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INTRODUCTION 

 

In optics, the measure of the magnitudes is associated with the radiant energy in the optical interval of 

the electromagnetic spectrum (ultraviolet, visible and infrared) [1].One of the magnitudes associated to 

the radiation is the quantity of energy transported and for multiple reasons it is necessary to carry out 

measurements of radiant energy with higher precision and accuracy. This necessity has impelled the 

most precise and exact search of measuring system [2]. 

  

The rapid development of picosecond, femtosecond and attosecond technology has allowed us to 

examine fundamental process in materials. To accurately determine an interval of short duration, one 

must first be able to measure its duration. One measuring technique  is to identify events that recur 

regularly over and over again, such as the passing of a day. The ancients knew how to subdivide time 

by using devices such as sundials. For measuring still shorter time intervals, they used the hour glass or 

allowed a specific quantity of water to drip from cistern. However, they apparently showed no interest 

in studying physical events with these methods [3]. 

 

Much of the ground work for picosecond light pulse technology was laid by related discoveries during 

the five years preceding the use of high power modelocked lasers. All main lasers now used for 

picosecond work were discovered during this period: the ruby, Nd:glass, Nd YAG, and dye lasers [4].  

Besides the discovery of lasers in this five years period, many nonlinear optical effects were detected, 

some of which were shortly to become an integral part of picosecond techniques, e.g. second and third 

harmonic generation [5]. 
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To measure the power associated to optical radiation a photodetector is used. Depending on the power 

level, spectral distribution, temporal features and other geometric features of the beam different types 

may be used. Photodiodes as silicon, InGaAs/InP and other, are the most suitable photodetectors in 

many applications (Ana may include some at this point) as far as the spectral range of interest is within 

their spectral sensitivity interval. Perhaps their greatest inconvenience is that responsivity, the response 

amount by unit of incident power, is depending on wavelength. Consequently, to used them as 

radiometers they have to be calibrated at every wavelength of interest, what it is routinely done in 

calibration laboratories of different levels. However, another approach can be taken to know the 

responsivity of a photodiode based on the physics of the interaction between the radiation and the 

photodiode. This approach has been realized in the case of silicon photodiodes and has shown to be 

very useful not only to know the responsivity but to know about other detectors features as linearity 

and response uniformity. Therefore the goal in this thesis is to study the possibility of applying this 

approach to InGaAs/InP photodiodes. 

 

Assuming that the photodiode is used in the short-circuit configuration, i. e. measuring the short circuit 

current produced by the incoming optical radiation, the physical phenomena occurring in this system 

can be analyzed and a simple equation can be derived for the responsivity. First, the absorbed radiation 

power is obtained from the incoming one except for the reflected fraction, since the photodiodes are 

design as opaque devices to improve their efficacy. Then the absorbed power will excite electrons and 

holes within the diode, which will contribute to the short circuit current with different probability. The 

probability is mainly related to the position where the charges are excited within the photodiode, 

varying from almost 1 in the charge depletion region to almost 0 at the back of the photodiode. 

Therefore, since the absorption distribution depends on wavelength, the charge collection efficiency 
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will (internal quantum efficiency) also depends on wavelength. Then if the reflectance and internal 

quantum efficiency are known the responsivity will be known without comparing to another calibrated 

radiometer. 

 

To try this approach with success the photodiode manufacturing technology has to be mature and be 

able to produce almost perfect devices from a solid state point of view (very low charge losses) and 

very flat and plane sensitive surfaces. As it happened some years ago with silicon photodiodes, it seems 

that the manufacturing of InGaAs/Inp photodiodes has reached that maturity stage at present. 

Afterward, if the internal structure and complex refraction index of the materials composing the device 

were known, a model could be developed to calculate the reflectance and internal quantum efficiency f 

the devices. Since these data are not completely known because manufacturers do not publish them, it 

is necessary to measure the reflectance, assume a structure model from an optical point of view and fit 

experimental data to the model to be able to know reflectance at every wavelength. Then measuring the 

responsivity at some wavelengths, internal quantum efficiency can be obtained from those values and 

the corresponding reflectance va lues.  

 

Again, assuming a structure, a model can be developed for the internal quantum efficiency and fitted to 

values calculated before. This is the alternative approach that is suggested and used in this thesis to 

know the responsivity of InGaAs/InP photodiodes. 

 

As important as knowing responsivity is to know its temporal stability for optical radiation 

measurements, that will depend in turn on the reflectance and internal quantum efficiency stabilities. 

Since stability studies have to be done over a relatively wide set and large area InGaAs/InP 

photodiodes are still expensive, it was decided for the purpose of this thesis to focus the study on the 
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reflectance variability of a wide set of silicon photodiodes available at the  Institute for applied physics. 

The similarity between these two kinds of photodiodes could help to extrapolate results from one to 

another. Temporal stability of silicon internal quantum efficiency has been studied yet by different 

authors, therefore it has not been included in this thesis. 

 

Structure of the thesis. 

 

Chapter 1 presents the fundamental concepts of this thesis, the related to the study of optical pulses, 

measurement techniques, as well as on the silicon and InGaAs/InP photodiodes. 

 

Chapter 2 and 3 present approaches to the characterization of low-power bright picosecond optical 

pulses with an internal frequency modulation simultaneously in both time and frequency domains in 

practically much used cases of the Gaussian and sech-like shapes. In so doing, first of all, it implement 

the technique for recognizing the width as well as the magnitude and sign of the frequency chirp 

peculiar for such ultrashort pulses in high- repetition-rate (approximately 1 GHz) trains. 

 

Chapter 4 presents an approach based on the algorithm of the triple autocorrelations the key features of 

a novel experimental technique are related to both accurate and reliable measurements of the train-

average parameters inherent in sequences of picosecond optical pulses with an internal frequency 

modulation. Here, three types of pulse envelopes, namely, Gaussian, rectangular, and smooth 

asymmetric shapes are under analysis and algorithmic investigation. 

 

Chapter 5 presents a study about the reflectance of silicon photodiodes, with two goals: To study the 

variability of reflectance among photodiodes from a single batch, which is important for silicon trap 
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detectors, and to study the reflectance ageing of some silicon photodiodes used as standards during six 

years. 

 

Chapter 6 presents the study of reflectance and inte rnal quantum efficiency of InGaAs/InP photodiodes. 

Models for them are proposed and fitted to experimental data obtaining a good agreement. 

 

Chapter 7 presents the general conclusions of this Ph.D. thesis. Finally the statements of this thesis are 

formulated. 
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CHAPTER 1. 

FUNDAMENTAL CONCEPTS. 

In this section a short introduction to nonlinear op tics and basic concepts on photodetectors are given. 

They will be concentrating on optical pulses, measurement techniques, as well as on silicon and 

InGaAs/InP photodiodes. 

1.1 Optical pulses 

 

Optical pulses are flashes of light, which are often generated with lasers (laser pulses) and delivered in 

the form of laser beams. Due to the high optical frequencies, optical pulses can be extremely short 

(ultrashort), with their optical bandwidth spans a significant fraction of the mean frequency. Therefore, 

amplified ultrashort pulses are very important for high- intensity physics, studying phenomena such as 

multi-photon ionization, high harmonic generation, or the generation of even shorter pulses with 

attosecond durations. Depending on the required pulse duration, pulse energy, and pulse repetition rate, 

different methods for pulse generation, pulse compression and pulse characterization are used, overall 

covering extremely wide parameter regimes. Pulse propagation in media has many interesting aspects.  

 

The peak of a pulse in a transparent medium propagates with the group velocity, not the phase velocity. 

Dispersion can cause temporal broadening (or compression) of pulses. For high peak intensities, optical 

nonlinearities can strongly affect the pulse propagation; often they lead to pulse broadening, but strong 

nonlinear compression is also possible [1]. There are various methods for measuring the pulse duration 

achieved or for pulse characterization in other respects. For measuring the duration of ultrashort pulses 

purely optical techniques are very important since electronics are too slow for such purposes. However, 
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such method not efficient, because most of the light will be lost at the modulator, and also the pulse 

duration is limited by the speed (bandwidth) of the modulator. Pulses with much higher energies and 

much shorter durations can be generated in pulsed lasers [2].  

In optics, an ultrashort pulse of light is an electromagnetic pulse whose time duration is on the order of 

the femtosecond (10 -  1 5 second). Such pulses have a broad optical spectrum, and can be created by 

mode-locked oscillators. They are commonly referred as ultrafast events [3]. 

1.2 Pulse properties. 

Although optical devices used for continuous light, like beam expanders and spatial filters, may be 

used for ultrashort pulses, several optical devices have been specifically designed for ultrashort pulses. 

One of them is the pulse compressor, a device that can be used to control the spectral phase of 

ultrashort pulses. It is composed of a sequence of prisms, or gratings. When properly adjusted it can 

alter the spectral phase f (? ) of the input pulse so that the output pulse is a bandwidth- limited pulse 

with the shortest possible duration. A pulse shaper can be used to make more complicated alterations 

on both the phase and the amplitude of ultrashort pulses [4]. 

They are characterized by a high peak intensity(or more correctly, irradiance) that usually leads to 

nonlinear interactions in various materials, including air. These processes are studied in the field of 

nonlinear optics [5]. 

The word "ultrashort" refers to  femtosecond (fs) or picosecond (ps) pulses, although such pulses no 

longer hold the record for the shortest pulses generated. Indeed, pulse durations on the attosecond time 

scale have been reported. The real electric field corresponding to an ultrashort pulse is oscillating at an 

angular frequency ? 0 corresponding to the central wavelength of the pulse [6].  
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The time structure of optical pulse is usually determined by the intensity I(t) and the phase )(tϕ . In 

general case the intensity contour I(t) and its spectral representation I( ω ) are connected with each 

other due to existing dependence of the field strength on the phase ϕ (t). The only thing that one can 

write is the relation between the half-widths TL and VL of the se envelopes. 

BLL C≥τυ∆                                                         (1.1) 

where CB is the constant determined by the pulse shape. The shortest pulse, which can be obtained at a 

given VL is spectrally (transform) limited pulse with TL = CB/VL.  

Let us consider the Gaussian pulse with the field strength  

)exp()( 22
0 ibtatEtE +−=                                                (1.2) 

The term 2ibt  describes linear variation of frequency inside the pulse or the internal phase modulation, 

or the frequency chirp, sees Fig.1.1 

 

Fig 1.1 Describe linear variation of frequency inside the pulse or the internal phase modulation, or the frequency chirp. 

 

The constant γ  is connected with the half-width of pulse power as 
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The product of the half-widths TL and VL is given by 
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From equation (1.2), in the particular case of b = 0  (absence of the phase modulation), one can find CB 

= 0.441. It is seen from Eq (1.11) that with a fast phase modulation the product in the left hand side of 

Eq.(1.11) can be rather large, so that b/g >> 1. In the case of hyperbolic-secant-squared pulse (sech 

1.76 t/TL)2 one can estimate CB = 0.315  [7]. 

 

1.3 Measurement techniques 

Several techniques are available to measure ultrashort optical pulses: 

• Intensity autocorrelation: gives the pulse width when a particular pulse shape is assumed.  

• Spectral interferometry (SI): a linear technique that can be used when a pre-characterized 

reference pulse is available. Gives the intensity and phase. The algorithm that extracts the 

intensity and phase from the SI signal is direct.  
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• Spectral phase interferometry for direct electric- field reconstruction (SPIDER): a nonlinear self-

referencing technique based on spectral shearing interferometry. The method is similar to SI, 

except that the reference pulse is a spectrally shifted replica of itself, allowing one to obtain the 

spectral intensity and phase of the probe pulse via a direct FFT filtering routine similar to SI, 

but which requires integration of the phase extracted from the interferogram to obtain the probe 

pulse phase.  

• Frequency-resolved optical gating (FROG): a nonlinear technique that yields the intensity and 

phase of a pulse. It's just a spectrally resolved autocorrelation. The algorithm that extracts the 

intensity and phase from a FROG trace is iterative.  

• Grating-eliminated no-nonsense observation of ultrafast incident laser light e- fields 

(GRENOUILLE), a simplified version of FROG [8].  

1.3.1 Correlation Functions. 

 

Nonlinear optical techniques for pulse measurement do not provide a direct display of pulse shape but 

give instead measurement of correlation functio ns. It is important therefore to consider in some detail 

the theoretical relationship between a signal I(t) and its correlation functions. The second-order 

autocorrelation function of the intensity I(t) is given in normalized form by: 

)(

)()(
)(

tI

tItI
G

2

2 τ+
=τ                                                   (1.6) 

where the brackets indicate an average over a  sufficiently long interval of time. This is the function 

one can obtain by Second Harmonic Generation (SHG) or Two Photon Fluorescence (TPF). If  I(t) is a 

single isolated pulse, )(tG2 vanishes for large relative delay τ  and its half-width provides a measure of 
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the duration of I(t). It is obvious from (1.6) that )(tG 2  is always symmetric regardless of any 

asymmetric in I(t). This fact is the fundamental limitation on the use of )(tG 2  to determine pulse 

shape. If I(t) were know to be symmetric, its shape could in fact be deduced from )(tG 2 . 

 

In general, higher-order correlation functions must be used in addition to )(tG 2  to determine I(t) 

uniquely. The n-th order correlation function is given by 

)(

)()(
)...,(

)(

tI

tItI
00G

n

1n
n

τ+
=τ

−

                                     (1.7) 

As the order increases, )(tI 1n−  becomes a sharper function of time and therefore a better probe of the 

shape of I(t). With picosecond laser pulses, correlation functions up to order five have been obtained 

[9]. 

 

The relationship between )(tG 2  and different types of optical signals is most easily illustrared with 

specific examples. Consider first the case where I(t) is a Gaussian random variable, the intensity 

produced by a continuous source of thermal noise. A laser operating in large number of randomly 

phased modes approximates such a source. The intensity can be described by 

dII
I

I
1

dIIp )exp()( −=                                             (1.8) 

where dIIp )(  is the probability of observing the intensity I in an interval dI , and I  is the average 

intensity. For large τ , where )( τ+tI and )(tI  are independent random variables yields 

2
1

tI

tI
G

2

2

2 ==∞→τ
)(

)(
)(                                              (1.9) 
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Since )(0G 2 is by definition unity, It see that even a random signal produces a peak in its 

autocorrelation with .)(/)( 2G0G 22 =∞ The width of this peak is a measure of the temporal coherence 

of the signal, and is just related to the inverse of the spectral bandwidth of the source. The only 

information about the actual temporal behavior is contained in the contrast ratio, )(/)( ∞22 G0G . 

Contrast ratios different from 2 imply some deviation from purely random behavior. Smoother signals 

give lower contrast and enhancement of intensity peaks increases contrast. Several higher-order 

correlations of Gaussian noise are also the interest. The third-order correlation function. 

