
Efficient mechanism for key

management in multi-session

environments

por

José Roberto Pérez Cruz

Tesis sometida como requisito parcial para obtener el

grado de

MAESTRO EN CIENCIAS EN EL ÁREA DE
CIENCIAS COMPUTACIONALES

en el

Instituto Nacional de Astrofísica, Óptica y
Electrónica

Noviembre 2009

Tonantzintla, Puebla

Supervisada por:

Dr. Saúl Eduardo Pomares Hernández, INAOE
Dr. Gustavo Rodríguez Gómez, INAOE

c©INAOE 2009

El autor otorga al INAOE el permiso de reproducir y

distribuir copias en su totalidad o en partes de esta tesis

ii

iii

Abstract

The Internet 2 deployment introduces new communications capabilities, like multi-

party collaboration, high scale multimedia assembly and multicast communication. Con-

sidering such capabilities, the research concering security is facing new challenges. One of

such challenge, is to create secure multi-session frameworks to ensure the confidentiality

of exchanged information. In a multi-session environment, there are several users joined

at two or more work sessions simultaneously. The confidentiality in these environments

can be achieved using cryptographic methods. Unfortunately, the key management,

which is necessary for such environments, creates two problems: a high complexity in

key distribution and a high storage cost.

This thesis proposes as its main contribution, an efficient decentralized multi-session

key management mechanism for dynamic multimedia group communication, character-

ized by the use of an independent key per ciphered packet. Our solution proposes

a functional architecture that exploits the overlapping of the user sessions to reduce

the redundancy in key distribution. The proposed architecture makes use of two key

generation strategies: a key derivation technique to reduce the rekey overhead and a

pseudorandom number generator that allows the users to generate an independent key

per ciphered packet. The pseudorandom number generator allows the users to generate

independent keys for each transmitted packet. This characteristic enables the system to

support the delay, the loss and transposition of packets.

iv

v

Resumen

La implementación de Internet 2 ha introducido nuevas capacidades en las comuni-

caciones, como la colaboración multipartita, el ensamble de multimedia a gran escala y

comunicaciones multicast. Considerando tales capacidades, la investigación en el ámbito

de la seguridad enfrenta nuevos retos. Uno de ellos es crear ambientes de trabajo multi-

sesión seguros para garantizar la confidencialidad de la información intercambiada. En

los ambientes multi-sesión existe una gran cantidad de usuarios involucrados con dos o

más sesiones de trabajo de manera simultanea. La confidencialidad en dichos ambientes

se puede lograr usando métodos criptográficos. Desafortunadamente la gestión de las

llaves, necesaria para tales métodos, crea dos problemas: una alta complejidad en la

distribución y un alto costo de almacenamiento.

En esta tesis se propone, como principal contribuación, un mecanismo descentral-

izado basado en el paradigma de comunicación en grupo, para la gestión de llaves en am-

bientes multi-sesión. Dicha solución propone una arquitectura funcional que aprovecha

el traslape en la sesiones de los usuarios para reducir la redundancia en la distribución de

las llaves. La arquitectura propuesta emplea dos estrategias de generación de llaves: una

técnica de derivación y un generador de números pseudoaleatorios. Con la técnica de

derivación se logra reducir el costo involucrado en la actualización de las llaves, mientras

que con el generador de números pseudoaleatorios los usuarios pueden generar llaves in-

dependientes para cada paquete cifrado, habilitando al sistema para soportar el retraso,

la pérdida o la transposición de paquetes.

vi

Contents

Contents vii

Notation xi

1 Introduction 1

1.1 Motivation . 1

1.2 Problem description . 1

1.3 Proposed solution . 3

1.4 Methodology . 4

1.5 Document organization . 5

2 Fundamentals 7

2.1 Secure group communications . 7

2.1.1 Multi-group environments . 8

2.2 Group key managers . 9

2.3 Key generation . 11

2.3.1 One-way functions . 11

2.3.2 Trapdoor one-way functions . 11

2.3.3 Hash functions . 12

2.3.4 Pseudorandom number generators 12

3 State of the art 13

3.1 Taxonomy of key management mechanisms 13

viii CONTENTS

3.2 Key management for single group environments 14

3.2.1 Centralized key management . 14

3.2.1.1 LKH . 15

3.2.1.2 OFT . 16

3.2.1.3 SGHSS . 18

3.2.1.4 SKD . 20

3.2.1.5 Summary . 22

3.2.2 Decentralized key management architectures 24

3.2.2.1 Iolus . 25

3.2.2.2 SAKM . 26

3.2.2.3 Mykil . 28

3.2.2.4 Summary . 29

3.2.3 Distributed key management mechanisms 30

3.2.3.1 GDH . 31

3.2.3.2 D-CFKM . 31

3.2.3.3 TGDH . 33

3.2.3.4 GAKAP . 34

3.2.3.5 Summary . 36

3.3 Key management for multi-group environments 37

3.3.1 Centralized multi-group key management 38

3.3.1.1 MGKMS . 38

3.3.1.2 IDHKGS . 41

3.3.1.3 DACMGS . 42

3.3.1.4 KTR . 44

3.3.2 Decentralized multi-group key management 46

3.3.2.1 DKMS . 46

3.3.3 Summary . 47

CONTENTS ix

4 Proposed mechanisms for multi-session key management 51

4.1 Centralized mechanism (MM-MSKMS) 51

4.1.1 Architecture . 52

4.1.2 Key generation . 53

4.1.2.1 KEKs generation . 54

4.1.2.2 SKs generation . 54

4.1.2.3 DEKs generation . 55

4.1.3 Rekey operations . 56

4.1.3.1 User join . 56

4.1.3.2 User leave . 61

4.1.3.3 User switch . 63

4.2 Decentralized mechanism (DMM-MSKMS) 66

4.2.1 Architecture . 66

4.2.2 Key generation . 67

4.2.2.1 BKs generation . 68

4.2.3 Rekey operations . 69

4.2.3.1 Rekeying of the S-Level 69

4.2.3.2 Rekeying of the O-Level 74

5 Performance analysis 85

5.1 Analysis of the MM-MSKMS . 85

5.1.1 Storage overhead . 85

5.1.2 Communication overhead . 87

5.1.3 Comparison . 89

5.2 Analysis of the DMM-MSKMS . 91

5.2.1 Storage overhead . 91

5.2.2 Communication overhead . 92

5.2.2.1 Communication overhead in the S-Level 92

5.2.2.2 Communication overhead in O-Level 93

x CONTENTS

5.2.3 Comparison . 95

6 Conclusions and future work 99

6.1 Summary . 99

6.2 Future work . 100

Bibliography 103

Notation

The notation used in this document is summarized in Table 1.

