklln gˆG δ
λ
π

=  ,        b)  lnjklkjnjkl Gˆg2
δ=δ

λ
π  ,              (2.38) 
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where )jl()lk()kj()21(ˆ jkl −−−=δ  is the unit anti-symmetric Levi-Chivita 

tensor. Using Eq.(2.38), one can rewrite Eq.(2.37) as 
 

a)  ( ) lnmnjlmjlj DmGˆiE δ+κ=  ,        b)  mĜDiDE
rrrr

⋅×+κ=  .          (2.39) 

 

Let us take the coordinate system whose axes  and  oriented along the 

main axes of a crystal, while 

1X 2X

m||X3
r

. In these coordinates, Eqs.(2.39) give 
 

a)   ,          b)   ,          (2.40) 2331
2

011 DGiDnE += −
1332

2
022 DGiDnE −= −

 

because , , , and  . Here,  and  are 

the refractive indices for light waves in absence of the spatial dispersion and 

. Maxwell’s equations for plane waves require that 

0D3 = 012 =κ 2
0111 n−=κ 2

0222 n−=κ 01n 02n

0201 nn ≥ DnEmmE 2 rrrrr −=⋅− . 

In the chosen coordinate system, it leads to . Exploiting these 

relations, one can exclude the values  from Eq.(2.40), write a set of two 

homogeneous equations for the values , and obtain the characteristic 

equation for that set in the form of . Solving 

this algebraic equation relative to n  and taking into account that 

2,1
2

2,1 DnE −=

2,1E

2,1D

0G)nn()nn( 2
33

22
02

22
01 =−−− −−−−

020133 n,nG << , one can find [12] 
 

a)  33
3
01011 Gn

2
1nn ρ+=  ,         b)  33

3
02022 Gn

2
1nn ρ−=  ,          (2.41) 

 

⎥⎦
⎤

⎢⎣
⎡ −−+−=ρ −−−− )nn()G2()nn(

G2
1 2

01
2

02
2

33
22

01
2

02
33

 .            (2.42) 

 

Equation (2.42) is the main formula for the light polarization ellipticity. Here, 

1≤ρ  due to , and 0201 nn ≥ 33Gsignsign =ρ .  
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If  is parallel to the optical axis, then m
r

o0201 Nnn ==  (where  is the main 

refractive index for the ordinary light wave) and 

oN

33Gsign=ρ , so that two 

circularly polarized light wave pass along the optical axis and Eqs.(2.41) take the 

forms [12] 
 

a)  33
3
oo1 GN

2
1Nn +=  ,          b)  33

3
oo2 GN

2
1Nn −= .          (2.43) 

 

These formulas describe the plots for cross-sections of the refractive index 

surfaces in the vicinity of an optical axis inherent in a TeO2 crystal, see Fig.2.10 

[12]. If birefringence is not very small, the parameter ρ  decreases with deviating 

the wave normal m  from optical axis by an angle . When 

 in Eq.(2.42), yields 

r
ϑ

2
33

22
01

2
02 )G2()nn( ≈− −− 4.012 ≈−=ρ . One can 

calculate that this value leads to the expression |)NN(G2|sin 12
o

2
e33

−−− −=ϑ , 

where  is the main refractive index for the extraordinary light wave. Usually, 

 and , therefore 

eN

54
33 1010G −− −≈ 06.002.0)NN( 2

o
2

e −≈− −− ϑ  is about a few 

degrees. 
 

 
                                           a.                                                b. 

Fig.2.10. Two cross-sections of refractive index surfaces in a TeO2 crystal: (a) hypothetic plot 

without the effect of optical activity; (b) illustration to the effect of optical activity. 

 

As one can see from the diagrams in Fig.(2.3), one has to take into account the 

acousto-optical effect in TeO2, as shown in Fig.(2.10b), because without it the 

multi-fold  interaction of Bragg scattering in anisotropic medium cannot be studied,  
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since in the ideal situation, Fig.(2.10a), these interactions cannot occur in the 

-axis. [ 100 ]
 

2.10 Ellipticity of the polarization in a tellurium dioxide crystal 
 

Tellurium dioxide is a uniaxial crystal, so that o20 Nn =  is the main refractive 

index for the ordinary state of polarization, while )z,x(nn e10 =  depends on the 

direction  in a crystal and has the form of an ellipse )z,x( 1
N
z

N
x

2
o

2

2
e

2
=+ . One is 

interested in rather small tips from [ 001 ] || z-axis. Therefore, one can consider 

the coordinates  of a cross-point of this ellipse with a direct line )z,x( 00

)180(tanzx ϑπ=  when the angle ϑ  of tip from the -axis is measured in 

angular degrees. In fact, one needs the length of linear segment between the 

origin of coordinate and this cross-point. These coordinates are given by 

]001[

 

a)  
)180(tanNN

)180(tanNNx
22

o
2
e

oe
0

ϑπ+

ϑπ
=  ,       b)  

)180(tanNN

NNz
22

o
2
e

oe
0

ϑπ+
=  , 

 

(2.44) 

consequently, 

2
o

2
022

o
2
e

22
o

2
e2

0
2
0

2
e Nn

)180(tanNN
])180(tan1[NNzxn ≡≥

ϑπ+

ϑπ+
=+=  .             (2.45) 

 

Finally, one can write 
 

⎥⎦
⎤

⎢⎣
⎡ −−+−=ϑρ −−−− )nN()G2()nN(

G2
1)( 2

e
2

o
2

33
22

e
2

o
33

 .          (2.46) 

 

Dependences of the ellipticity ρ  of polarization for the light waves versus the 

angle  of deflection from the -axis in a TeOϑ ]001[ 2-crystal for a few light 

wavelengths are depicted in Fig.2.11.  
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Physically, possible magnitudes of the angle ϑ  coincide with the angles θ  of 

incidence or scattering the light beams as ϑ=θ . The estimations, performed for a 

TeO2-crystal for the above-discussed orientation, show that the normal regime of 

light scattering (using the ordinary state of polarization) meets: 1)  at 

, 

o786.0=θ

nm633=λ MHz60f = ; 2)  at o657.0=θ nm488=λ , MHz67f = ; and  3) 

 at , o505.0=θ nm442=λ MHz58f = . In regard to the anomalous regime of 

light scattering, it is worthwhile to consider the particular case of a geometry 

presented in Fig.2.12, because such geometry provides the most wideband 

acousto-optical interaction with polarization rotation [13]. This geometry requires 

specific magnitude  of elastic waves frequency [8], but can lead to manifesting 

a two-phonon light scattering [6] with applying rather powerful acoustic signal to a 

cell. Under this restricting condition of a small enough acoustic signals, one can 

calculate that the light incidence angles are determined by 

0f

)Vn(fsin 0000 λ=θ≈θ , so that: 1)  at , 

; and 2)  at 

o
0 919.0=θ nm633=λ

MHz4.37f0 = o
0 132.1=θ nm488=λ , MHz3.63f0 = . The angles 

of scattering in this regime are definitely smaller than the values of , as it 

follows from Fig.2.12. 

0θ

 

        
 

Fig.2.11. The ellipticity ρ  of polarization of                     Fig.2.12. A wide-band geometry for 

the light waves vs. the angle  of a tip from               the anomalous regime of light scattering ϑ

         the -axis in a TeO]001[ 2-crystal.                                             in a TeO2-crystal. 
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The obtained estimations for the angles show that the range of varying them lies 

approximately in a limit of . Therefore, the angular dependence for the 

ellipticity of polarization in Fig.2.11 is perfectly adequate to the real situation in a 

TeO

oo 5.15.0 −

2-single crystal [19]. Consequently, the magnitudes of ρ  lie between 0.75 and 

0.97 in visible optical range, as it can be concluded from Fig.2.11, and moreover, 

the magnitude of  grows as the light wavelength decreases. ρ

 

2.11 Photo-elastic effect in a tellurium dioxide crystal 
 

Generally, the dielectric impermeability tensor κ  becomes to be perturbed under 

action of the mechanical deformations in a medium and takes the form , 

where the symmetrical tensor  of second rank represents a small admixture to 

the tensor . One can write 

ζ+κ ˆ

ζ̂

κ
 

a)               b)  γ=ζ pˆ lklkjiji p γ=ζ  ,                         (2.47) 
 

because even the first approximation is quite enough for crystalline materials. As 

it has mentioned in Chapter 1, p  is the tensor of the fourth rank for photo-elastic 

coefficients. Mechanical deformations are described in the first approximation by 

the symmetric deformation tensor as 

ˆ

 

a)  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
=γ

k

l

l

k
lk x

u
x
u

K2
1

rr

 ,                   b)   ,            (2.48) kllk γ=γ

 

where  is the unit vector of displacement in the acoustic wave. Due to u
r

uKir)t,r(u
rrrrr
⋅=∂∂  for the monochromatic plane acoustic wave with the wave 

vector , yields mKK
rr

= ( ummu
2
1 rrrr

⋅+⋅=γ ) . Practically, it is more convenient to 

operate by these tensors in so-called matrix notations, jiζ=ζ λ , , and 

, so that 

lkjipp =μλ

lkγ=γ μ μμλλ γ=ζ p .  
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The characteristic surface of the dielectric impermeability tensor can be written as 

 or in components as 1rr =⋅κ⋅
rr

1xx jiji =κ . It represents the optical indicatrix. 

Physical axes of the optical indicatrix determine orientation for a pair of the eigen-

vectors of electric induction in a crystal. That is why the quadratic form 
 

a)  )i()s(
eff dˆdp

rr
⋅ζ⋅=  ,                  b)  ,             (2.49) )i(

jji
)s(

ieff ddp ζ=

 

describes the effective photo-elastic constant  of scattering, i.e. the efficiency 

of converting the initial state of light polarization, described by the unit electric 

induction vector 

effp

)i(d
r

 into the scattered state of light polarization, characterized by 

the unit electric induction vector )s(d
r

 due to the photo-elastic effect in a crystal. In 

the particular case of a TeO2-crystal whose point symmetry group is 422, 

Eq.(1.32) becomes [14], 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=μλ
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44

44

333131

131112

131211

p00
0p0
00p

000
000
000

000
000
000

ppp
ppp
ppp

p  .                         (2.50) 

 

Then, let us assume that slow shear acoustic wave is passing along the ]011[ -

axis in a TeO2-crystal whose vector of displacement is oriented along the -

axis. It means that 

]110[

)0,1,1()21(m −=
r

 and )0,1,1()21(u =
r

. The 

corresponding normalized tensor of deformations is given by 
 

a)  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=γ

000
010
001

2
1

lk  ,          b)  ( )0,0,0,0,1,1 −=γ μ  .             (2.51) 

 

Performing the matrix multiplication and converting the product  from the 

matrix notation to the conventional one, yield 

μμλ γp
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( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−=γ=ζ

000
010
001

pp
2
1p 2111lklkjiji  .                     (2.52) 

 

Now, the eigen-state orts of polarization, see Chapter 1, can be applied to 

estimate the scattering photo-elastic properties of a TeO2-crystal for the above-

mentioned orientation. For this purpose, one may exploit a two-dimensional 

reduced version of the matrix admixtures  to the dielectric impermeability 

tensor  instead of Eq.(2.52), which is additionally normalized by the factor 

. It can be done, because all the angles of incidence and scattering 

are rather small, lie in a range of , and do not exceed two angular 

degrees. One can find magnitudes of the effective photo-elastic constants, 

normalized by the factor 

ji
~ζ

κ

2/)pp( 1211 −

oo 5.15.0 −

2/)pp( 1211 − , in the regime with conserving the state of 

polarization, i.e. with the normal regime of scattering, as 
 

a)  2
33 1G2 ρ−<<ρ  ,           b)  2

2
2ji2eff

1
1~)22(p~

ρ+

−ρ
=νζν=→ + rr  . 

(2.53) 

Together with this, one can obtain magnitudes of the normalized effective photo-

elastic constants in the regime with changing the state of polarization, i.e. with the 

anomalous regime of scattering, as 
 

                    a)  ( )[ ]2121ji2eff iexp
1

i2~)21(p~ ϕ−ϕ
ρ+

ρ−
=νζν=→ + rr  , 

 

b)  ( ) ([ 1222ji1eff iexp
1

i212p~ ϕ−ϕ
ρ+

ρ
=νζ+ν=→

r ) ]
rr  .             (2.54) 

 

Then, one can estimate the scattering photo-elastic properties of a TeO2-crystal in 

the above-mentioned orientation when optical activity has been taken into 

account.  
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In the case when Eq.(2.40) is included in consideration, a two-dimensional 

reduced version of the matrix admixtures  to the dielectric impermeability 

tensor  has the form . Again, one can consider the regime 

with conserving the polarization state, i.e. with the normal regime of scattering, as 

ji
~ζ

κ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=ζ
1Gi

Gi1~
33

33
ji

a)  2
33

2
1ji1eff

1
G21~)11(p̂

ρ+

ρ−ρ−
=νζν=→ + rr  , 

 

b)  2
33

2
2ji2eff

1
G21~)22(p̂

ρ+

ρ+−ρ
=νζν=→ + rr  .                 (2.55) 

 

In the regime with changing the polarization state, i.e. with the anomalous regime 

of scattering, one can obtain [12] 
 

a)  ( )[ ]212
33

2
1ji2eff iexp

1
G)1(ii2~)21(p̂ ϕ−ϕ

ρ+

ρ−−ρ−
=νζν=→ + rr  , 

 

          b)  ( )[ ]122
33

2
2ji1eff iexp

1
G)1(ii2~)12(p̂ ϕ−ϕ

ρ+

ρ−+ρ
=νζν=→ + rr . 

(2.56) 

Let us start our estimations from Eqs.(2.55), one has to compare 21 ρ−  and 

33G2ρ  with each other. In the worst case , one can take: 1) , 

 and find 

o5.0=ϑ 97.0=ρ

5
33 1060.5G −⋅= 05910.01 2 =ρ− , 00011.0G2 33 =ρ  at 

; 2) ,  and calculate nm442=λ 96.0=ρ 5
33 1083.2G −⋅= 07841.01 2 =ρ− , 

00005.0G2 33 =ρ  at . These estimations show that nm633=λ

2
33 1G2 ρ−<<ρ  in a TeO2-crystal, so that one can practically exploit 

Eqs.(2.53) instead of Eqs.(2.55).  

 67



Then, comparing ρ2  and 33
2 G)1( ρ−  in Eqs.(2.56). The worst case is 

associated with , and one can take: 1) o5.1=ϑ 85.0=ρ ,  and 

find 

5
33 1060.5G −⋅=

000016.0G)1( 33
2 =ρ− , 700000.12 =ρ  at nm442=λ ; 2) 75.0=ρ , 

 and calculate 5
33 1083.2G −⋅= 000012.0G)1( 33

2 =ρ− , 500000.12 =ρ  at 

. These calculations demonstrate that nm633=λ ρ<<ρ− 2G)1( 33
2  in a 

TeO2-crystal, so that practically one can use Eqs.(2.54) instead of Eqs.(2.56). 

Finally, let us use Eqs.(2.53) and (2.54) to estimate the modulus of the normalized 

effective photo-elastic constants in terms of the eigen-states of polarization as 
 

a)  2

2
eff

1
1)ii(p~

ρ+

ρ−
=→  ,          b)  2eff

1
2)ji(p~
ρ+

ρ
=→  , 

 

c)   2eff

eff

1
2

)ii(p~
)ji(p~

q
ρ−

ρ
=

→

→
= ,                                 (2.57) 

 

where )2,1()j,i( = , and )ji(p~)ii(p~ effeff →<→  with . Thus, 

the efficiency of anomalous light scattering exceeds the efficiency of normal 

scattering in a TeO

]0.1,7.0[∈ρ

2-crystal under the chosen orientation. Using  to estimate 

the effective photo-elastic constants under action of an external light beams 

conserving the state of light polarization, one can exploit 

ji
~ζ

1σ
r  and and write [12] 2σ

r

 

a)  2
i

2
i

1ji1eff
1

1~)11(p
ρ+

ρ−
=σζσ=→ +∗ rr  ,        b)  2

i

2
i

2ji2eff
1

1~)22(p
ρ+

−ρ
=σζσ=→ +∗ rr . 

(2.58) 

 

One can also obtain magnitudes of the normalized effective photo-elastic 

constants in the regime with changing the state of polarization inherent in an 

external beam, i.e. with the anomalous regime of scattering, that 
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a)  =σζσ=→ +∗
1ji2eff

~)21(p rr  

                         [ ] ( )[ ]21
2
ii2

i
iexp)2(sin)1()2(cosi2

1
1

ψ−ψφρ++φρ
ρ+

−
=  , 

 

b)  =σζσ=→ +∗
2ji1eff

~)12(p rr  

                         [ ] ( )[ ]12
2
ii2

i
iexp)2(sin)1()2(cosi2

1
1

ψ−ψφρ+−φρ
ρ+

=  . 

(2.59) 

The corresponding plots are show in Fig.2.13. 

 

              
                                      a.                                                                            b. 

 
c. 

Fig.2.13. Squared moduli of the normalized effective photo-elastic constants  

(a) )ii(peff →∗ , (b) )ji(peff →∗  vs. the ellipticity iρ  as well as the rotation angle .[19], and 

(c) 

φ

)ii(p~eff →  and )ji(p~eff →  vs. the ellipticity ρ  in a TeO2-crystal. 
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It is well known [2] that the anomalous regime in a TeO2-crystal with the 

crystallographic orientation shown in Fig.2.10 is characterized by extremely high 

efficiency due to )pp(5.0p 1211an,eff −=  and =2M 1.2⋅10− 15 s3/g. By contrast, 

the theoretically predicted magnitude of the effective photo-elastic constant 

 in the normal regime is much smaller than in the case of the same 

orientation for a crystal.  

n,effp

 

2.12 Resolution of the acousto-optical modulators made of 

TeO2 crystals 
 

Generally, the momentum p  of a photon is connected with the wave number k  as 

)2(khp π= , where h  is the Planck constant, so one may spect an uncertainty 

)2()k(hp πδ=δ  in the momentum related to the uncertainty in the wave number 

 of a photon. Also, the momentum P  of a phonon is connected with the wave 

number  as 

kδ ~

K )2(K~ π= hP , and an uncertainty )2()K(hP~ πδ=δ  in the 

momentum related to the uncertainty in the wave number  of a phonon is 

spected. Then, because the phonon wave number is 

Kδ

Vf2K π= , one can note 

that an uncertainty of the phonon wave number, in its turn, can be explained in 

terms of an uncertainty in the phonon frequency fδ  as V)f(2K δπ=δ . The 

limiting case of Bragg light scattering in acousto-optics is determined by the well-

known [15] dimensionless inequality 1VLf 22 >>λ . In this limit an uncertainty in 

the momentum of the issuing photon is characterized by the relation Pp δ≈δ , and 

consequently, Kk δ≈δ , because they both are localized inside the same spatial 

area determined by the aperture D . Together with this, the value of kδ  is 

significantly smaller than the photon wave number variation connected with 

scattering from the order j  to the order 1j + , i.e. kδKKkk j1j ≈δ>>≈−+
rr

. By
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this is meant that the wave numbers of both the photons and the phonons are well 

determined in the Bragg limit of acousto-optical interaction. Due to the Heisenberg 

uncertainty principle [16] proclaims that pδ xδ  ∼ h  with Dx ≈δ , one can find that 
 

DVf ≈δ .                                                (2.60) 
 

This value determines the frequency resolution of acousto-optical modulators 

independently on the number of phonons taking part in a process of the Bragg 

light scattering. The number  of resolvable spots for each of the light scattering 

regimes under consideration has the form of 

mN

ffN mm δΔ= . In so doing, one can 

use Eqs.(2.28) and (2.36) for two- and three-phonon processes and compare 

them with the numbers  for the normal one-phonon light scattering [2,3], 1N
 

a)  
Lf
DVn2N

1
1 λ
=  ,       b)  

Lf2
DVnN

2

0
2 λ
=  ,       c)  

Lf3
DVnN

3

0
3 λ
=  .         (2.61) 

 

Then, one can consider the angular resolution of the acousto-optical modulators 

in these three regimes and take the following angular-frequency dependences 
 

Vn
f

2
m

k
K

2
msin

0
m

m
m

λ
==θ  ,                                    (2.62) 

 

which are true within the limits of the corresponding bandwidths . These 

equations directly follow from Fig.2.3c for 

mfΔ

2m = , and from Fig.2.3d for , 

respectively. It is easily to find from Eq.(2.62) that small variations  of the 

angles  are connected with the corresponding variations  of the 

frequencies  as 

3m =

mvar θ

mθ mfvar

mf

m
m0

m fvar
cosVn2

mvar
θ

λ
=θ  .                            (2.63) 

 

The angular size of a resolvable spot is determined by the width of the light beam 

or the modulator’s aperture D  as  )Dn( 0λ≈θδ , which is the angular spreading  
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of the optical beam. Using this ratio, one can estimate the number of resolvable 

spots  located inside a two-side small angular interval of varying as mM
 

m
m

m
m fvar

cosV
Dmvar2M ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θ

=
θδ
θ

=  ,                      (2.64) 

 

where practically . In Eq.(2.64), the term 1cos m≈θ mcosVDT θ=  describes 

the time of scanning the light beam through just one resolvable spot, i.e. 

characterizes the speed of modulator’s operation. Among other things one can put 

that values of the variations  are the same for all . In this 

particular case, Eq.(2.64) shows that one and the same modulator operating in 

one and the same frequency bandwidth provides the number of resolvable spots 

directly proportional to the number m  of phonons taking part in the light scattering 

process. In other words, the exploitation of a two- or/and three-phonon light 

scattering provides growing the specific resolution of modulators under 

consideration.  

mfvar )3,2,1(m =

 

2.13 Estimations and experimental results 
 

It is worthwhile to consider the experimental data from a few practical estimations. 