)(

)()(
),(

tI

tItI
0G

3

2
3

τ+
=τ                                           (1.10) 

has a contrast ratio of 3. With nonlinear harmonic generation followed by second-order correlation one 

can also measure 

 

)(

)()(
...)....,(

tI

tItI
0G

n2

nn
n2

τ+
=τ                                         (1.11) 

which results [10,11] in a contrast ratio of 2nn2 )!/()!( . In the limit of the large n one obtains the 

contrast of a single, isolated pulse (produced by nonlinear selection of the largest noise spike in I(t)). 

The next case it consider is that of an isolated burst of Gaussian noise. This has its practical 

manifestation in a laser that is partially modelocked [12]. It is described by )()()( tItItI 21 ⋅=  where 

)(tI1  is a random variable as above and )(tI 2 is a more slowly varying envelope function. It can be 

shown [13] that 

 

)()()( τ⋅τ= 2
2

2
1

2 GGtG                                              (1.12) 
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where )(τ2
1G  and )(τ2

2G are the autocorrelation functions of )(tI1  and )(tI 2 , respectively. From an 

initial )( 0=τ  value of 1, )(τ2G  falls to value of )()/( τ2
2G21  for τ  longer than the coherence time of 

the random variable )(tI1  and then to zero as 0tItIG 22
2
2 →τ+≈τ )()()( . In this case the temporal 

isolation produced by the envelope of the signal results in a high contrast ratio overall. The contrast 

between noise and envelope contributions is unity. A careful determination of )(τ2G  yields 

information about the envelope of the signal as well as its coherence. Note that higher-order 

correlations of a noise burst tend to accentuate the relative amplitude of the coherence spike [14]. It 

should be mentioned that in the case of an isolated pulse of noise, the actual shape of the correlation 

function may differ from the expectation value. Examples of such deviations are found in [15-18]. 

 

The second-order correlations expected from these different types of optical intensity signals are given 

in Fig 1.2.  

 

Figure 1.2 Theoretical correlation traces for SHG and TPF measurements. 

 

For comparison with experiment, the form measured in SHG and TPF experiments with inherent 

background are also shown. Higher-order correlation measurements produce similar shapes but with 
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different contrast ratios.  It is common in the literature to estimate the duration of a pulse t∆  by simply 

measuring the width t∆  of that part of the correlation due to pulse envelope. Of course the actual 

t∆τ∆ /  depends upon the precise pulse shape, but the uncertain in such an estimate can be decreased 

than a factor two.  

 

Table 1.1 gives t∆τ∆ /  for several theoretical pulse shapes. Also shown for each case is the predicted 

spectral width. Comparison of experimental bandwidth with the predicted width is an important test of 

the assume pulse shape. It is interesting to note that the Gaussian pulse envelope which is known to 

have the minimum time-bandwidth uncertainly product does not have the minimum half-width product. 

The Lorentzian intensity profile )/()( 222 ttI τ+τ=  without chirp has a singular spectrum [19]. If the 

measured bandwidth is much greater than that expected for a reasonable pulse shape, two possible 

causes are appararent. Either the experimental has not resolved the noise correlation spike indicative of 

amplitude substructure, or the actual pulse contains frequency modulation which does not show up in a 

correlation measurement [20]. If a frequency sweep is present, it is possible to compress the pulse in 

time.  
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Table 1.1 Correlation widths and spectral bandwiths for four different transform-limited pulse shapes. 

 

An important point is that correlation measurements are not particularly sensitive to low- level 

background signals which may be present in have been necessary to estimate the fraction of the total 

energy contained in the short-pulse component [21-23]. 

 

1.3.2 Correlation methods 

The initial signal S(t) is applied to the input port 1 of a multiplier playing the role of a nonlinear 

element. The input port 2 is activated by either the additional signal H(t) or the initial signal S(t), but 

they both have some temporal shift τ  due to passing through the delay line V and take the forms of 

H(t+ τ ) and S(t+ τ ), respectively. 
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Figure 1.3 Illustrate the set-up for shaping both cross-correlation and auto-correlation functions. 
 

The product of a pair of the input signals is integrated with respect of time by the integrator J. Thus, for 

example, the auto-correlation function is given by 

( ) ( ) ( )τ+=τ ∫
∞

∞−

tStStdG ,                ( ) ( ) ( )τ+=τ ∫
∞

∞−

tHtStdK  .               (1.13) 

This formula represents the auto-correlation function of the second order. Under some additional 

conditions, but definitely not always, the availability of the function G( τ ) makes it possible to identify 

the time dependence of the input signal S(t). For, example, if it is known that the signal has the 

Gaussian shape 

})/)((lnexp{)( 2
So t24StS τ−=                                               (1.14) 

the half-width Sτ  of this incoming pulse is connected with the half-width Aτ  of the corresponding 

auto-correlation function as 

AS 2
1

τ=τ                                                          (1.15) 

In the case, when H(t) is extremely short pulse, which can be approximated by the Dirac δ -function, 

and the integral of the function H(t) is normalized to unity, i.e. ( ) 1tHtd =∫
∞

∞−

, one can find that K(t) = 

S(t). 
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Figure 1.4  Exploiting a two-beam Michelson interferometer as the correlator of the field strength. Two fields E1(t) = E(t) and E2(t) = 

E(t+T) related to the signals reflected from the mirrors S1 and S2 are summarized in the detector D. The delay time T from pulse to pulse 

can be varied by shifting the mirror S2. The output signal is proportional to the energy on the detector D under condition that the time of 

integration is long enough. This energy is proportional to the value: [ ]∫
∞

∞−

τ+≈+ )()()( EE
2

21 G0GEEdt , where 

∫∫
∞

∞−

ω τ−
∞

∞−

ωω
π

=τ+=τ i2

E eEd
2
1

tEtdtEG )()()()(  (the second formula) is the auto-correlation function of the field strength. 

 

The simplest optic auto-correlato r is a two-beam scanning Michelson interferometer with a photo-

detector and non- linear medium, see Fig. 1.4. It makes it possible to detect the auto-correlation function 

for the light field strength and, after conversion, the Fourier spectral density of light radiation, which is 

proportional to |E( ω )| 2 , and find the spectral width of radiation.  

 

However, during such a measurement (as well as with exploiting another Fourier spectrometers) the 

information about the phase of the field E( ω ) becomes lost. That is why one cannot correct 

(unambiguously) conclusion about the pulse width. The pulse width can be determined from the 

spectral width rather accurately only if it is known in advance that that optical pulse is spectrally 
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(transform) limited, i.e. does not include any internal frequency modulation. This takes place when the 

phase of field strength along the pulse width grows linearly, so that only the shape of pulse envelope 

determines the spectrum width. The half-width ω∆  of the spectrum of power density for spectrally 

limited pulses and the half-width Lτ  for the dependence of power on time inherent in the spectrally 

(transform) limited pulses are connected by 

BL C
2

=τ
π
ω∆                                                      (1.16) 

where CB is the constant determined by the pulse shape. In general case, when pulse is not transform 

limited, the left hand side of Eq.(1.16) exceeds CB. To determine the pulse width, one needs two 

independent measures of the spectrum width and the internal frequency modulation. 

 

Now on the case of Second harmonic generation, p icosecond optical pulses provide a unique means for 

studying ultrafast processes associated with the interaction of light with matter. Implementation of 

these studies has required the development of new measurement techniques capable of picosecond time 

resolution. It described the various methods that are now available for characterizing picosecond laser 

pulses and for detecting rapid events created by them.  

 

The emphasis here is on the relative advantages and limitations of the techniques themselves and less 

on the results of particular experiments. An understanding of these techniques is necessary for proper 

evaluation of any picosecond experiment. Many inconsistencies in early work have been due not to the 

variability of pulsed laser sources but to improper interpretation of experimental results. As the various 

pitfalls of picosecond measurement become better understood, experimental studies become more 

reliable. At the same time, a better understanding of ultrafast process will undoubtedly lead to new and 

better measurement techniques. 
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1.3.3 Pulsewidth measurements.  

 

The invention of the passively modelocked Nd: glass laser in 1965 [24] provided a pressing need for 

new techniques to measure the duration of ultrashort optical pulses. Direct measurement by the 

combined use the photodetectors and oscilloscopes was no longer adequate to temporally resolve the 

pulses being produced. Within a year, however, an indirect technique with subpicosecond time 

resolution had been proposed and demonstrates. This technique, based on nonlinear process of second-

harmonic generation (SHG), is illustrated diagrammatically in Fig 1.5.  

 

Figure 1.5 Interferometric arrangement for pulse correlation measurement by SHG. 

 

The optical pulse is divided into two beams which travel different paths before being recombined in a 

nonlinear crystal. By polarizing the two beams differently [25,26] or by making them noncollinear 

[27], it can be arranged that no SHG is detected when either beam is blocked or when the two pulses 

arrive at the crystal at sufficiently different times. Temporal overlap of the two pulses at the crystal can 

be varied by mechanically changing one the path lengths. The amount of SHG detected is a maximum 

when the pulses are coincident and decreases as one is delayed with respect to the other. 

 



 26 

The primary experimental difficulty in using the SHG, method in conjunction with pulsed lasers is that 

it requires plotting the pulse correlation point by point with successive firings of the laser. Although the 

development of cw modelocked lasers has greatly revived interest in this technique, its use with pulse 

lasers was effectively ended within one year by the invention of the two-photon-fluorescence (TPF) 

method [28]. The TPF technique in its most commonly used form is illustrated in Fig 1.6.  

 

Figure 1.6 Triangular arrangements for TFP. 

 

An input pulse is divided into two beams which then travel in opposite directions in an organic dye 

solution. Fluorescence from the dye is proportional to two-photon absorption which is a maximum at 

the point where the two pulses are coincident in time. With this scheme a single photograph of the 

fluorescence track provides a TPF measurement of pulse correlation. If carefully performed, SHG and 

TFP measurement can provide a reliable estimate of pulse duration. A critical review of the use of both 

techniques is given below. They do not give a direct display of the pulse shape. It has been necessary to 

use different techniques to determine such pulse characteristics as temporal asymmetry and dynamic 

spectral behavior [29]. 
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1.4 Phase matching 

 

The above ignores the position dependence of the electrical fields. In a typical situation, the electrical 

fields are traveling waves described by 

)](exp[),( xkjjtitxE j −−ω=                                                      (1.17) 

at positionx , with the wave vector cnk jjj /)( ωω= , where c is the velocity of light and n(? j) the index 

of refraction of the medium at angular frequency ? j. Thus, the second-order polarization angular 

frequency ? 3 is 

)])((exp[),()( xkmkmtiEEtxP 22112
2n

2
1n

1
2 −+−ω∝                               (1.18) 

At each position x , the oscillating second-order polarization radiates at angular frequency ? 3 and a 

corresponding wave vector cnk 333 /)( ωω= . Constructive interference, and therefore a high intensity 

? 3 field, will occur only if 

22113 kmkmk +=                                                 (1.19) 

The above equation is known as the phase matching condition. Typically, three-wave mixing is done in 

a birefringent crystalline material (v.e, the refractive index depends on the polarization and direction of 

the light that passes through.), where the polarizations of the fields and the orientation of the crystal are 

chosen such that the phase-matching condition is fulfilled. Typically a crystal has three axes, one of 

which has a different refractive index than the other ones. This axis is called the extraordinary (e) axis, 

while the other two are ordinary axes (o). There are several schemes of choosing the polarizations. If 

the signal and idler have the same polarization, it is called "Type-I phase-matching", and if their 

polarizations are perpendicular, it is called "Type-II phase-matching". However, other conventions 

exist that specify further which frequency has what polarization relative to the crystal axis. These types 
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are listed below, with the convention that the signal wavelength is shorter than the idler wavelength 

[30].  

 

 

To obtain, the intensity of the correlation, a photodetector is used, whose responsivity has to be know. 

In order to determine this feature, experimental tests to obstain the reflectance and quantum internal 

efficiency of Silicon and InGaAs/InP photodetectors were realized.  

 

1. 5 Silicon photodiodes  

 

The photodetectors are sensors of light or other electromagnetic energy. A photodiode is a type of 

photodetector capable of converting light into either current or voltage, depending upon the mode of 

operation. 

  

Photodiodes are similar to regular semiconductor diodes except that they may be either exposed (to 

detect vacuum UV or X-rays ) or packaged with a window or optical fibre connection to allow light to 

reach the sensitive part of the device [31].  

 

An understanding of the diode structure, in particular the behaviour of the depletion layer, is required to 

make the best use of a silicon photodiode in any given application. The junction region is produced by 

diffusion or ion implantation of boron into selected areas of the surface of a high resistivity n-type 

silicon wafer. The geometry of this is accurately defined by a silicon dioxide layer having windows 

etched in it using standard photolithographic techniques. A heavily doped n-type layer is introduced 
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into the rear face when the device is to be operated in the fully depleted mode, which will be described 

later.  

 

A silicon nitride passivation layer is deposited onto the front face, the thickness being chosen so that 

the layer acts as an antireflection coating for the wavelength of operation. The front contact is normally 

by means of a photolithographically defined aluminium layer and the rear contact is by means of one of 

a number of alternative multilayer metallisations. 

Between the p-type region and the lightly doped n-type region there is a depletion region which is free 

from mobile charges. The width of this region depends upon the resistivity of the silicon and the 

applied voltage; even with no externally applied bias the diffusion of electrons and holes across the 

junction creates a depletion region with an electric field across it which is known as the "built- in" field. 

 

When a photon is absorbed in a semiconductor an electron-hole pair is formed. Photocurrent results 

when photon-generated electron-hole pairs are separated, electrons passing to the n-region and holes to 

the p-region. Alternatively, holes and electrons may 

recombine, thereby causing no charge displacement and thus no contribution to photocurrent. There is a 

greater probability of separation of a photon-generated electron-hole pair when it is formed within the 

depletion region where the strongest electric field exists. 

 

The primary parameter defining the sensitivity of a photodiode is its quantum efficiency, (QE) which is 

defined as the percentage of incident photons generating electron-hole pairs which subsequently 

contribute to the output signal. Quantum efficiencies in the region of 80% are usual for silicon 

detectors operating at wavelengths in the 800-900 nm region.  
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The sensitivity of a photodiode may also be expressed in practical units of amps of photodiode current 

per watt of incident illumination. This parameter, usually known as responsivity (R), may be derived by 

multiplying the Q.E. by the electronic charge (e) and 

dividing by the photon energy for a particular wavelength [32]. 

 
 

1.6 InGaAs/InP  Photodiodes. 

 

These photodetectors are chosen as the first device of interest because of their simple structure, and 

since their analysis is a natural extension, almost an example, of our discussion of p-n diodes. Whereas 

the field of photodetectors goes far beyond that of semiconductor photodetectors, we restrict ourselves 

here to such devices. It will be discussed p- i-n diodes, which are also referred to as photovoltaic 

detectors, photoconductors or solar cells photodetectors. The distinction between the different devices 

is somewhat artificial since many similarities exist between these devices but it enables to clearly 

separate the difference in structure, principle of operation and purpose of the devices [33].  