Table 1: General notation

Symbol Meaning

KEK Key Encryption Key

TEK Transfer Encryption Key

DEK Data Encryption Key

SK Session Key

BK Blinded Key

KDC Key Distribution Center

LKH Logical Key Hierarchy

KEK-tree hierarchy of KEKs

rKEK the key located in the root vertex of a KEK-tree

SG Service Group (group of users that have access to the same

resources)

DG Data Group (group of users that have access to a unique

data stream)

OG Overlapping Group (group of users with overlapped sessions)

OGC Overlapping Group Controller

n number of users in the system

s number of sessions in the system

t identifier of an OG and its KEK-tree

OGt overlapping group related to the KEK-tree t

Continued on next page

xii Notation

Table 1 – continued from previous page

Symbol Meaning

OGCt overlapping group controller responsible of the OGt

nt number of users in an OGt

m(s) maximum number of OGs

m0 number of OGs in the system

d degree of a KEK-tree

ld(nt) length of the branches of a tree and is either L or L + 1,

where L = ⌊logd(nt)⌋

i, j indices of KEKs

Kt
i,j KEK of the tree t

Ωt set of SKs related to an OGt

SKh session key related to the session h (1 ≤ h ≤ s)

BKh blinded key related to the SKh

bh order of an algebraic group

p, q, ph, qh large prime integers

k′,K ′, SK ′ the apostrophe indicates that the key has been updated

{Ki}Kj
indicates that the key Ki is encrypted by the key Kj

→ indicates the transmission of a message

KDC → un : {Ki}Kj
indicates that the KDC sends to user un the key Ki en-

crypted by the key Kj

≡ denote a congruence modulo n (a ≡ b mod n if a − b is

divisible by n)

⊕ denote a direct sum, that is a construction which combines

several modules into a new larger module

Continued on next page

xiii

Table 1 – continued from previous page

Symbol Meaning

△ denote the symmetric difference of two sets, in other words

is the set of elements which are in one of the sets, but not in

both

xiv Notation

Chapter 1

Introduction

1.1 Motivation

The Internet 2 enables new capabilities, such as multi-party collaboration, high-scale

multimedia assembly and multicast communication. The aim of these new capabilities

is to develop communication platforms where there may be a high-scale associativity of

users communicating by using multimedia data (audio, video, text, still images, etc.).

To achieve this, the communication platforms contemplate the support of heterogeneous

data management (transmission of discrete and continuous data) which must satisfy

certain properties in order to not degrade the quality of service [SWM+01]. Specifically,

for continuous data transmission, the communication should support the delay, the loss

and the transposition of packets.

1.2 Problem description

For the reasons mentioned above, the new communication platforms are facing new

challenges about security research. One such challenge is to create secure environments

where several applications and several users maintaining work sessions in two or more

applications can exist simultaneously. A description of a multi-session environment is

given by the following example.

Suppose that there are several users on the Internet using some or all of the following

three applications: an interactive meeting through session 1, an iTV show through

session 2, and a multimedia forum through session 3. Some users coincide in one, two

2 Introduction

or three of these applications, but there are many other users that do not coincide at all

among the applications used (see Figure 1.1).

Figure 1.1: Multi-session scenario with three different applications

As shown in Figure 1.1, users in orange, green and blue areas coincide in two appli-

cations respectively, while users in the yellow area coincide in all the applications. Users

that coincide in some applications are said to have an overlapping in their sessions. With

this scenario, users involved in sessions 1 and 3 may exchange information with users

associated with these sessions, but users associated only with session 3 should not have

access to the information exchanged in session 1 and vice versa. In other words, the

exchanged information should be confidential, which means that the information can be

accessed only by entities or groups of authorized entities [HDP03, FK04, MVO96].

A practical way to assure the confidentiality is with the use of cryptographic methods

along with a selective key distribution technique [RH03]. Unfortunately, the key man-

agement in multi-session environments presents two main problems: a high complexity

in key distribution and a high storage cost. These problems arise because users have

1.3 Proposed solution 3

to store independent keys for each joined session, and the number of keys required for

rekeying depends on the number of users in each session.

Besides the problems associated with key management in multi-session environments,

special requirements must be met to preserve the quality of service for continuous data

transmission. Since communication channels are not necessarily reliable nor ordered,

there is no guarantee that all information is received correctly [CQN+02]. Therefore,

systems should support the delay, loss and transposition of packets. For these require-

ments, it is desirable to use independent keys per transmitted packet, so that the lost,

delayed or transposed packet has no adverse effects on the quality of service. Further-

more, if there are as many keys as transmitted packets, the level of confidentiality would

be even greater.

Currently, some solutions exist that are designed for environments where there are

several users with different access privileges or which are associated with different work

sessions [SL03, SL04, WOCG07, DML04, GLLC05, RLK05]. Unfortunately, such solu-

tions are not designed to support dynamic formation and decomposition of groups since

they rely on complex architectures to organize users and keys.

1.3 Proposed solution

In this thesis, we propose as main contribution, an efficient decentralized multi-session

key management mechanism for dynamic multimedia group communication, which is

characterized by the use of an independent key per ciphered packet. Our mechanism

uses a functional architecture that exploits the overlapping present in the user’s sessions,

creating groups composed of users with the same memberships1 to reduce the key distri-

bution redundancy. Furthermore, the proposed architecture is designed to support the

dynamic formation and decomposition of groups.

1In this context, a membership is the state of a user of being a member of a communication group

(see Section 2.1 for a definition). Being a member of a communication group, a user has access privileges
to some programs or resources.

4 Introduction

Along with the architecture, our mechanism uses two key generation strategies: a

derivation technique and a pseudorandom number generator. Through the derivation

technique, each formed group is organized into an independent hierarchy to manage the

auxiliary keys used in the rekeying, while it allows the members of each group to derive

the auxiliary keys by themselves, without the Key Distribution Center (KDC) having to

generate, encrypt and distribute all the keys. With the pseudorandom number genera-

tor, our mechanism allows the users to generate independent keys for each transmitted

packet. By the way in which independent keys are generated, unlike many current solu-

tions where users can only decrypt a specific stream in a 1 to n communication, in our

solution, users can encrypt and decrypt different streams in an n to n communication.

1.4 Methodology

In order to achieve the objective of this thesis, the following methodology was proposed.

1. Design of an organizational architecture. This concerns the design of a struc-

ture that allows the organization of the auxiliary keys, needed by the users of a

system to perform the rekeying. In a multi-session environment, a user involved

with several sessions must handle several keys, which may create a significant in-

crement in storage and communication costs, respect to the current solutions about

multi-group key management, if a good strategy is not used. For this reason, it is

necessary to take advantage of the coincidences and overlapping in user member-

ships to reduce storage and distribution costs, eliminating redundancy in managed

keys. Therefore, for a multi-session environment, the architecture must organize

users according to their memberships, forming groups with users who have the

same memberships.

2. Development of a mechanism for dynamic rekeying. This refers to the de-

velopment of a key distribution scheme based on the organizational architecture. A

key distribution scheme consists on the key generation methods and strategies used

1.5 Document organization 5

by the group controllers and users to perform the rekeying and the transmission of

packets. The key distribution scheme depends entirely on the organizational archi-

tecture because the architecture establishes the correspondence between users and

keys. Therefore, the key generation methods and strategies must be appropriate

to be adapted to the organizational architecture.

3. Development of a centralized key management mechanism. Since a cen-

tralized approach has less restrictions than others, it is a good environment to

develop a first solution that uses the achieved functional architecture. With the

centralized mechanism, the first rekey algorithms are developed. Such algorithms

are used to handle the join, leave or switch of users in the system.