A TeO2 single crystal has been selected as a material for the acousto-optical cell. 

This crystal has rather dispersive refractive index , whose values are = 2.26 

at  633 nm, = 2.33 at 

0n 0n

=λ 0n =λ  488 nm and = 2.35 at 0n =λ  442 nm [17], and 

the acoustic wave velocity is  cm/s for the slow shear acoustic 

mode running exactly along the 

510616.0V ⋅=

]011[ -axis with the displacement vector directed 

along [ 110 ]-axis [17]. The figure of merit for this shear mode wave in a TeO2-

crystal is s18
2 101200M −⋅= 3/g [8,17], which is the highest one for solid-state 

acousto-optical materials in the visible range known up to now. At first, one has to 

check the realization of just Bragg regime for light scattering in the chosen cell. In  
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such a regime, the Klein-Cook parameter [15] )Vn(fLQ 22λ=  should exceed 

unity. Operating at  nm and at the lowest expected acoustic wave 

frequency 

488=λ

40f =  MHz with  cm one can calculate 0.1L = 10Q ≈ , which confirms 

the Bragg character of light scattering in the regime selected within the visible 

range of light spectrum. Then, to estimate the frequency bandwidth  of 

acousto-optical interaction with the anomalous one-phonon light scattering [13] as 

well as a two- and three-phonon processes of scattering one can use Eqs.(2.28) 

and (2.36) with substituting 

1fΔ

)fL(V=ϕδ  by the enlarged value of =ϕδ E 20.7 ϕδ  

due to the contribution from the acoustic anisotropy in the ( 110 )-plane of TeO2 

crystal [18]. Thus, one can write [7] 
 

a)  E
1212

1
2
001 |nn|n2V2f ϕΔλ−≈Δ −  ,          b)  E

0
2 2

Vnf ϕΔ
λ

≈Δ  , 

 

c)  E
0

3 3
Vnf ϕΔ
λ

≈Δ  .                                       (2.65) 

 

Using Eqs.(2.28) and (2.36), i.e. with  rad, the following set of values 

can be obtained:  33 MHz at 

310−≈ϕδ

≈Δ 1f 633=λ  nm, ≈Δ 2f 1.4 MHz at  nm, 

and 1.2 MHz at  nm. By contrast, numerical estimations based on 

Eqs.(2.65), give  151 MHz at 

488=λ

≈Δ 3f 442=λ

≈Δ 1f 633=λ  nm, ≈Δ 2f 28 MHz at  nm, 

and 15 MHz at  nm. Practically, of course, both these sets of data 

should be considered only as lower and upper limits of bandwidths, respectively, 

for acousto-optical processes under analysis, because the first set does not 

include the acoustic anisotropy, while the second one does not take into account 

a number of the restricting external factors. Nevertheless, Eqs.(2.65) predict that 

the contributions caused by the acoustic anisotropy are able to enlarge the 

frequency bandwidth of acousto-optical interaction in comparison with the case of 

pure acoustic diffraction. 

488=λ

≈Δ 3f 442=λ
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The experimental studies consist in two parts. The first one include measuring the 

bandwidths of acousto-optical interaction in the regimes of a one-, two-, and 

three-phonon light scattering. General schematic arrangement of the 

corresponding set-up for these measurements is presented in Fig.2.14 [7]. Lasers 

with three different wavelengths were exploited to observe a triplet of the wide-

band intensity-frequency distributions, Fig.2.15 [7]. A set of the values recorded 

during these experiments with the same TeO2–cell includes:  31 MHz at 

 nm, 16 MHz at 

≈Δ 1f

633=λ ≈Δ 2f 488=λ  nm, and ≈Δ 3f 4.5 MHz at  nm. 

The measured acousto-optic bandwidth 

442=λ

31f1 ≈Δ  MHz is close to estimation 

without the acoustic anisotropy. Moreover, the value of 31f1 ≈Δ  MHz represents 

approximately an octave at the central frequency MHz, see Fig.2.15a. 60
 

 
 

Fig.2.14. General schematic arrangement for measuring the frequency bandwidths of a TeO2-

modulator in various regimes of multi-phonon light scattering. 

 

         
                        a.                                                    b.                                                      c. 

Fig.2.15. The intensity-frequency distributions for a one-phonon (a), two-phonon (b), and three-

phonon (c) light scattering processes in tellurium dioxide single crystal. 
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These facts mean that  is mainly determined by the bandwidths of 

piezoelectric transducer by itself, so that acoustic anisotropy has no chances to 

manifest itself in the regime of a one-phonon anomalous light scattering. The 

restriction appearing from the transducer covers the effect of acoustic anisotropy, 

and that is why the experimental value of 31 MHz is too close to the numerical 

estimation of 33 MHz. The measured acousto-optical bandwidths 16 MHz 

and 4.5 MHz are rather far from both the above-made estimations, see 

Figs.2.15b and 2.15c. Because all the measurements had been done with the 

same acousto-optical cell, it is unlikely that influence of the piezoelectric 

transducer took place in the last two cases. However, together with broadening 

the bandwidth due to that anisotropy, other physical factor exists, which has the 

restricting effect. This effect is connected with varying the wave vectors on the 

diagrams in Figs.2.3c and 2.3d, because it is ultimately conditioned by the 

necessity of meeting the conservation laws at all the intermediate stages of multi-

phonon light scattering. That is why a contribution from the acoustic anisotropy is 

not able to exhibit itself by the full measure; experimentally one can observe a sort 

of balance between the contributions inherent in anisotropic spreading of the 

acoustic beam and approximate fulfilling of the conservation laws in intermediate 

stages. The proposed analytical model in Section 2.11 of a multi-phonon light 

scattering in anisotropic medium as well as the optical modulators based on TeO

1fΔ

≈Δ 2f

≈Δ 3f

2 

crystal ( =V  0.616 10 5 cm/s) with L = 10 mm were examined experimentally in 

the visible range. At an accurate alignment of the Bragg angle Bθ , the acoustic 

carrier frequency πΩ= 2f  tuned from 50 to 80 MHz and with the acoustic power 

density LhP  varied as well. In particular, it has been observed almost 100% 

efficiency within a two-phonon light scattering into the optical mode  at 2C ≈LhP  

2 mW/mm2 and  488 nm, see Fig.2.15b. Within a three-phonon process, the 

efficiency of light scattering into the optical mode  was about 12% at 

=λ

3C ≈LhP  4 

mW/mm2 and  442 nm, see Fig.2.15c.  =λ
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The last result means that the value of q  lies in a range between 4 and 5 and can 

be rather adequately characterized by 44.4q =  in agreement with recently 

obtained data [7]. 

 

The second part of the experiments was related to estimate the possible 

resolution of modulators under consideration. In so doing, the experimental set-up 

was re-arranged at the scheme shown in Fig.2.16 [7], with scanning very narrow 

slit diaphragm was applied to our needs. This technique gives an opportunity to fix 

the continuous distribution of light intensity in the lobes of an individual spot really 

carefully in rather wide dynamic range of about 25 dB. In parallel, the 

corresponding numerical estimations have been carried out to provide the 

possibility of comparison with the experimental data obtained. 
 

 
Fig.2.16. Schematic arrangement to measure the intensity profile of an individual spot. 

 

The fulfilled measurements have shown an expected result that the intensity 

distributions of individual spots, corresponding to the regimes of a one-, two-, and 

three-phonon light scattering, are very similar to each other. Such a result is 

caused by the fact that the angles of light scattering in these regimes do not 

exceed a few degrees in the case of a TeO2 acousto-optical modulator, so that 

conditions for a one-, two-, or three-fold scattering of light are almost the same; 

mainly, they are determined by optical quality of a crystal and homogeneity of the 

acoustic beam inside the modulator. Because of this only one example of the 

intensity distributions at an individual spot, related to a two-fold light scattering, is  
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presented in Fig.2.17a [7]; numerical estimation at the same conditions is 

displayed in Fig.2.17b [7]. 
 

              
                                              a.                                                                                          b. 

Fig.2.17. The intensity distributions of an individual spot in focal plane of the integrating lens for a 

two-phonon light scattering in a TeO2 acousto-optical modulator:  

(a) experimental plot, (b) numerical simulation. 

 

One can see that the measured level of the first lobes lie around –13 dB with 

initially homogeneous lighting of the modulator’s aperture, which is in agreement 

with the well-known theoretical prediction [19] and looks practically acceptable 

from the viewpoint of application a multi-phonon light scattering to spectral 

analysis of radio-wave and optical signals. 

 

2.14 Conclusions 
 

 A special approach to Bragg scattering of light in optically uniaxial crystals 

marked by the inclusion of multi-fold or multi-phonon processes has been 

developed. 

 The configurations related to two- and three-phonon scattering processes 

to highlight both the angular-frequency conditions and the characteristics that can 

be optimized in TeO2 for realizing 100% efficiency, from the viewpoint of 

applications to light modulation, have been analyzed. 

 The analysis and numerical simulations in terms of the eigen-vectors for 

light modes in anisotropic medium and the effect of optical activity in TeO2 have 

been formulated. 

 77



 The estimations for a two-phonon light scattering are based on well-

grounded data regarding to the anomalous regime, which exhibits a high 

efficiency of acousto-optical interaction. By contrast, the estimations for a three-

phonon light scattering require the comparison of the effective photo-elastic 

constants, inherent in normal and anomalous regimes, with each other. An 

attempt of such a comparison has been developed. 

 The problems regarding to the bandwidth and an improved frequency 

resolution of light modulators, have been investigated and experimentally 

examined. 
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Chapter 3 
 

Schematic arragement of an acousto-optical 

spectrum analyzer and its potential performance 

data 
 

3.1 Introduction 
 

In this Chapter, the schematic arrangement of an acousto-optical spectrometer for 

radio-astronomy will be described. Its main physical parts will be discussed. In 

doing so, the beam shapper which will be utilized to expand the laser beam to 

enter the acousto-optical cell is studied. The distribution of the intensity profile of 

the light beam in the Fourier plane transform is illustrated. The number of 

resolvable spots in one- and two- phonon light scattering regimes is determined. 

Also, the two-phonon light scattering regime in a uniaxial crystal is analyzed. 

Finally, the acoustic attenuation along the acousto-optical cell aperture is 

discussed and the effect of a ligth beam apodization for the enhacement of the 

cell’s potential dynamic range is described. 

 

3.2 Schematic arrangement of an acousto-optical spectrum 

analyzer 
 

The experimental setup to perform the acousto-optical spectrum analyzer, Fig.2.1, 

consists of a laser, a beam shaper, which is an arrangement of 4 prisms, an 

acousto-optical modulator (AO modulator) and a multi-lens system to obtain a 

multi-channel Fourier pattern on a CCD linear array.  
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Fig.3.1 Schematic arragemente for the implementation of an acousto-optical spectrum analyzer. 

 

To design the optical scheme; the beam shaper and the multi-lens system, some 

considerations must be taken into account. First of all, the beam shaper requires 

to perform a special ratio between the size of the entrance beam and the output of 

it. And second, the multi-lens system needs to be treated as a thick lens, which 

will act as a Fourier transformer; the size of the diffraction orders must match the 

size of the CCD linear array pixels, which has 2048 elements of 14 μm in width, 

and 14 μm in height, the array length is about 29 mm. 

 

3.2.1 Beam shaper: beam expanding factor 
 

One has to find the ratio between the width of the beam at the end of the prism 

and the width at its entrance. This ratio must be in terms of the angle of incidence 

of the beam, and the angle and the index of refraction of the prism; this is 

because, it is necesary to have control of the output beam width at the end of the 

prism by controlling the angle of incidence, since the width of the beam as well as 

the angle and refraction index of the prism are fixed. To obtain this kind of ratio, 

one applies the well known Snell’s law [1] for the first interface (air-glass) of a 

prism (Fig.3.2) with , it has the form 1n0 = θ=ϕ sinnsin , so the angle of 

refraction is 
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⎥⎦
⎤

⎢⎣
⎡ ϕ

=θ −
n

sinsin 1 .                                            (3.1) 

 

From Fig.3.3, one may see that, 
1

0
c
d

sin =β ; where ϕ−π=β 2 , and 
1c

dcos =η ; 

where . So, the ratio, θ=η dd0 , is given as 
 

( )
θ
ϕ−π

=
θ
β

=
cos

2sin
cos
sin

d
d0 ,                                   (3.2) 

 

where θ is given by Eq.(3.1). 

 
 

Fig.3.2 Diagram of the interaction of a light beam passing through a prism. 

 

For the second surface, Snell’s law gives us, γ=ε sinsinn , so the angle of 

incidence in the second surface is given as 
 

⎥⎦
⎤

⎢⎣
⎡ γ

=ε −
n

sinsin 1 ,                                            (3.3) 

from Fig.3.3 one has that 

θ−α=ε  .                                                  (3.4) 
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And, also 
2c

dcos =λ ; where ε=λ , and 
2

1
c
dsin =ξ ; where γ−π=ξ 2 . So, the 

ratio dd1  is 

( )
ε

γ−π
=

ε
ξ

=
cos

2sin
cos
sin

d
d1 ,                                    (3.5) 

 

where  is given by Eq.(3.3). To obtain the ratio between  and  one has to 

combined Eqs.(3.2) and (3.5), which gives us 

ε 1d 0d

 

( )
( ) εϕ−π

θγ−π
=

cos2sin
cos2sin

d
d

0
1 .                                     (3.6) 

 

Knowing that, ( ) bsinacosbcosasinbasin −=− , then 
 

( ) ( ) ( )[ ]( )
( ) ( ) ( )[ ]( ) εϕ

θγ
=

εϕπ−ϕπ
θγπ−γπ

=
coscos
coscos

cossin2cos)(cos2sin
cossin2cos)(cos2sin

d
d

0
1 . 

(3.7) 

Using Snell’s law in the second interface (glass-air) of a prism, see Fig.3.3, one 

may obtain that , and using Eq.(3.4), gives us ( ε=γ − sinnsin 1 )

)
 

([ ]θ−α=γ − sinnsin 1  .                                    (3.8) 
 

Substituting Eq.(3.8) into Eq.(3.7) and knowing that, ( ) 21 x1xsincos −=− , 

where , one obtains ( θ−α= sinnx )
 

( )
( ) θ

θ−αϕ
θ−α−

= cos
coscos
sinn1

d
d 22

0
1 . 

 

Introducing Eq.(3.1) into the cosine and by doing some algebra, one obtain the 

ratio between the width of the output beam and the width of the input beam; in 

terms of the top angle of the prism α , the angle of incidence θ , and the refractive 

index n . And, it is given by 
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( )
( )θ−αϕ

ϕ−θ−α−
=

coscosn
sinnsinn1

d
d 2222

0
1  .                          (3.9) 

 

Finally, the factor of beam expanding is given as [2] 
 

)(coscosn
])(sinn1[)sinn(

d
dB

2222

0
1

1 δ−αϕ
δ−α−ϕ−

==  ,                  (3.10) 

 

where ⎟
⎠
⎞

⎜
⎝
⎛ ϕ

=δ
n

sinarcsin . In the simplest case, when all the glass prisms are 

identical to each other and the angles ϕ  of incidence are the same for all of them, 

one can write . ( )m
1m BB =

 

                
                                     a.                                                                          b. 

Fig.3.3. The light beam passing through a glass prism: (a) 1m = , (b) . 2m =

 

Even in this simplest case of identical prisms, one can take more than one prism 

to provide the needed expanding factor. If the number of prisms is even, the beam 

direction can be saved with an accuracy of some spatial parallel shift, see Fig.3.3. 

That is why the numbers { }4,2,1m =  are taken for consideration within this work. 
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Fig.3.4. Linear expanding factor  for m  prisms with mB 5.1n =  and α = 30°. 

 

With the initial laser beam diameter of about 1d0 =  mm and the needed optical 

aperture for an acousto-optical cell of about, for example, 35D =  mm, one can 

consider the cases with  or 2m = 4m = . The corresponding angles  of 

incidence become to be rather large. The plots illustrating the possibilities of light 

beam expansion by triplet of sets including 

ϕ

{ }4,2,1m =  prisms with  and α 

= 30° are presented in Fig.3.4 [2]. 

5.1n =

 

3.2.2 Transmittance of a multi-prism beam shaper 
 

Now, one has to calculate the transmittance of each prism, to do so, one has to 

use the Fresenel’s formulae for the transverse ( T⊥ ) and parallel ( T|| ) 

transmittance; which are given as [1] 
 

( )ti
2

it
2

tt
sin

cossincosn4T
θ+θ

θθθ
=⊥ ,                              (3.11) 

and, 

( ) ( )ti
2

ti
2

it
2

tt
||

cossin
cossincosn4T

θ−θθ+θ

θθθ
= ,                             (3.12) 

assuming that . 1ni =
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Knowing from Snell’s law that, itt sinsinn θ=θ , introducing this into Eqs.(3.11) 

and (3.12); and having that, acosasin2a2sin = , yields 
 

( )( )
( ) ( )ti

2
it

ti
2

iitt
sin

2sin2sin
sin

cossin2cossin2T
θ+θ

θθ
=

θ+θ

θθθθ
=⊥ , 

(3.13) 

( )( )
( ) ( ) ( ) ( )ti

2
ti

2
it

ti
2

ti
2

iitt
||

cossin
2sin2sin

cossin
cossin2cossin2T

θ−θθ+θ

θθ
=

θ−θθ+θ

θθθθ
= . 