 

Semiconductor photodetectors based on InP materials are the ones most often used in state of the art 

long wavelength optical fiber communication system. Mixed compounds such as InGaAs (P) and 

In(Al)GaAs lattice matched to InP are the materia ls responsible for detecting long wavelength light, 

specially the nondispersion wavelength (1.3 mµ ) and loss minimum wavelength (1.55 mµ ) of silica 

optical fibers. The characteristics of these InP -based photodectors are superior to those of conventional 

photodiodes composed of elemental Ge, which was the only material applicable for wavelengths below 

1.55 mµ . By using a heteroestructure, which hadn’t been expected in group IV elemental 

semiconductors such as Si and Ge, new concepts and new designs for high performance photodetectors 
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have been developed.  For example, the absorption region can be confined to a limited layer and the 

InP wide bandgap layer can serve as a transparent layer for specific communication wavelength. 

Recently InGaAs/InP avalanche photodiodes (APDs) with a SAM (separation of absorption and 

multiplication) configuration have become commercially available. The SAM configuration is thought 

to be necessary for high performance APDs utilizing long wavelengths. 

 

Because photodiodes may be operated under reverse bias, high quality semiconductor layers need to be 

produced. To obtain photodiodes that operate at a low bias and have a low dark current, it is necessary 

to produce epitaxial layers that are pure and have few defects (such as dislocations, point defects, and 

impurity precipitates).  To get stable and uniform gain in APDs, in which internal gain is achieved 

through the carrier avalanche process, the layers in the avalanche regio n must be uniform and free of 

dislocations. Furthermore, a planar device structure requires that a guard ring be used to keep the 

electric field around the photoreceptive area from increasing too much. Fabrication and processing 

technologies such as impurity diffusion, ion implantation, and passivation will also play important roles 

in the production of reliable photodetectors [34]. 

 

From a radiometric point of view, the photodetectors important characteristics are: Speed of 

(characterized by the bandwidth of the frequency response or the Full Width Half Maximum (FWHM) 

of the pulse response), responsivity (determined as the ratio of current out the detector to the incident 

optical power on the device), sensitivity (defined as the minimal input power that can still be detected 

which, as a first approximation, is defined as the optical power which generates an electrical signal 

equal to that due to noise of the diode).  
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When the light radiation impinges on a detector, various physical processes occur;  part of the incident 

light is reflected by the sensitive surface, while the rest passes inside the detector, where can be 

partially, because of losses due to absorption, converted into an electronic signal. The response of each 

photodetector is conditioned by a quantity of the converted light power, but for evaluating the incident 

power one has to know the ratios of the reflected, absorbed, and converted portions.  

 

An InGaAs/InP-photodetector is a photodiode based on a p-n or hetero-structure. There is a region, 

which can be denominated as the depleted or exhausted region,where an electric field sweeps the 

generated charge carriers and produces an external electrical current. In addition charge generated 

outside that region also contributes to the photocurrent. Thus, the total photodiode response I can be 

written as  

              ( ) 













 φ

λ
λλρ−=

hc
q

n1I  ,                                           (1.20) 

 

where ( )λη  is the internal quantum efficiency, which indicates the number of electrons produced by 

each absorbed photon, q is the electron charge, h is the Planck constant, c is the velocity of light, φ  is 

the radiant flux, λ  is the wavelength and ( )λρ  is the photodiode’s reflectance. From equation (1.20), 

the responsitivity R can be obtained as: 

 

( )[ ] ( )
hc

q
1

I
R

λ
ληλρ−=

φ
=  .                                        (1.21) 

This equation shows that the responsivity depends on the wavelength of the incident light by three 

ways, directly, via the reflectance of the surface, and through the quantum efficiency. This equation 

indicates also, that the responsivity will be known if both the reflectance and the internal quantum 
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efficiency are known at every wavelength and is the quantity usually measured.  It is seen from 

equation (1.21) that the photodiode response depends on a set of parameters inherent in the incident 

light like the spectral distribution, polarization, modulation frequency, angle of incidence, and radiant 

power. Furthermore, the response is determined by photodetectors features such as the material 

refractive index and the structure of diode as well as by some environmental factors, such as 

temperature, for example [35]. 

 

 

1.7 Formulation of the problems. 

 

The problems to be resolved in this thesis are: 

 

- The characterization of low-power bright picosecond optical pulses with an internal frequency 

modulation simultaneously in both time and frequency domains in the case of the Gaussian shape. This 

approach exploits the Wigner time-frequency distribution, which can be found for these bright pulses 

by using a novel interferometric technique. 

 

- The characterization of low-power bright ultrashort optical pulses with an internal frequency 

modulation simultaneously in both time and frequency domains. The analysis and computer 

simulations are applied to studying the capability of Wigner distribution to characterize solitary pulses 

in practically important case of the sech-pulses. 

 

- Measuring the train-averaged parameters of picosecond optical pulses with both symmetric and 

asymmetric envelopes being arranged in high- frequency repetition trains and corrupted by additive 
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Gaussian noise. In so doing, one can exploit the temporal triple auto-correlation function, whose 

Fourier transformation gives the bispectrum of signal. 

 

- Determining the spectral responsivity from the reflectance and the internal quantum efficiency at the 

near infrared range for InGaAs/InP photodiodes, and measuring the reflectance of silicon photodiodes 

in visible range that were used to maintain the scale of the spectral responsivity.  
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CHAPTER 2 

 

DETERMINING THE TIME-FREQUENCY PARAMETERS OF LOW-POWER 

BRIGHT PICOSECOND OPTICAL PULSES  

WITH GAUSSIAN SHAPE. 

 

 

Although the Wigner distribution is mainly used for characterizing optical beams and pulses that 

propagate through linear media, some studies have also focused on nonlinear propagation [1,2].  

 

When the spectrum of signal varying in time is the subject of interest, it is worthwhile to apply the joint 

function of the time and frequency, which would be able to describe the intensity distribution of this 

signal simultaneously in time domain as well as in frequency one.  

 

Such a distribution gives us opportunities for determining a relative part of energy at a given frequency 

in the required temporal interval or for finding the frequency distribution at a given instant of time. The 

method of deriving the time frequency distribution can be based on usage of the corresponding 

characteristic function [3]. 

 

The joint Wigner time-frequency distribution, which can be determined and developed for these bright 

optical pulses by using a novel interferometric technique under our proposal.  
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Either power or spectral densities inherent in such pulses can be obtained through integration the 

Wigner distribution with respect to the corresponding conjugate variable [4]. Many techniques of 

investigation about of evolving the optical solitons in active and passive waveguide structures [5]. 

However, in many cases, the information on the average field phase is lost and it is impossible to 

determine the time variation of the field amplitude.  

 

Exact determination of the train-average pulse duration from the width of the radiation spectrum is only 

possible when the shape of pulse envelope is known a priori and, in addition, the pulse spectrum is 

limited.  

 

Here, it demonstrates an opportunity of providing experimental conditions, under which the train-

average auto-correlation function of the field strength can serve as a source of exact and reliable 

information on the average values of both duration and frequency chirp of a low-power optical pulses 

traveling in high-repetition-rate trains [6,7]. It proceeds from the assumption that all pulses in a train 

are identical pulses with a sech function, the analysis and computer simulations are applied to studying 

the capability of Wigner distribution. 

 

2.1 The Wigner time -frequency distribution for the Gaussian pulse with 1T = , and the varying 

parameter b . 

       

The complex amplitude of a solitary optical pulse with Gaussian shape of envelope can be written as: 

( ) ( )
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G T2
tbi1tA exp  ,                                                        (2.1) 
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where T  is the Gaussian pulse half-width measured at a level of e1  for the intensity contour and b  is 

the parameter of the frequency modulation.  

 

In this case, the joint Wigner time-frequency distribution, see Eq.(A13), is given by 
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The Wigner distribution for the Gaussian pulse is positive-valued. When 1T =  and 0b = , Eq.(2.2) 

gives the distribution, which is symmetrical relative to repositioning the variables t  and ω  .  

 

With decreasing the parameter b , the energy distribution concentrates in a bandwidth corresponding the 

chirp- free spectrum whose center lies along the line 2Ttb=ω . 

 

 A few examples of the time- frequency distribution ( ) ( )[ ]2221
G tbttW +−−= − ωπω exp, , defined by 

Eq.(2.2) with 1T =  are presented in Fig.2.1. 
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(a)                                                                                                   (b) 

 

     

(c)                                                                                                    (d) 

 

Figure 2.1. The Wigner time-frequency distribution for the Gaussian pulse with 1T =  

and the varying parameter b : (a) 0b = , (b) 2b = , (c) 4b = , and (d) 6b = . 

 

           

Integrations in Eqs.(A15) give the partial one-dimensional Wigner distributions for the Gaussian pulse 

over the time or frequency separately 
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It is seen from Eq.(2.4) that to reach a level of e1  one need vary the variable ω  from 21 b1T +− −  to 

21 b1T +− , so that the variation 21 b1T += −ω∆  means actually  the half-width of the spectral 

contour at a level of 1e − . Thus, one can determine the product 

 

2b1T +=ω∆  .                                                             (2.5) 

 

In the particular case of 0b =  (i.e. in the absence of the frequency chirp or the phase modulation), one 

yields 1T =ω∆  for the Gaussian pulse. Nevertheless, in general case, 1b >>  , so the product Tω∆  

can far exceed unity. A few examples of the time and frequency distributions, determined by Eqs.(2.3) 

and (2.4) with 1T =  are shown in Fig.2.2 

 

 

(a) 
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. 

(b) 

 

Figure 2.2. The Gaussian pulse with 1T = : the power density profile (a) and the spectral density profiles (b) with the varying parameter of the frequency 

chirp: solid line for 0b = , dashed line for 2b = , dash-dotted line for 4b = , and dotted line for 6b = . 

 

2.2 The gaussian pulse with a high-frequency filling. 

 

Now, one can take the case of Gaussian pulse with the slowly varying amplitude and with a high-

frequency filling by the optical carrier frequency 1>>Ω : 
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The corresponding intensity distribution, instead of a smooth contour described by Eq.(2.3) for 

( ) ( ) 2
G tAtI = , includes now some oscillations and is given by: 
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The smooth contours ( )tI  and the oscillating distributions ( )tJ  are shown in Fig.2.3. One can see from 

Fig.2.3. that the half-width has the same value T  for these two plots.  

 

(a) 

 

 

(b) 

Figure 2.3. The plots of ( )tI  and ( )tJ  with : (a)  b = 0, T = 1, Ω = 10;  (b)  b = 4, T = 1, Ω = 10. 

 
Then, one can consider the complex spectrum contour. Performing the Fourier transform of Eq.(2.6), 
one can find 
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The spectral intensity contour is now given by the following expression 
 

( ) ( ) == 2BJ ωω  
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This expression has real form 
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Now, one can consider the case of Ωω ≈  with 1>>Ω . In this case, ( ) ( ) 22 ΩωΩω −>>+  

and ( ) ( ) 222 ΩωΩω −>>+ , so that Eq.(2.8) give 
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while Eq.(2.10) saves only the first term in the external brackets. Consequently, the spectral intensity 

contour can be approximately estimated by 
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which is presented in Fig.2.4.  

 

 

 

Figure 2.4. Spectral intensity of Gaussian pulses: b = 0, T = 1, Ω  = 10 – dashed line; b = 4, T = 1, Ω  = 10 – solid line. 

 

The width of this contour is determined by ΩωΩ∆ −= , so one can write 

 

2b1T +=Ω∆   ,                                                             (2.12) 

 

Equation (2.12) is quite similar to Eq.(2.5) and has the same meaning. 

 
 

 

Finally, the field strength auto-correlation function can be estimated. For this purpose, one can consider 

a two-beam scanning Michelson interferometer and a nonlinear medium, which is the simplest optical 

auto-correlator. Such a device makes it possible to register the field strength auto-correlation function, 

which can be exploited via the inverse Fourier transform for finding the spectral power density ( ) 2S ω  
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and measuring the width of the spectral contour. In so doing, one has to use a square-law photodiode 

detecting an interference of two incident field strengths ( )tU  and ( )τ−tU , where the delay time τ  of 

the second field can be varied by the corresponding movable mirror of the scanning interferometer. 

 

The issuing electronic signal is proportional to the energy  Ε under registration, if the integration time 

of that photodiode is sufficiently long. Generally, this energy is proportional to the value 
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∞
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 ∼  ( ) ( )τA0 G20G +    ,                                  (2.13) 

 

where ( )0G0  is a background and 
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Equation (2.14) is true only when the field strength ( )tU  is real-valued; for example, for the Gaussian 

pulse described by Eq.(2.6). So, using Eq.(2.14), the function ( )τAG  can be calculated due to the 

Fourier transform of the spectral intensity contour 
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The analysis shows that the second term in the square brackets of Eq.(2.15) is negligible in comparison 

with the first one, so the approximate expression for the field -strength auto-correlation function can be 

written as 
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Two traces for this reduced auto-correlation function are shown in Fig.2.5. 

 

(a) 

 



 49 

 
 

(b) 

Figure 2.5. Field-strength auto-correlation functions for the Gaussian pulses with: 

(a) b = 0, T = 1, Ω  = 40 ; (b) b = 4, T = 1, Ω  = 40. 

 

That is why the width of the field-strength auto-correlation function can be rather accurate estimated 

through estimating the exponential term in Eq.(2.16). A level of e1  will be reached with 

 

2
0 b1T2 +==ττ  .                                                       (2.17) 

Consequently, 0τ  is the half-width of the field -strength auto-correlation function at a level of e1 . 

 

2.3 A new technique of measuring the train-average pulse width as well as the value and sign of 

the frequency chirp of picosecond optical pulses in high-repetition-rate trains  

 

In many cases, for example, with the investigations of evolving the optical solitons in active and 

passive waveguide structures, a simple method is frequently required for measuring current time-

frequency parameters of low-power pico and subpicosecond optical pulses traveling in high-repetition–

rate trains. Most widely used is a method based on the formation of a train-average auto-correlation 
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function of the field strength, which is coupled through the Fourier transform with the spectral power 

density. From the recorded power spectral density, one can determine an average width of the radiation 

spectrum. However, in this case, information on the average field phase is lost and it is impossible to 

determine the time variation of the field amplitude ( )tA . Exact determination of the train-average pulse 

duration from the width of the radiation spectrum is only possible when the shape of pulse envelope is 

known a priori and, in addition, the pulse spectrum is limited [8]. An approximate estimation of the 

pulse duration is also correct, if the frequency chirp is sufficiently small [9]. In the general case, it is 

necessary either to pass to determination of the intensity auto-correlation or cross-correlation [10] 

functions, or to make special measurements to obtain information on the field phase, which often 

require the application of rather complicated experimental facilities or special computer algorithms [11-

14].  

 

Here, it demonstrates an opportunity of providing experimental conditions, under which the train-

average auto-correlation function of the field strength can serve as a source of exact and reliable 

information on the average values of both duration and frequency chirp of a low-power optical pulses 

traveling in high-repetition-rate trains. 