4. Development of a decentralized key management mechanism. The achieved

centralized scheme has to be extended in order to solve the inherent problems of

a centralized approach. The main problem of a centralized approach is to have a

system with a single point of failure (a single group controller). Consequently, if

the group controller fails, the entire group is affected. Furthermore, as the group

controller has to handle all the groups, the centralized mechanism is scalable only

in the number of users, but it is not scalable in the number of groups.

5. Performance analysis. In order to demonstrate the efficiency of the mechanisms,

the storage and communication costs have to be calculated. With the calculated

costs, the mechanisms must be compared to other solutions in order to corroborate

that the proposed solutions are really efficient.

1.5 Document organization

This document is organized as follows:

In chapter two, the main concepts involved with key management for secure group

communications are introduced.

6 Introduction

In chapter three, a survey of key management for secure group communications is

presented. The survey includes the multi-group case, where an extension is proposed to

the current taxonomy of key management mechanisms.

In chapter four, the proposed mechanisms for multi-session key management are

explained. First, a centralized multi-session key management mechanism is defined,

where the functional architecture and the rekey algorithms are detailed. Second, in

order to achieve a more scalable mechanism, a decentralized mechanism is defined. The

decentralized mechanism extend the functional architecture achieved in the centralized

mechanism.

In chapter five, the performance analysis of the proposed mechanisms is presented.

Communication and storage costs of the two defined mechanism are calculated. In

addition, costs are compared with other similar solutions.

Finally, the conclusions of this work are summarized in chapter six.

Chapter 2

Fundamentals

2.1 Secure group communications

Today, one of the fastest growing communication models is the multicast, since it allows

a more efficient dispatch of messages on each link of a network. In a multicast commu-

nication, several receivers are associated with an address so that when a user needs to

transmit a message to a set of users, the user only needs to send the message once to a

single address. Thus, multicast allows the reduction in bandwidth. In this context, the

set of receivers associated with an address is called communication group [HDP03].

Group confidentiality. When a communication group is established, it is ex-

pected that within it exists some confidentiality when the participants exchange infor-

mation; therefore it is necessary to establish access control policies to ensure that only

authorized entities can access the group and the information exchanged. A practical way

to restrict access to information, is the use of cryptography with a selective distribution

mechanism of cryptographic keys [HDP03, RH03].

In this environment, a cryptographic algorithm takes a piece of information, such

as a group’s message, and using an appropriate key, it performs some transformations

to encrypt the original data, making impossible to retrieve such information, unless

the corresponding decryption algorithm and the corresponding key were used [MVO96,

FS03]. This makes it possible to establish private multicast sessions, where each message

is encrypted with an algorithm and a selected key; thus, only the group members can

recover such information. In this context, the selected key is called the group key.

8 Fundamentals

Update of group keys. Besides the need to protect the information exchanged

between the group members, it is necessary to provide a mechanism to renew the group

key (rekey) when an entity joins or leaves the group [RH03]. The rekey mechanism is

performed by a key manager.

When an entity joins the group, the system must guarantee that the new member

cannot access the information exchanged before its arrival, such warranty is called back-

ward secrecy. Similarly, when an entity leaves the group, the system must guarantee

that the member that leaves the group cannot access the information exchanged after

its departure, such warranty is called forward secrecy [RH03].

Backward secrecy preservation often has a different complexity than forward secrecy

preservation. To preserve the backward secrecy, at user arrival, a new group key is

chosen, and by using a multicast communication the new group key is distributed among

the old members, while for the new user, the key is sent by unicast. Forward secrecy

preservation is often more complex because when a user leaves the group, it knows

the encryption method and some of the keys used to decrypt information, so there

are cases in which a single multicast transmission of the new key does not offer a good

security level. There are several approaches that propose a solution to the forward secrecy

preservation. Some of the first solutions proposed the distribution of the new keys using

O(n) unicast transmissions that were extremely costly [HM97b, HM97a, MJMR99]. In

some of the recent approaches, derivation strategies have been proposed, with which

users can calculate the keys by themselves, making it necessary to transmit a simple

message to request the rekey.

2.1.1 Multi-group environments

When some entities, participating in a multicast communication, belong to two or more

groups simultaneously, a multi-group environment is established. In a multi-group com-

munication, backward secrecy and forward secrecy must be guaranted in each of the

groups involved, although the members can interact with each other. This implies that

2.2 Group key managers 9

in a multi-group transmission, only the members of the destination group can access the

information exchanged, making such information inaccessible to the rest of the entities

involved with the user, but that are outside of the destination group.

In a multi-group environment, confidentiality must be maintained within each group.

For this, users have to store a set of keys for each group to which they are associated.

Consequently, key management in a mult-group environment may become redundant,

especially if the access control services are performed individually in each group. A prac-

tical way to solve the problem of redundancy in key management is by taking advantage

of the concurrency that some users may have in the same groups. In this context, when

two or more users concur in the same groups, it is said that they have an “overlapping ”

in their memberships. In this way, the efficiency and the scalability of a system depends

on the way that the overlapping in user memberships is managed.

2.2 Group key managers

Depending on the allowed level of association, the key management mechanisms can be

generally classified in one of two categories: single-group key management mechanisms

and multi-group key management mechanisms.

Problems related to the key management in a single-group environments have been

a topic widely studied, evidence of this are the works of Rafaeli-Hutchison [RH03] and

Challal et al. [CS05, YCS05]. These works have agreed to define a taxonomy for the

different key management mechanisms for single-group environments, which consists of

three main categories:

• Centralized scheme. In this scheme, a single entity is responsible for controlling

the whole group, assuming the responsibility for generating and distributing the

keys, reducing the computational cost and storage requirements in the rest of the

group members. In addition, with this scheme, the enter and exit of members is

accomplished easily while maintaining the synchrony of the system. The prob-

10 Fundamentals

lem with this scheme is that if the central entity fails, the whole group stops its

operation.

• Decentralized scheme. In this scheme the responsibility for managing a group is

divided among several entities, forming subgroups, making the user’s enter and exit

transactions being undertaken by several entities, while minimizing the problem of

concentrating the work into a single entity. The main problem with these schemes

is the complexity involved in synchronization.

• Distributed scheme. This scheme is characterized by the lack of a group con-

troller, so that all members work together to generate the keys. The main problem

with this scheme is that the synchronization time increases significantly, so the en-

ter and exit of users become complex.

Problems related to the key management in multi-group environments, as a special

case of secure group communications, is a topic that has been recently explored, nev-

ertheless some important solutions have emerged. According to existing solutions, key

management mechanisms for multi-group environments can be classified into two main

categories:

• Centralized scheme. In this category, those mechanisms where a central entity

controls all the groups in the system are considered, assuming the responsibility for

generating and distributing the keys. In addition, the central controller maintains

complex structures to organize the keys and users of the system.

• Decentralized scheme. In this category, the mechanisms where there is more

than one entity responsible for controlling the groups are considered.

A detailed description of the works of each category is presented in Chapter 3.