(3.14) 

The total transmittance of the prism is given by the product of the transmittance of 

the two interfaces involved in the path of the beam through the prism as 
 

⊥⊥⊥ = 21tot T*TT .                                           (3.15) 
 

The transmittance of the first interface (air-glass) of the prism, see Fig.3.2, with 

 and , Eq.(3.13) takes the form ϕ=θ i θ=θ t
 

( )θ+ϕ
ϕθ

=⊥ 21
sin

2sin2sinT .                                         (3.16) 

 

The following relations are used to obtain a relation for T1⊥, 
 

                                 a)  acosasin2a2sin = , 
 

b)  ( ) ϕθ−ϕθ=ϕ−θ sincoscossinsin , 
 

c)  ( ) ϕθ+ϕθ=ϕ+θ sincoscossinsin .                        (2.17) 
 

And, by adding or subtracting Eqs.(3.17b) and (3.17c) one obtain 
 

a)  ( ) ( ) ϕθ=ϕ+θ+ϕ−θ cossin2sinsin , 
 

b)  ( ) ( ) θϕ=ϕ−θ−ϕ+θ cossin2sinsin .                       (3.18) 
 

By applying Eq.(3.17a) with Eqs.(3.18) into Eq.(3.16) gives us 
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( )
( )( )

( )
( ) (

( )
) .

sin
sinsin

sin
cossin2cossin2

sin
2sin2sinT 2

22

221
θ+ϕ

ϕ−θ−ϕ+θ
=

θ+ϕ

θϕϕθ
=

θ+ϕ

ϕθ
=⊥  

 

Arranging the terms, the transmittance of the first interface is given by 
 

( )
( )

.
sin
sin1T 2

2
1

ϕ+θ

ϕ−θ
−=⊥                                         (3.19) 

 

For the transmittance of the second interface T2⊥ one can do a similar process as 

before, except that in this case, ε=θ i , and γ=θ t , and taking into account 

Eq.(3.4), one has that 

( )
( )

.
sin
sin1T 2

2
2

θ−α+γ

θ+α−γ
−=⊥                                    (3.20) 

 

So, the total transverse transmittance, Eq.(3.15), can be rewritten as [2], 
 

( )
( )

( )
( )

.
sin
sin1

sin
sin1T 2

2

2

2
tot

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

θ−α+γ

θ+α−γ
−∗

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ϕ+θ

ϕ−θ
−=⊥                      (3.21) 

 

The parallel transmittance for the first interface (air-glass) with ϕ=θ i , and θ=θ t  

is 

( ) ( )θ−ϕθ+ϕ

ϕθ
= 22||1

cossin
2sin2sinT ,                               (3.22) 

 

By doing the same procedure as in the case of the transverse transmittance, one 

has 

[ ] [ ]
( ) ( )

( ) ( )
( ) ( )

.
cossin
sinsin

cossin
cossin2cossin2T 22

22

22||1
θ−ϕθ+ϕ

θ−ϕ−θ+ϕ
=

θ−ϕθ+ϕ

θϕϕθ
=  

 

By arranging the terms, the transmittance of the first interface is given as 
 

( )
( )
( )

.
sin
tan

cos
1T 2

2

2||1
θ+ϕ

θ−ϕ
−

θ−ϕ
=                               (3.23) 
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For the transmittance of the second interface  a similar process as before has 

to be done, except that in this case 

||2T

ε=θ i , and γ=θ t , so one obtain 
 

( )
( )
( )

.
sin
tan

cos
1T 2

2

2||2
γ+ε

γ−ε
−

γ−ε
=                                (3.24) 

 

By introducing Eq.(3.4) into Eq.(3.24) yields 
 

( )
( )
( )

.
sin
tan

cos
1T 2

2

2||2
γ+θ−α

γ−θ−α
−

γ−θ−α
=                        (3.25) 

 

The total parallel transmittance, ||2||1||tot T*TT = , can be written as [2], 

 

( )
( )
( ) ( )

( )
( )

.
sin
tan

cos
1*

sin
tan

cos
1T 2

2

22

2

2||tot
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

γ+θ−α

γ−θ−α
−

γ−θ−α⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

θ+ϕ

θ−ϕ
−

θ−ϕ
=  

(3.26) 

In the particular case of one glass prism ( 1m = ) with 5.1n =  and , the 

plots illustrating Eqs.(3.13) and (3.14) are depicted in Fig.3.5. It is seen from 

Fig.3.5 that always 

030=α

( ) ( )||TT 11 <⊥  and, consequently,  where 

 and . Therefore, only the last case 

related to  will be further considered here later. 

( ) ( ||TT mm <⊥ )

}

( ) ( ) m
1m ]T[T ⊥=⊥ ( ) ( ) m

1m ]||T[||T =

( )||Tm

 

Restricting into the particular case of laying the light polarization in the beam-

expanding plane, one arrives at the following combined diagram for both the 

beam expanding and the optical energy transmission, which is shown in Fig.3.6 

[2]. The plots for the optical energy transmission in Fig.3.6 are governed by 

 for . This combined diagram gives various practical 

possibilities. For instance, selecting the beam expansion factor as , one 

can find the two options:  1) 

( )||Tm { 4,2,1m =

35B =

2m = , °≈ϕ 832 , 35B2 ≈ , and  ( i.e. 40 % )  4.0T2 ≈
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or 2) , , , and 4m = °≈ϕ 724 35B4 ≈ 7.0T4 ≈  (i.e. 70 %), as they follow from 

the combined diagram in Fig.3.6. 

 

 
Fig.3.5. Comparison of the transmissions inherent in one glass prism 

with  and α = 30° for two states of light polarization. 5.1n =

 

 
Fig.3.6. The combined diagram illustrating both the beam expanding and  

the transmission in glass prism shapers with { }4,2,1m = , 5.1n = , and . 030=α

 

Then, the top angle α  of glass prisms can be optimized. Again, one takes 

 and  for the same case of laying the light polarization in a beam 

expanding plane and find the contribution of the top angle 

{ 4,2m = } 5.1n =

α , see Fig.3.7 [2]. 
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a.                                                                           b. 

Fig.3.7. Diagrams illustration the effect of varying the prism top angle :  α

(a) 2m = , and (b) 4m = . 

 

One can see that the influence of this angle is not too much, but it can be 

considerable in a view of precise optimization of the prism shaper performances. 

 

3.2.3 An ideal thick lens as a Fourier transformer 
 

There are two main kinds of lenses in optics, thin lenses and thick ones. In the 

case of a thin lens, the spacing between its two surfaces is negligible. In the other 

hand, the separation along the optical axis between the two surfaces of a thick 

lens is nonnegligible, with such lenses one can obtain short focal lengths. In this 

case is of great importance to have such a short focal length so that the acousto-

optical spectrometer can be optimized in size. One of the most remarkable and 

useful properties of a converging lens is its inherent ability to perform Fourier 

transforms. The systems studied are coherent systems, linear in complex 

amplitude, and the distribution of light amplitude across a particular plane behind 

the lens is of interest. In some cases this is the back focal plane of the lens, which 

by definition is a plane normal to the lens axis, situated at the distance , focal 

length, behind the lens. 

LF
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Fig.3.8. Scheme to perform the Fourier transfrom with a thick positive lens,  

which is illuminated by a plane wave [3]. 

 

To find the Fourier transform of the incident field ( )xU~l  in a thick lens the Fresnel 

diffraction formula with , can be used [3] LFz =
 

( ) ( ) ( )∫
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
π

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= dxxu

F
2iexpx

F2
kiexpxU~u

z2
kiexpikzexpuU~

L

2

L

'
l

2
FL . 

(3.26) 

The complex field  across the plane( y,xU~ '
l )

)

 immediately behind the lens is 

related to the field  incident on a plane inmediately in front of the lens as 

. The phase transformation representing the lens is 

( y,xU~l

( ) ( ) ( )xU~xtxU~ ll
'
l =

 

( ) )ˆi(expy,xtl φ= ,                                         (3.27) 
 

with  which is the total phase delay suffered by the 

wave at the coordinate x when passing through the lens, 

( ) ( )[ ] 0k1nxnkxˆ Δ+−Δ=φ

0Δ  is the maximum 

thickness of the lens on its axis, Δ(x) is the thickness at the coordinate x, see 

Fig.3.9, and n  is the refraction index of the lens. The first term on the right-hand 

side of the above equation is the delay caused by the lens and the second one 

refers to the delay produced by the remaining region of free space between 

planes.  

 

 91



The problem is to find the thickness function Δ(x), which can be assume to be of 

the form ( ) ( ) ( ) ( )xxxx 321 Δ+Δ+Δ=Δ , because the lens has been splitted in 

three parts, see Fig.3.9. 

 

 
Fig.3.9. Side view of a thick lens and how it is possible to split it in three parts. 

 

Referring to the geometries in Fig.3.10, the thickness function for the first and the 

third component are given by 
 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−−Δ=Δ 2

1

2
1011

R
x11Rx ,     ( )

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−−Δ=Δ 2

2

2
2033

R
x11Rx , 

 

respectively. The second component of the thickness function comes from a 

region of constant thickness Δ02, see Fig.3.9. The total thickness is 
 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−+
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⎟

⎠
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⎜⎜
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⎝

⎛
−−−Δ=Δ 2

2

2
22

1

2
10

R
x11R

R
x11Rx , 

 

where  .0302010 Δ+Δ+Δ=Δ
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Fig.3.10. Calculation of the thickness function. Geometry for Δ1 and Δ3. 

 

The thickness function can be simplified if attention is restricted to portions of the 

wavefront that lie near the lens axis, i.e., paraxial rays. Considering only values of 

x and y sufficiently small to allow the following approximations  
 

.
R

yx1
R

yx1,
R

yx1
R

yx1 2
2

22

2
2

22

2
1

22

2
1
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−  

 

Then, the thickness function can be rewritten as 
 

( )
2

2

1

2
02

2

2
22

1

2
10 R

x
R
x

R
xR

R
xRx +−Δ=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−Δ=Δ .                  (3.28) 

 

The first term of the thickness function Δ0 using the paraxial approximation theory, 

has the form [4]  

( ) ( )
.

nRR
1n

R
1

R
11n

F
1

21

2
0

21L

−Δ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=                        (3.29) 

 

so one has that 

( ) ( ) ( 12
L

2
21

0 RR
1n

n
F1n
nRR

−
−

+
−

=Δ ) .                          (3.30) 

 

Introducing Eq.(3.30) into Eq.(3.28) yields 
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( ) ( ) ( ) ( )
2

2

1

2
12

21
R
x

R
xRR

1n
n

1n
nRRx +−−

−
+

−
=Δ  ,                   (3.31) 

 

Then, Eq.(3.27) with Eq.(3.31), and having that ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

21
1*

L R
1

R
11n

F
1 , can be 

written as 

( ) [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Δ= 2

*
L

0l x
F2
kiexpnkiexpy,xt ,                          (3.32) 

 

Substituting Eq.(3.32) into Eq.(3.26) and having that the field behaind the lens is 

 with the pupil function ( ) ( ) ( ) )x(PxtzkiexpAxU~ l
'
l = 1)x(P = , yields 

 

( ) ( ) ∫
∞

∞−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ

π
−Δ

λ
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⎟
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F

2iexpnkiexp
Fi

u
F2
kiexp

zkiexpA)u(U~ *
L

0*
L

2
*
L

FL . 

(3.33) 

By restricting the diameter of the lens to be 2a, i.e., from -a to a, Eq.(3.33) takes 

the form 

( ) ( ) ( )∫
−

π−Δ
λ

⎟
⎟

⎠

⎞

⎜
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⎝

⎛

=
a

a
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2
*
L

F dxxf2iexpnkiexp
Fi

u
F2
kiexp

zkiexpA)u(U~ L
, 

(3.34) 

where the spatial frequency is given by *
L

x
F
uf

λ
= . Then, 

( )[ ] ( )[ ]xf2icsinaznkiexp
Fi

u
F2
kiexp

A)u(U~ x0*
L

2
*
L

F L π−+Δ
λ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

= . 

(3.35) 

And, the intensity is given as 
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( ) ( ) 2
x

22 af2csinaAuI π= .                               (3.36) 
 

It can be seen from Eq.(3.36) that the intensity profile of the focal spot of a light 

beam before passing through a thick lens has a sinc distribution. The width of this 

distribution will depend on the physical dimensions of the thick lens. 
 

3.3 Potential performance data of the acousto-optical 

spectrum analyzer 
 

In this Section, the discussion on how to estimate the number of resolvable spots 

of an acousto-optical spectrometer for the cases of one-phonon anomalous light 

scattering regime and for two-phonon regime is performed. Also, the comparisson 

of the transfer function for one- and two phonon light scattering regimes; and how 

it is possible, having the transfer function to determine the angular bandwith of a 

cell is analyzed. Finally, the effect of the acoustic attenuation as well as the 

Gaussian apodization of the incident beam profile along the cell’s aperture is 

studied. 
 

3.3.1 Estimating the number of resolvable elements (spots): one-

phonon light scattering regime 
 

Acousto-optical interaction by itself leads to deflection of light beam by certain 

angle proportional to the frequency of an acoustic wave. At first, let us consider 

basic relations characterizing the parameters of acousto-optical deflectors based 

on one- and two-phonon light scattering. The most important of them is the 

number of resolvable elements. The number  of resolvable elements 

corresponds to either the number of resolvable frequencies in the plane of Fourier 

transform or the number of resolvable spots in the plane of pattern. This number 

can be determined as a ratio 

mN

θδθΔ=mN  of the maximal angle range  of 

deflection for the scattered light beam to the angular spreading  

θΔ

)Dn( 0λ=θδ   of 
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optical beam, where  is the beam width or the acousto-optical cell’s aperture 

and  is the refractive index of the crystal. At this stage, one has met the 

problem: how to explain the maximal angle range 

D

0n

θΔ  of deflection in terms of the 

cell’s frequency bandwidth fΔ . For this purpose, one has to analyze the 

corresponding vector diagrams [5], see Fig.3.11. 
 

         
a.                                                                          b. 

Fig.3.11. Vector diagram for a one-phonon light scattering, being 

non-degenerated by a two-phonon process, in a tellurium dioxide crystal. 

 

The corresponding angular frequency dependences are given by 
 

a)  ( )
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⎣
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0 nn
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b)  (
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−=θ 2

1
2
0

2

1
1 nn

K
k1

kn2
Ksin )  ,                      (3.39) 

 

where KK
r

=  , knkk 000 ==
r

, knkk 111 ==
r

, and  are the current 

refractive indices of TeO

0n 1n

2 crystal in the crystallographic plane presented in 

Fig.3.11, k  is the light wave number in a vacuum. It follows from Fig.3.11 that the 

angle  of incidence is almost constant, while the angle  of scattering is 

varied in accordance to Eq.(3.39b) reflecting the corresponding Bragg condition. 

By differentiating Eq.(3.39a), one can find  that  the central acoustic frequency , 

0θ 1θ

0f
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providing similar situation and being in fact optimized for a one-phonon 

anomalous light scattering in a crystalline material, is given by 
 

)nn(n2Vf 1000 −
λ

= ,                                      (3.40) 

 

where  is the light wavelength in a vacuum. Rewriting Eqs.(3.39) in terms of the 

acoustic frequency, one can obtain [5] the following approximate relation between 

the frequency deviation  from the central acoustic frequency  and the 

incident angle variation 

λ

)ff( 0− 0f

])f()f([ 000 θ−θ  in the angle of incidence 
 

)nn(V
f

cos])f()f([f2)ff(
10

0
000000 −

λ
θθ−θ≈−  .              (3.41) 

 

The incident angle variation is determined by )fL(VL 0S =Λ=ϕ , which is the 

angle of the acoustic beam spreading, where L  can be considered in rather good 

approximation as the characteristic size of the radiating acoustic aperture. 

Consequently, one can write )fL(V)0f()f( 000 θ =−θ . Then, the bandwidth 

includes a doubled frequency deviation, i.e. )ff(2f 0−=Δ , because the 

deviation represents a function being approximately symmetric relative to the 

central frequency . Using these relations, one can obtain from Eq.(3.41) that 0f
 

L
cosn2

V2f 00
λ

θ
=Δ  .                                       (3.42) 

 

Because the output light beam is deflected by the angle 
 

0000
1 cosLn

22
cosVn

f
θ

λ
=

θ
Δλ

=θΔ  ,                           (3.43) 

 

one can estimate the number N  of resolvable spots as 
 

0

01
m cosL

n2D2N
θλ

=
θδ

θΔ
=  .                              (3.44) 
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At the first glance, Eq.(3.44) does not include any frequency dependence, but it is 

not quite true because  and  are not independent on each other for the 

optimized regime of a one-phonon anomalous light scattering under 

consideration. To resolve this difficulty one may use the data taken from Ref.[6]. 

These data consists of the following three measured points:  488 nm, 

λ 0f

=λ =0f  

63.3 MHz;  633 nm, =λ =0f  37.7 MHz; and =λ  1060 nm,  15.6 MHz. Using 

these data, one can create an approximate formula 

 including these three points; here 

, , and 

=0f

1
3021 )h]MHz[f(hh]m[ −++=μλ

25077.0h1 = 009.16h2 = 183.4h3 = . Inserting this approximate formula 

into Eq.(3.44) and assuming that 1cos 0 ≈θ  , one can obtain [2] 
 

( )[ ]1
3021

0
1

hfhhL

n2
D2N

−++
≤  .                          (3.45) 

 

The acoustic beam spreading along a path of the light beam propagation 

condition is the second geometrical limitation of the number . The condition, 

bounding the piezoelectric transducer length L  with the distance to the point of 

half power level in the near-field zone of acoustic wave, being practically 

equivalent to D , is 

mN

)V2(fLD 0
2= . Then, the Bragg regime of a one-phonon 

light scattering is provided when the well-known Klein-Cook parameter [7] 

)VfL(λ)n2(Q 22
00 ⋅π=  does not exceed π2  (here n  is an averaged refractive 

index of a crystalline material). Therefore, one can estimate that 

)f2(VQnL 2
0

2
0 λπ=  with a value of  as the case requires. Substituting two 

last expressions for D  and L  into Eq.(3.45) yields [2] 

Q
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0

21
3021

23

2232
0

2
f])hf(hh[2

VQn
N

−++π
≤  .                        (3.46) 
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The third principle limitation is connected with the acoustic attenuation. It can also 

be represented as function of the acoustic frequency . Let us use the factor 0f Γ  

of acoustic attenuation expressed in dB/(cm GHz2 ), so that a B -dB level of 

attenuation will require the aperture of . Substituting this formula into 

Eq.(3.45), one can find [2] 

2
0

1 fBD −−γ≤

 

])hf(hh[L
n2

fV
B2N 1

3021

0
2
0

3 −++γ
≤  .                     (3.47) 

 

Thus, the number  of resolvable elements is restricted by a triplet of the 

above-mentioned independent limitations. In the particular case of a one-phonon 

optimized anomalous light scattering in a TeO

mN

2 crystal, one can take, for example, 

the following values inherent in this crystalline material: V  = 0.616 105 cm/s,  = 

488 nm, n  = 2.3, and   = 240 dB/(cm GHz

λ

Γ  2 ). The numerical estimations have 

been realized for  cm; the attenuation factors along the full aperture 

 (dB/aperture), and the Klein-Cook parameter as 

4,3,2,1D =

6,4,3B = π= 2Q , see Fig.3.12 

[2]. 
 

 
 

Fig.3.12. The combined diagram illustrating the effect of a triplet of the restricting factors. Solid 

slowly growing lines for N1 with D = 1, 2, 3, and 4 cm. Dashed line for N2 with Q = 2 π. Solid 

hyperbolic-like falling curves illustrate N3 and reflect contributions of the acoustic attenuation;  

B = 3, 4, and 6 dB along the aperture. 
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One can see that a TeO2 acousto-optical cell with 4D =  cm, , and π= 2Q 4B =  

(dB/aperture) is capable to provide 2500Nm ≈  resolvable spots in a one-phonon 

optimized anomalous light scattering regime at a frequency  of about 65 MHz. 0f

 

3.3.2 Estimating the number of resolvable elements ( spots ) : two-

phonon light scattering regime 
 

As in the case of one-phonon light scattering regime; one has to make use of the 

ratio between the maximal angle range of deflection for the scattered light beam 

and the angular spreading of the optical beam, θδθΔ=N . Once more, one has 

met the problem how to explain the maximal angle range  of deflection in 

terms of the frequency bandwidth 

θΔ

fΔ  of a cell. For this purpose, one has to 

analyze the corresponding vector diagrams, see Fig. 2.3a. 

 

For the case of a two-phonon light scattering, Fig.2.3a should be considered. A 

triangular of the wave vectors with 202 θΔ+θ=θ  leads to the formula 

 

( )[ ] ( )[ ]20
22 2cos1k2KK4 θΔ+θ−=Δ+  ,                (3.48) 

 

where 20 kkk
rr

==  . All the angles are really small, so 1cos 0 ≈θ , 

, 1cos 2 ≈θΔ kKsin 0 =θ , and 22sin θΔ≈θΔ . Considering Eq.(3.48) in the 

first order approximation and ignoring the term  in the right hand side. After 

obvious simplifications, one can find 

2)K(Δ

2kK2 θΔ=Δ . Now, Vf2K 2Δπ=Δ , where 

 is the frequency bandwidth of a cell based on a two-phonon light scattering, 

and 

2fΔ

λπ= 0n2k . After these substitutions, it yields in terms of the maximal angle 

range of deflection, , [8] 2θΔ
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a)  2
0

2 2
Vnf θΔ
λ

=Δ  ,        b)  2
0

2 f
Vn

2
Δ

λ
=θΔ  ,        c)  2

2
m fT2N Δ=

θδ

θΔ
= . 

(3.49) 

However, as it has been shown in previous section in terms of the angles, the 

frequency bandwidth of a two-phonon light scattering can be estimated as 

4ff 12 Δ≈Δ  at a level of  (this estimation is in direct agreement with the 

result from Ref.[10] ), so that a two-phonon light scattering in a cell with the same 

aperture provides as twice as less number  together with as twice as higher 

angular (and frequency) resolution in comparison with a one-phonon regime of 

light scattering. 

dB4−

mN

 

For high-quality deflectors, the number  should be as much as possible, 

however, the magnitude of  is restricted by at least two geometrical factors 

and acoustic attenuation. The first geometrical factor is maximally acceptable 

cell’s aperture D . A two-phonon light scattering admits the inequality 

mN

mN

8ff 22 ≤Δ . 