 

It proceed from the assumption that all pulses in a train are identical pulses with a Gaussian envelope 

described by Eq.(2.1) with the amplitude PA0 =  , where P  is the incoming pulse peak power. 

These assumptions are not specific for the proposed method and are typical of most of the other 

measurement methods [8-12]. For a Gaussian envelope, the relationships between the train-average 

pulse parameters T  and b  and the width 0τ  of the corresponding auto-correlation function measured 

on a level of e1  are given by Eq.(2.17). 
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Usually, the real-time auto-correlation function of the field strength averaged over a train of optical 

pulses is obtained with a scanning Michelson interferometer, which allows measuring the value of 0τ . 

However, it follows from formula (2.17) that information on the width 0τ  of the field strength auto-

correlatio n function is insufficient to determine the time- frequency parameters of the pulse train. That 

is why one can propose performing two additional measurements of the auto-correlation function width 

with the help of a scanning Michelson interferometer.  

 

During the second and third measurements, supplementary optical components, changing the 

parameters T  and b  in a predetermined way but not influencing the envelope of the investigated 

pulses, should be placed in front of the beam-splitting mirror of the interferometer, which is presented 

in the figure 2.6. 

 

 

Figure 2.6.  Michelson interferometer with a supplementary semiconductor cell. 

 



 52 

The auto-correlation function widths mτ  ),( 21m =  obtained from the repeated measurements are 

coupled with the new values of the pulse duration mT  and the frequency chirp mb  through formula 

(2.17), it assumes that  

0mm TT α=                                                              (2.18) 

and  

m0m bb β+=                                                            (2.19) 

where 0T  and 0b  are unknown values of the parameters T  and b , while the quantities mα  and mβ  are 

determined by supplementary optical components. Using the above-noted relations, one can write two 

different algebraic quadratic equations for a quantity of 0b . The corresponding solutions are given by 

the formulas 

 

( ) [ ])()( 1q2q1qb 4
m

2
m

2
m

2
mmm

12
mm0 +−+±−=

−
αβαβα  ,                  (2.20) 

 

 

where 2
m

2
0mq ττ=  and mτ  is the width of the field strength auto-correlation function obtained without 

supplementary optical components. For ),( 21m = , Eq.(2.20) gives four values of 0b , of which two 

coincide with each other and correspond to just the true value of the train-average frequency chirp of 

the pulses. The proposed measurement method allows one to determine not only the value, but the sign 

of the frequency chirp as well, which is often impossible even with the help of substantially more 

complicated methods, such as, for example, the method described in Ref.[13].  

Once the pulse frequency chirp 0b  is determined, one can use formula (2.20) to calculate the pulse 

duration T  by using 0τ  and 0bb = . 
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For the supplementary electronically controlled optical component, one can propose exploiting a 

specific device based on an InGaAsP single-mode traveling-wave semiconductor laser heterostructure, 

which is quite similar to a saturable-absorber laser [14] with clarified facets. This device comprises two 

domains, see Fig.2.7.  

 

 
 

Figure 2.7. Design of the supplementary semiconductor cell: I is the domain of linear amplification controlled  

by the pump current J ; II is the domain with a fast-saturable absorption. 

 

Domain I of the linear amplification controlled by pumping current mJ  has the length 1L  and is 

characterized by the low-signal gain factor )( m1 Jκ . Domain II of a fast-absorption saturation, created 

by a deep implantation of oxygen ions into the output facet of the heterostructure, has the length 2L  

and is characterized by the low-signal absorption factor 2κ  and the saturation power SP . Domain I is 

able to modify the peak power mP  of pulses entering domain II, so that:  

[ ]1m1m LJPP )(exp κ=                                                 (2.21) 
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The peak power mP  determines, in its turn, the values of the parameters mα  and mβ , reflecting the 

action of domain II on the pulses. In the low-signal case, one can use the relations. 

 

a)  ( ) 21

mm 12P
−

+= ρα  , 

 

b)  2Pmm ρζβ −=  ,                                                          (2.22) 

 

where ζ  is the line-width enhancement factor, which is usually in the range 83−=ζ , and 

 

[ ]1m1
1

S LJP2 )()( κρ −= .                                                      (2.23) 

 

is the absorption parameter which may be of the order of 1W1 −≤ρ  . Such a device makes possible 

performing the repeated measurements without re-adjusting the optical circuit and ensures additions 

5m ≤β  to the frequency chirp [15].  

 

 

 

(a)                                       (b) 

Figure 2.8. Results of numerical simulation of forming the auto-correlation functions by the scanning Michelson interferometer: 
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(a) without and (b) with an supplementary semiconductor cell introduced into the measurement circuit. 

 

The figure 2.8 demonstrates variation in the auto-correlation function after inserting the supplementary 

electronically controlled semiconductor optical cell into the measurement circuit. It shows a pair of 

simulated oscillograms for the auto-correlation functions of Gaussian pulses formed by a scanning 

Michelson interferometer without (a) and with (b) inserted semiconductor cell for the case of 2m −=β . 

Arrows mark a level of ( ) 606050 ..exp ≈−  used to determine the value of T .  

 

The numerical simulation has been performed for a signal-to-noise ratio of 10, which corresponds to 

rather typical experimental conditions [16]. The data obtained from triply repeated measurements of T  

allows us to determine the pulse duration in a range of 1 – 50 ps and the pulse frequency chirp in a 

range of [-10,10] with an account for the chirp sign. The measurement accuracy is determined by the 

instability of radiation source and uncertainty of the scanning circuit characteristics as well as by the 

errors arising during the recording. The total measurement errors for both the pulse duration and the 

frequency chirp do not exceed 5%.  

 

 

2.4 Conclusion 

 

It is presented a stimulating contribution to the development of the advanced metrology. Such a 

viewpoint is based on the two well-determined propositions. The first of them is represented by our 

theoretic approach to the characterization of low-power bright picosecond optical pulses with an 

internal frequency modulation simultaneously in time and frequency domains. This proposition exploits 
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the joint Wigner time- frequency distribution, which can describe the width and the frequency chirp of 

optical pulse in a unified format. The case,  of Gaussian shape when the Wigner distribution is positive 

has been taken, and the peculiarities for just the Gaussian pulses with a high- frequency filling have 

been followed in details in both time and frequency domains as well as in terms of the field-strength 

auto-correlation function. The second proposition is related to the principles of creating the joint 

Wigner time- frequency distribution by the methods of modern experimental technique. It is proposed 

and considered conceptually the key features of a new interferometric method elaborated explicitly for 

accurate and reliable measurements of the train-average width as well as the value and sign of the 

frequency chirp in bright picosecond optical pulses in high-repetition-rate trains. For this purpose, a 

two-beam scanning Michelson interferometer has been chosen for obtaining the field -strength auto-

correlation function of low-power picosecond pulse trains.  

 

The proposed technique is founded on an ingenious metrology algorithm, assumes using a specially 

designed two-domain supplementary semiconductor cell, and suggests carrying out a pair of additional 

measures with exploiting this semiconductor cell, whose properties have been physically described as 

well. The procedure makes possible constructing the current Wigner distribution in real time scale, 

which is rather desirable practically, and thus describing low-power bright picosecond optical pulses 

simultaneously in both time and frequency domains. 
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CHAPTER 3 

 

DETERMINING THE TIME-FREQUENCY PARAMETERS OF LOW-POWER 

BRIGHT PICOSECOND OPTICAL PULSES WITH HYPERBOLIC-SECANT 

SHAPE.  

 

The characterization of bright optical solitary pulses in pico- and subpicosecond temporal domains is 

connected with the fundamental problem governed by transferring the data from extremely fast all-

optical representation related to frequencies exceeding 1 THz to much slower electronic representation 

due to the operation of all the modern measurement electronic equipment over frequencies not 

exceeding 10 GHz. This problem cannot be resolved or canceled, because our equipment cannot 

operate over light signals directly. Therefore, the progress in measur ing both time and frequency 

parameters of ultrashort optical pulses was oriented on deciding just this fundamental problem [1-4].  

 

The most attractive approach, allowing at least simplifying the fore-mentioned problem, exploits train 

average characterizat ion of ultrashort pulse strings rather than solitary optical pulses. Nevertheless, the 

train-average approach needs the regular strings of identical ultrashort optical pulses and, together with 

this, requires the utilization of a mechanism for sampling. Evidently, the most advanced algorithms for 

realizing similar sampling all-optically are based on analyzing various correlations between portions 

inherent in different picosecond pulses in the same pulse string [5-8], i.e. on shaping auto-correlations. 
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The simplest of them are auto-correlations of the second order, which can be shaped by a two-beam 

scanning Michelson interferometer.  

 

However, in general case the simplest auto-correlations of the second order does not allow identifying 

the train-average pulse width due to possible contribution from the internal frequency modulation of 

pulses under consideration. Such a statement is of particular importance for low-power optical pulses, 

because just for them it becomes to be particularly complicated to apply any nonlinear-optic technique 

for growing the second-order correlations.  

 

That is why characterizing low-power optical pulses is often provided via interferometric technique, 

which makes it possible to perform the needed transformations to keep and measure the most important 

parameters of picosecond pulses in a high- frequency repetition strings [7–10]. 

 

3.1. The Wigner time -frequency distribution for a sech-like pulse 
 

The complex amplitude of optical soliton is given by 
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where 0τ  is the pulse width, b  is the parameter of frequency modulation. Generally, the Wigner time-

frequency distribution is given by [12] 
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In the case of a sech-shaped pulse described by Eq.(3.1), the Wigner distribution from Eq.(3.2) can be 

rewritten as 
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where )2(tb 2
0τ+ω=γ . Using Ref.[13], see the number 2.5.48-2, one can find from Eq.(3.3) that 
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A few examples of the Wigner distribution for a sech-pulse defined by Eq.(3.4) with 10 =τ  are 

presented in Fig.3.1. 
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Figure 3.1. 
The Wigner time-frequency distribution for a sech-shaped pulse with 10 =τ  and the varying parameter b : (a) 0b = , (b) 1b = , (c) 

2b = 4b = , and (d) 6b = . 
 

 With decreasing the parameter b , the energy distribution concentrates in a bandwidth corresponding 

the chirp-free spectrum whose center lies along the line .tb 2
0τ−=ω  Using Eq.(3.2), one can find the 

partial (or marginal) one-dimensional distributions for the sech-shaped pulse over the time or frequency 

separately by 

 

a)  ( ) ( )∫
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ωω= d,tWtA S
2
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ω=ω td,tWS S
2

S  

(3.5) 
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Substituting Eq.(3.2) in Eq.(3.5a), one can write 
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Using the notation )tb(x 2
00
−τ+ωτπ=  and applying Ref.[13], see the number 2.5.46-2, one can obtain  
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Then, in the case of the unchirped pulse when 0b = , one can write, in particular, that 
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where again Ref.[13], see the number 2.5.46-2, had been applied. When 0b ≠ , the corresponding 

integral expression includes both odd and even functions under the integral signs. Because of 

integrating in symmetric limits, only the even terms give non-zero contributions in this integral, so that 

one can obtain 
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(3.8) 

Both the integrals in Eqs.(3.8b) and (3.8c) can be calculated, but the resulting expressions are too 

cumbersome; that is why they are in use with these notations. A few examples of the partial one-

dimensional distributions for the sech-pulses, determined by Eqs.(3.6) and (3.8) with 10 =τ  in time and 

frequency domains, are shown in Fig.3.2. 

 

 

Figure 3.2.The  sech-pulse with 10 =τ  10 =τ : the power density profile (a) and the spectral density profiles (b) with the varying 

parameter b  of the frequency chirp: 0b =  (for the maximal intensity plot), π= /2b , 1b = , 2b = , and 4b =  (for the minimal 
intensity plot). 

  
 

3.2 Square -average determination for the parameters of a sech-pulse. 
 
Originally, the square-average time duration SAτ  and the square-average spectral width SAω  for an 

arbitrary pulse are determined by the following set of equations [14] 
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a)  2
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=ω .                                        (3.10) 

 

Let us consider these values for a chirped pulse with a sech- like shape, which is given by Eq.(3.1). 

Exploiting Eq.(3.9) for such a pulse with an arbitrary frequency chirp, one can estimate the square-

average time duration of a sech-pulse as )32(0SA τπ=τ , because 02E τ= , 0T1 = , and 12T 2
0

2
2 τπ= . 

To estimate the square-average spectral width SAω  let us first consider an unchirped sech-pulse with 

0b = . Using the Ref.[13], see no.2.4.10-19, one can find 
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due to 0)0b(1 ==ω . It should be noted that 6)0b(SASA π==ω⋅τ . When 0b ≠ , one can write 
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Using Eqs.(3.10) and (3.12), one can find that 0d])(Y)(X[ 2
1

2
1

0
1 ≡ωω+ωω

τ
π
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, due to the oddness 

of a function under integral, which is calculated within symmetric limits. In its turn, the value of 2ω  

consists of two contributions )Y()X( 12122 ω+ω=ω , where 
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The term )X( 12ω  from Eq.(3.13a), in particular, can be rewritten in more details as 
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Then,  one can use the standard formula ( ) ( ) ( ) ( ) ( )
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where the evenness of hyperbolic and trigonometric functions had been exploited. Quite similar result 

appears during the corresponding conversion of the term )X( 12ω  from Eq.(3.13b) 
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Summing Eqs.(3.15) and (3.16), one can calculate 
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Finally with 01 =ω , the following results can be obtained 
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In the particular case of 0b = , Eq.(3.19b) is coinciding with Eq.(3.11c). 

 

3.3  A sech-pulse with a high-frequency filling 
 

Now, one can take the case of sech-pulse with the slowly varying amplitude and with a high- frequency 

filling by the optical carrier frequency 1>>Ω : 
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The corresponding intensity distribution, instead of a smooth contour described by Eq.(3.6) for 

( ) ( ) 2
S tAtI = , includes now some oscillations and is given by 
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The smooth contours ( )tI  and the oscillating distributions ( )tJ  are shown in Fig.3.3 One can see 

from Fig.3.3 that the half-width has the same value 0τ  for these two plots. 
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Figure 3.3 

The plots of )t(I  and )t(J  with : (a)  b = 0, 0τ  = 1, Ω  = 10;  (b)  b = 4, 0τ  = 1, Ω  = 10. 