2.3 Key generation 11

2.3 Key generation

A cryptographic key is a piece of information as a sequence of numbers or letters. For

this reason, it must meet certain requirements to provide an acceptable security level.

In this way, the security of a key is mainly determined by the computational difficulty

to be discovered and its randomness. There are certain mathematical functions, which

by their nature, can be used to generate robust cryptographic keys.

Some of the most common functions used for key generation are: one-way functions,

trapdoor one-way functions, Hash functions and pseudorandom number generators. For

a more detailed description refer to [MVO96].

2.3.1 One-way functions

The one-way functions are mathematical functions that have the property of being easy

to compute but unfeasible to invert.

Definition. A function f defined from a set X to a set X is called one-way function

if f(x) is easy to compute for all x ∈ X, but for “essentially all” elements y ∈ Im(f), it

is computationally unfeasible to find any x ∈ X such that f(x) = y.

In this context, terms “easy” and “unfeasible” refer to the capability of an algorithm

to compute a certain function in a polynomial time, depending on the size of the entry.

2.3.2 Trapdoor one-way functions

Definition. A trapdoor one-way function is a one-way function f : X → Y with the

additional property that, given some extra information, called the trapdoor information,

it becomes feasible to find for any given y ∈ Im(f), an x ∈ X such that f(x) = y.

In this way, finding the inverse function of a trap without knowing the extra infor-

mation is a computationally difficult problem.

Trapdoor one-way functions are used mainly in public key cryptographic algorithms,

such as the techniques for key exchange Diffie-Hellman and RSA.

12 Fundamentals

2.3.3 Hash functions

Definition. A hash function is a computationally efficient function mapping binary

strings of arbitrary length to binary strings of some fixed length, called hash-values.

A hash function h is usually chosen in such way that it is computationally unfeasible

to find two different inputs that have a common hash value, and it is computationally

impossible to find a pre-image of x such as h(x) = y.

Hash functions are used mainly to create authentication codes, such as a digital

signature, or to create verification codes, which are used to verify the integrity of data

received in a transmission.

2.3.4 Pseudorandom number generators

To consider a number or sequence to be random, the set where it is taken should be

an equiprobable space; in other words, every element must have the same chance of

being elected and that the choice of one does not depend on the choice of another. This

implies that choosing a random number depends entirely on the Hazard, so to obtain a

source of true randomness, it must involve physical media. In order to overcome such

adversity, most existing methods have been devised to build deterministic pseudoran-

dom sequences, from a small random sequence called seed. In this way, the generated

sequences appear to proceed from a real random sources, for anyone who does not know

the generation method. For practical purposes, the generation algorithm is often dis-

closed, but the seed is kept secret.

Therefore, a pseudorandom number generator algorithm can be defined as a deter-

ministic process which takes as input a random number s, called the seed, and has as

output a sequence of quasi -random numbers of length n.

Pseudorandom number generators, are used mainly in stream ciphers, where infor-

mation is encrypted in small fragments in real time.

Applications that use this kind of cryptosystems are those that handle continuous

data streams, such as telephone calls or video transmissions.

Chapter 3

State of the art

3.1 Taxonomy of key management mechanisms

This thesis proposes an extension to the taxonomy previously defined through the works

of Rafaeli- Hutchison [RH03] and Challal et al. [CS05, YCS05], to consider the special

case of the key management in multi-group environments. The resulting taxonomy is

shown in Figure 3.1, which is based on the organization proposed by Challal et al.

Figure 3.1: Taxonomy of key management mechanisms for secure group communications

In this thesis we will discuss only the main classical contributions that continue to

be a reference as well as some of the most recent contributions; therefore, not all the

mechanisms and schemes shown in Figure 3.1 are explained, although they have been

considered in the taxonomy, to maintain a frame of reference. Mechanisms and schemes

shown in Figure 3.1 that are not discussed in this document can be found in the works

of Rafaeli-Hutchison [RH03] and Challal et al [CS05, YCS05].

14 State of the art

3.2 Key management for single group environments

3.2.1 Centralized key management

In a centralized system, an entity called as the Group Controller (GC) is responsible

for controlling the whole group. The GC is used as a Key Distribution Center (KDC)

because it generates and distributes the keys to the whole group. The KDC does not

depend on any other entity to perform the access control and key distribution. However,

precisely such skill makes this central entity a potential single point of failure: if the

KDC has problems, the whole group will be affected. If the KDC stops working, the

group privacy will be compromised since the keys in which the group privacy are based

on, will not be generated, updated nor distributed [RH03].

Despite the problems that might present a centralized mechanism, there are certain

advantages, such as the reduction of storage and computational costs in the rest of the

group members. Furthermore, the input and output of users becomes easier, increasing

the scalability of the group.

The efficiency of a centralized key management mechanism can be measured consid-

ering the following parameters [RH03, CS05]:

• Communication cost. Refers to the number of messages required to update the

keys when users join or leave.

• Computational cost. This parameter relates to the amount of computations re-

quired by the group members and the KDC to manage the keys.

• Storage cost. Refers to the number of keys that group members and the KDC need

to keep.

• Preservation of backward and forward secrecy. It refers to the system’s ability to

maintain confidentiality of exchanged information, even when users join or leave

the group.

3.2 Key management for single group environments 15

• Collusion. When certain members leave the group, they should not be able to

interact to derive the group key.

3.2.1.1 LKH

In the mechanisms based on Logical Key Hierarchy (LKH) [WGL98, DW99], the KDC

maintains a tree of keys, where the root is the Transfer Encryption Key (TEK), and the

rest of the vertices are Key Encryption Keys (KEKs) (see Figure 3.2). Particularly, the

KEKs of the leaves are the individual keys of the group members, and each one of those

keys is known only by the KDC and the corresponding user.

Figure 3.2: Logical key hierarchy architecture

With such organization, each group member has to store all the keys located along

the tree branch where it is joined, from its individual key to the TEK.

When a new user joins the group, a new leaf is added to the tree and is associated

with the individual key of that user. In order to preserve the backward secrecy, all the

keys in the vertices of the branch of the new leaf are updated by the KDC. To distribute

the updated keys, the KDC encrypts each key with the keys related to its children.

The user join process is illustrated by the Figure 3.3. When user u3 joins the group,

the KEK k3 and its corresponding leaf are added to the tree, compromising the keys

k3−4, k1−4 and k. Therefore, the KDC distributes the updated keys as follows: k′ is

encrypted with k′
1−4 and k5−8, k′

1−4 is encrypted with k1−2 and k′
3−4, and k′

3−4 with k3

and k4.

16 State of the art

Figure 3.3: User join process in LKH scheme

When a user leaves the group, the KDC removes the corresponding leaf and updates

the keys in the affected branch in order to preserve the forward secrecy. As for the user

join process, each updated key is encrypted with the keys related to its children and the

rekey message excludes the key of the departed user. The user leave process is illustrated

by Figure 3.4: when user u3 leaves the group, the KEK k3 and its corresponding leaf

are removed from the tree, compromising the keys k3−4, k1−4 and k. Therefore, the

KDC distributes the updated keys as follows: k′ is encrypted with k′
1−4 and k5−8, k′

1−4

is encrypted with k1−2 and k′
3−4, and k′

3−4 with k3.