That is why in connection with the first restricting factor one can write [8] 
 

V4
fDN 2

1 ≤ .                                                (3.50) 

 

The second geometrical limitation of the number N , as before is in conection with 

the bounding of the piezo-electric transducer length L  with the distance to the 

point of half power level in the near-field zone of acoustic wave, being practically 

equivalent to D , is )V2(fLD 2
2= . The Bragg regime of a two-phonon light 

scattering is provided when the well-known Klein-Cook parameter 

)VfL()n2(Q 22
2λ⋅π=  exceeds π2  (here n  is an averaged refractive index of a 

material). Therefore, )f2(VQnL 2
2

2 λπ=  with a value of  as the case requires. 

Substituting two last expressions for D  and L  into Eq.(3.50), yields [8] 

Q
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2
2

22

222
2

f32
VQnN

λπ
≤ .                                           (3.51) 

 

Equation (3.51) includes the product  whose multiplicands λ  and  are not 

independent on each other for a two-phonon light scattering. To resolve this 

difficulty one may use, as before, the data taken from Ref.[6], which gives us an 

approximate formula , where , 

, and . Inserting this approximate formula into Eq.(3.50), 

one can obtain [8] 

2
2

2 fλ 2f

1
3021 )h]MHz[f(hh]m[ −++=μλ 25077.0h1 =

009.16h2 = 183.4h3 =

2

32
2
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hh
f32
VQnN

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
π

≤ .                            (3.52) 

 

The third principle limitation is connected with the acoustic attenuation. It can also 

be represented as function of the acoustic frequency . Let us use the factor 2f Γ  

of acoustic attenuation expressed in dB/(cm GHz2 ), so that a B -dB level of 

attenuation will require the aperture of 2
2

1 fmD −−γ≤ . Substituting this formula 

into Eq.(3.50), one can find [8] 

2
3 fV4

BN
γ

≤ .                                              (3.53) 

 

Thus, the number  of resolvable elements (spots) is restricted by a triplet of 

these independent limitations. In the particular case of a two-phonon light 

scattering in a TeO

mN

2 crystal, one can take the following values V  = 0.616 105 

cm/s, λ  = 488 nm, n  = 2.3, and Γ  = 240 dB/(cm GHz 2 ).  
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Fig.3.13. Combined diagram illustrating the effect of a triplet of the restricting factors. 

Solid straight lines for  N1, D = 1, 2, 3, and 4 cm. Dashed line for N2 with Q = 4 π.  

Solid hyperbolic-like for N3 and B = 3, 4, and 6 dB along the aperture. 

 
The numerical estimations have been realized for 4,3,2,1D =  cm;  

(dB/aperture), and , see Fig.3.13 [8]. One can see that a TeO

6,4,3B =

π= 4Q 2 acousto-

optical cell with  cm, 4D = π= 4Q , and 4B =  (dB/aperture) is capable to provide 

 resolvable spots in a two-phonon light scattering regime with the twice 

frequency resolution at a frequency  of about 60 MHz. 

1000Nm ≈

2f

 

3.3.3 The transfer function inherent in acousto-optical cell operating in 

a two-phonon light scattering regime 
 

There are a lot of optical systems, which can be considered as linear in behavior 

under quite natural restrictions. An assumption about the linearity of any system 

simplifies its analysis in a marked degree. For example, the analysis related to 

passing an arbitrary signal through a linear system can be performed on the basis 

of only system’s responses to some simple perturbations and the principle of 

superposition. One of similar simple perturbations is an impulse signal. In this 

case, one can write the ratio bounding the input signal  and the output one 

 as 

)z(s1

)z(s2
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1211122 zd)z,z(h)z(s)z(s ∫
+∞

∞−

=  .                        (3.54) 

 

The function  represents the impulse response and characterizes the 

light field distribution at the output of optical system conditioned by the light 

source at the point . For an spatially invariant system, one can put that 

, so that Eq.(3.54) takes the form of a convolution integral. 

Performing the Fourier transform over such a convolution integral, one can find 

, where 

)z,z(h 21

1z

)zz(h)z,z(h 1221 −=

)(H)(S)(S 12 θθ=θ )(S2 θ  and )(S1 θ  are the spatial spectra of the 

signals  and ; )z(s1 )z(s2 )(H θ  is the transfer function of this spatially invariant 

optical system. Thus, the analysis of such a system boils down to finding 

 or . )zz(h 12 − )(H θ

 

The transfer function of free space which characterizes the angular spectrum of 

the scattered light governed by two-phonon processes is given as 
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The introduced spectral functions )(E 00 θ  and )(E 22 θ  are connected with the 

amplitudes of the incident and scattered light waves at the central plane 2Lx = . 

Using Eq.(3.55) for the angular spectrum, one can find the light field scattered due 

to a two-phonon acousto-optical interaction at any arbitrary point. To do so, one 

should multiply  by the corresponding transfer function and then calculate 

the reversed Fourier transform. The simplest results can be obtained in a far zone 

of light diffraction or in the focal plane of a lens placed behind the interaction area. 

)(E 22 θ
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In both these cases, the amplitude distribution of the scattered light coincides 

formally with Eq.(3.55) within an inessential constant factor [3]. It should be noted 

that an acousto-optical cell could be considered as a linear optical system under 

certain limitations. In particular, it is true when efficiency of a two-phonon light 

scattering is rather low. If the monochromatic acoustic wave 

 is passing through a cell, the spectrum ])tzK(i[expu)t,z(u 000 Ω−=

)KK()ti(expu2)K(U 000 −δΩ−π=  of this acoustic signal includes only one 

component. Substituting the last formula into Eq.(3.55), one can obtain 
 

)ti2(exp)(E 022 Ω−=θ 00
0

2000 d)
n

K()(T~)(E θ
⎭
⎬
⎫

⎩
⎨
⎧

θ−
π
λ

−θδθθ∫
∞

∞−

 , 

(3.56) 

where 

2
B00

B00
2

022
00

])(LK2[

])(LK2[sin
2
kLq4)(T~

θ−θ

θ−θ

π
=θ  .                   (3.57) 

 

Equation (3.56) makes it possible to consider acousto-optical cell as a linear 

optical system with the transfer function , which is real-valued and positive 

in the transmission bandwidth. This system shifts the spectrum of optical signal by 

the value , but does not carry in any phase distortions. The profiles of 

 for both one- and two-phonon regimes are shown in Fig.3.14. With the 

help of the function profile  makes is possible  to determine the angular 

bandwidth  of a cell. One can see that the bandwidth in a two-phonon regime 

is about 4 times narrower in comparison with a one-phonon regime of light 

scattering at a level of  dB. 

)(T~ 0θ

02Ω

)(T~ 0θ

)(T~ 0θ

θΔ

4−
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Fig.3.14. The profiles of transfer functions: solid line is for a two-phonon light scattering, dashed 

line for a one phonon regime is presented for a comparison. 

 

The transfer function does not give the complete description for the process of 

passing optical signals through an acousto-optical cell, because it does not 

account the finiteness of cell’s aperture along the z -axis. This function 

characterizes only variations in the signal spectrum, conditioned by selective 

properties of a cell. To take into account the finite aperture of a cell one can use a 

system including an infinite cell and an aperture diaphragm behind of a cell. 

Operating over such a system, one can first exploit the above-obtained transfer 

function for infinite cell. Then, the spectrum of signal at the output of already finite-

aperture system can be estimated as the convolution between  and the 

Fourier transform of that limiting aperture diaphragm. Finally, it is seen from 

Eq.(3.57) that with ,  = const, the angular range of a cell does not depend on 

a type and geometry of acousto-optical interaction, but it is determined by only the 

spreading angle 

)(E 22 θ

0n 1n

)Lf2(VS =ϕ  of an acoustic wave. Often, even in the cases 

that the dependences ),(n 201,0 θθ  exist in anisotropic media, one may ignore 

these angular dependences due to the ranges of varying 2,0θ  are small. 
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3.3.4 Effect of acoustic attenuation along the aperture of acousto-

optical modulator 
 

The Bragg regime of light diffraction occurs with a large length L  of interaction 

between light and acoustic waves. In this case, the dynamic acoustic grating is 

rather thick, so during the analysis of diffraction one has to take into account the 

phase relations between waves in different orders. Such a regime can be realized 

only when the angle  of light incidence on a thick acoustic grating meets the 

Bragg conditions and 

Bθ

1LQ 2 >>Λλ= , where λ  is the light wavelength and  is 

the acoustic wavelength. Usually, the Bragg regime includes the incident and 

scattered light modes as well as the acoustic mode, see Fig.3.15a. In this regime, 

the light intensities are governed by trigonometric function dependences in the 

forms [10] 

Λ

a)  ,             b)  ,                   (3.58) )zq(cosI 2
0 = )zq(sinI 2

1 =

 

where the parameter 1
2

1
B SPM2)cos(q −−θλπ= ,  is the acousto-optic 

figure of merit, 

2M

SP  is the acoustic power density and LhS = . Figure 3.15b 

illustrates the light intensities in the Bragg regime. One can see from Fig.3.15b 

that the Bragg regime provides principal opportunity of realizing 100% efficiency 

of light scattering. 
 

          
                             a.                                                                                       b. 

Fig.3.15. Optical scheme for scattering light by a thick dynamic acoustic grating (a) 

and the corresponding light intensity distributions (b). 
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Taking into account the full energy in a volume of a deformed body in the second 

apprximation [11], one can find both the acoustic power density and the 

parameter q as [12] 
 

                         a)  )x2(expAV~
2
1

S
P 2

1
3 α−ρ=  , 

 

b)  2
31

B1 MV~)cos()x(expAq ρθλα−π= −  .               (3.59) 

 

where α  is the coefficient of linear losses, and V  is the acoustic wave velocity. 

 

During the spectrum analysis the partial magnitude of the parameter q for each 

individual spectral component of a radio-signal is really small, so that one can 

approximate Eq.(3.58b) as . In this case, the real-valued 

amplitude  of the scattered light field, i.e. the issuing light amplitude at the 

output facet of acousto-optical cell is directly proportional to the parameter q, so 

that one can obtain 

zq)zq(sinI 2
1 ≈=

1E

 

a)  ( ) ( ) ( )xEzEz,xE 111 =  ,        b)  ( ) ( xexpxE1 α− )=  , 
 

c)  ( ) 2
3
S

1
B11 MV)cos(AzzE ρθλπ= − .                  (3.60) 

 

To simplify further consideration one can normalize ( )z,xE1  putting ( ) 1zE1 = . 

After that the total normalized intensity of the issuing light (the index 1 will be 

further omitted) is given by 
 

D2
)D2(exp1xd)x(E

D
1

)0(I
)D(I

D

0

2
1 α

α−−
==

α ∫ .                     (3.61) 

 

Thus, a part of the scattered light will be lost. Moreover, the acoustic losses affect 

the size of the resolvable spot, i.e. some influence on the frequency resolution will 
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take place. The normalized light intensity associated with a resolvable spot in the 

focal plane of the integrating lens can be estimated as 
 

( )
( )

( ) ( )
( )[ ] ( )2DsinhDu21

2Dsinhusin
0,DI
u,DI

22

22

ααπ+

α+π
=

α
α

 ,                (3.62) 

 

where L1 FDxu λ= ,  is the coordinate in the focal plane,  is the lens’ focal 

distance. The corresponding plot, shown in Fig.3.16a, reflects growing the level of 

aside lobes. It is perturbed only slightly, if 

1x LF

6≤α  dB/cm. The effect of total 

acoustic losses along the aperture on a spot maximum is defined by 
 

( )
( )

( ) 2

D
Dexp1

0,0I
0,DI

⎥
⎦

⎤
⎢
⎣

⎡
α

α−−
=

α  ,                          (3.63) 

 

and it is illustrated by the decreasing curve in Fig.3.16b. 

 

                 
                                     a.                                                                                 b. 

Fig.3.16. Effect of acoustic attenuation: (a) normalized light intensity in the focal spot; solid line, 

 dB/cm, dashed line,  dB/cm, dash-dotted line, 0=α 3=α 6=α  dB/cm, and dotted line,  

dB/cm; (b) light intensity in a maximum of the focal spot as a function of . 

10=α

Dα

 

For the case of one-phonon Bragg light scattering, normal or anomalous. In this 

regime, the scattered light intensities are governed by trigonometric function 

dependences [10] 
 

a)  ⎟
⎠
⎞

⎜
⎝
⎛=

2
zqcosI 2)1(

0
 ,             b)  ⎟

⎠
⎞

⎜
⎝
⎛=

2
zqsinI 2)1(

1  ,                (3.64) 
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where the parameter q is the same as in the case of Eq.(3.58). Together with this, 

one can consider the so-called two-phonon Bragg light scattering. This regime 

involves one incident light mode, one acoustic mode, and three scattered light 

modes. In the last case, the scattered light intensities are again governed by 

trigonometric function dependences but in other forms [10] 
 

a)  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

22
zqcosI 4)2(

0  ,    b)  ⎟
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⎞
⎜
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⎝

⎛
=

2
zqsin

2
1I 2)2(

1  ,    c)  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

22
zqsinI 4)2(

2  . 

(3.65) 

One can see from Eqs.(3.64) and (3.65) that the Bragg regime provides principal 

opportunity of realizing 100% efficiency of light energy conversion into the highest 

orders of scattering, i.e.  and . Taking into account the attenuation of total 

energy in a volume of a deformed body, one can find both the acoustic power 

density and the modulation parameter  as 

)1(
1I

)2(
2I

q
 

                           a)  )x2(expUV
2
1

S
P 23 α−ρ=  , 

 

b)  2
31

B MV)cos()x(expUq ρθλα−π= −  ,               (3.66) 
 

where  is the amplitude of the elastic wave. During the spectrum analysis the 

partial magnitude of the parameter q for each individual spectral component of a 

radio-signal is really small, so that one can approximate Eqs.(3.64b) and (3.65c) 

in the acousto-optical cell with linear acoustic losses. For the regime of a one-

phonon light scattering, such an approximation can be successfully done in a 

vicinity of the point . In this case, the real-valued amplitude  of 

the scattered light field is directly proportional to the modulation parameter q, so 

that one can obtain 

U

0zq = )z,x(E )1(
1

 

a)  ( ) ( ) ( )xEzEz,xE )1(
1

)1(
1

)1(
1 =  ,        b)  ( ) ( xexpxE )1(

1 α−= )  , 
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c)  ( ) 2
3

B

)1(
1 MV

cos2
UzzE ρ
θλ

π
= .                          (3.67) 

However, similar approach to the regime of a two-phonon light scattering gives 
 

a)  ( ) ( ) ( )xEzEz,xE )2(
2

)2(
2

)2(
2 =  ,        b)  ( ) ( )x2expxE )2(
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c)  ( )
B

22
2

3222
)2(

2 cos8
MVzUzE

θλ

ρπ
= .                               (3.68) 

 

It is clearly seen from Eq.(3.68) that exploiting a vicinity of the point  for a 

two-phonon light scattering leads to the twiced magnitude 

0zq =

α2  of the acoustic 

attenuation factor in  and to a square-law dependence of  on the 

acoustic signal amplitude U , which both are practically undesirable. These 

difficulties can be avoided through exploiting a vicinity of the point . In this 

area, one can find that E  with 

( )xE )2(
2 ( )zE )2(

2

π=zq

( ) zqBAz,x)2(
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Such an approach implies the existence of a background A , but leads to the 

desirable properties of a cell at the expense of exploiting that background. 

Assuming that now ( ) ( )xEzEzq )2(
2

)2(
2= , one can estimate 

 

a)   ,        b)  ( ) ( xexpxE )2(
2 α−= ) ( ) 2

3

B

)2(
2 MV

cos
UzzE ρ
θλ

π
= , 

(3.70) 
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so in the last case the factor of acoustic attenuation in Eq.(3.70a) is the same that 

in Eq.(3.67b) and  depends now linearly on the acoustic signal amplitude 

, because Eq.(3.70b) is quite similar to Eq.(3.67c). 

( )zE )2(
2

U
 

3.3.5 Gaussian apodization of the incoming light field distribution 

along the acousto-optical cell aperture 
 

Now, one makes an attempt to describe the effect of apodizating the incoming 

light beam on the potential dynamic range of acousto-optical spectrum analyzer. 

Reasoning from the fact that the electric field profile ( )xE , inherent in the issuing 

beam of the gas laser (where  is the physical coordinate across a beam, 

measured in centimeters) and reaching the acousto-optical cell aperture, is 

usually close to the Gaussian shape, see Fig.3.17a, one can write that 

x

 

( ) ( ) ( )2
0

2
0 yexpEx~expEyE β−=σ−= ,                          (3.71) 

 

where Dxy =  is the normalized dimensionless coordinate, D  is the physical 

cell’s aperture measured in centimeters, while σ~  and  are physical and 

dimensionless parameters of the Gaussian profile function, whose variations with 

the parameter β  are depicted in Fig.3.17b. 

2D~σ=β

 

              
                           a.                                                                                    b. 

Fig.3.17. Optical arrangement of lighting the acousto-optical cell (a) and 

a role of the parameter β (b). 
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When the electric field profile of a laser beam has Gaussian shape, its total optical 

power is fixed by 

β
π

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
β−= ∫

∞+
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2

2
T yd)y(expI  .                             (3.72) 

 

The size of the optical aperture inherent in acousto-optical cell is fixed as well and 

one can assume that , so that the absolute value of available optical power 

is given by 
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Thus, one can scale the initial profile and correlate it with the available aperture of 

the cell. The ratio TA II  represents the coefficient of utilization for the incident 

optical power; it grows, when the absolute level of optical power decreases, see 

Fig.3.18. Then, just the value of AI  has to be exploited for normalizing the light 

spots in the Fourier-transform plane. The shape of light distribution peculiar to an 

individual spot in the Fourier-transform plane can be estimated analytically as 
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(3.74) 

Figure 3.19 [13] illustrates the dependence of light intensity profiles in the Fourier 

transform plane on the parameter β . 
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Fig.3.18. Available optical powers.                              Fig.3.19. Light intensity plots for: 

                                                                                           =β  0 (dashed line),  2 (dotted line), =β

                                                                                                       and =β  10 (solid line). 

 

One can see from Fig.(3.19) that as β  grows the spot of the beam increases in its 

width, as a result the absolute available power decreases.  

 

3.3.6 Peculiarities of the lobe distributions in the Fourier transform 

plane 
 

As it has been noted, Fig.3.19 illustrates the tendencies of redistributions for light 

intensity profiles in the Fourier transform plane on the parameter β . However, 

each particular distribution can manifest unexpected peculiarities. In order to 

investigate this problem let us consider a three-dimensional plot of the lobes 

neighboring the main, i.e. zero or maximal one, see Fig.3.20 [12,13]. One can see 

that the first lobe exceeds the second one only for a limited area of values for β . 

Moreover, when the parameter β  becomes to be large enough, one can see that 

the second lobe begins to exceed the first one. That is why a few particular 

distributions, Fig.3.21 [12,13], should be now considered. It is seen from Figs.3.20 

and 3.21 that starting from the value of 7.6=β  already the second diffractive lobe 

becomes to be dominating. Consequently, for the region of  the dynamic 

range should be estimated in terms of the second diffractive lobe instead of the 

first one.  

7.6>β
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Using the data from Fig.3.21, one can estimate both the potential dynamic range, 

see Fig.3.22 [12,13], and broadening of a resolvable spot at the intensity level of 

half a maximum of the main lobe, see Fig.3.23 [12,13]. 
 

 
Fig.3.20. A three-dimensional plot of the lobes illustrating the tendency of  

dominating the second lobe. 

 

            
                                           a.                                                                         b. 
 

           
                                            c.                                                                         d. 

Fig.3.21. Estimations for the maximal side lobe and spot’s width with varying β ; the level of the 

side lobes is measured relative to the maximal intensity of the main lobe. 
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Fig. 3.22. Level of the maximal side lobe              Fig. 3.23. Broadening of a resolvable spot 

       relative to the maximum intensity of                       at the intensity level of half a-maximum 

                    the main lobe.                                                                 of the main lobe. 