 

Then, one can consider the complex spectrum contour. Performing the Fourier transform of Eq.(3.20), 

one can find 
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Equation (3.22) includes both odd and even functions under the integral signs. Because of integrating 

in symmetric limits in Eq.(3.22), only even terms have to be conserved. Then, one can consider the 

case of Ω≈ω  with 1>>Ω . In this case, ( ) ( )Ω−ω>>Ω+ω  and one may omit all the fast-oscillating 

terms in Eq.(3.22). As a result, one can obtain 

 

( ) ( ) ( )ω+ω=ω 22S YiXB ,                                                   (3.23) 

 

( ) ( )[ ]∫
∞

∞−

Ω−ω














τ









τπ
=ω tdtcos

2

tb
cos

t
hsec

4
1

X
2
0

2

0
2 ,                          (3.24) 

 



 70 

( ) ( )[ ]∫
∞

∞−

Ω−ω














τ









τπ
=ω tdtcos

2

tb
sin

t
hsec

4
1

Y
2
0

2

0
2 .                        (3.25) 

 

Both the integrals in Eqs.(3.24) and (3.25) can be calculated, but the resulting expressions are too 

cumbersome, so that it will use these notations. The spectral intensity contour is given by the following 

real-valued expression 

 

( ) ( ) ( ) ( )ω+ω=ω=ω 2
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2
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2
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which gives the distributions being quite similar to the plots presented in Fig.3.2, but shifted by the 

carrier frequency Ω . 

 

3.4  Auto-correlation function for a sech-pulse with the frequency chirp. 
 
 
The field strength auto-correlation function can be estimated, for this purpose, one can consider a two-

beam scanning Michelson interferometer, which is the simplest optical auto-correlator. Such a device 

makes it possible to register the field strength auto -correlation function, which can be exploited via the 

inverse Fourier transform for finding the spectral power density ( ) 2
SS ω  and measuring the width of 

the spectral contour. In so doing, one has to use a square- law photodiode detecting an interference of 

two incident field strengths ( )tUS  and ( )τ−tUS , where the delay time τ  of the second field can be 

varied by the corresponding movable mirror of the scanning interferometer. The issuing electronic 

signal is proportional to the energy  Ε  under registration, if the integration time of that photodiode is 

sufficiently long. Generally, this energy includes a background ( )0G 0  and is proportional to the value 
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Equation (3.28) is true only when the field strength ( )tU S  is real-valued as for a sech-pulse described 

by Eq.(3.20). So, using Eq.(3.28), the function ( )τAG  can be calculated due to the Fourier transform of 

the spectral intensity contour 
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In fact, the function ( )τAG  includes two terms 
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Using Eq.(3.24), the integral in Eq.(3.30) can be formally rewritten as 
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The last internal integral in Eq.(3.31) can be presented as 
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These δ -functions work during the calculation of middle integral with respect to 2t  in Eq.(3.31) as 
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where the evenness of functions has been used. Then, Eq.(3.34) can be substituted into Eq.(3.31) 
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Now, applying the same approach to Eq.(3.30b), one can obtain 
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To simplify a sum of Eq.(3.35) and (3.36) one can use the standard ratios and find  
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Then, one can apply the ratios 
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Eq.(3.37). Two terms with ( )2
01tbsin ττ  give the odd functions under the integral signs in symmetrical 

limits, so that the corresponding integrals equal to zero. That is why with ( ) ( ) ( )τ+τ=τ 21A GGG  it 

arrive at 
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At this stage, one can take the ratios 
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To integrate Eqs.(3.39) and (3.40) one has to introduce a pair of the new independent variables 

τ±=ϑ 12,1 t2 , so that 2)(t 2,11 τϑ= m  and 2dtd 2,11 ϑ= . Again, one can be exploit the standard ratios 
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Function ( )τ1g  and ( )τ2g  take the same form in terms of the corresponding new variable, 1ϑ  or 2ϑ , 

namely, 
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The odd terms with ])2(b[sin 2
02,1 τϑτ  gave zero. Using Ref.[13], the number 2.5.48-2, one can 

integrate Eq.(3.41) 
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Using Eqs.(3.39) and (3.40), one can express the field strength auto-correlation function inherent in a 

sech-like pulse as 
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The normalized traces for the real parts of this field strength auto-correlation function are shown in 

Fig.3.4. 

 

Figure 3.4 

The normalized real parts of field-strength auto-correlation functions for the sech-pulses with: 

 (a) b = 0, 0τ  = 1, Ω  = 40 ; (b) b = 1, 0τ  = 1, Ω  = 40. 

 

Now, using Eq.(3.9), one can estimate a square-average width of the field strength auto-correlation 

function as 
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It follows from Eq.(3.44b) that 0T 1A ≡ . Both the integrals in Eqs.(3.44) cannot be for the present 

calculated analytically in a closed form, so that the duration Aτ  can be presented as the graphic 
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function of the parameters 0τ  and b . That is why the variable τ  and another values in Eqs.(3.44) will 

be simply normalized by 0τ , and one can write with 0ττ=θ  

 

a) 
21

22

2224
2

A0

A

)2b(sinh)(sinh

d)2b(sin)2b(cos
)b(E

1
)b(F















θπθ

θθθ
θ==

τ
τ

∫
∞

∞−

, 

 

b) ∫
∞

∞−
θπθ

θθθ=
)2b(sinh)(sinh

d)2b(sin)2b(cos)b(E
22

2224

A .                                  (3.45) 

 

One can see from Eq.(3.45) that )b(F)b(F −=  and )b(E)b(E AA −= . The corresponding exact plots of 

)b(F , divided in two parts for the convenience of practical usage, are depicted in Fig.3.5 

 

Figure 3.5. 

The normalized square-average time duration 0A ττ  of the field strength auto-correlation function versus the frequency 

chirp b  for a sech-pulse: (a) 1b ≤  and 1b ≥ . 

3.5. Application of the above proposed technique to sech-like pulses. 
 

For a sech-pulse, the relation between the pulse parameters, namely, the frequency chirp b  and the 

square-average pulse duration )32(0SA τπ=τ , and the square-average duration Aτ  of the 
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corresponding auto-correlation function follows from Eq.(3.44a) and is expressed through the function 

)b(F  presented in Fig.3.6 as 

 

( ) ( )bFbF
32

0
SA

A τ=
π

τ
=τ .                                       (3.46) 

 

To illustrate how such a technique works, let us consider the particular case, when, for example, the 

approximate presentation a)|b|1(2)b(F −+≈  with 5..13.1a −≈ , see Fig.3.6, can be chosen. Similar 

presentations give us an accuracy of about a few percents and can be considered as rather acceptable 

for practice. But what is much more important, such a presentation for )b(F  makes it possible to find 

both the value and the sign of the chirp parameter b . One can see from Fig.3.6 that, in particular, the 

value 5.1a =  describes better an area of 1|b| ≤ . 

    

 

a.  4.1a = .                                                b.  5.1a =  

Figure 3.6. Two practically acceptable simple approximations for the function )b(F  

with different values of the factor a . 

It assume that 0mm τα=τ  and m0m bb β+= , where 0τ  and 0b  are unknown values of the duration and 

frequency chirp, while the quantities mα  and mβ  are determined by supplementary optical 

components, and find 



 79 

 

a)  ( )
23

0

0
000A

)|b|1(

2
bF

+

τ
≈τ=τ ,              b)  ( )

23
m0

0
m00mA

1
m

)|b|1(

2
bF

β++

τ
≈β+τ=τα − .        (3.47) 

 

Using Eqs.(3.47), one can write the following equation 
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so that 0)g(Im 32
m ≡ . At this stage, one has to take into account that both 0b  and mβ  can be positive 

or negative valued. Consequently, it should consider a quartet of possible combinations of their signs: 
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2) 0b0 >  and 0m <β ; Eq.(3.48a) can be written as ( ) |||b|1b1g m00
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m β−+=+  . In this case, the result 

depends on a relation between the magnitudes of 0b  and || mβ , and it yield 
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3) 0b0 <  and 0m >β ; one can find from Eq.(3.48a) ( ) ||b||1|b|1g 0m0
32

m −β+=+  . Now, the result 

depends on a relation between the magnitudes of |b| 0  and mβ , and it find out 
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4) 0b0 <  and 0m <β ; one can find from Eq.(48a) ( ) |||b|1|b|1g m00
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Now, one can show how to exploit Eqs.(3.49) – (3.52) practically. In so doing, let us take sequentially 

4 different situations. 

 

Example A (positive frequency chirp): Let the basic measurement gives 2720A =τ . Then, the first 

additional measurement, performed with the supplementary element providing 21 =α  and 11 =β , gives 

811A =τ . Exploiting these values, one can find 34g 32
1 = . Due to 01 >β , one should consider 

Eqs.(3.49) and (3.51). The following results can be found 

 

                                     a)  Eq.(49), 0b0 >  : 2
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−
−−= , 
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b)  Eq.(51) with   10 |b| β> , 0b0 < :   4
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1
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−
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c)  Eq.(51b) with   10 |b| β< , 0b0 < :   
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+

+−
=  . 

 

Obviously Eq.(3.53b) gives an absurd negative result for modulus, but both Eqs.(3.53a) and (3.53c) can 

be true, formally speaking. To identify the correct magnitude of 0b  the second additional measurement 

should be done. Let it is performed with 32 =α , 22 =β  and gives 55232A =τ . Exploiting these 

values, one can find 35g 32
2 = . Due to 01 >β , one should again consider Eqs.(3.49) and (3.51). It 

yield 
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c)  Eq.(3.51b) with   20 |b| β< :   
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+

+−
=  . 

 

Comparing results of numerical calculations, one can conclude that the final correct result is associated 

with coinciding with each other estimations from Eqs.(3.53a) and (3.54a). Thus, one should put 

2b0 +=  and obtain from each of Eqs.(3.47) that 10 =τ . 

 

Example B (negative frequency chirp): Let the basic measurement gives 2720A =τ  and the second 

additional measurement, performed with the supplementary element providing again 21 =α  and 11 =β , 
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gives 11A =τ . Exploiting these values, one can find 32g 32
1 = . Due to again 01 >β , one should 

consider once again the same Eqs.(3.49) and (3.51). The following numerical data will appear 
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As before, to identify the correct magnitude of 0b  the second additional measurement should be done. 

Let it is performed with 42 =α , 32 =β  and gives 22A =τ . Exploiting these values, one can find 

32g 32
2 = . Due to 01 >β , one should once again consider Eqs.(3.49) and (3.51) and obtain 

 

                                     a)  Eq.(3.49), 0b0 >  :   10
)32(1

3
1)b( 20 −=

−
−−= , 
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The comparison of numerical results from Eqs.(3.55) and (3.56) shows that the final correct result is 

associated with coinciding with each other estimations from Eqs.(3.55b) and (3.56c). Thus, one should 

put 2b0 −=  and obtain from each of Eqs.(3.47) that 10 =τ . 
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3.6. Conclusion 
 
The presented work develops the above -described avenue in practically very important case of low-

power picosecond pulses with the sech-like shape inherent in just optical solitons. For this purpose, at 

first the problem is formulated in terms of the joint Wigner time- frequency distributions for the sech-

like pulses [11]. At first, it consider such distributions for the slowly varying amplitudes and then, 

generalize them on the sech- like pulses with a high- frequency filling. In both these cases, all the values 

including the contributions from internal frequency modulation of pulses are described in terms of 

square-average magnitudes.  

 

The developed analysis makes it possible to interpret potential experimental data in terms of the 

Wigner distributions and/or restore these distributions using the experimental results. Together with 

this, the corresponding approach to the field strength auto-correlation function of the second order is 

formulated in the same terms as well. Finally, is presented  a novel interferometric technique of 

measuring the train-average pulse width as well as the value and sign of the frequency chirp inherent in 

low-power picosecond optical solitons belonging to high-repetition-rate trains.  

 

Basic peculiarities of the technique under proposal are connected with rather specific algorithm of 

measurements having a two-beam interferometry into its background, with exploiting a specially 

designed supplementary semiconductor cell, and with carrying out two additional measures involving 

this semiconductor cell into the scheme of a two-beam scanning Michelson interferometer. 
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CHAPTER 4 

 

APPLYING A TRIPLE AUTO-CORRELATION TO MEASURING THE 

ENVELOPES OF ULTRASHORT OPTICAL PULSES 

 

It considers an opportunity of measuring the train-averaged parameters of picosecond optical pulses 

with both symmetric and asymmetric envelopes being arranged in high- frequency repetition trains and 

corrupted by additive Gaussian noise. In so doing, one can exploit the temporal triple auto-correlation 

function, whose Fourier transformation gives the bispectrum of signal.  

 

The advantages of similar auto-correlation functions consist in the capability of recovering various 

signals almost unambiguously and low sensitivity of these functions to noise. It implement the 

technique and algorithmic investigation for recognizing the width as well as the magnitude and the sign 

of the frequency chirp peculiar to pulses with Gaussian-like, rectangular, and smooth asymmetric 

shapes. 

 

4. 1. Triple auto-correlation 

 

The triple auto-correlation of an ordinary function on the real time is the integral of the product of that 

function with two independently shifted copies of itself. Triple auto-correlation methods are frequently 

used in signal processing for treating signals that are corrupted by additive Gaussian noise; in 

particular, triple auto -correlation techniques perform well when multiple observations of the signal are 
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available and the signal may be translating in between the observations, e.g. a sequence of images of an 

object translating on a noisy background.  

 

The triple auto-correlation particularly suitable for such tasks have three properties: (1) it is invariant 

under translation of the underlying signal; (2) it is almost insensitive to additive Gaussian noise; and (3) 

it retains most of the phase information in the underlying signal [1].  

 

The triple auto-correlation is less popular that the standard correlation for several reasons: the triple 

auto-correlation is sometimes too difficult to process and to observe. Triple auto-correlation is small for 

many bipolar or complex signals, than mathematics associated with triple auto-correlation is better 

known.  

 

On the other hand, the triple auto-correlation knows more about the signal than does the ordinary auto-

correlation. The triple auto-correlation is very important because the underlying mathematical tools and 

report presents where triple auto-correlation was employed for studying for example the pulses shapes, 

astronomical speckle interferometry [2]. 

 

Another case is the intensity distribution at the exit of a Young-Michelson interferometer is analyzed in 

Fourier domain. It shows that two numbers are necessary for describing properly the variation of the 

visibility of the interferogram fringes.  

 

One of them is the complex degree of spatial coherence, which describes the correlation between the 

contributions from the Young’s slits. The second number describes the correlation between the 

Young’s interferograms reflected by the mirrors of the Michelson interferometer, that is, the correlation 
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of optical fields that contain another correlation term. It has long been recognized that the term 

coherence plays a fundamental role in optics, in order to denote the correlation properties to different 

orders of the optical field.  

 

Furthermore, it is accepted today that complete coherence requires significant correlation values to an 

infinite succession of orders [1,2] So, spatial coherence properties revealed by a simple Young’s 

experiment are referred to as second order spatial coherence. It describes the tendency of two values of 

the optical field at distantly separated points to take on correlated value. Its basic quantity is the 

complex degree of spatial coherence [3]. 