Figure 3.4: User leave process in LKH scheme

3.2.1.2 OFT

One-way Function Tree (OFT) [SM03] is a solution based on binary key trees, that

reduces the communication cost of the LKH scheme. Using a OFT, the group members

can calculate the keys of its branch, reducing the information sent by the KDC.

3.2 Key management for single group environments 17

In the OFT, the set of keys located along a user’s branch, from the individual key

to the TEK, is called ancestor set. Unlike the LKH scheme, with the OFT, each group

member stores its individual key and the keys located in the sibling vertices of its ancestor

set. The set of such keys is called sibling set (see Figure 3.5). Each key in the ancestor

set is blinded using a one-way function g(·).

Figure 3.5: Ancestor and sibling sets of member u4

Thus, each user can compute the keys of its branch using the following formula:

ki = f(g(kleft(i)), g(kright(i))) (3.1)

where f(·) is a mixing function, kleft(i) and kright(i) denote respectively the left and right

children of vertex i, that are blinded using a one-way function g(·).

When a rekeying operation is needed, the KDC just sends the updated KEKs of the

affected branch, blinding each key with the one-way function g(·). Figure 3.6 the KEKs

sent out by the KDC for a rekey process.

Figure 3.6: Necessary encryptions when u3 joins the group

18 State of the art

Considering the tree shown in Figure 3.6. If a new user u3 joins the system, the KDC

sends the blinded keys: g(k′
1−4) encrypted with k5−8, g(k′

3−4) encrypted with k1−2 and

g(k3) encrypted with k4. Therefore, the new KEKs can be calculated by every member

as:

k′
3−4 = f(g(k3), g(k4))

k′
1−4 = f(g(k1−2), g(k′

3−4))

k′ = f(g(k′
1−4), g(k5−8))

3.2.1.3 SGHSS

The Subgroup Hierarchy with Secret Sharing (SGHSS) [NPKKI07] was designed to re-

duce the communication cost in the rekey operation involved with the leave process,

allowing those group members to calculate the keys by themselves. With the SGHSS,

the KDC maintains a tree, where the root is the TEK, the internal vertices are KEKs,

and unlike other schemes, each leaf is a key shared by the members of a subgroup.

For the generation of keys of the different levels of the LKH, the KDC uses a modular

exponentiation over a finite field. Thus, the KDC distributes some secrets among the

users, and such secrets are used by the users to calculate the TEK and the key of their

subgroup.

A secret is defined as the exponent α that satisfies the following property: let p be

a large prime and let g be the primitive element of the multiplicative group Z
∗
p. It is

computationally difficult to determine α given g and gα mod p.

In a group there are two kinds of secrets: the member secrets and the server secrets.

The member secret αi
j , assigned to user i of the subgroup j, is selected under the condi-

tion that 2 ≤ αi
j ≤ p−2 and gdc(αs

j , p−1) = 1. The server secret, assigned to subgroup

j is selected under the condition that 2 ≤ αs
j ≤ p− 2. Using both secrets, the key of the

3.2 Key management for single group environments 19

subgroup j is computed by:

Kj ≡ gα1
jα2

j ...αm
j αs

j mod p (3.2)

In this way, each key located in an internal vertex is generated by the multiplication of

the exponents of its children, and each subgroup key is generated by the multiplication

of the exponents of the users. Furthermore, the inverse value of each member secret is

used to exclude a user when it leaves the group.

Figure 3.7 shows a group divided in 3 subgroups with m users and a subgroup with

m − 1 users.

Figure 3.7: Key hierarchy for 4 subgroups

For the example of Figure 3.7, the subgroup keys K1, K2, K3, K4, the intermediate

keys K1,2, K3,4 and the TEK K0 are computed by:

K1 ≡ gα1
1...αm

1 αs
1 mod p

K2 ≡ gα1
2
...αm

2
αs

2 mod p

K3 ≡ gα1
3
...αm

3
αs

3 mod p

K4 ≡ gα1
4...αm−1

4
αs

4 mod p

K1,2 ≡ g(α1
1
...αm

1
αs

1
)(α1

2
...αm

2
αs

2
) mod p

K3,4 ≡ g(α1
3...αm

3 αs
3)(α1

4...αm−1

4
αs

4) mod p

K0 ≡ g(α1
1
...αm

1
αs

1
)(α1

2
...αm

2
αs

2
)(α1

3
...αm

3
αs

3
)(α1

4
...αm−1

4
αs

4
) mod p

20 State of the art

Considering the example of the group shown in Figure 3.7, if a new user joins the group,

the KDC determines the subgroup that accommodates the new member. If subgroup 4

is selected, the KDC assigns the individual key Kp4
m

and the secret αm
4 to the new user

(um
4), and calculates the inverse value α−m

4 . Then, the KDC updates the server secret

αs
4, the keys K4, K3,4 and K0, using αm

4 and the updated server secret as follows:

K ′
4 ≡ gα1

4...αm−1

4
αm

4 αs′

4 mod p

K ′
3,4 ≡ g(α1

3
...αm

3
αs

3
)(α1

4
...αm−1

4
αm

4
αs′

4
) mod p

K ′
0 ≡ g(α1

1...αm
1 αs

1)(α1
2...αm

2 αs
2)(α1

3...αm
3 αs

3)(α1
4...αm−1

4
αm

4 αs′

4) mod p

Finally, the KDC unicasts to um
4 , the keys K ′

4, K ′
3,4 and K ′

0 and the inverse values

of the other members of the subgroup 4 (α−1
4 , ..., α−m−1

4), encrypting the message with

Kp4
m

. For the rest of group members, the KDC multicasts (α−m
4 , K ′

4) encrypted with

K4, K ′
3,4 encrypted with K3,4 and K ′

0 encrypted with K0.

In the case when user um
4 decides to leave the group, the KDC just has to notify the

remaining members of subgroup 4 about the abandonment, and multicasts the inverse

α−m
4 to the others subgroups. Thus the KDC multicasts α−m

4 encrypted with K3 and

K1,2, respectively. Thus, the KDC and the remaining members update the keys as

follows:

K ′
4 ≡ (K4)

α−m
4 ≡ gα1

4
...αm

4
α−m

4
αs

4 ≡ gα1
4
...αm−1

4
αs

4 mod p

K ′
3,4 ≡ (K3,4)

α−m
4 ≡ g(α1

3...αm
3 αs

3)(α1
4...αm−1

4
αs

4) mod p

K ′
0 ≡ (K0)

α−m
4 ≡ g(α1

1
...αm

1
αs

1
)(α1

2
...αm

2
αs

2
)(α1

3
...αm

3
αs

3
)(α1

4
...αm−1

4
αs

4
) mod p

3.2.1.4 SKD

The Shared Key Derivation protocol (SKD) [LLL05, LHLL09] uses a tree similar to

LKH to organize the users involved in the group. The novelty in SKD is that keys

located in the internal vertices are used by the users to compute or derive the new keys

3.2 Key management for single group environments 21

by themselves, avoiding the KDC the need to generate and distribute all the keys in a

rekey operation.