 

It has been mentioned that the shape of light field distribution  peculiar to an 

individual resolvable spot in the Fourier-transform plane, Eq.(3.74), by introducing 

the acoustic losses, Eq.(3.74) takes the form 
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Here, the parameter D0 α=α  describes now the total acoustic losses along the 

cell’s optical aperture and it can be expressed in decibels as well as in 

dimensionless form, because ; where ]cm/dB[23.0]cm[ 1 α⋅=α −
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which is real-valued in behavior. Using Eqs.(3.75) and (3.76), the normalized 

distribution  of light intensity peculiar to an individual resolvable spot in a 

focal plane of the integrating lens can be written as 

)u(I

 

)0u(E)u(E)u(E)u(I 2 == −∗  .                              (3.77) 
 

Generally, LFDw~u λ= , where  is the physical spatial coordinate in the focal 

plane. In the particular case of 

w~

0≡β , Eq.(3.77) can be simplified as 
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22
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22

ααπ+

α+π
==β  .                  (3.78) 

 

Figure 3.24 [14] shows the results of numerical simulations, based on Eqs.(3.77) 

and (3.78). It is seen that increasing the total losses 0α  leads to growing of side 

lobes and minima of the normalized light intensity distribution inherent in each 

individual resolvable spot in the focal plane. Together with this, increasing the 

parameter  provides suppressing side lobes and minima of light distributions, so 

that the dynamic range could be increased. Let us estimate now potential 

limitations for the dynamic range in a scheme of acousto-optical spectrometer. 

The most critical limitation is connected with the maximal level of the first side 

lobe if the apodization parameter 

β

β  is not too large [12,13]. 
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a.                                                                         b. 

          
c.                                                                          d. 

          
e.                                                                       f. 

Fig.3.24. Combined effects of both the incident light apodization and the acoustic attenuation on 

the normalized light intensity in the focal plane: (a) and (b) are for 0=β , (c) and (d) are for 2=β , 

(e) and (f) are for . Then, everywhere, solid lines are for 6=β 00 =α , dashed lines are for 

dB, dashed-dotted lines are for 30 =α 60 =α dB, and dotted lines are for dB. 100 =α
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                                    a.                                                                       b. 

Fig.3.25. The general plot of the first side lobe inherent in an individual resolvable spot in 

a Fourier plane (a) and maximal levels of the first side lobe versus the apodization parameter β  

(b), the solid line is for , the dashed line is for 00 =α 30 =α dB, the dashed-dotted line is for 

dB, and the dotted line is for 60 =α 100 =α dB. 

 

Figure 3.25 [14] illustrates the effect of maximal side lobe on the dynamic range, 

so that one can clearly see that acoustic attenuation decreases the potential 

dynamic range, which grows by itself with escalating the parameter β . 

 

3.4 Conclusions 
 

 The principle aspects of implementing and designing the glass-prism-made 

optical beam shaper using even numbers of prisms for the optical scheme of 

acousto-optical spectrometer have been studied. 

 The procedure of optimizing by maximizing the potential resolution of an 

acousto-optical cell based on a one-phonon anomalous light scattering by 

acoustic phonons has been investigated. And, also in connection with a two-

phonon light scattering in the acousto-optical cells in technically important 

particular case when the efficiency of acousto-optical interaction is so low that the 

first-order approximation in the problem of scattering becomes to be applicable 

and effective, have been investigated. 
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 The combined influence of both the geometric limitations and the acoustic 

attenuation on the number of resolvable spots for the regimes of a one-phonon 

anomalous light scattering and for a two-phonon light scattering has been created 

for the first time. 

 In order to estimate the angular bandwidth of crystalline acousto-optical cell 

exploiting in a two-phonon light scattering regime the approach based on the 

transfer function inherent in linear optical systems, has been successfully applied. 

 Practical capabilities of the incident light beam apodization connected with 

improving the dynamic range of acousto-optical spectrometer as a whole while 

still independently on the contribution from acoustic attenuation and also together 

with its contribution in an acousto-optical cell, have been studied. 
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Chapter 4 
 

Multi-wave acousto-optical coupled states  
 

4.1 Introduction 
 

The interaction of light with acoustic waves in a photo-elastic medium makes 

possible shaping multi-wave solitary waves, whose field components differ in 

physical nature, but are trapped by each other [1]. Such a type of Bragg solitary 

waves, so called coupled states, have recently been revealed and investigated in 

the systems with a square-law nonlinearity, namely, in two-mode waveguides 

[2,3], where spatial-temporal coupled states could be formed with a collinear 

geometry of acousto-optical interaction, and in crystals [4], allowing the existence 

of three- and four-wave coupled states with a non-collinear scattering of light by 

coherent acoustic phonons.  

 

4.2 Three-wave dissipative collinear weakly acousto-optical 

coupled states 
 

In some cases the analysis of three-wave processes leads to solitary waves in the 

form of coupled states, where waves of the same or even different nature become 

mutually trapped and propagate together [4-6]. Such coupled states can be 

shaped via stationary co-directional collinear interaction of two optical modes with 

a non-optical third wave in a dispersive waveguide due to the balancing action of 

the square-law nonlinearity. The profiles of all the waves are steady at three 

different current frequencies, because the interaction exhibits itself as a 

mechanism of stabilizing self-action.  
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A new specific regime is considered, which is related to shaping multi-pulse 

dissipative Bragg weakly-coupled states within a three-wave collinear interaction 

in a medium with linear losses for a slow non-optical wave. Both stationary and 

non-stationary analytic models are derived for describing the localization 

processes for multi-pulse dissipatvie three-wave coupled states. Computer 

simulations are performed and their behavior is discussed. 

 

4.2.1 General consideration of a three-wave collinear interaction with 

phase mismatches and linear non-optical losses 
 

As it has been mentioned, a three-wave co-directional collinear interaction with 

the mismatched wave numbers in a two-mode medium is described by a set of 

three nonlinear partial differential equations [7]. A regime of weak coupling [2,3] is 

considered, in which two light modes are scattered by a relatively slow wave, 

being non-optical by its nature and exhibiting linear losses, and the essentially 

effective Bragg scattering of light can be achieved without any observable 

influence of the scattering process on that non-optical wave, because the number 

of interacting photons is a few orders less than the number of the scattering 

quanta injected into a medium. The velocities of light modes can be approximated 

by the same value , because usually the length of crystalline waveguide does 

not exceed 10cm. In this regime, the above-mentioned set of equations falls into 

an equation for the complex amplitude  of a slow wave and a pair of 

combined equations for the complex amplitudes  and  of the 

incident (pumping) light wave and scattered one, respectively [8-10], 
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Here, the factor  describes losses of the non-optical wave, α V  is the velocity of 

that slow wave,  are the constants of interaction, and 1,0q η2  is the mismatch of 

wave numbers inherent in the interacting waves. Now, one goes to the tracking 

coordinates )cxt,x( −=τ  and assume that the non-optical wave, governed by 

Eq.(4.1a) and described by )i(exp)x(exp]V)cV1(x[uU ϕα−τ−−= , has the 

constant phase , so that one can convert Eqs.(4.1b) and (4.1c) into equations of 

the second order as 

ϕ
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By putting , ])t,x(~i[exp)t,x(aC 1,01,01,0 Φ= x~
1,01,0 ∂Φ∂=γ  and then divide 

real and imaginary parts in Eqs.(4.2), one yields 
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Equations (4.4) have the following general solutions 
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where  are the two integration constants. 1,0
~Γ
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4.2.2 The quasi-stationary background-free continuous-wave regime; 

originating the localization condition 
 

At first, restricting ourselves by considering the simplest choice of  in 

Eqs.(4.5) and study the phenomenon in the continuous-wave regime for the 

incident light and the non-optical wave when 

01,0 =Γ

0U]V)cV1(x[u =τ−−  is constant. 

Equations (4.3) and (4.4) can be analyzed with the fixed magnitude of the 

mismatch  and the practically natural boundary conditions , η 1)t,0x(a0 ==

0)t,0x()xa( 0 ==∂∂ , 0)t,0x(a1 == , and 001 Uq)t,0x()xa( ==∂∂  in a half-

infinite medium. In so doing, one can estimate  approximately. At first, one 

can assume that, due to smallness of the factor 

1,0γ

α , one can suggest that the 

spatial scale of varying the term )x(exp α  is much larger than the scale of varying 

xa2
1,0 ∂∂  in Eq.(4.5), so the term )x(exp α  can be factored out from the integral. 

As a result one can yield η±≈γ 1,0  and . It should be noted 

that the same result could be obtained, even if  will be calculated to the first 

approximation in powers of α  in that integral term, i.e. estimated as [8-10] 
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The second approximation in powers of α  in the same integral term gives 
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Thus, with the notation , Eq.(4.3) takes the form 22
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Recently, Eq.(4.8) has been analyzed in the case of 0=α  and  [2,3], while 

now another possibilities will be considered. It should be noted that Eq.(4.8) has 

the following exact analytical solution in terms of Bessel functions 

0≠η
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where  and  are the integration constants; and 1,0B 1,0D~ 221 4)2( η−αα=ν − . 

In the regime of an exact phase synchronism, i.e. with 0=η  and , when the 

indices of Bessel functions in Eq.(4.9) are equal to 

0≠α

21± , these solutions can be 

reduced to 
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with the following relations between the integration constants 
 

⎟
⎠
⎞

⎜
⎝
⎛
α
σ

+⎟
⎠
⎞

⎜
⎝
⎛
α
σ

=
σπ
α sinLcosK2B 1,01,01,0  ,    and 

 

⎟
⎠
⎞

⎜
⎝
⎛
α
σ

+⎟
⎠
⎞

⎜
⎝
⎛
α
σ

=
σπ
α cosLsinK2D~ 1,01,01,0 . 

 

Applying the above-mentioned boundary conditions to Eq.(4.10), one can obtain  
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It is seen from Eqs.(4.11) that the contribution of the linear losses from the non-

optical wave exhibits itself like some spatial scaling in light scattering, while the 

efficiency of light scattering can achieve 100% with 0=η  and .  0≠α
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However, the general solution form to Eq.(4.8) represented by Eq.(4.9) is not quite 

convenient in practically important cases of large phase mismatches . To 

construct another form of the solution one can use the conservation law 

- const, resulting from Eqs.(4.1). Combining Eqs.(4.8) for  

and , one can obtain a pair of the following equations: 
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whose solutions with arbitrary integration constants 1,0θ  are given by 
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Using the above-noted boundary conditions, one arrive at [10] 
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So that the stationary intensities of the pumping and scattered light waves can be 

expressed as 

a)  ( ) ( ) ( )[ ]0GxGcosxС 2
22

2

22

22
0 −

η+σ

σ
+

η+σ

η
=  , 

 

 

 127
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These solutions include contributions of two types. The first summand in 

Eq.(4.15a) represents a background determined by the phase mismatch η ; while 

the second one gives the oscillations imposed on that background. The scattered 

light wave intensity Eq.(4.15b) contains only some oscillations, so that one can 

write the localization condition as 
 

N)0(G)x(G π=− ,                                          (4.16) 
 

where ( ). Of course, when K,2,1N = 0=η , it yields , )x(exp)x(G 1 α−σα−= −

)2(1
0 π+σα=θ − , and , so that Eqs.(4.15) take the form of 

Eqs.(4.11). The fact of the existance of this localization condition means the 

dissipative collinear three-wave coupled states appearing in a two-mode medium 

with sqaure-law nonlinearity and linear losses for a slow non-optical wave; and 

they can include more than one pulse when . 

σα=θ −1
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Additionally, it should be noted that a pair of the obtained solutions for the 

intensities , Eqs.(4.15), satisfies the following ordinary differential 

equations of the second order 
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with the previously noted boundary conditions 1)0x(I0 == , 0)0x(I1 ==  and 

0)0x()xI()0x()xI( 10 ==∂∂==∂∂ . Of course, the relation 

)xI(q)xI(q 1100 ∂∂−=∂∂  takes place, within the process under consideration.  
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Then, the number N  of bright or dark pulses in the corresponding component of 

the coupled state is conditioned by both the frequency mismatch η  as well as by 

the losses α . Let us consider two particular cases. In the first lossless case of 

 and , one can obtain from Eq.(4.16) 0=α 0≠η
 

a)  ,                b)  22
C

222 xN σ−π=η −

Cx
xN)0(G)x(G π

=−  ,               (4.19) 

where  is the spatial length of localization. One can substitute this formula into 

Eq.(4.15b) and yield the dependence of the scattered light intensity  on the 

number N  of pulses in a coupled state in the form [10] 
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It is seen from Eq.(4.20) that, as the number N  grows, the intensity of the 

scattered light component in a three-wave coupled state decreases as , 

because the mismatch increases following Eq.(4.19a). At the same time, the 

spatial width 

2N

)N(xC π  of each partial optical pulse inherent in this coupled state 

narrows as . By contrast, in the second particular case of an exact phase 

synchronism when  and 

1N−

0=η 0≠α , Eq.(4.16) leads to the formula 

. Because the left-hand side of this formula is limited, 

one can find that 

N])x(exp1[1 π=α−−σα−

)(N πασ≤ , i.e. the whole number N  comes to be restricted. 

For example, when  and 1.0=α 1=σ , we yield N 3≤ , see Fig.4.1. In the general 

case, when  and , a transcendental equation relative to both  and 0≠η 0≠α η α  

appears from Eqs.(4.16) and (4.14). That is why this case requires numerical 

simulations presented in Fig.4.2. 
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Fig.4.1 Restricting the number N  of pulses in a coupled state in the case of 0=η  and 0≠α ; for 

the taken example of 1.0=α  and 1=σ , one can find 3N ≤ . 

 

Nevertheless, in the practically important case of low losses for the non-optical 

wave, one can develop an approximate approach illustrating the effect of losses. 

In this case, one can put in the first approximation that ( ) x21x2exp α−≈α−  and 

integrate Eq.(4.13b) as 
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Equations (4.21) lead to 
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a.                                                                                     b. 

                   

c.                                                                                   d. 

Fig.4.2 The possibility of shaping multi-pulse coupled states when 0≠η  and 0≠α ; i.e., 1.0=α  

and 1=σ , one can realize: a) 1N = , b) 2N = , c) 3N = , and d) 5N = . 

 

In the first approximation with respect α , Eq.(4.22) takes the form  
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Consequently, using Eqs.(4.23) and (4.19b), one can rewrite the localization 

condition as 
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Considering Eq.(4.24) as the algebraic quadratic equation relative to 22 η+σ , 

one can find 
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Substituting this formula into Eq.(4.15b), one can estimate the factor 
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So that Eq.(4.20) takes the following approximate form [10] 
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It is seen from Eq.(4.27) that as the number  of pulses in the dissipative coupled 

states grows, the intensity 

N
( )N
1I  of the scattered light decreases, but now even a 

little bit faster than as , as it was in Eq.(4.20), due to the contribution of the 

acoustic losses connected with the presence of the term including a small factor 

 in the denominator of Eq.(4.27). 

2N

α

 

4.2.3 The quasi-stationary continous-wave regime with 0≠Γ ; 

appearing a background  
 

Now, one can take the case of 0≠Γ  and consider this phenomenon again in the 

continuous-wave regime for the incident light and the non-optical wave with 

previously formulated boundary conditions. Estimating  from Eq.(4.5) 

approximately as above, one can now write [8-10] 
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As a result, Eqs.(4.3) take the following form 
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It is seen that Eqs.(4.29) for the amplitudes  and  are the same, so the 

indices of waves can be omitted in further analysis. Introducing a new 

independent variable  and converting Eqs.(4.29) into the 

Ermakov equation [11,12] 
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The general solution to Eq.(4.30) has the form [11] 
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where  are the integration constants and  is a non-trivial solution to the 

reduced form of Eq.(4.30), namely, to the linear differential equation 
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Equation (4.32) has the exact solution in terms of Bessel functions 
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 and the integration constants . This solution shows 

that one can take one of the following non-trivial functions  
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Unfortunately, in general, the integral term in Eq.(4.31) cannot be calculated in the 

closed form with . That is why to illustrate the contributions of the 

factors  one can analyze the rather simple case for the absence of 

mismatches, i.e. . In so doing, rather then operate over Eq.(4.34), it would 

be simpler to take the Ermakov equation appearing directly from Eq.(4.30) with 

, namely, 

)(W~W~ 2,1 ζ=

01,0 ≠Γ

0≡η

0=η

32
0

22
2

2
aUaa −Γ=σ+

ζ∂

∂ .                                   (4.35) 

 

The corresponding non-trivial solutions to the linearized form of Eq.(4.35) can be 

found from 
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where  are integration constants, and one can choose 2,1Y
 

a)  ( )ζσ==ηζ sin)0,(W~1  ,            b)   . ( )ζσ==ηζ cos)0,(W~2

(4.37) 

Now, one can introduce a new dependent variable  and convert 

Eq.(4.35) into another equivalent form 

0)(a)(b 2 ≥ζ=ζ

 

2
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222
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2

2
Ubb

4
1b

2
b

Γ=σ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ∂

∂
−

ζ∂

∂ .                           (4.38) 

 

Equation (4.38) shows that as far as 0≠Γ , an arbitrary solution 0)(b ≥ζ  will 

include a background, because Eq.(4.38) with 0≠Γ  cannot be satisfied at the 

points 0ζ  wherein 0)(b 0 =ζ  and 0)()dbd( 0 =ζζ  simultaneously.  
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Then, substituting Eqs.(4.37) into Eq.(4.31) and using the new variable )(b ζ , one 

can obtain two rather different solutions to Eq.(4.35) as well as to Eq.(4.38) 
 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧ ζσσ−+Γζσ==ηζ −− 2

1
1

1
2
0

221
11 )(cotG~H~U)(sinG~)0,(b  , 

(4.39) 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧ ζσσ++Γζσ==ηζ −− 2

2
1

2
2
0

221
22 )(tanG~H~U)(cosG~)0,(b  , 

(4.40) 

where  and  are integration constants. In terms of the coordinate , 

Eqs.(4.39) and (4.40) take the following forms 

2,1G~ 2,1H~ x
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⎤

⎢
⎢
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⎣

⎡

⎟
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Using Eqs.(4.41) and (4.42), one can find the boundary values at  as 

 and 

0x =

2
11 G)0,0x(b −σ==η= )HU(G~)0,0x(b 2

2
2
0

21
22 +Γ==η= − . Together 

with this, one can estimate the frequency distribution along a wave using 

Eq.(4.28a). On the one hand, such an estimation will be non-trivial only when 

, while on the other hand, the regime of an exact phase synchronism with 

 is under consideration at the moment. Consequently, the expression for the 

frequency  has to be written as . The corresponding plot  

0≠Γ

0=η

γ )x(expbU 1
20 α−Γ≈γ −
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is shown by a dotted line only in Fig.(4.3a) related to the case , whereas for 

the cases depicted in Figs.(4.3b) and (4.3c) the frequency  is equal to zero. 

0≠Γ

γ

 

             
 

                          a.                                             b.                                                c. 
 

Fig.4.3 Plots for )0,x(b2 =η  with 1=σ , 1.0=α , and 1G2 =  : a) 1H2 = , 1U2
0

2 =Γ , (solid line 

for 2b , dotted line for the frequency γ ); b) 1H2 = , 0U2
0

2 =Γ ;  c) 0H2 = , 0U2
0

2 =Γ . 

 

Typical illustrative plots for the solution )0,x(b2 =η  with various constants are 

presented in Fig.(4.3) by solid lines. 

 

 

 

4.2.4 Non-stationary regime of the pulsed non-optical wave and 

localizing multi-pulse dissipative three – wave weakly coupled states 
 

One can focus the attention on the process of localizing multi-pulse dissipative 

three-wave coupled states when the incident light is continuous-wave in behavior, 

but two facets of a medium at 0x =  and Lx =  bound the area of interaction and 

the pulsed non-optical wave is excited in a waveguide. Let the spatial length  

of non-optical pulse is much shorter than L  (

0x

VLTVxT 00 =<<= ) and the 

localizing pulse of a slow non-optical wave has a rectangular in shape, i.e., 

}]V)cV1()xx([]V)cV1(x[{U)t,x(u 00 τ − θ − −− τ−−θ= . Due to cV << , one 

may put that 0xu ≈∂∂  in Eqs.(4.3) and (4.4), excluding the points . 

These suppositions lead to three stages in the localization process; first, when the 

localizing non-optical  pulse is incoming  through  the  facet  , then when the  

}x,0{x 0∈

0x =
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pulse is passing along a waveguide, and finally, it is issuing through the facet 

. Such a process is illustrated for  in Fig.4.4 and can be described 

analytically by [8-10] 

Lx = 2
1 |С|

 

a)  ( ) ( )[ ]τΦ
η+σ

σ
+

η+σ

η
=τ ,xcos,xС 2

22

2

22

22
0  , 

 

b)  ( ) ( )[ τΦ
η+σ

σ
=τ ,xsin

q
q,xС 2

22

2

1

02
1 ] ,                        (4.43) 

 

where the argument of in Eqs.(4.43) can be described as 
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;T0,0GxG

,x

0

0
      (4.44) 

 

The first summand in Eq.(4.43a) exhibits a background of the light wave 2
0C , 

whose level is determined by the mismatch η ; the second one represents the 

oscillating portion of the solution, i.e. the localized part of the incident light 

imposed on a background. The light wave 2
1C  contains the only oscillating 

portion of the light field that gives the localization condition ( ) ( ) N0GxG C π=− , 

being perfectly analogous to Eq.(4.16); here,  is the spatial size of localization 

area with 

Cx

cV <<  and . Figure 4.4 illustrates the numerical 

simulations of Eqs.(4.43b) and (4.44). The corresponding numerical plots for 

,...2,1,0N =

2
0C  can be easily created using the above-mentioned conservation law 

. constqaqaq 0
2
11

2
00 −=+

 

 137



            
                                  a.                                                                           b. 