 

4.2. The triple auto-correlation function for a one -dimensional signal 

 

The triple auto-correlation function of the signal )t(F  is determined by the following integral 

 

∫
∞

∞−

++= td)tt(F)tt(F)t(F)t,t(F 21213  .                                (4.1) 

 

The Fourier transformation of Eq.(4.1) with the kernel ])tftf(i2[exp 2211 +π−  gives the bispectrum  

 

a)  )ff(F)f(F)f(F)f,f(F 2121213 −−=  ,     b)  ∫
∞

∞−

π−= td)tfi2[(exp)t(F)f(F  ,            (4.2) 

where )f(F  is the spectrum of signal. The bispectrum )f,f(F 213  has two following symmetries 
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)f,ff(F)f,f(F)f,f(F 1213123213 −−==  ,                                   (4.3) 

 

which lead to the redundancy of three fourths of the frequency plane )f,f( 21  with determining the 

bispectrum )f,f(F 213 . For a real-valued temporal signal )t(F , both the spectrum )f(F and bispectrum 

)f,f(F 213  are Hermitian self-conjugate functions, i.e. 

 

a)  )f(F)f(F −= ∗  ,                 b)  )f,f(F)f,f(F 213213 −−= ∗  ,               (4.4) 

 

so that just in this particular case even one eight of the frequency plane )f,f( 21  is quite enough for 

determining the bispectrum )f,f(F 213 .  

 

If a system is linear in behavior and temporally invariant relative to the signal )t(F , this system is 

linear in behavior and temporally invariant relative to the triple auto-correlation function as well.  

 

 

It follows from the constraint equation coupling the input and output temporal signals, )t(Fin  and 

)t(Fout , through the response function )t(P , namely, 

 

a)  τττ−= ∫
∞

∞−

d)(P)t(F)t(F inout  ,                   b)  )f(P)f(F)f(F inout =  .              (4.5) 

 

It is seen from Eqs.(4.2) and (4.5b) that )f,f(P)f,f(F)f,f(F 21321in,321out,3 =  , so that  
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21221132211in,321out,3 dd)t,t(P)t,t(F)t,t(F τττ−τ−τ−τ−= ∫∫
∞

∞−

∞

∞−

 ,       (4.6) 

 

where )t,t(P 213  and )f,f(P 213  are the corresponding response functions.  

 

Then, Eq.(4.2) shows that the bispectrum becomes to be not varied when an arbitrary exponential factor 

is included into the spectrum of the temporal signal. Le t us take )f(exp)f(F)f(FS γ=  , where γ  is an 

arbitrary complex-valued constant. In this case, one can calculate 

 

)f,f(F])ffff([exp)ff(F)f(F)f(F)ff(F)f(F)f(F)f,f(F 2132121212121
S

2
S

1
S

21
S
3 =−−+γ−−=−−=    (4.7) 

 

This example demonstrates that the process of recovering the signal from the triple auto-correlation 

function or the bispectrum can be not always unambiguous and conclusive.  

Now, one can illustrate these considerations by a few particular graphical cases. Figures 4.1 and 4.2 

demonstrate the envelopes, triple auto-correlations, and bispectra for typical Gaussian and rectangular 

pulses of unit width given by 

 

a)  ( )2texp)t(F 2G −=  ,                     b)  ( ) ( )5.0x5.0x)t(FR −θ−+θ=  ,               (4.8) 

 

The corresponding analytical expressions describing Figs. 4.1b, 4.1c, 4.2b, and 4.2c are described by 

 



 92 

a) ( )



 −+−π= 21

2
2

2
121

G
3 tttt

3
1

exp
3

2
)t,t(F , 

b) ( ) 



 ++π−π= 21

2
2

2
1

223
21

G
3 ffff4exp)2()f,f(F , 

 

c) [ ⋅+−+−++−−−−= )1tt(sign)|t||t||t1||t1|()1tt(sign25.0)t,t(F 2121212121
R
3  

 

])|t1||t1||t1||t1|()tt(sign)|t||t||t1||t1|( 2211212121 −−+++−−−+−−−++  , 

 

d) 
)ff(

])ff([sin
f

)f(sin
f

)f(sin
)f,f(F

21

21

2

2

1

1
21

R
3 +π

+π
π

π
π

π
= .                                    (4.9) 

 

                 

a.                                                                               a. 

 

                     

b.                                                                                 b. 
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c.                                                                                  c. 

 

Figure 4.1. The envelope, triple auto-correlation.               Figure 4.2. The envelope, triple auto-correlation, 

and bispectrum for real Gaussian pulse.                    and bispectrum for real rectangular pulse. 

 

 

4.3. The triple auto-correlation function for the chirped Gaussian pulse 

 

In this section, let us consider triple auto-correlation and bispectrum for the chirped Gaussian pulse 

given by 

 







+−= 2G t)bia(exp)t(F  ,                                            (4.10) 

 

where the parameters a  and b  characterize the pulse width and the frequency chirp, respectively. 

Substituting Eq.(4.10) into Eq.(4.1), one can find that 
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2

2
12221

G
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3
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exp
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)bia(
)t,t(F .                                   (4.11) 

 

Then, one can use Eq.(4.2) to obtain the corresponding bispectrum 

 

b) ( )







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


++

+
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−




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+
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2
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2
122

223

2221
G
3 ffff

ba

)bia(2
exp

ba

)bia(
)f,f(F ,                       (4.12) 

 

Dividing real and imaginary parts of Eq.(4.11), one can write for the triple correlation, see Fig.4.3. 
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
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b. 

Figure 4.3. Triple auto-correlation function for the chirped Gaussian pulse with 5.0a =  and 0.1b = : 

(a) real-valued part, (b) imaginary-valued part. 

After that, dividing real and imaginary parts of Eq.(4.12), one can write for the corresponding 

bispectrum 
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a.   
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   b. 

Figure 4.4 Bispectrum for the chirped Gaussian pulse with 5.0a =  and 0.1b = : 

(a) real-valued part, (b) imaginary-valued part. 

 

4.4 The algorithm of recovering the temporal signal from its triple auto-correlation function. 

 

If the temporal signal )t(F  is, for example, real-valued as well as is of a finite extent, it can be retrieved 

from its triple auto-correlation function )t,t(F 213  almost uniquely apart from a shift. For a real signal 

)t(F  of finite extent, its spectrum )f(F  can be analytically continued by extending the frequency f  to 

the complex variable zizz ′′+′= . The analytic continuation )z(F  is determined by its complex zeros nz  

and can be written as a Hadamard product 

 

( ) ( ) 







−β+α= ∏

nn
n z

z
expzzzexp)z(F  .                                (4.17) 

 

where α  and β  are some constants. This fundamental equation from the theory of complex functions 

cannot be applied directly to any arbitrary function of two variables. However, in the case of triple 
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correlations, it is known how the two-dimensional function )z,z(F 213  is related to the one-

dimensional function )z(F , because one can exploit Eq.(4.2), so that one can write 

 

)zz(F)z(F)z(F)z,z(F 2121213 −−=  .                              (4.18) 

 

Consequently, one can insert Eq.(4.17) into Eq.(4.18) and obtain 

 

( ) ( ) ( ) ( )n21n2
n

n1213 zzzzzzz3exp)z,z(F −−−−−α= ∏  .                         (4.19) 

 

Using Eq.(4.19), one can derive the particular complex zeros of )z(F  from the complex zero subspaces 

of 0)z,z(F 213 = . Ones the zeros nz  are known, one can compute )z(F , hence )f(F , and then )t(F . 

The detailed consideration of this proof shows that for the general case of the complex-valued function 

)t(F , its spectrum )f(F  can be reconstructed up to the exponential factor ( )fexp β+α , where the factor 

β  is an arbitrary, broadly speaking complex-valued, constant, while { }.)32(i2,)31(i2,0 −π−π=α  

 

One can consider a retrieval algorithm. For the sake of simplicity let us assume reality of the signal 

)t(F  and hence Hermitian symmetry of its spectrum )f(F , see Eq.(4.4a). It begin by assuming that 

0f 2 =  in a bispectrum )f,f(F 213 , consequently 

 

)0(F)f(F)f(F)0(F)f(F)0,f(F 2
11113 =−=                                    (4.20) 

 

and therefore the Fourier amplitude )f(F  is available directly on the 1f -axis of )f,f(F 213 .  
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Then,  one can retrieve the Fourier phase )f(ϕ , defined by ])f([exp)f(F)f(F ϕ= . To that end it 

concentrate on a straight line, being parallel to the 1f -axis, but above it by one sampling step fδ  

 

])ff(i)f(i[exp)ff(F)f(F)f(F)ff(F)f(F)f(F)f,f(F 11111113 δ+ϕ−ϕδ−−⋅δ=δ−−δ=δ .     (4.21) 

 

Defining )f,f( 213ϕ  as the phase of the bispectrum )f,f(F 213 , one can derive from Eq.(4.21) the 

following phase equation 

 

])ff()f([)f()f,f( 11213 δ+ϕ−ϕ+δϕ=ϕ  .                                          (4.22) 

 

Finally, one can extract )f( 1ϕ  itself, apart from an additive constant, and a term liner in 1f , that 

reflects the lack of knowledge about 0t  in )tt(F 0− . 

 

4.5. Application to the characterization of picosecond optical pulses 

 

A few years ago it became possible to generate optical pulses whose widths lie in pico- and 

femtosecond rages. Since a new field of researches had been developed, and now the pulse durations 

reported by experiments are approaching the theoretical limits [4,5].  

 

Nevertheless, up to now there are no detectors being fast enough to measure such ultrashort pulses 

directly. That is why a lot of the elaborated methods of measuring are based on the analysis of vario us 

auto-correlation functions.  
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Unfortunately, the auto-correlation functions of the second order is symmetric in behavior, so that they 

cannot give us any information about asymmetry if optical pulses under investigation.  

 

At this point, one can benefit from a triple auto-correlation, which can provide the true pulse shape. A 

triple- intensity correlation interferometer is shown in Fig.4.5. 

 

 

 

Figure 4.5. A three-beam interferometer for registering the intensity triple auto-correlation function 

of a high-repetition train of ultrashort optical pulses. 

 

This interferometer can be exploited to record the raw data of the experiments with a sequence of 

ultrashort optical pulses.  

 

The triplet of arms of this interferometer provides mutually delayed pulse trains with the intensities 

)tt(I 1+  and )tt(I 2+  together with the non-delayed one )t(I . Mixing these three pulse trains on 

nonlinear crystal with the resulting third-harmonic generation, one can obtain the intensity triple auto-
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correlation function. The third-harmonic generation is possible to obtain of different forms, see Fig 4.6 

and Fig 4.7. 

 

 

   

Figure 4.6 Direct third harmonic generation 

 

Figure 4.7 Cascade third harmonic generation 

 

 

Once the intensity triple auto-correlation function of the optical pulses is known, the pulse shape )t(I  

can be reconstructed using the algorithm described the previous section.  

 

In the figure 4.8 illustrates the corresponding steps of such a reconstruction. Thus, this technique makes 

possible measuring asymmetric envelopes of ultrashort optical pulses and recovering signals almost 

unambiguously. 
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Figure 4.8. The steps of reconstructing an asymmetric optical pulse: the upper insert  is for the triple auto-correlation function; then, two 

inserts are for real and imaginary parts of the bispectrum; the bottom insert is for the reconstructed pulse. 
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4.6. Conclusions  

 

The intensity triple auto-correlation function of the optical pulses is known, the pulse shape )t(I  can be 

reconstructed using the algorithm described in this article. Figure 4.6 illustrates the corresponding steps 

of such a reconstruction. Thus, this technique makes possible measuring asymmetric envelopes of 

ultrashort optical pulses and recovering signals almost unambiguously. It used the phase of the 

different pulse and with this is possible to observe better behavior or form of the pulse and it has more 

details in the reconstruction of these pulses. 

 

Now it has a new technique it is base in the triple correlation and is possible to create the algorithm by 

the measurement. In this case is using the technique of interferometer, with the measurements and the 

use of the triple correlation. 
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CHAPTER 5. 

 

ANALYSIS OF SILICON PHOTODIODES  SPECTRAL REFLECTANCE FOR 

RESPONSIVITY SCALES. 

 

Silicon photodiodes have very good radiometrical features and are more sensitive and quicker than 

thermal detectors. For these reasons silicon photodiodes are used in many applications where optical 

radiation has to be measured in the spectral range from 300 nm to 1000 nm and particularly to maintain 

scales of spectral responsivity in different laboratories, including international metrology laboratories 

[1,2]. Photodiode’s reflectance plays an important roll regarding the relation between responsivity and 

the incident flux, because the detector signal depends on the absorbed radiation, but it is used to know 

the incident radiation, so the reflected part of the radiation has to be considered. 

 

Although every photodiode to be used in a device to measure optical radiation has to be calibrated and 

manufacturers give information about typical responsivity values that can be expected from their 

photodiodes, it is interesting to measure the reflectance of diodes from the same manufacturer and see 

whether the reflectance change explains the variability in responsivity claimed by the manufacturer. 

Furthermore, to know how much the reflectance change among diodes of the same batch is interesting 

in order to select the diodes for silicon trap detectors [3,4]. These detectors, widely used in high 

accuracy radiometric measurements, are formed by 3 or 5 photodiodes (depending on the 

configuration) and are built in such a way that radiation regularly reflected by one photodiode impinges 
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on the following one and so on. After 5 reflections the amount of non absorbed radiation is negligible 

compared to the incoming one and because of that the device is called a “radiation trap detector”. If the 

device is configured in such a way that the third photodiode is placed at normal incidence, then the 5 

reflections can be obtained with only 3 photodiodes that must not be in the same plane in order to have 

the same total reflectance for any polarization state [6,7]. To fulfill this requirement it is also needed 

that the first and second photodiodes have the same reflectance. Therefore if photodiodes’ reflectance 

within a batch changes from item to item, it will be necessary to measure their reflectance to select 

them for using them in silicon trap detectors, while if the reflectance is constant this measurement will 

not be necessary.  

 

In the other hand it is also interesting to know whether the responsivity ageing observed in silicon 

photodiodes is related to reflectance changes in addition to internal quantum efficiency change, whose 

stability has been studied by other authors [8,9]. To know the origin of the ageing is very important in 

order to be able to minimize it. 

 

Therefore in this work it analyzes how the spectral reflectance changes among photodiodes from the 

same manufacturer and batch and how the reflectance of three standard photodiodes has drifted after 

six years. The results obtained show reflectance changes from diode to diode within the same batch and 

also show that reflectance of photodiodes changes on time. This ageing is also spectrally dependent. 
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5.1 Photodiode spectral reflectance. 

 

From an optical point of view, a silicon photodiode can be considered as a layered structure as shown 

in figure 5.1. 

 

 

 

 

 

 

 

 

Figure 5.1 Silicon photodiode structure. 

 

The first layer, the passivation layer, is made of silicon oxide and is transparent to the optical radiation 

within the spectral range in which silicon photodiodes are sensitive. The other layers are the absorbing 

layers, made of silicon with different dopants: phosphor in region n and boron in region p. Therefore 

the reflectance of these devices can be obtained as the reflectance of a transparent layer of a given 

thickness over an absorbing layer whose thickness, in principle, may be considered infinity. According 

to reference 5 the such reflectance is given by: 
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Where r12 is the reflection coefficient between air and the silicon oxide layer, ρ12 is the one between 

silicon oxide and silicon, φ 23 is the phase change produced between the silicon oxide and the silicon 

and β = 2πn2hcos(θ2)/λ0, with h the thickness and n2 the refractive index of the oxide layer and θ2 the 

angle of refraction. 