In SKD, the KDC and the group members use a one-way function f(·), called the

key derivation function, to compute the new keys, using previous keys.

In the key tree used in SKD, the vertices are denoted as xi,j, where i is the level of

the vertex and j is the most left position relative to the level i (see Figure 3.8).

Figure 3.8: SKD architecture

When a new user joins the group, the KDC assigns a new vertex to store the indi-

vidual key of the user. As the key tree must be balanced, the insertion of a new vertex

depends on whether the subtree chosen for insertion is full or not. Assuming that xh,ph

is the root vertex of subtree yh,ph
, the insertion of a new vertex is performed in one of

two ways:

• if yh,ph
is not full, the new vertex x′

h+1,ph+1
is inserted

• if yh,ph
is full, a child of xh,ph

, ie the vertex xh+1,ph+1
is moved to a lower level,

becoming the vertex x′
h+2,sh+2

and its old position is replaced by a new intermediate

vertex x′
h+1,ph+1

, which will be the new parent of x′
h+2,sh+2

and the new inserted

vertex x′
h+2,ph+2

When the new vertex is inserted, all the compromised keys are updated by:

k′
i,pi

= f(ki,pi
) (3.3)

where ki,pi
is the KEK previous to the rekeying, called the derivation key of vertex xi,pi

.

22 State of the art

If the chosen subtree was full and the creation of a new intermediate vertex x′
h+1,ph+1

was needed, the key of the new intermediate vertex is calculated by:

k′
h+1,ph+1

= f(kh+2,sh+2
⊕ kg) (3.4)

where kh+2,sh+2
= kh+1,ph+1

is the derivation key, corresponding to the previous vertex

xh+1,ph+1
, while kg is the TEK (k1,1) called the salt value, that is used to ensure that

the derived key is different to the other previously generated keys.

For the rekeying, the KDC just sends a message, informing the current members

about the recent user addition. As the new user does not know the KEKs, the KDC

unicasts the involved KEKs, encrypting the message with the individual key of the new

user.

When a user leaves the group, the KDC removes the corresponding vertex and up-

dates the KEKs of the affected branch. As the key tree must be balanced, the removal

of the vertex is performed in the following way: if the vertex xh,ph
, the root of sub-

tree yh,ph
stays with at least two children, the key xh,ph

is replaced by the only child,

x′
h,ph

= xh+1,ph+1
. In any case, the new KEKs k′

i,pi
are computed by:

k′
i,pi

= f(ki+1,si+1
⊕ ki,pi

) (3.5)

where ki+1,si+1
is the derivation key, and the previous key ki,pi

is used as salt value.

As the derivation keys only benefit users in subtree yi+1,si+1
, the KDC multicasts the

updated keys to the members who cannot derive the keys.

3.2.1.5 Summary

In Tables 3.2, 3.3 and 3.4, the mechanisms and schemes discussed in previous sections

are compared. Table 3.2 shows a comparison of the communication costs and indicates

the security services offered by each solution. Table 3.3 shows a comparison of storage

costs. Finally, Table 3.4 shows a comparison of the computational cost.

3.2 Key management for single group environments 23

The notation used in Tables 3.2, 3.3, and 3.4 is described in Table 3.1:

Table 3.1: Notation used in Tables 3.2, 3.3 and 3.4
Symbol Meaning

n number of users in the group
m number of subgroups
d degree of the tree
F one-way function
Ex modular exponentiation
R pseudorandom number generation
E encryption operation
D decryption operation
K size of a key in bits
N size of a notification message
S size of a secret

Table 3.2: Comparison of the centralized key management mechanisms by communica-
tion cost

Secrecy Secure Communication cost
Scheme/ against Join

Mechanism back fore coll. multicast unicast Leave

LKH Yes Yes Yes (2 logd(n) − 1)K (logd(n) + 1)K (d logd(n) + 1)K

OFT Yes Yes Yes (log2(n) + 1)K (log2(n) + 1)K 2(log2(n) + 1)K

SGHSS Yes Yes Yes log2⌈n/m⌉K + S log2⌈n/m⌉K+⌈n/m⌉S log2⌈n/m⌉S
SKD Yes Yes Yes log2(n)N logd(n)K (d − 1) logd(n)K

Table 3.3: Comparison of the centralized key management mechanisms by storage cost
Scheme/ Storage cost

Mechanism KDC users

LKH (dn−1)K
(d−1) logd(n)K

OFT (2n − 1)K log2(n)K

SGHSS 2⌈n/m⌉K + nS log2(⌈n/m⌉ + (m − 1))K

SKD (dn−1)K
(d−1) logd(n)K

From Table 3.2, we can notice that the most efficient solutions are the SGHSS scheme

and the SKD protocol, which combine a key hierarchy with a derivation technique,

decreasing the amount of messages sent out by the KDC.

In the SKD protocol, the derivation technique allows the KDC to only transmit the

keys that some users cannot derive, along with the information of the affected branch,

which has a smaller size than a key.

24 State of the art

Table 3.4: Comparison of the centralized key management mechanisms by computational
cost

Scheme/ Join Leave
Mechanism KDC users KDC users

LKH logd(n)(2E + R) logd(n)D logd(n)(dE + R) logd(n)D

OFT log2(n)(2E + 2F) + 2R log2(n)(D + F) log2(n)(E + 2F) log2(n)(D + F)

SGHSS log2⌈n/m⌉E+log2⌈n/m⌉Ex log2⌈n/m⌉D log2⌈n/m⌉E+log2⌈n/m⌉Ex log2⌈n/m⌉Ex

SKD logd(n)(E + F) + R logd(n)(F) logd(n)((d − 1)E + F) logd(n)((d−1)D+F)
d

SGHSS offers the best multicast communication cost because the KDC divides the

group in to subgroups, where several users share a KEK, which is derived from secrets,

decreasing the amount of keys sent out by the KDC.

3.2.2 Decentralized key management architectures

The decentralized key management approaches are designed to reduce the problems

associated with centralized schemes, where a single entity is responsible for controlling

the whole group. In a decentralized scheme, the group is divided into small subgroups

such that there is a controller for each subgroup. In this way, if a controller fails, the

whole group is not affected. Depending on how the decentralized scheme is defined, its

efficiency can be determined by some aspects [RH03, CS05], such as:

• Decentralized controller. Refers to the independence of the subgroup controllers

(SGCs). In other words, the SGCs do not depend on a central controller.

• Key independence. Refers to the capability that the keys are not compromised

with previous keys.

• Local rekey. Refers to the capability that the membership changes in a subgroup,

be managed by the SGC locally, without affecting other subgroups (1 affects n

phenomenon).

• Data transformation. In the schemes where there are independent TEKs per sub-

group, each SGC has to translate (decrypt with a key and encrypt with another

3.2 Key management for single group environments 25

key) the information sent to other groups. Such task could generate a work over-

load in SGCs.

• Preservation of backward and forward secrecy. Refers to the capability of the sys-

tem to mantain the privacy of the information even when the subgroups topology

changes.

3.2.2.1 Iolus

Iolus framework [Mit97] is based on dividing the group into subgroups, which are orga-

nized through a hierarchy called secure distribution tree.