            
                                   c.                                                                         d. 

Fig.4.4 Intensity of the scattered light components vs. τ and L with 2=σ  and 05.0=α . Four 

stages of reshaping are simulated: a) 5.1=η , the beginning of shaping a one-pulse dissipative 

coupled stated; b) 4.2=η , a one-pulse dissipative coupled stated; c) 5.3=η , an intermediate 

stage; and d) 0.6=η , a two-pulse dissipative coupled state. 

 

From the viewpoint of further experimental verification, these plots can be 

interpreted rather simply. Depending on the practically fixed length L of a two-

mode medium sample, one can consider a cross section of each of these plots 

with the selected plane constL =  to obtain the corresponding one-dimensional 

theoretical curve in time domain related to the chosen value of a mismatch. Thus, 

taking alone perfectly localized states presented here in Fig.4.4b for  and in 

Fig.4.4d for , one can see that it is possible to observe the localized field 

associated with the scattered light component 

1N =

2N =

2
1C  for two times, namely, when 

the localizing non-optical pulse is incoming or issuing through one of the facets of 

a medium creating or destroying, respectively, the corresponding multi-pulse 

three-wave dissipative coupled states. 
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4.2.5 Preliminary estimations 
 

Now let us consider a few practically useful estimations related to experimental 

observation of the dissipative collinear three-wave coupled states in a two-mode 

medium with a square-law nonlinearity and linear acoustic losses. One can select 

such a physical phenomenon as the collinear acousto-optical interaction with 

linear acoustic losses in  a two-mode crystalline cell made of a calcium molybdate 

(CaMoO4) single crystal. In this case, one can observe only the anomalous 

process of light scattering [13] when the states of polarization for the incident and 

scattered light beams are orthogonal to each other, so that the parameter  are 

described [14] by 

1,0q

( )102
1,0

1,0
1,0 eˆe~

n4

k
q

rr
r

εΔ=  .                                     (4.45) 

 

Here,  are the refractive indices for the interacting light waves, 1,0n

λπ= 1,01,0 n2k
r

,  is the light wavelength in a vacuum and the last term in 

brackets describes the efficiency of interaction. This term includes the eigen-orts 

λ

1,0e
r

 of polarizations for the incident and scattered light beams as well as the 

tensor  of perturbations of the dielectric permittivity under action of the acoustic 

wave in a medium. To estimate the efficiency of collinear acouto-optical 

interaction in a CaMoO

εΔˆ

4 cell, i.e. to find the contribution in brackets of Eq.(4.45), 

one can consider the geometry of interaction including the shear acoustic wave 

with the wave normal ort  is passing along the *m
r [ ]100  axis, while its vector u  of 

the transversal elastic displacements is oriented along the 

r

[ ]001  axis in that 

crystalline material. Consequently, one can write the deformation tensor  and 

the unperturbed dielectric permittivity tensor 

γ̂

ε̂  in the main crystallographic axes 

as 
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(4.46) 

Here,  is the amplitude of the shear deformation, while  and  

are the eigenvalues of the unperturbed dielectric permittivity tensor . Now, the 

tensor  of the second rank with the components  ( ) can be 

converted into a six-dimensional vector 

0γ̂
2
00 n=ε 2

ee n=ε

ε̂

γ̂ lkγ 3,2,1l,k =

( )0,1,0,0,0,0ˆ 0γ=γ  with 

the components μγ  ( ) using the standard procedure [15], which 

includes re-notating 

6,...,1=μ

kkγ=γμ  ( 3,2,1=μ ) and l,k2γ=γμ  ( 6,5,4,lk =μ≠ ). If one 

uses the same procedure [15] and takes the photo-elastic tensor p of the fourth 

rank for a CaMoO4 single crystal in the form 66×  matrix p , it will be possible first 

to construct and to calculate the product 

ˆ

( 0,p,p,0,0,0ˆp̂ 44450γ=γ ) , and then to convert the result back 

to the form of a standard tensor ( ) of the second rank. γ̂p̂

 

The next step of our analysis is connected with finding the dielectric permittivity 

perturbation tensor , whose components can be written as 

 [14]. The result of similar calculations has the form 

εΔˆ

lklknmjnmiji pˆ γεε=εΔ
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⎟
⎟

⎠

⎞

⎜
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⎝

⎛
εεγ=εΔ

0pp
p00
p00

ˆˆ

4544

45

44

e00 .                                  (4.47) 

 

Now, one can take into account the orts 1,0e
r

 of polarization for the incident and 

scattered light waves. When the wave vectors of these light waves are collinear to 

the wave normal ort m  for the acoustic wave and, of course, to the [  axis in 

the CaMoO

r ]100

4 crystal, the eigen-orts 1,0e
r

 of light polarizations should be oriented, 

as directly follows from Eq.(4.46b), along the [ ]0,1,0   and [   axes, so  ]1,0,0
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that one can take, for example, [ ]0,1,0e0 =
r

 and [ ]1,0,0e1 =
r

 with  

and . As a result, one can obtain the contribution of brackets to Eq.(4.45) 

as 

o0 nn =

e1 nn =

45e000110 pˆeˆe~eˆe~ εεγ=εΔ=εΔ
rrrr

.                              (4.48) 
 

In so doing, one can find that . One can see now 

that the difference between  and  is rather small, because 

( ) 45
2

e,o0o,e
1

1,0 pnˆn2q γλπ= −

0q 1q oe10 nnqq = . 

Then, because the amplitude of deformation can be explained as 

30
V~Lh

P2
ˆ

ρ
=γ , where  is the acoustic power density, one can finally 

obtain [10] 

Lh/P
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(4.49) 

It should be noted that the factors taken in brackets in Eqs.(4.49) represent the 

acousto-optical figures of merit  peculiar to estimating the efficiency of 

crystalline materials in acousto-optics [16]. One can estimate the acousto-optical 

figures of merit peculiar to the geometry of collinear interaction under 

consideration at  0.532 μm in a CaMoO

2M

=λ 4 cell. Taking the material density =ρ~  

4.34 g cm-3, acoustic velocity =V  2.95 x 105 cm s-1, =45p  0.06,  2.0239 

and  2.0116 at the chosen light wavelength [17] , one can calculate 

s

=en

=on

18
2 1007.2M −×≈ 3 g-1 in a quit acceptable approximation of 10 qq ≈ , i.e. with an 

accuracy of about 1%. Then, by restricting a maximal level ( ) =LhP  0.5 W mm-2 

of the acoustic power density and estimating the factor 100 qqU=σ . This level 

of power density is conditioned by the absolute acoustic power magnitude of 

about 2 W and the acoustic beam cross section of about 4 mm2 in just a collinear 

acousto-optical cell. Consequently, one can find that ≈σ  2 cm-1. 
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Also, one can estimate the potential contributions of the angular-frequency 

mismatch and the acoustic losses. The maximal value of the mismatch parameter 

VfΔπ=η  for a frequency detuning fΔ  of 0.6 MHz is equal to about 6.4 cm-1. The 

coefficient of linear attenuation for the chosen shear acoustic wave passing along 

the -axis is  60 dB cm[100] =Γ -1 GHz-2 in a CaMoO4 [17]. The factor α  of 

acoustic losses, measured in cm-1, can be expressed as 

( ) ( ) (GHzfGHzcmdB23.0cm 2211 −−− Γ=α ). Thus, at a carrier frequency f  of 

about 60 MHz related to the above-mentioned light wavelength of 0.532 μm, 

being peculiar to the collinear acouto-optical interaction in CaMoO4, one can 

estimate that  0.05 cm=α -1 in the case under consideration. Additionally, it 

should be noted that our theoretical numerical data, presented in Section 4.2.4, 

were normalized in such a way that those dimensionless values are in 

coincidence with practical numerical estimations presented in this section.  

 

4.2.6 Experiment with multi-pulse dissipative acousto-optical coupled 

states in a crystal with square-law nonlinearity and linear acoustic 

losses 
 

To realize experimentally shaping the multi-pulse dissipative three-wave weakly 

coupled states by the continuous-wave optical pump in a two-mode medium with 

linear losses for a relatively slow non-optical wave, the acoustic phonon 

mechanism of light scattering has been used. The schematic arrangement of the 

experimental set-up exploited is shown in Fig.4.5 and consists of a continuous-

wave laser, a two-mode CaMoO4-crystalline acousto-optical waveguide with 

polarizers (whose combined scheme is presented in detail separately in Fig.4.6), 

a photo-detector, and a set of electronic equipment for generating and registering 

the corresponding electrical radio-wave (RW) signals. This scheme has some 

analogies with schemes for filtering optical signals [18], but allows operation in the 

pulsed regime. Initially, electronic video pulse, determining a rectangular shape of 

envelope, is given  from pulse generator.  Due  to applying  this video pulse to  the  
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ultra-high frequency (UHF) generator in the regime of an external modulation, a 

RW electronic UHF-pulse can be obtained. Then, the shaped UHF-pulse is 

applied to the electronic input of a two-mode crystalline waveguide, and to 

oscilloscope as the etalon signal, see Fig.4.5. 

 

A two-mode co-propagating collinear CaMoO4 crystalline waveguide was 

characterized by a crystal length L of 44 mm along the [100]-axis, an acoustic 

velocity =V  2.95 105 cm/s for the shear elastic mode whose displacement vector 

is oriented along the [001]-axis. A continuous-wave beam at =λ  532 nm was 

used as an optical pump during the experiments. The first polarizer was precisely 

aligned in correspondence with the optical axes of a crystal in a waveguide. After 

the interaction with an acoustic pulse, already two orthogonally polarized light 

beams, incident and signal ones, passed through a waveguide. The second 

polarizer gave us an opportunity to be aligned in correspondence with the 

polarization of the signal beam and to extract the output optical signal. The 

dynamics of shaping and localizing the optical components of multi-pulse 

dissipative coupled states has been sequentially followed during our experiments.  

 

 
Fig.4.5 Schematic arrangement of the experimental set-up. 

 

 143



 
 

Fig.4.6 Scheme of the co-propagating collinear calcium molybdate acouto-optical cell providing the 

traveling-wave regime of interaction of the pumping light beam with the acoustic pulses. 

 

A few examples of the corresponding digitized oscilloscope traces are shown in 

Fig.4.7 [8-10]. The maximal efficiency of shaping one-, two-, and three-pulse 

optical components in the scattered light wave C1 (shifted by the acoustic 

frequency from the pumping light wave C0 ) was about 50% relative to the 

pumping light intensity with the excited acoustic power density of up to 0.5 

W/mm2, which provided magnitudes of the parameter σ  up to 2 cm-1. The 

maximum frequency mismatch πη=Δ Vf  was about 0.6 MHz, providing 

magnitudes of the phase mismatch η  up to 6.32 cm-1. 
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                                   a.                                                                                 b. 

                        
 

                                     c.                                                                                  d. 
 

Fig.4.7 The digitized oscilloscope traces for 2
1C  in a CaMoO4-crystalline waveguide with 

05.0=α  cm  at a carrier acoustic frequency of 61.3 MHz. Four stages of reshaping are followed 

at the same optical pump and acoustic wave intensities and temporal scales: (a) 

-1

5.1=η  cm , the 

beginning stage of shaping a one-pulse dissipative coupled stated;  

-1

(b) 4.2=η  cm , a one-pulse dissipative coupled stated; (c) -1 5.3=η  cm , an intermediate stage; 

and (d) 

-1

0.6=η  cm , a two-pulse dissipative coupled state. -1

 

The factor α  of the linear elastic losses was about 0.05 cm-1 inherent in the 

chosen shear acoustic mode in a two-mode CaMoO4 crystalline waveguide at a 

carrier frequency of 61.3 MHz, which was determined by eo
1 nnfV −=λ −  . The 

total length of a crystal is , which provides a temporal aperture  of 15 

μs. The duration of the rectangular acoustic pulse is taken to be = 3.75 μs, 

which corresponds to a pulse spatial length  of about 11 mm. 

mm44L = T

0τ

0l

 

4.3 Three-wave dissipative collinear strongly coupled 

acousto-optical states 
 

In this section the collinear co-directional acousto-optical interaction in presence 

of  the linear acoustic losses in a crystal  is considered in the case of  strong wave  
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coupling, and rather adequate mathematical model, based on the real-valued 

evolution equations, is developed. Main attention has been paid to the analytical 

investigations exploiting both physically and mathematically reasonable 

approximations. Nevertheless, the presented approach gives a clear view of this 

phenomenon with mismatching the wave numbers. The evolution equations for a 

pair of the light waves as well as for the acoustic wave are solved analytically in 

the first approximation relative to the parameters of smallness inherent in this 

problem. 

 

4.3.1 A strong collinear co-directional acousto-optical interaction in 

presence of the linear acoustic losses 
 

The evolution equations which describe a strong co-directional collinear acousto-

optical interacting, are given by a set of three nonlinear partial differential 

equations [7] 
 

                              a)  ( )xi2expbb
t

b
c
1

x
b
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0
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∂
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b)  ( )xi2expbb
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∂
∂

+
∂
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c)  ( xi2expbb
t

b
v
1

x
b

012
22 ηγ−=

∂
)∂

+
∂
∂ ∗  .                       (4.50) 

 

Here , ,  and , , 0b 1b 2b 0c 1c V  are the complex amplitudes and group 

velocities of two optical and acoustic waves, respectively; , ,  are the 

factors of interactions; 

0γ 1γ 2γ

η2  is the wave numbers mismatch. The inequality 

 between the group velocities and the signs presented in the right 

hand sides of Eqs.(4.50) are related to the regime of decay instability when the 

energy exchange takes place between all the interacting waves. Even with 

, Eqs.(4.50) can be reduced to the case of resonant interaction.  

01 ccV <<

02 ≠η
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Usually, the difference in refractive indices of acousto-optic materials is too small, 

so it looks reasonable to approximate the velocities of light modes as 1cc 10 ≈ . 

To determine an area of applicability for such an approximation let us consider the 

interaction between two optical pulses of width  in slightly anisotropic medium. If 

initially these two pulses are overlapping spatially, they will be separated from 

each other at the distance 

T

( ) 1
011,0 cc1TcL −−≈ . Thus, the distance L  

characterizes the length of collinear acousto-optical interaction in the selected 

approximation. For typical widths of acoustic pulses exceeding 10-9 seconds and 

for the anisotropy of about ( ) 1.0cc1 01 ≤− , one can obtain L> 100 m. Such a 

length of interaction is unattainable in acousto-optics, so one can approximate the 

light velocities of modes as ccc 10 ≈≈  in Eqs.(4.50). The next reduction can be 

realized due to the incommensurability of the group velocities of optical and 

acoustic waves. Let us compare summands in the left hand sides of Eqs.(4.50) for 

the light waves. One can assume that a spatial length x occupied by an acoustic 

pulse restricts the area for collinear interaction. By this it means that the first 

summands can be estimated as XB~xb 1,0 ≈∂∂ , where B  is some typical 

amplitude of optical waves, while the second ones are 

~

)XB~()cV()tb(c 1,0
1 ≈∂∂− , because both spatial and temporal scales in 

acousto-optics are determined by the motion of just acoustic pulse with the 

velocity V . Because of 510cV −≈ , one can yield xb)tb( 1,00
1 ∂∂<<∂−c . 

That is why Eqs.(4.50) can be rewritten as 

1, ∂
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∂ ∗ ).                       (4.51) 

 

Then, one can make the substitutions 0
21

210 C)(b −γγ= , 1
21

201 C)(b −γγ= ,  
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and U)(b 21
012

−γγ=  in Eq.(4.51). Finally, an additional phenomenological 

term, related to the contribution of acoustic losses, can be introduced into the last 

equation for the wave U , so that a strong co-directional collinear acousto-optical 

interacting can be described by such a set of the evolution equations 
 

a)  ( xi2expUC
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c)  ( xi2expCCU
t
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v
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x
U

10 η−α−=
∂
∂

+
∂
∂ ∗ ) ,                       (4.52)

 

here , and )i(expAC 1,01,01,0 ϕ= )i(expUU 0 ϕ=  are the complex amplitudes of 

two light and one acoustic waves, and α  is the linear acoustic losses. Let us 

apply the method of slowly varying profile [19] to Eq.(4.52c). In doing so, one can 

consider the right hand side of Eq.(4.52c) like a perturbation and assume that the 

amplitude  of acoustic wave can be presented as a function of the tracking 

coordinate 

U

tVxX −=  and xY μ= , namely, )Y,X(UU = , where the factor μ  is 

considered as a parameter of smallness. In this case, one can calculate 
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U

V
1

∂
∂

=−
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂ .            (4.53) 

 

Substituting Eqs.(4.53) into Eq.(4.52c), then one can divide Eq.(4.52c) into a pair 

of equations in accordance with the smallness inherent in the corresponding 

terms in its right hand side as 
 

a)  0
t
U

V
1

x
U

=
∂
∂

+
∂
∂  ,          b)  ( xi2expCCU

Y
U

10 η−α−=
∂

)∂
μ ∗  .          (4.54) 

 

Because of ( ) xUYU ∂∂=∂∂μ , Eq.(4.54b), determining the first order 

approximation, takes the form 
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( xi2expCCU
x
U

10 η−α−=
∂
∂ ∗ )  .                              (4.55) 

 

Consequently, a set of equations such as Eqs.(4.52a), (4.52b), and (4.55) 

describes a three-wave system, which exhibits the following relations 
 

a)   ,                 b)  JAA 2
1

2
0 =+ *

0
2
0

2
0

2
0 xdU2UA ζ+α=− ∫  , 

 

c)  *
1

2
0

2
0

2
1 xdU2UA ζ+α−=+ ∫  ,                                (4.56) 

 

where  and  are the integration constants, which are determined by the 

boundary conditions, so that, for example, ; then 

. Now, an effort is made of separating the complex amplitudes of the 

waves. In doing so, a triplet set of Eqs.(4.52) of the first order with a square-low 

nonlinearity can be converted into a triplet of the second order equations with 

cubic nonlinearity as [20] 

J *
1,0ζ

)0x(A)0x(AJ 2
1

2
0 =+==

J*
1

*
0 =ζ+ζ

 

                        a)  ( ) ( )22
10

0
2
0

2
UCC

xd
Cdi2

xd
Cd

−+α−η=  , 

 

b)  ( ) ⎟
⎠
⎞⎜

⎝
⎛ +−α+η−= 22

01
1

2
1

2
UCC

xd
Cdi2

xd
Cd

 , 

 

c)  ( ) ⎟
⎠
⎞⎜

⎝
⎛ −−α−η= 2

1
2

02

2
CCU

xd
Udi2

xd
Ud  .                     (4.57) 

 

Using the relations from Eqs.(4.56) into Eqs.(4.57), one can obtain the equations 

with the complex amplitudes separated as 
 

a)  ( ) ∫α++−α−η= xdUC2CZCC2
xd

Cdi2
xd
Cd 2

000
2

00
0

2
0

2
 , 
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b)  ( ) ∫α+−+α+η−= xdUC2CZCC2
xd

Cdi2
xd
Cd 2

111
2

11
1

2
1

2
 , 

 

c)  ( ) Ui2xdUU4UZUU2
xd
Udi2

xd
Ud 22
2

2
ηα+α−−−α−η= ∫  , 

(4.58) 

where,  ,  , . Equations (4.58) represent a 

set of combined equations that will be analyzed in the following sections. 

*
1

*
00 2Z ζ+ζ= *

0
*
11 2Z ζ+ζ= *

1
*
0Z ζ−ζ=

 

4.3.2 The real-valued evolution equations 
 

Let us start from the analysis of Eq.(4.58a). Using the notations after Eq.(4.52), 

one can extract the imaginary part of Eq.(4.58a) [21] 
 

a)  
xd

)Aln(d2
xd

)Aln(d2W
xd

Wd 00
0

0 η=⎥
⎦

⎤
⎢
⎣

⎡
α++  ,         b)  

xd
d

W 0
0

ϕ
=  . 