 

Looking at the previous equation and considering that refractive index of doped silicon is assumed to 

be equal to that of undoped silicon, the variability in reflectance could be due to variations in the oxide 

thickness. 

 

Because of that, to approach the first objective, the study was restricted to a single manufacturer, since 

the thickness of the passivation layer may be differently desing by different manufacturers. 

Photodiodes from Hamamatsu were chosen, because they are the most stable and most used in many 

international laboratories. Furthermore photodiodes from just one batch have been used to avoid as 

much as possible changes in the oxide thickness which in turn produce different reflectance values. 

 

To achieve the second goal, the ageing of photodiodes, the reflectances of three silicon photodiodes 

have been measured. Those photodiodes are also from Hamamatsu and are used to maintain the scale 

of spectral responsivity of Institute for Applied Physics (CSIC), 
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Looking at the reflectance equation and bearing in mind the layered structure of silicon photodiodes 

and the high refractive index values, it is noticeable to remark that photodiode’s response notably 

depends on the angle of incidence and the polarization state of the incoming radiation [10,11].   

 

 

5.2 Experi mental setup for reflectance measurement. 

 

To measure the photodiodes reflectance an experimental setup as shown in figure 1 has been arranged. 

Krypton, He-Ne and He-Cd lasers have been used in turn in this setup as radiation sources. The use of 

lasers is not completely necessary for this measurement since the reflectance of these photodiodes 

varies smoothly with wavelength in the spectral range of interest in this work and therefore the 

bandwidth effect is either negligible or calculable. However, using la ser sources facilitates to control 

beam parameters such as polarization and incidence angle, which, as mentioned before, has to be very 

well controlled because of the angular dependency of the photodiode’s response. 

 

 

Figure 5.2. Experimental setup for measuring reflectance. 
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Essentially, the linearly polarized laser beam is spatially filtered and power stabilized by using an 

electro-optical device. This device has got two parts: The first one has got the electro-optical crystal 

and the second one has got the monitor detector to keep constant power. This feature allows to stabilize 

the power at a position different to that of the crystal, although this is not necessary in this setup. 

Afterward the beam goes through a shutter that can be controlled via a PC (Personal Computer), which 

is used to block the laser beam to measure the photodiode dark response that is subtracted to every 

photodiode’s reading.  

 

To measure a photodiode reflectance, the reference detector is placed fisrt at position A and its reading 

is recorded. Afterward the photodiode to be tested is introduced in the laser beam at half way between 

the shutter and position A, with an angle of incidence about 3º and the reference photodiode is moved 

to position B and its response recorded. Then the reflectance is given by the ratio between the reference 

detector reading at position B and the reading at position A. Placing the photodiode to be tested a that 

position assures that the beam seen by the reference detector runs the same distance  in both cases, 

avoiding errors associated to the divergence of the laser beam. A 3º incidence angle is small enough so 

that the measured reflectance is considered as the normal incidence reflectance. Finally, just to remark 

that the reference detector is placed at normal incidence any time.. 

 

By this method the spectral reflectance of one set of ten photodiodes from the same manufacturer and 

batch and another set of three photodiodes (from the same manufacturer) used to maintain the spectral 

responsivity scale at the Institute for Applied Physics (CSIC) has been measured  at wavelengths: 441.8 

nm (He-Cd), 568.2 nm (Kr), 632.8 nm (He-Ne) and 647.1 nm (Kr). A typical uncertainty value for this 

kind of measurement in this laboratory is 0.15 %, which is determined mainly by the measurement 
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repeatability and the linearity of the reference detector and its associated electronics[12]. Just for 

identification purposes, the model of all photodiodes studied is S1337-1010BQ. 

 

 

5. 3 Analysis of Spectral Reflectance of Silicon Photodiodes. 

 

The reflectance values measured for photodiodes 1 to 5 are shown in Figure 5.3. Photodiodes 1 and 2 

have almost the same behavior, and something similar happens with photodiodes 3 and 4. Only number 

5 seems to behave in a more different way [13].  
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Figure 5.3. Measured reflectance of photodiodes 1 to 5. 

 

Reflectance values measured for photodiodes 6 to 10 are shown in Figure 5.4. Photodiodes 7, 8 and 9 

have almost the same behavior up to the wavelength of 632.8 nm from which they differentiate.  
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Figure 5.4. Measured reflectance of photodiodes 6 to 10. 

 

In general spectral reflectance values of all the photodiodes studied are closer in the range (441.8 nm - 

632.8 nm) and they differentiate more at the 647.1 nm wavelength. Quantitatively, the maximum 

difference is about 3 % at 441.8 nm and about 7 % at 647.1 nm. Considering the relationship between 

responsivity and reflectance given by equation 1.37 (R(λ) ∝ [1-ρ(λ)]), the variability in reflectance 

would produce half a variability in responsivity, approximately; i. e. about 1.5 % at short wavelengths 

and up to a 3.5 % at longer wavelength. According to the data sheet available from the manufacturer, 

the variability in responsivity among photodiodes can be even larger, therefore it is not only due to the 

variability in reflectance of the sensitive surface but also to changes in internal quantum efficiency 

from diode to diode. In the other hand, the results obtained show an outstanding reflectance change 

among the photodiodes of the same batch, which indicates that it is necessary to measure the 

reflectance of every individual photodiode if accurate reflectance knowledge is needed, as it is the case 

for the diodes to be used in silicon trap radiometers for very low uncertainty measurements, in order to 

place them at most suitable position within the trap. 



 112 

 

The second goal of this chapter was to study ageing effect over the reflectance of silicon photodiodes 

used to maintain responsivity scales. The reflectance values measured in this work for standard 

detectors Ciri, Dss01 and  Dss02,  are shown in Figure 5.5. The spectral responsivity of these 

photodiodes was calibrated six years ago for the first time [1]. 
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Figure 5.5. Measured reflectance of standard detectors. 

 

Difference between the old spectral reflectance values and the present ones, for these photodiodes can 

be seen in Figure 5.6. 
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Figure 5.6 Difference between previous sp ectral reflectance values and this work values 

 

It can be observed the same tendency for the three photodiodes: at short wavelength the reflectance 

difference is positive; i.e. the photodiode’s reflectance has decreased, while at long wavelengths the 

reflectance difference is negative, which means that the photodiode reflectance has increased. 

Furthermore, the relative spectral reflectance change is larger at short wavelengths than at long 

wavelengths. It also seems that the tendency is spectrally monotonous. 

 

If it is assumed that the change in reflectance is related just to a thickness change of the silicon oxide 

passivation layer, it would be needed an average thickness increase of about 2 nm over 30 nm, which is 

approximately the average thickness of these photodiodes [1] after manufacturing, to be able to explain 

such a change. This type of change in the silicon oxide layer has not been referred to in the literature 

(up to the knowledge of the authors) and it is not likely to be produced since the detectors have always 

been kept at room temperature in dry environments. Therefore another mechanism must be likely 

responsible for this behavior [14]. 
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So, the study of standard detectors reflectance shows that ageing occurs in a different way for every 

one of them. Again, it is necessary to measure the reflectance of every individual photodiode to have a 

precise knowledge on the evolution of its reflectance. The knowledge of the photodiode reflectance at 

any wavelength given by the first equation in this chapter is very important in order to interpolate 

spectral responsivity values [1].  

 

5. 4 Conclusions  

 

At present state of the art of technology, reflectance of silicon photodiodes changes from item to item 

even within the same batch by an amount larger than the measurement uncertainty that can be expected 

in doing radiometric measurements with them. Therefore in high accuracy applications where the 

reflectance plays an important role as is the case of silicon trap detectors for radiometric measurements, 

it is necessary to measure the reflectance of single elements to select them for matching their 

reflectance within the trap. 

 

Ageing of silicon photodiodes is not only related to internal quantum efficiency as it has been 

considered by other authors, but to spect ral reflectance changes too as it has been shown in this thesis. 

The origin of the reflectance change is not likely to be explained just by a change in the silicon oxide 

thickness. 
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CHAPTER 6 

 

STUDY OF REFLECTANCE AND NEW MODEL OF INTERNAL QUANTUM 

EFFICIENCY OF InGaAs/InP PHOTODIODES 

 

The reflectance and the internal quantum efficiency are determined the photodiode spectral 

responsivity, which is the radiometric characteristic of interest in the fie lds where these devices can be 

used for optical radiation measurements. It presents the experimental set up for measuring the 

photodiode reflectance as well as the results of such measurements related to InGaAs/InP-photodiodes 

exploited in international laboratories.  

 

The obtained experimental results show that some models of photodiodes have got an anti-reflecting 

coating on their sensitive facets and that reflectance does not change with varying the light polarization 

state within the measurement uncertain, when the angles of incidence are less that 7.4 º. 

 

6.1 InGaAs/InP-photodetectors  

 

At the present time, the InGaAs/InP-photodetectors from different manufactures have rather low level 

of noise, a good uniformity of the surface response as well as a wide dynamic range and linearity. 

 

 For these reasons they are exploited in the instruments for measuring optical radiation within the near 

infrared (IR) range (800-1600 nm). Furthermore, the InGaAs/InP-photodetectors are used for 
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maintaining the scale of spectral responsitivity in the same spectral range in many laboratories [1,2]. It 

presented this work devoted to studying the reflectance of photodiodes from different manufactures. 

For this reason, measuring the reflectance of photodiodes is presented in this chapter as a preliminary 

step to finding the responsivity[3,4]. It is seen from equation 2 that the photodiode response depends on 

a set of parameters inherent in the incident light like the spectral distribution, polarization, modulation 

of frequency, angle of incidence, and radiant power [5,6]. Then, the response is determined by such 

characteristics of photodetector as the material refraction index and the structure of diode as well as by 

some environmental factors, for example, by the temperature[7] 

 

6.2 Experimental procedure 

 

To realize our experiments related to measuring the reflectance of InGaAs/InP photodiodes it have 

arranged the experimental set-up presented in Figure 6.1  

 

Figure 6.1. Experimental set -up for measuring the reflectance InGaAs/InP photodiodes 
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It has exploited an incandescence lamp is the source of white light imaged at the input slit of the 

monochromator. This lamp was able to cover the spectral range from 800 to 1600 nm and had 

appropriate blocking filters for second – order wavelengths.  

 

After the monochromator, it had placed a linear polarizer and a beam splitter, which serves to monitor 

temporal fluctuations of light power. A germanium photodiode was used as the monitoring reference 

photodetector [8]. The experimental set-up included an optical system of mirrors, which consists of two 

parts. An upper part (see mirror 7 and germanium photodiode 9) realized monitoring temporal 

fluctuations of light power.  

 

A bottom part (see mirrors 8, 11; InGaAs/InP-photodiode 10, and and germanium photodiode 12) 

formed an image of the monochromator’s exit slit on the sensitive surfaces of photodiodes. The angle 

of incidence was equal to 7.4 ° which was accepted as the normal incidence in this train of 

measurements. The method of measurement consists in comparing the response from a germanium 

photodiode to the radiation reflected by the InGaAs/InP photodiode with the response from an 

aluminium standard mirror whose reflectance is known, so that [9]: 

 

)(
)(

)(
)( λρ

λ

λ
λρ m

m

p

I

I
=

 .                                                    (6.1) 

Here, )(λpI  is the response to the light reflected by the InGaAs/InP, )(λmI  is the response to the light 

reflected by the mirror, and )(λρ m  is the reflectance of a standard mirror. With this method it has 
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measured the reflectance of photodiodes from different manufacturers. One part of detectors had a 

round aperture of 5 mm in diameter and the other part had a rectangular aperture of 8 x 8 mm. 

 

6.3. Analysis of Reflectance 

 

The grade of light polarization at the output the monochromator was different with varying the 

wavelength, figure 6.2 illustrates spectral dependences of the reflectance, which had been obtained 

from photodetectors belonging to three different manufacturers. In figures 6.2a and 6.2b that the 

reflectance of such detectors has a minimum in an area of 1000 – 1600 nm, and they both are related to 

a structure of layers providing maximal responses in the spectral interval of mayor utility of these 

detectors in near IR optics communication [10]. The first photodiode, see Figure 6.2a, whose 

reflectance was minimized, is more efficient that the second one, see figure 6.2b. 
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Figure 6. 2. Detector with a round aperture with the diameter of 5 mm 

 

One can see that this plot presents the other spectrum of reflectance in figure 6.3, is associated with a 

photodiode with rectangular aperture.   In this case the reflectance has two minima at 1000 nm and 

1600 nm, but the reflectance has a maximum between these minima. This photodiode is older than 

previous ones, and it was produced by the other manufacturer. One can remark that may be it was 

produced without good enough control, because the structure of layers on the sensitive surface modifies 

the reflectance [11].  
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Figure 6. 3  Detector with a rectangular aperture of 8 x 8mm 
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Figure 6.4 

Spectrum of reflectance for photodiodes 1 and 4 
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Figure 6.5  Spectrum of reflectance of photodiodes 2 and 5 

The spectrum of reflectance for photodiodes  1 and 4 is presents in figure 6.4  which belong to the same 

manufacturer.  The reflectance was measured with linearly polarized and non-polarized lights, and 

these pair of measurements gives quite similar results. In fact, the difference was equal to 

approximately 2%. The same results are depicted for the photodiodes 2 and 5, by the second 

manufacturer. It is important that the results do not depend on the polarization state of the incident light 

when the angle of incidence is smaller 10 angular degrees [12].  
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Figure 6.6 Spectrum of reflectance of photodiodes 1-6. 

 

All spectrums of reflectance for photodiodes 1-6 is presents  in the figure 6, with linearly polarized and 

non polarized lights and is possible to see the different behavior of the photodiodes in the near infrared 

wavelength. 

 

In fact, in this thesis  is studying the behavior of the photodetectors in the near infrared with the linearly 

polarized and non polarized lights in the case of the polarized lights the angle of incidence is smaller 10 

angular degrees and is possible observed it doesn’t have changes in the behavior of the reflectance.  

 

6.4 New Model of Quantum Internal Efficiency of some photodetectors of InGaAs. 

 

The responsivity measurement [R(l)]: Measured by comparison to an electrically calibrated 

pyroelectric radiometer (ECPR), obtaining responsivity values with an uncertainty of 1.2 % 

approximately, roughly the uncertainty of the ECPR. Spectral responsivity values of one photodiode 
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from every manufacturer obtained from measurements are shown in figure 6.7 (analogous results are 

obtained for photodiodes from the same manufacturer). 

 

Figure 6.7  Spectral responsivity values of photodiodes. 

6.4.1 External quantum efficiency. 

It is obtained from the responsivity values according to the equation: 

( ) ( )
e

hcR
Q

λ
λ

=λ  ,                                                                (6.2) 

 

Where h, c and e are the usual physical constants and λ  is the wavelength. 