Each subgroup in the secure distribution tree maintains an independent subgroup

TEK in order not to affect other groups when a user joins or leaves the system.

In the Iolus framework, each subgroup is managed by entities called group security

agents (GSAs). The GSAs are responsible for connecting the subgroups, forming a

hierarchy of subgroups. Thus, in a Iolus system there are two kinds of GSAs: the group

security controller(GSC) and the group security intermediaries (GSIs).

The GSC maintains the control in the highest level of the hierarchy, being the root

of the tree formed by all the GSIs. Thus, the GSC is responsible for the security of

the whole group. The GSIs are reliable servers, authorized by the GSC to function as

proxies of the GSC or of its parent GSI. The organization of the subgroup hierarchy is

shown in Figure 3.9.

Each GSI forms a bridge between the subgroups, receiving information from its

parents and multicasting such information among its child subgroups. For such reason,

the GSIs must perform information translations.

In Iolus, a new group is launched when a server is started as a GSC, which is provided

with an access control list (ACL) used to either allow or deny the association of users

to the system. At the same time, when the group is launched, several entities can begin

to function as GSIs.

26 State of the art

Figure 3.9: Secure distribution tree organization

In order to join the group, users must locate an appropriate GSA and send a join

request. As the GSA receives a join request, it assigns an individual key to the user.

The GSA uses the user’s individual key to transmit the subgroup TEK.

The departure of a user may be for two reasons: the user request for it or a GSA

decides to expel the user. In any case, the GSA has to perform a rekey in the subgroup.

3.2.2.2 SAKM

In the Scalable and Adaptative Key Management approach (SAKM) [CBB04], the group

is split into clusters of subgroups, based on the dynamism of memberships.

SAKM starts a group with one common TEK, and dynamically splits the group into

clusters with different local TEKs. The split aims to minimize the translation cost and

the overhead produced by the rekey.

With the SAKM architecture, a group is organized into multiple subgroups, arranged

in a tree structure (see Figure 3.10). Each subgroup is controlled by a SAKM Agent,

which is responsible for the local key management. A SAKM Agent could be in two

possible states: active or passive. An active SAKM Agent uses an independent TEK

for its subgroup, and thus has to translate received messages before forwarding them to

local members. A passive SAKM Agent uses the same TEK as its parent subgroup and

just forwards received messages to local members without translation. Thus, the whole

3.2 Key management for single group environments 27

SAKM Agents state induces a partition of the subgroups into a set of clusters. Each

cluster is composed of a set of subgroups that share the same TEK. The cluster’s root

agent is an active agent and all internal agents are passive. Messages are translated only

at the cluster’s root.

Figure 3.10: SAKM architecture

SAKM follows a probabilistic model to perform an estimation of the arrival of users,

and using such estimation, the state of the agents is established. Therefore, periodically,

the SAKM agents exchange dynamism information about their subgroups. Based on

this information, each agent estimates two costs: the overhead cost induced if the agent

becomes active (translation cost) and the cost induced if the agent becomes passive (the

1 affects n overhead). Comparing the two costs, a SAKM Agent decides whether to

become active or passive. If an agent becomes passive, it merges with its parent cluster,

so it uses its parent TEK. If an agent becomes active, it forms a new separate cluster,

so it uses an independent local TEK.

The SAKM architecture is open, so every SAKM Agent is free to use any rekey

strategy. However, two rekey strategies can be considered: a root agent sharing a TEK

with all the subgroup users (n root/leaf pairwise) or a key hierarchy (LKH).

With the n root/leaf pairwise strategy, when a user joins the group, the SAKM Agent

multicasts the new TEK to the old members, encrypting the message with the previous

TEK, while for the new user, the SAKM Agent unicasts the TEK, encrypted with a

key previously agreed between two entities (individual key). If a user leaves the group,

28 State of the art

the SAKM Agent unicasts to each member the new TEK encrypted with the respective

individual keys.

With the LKH strategy, at a join or leave event, the SAKM updates the keys of the

compromised tree branch, including the TEK.

3.2.2.3 Mykil

Mykil [HM03] is a scheme based in Iolus and LKH, so the group is divided into subgroups,

called areas, which form a subgroup hierarchy.

In Mykil, each area is organized in a LKH structure, called auxiliary key tree, whose

root is an entity called Area Controller (AC). The AC is the entity responsible for

maintaining the auxiliary key tree, so it manages the join and leave events, and all the

used keys, including a local TEK, which is independent to the TEKs of other areas.

As an AC can be a member of another area, each area can be linked with another,

using the links of its AC, forming a tree of areas (see Figure 3.11).

Figure 3.11: Mykil architecture

If a user belonging to an area needs to send data to a user belonging to another area,

must encrypt the message with the local TEK, and send it to its AC. The AC must

translate the information with the TEK of the destination area.

A group begins when an area is created, ie, when an entity is designed as the root

of an auxiliary key tree. Thus, the root of the first formed area will be the root of the

tree formed by all the group areas.

3.2 Key management for single group environments 29

When a user requires to join the group, it chooses an appropriate AC and unicasts

a join request. When the request is received, the AC performs a rekey strategy similar

to the LKH scheme.

In Mykil, each AC maintains a balanced tree of 4th degree, so at a join event, the

AC must ensure that the tree has empty leaves to store the key of the new member. If

the tree is full, the AC must create a new level, splitting the leaf vertex of the most-left

position.

For the leave event, as for the join event, Mykil follows a LKH strategy, with the

difference that the tree pruning is not performed. As the join process is cheaper when

there are empty leaves in the tree, at the user departure, the involved vertex is not

removed, just remains as available.

3.2.2.4 Summary

Based on the characteristics listed at the beginning of Section 3.2.2, Table 3.5 gives a

comparison of the architectures previously discussed.

Table 3.5: Comparison of the decentralized key management architectures

Controllers Key Local Data 1 affects n
Architecture SGCs KDC independence rekey transformation phenomenon

Iolus Yes Yes Yes Yes Yes No

SAKM Yes No Yes Yes Yes No

Mykil Yes Yes Yes Yes Yes No

As it can be noticed, although decentralized architectures use SGCs, there are some

schemes that require a KDC, as is the case of Iolus and Mykil. In such cases, the KDC

is the entity responsible for beginning the distribution structure, designating reliable

entities to function as subgroup controllers. In these cases, the KDC does not interfere

in the rekey operations, as long as subgroup controllers begin to operate.

It is clear that those schemes that use a TEK per subgroup eliminate the 1 affects n

phenomenon, if the rekeying is performed locally and the changes in user organization

do not impact the structure of the subgroups.

30 State of the art

While managing a TEK per subgroup can eliminate the 1 affects n phenomenon,

this means that the SGCs have to perform data translations, which induce some delay

in communications. In this way, SAKM defines some strategies to reduce the effects

caused by the data translations.

3.2.3 Distributed key management mechanisms

The distributed key management mechanisms are characterized by having no group con-

troller. Thus, the group key can be generated through the contribution of all members,

each contributing their own quota for the calculation of the key.