(4.59) 

The exact solution to Eq.(4.59a) is given by 
 

( ) ( ) ( ) xdxexp
xd

Ad
xexp

A
xexp

A

~
W

2
0

2
0

2
0

0
0 ∫ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
αα−

η
+α−

ξ
=  , 

(4.60) 

where  is the integration constant. At this stage, it is physically reasonable to 

assume that spatial scale of varying the terms 

0
~ξ

)xdAd( 2
0  and  under 

the last integral are quite different, so that the exponential term is varying much 

slower. That is why this term can be taken out of that integral, and one get the 

following approximate solution 

( xexp α )

 

( ) η+α−
ξ

≈ xexp
A

~
W 2

0

0
0  .                                    (4.61) 
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The real part equation for Eq.(4.58a) has the following exact form 
 

( ) ( ) 0AUAJWW2A
xd

Ad
xd
Ad 2

0
2
00

2
0o0

0
2
0

2
=++−−η+α+  .            (4.62) 

 

Using Eq.(4.61), one can convert Eq.(4.62) into the following approximate 

equation 
 

( ) 0AUA)x2(exp
A

~
JA

xd
Ad

xd
Ad 2

0
2
004

0

2
02

0
0

2
0

2
≈++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
α−

ξ
−−η+α+  . 

(4.63) 

Exploiting similar consideration for Eq.(4.58b) with xddW 11 ϕ=  and the 

integration constant , one can obtain 1
~ξ

 

( ) η−α−
ξ

≈ xexp
A

~
W 2

1

1
1  ,                                   (4.64) 

 

( ) 0AUA)x2(exp
A

~
JA

xd
Ad

xd
Ad 2

1
2
014

1

2
12

1
1

2
1

2
≈−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
α−

ξ
−+η+α+  , 

(4.65) 

which are completely analogous to Eqs.(4.61) and (4.63), respectively. Then, lets 

apply this procedure to Eq.(4.58c). The imaginary part of this equation is 
 

a)  ⎥
⎦

⎤
⎢
⎣

⎡
α+η=⎥

⎦

⎤
⎢
⎣

⎡
α++

xd
)Aln(d2

xd
)Uln(d2W

xd
Wd 00  ,        b)  

xd
dW ϕ

=  . 

(4.66) 

The exact solution to Eq.(4.66a) is given by 
 

( ) ( ) ( ) ,xdxexpU
xd

UdUxexp
U
2xexp

U

~
W 2

0
0

02
0

2
0 ∫ ⎭

⎬
⎫

⎩
⎨
⎧

α⎥
⎦

⎤
⎢
⎣

⎡
α+α−

η
+α−

ξ
=  

(4.67) 
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where  is the integration constant. At this stage, one can again assume that 

spatial scale of varying the terms in the squared brackets and  under 

the last integral in Eq.(4.67) are quite different, so that the exponential term is 

varying much slower. That is why this term can be taken out of that integral, and 

we get an approximate solution 

ξ~

( xexp α )

 

( ) ∫ηα+η+α−
ξ

≈ xdU
U

2xexp
U

~
W 2

02
0

2
0

 .                       (4.68) 

 

The real part equation for Eq.(4.58a) has the following exact form 
 

( ) 0xdUU4U2WW2ZU
xd

Ud
xd
Ud 2

00
3
0

2
0

0
2
0

2
=α++−η++α+ ∫  . 

(4.69) 

Using Eq.(4.68), one can calculate approximately the contribution in the brackets 

of Eq.(4.69) as  
2

2
02

0

2
04

0
4
0

2
22 xdU

U
2xdU

U

~4)x2(exp
U

~
WW2 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ ηα
−

ξηα
−α−

ξ
−η=−η ∫∫ , 

(4.70) 

where the last term directly proportional to a small product  can be 

omitted. Hence, Eq.(4.69) takes the form 

)( 22 ηα

 

0xdU
U

~
1U4U2)x2(exp

U

~
ZU

xd
Ud

xd
Ud 2

04
0

0
3
04

0

2
2

0
0

2
0

2
≈⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ ξη
−α++

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
α−

ξ
−η++α+ ∫ . 

(4.71) 

Thus, one has obtained a sextet of the real-valued approximate evolution 

equations for the phases, see Eqs.(4.61), (4.64), and (4.68), as well as for the 

amplitudes, see Eqs.(4.63), (4.65), and (4.71), of the interacting waves [21]. 
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4.3.3 Analysis for the light wave amplitude A0

 

Let us take Eq.(4.56b), which can be considered as a differential equation 

connecting the amplitudes  and  as [21] 0U 0A
 

xd
)A(d

U2
xd

)U(d 2
02

0

2
0 =α+  .                                 (4.72) 

 

General solution to Eq.(4.72) is given by 
 

( ) ( ) ( ) xdAx2expx2exp2Ax2expQU 2
0

2
00

2
0 ∫ α+α−α−+α−=  , 

(4.73) 

where the integration constant  has to be taken as 0Q 00Q ζ−=  to satisfy 

Eq.(4.56b) with . Substituting Eq.(4.73) into Eq.(4.63), assuming that 

, yields 

0=α

00 =ξ
 

( )[ ]+α−ζ−−η+α+ x2expJA
xd

Ad
xd
Ad

0
2

0
0

2
0

2
 

( ) ( ) .0xdAx2expx2expA2A2 2
00

3
0 =α+α−α−+ ∫  

(4.74) 

Consider the problems in the first approximation relative to the small parameter α  

and expand the exponential terms as x1)x2(exp α±≈α± . Together with this, 

one can assume that α  and  have the same order of smallness. In so doing, let 

us put  and divide the terms from Eq.(4.74) into a pair of the 

equations 

η

000 baA α+=

 

:0α   ( ) 0a2aJ
xd
ad 3

0002
0

2
=+ζ+−  ,                                                     (4.75) 
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:1α   ( ) 00
02

000
2
0002

0
2

ax2
xd

ad
xdaa2ba6bJ

xd
bd

ζα−−α=+ζ+− ∫ . 

(4.76) 

The zero-approximation equation (4.75) has the solution 
 

)Jx(hsecJa 000 ζ+ζ+=  .                            (4.77) 

 

At this step, one can suppose that this pulse has unity amplitude and unity width. 

Correlating such a requirement with Eq.(4.56a), one has to conclude that in this 

case , 1J = 11 =ζ , and 00 =ζ , so that the normalized solution is given by 

 

)x(hseca0 =  .                                          (4.78) 
 

With this result, the first-approximation equation (4.76) takes the form 
 

( ) xtanhxhsec3bxhsec61
xd
bd

0
2

2
0

2
=−−  .                (4.79) 

 

The homogeneous part of Eq.(4.79) is well known in the mathematical theory [22] 

for solitons in the form of )0(
n

22
0

)0(
n Z]xhsec)1n(n[Z +−λ=

″
. In this case 

 and  as it follows from Eq.( 4.79), so one needs the solution for 

. Such a solution can be found as 

10 ±=λ 2n =

)0(
2Z

 

a)  )0(
0

)0(
2 Zxtanh

xd
dxtanh2

xd
dZ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  , 

 

b)   ,                            (4.80) )x(expB)x(expAZ 00
)0(

0 λ−+λ=

 

where  and  are arbitrary constants of integration. Exploiting this procedure, 

one can obtain one of the fundamental solutions to the homogeneous part of 

Eq.(4.79) .  

0A 0B

xtanhxhsecZ 1
)0(

2 =ϕ≡
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                                    a.                                                                             b. 
 

         
 

c. d. 
 

Fig.4.8. Approximate solutions to Eq.(4.93): (a) the solutions 2,1,0ϕ ; (b) effect of the parameter α  

on the localized part of solution; the contributions inherent in the partial solution of inhomogeneous 

equation for 05.0=α  (c) and 01.0=α  (d). 

 

The second fundamental solution 2ϕ , being linearly independent on the solution 

, can be calculated as [23] 1ϕ

 

([ ]1xtanhxxhsec3xcosh
2
1xd2

112 −+=ϕϕ=ϕ ∫ − )  .            (4.81) 

The direct substitutions of both  and 1ϕ 2ϕ  in the homogeneous part of Eq.(4.79) 

satisfy it. The partial solution 0ϕ  to inhomogeneous equation (4.79) with 

 can be estimated as [23] xtanhxhsec3h0 =

 

( ) xsinh
2
1xdxdh01

2
110 =⎥⎦

⎤
⎢⎣
⎡ ϕϕϕ=ϕ ∫ ∫−  .                (4.82) 
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Collecting these results, one can write the general solution to Eq.(4.79) as 
 

022110 CCb ϕ+ϕ+ϕ= ,                                 (4.83) 
 

where  are arbitrary constants. The contributions inherent in the obtained 

solutions for the amplitude  are presented in Fig.4.8 [21]. 

2,1C

0A

 

4.3.4 Analysis for the light wave amplitude A1

 

Now taking Eq.(4.56c), which can also be considered as a differential equation 

bounding the amplitudes  and  as 0U 1A
 

xd
)A(d

U2
xd

)U(d 2
12

0

2
0 −=α+  .                                (4.84) 

 

General solution to Eq.(4.84) is given by 
 

( ) ( ) ( ) xdAx2expx2exp2Ax2expQU 2
1

2
11

2
0 ∫ α+α−α+−α−=  , 

(4.85) 

where the integration constant  has to be taken as 1Q 11Q ζ=  to satisfy 

Eq.(4.56c) with . Due to substituting Eq.(4.85) in Eq.(4.65) and assuming 

that , one can arrive at 

0=α

01 =ξ
 

       ( )[ ]x2expJA
xd

Ad
xd
Ad

1
2

1
1

2
1

2
α−ζ+η−+α+  

( ) ( ) .0xdAx2expx2expA2A2 2
11

3
1 =α+α−α+− ∫  

(4.86) 

Again, considering the problem in the first approximation relative to the small 

parameter , expanding the exponential terms as α x1)x2(exp α±≈α± , put 

, and dividing the terms from Eq.(4.86) into a pair of the following 

equations 

111 baA α+=
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:0α        ( ) 0a2aJ
xd
ad 3

1112
1

2
=−ζ++  ,                                                 (4.87) 

 

:1α        ( )
xd
adxdaa2ax2ba6bJ

xd
bd 12

11111
2
1112

1
2

−−ζ=−ζ++ ∫  . 

(4.88) 

The exact solution to the zero-approximation equation (4.87) is given by 
 

]2)J(x[tanh2)J(a 111 ζ+ζ+=  .                 (4.89) 

 

However, because of  and 1J = 11 =ζ  (see previous section 4.3.3), this solution 

can be written as 

xtanha1 = .                                             (4.90) 
 

With this result, the first-approximation equation (4.88) takes the form 
 

[ ] 1xtanh3bxhsec64
xd
bd 2

1
2

2
1

2
−=−−  .                 (4.91) 

 

The homogeneous part of Eq.(4.91) has the form of 

 as before. In this case )1(
n

22
1

)1(
n Z]xhsec)1n(n[Z +−λ=

″
21 ±=λ  and  

as it follows from Eq.(4.91), so again we need the solution for , which can be 

found using Eq.(4.80a) with ; where  

and  are arbitrary constants of integration.  

2n =

)1(
2Z

)x(expB)x(expAZ 1111
)1(

0 λ−+λ= 1A

1B
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                                     a.                                                                            b. 

 

         
                                     c.                                                                            d. 
 

Fig.4.9. Approximate solutions to Eq.(4.86): (a) the solutions 2,1,0ψ ; (b) effect of the parameter α  

on the localized part of solution; the contributions inherent in the partial solution of inhomogeneous 

equation for 05.0=α  (c) and 01.0=α  (d). 

 

Exploiting that procedure, one can obtain , being one of the 

fundamental solutions to the homogeneous part of Eq.(4.91). The second 

fundamental solution , being linearly independent on the solution , can be 

found as 

xhsecZ 2
1

)1(
2 =ψ≡

2ψ 1ψ

 

[ ])x4(sinh)x2(sinh8x12xhsec
32
1xd 22

112 ++=ψψ=ψ ∫ −  .         (4.92) 

 

The direct substitutions of both 1ψ  and 2ψ  in the homogeneous part of Eq.(4.91) 

satisfy it. The partial solution 0ψ  to inhomogeneous equation (4.91) with 

 can be estimated as [23] 1xtanh3h 2
1 −=
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( )
2
1xdxdh11

2
110 −=⎥⎦

⎤
⎢⎣
⎡ ψψψ=ψ ∫ ∫−  .                    (4.93) 

 

Collecting these results, one can write the general solution to Eq.(4.91) as 
 

022111 GGb ψ+ψ+ψ= ,                                    (4.94) 

 

where  are arbitrary constants. Some combinations of the contributions 

inherent in the obtained solutions for the amplitude  are presented in Fig.4.9. 

2,1G

1A

 

4.3.5 Analysis for the acoustic wave amplitude U0 

 

Let us consider now Eq.(4.71) with 0=ξ , so that Eq.(4.71) becomes to be 

reduced as  
 

( ) 0xdUU4U2ZU
xd

Ud
xd
Ud 2

00
3
0

2
0

0
2
0

2
=α++η++α+ ∫  ,          (4.95) 

 

where  as it follows from Section 4.3.3. One can consider the problem in 

the first approximation relative to the small parameter 

1Z −=

α  and assume that  and 

 have the same order of smallness. In so doing, we put 

α

η 100 vvU α+=  and 

divide the terms from Eq.(4.95) into a pair of the equations as 
 

:0α        0v2v
xd
vd 3

002
0

2
=+−  ,                                                  (4.96) 

 

:1α        
xd

vdxdvv4vv6v
xd
vd 02

001
2
012

1
2

−α−=+− ∫  .              (4.97) 

The zero-approximation Eq.(4.96) has the solution 

)x(hsecv0 =  .                                          (4.98) 
 

With this result, the first-approximation equation (4.97) takes the form 
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( ) xtanhxhsec3vxhsec61
xd
vd

1
2

2
1

2
−=−−  .              (4.99) 

 

One can see that the homogeneous parts of Eqs.(4.99) and (4.79) are exactly the 

same, while inhomogeneous parts of these equations differs by the sing only. By 

this is meant that one can directly exploit the results from Section 4.3.3 and write 

the fundamental solutions  to Eq.(4.99) as 2,1φ

 

               a)   , xtanhxhsec1 =φ

 

b)  ( )[ ]1xtanhxxhsec3xcosh
2
1xd2

112 −+=φφ=φ ∫ −  . 

(4.100) 

The direct substitutions of 2,1φ  in the homogeneous part of Eq.(4.99) satisfy it. 

The partial solution 0φ  to inhomogeneous equation (4.99) with 

 can be estimated as [23] xtanhxhsec3h −=
 

( ) xsinh
2
1xdxdh1

2
110 −=⎥⎦

⎤
⎢⎣
⎡ φφφ=φ ∫ ∫−  .              (4.101) 

 

Collecting these results, one can write the general solution to Eq.(4.95) as 

, where  are arbitrary constants.  022111 MMv φ+φ+φ= 2,1M
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                                    a.                                                                          b. 
 

      
                                     c.                                                                         d. 

Fig.4.10. Approximate solutions to Eq.(4.95): (a) the solutions 2,1,0φ ;  

(b) effect of the parameter α  on the localized part of solution; the contributions inherent in the 

partial solution of inhomogeneous equation for 05.0=α  (c) and 01.0=α  (d). 

 

The contributions inherent in the obtained solutions for the wave  are 

presented in Fig.4.10 [21]. 

0U

 

4.4 Five-wave non-collinear acousto-optical coupled states 
 

Now, the existence of another type of solitary waves, representing the most 

complicated multi-wave acousto-optical coupled states that can be allowed in the 

Bragg regime of non-collinear interaction between light and elastic waves in 

crystals is dicussed. Here, the quasi-stationary description for such five-wave 

solitary waves, including both the analytical approaches and the computer 

simulations are developed.  
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In Section 4.4.1, the localization conditions and appearing five-wave Bragg weakly 

coupled multi-pulse acousto-optical in the case of an exact phase synchronism 

are investigated. 

 

4.4.1 Originating five-wave Bragg non-collinear weakly coupled 

acousto-optical states 
 

Usually, the Bragg acousto-optic processes include the only three waves, but 

under certain angles of the incidence on selected crystal cuts and at a specific 

frequency for the acoustic wave, one can observe Bragg scattering caused by 

participating three phonons simultaneously [4,24], because the corresponding 

conservation laws become to be fulfilled. Such a five-wave process occurs at the 

frequency 212
1

2
0

10 |2)nn(|Vf −λ= − of acoustic wave, peculiar to just a 

three-phonon scattering; (here 10 nn ≠  are the refractive indices of a uniaxial 

crystal, V  is the acoustic velocity, λ  is the incident light wavelength). 

Polarizations of light in the zero and second orders are orthogonal to polarizations 

in the first and third ones, whereas the frequencies of light beams in the first, 

second, and third orders are shifted by , , and , respectively, relative to 

the zero order. If the powers of waves are closely related, strongly nonlinear 

behavior of light waves appears with a three-phonon scattering without any 

observable influence on the acoustic wave, which is to say that a weak coupling of 

waves takes place. Assuming that an area of propagation for the acoustic wave, 

traveling almost perpendicularly to the light beams, is bounded by two planes 

 and  in a crystal and take into account joint angular-frequency 

mismatches  of waves. A set of equations for the amplitudes  of light 

waves ( ) with stationary three-phonon Bragg light scattering is given 

by Eqs. (2.34). 

0f 0f2 0f3

0x = Lx =

kη )x(Cm

3,2,1,0m =
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Now, analyzing Eqs.(2.34) with the simplest boundary conditions 

( ) 22
0 I0xC == , ( ) 00xC 3,2,1 ==  and exploiting the conservation law 

22
3

2
2

2
1

2
0 ICCCC =+++ , resulting from Eqs.(2.34), where  is the 

intensity of the continuous-wave incident light beam. The complete analytical 

solution to Eqs.(2.34) is too unwieldy, so at first assuming that 

2I

0210 =η=η=η  

and yield [25,26] 
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where 22 q41q21P +++=  and 22 q41q21S +−+= . As follows 

from Eqs.(4.102) – (4.105), the light intensities are periodic in the 

coordinate , so such values 

2
p |)x(C|

x 0xn ≠  exist that ( ) 22
n0 IxC = , ( ) 0xC n3,2,1 =  

with . Thus, when , the intensities in a triplet of the scattered light 

waves become zero outside the area occupied by the acoustic wave, i.e. the 

phenomenon of localization appears for the above listed optical scattered 

components. Inside that area, the spatial distributions of  the scattered light waves  

K,2,1n = nxx =
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contain a number of peaks and holes, and simultaneously the corresponding 

distribution of the incident light wave has holes or peaks at the same spatial 

positions. Equations (4.102) – (4.105) give an opportunity to search for completely 

localized distributions of the scattered optical components with 0210 =η=η=η , 

i.e. exact phase synchronism. Broadly speaking, this problem can be formulated 

in various ways, and considering here the simplest case. One can assume that 

the completely localized distributions are associated with the relations 

, while ( ) ILqC n0 ±= ( ) =LqC n1 ( ) =LqC n2 ( ) 0LqC n3 =  where { }nxL∈  is 

the spatial length of localization. Lets start with Eq.(4.104) that is the simplest one 

in a set. The relation ( ) 0LqC n2 =  leads to )2xqP(cos)2xqS(cos nn = , 

but the obvious analysis shows that only the case of 

1)2xqP(cos)2xqS(cos nn ±==  gives an opportunity to keep a freedom 

in determining both the parameters P  and S  as well as the length L . The last 

formula provides the existence of all the above-listed localized distributions and 

converts the associated relations into trivial equalities. That is why one arrives at 

two triplets of the localization conditions. The first one is given by 

Pm22Sk22Lqn π=π= , where k  and  are the whole numbers; , 

because . If , yields 

m km >

SP > 0k = 0m =  and 0Lnq =  that is trivial. So, we put 0k ≠  

and using the parameters P  and  obtain the formula S
 

2222 q41q21kq41q21m +++=+−+  ,                (4.106) 
 

correlating the whole numbers k  and m  and the parameter q in the first triplet. 

The second triplet can be written as P/)m2(2S/)k2(2Ln π+π=π+π=q . 