 

Values obtained are presented in figure 6.8 for the same detectors as before. It can be clearly seen that 

the oldest detector (POL) presents a lower external quantum efficiency than the other and that detector 

GPD presents a higher external quantum efficiency than detector HAM, which starts to decrease its 

quantum efficiency at a shorter wavelength. 
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Figure 6.8. Spectral external quantum efficiency from responsivity values 

 

6.4.2 Photodiode structure 

Precise structure is not known. The assumed internal structure for photodiodes is shown in figure 6.9. It 

is more than likely that detector POL has got a different structure. 

 

 

Figure 6.9. Possible Internal Structure 

 

Spectral Reflectance measured and fitted values for photodiodes HAM and GPD 
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Figure 6.10  Materials’ Refraction Index 

 

Considering for the photodiodes the structure and refraction index values shown (figures 3 and 4), the 

reflectance can be fitted by using a multilayer model. Results obtained are shown in figure 6, except for 

photodiode POL that gave a poorer result. The thickness values obtained from the fit are shown in the 

table. 

 

Photodiode NSi InP (Zn) InGaAs 

HAM 162.17nm 1213.35nm 1593.2nm 

GPD 159.99nm 1200.54nm 1536.7nm 

 

6.4.3 Internal quantum efficiency. 

Internal quantum efficiency, e(l), is calculated as usual:  e(l) = Q(l) / (1-r(l)). Values obtained are 

shown in figure 6 for photodiodes HAM and GPD. 
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Figure 6.11 Internal quantum efficiency of photodiodes HAM experimental values (dots) and fitted values according to the model shown 

below. 

 

 

 

 

 

 

 

 

Figure 6.12 Internal quantum efficiency of photodiodes GPD experimental values (dots) and fitted values according to the model shown 

below. 

 

Considering a structure as shown before and a simple model for the collection efficiency of carriers in 

all regions given by a constant value, Pf,lower than 1 in the first region, 1 in the depletion region and 

Pb in the back region, and an “infinite” thickness for the diode, e(l) can be calculated by: 
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( ) ( )( ) ( ) ( ) ( )TTTT1Pf ′α′−+′α−−α−+α−−=λε expexpexpexp  

( ) ( ) ( ) ( )DP1DD b α−−+′α−−′α′−− expexpexpexp                      (6.3) 

 

Where T is the thickness at which collection efficiency becomes 1, T’ is the thickness at which InGaAs 

region starts, D’ is the the thickness at which the InP (S) starts and D is the thickness at which 

depletion region ends. By fitting the model to internal quantum efficiency value, the following 

parameters are obtained for every photodiode [13,14].  
 

Photodiode Pf T T’ D’ D Pb 

HAM 0 0.44 2.19 2.19 11.96 0.844 

GPD 0 0.32 1.65 1.62 4351.16 0.960 

 

 

 6.5 Conclusions   

The reflectance was measured with linearly polarized and non-polarized lights, and these pair of 

measurements gives quite similar results. In fact, the difference was equal to approximately 2%. The 

same results are depicted for the photodiodes 2 and 5, by the second manufacturer. It is important that 

the results do not depend on the polarization state of the incident light when the angle of incidence is 

smaller 10 angular degrees.  

 

In fact in this thesis it are studying the behavior of the photodetectors in the near infrared with the 

linearly polarized and non polarized lights in the case of the polarized lights the angle of incidence is 

smaller 10 angular degrees and is possible observed it don’t have changes in the behavior of the 

reflectance.  
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Reflectance fitting is better for HAM than for GPD. Perhaps the structure model needs some 

refinement. Internal Quantum Efficiency fitting is not very good at the elbow region.  
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CHAPTER 7 

 

GENERAL CONCLUSIONS 

 

In this chapter the final conclusions of this Ph.D thesis are described. The results obtained during this 

work were shown.  

 

The presented material as a stimulating contribution to the development of the advanced metrology. 

Such a viewpoint is based on the two well-determined propositions. The first of them is represented by 

our theoretic approach to the characterization of low-power bright picosecond optical pulses with an 

internal frequency modulation simultaneously in time and frequency domains. This proposition exploits 

the joint Wigner time- frequency distribution, which can describe the width and the frequency chirp of 

optical pulse in a unified format. The case, being practically much used, of Gaussian shape when the 

Wigner distribution is positive has been taken, and the peculiarities for just the Gaussian pulses with a 

high-frequency filling have been followed in details in both time and frequency domains as well as in 

terms of the field-strength auto -correlation function. The second proposition is related to the principles 

of creating the joint Wigner time- frequency distribution by the methods of modern experimental 

technique. It has proposed and considered conceptually the key features of a new interferometric 

method elaborated explicitly for accurate and reliable measurements of the train-average width as well 

as the value and sign of the frequency chirp in bright picosecond optical pulses in high-repetition-rate 

trains. For this purpose, a two-beam scanning Michelson interferometer has been chosen for obtaining 

the field-strength auto-correlation function of low-power picosecond pulse trains. The proposed 

technique is founded on an ingenious algorithm of metrology, assumes using a specially designed two-
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domain supplementary semiconductor cell, and suggests carrying out a pair of additional measures with 

exploiting this semiconductor cell, whose properties have been physically described as well. The 

procedure makes possible constructing the current Wigner distribution in real time scale, which is 

rather desirable practically, and thus describing low-power bright picosecond optical pulses 

simultaneously in both time and frequency domains. 

 

The intensity triple auto-correlation function of the optical pulses is known, the pulse shape )t(I  can be 

reconstructed using the algorithm described in this article. Figure 4.6 illustrates the corresponding steps 

of such a reconstruction. Thus, this technique makes possible measuring asymmetric envelopes of 

ultrashort optical pulses and recovering signals almost unambiguously. We used the phase of the 

different pulse and with this is possible to observed better behavior or form of the pulse and we have 

more details in the reconstruction of these pulses. 

 

Now it has a new technique it is base in the triple correlation and is possible to create the algorithm by 

the measurement. In this case is using the technique of interferometer, with the measurements and the 

use of the triple correlation. 

 

 

Reflectance measurements of high quality, large area silicon photodiodes have shown that their 

responsivity ageing is not only due to internal quantum efficiency temporal drift, as shown by other 

authors previously, but to a change in the reflectance too. The magnitude of this change, which is 

dependent on the individual photodiode, cannot be reasonably explained by just a change in the silicon 

oxide thickness. Therefore some more work will have to be done in the future in order to explain this 
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change, perhaps considering that internal changes effecting quantum efficiency drift may have some 

influence on the complex refraction index of the silicon as well. 

 

In the other hand, measured reflectance changes from diode to diode within a set of ten silicon diodes 

from the same batch and model than the former ones, at present technology state of the art,   are not 

totally responsible for the typical variability of the responsivity claimed by the manufacturer. Therefore 

the internal quantum efficiency also notably changes from diode to diode. In addition, the variability of 

the measured reflectance is such that in high accuracy applications where the reflectance plays an 

important role as in the case of silicon trap detectors for radiometric measurements, it is necessary to 

measure the reflectance of single elements to select them for matching their reflectance at some trap 

positions. 

 

The spectral responsivity of InP photodiodes can be determined from the knowledge of their 

reflectance and internal quantum efficiency. At present the internal structure of these photodiodes and 

the composition of the materials composing them are not precisely known what do not allow estimating 

those quantities. To overcome that, experimental reflectance values have been fitted to a layered 

structure model obtaining a good agreement with experimental values. Using this layer structure, a 

internal quantum efficiency model has been proposed based on the thickness of the internal layers and 

the complex refractive index of the materials composing the layers. The model has been fitted to real 

values of internal quantum efficiency, calculated from the responsivity and reflectance measurements, 

and a good agreement has been also found between the model and the values. Therefore, by using these 

models the spectral responsivity can be calculated at any wavelength within the spectral interval of 

sensitivity. These calculated values will have to be compared to those obtained by calibrating the 

photodiode against another radiometer, what will be done in a future work. 
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STATEMENTS 
 

 
• The proposed interferometric technique with a supplementary semiconductor cell is capable of 

measuring accurate and unambiguously the train-average pulse width as well as the value and 

sign of the frequency chirp of picosecond optical pulses with Gaussian and hyperbolic-secant 

shapes in high- repetition-rate trains and makes possible creating the corresponding joint Wigner 

time- frequency distributions. 

 

• Applying the algorithm of triple correlation to precise characterization of picosecond optical 

pulses with arbitrary parameters in high-repetition-rate trains provides recovering the train 

average distributions for both the amplitude (intensity) and the phase of optical pulses. 

 

• InP photodiodes’ reflectance can be modeled by using a layered optical system having got a 

first transparent layer and three absorbing ones. 

 

•  InP photodiodes’ internal quantum efficiency can be adequately modeled by a three region 

structure, where the charge collection efficiency is constant in the two first regions and variable 

in the last one.   
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•  Responsivity ageing of high quality silicon photodiodes is determined not only by the internal 

quantum efficiency temporal drift, as shown previously by other authors, but by reflectance 

changes too. 
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APPENDIX I:  

 

ORIGINATING THE JOINT WIGNER TIME-FREQUENCY DISTRIBUTION. 

 

When the spectrum of signal varying in time is the subject of interest, it is rather worthwhile to refer to 

applying some joint function of the time and frequency, which would be able to describe the intensity 

distribution of this signal simultaneously in time domain as well as in frequency one. Such a 

distribution gives us opportunities for determining a relative part of energy at a given frequency in the 

required temporal interval or for finding the frequency distribution at a given instant of time.  

 

The method of deriving the time-frequency distribution can be based on usage of the corresponding 

characteristic function. Let us assume that some time- frequency distribution ( )ω,tW  exists and 

presents a function of two variables t  and ω .  

 

The characteristic function ( )τθ,M  inherent in this distribution can be written as mathematical 

expectation of the value ( )ωτ+θ itiexp  , i.e. as 

 

( ) ( ) ( ) ( ) ωωτ+θω=ωτ+θ=τθ ∫ ∫
∞

∞−

∞

∞−

dtditiexp,tWitiexp,M .                  (A1) 

 

In its turn, the time- frequency distribution ( )ω,tW  can be found from the characteristic function 

( )τθ,M  as 
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( ) ( ) ( ) τθωτ−θ−τθ
π

=ω ∫ ∫
∞

∞−

∞

∞−

dditiexp,M
4

1
,tW

2
                           (A2) 

 

Due to the characteristic function is some averaged value, one can use quantum mechanics method of 

the associated operators with ordinary variables. If we have the function ( )tg1  depending only on the 

time t , the average value for this function can be calculated by two ways, namely, exploiting the 

complex amplitude ( )tA  of a signal or its complex spectrum ( )ωS  as 

 

( ) ( ) ( ) ( ) ( )∫∫
∞

∞−

∗
∞

∞−

ωω







ω

ω== dS
d
d

igStdtAtgtg 1
2

11
                       (A3) 

 

because the time can be represented by the operator ωddi  in the frequency domain. Then, for the 

function ( )ω2g  depending only on the frequency ω , the average value can be estimated by 

 

( ) ( ) ( ) ( ) ( )∫∫
∞

∞−

∗
∞

∞−








−=ωω=ω tdtA

td
d

igtAdStgg 2
2

22
                     (A4) 

   

because the frequency is represented by the operator tddi−  in the time domain as well. 

Consequently, one can combine the time and frequency with the non-commutative operators ℑ  and ℜ , 

so that 

 

t→ℑ  ,        
td

d
i−→ℜ  in the time domain; 
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ω
→ℑ

d
d

i  ,      ω→ℜ     in the frequency domain; 

 

where i=ℑℜ−ℜℑ . Introducing the operator ( )ℜℑ ,G , associated with the function ( )ω,tg , one 

can write 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
∞

∞−

∗
∞

∞−

∗ ωωωℑω=ℜ=ω dS,GStdtA,tGtA,tg       (A5) 

Due to the characteristic function is a mathematical expectation, one can apply Eq.(A5) to estimate 

( )τθ,M  via 

( ) ( ) ( ) ( ) ( )∫
∞

∞−

∗ ℜτ+ℑθ→ωτ+θ=τθ tdtAiiexptAitiexp,M .             (A6) 

 

In fact, Eq.(A6) includes the Weil correspondence ( ) ( )ℜτ+ℑθ→ωτ+θ iiexpitiexp , but such a 

correspondence is not a uniquely applicable. In principle, it can be generalized by substituting the 

normal ordered correspondences that leads to another possible time- frequency distributions. 

Nevertheless, now we have an opportunity to calculate the characteristic function ( )τθ,M  using 

Eq.(A6). In so doing, one has to take the particular case of well-known Backer-Hausdorff operator 

formula  

 

( ) ( ) ( ) ( )ℑθℜττθ−=ℜτ+ℑθ iexpiexp2/iexpiiexp ,               (A7) 

 

where ( )ℜτiexp  is the operator, because  
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( ) ( ) ( ) ( ) ( )τ+=τ=ℜτ tAtAtddexptAiexp .                       (A8) 

 

Substituting Eq.(A8) into Eq.(A6), one can yield 

 

( ) ( ) ( ) ( ) ( )∫
∞

∞−

∗ τ+θτθ−=τθ tdtAtiexp2/iexptA,M .             (A9) 

 

At this stage, a new independent variable 2tu τ−=  with tdud =  can be introduced, so 

 

( ) ( )∫
∞

∞−

∗ 






 τ
+θ







 τ
−=τθ ud

2
uAuiexp

2
uA,M .                    (A10) 

 

Now we use Eq.(A2) to obtain the time-frequency distribution ( )ω,tW  

 

( ) ( )∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

∗ τθωτ−θ−×





 τ

+θ





 τ

−
π

=ω dudd)itiexp(
2

uAuiexp
2

uA
4

1
,tW 2

    (A11) 

The integration with respect to θ  gives the Dirac delta-function ( )tu −δ  in Eq.(A11), i.e. 

 

( ) ( ) ( ) uddiexp
2

uA
2

uAtu
2
1

,tW τωτ−






 τ
+







 τ
−−δ

π
=ω ∫ ∫

∞

∞−

∞

∞−

∗                (A12) 

 

Then, integrating with respect to u , we arrive at the Wigner time- frequency distribution 

( ) ( ) τ





 τ

+ωτ−





 τ

−
π

=ω ∫
∞

∞−

∗ d
2

tAiexp
2

tA
2
1

,tW .                            (A13) 
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This distribution can be explained in terms of frequency as well by the following integral expression 

( ) ( ) θ





 θ

+ωθ





 θ

−ω
π

=ω ∫
∞

∞−

∗ d
2

Stiexp
2

S
2
1

,tW  .                      (A14) 

 

The kernel of this distribution is equal to unity, while the kernel of the Wigner transformation depends 

on the product of the arguments. The power density ( ) 2tA and the spectrum density ( ) 2S ω  are 

determined by 

 

a) ( ) ( )∫
∞

∞−

ωω= d,tWtA
2 , 

(A15) 

b) ( ) ( )∫
∞

∞−

ω=ω td,tWS
2  . 
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