Here,  as well, but the value of km > 0k =  is now acceptable. The interrelation 

between the whole numbers k  and  and the parameter q is given now by 

[25,26] 

m

( ) ( ) 2222 q41q21k21q41q21m21 ++++=+−++  .          (4.107) 
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Figures 4.11 [25,26] reflect Eqs.(4.106) and (4.107), and depict various interplays 

between the whole number  and the parameter  for a set of the whole 

numbers . The solutions to Eqs.(4.106) and (4.107) are presented by 

intersections of the curves with the fixed numbers k  and the horizontal lines with 

the fixed numbers m . Some intersections lead to the same solutions with different 

values , so the minimal value of  will be realized in such cases. These 

results make it possible to conclude that spatial Bragg solitary waves in the form 

of five-wave weakly coupled acousto-optical states exist under the localization 

conditions on a discrete totality of points in a three-dimensional (k ,m , )-space. 

m q

k

Lqn Lqn

q

 

                 
                                  a.                                                                             b.

Fig. 4.11 Graphical interpretation of the localization conditions: a) for Eq.(4.106), b) for Eq.(4.107). 

 

            
 

            
Fig.4.12. Exactly localized distributions for the intensities 2

p |)x(C|  of optical components inherent 

in a multi-pulse weakly coupled state with 44.4q =  for a TeO2-crystal on [ 0, 2π ]. ∈Lqn
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Fig.4.13 Distributions for the optical components: the doted lines are for q = 1.936, the dashed 

lines are for q = 1.414, the dot-dashed lines are for q = 0.866, and the solid lines are for q = 0.559. 

 

The exactly localized distributions for the light intensities of optical 

components inherent in the system, described by a set of Eqs.(4.102)-(4.105) with 

various values of the parameter q on the interval 

2
p |)x(C|

]4,0[xqn π∈ , are shown in 

Fig.4.13 [25,26,27]. These plots represent multi-pulse dark solitary waves in zero 

order together with bright ones in the first, second, and third orders of scattering.  

 

4.4.2 Five-wave non-collinear weakly coupled acousto-optical states 

in a TeO2-crystal 
 

Now taking into account the mismatches, assume the precise angular alignment 

of a cell, and extend , 0η 1η , and 2η  into a power series only in terms of the 

frequency detuning 0fff −=Δ  for the current frequency f  relative to the 

frequency  of exact synchronism. In the first approximation on  the wave 

vectors diagram, shown in Fig.2.3d of Chapter 2, gives us 

, 

0f fΔ

12
000 )Vn(ff −Δλπ=η 01 3η−≈η , and 02 7η−≈η . For this approximation one  
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can exploit only the one parameter 0η  for estimating the mismatching effect in the 

form of the frequency detuning .  fΔ

An illustrative example of numerical simulations related to spatial-frequency 

distributions for the intensities of all optical components inside a rectangular 

acoustic pulse in the regime of a four-order light scattering is presented in 

Fig.4.14 for the case of . 5.4q =

 

               
a.                                                                                      b. 

              
c.                                                                            d. 

Fig.4.14. Spatial-frequency distributions for a quartet of optical components in a multi-pulse five-

wave weakly coupled state with q = 4.5, I = 1, and π≤ 2Lqn : an eight-pulse component in the 

zero order of scattering (a), a nine-pulse component in the first and the second orders (b) and (c), 

an eight-pulse component in the third order (d). The distributions (b), (c), and (d) are completely 

locked with 00 =η . 

 

It is seen that initially, with 00 =η , well-localized and uniform distributions 

become to be broken due to growing the mismatch 0η , i.e. the detuning , or 

converted into the other multi-wave states of localization. 

fΔ
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4.4.3 Experimental data 
 

A schematic arrangement of the experiment was quite similar to the set-up 

presented in [2], but in a four-order regime of light scattering, or to the scheme for 

optical data processing [18]. Our set-up includes a continuous-wave wide aperture 

laser beam, a non-collinear crystalline cell, and the CCD linear array. Its optical 

layout is shown in Fig.4.15. 

 

 
 

Fig.4.15. Schematic arrangement of the optical layout for the experimental set up. 
 

The incident light beam was precisely oriented at the Bragg angle relative to the 

acoustic beam to minimize the influence of angular mismatches and thereby to 

provide just electronic control over measuring contributions of the frequency 

detuning. Observation of optical components inherent in stationary five-wave 

weakly coupled acousto-optical states has been carried out with experiments 

using a TeO2 crystal cell oriented along the [ ] and [ ]-axis respectively as 

shown in Fig.2.3d, ( f

100 011

0 = 57.8 MHz, V = 0.616 mm/μs [17] ) and λ = 0.442 μm. 

 

The Bragg scattering of circularly polarized light, resulting the maximal efficiency 

of acousto-optical interaction, was performed without any effect on the acoustic 

wave that provides the regime of weak coupling. The incident light power from a 

He-Cd-laser was about 20 mW, while the acoustic beam power was in excess of 

4W. The intensities of the optical components peculiar to five-wave coupled states  
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have been measured as the functions of the product qnx and the frequency 

detuning Δf on the first interval of localization (n = 1). 

 

        2
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2C                      2

3C  
 

                
 

 

                
 

 

                
 

 

                
 

 

                
 

 

                
 

Fig.4.16. The digitized oscilloscope traces for the intensities | C P | 2of the optical components in a 

five-wave coupled state versus the product qnx at various values of the frequency detuning Δf. 

The magnitude of Δf is increasing from zero for the upper raw through the intermediate values 

0.40, 0.75, 1.15, and 1.5 MHz to 2 MHz for the bottom one. 
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Figure 4.16 present the corresponding digitized oscilloscope traces [27]. Because 

the length of acousto-optical interaction was constant (L = 1.1 cm), the power 

density of acoustic wave was varied due to varying the applied acoustic power to 

control the product qnx. 

 

4.5 Conclusions 
 

 An opportunity of creating three-wave dissipative coupled states during the 

process of a strong co-directional collinear acousto-optical interaction between 

two optical modes and the suffering losses acoustic pulses in a square-law 

nonlinear crystal has been preliminary theoretically investigated.  

 Both stationary and non-stationary analytic models for describing the 

localization processes for multi-pulse dissipative three-wave weakly coupled 

states have been elaborated, and the results of the experiments in a calcium 

molybdate crystalline acousto-optical waveguide have been presented and 

discussed. 

 The five-wave Bragg weakly coupled states, occurring with a four-order 

non-collinear scattering of light by acoustic wave in an optically anisotropic 

tellurium dioxide crystal have recognized. 

 The analysis which makes possible to describe originating five-wave Bragg 

weakly coupled acousto-optical states via the formulation of the localization 

conditions for multi-pulse states in the case of an exact phase synchronism have 

been performed.  

 Theoretically predicted existence of stationary five-wave weakly coupled 

acousto-optical states has been experimentally observed.  

 This type of multi-pulse solitary waves has been successfully shaped and 

identified in a non-collinear acousto-optical cell made of a tellurium dioxide single 

crystal. 
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General conclusions 
 

Estimations of the bandwidth for one- two- and three-phonon interactions 

have been performed and they have been experimentally compared. 

 

The combined influence of both the geometric limitations and the acoustic 

attenuation on the number of resolvable elements for the regime of a one-

phonon anomalous light scattering and for two-phonon has been created for 

the first time. 

 

Gaussian apodization as well as the acoustic attenuation factor in connection 

with the dynamic range of the acousto-optical cell have been studied.  

 

The theoretical analysis of three-wave collinear acousto-optical coupled 

states in a medium with acoustic losses under localization conditions has 

been studied for the first time.  

 

The existence of Bragg solitary waves in the form of five-wave non-collinear 

coupled states under localization conditions is analytically and experimentally 

demonstrated. 
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Fig.1.2. Wave vector diagram for Bragg interaction: a) frequency upshifted, 

b) frequency downshifted. 
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Fig.1.3. Wave vector surfaces and wave vector diagrams inherent in a 
one-fold (a), two-fold (b), and three-fold scattering of a photon by 
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Fig.1.4. General arrangement of optical beams in a two-phonon (a) and 
three-phonon (b) processes of light scattering; light arrows show 
the corresponding acoustic waves passing through crystals from 
the piezo-electric transducers to the absorbers. 
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24 Fig.1.5. Anisotropic interaction in positive uniaxial crystal. a) Shear wave 
along optical axis, light wave in xy plane, b) all waves in xy plane. 

Fig.1.6. a) Collinear coupling between a z-polarized and a y-polarized 
optical beams by a shear acoustic, b) collinear phase matching in a 
birefringent crystal 

26 

Fig.1.7. Basic acousto-optic spectrum analyzer. 32 
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45 Fig.2.1 General diagram of originating the orders of scattering governed by 
Eq.(2.8) with )0,,0,1,0,,0,0()0(C KK= . 

Fig.2.2. Diagram of originating the scattered orders governed by Eq.(2.8) 
in the regime of a one-phonon light scattering with ( ) ( )0,10C = . 

45 

Fig.2.3. Feasible geometries of the acousto-optical interaction in a 
tellurium dioxide single crystal: normal (a) and anomalous, (b) 
one-phonon regime; a two-phonon regime (c), and a three-phonon 
regime (d). 

47 

Fig.2.4. Diagrams of originating the scattered orders, Eq.(2.8): (a) two-
phonon light scattering regime with ( ) ( )0,0,10C = ; b) three-

phonon light scattering regime with ( ) ( )0,0,0,10C = . 

48 

 175



Fig.2.5. Intensity distributions: (a) one-phonon light scattering regime with 

10 qqq =  (dot-dashed line for ( ) 2
0 xqC  and solid line for 

( ) 2
1 xqC ); (b) a two-phonon light scattering regime (dot-dashed 

line for ( ) 2
00 xqC , dashed line for ( ) 2

01 xqC , and solid line 

for ( ) 2
02 xqC ). 

49 

Fig.2.6. A three-dimensional distribution (a) for ( ) 2
12 x,xqC η  and the 

cross-section of that distribution at  q x = 2π  (b). 

53 

Fig.2.7. Distributions of the light intensity ( ) 2
3 xC  vs. : dashed line: 

q = 0.559, solid line: q = 0.866, dotted line: q = 1.414, and dot-
dashed line: q = 1.936. 

xqn 55 

Fig.2.8. Distributions of the light intensities with a three-phonon light 
scattering vs. : (a) q = 0.866, and (b) q = 1.936. Dot-dashed 

lines for 

xqn

( ) 2
0 xC ; dashed lines for ( ) 2

1 xC ; dotted lines for 

( ) 2
2 xC ; and solid lines for ( ) 2

3 xC . 

55 

Fig.2.9. (a) Distribution of the light intensity ( ) 2
3 xC  vs.  with q = 

4.44; (b) dependence of 

xqn

( ) 2
3 xC  on x0η  with 82.2xqn = . 

58 

61 Fig.2.10. Two cross-sections of the refractive index surfaces inherent in a 
tellurium dioxide crystal: (a) hypothetic plot without the effect of 
optical activity; (b) illustration to the effect of optical activity. 

Fig.2.11. The ellipticity  of polarization of the light waves vs. the angle  

of a tip from the -axis in a TeO

ρ ϑ

]001[ 2-crystal. 
63 

Fig.2.12. A wide-band geometry for the anomalous regime of light 
scattering in a TeO2-crystal. 

63 

Fig.2.13. Squared moduli of the normalized effective photo-elastic 

constants (a) )ii(peff →∗ , (b) )ji(peff →∗  versus the ellipticity 

 of the polarization of an external light beam as well as the 

rotation angle , and (c) the moduli of the normalized effective 
iρ

φ
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photo-elastic constants )ii(p~eff →  and )ji(p~eff →  versus the 

ellipticity ρ  of the eigen states of polarization in a TeO2-crystal. 

Fig.2.14. General schematic arrangement for measuring the frequency 
bandwidths of a TeO2-modulator in various regimes of multi-
phonon light scattering. 

74 

Fig.2.15. The intensity-frequency distributions for a one-phonon (a), two-
phonon (b), and three-phonon (c) light scattering processes in 
tellurium dioxide single crystal. 

74 

Fig.2.16. Schematic arrangement to measure the intensity profile of an 
individual spot. 

76 

Fig.2.17. The intensity distributions of an individual spot in focal plane of 
the integrating lens for a two-phonon light scattering in a TeO2 
acousto-optical modulator: (a) experimental plot, (b) numerical 
simulation. 

77 

 

Chapter 3 
 

Fig.3.1 Schematic arrangement for the implementation of an acousto-
optical spectrum analyzer. 

81 

Fig.3.2. Diagram of the interaction of a light beam passing through a prism. 82 
Fig.3.3. The light beam passing through a glass prism: (a) , (b) 

. 
1m =

2m =
84 

Fig.3.4. Linear expanding factor  for m  prisms with  and 

. 

mB 5.1n =

030=α

85 

Fig.3.5. Comparison of the transmissions inherent in one glass prism with 

 and  for two states of light polarization. 5.1n = 030=α

89 

Fig.3.6. The combined diagram illustrating the beam expanding and the 
transmission in glass prism shapers with { }4,2,1m = , , and 

. 

5.1n =

030=α

89 

Fig.3.7. Diagrams illustration the effect of varying the prism top angle : 

(a) 

α 90 
2m = , and (b) 4m = . 

Fig.3.8. Scheme to perform the Fourier transform with a thick positive lens, 
which is illuminated by a plane wave. 
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Fig.3.9. Side view of a thick lens and how it is possible to split it in three 
parts. 

92 

Fig.3.10. Calculation of the thickness function. Geometry for Δ1 and Δ3. 93 
Fig.3.11. Vector diagram for a one-phonon light scattering, being non-

degenerated by a two-phonon process, in a tellurium dioxide 
crystal. 

96 

Fig.3.12. The combined diagram illustrating effect of a triplet of the 
restricting factors. Solid slowly growing lines are for N1 with D = 1, 
2, 3, and 4 cm. Dashed line are for N2 with Q = 2 π. Solid 
hyperbolic-like falling curves illustrate N3 and reflect contributions 
of the acoustic attenuation; B = 3, 4, and 6 dB along the aperture. 

99 

Fig.3.13. Combined diagram illustrating the effect of a triplet of the 
restricting factors. Solid straight lines for  N1, D = 1, 2, 3, and 4 cm. 

Dashed line for N2 with Q = 4 π. Solid hyperbolic-like for N3 and B = 
3, 4, and 6 dB along the aperture. 

103

Fig.3.14. The profiles of transfer functions: solid line is for a two-phonon 
light scattering, dashed line for a one phonon regime is presented 
for a comparison. 

106

Fig.3.15. Optical scheme for scattering light by a thick dynamic acoustic 
grating (a) and the corresponding light intensity distributions (b). 

107

Fig.3.16. Effect of acoustic attenuation: (a) normalized light intensity in the 
focal spot; solid line, 0=α  dB/cm, dashed line, 3=α  dB/cm, 

dash-dotted line, 6=α  dB/cm, and dotted line, 10=α  dB/cm; (b) 

light intensity in a maximum of the focal spot as a function of . Dα

109

Fig.3.17. Optical arrangement of lighting the acousto-optical cell (a) and a 

role of the parameter β (b). 
112

Fig. 3.18. Available optical powers. 114
Fig. 3.19. Light intensity plots for: =β  0 (dashed line), =β  2 (dotted line), 

and  10 (solid line). =β

114

Fig.3.20. A three-dimensional plot of the lobes illustrating the tendency of 
dominating the second lobe. 

115

Fig.3.21. Estimations for the maximal side lobe and spot’s width with 
varying ; the level of the side lobes is measured relative to the 

maximal intensity of the main lobe. 

β
115
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Fig.3.22. Level of the maximal side lobe relative to the maximum intensity 
of the main lobe. 

116

Fig.3.23. Broadening of a resolvable spot at the intensity level of half a-
maximum of the main lobe. 

116

Fig.3.24. Combined effects of the incident light apodization and the 
acoustic attenuation on the normalized light intensity in the focal 
plane: (a) and (b) are for 0=β , (c) and (d) for 2=β , (e) and (f) for 

. Then, everywhere, solid lines for 6=β 00 =α , dashed lines for 

dB, dashed-dotted lines for 30 =α 60 =α dB, and dotted lines for 

dB. 100 =α

118

Fig.3.25. The general plot of the first side lobe inherent in an individual 
resolvable spot in a Fourier plane (a) and maximal levels of the first 
side lobe versus the apodization parameter β  (b), solid line for 

, dashed line for 00 =α 30 =α dB, dashed-dotted line for 

dB, and dotted line for 60 =α 100 =α dB. 
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Chapter 4 
 

Fig.4.1. Restricting the number N  of pulses in a coupled state in the case 
of 0=η  and 0≠α ; for the taken example of 1.0=α  and 1=σ , 

one can find 3N ≤ . 

130

Fig.4.2. The possibility of shaping multi-pulse coupled states when 0≠η  

and 0≠α ; i.e., 1.0=α  and 1=σ , one can realize: a) 1N = ,  
131

             b) 2N = , c) 3N = , and d) 5N = . 

Fig.4.3. Plots for )0,x(b2 =η  with 1=σ , 1.0=α , and 1G2 =  : a) 

1H2 = , 1U2
0

2 =Γ , (solid line for 2b , dotted line for the frequency 

γ ); b) 1H2 = , 0U2
0

2 =Γ ;  c) 0H2 = , 0U2
0

2 =Γ . 

136

Fig.4.4. Intensity of the scattered light components vs. τ and L with 2=σ  

and 05.0=α . Four stages of reshaping are simulated: a) 5.1=η , 

the beginning of shaping a one-pulse coupled stated; b) 4.2=η , a 

one-pulse coupled stated; c) 5.3=η , an intermediate stage; and  

138

             d) 0.6=η , a two-pulse coupled state. 
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Fig.4.5. Schematic arrangement of the experimental set-up. 143
Fig.4.6. Scheme of the co-propagating collinear calcium molybdate 

acousto-optical cell providing the traveling-wave regime of 
interaction of the pumping light beam with the acoustic pulses. 

144

Fig.4.7. The digitized oscilloscope traces for 2
1C  in a CaMoO4-crystalline 

waveguide with 05.0=α  cm  at a carrier acoustic frequency of 

61.3 MHz. Four stages of reshaping are followed at the same 
optical pump and acoustic wave intensities and temporal scales: 
(a) 

-1

5.1=η  cm , the beginning stage of shaping a one-pulse 

coupled stated; (b) 

-1

4.2=η  cm , a one-pulse coupled stated; (c) -1

5.3=η  cm , an intermediate stage; and (d) -1 0.6=η  cm , a two-

pulse coupled state. 

-1
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Fig.4.8. Approximate solutions to Eq.(4.93): (a) the solutions 2,1,0ϕ ; (b) 

effect of the parameter α  on the localized part of solution; the 

contributions inherent in the partial solution of inhomogeneous 
equation for 05.0=α  (c) and 01.0=α  (d). 
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Fig.4.9. Approximate solutions to Eq.(4.86): (a) the solutions 2,1,0ψ ; (b) 

effect of the parameter α  on the localized part of solution; the 

contributions inherent in the partial solution of inhomogeneous 
equation for  (c) and 05.0=α 01.0=α  (d). 
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Fig.4.10. Approximate solutions to Eq.(4.95): (a) the solutions 2,1,0φ ; (b) 

effect of the parameter α  on the localized part of solution; the 

contributions inherent in the partial solution of inhomogeneous 
equation for 05.0=α  (c) and 01.0=α  (d). 
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Fig.4.11. Graphical interpretation of the localization conditions: a) for 
Eq.(4.106), b) for Eq.(4.107). 
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Fig.4.12. Exactly localized distributions for the intensities ( ) 2
p xC of 

optical components inherent in a multi-pulse weakly coupled state 
with q = 4.44 for a TeO2-crystalon the interval [ ]π∈ 2,0Lq n . 
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Fig.4.13. Distributions for the optical components: the doted lines are for q 
= 1.936, the dashed lines are for q = 1.414, the dot-dashed lines 
are for q = 0.866, and the solid lines are for q = 0.559. 
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Fig.4.14. Spatial-frequency distributions for a quartet of optical components 
in a multi-pulse five-wave weakly coupled state with q = 4.5, I = 1, 
and : an eight-pulse component in the zero order of 

scattering (a), a nine-pulse component in the first and the second 
orders (b) and (c), an eight-pulse component in the third order (d). 
The distributions (b), (c), and (d) are completely locked with 

. 

π≤ 2Lqn

00 =η
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Fig.4.15. Schematic arrangement of the optical layout for the experimental 
set up. 
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Fig.4.16. The digitized oscilloscope traces for the intensities | C P | 2of the 
optical components in a five-wave coupled state versus the product 

qnx at various values of the frequency detuning Δf. The magnitude 

of Δf is increasing from zero for the upper raw through the 
intermediate values 0.40, 0.75, 1.15, and 1.5 MHz to 2 MHz for the 
bottom one. 
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