In a distributed scheme several considerations should be taken, including ensuring

that mechanisms for the generation of keys are available to all group members, and

also ensuring that the processing time and communication requirements have linearly

increased in terms of number of members. Furthermore, a distributed mechanism re-

quires each user to be aware of the group membership list to make sure that the proto-

cols are robust. Some parameters can be used to evaluate the distributed mechanisms

[RH03, CS05], such as:

• Number of rounds. Refers to the number of iterations among the group members

required to generate a key.

• Number of messages. Refers to the number of messages, exchanged among the users

and which are needed to generate a key. In some cases, the exchanged messages

produce unbearable delays that grow along with the group.

• Processing during setup. Refers to the computations needed during the setup time.

Setting up the group requires most of the computation involved in maintaining the

group because all members need to be contacted.

• DH key. Identify whether the mechanism uses Diffie-Hellman protocol (DH)

[DH76] to generate the keys.

3.2 Key management for single group environments 31

3.2.3.1 GDH

Group Diffie-Hellman exchange (GDH) [STW96] is an extension of the Diffie-Hellman

protocol that supports group operations.

With GDH, the group agrees on a pair of primes (q and α) and starts calculating in

a distributed way the intermediate values. The first member calculates the first value

(αx1 , where x1 is a random secret generated by the first member) and sends it to the next

member. Each subsequent member receiving the set of intermediary values raises them

using its own secret number, generating a new set. A set generated by the ith member

will have i intermediate values with i − 1 exponents and a cardinal value containing all

exponents.

Thus, the last member can easily calculate the group key k from the cardinal value:

k = αx1x2x3...xn mod q. The last member raises all intermediate values to its secret

value and multicasts the whole set to all group members. Upon receiving this message,

each group member ui extracts its respective intermediate value and calculates k by

exponentiation of the ith value to xi . The setup time and the length of messages are

linear in terms of the number of group members since all members must contribute to

generate the group key.

3.2.3.2 D-CFKM

D-CFKM [WCS+99] is characterized by the use of a Flat Table (FT) instead of a tree

structure to organize the keys and the users of a group.

In D-CFKM, both users and keys have a unique ID. The user ID can be derived from

its network address, and the bits of such ID determine the keys that the user can access.

Each key is addressed through a key selector, which consists of two fields: the version

field and the revision field, arranged as shown in Figure 3.12.

Figure 3.12: Key structure

32 State of the art

The version field is increased to indicate that a new key has been generated or when

a user leaves the group. The revision field is increased to indicate that the key must be

calculated using a one-way function or when a user joins the group.

The FT has an entry to store the TEK and 2w entries to store the KEKs, where w

is the number of bits in the IDs of each user. Thus, in the FT, there are two keys for

each bit b of the user ID, each one associated with the two values v ∈ {0, 1} that the bit

can take. The key associated with bit b having the value v is referred to as Kb.v. Thus,

a user that has the ID 0110 can access the keys TEK0.0, TEK1.1, TEK2.1 and TEK3.0.

Figure 3.13 shows the assignation of the keys through a FT.

Figure 3.13: Flat ID assignment

The formation of a group starts when the first user creates its own keys (the TEK

and the 2w KEKs) and begins to emit messages that contain the keys, their identifiers,

their version and revision numbers, as well as the address of the creator of such keys.

With the transmission of such messages, the first user indicates that it is acting as a key

holder and that a set of keys agree. Each user involved in the agreement acts as a key

holder until it receives a message that it has transmitted, indicating that the key has

been agreed upon.

In the D-CFKM scheme, each user performs user admission functions and other

management functions. When a new user requires to join the group, it waits to receive

packets containing information about the geometry of the FT and the address of some

users. The new user chooses a user and contacts it to establish a shared secret, and

then sends the corresponding TEK and KEKs, using a secure channel. The user that

receives the new user must increase the revision field in order to notify the remaining

users about the joining of the new user and the corresponding rekey.

3.2 Key management for single group environments 33

To expel a user, a key holder updates the TEK and the TEKs involved with the

removed user. Then, the key holder increases the version field of the affected keys and

multicasts a message to notify that a rekey is needed.

3.2.3.3 TGDH

The tree Group Diffie-Hellman scheme (TGDH) [Per99, KPT00] is characterized by the

use of a key binary tree together with the Diffie-Hellman key exchange.

Each vertex in the tree is denoted as 〈l, v〉, where l refers to the level in the tree and

0 ≤ v ≤ 2l − 1 (see Figure 3.14). Each vertex 〈l, v〉 is associated with a key K〈l,v〉 and

a blinded key BK〈l,v〉 = f(K〈l,v〉), where the function f(·) is a modular exponentiation,

analogous to the one used in Diffie-Hellman protocol.

Figure 3.14: Notation for a tree

Each leaf vertex is associated with the user session key K〈l,v〉, which is randomly

generated. In addition, each user knows all the keys involved in its branch, from 〈l, v〉

to 〈0, 0〉. Each key can be calculated by:

K〈l,v〉 = (BK〈l+1,2v+1〉)
K〈l+1,2v〉 mod p

= (BK〈l+1,2v〉)
K〈l+1,2v+1〉 mod p

= αK〈l+1,2v〉K〈l+1,2v+1〉 mod p

= f(K〈l+1,2v〉K〈l+1,2v+1〉)

34 State of the art

Whenever a user membership changes, the remaining users must update the key tree,

thereby requiring that the communication among group members be provided with View

Synchrony [FLS97].

Some group members can purchase the responsibility of generating and broadcasting

the keys, when assuming the role of sponsor. An sponsor will be the user that manages

the join and leave events at some point.

When a user needs to join the group, it must send a join request, containing its own

blinded key BK〈0,0〉. When the current members of the group receive the request, the

insertion point in the tree must be determined. This will be the right-most vertex, which

balances the tree. The sponsor will be the user, located in the right-most position in

the tree, and will be responsible for creating the new vertex, updating the key tree and

computing the new group key, by using the necessary blinded keys. After the sponsor

computes the new group key, it broadcasts such key.

When a user leaves the group, the sponsor will be the user located in the right-most

position in the affected branch. At the user leave, each group member must update its

key tree, eliminating the vertex of the removed user. For the new formation, the parent

vertex of the removed user is replaced with its sibling vertex. Finally, the sponsor must

compute all the affected keys and then broadcast the updated keys to the remaining

group.

3.2.3.4 GAKAP

The GAKAP method [BBB04] is based on the TGDH scheme, proposing the use of a

full-balanced key tree and eliminating fusion of the whole tree. In this scheme, the tree

management depends on a threshold of the group activity, which keeps the tree full-

balanced. This threshold is given by a probabilistic value, which defines the tree model

for key management and key distribution.

Group definition is done in three phases. The first phase is performed by an entity

named “initial controller” which publishes the opening of a multicast session. After

3.2 Key management for single group environments 35

starting the multicast session for a specific period of time, the initial controller will receive

association requests sent by other entities and will create a list of participants. Using

such list, the controller will build the first distribution key tree, which is broadcasted

among users. The second phase consists of i rounds, where at most n/2i group members

are sponsors (n is the number of participants in the group, 1 ≤ i ≤ h, and h = log2n).

The sponsors calculate keys for the tree’s branch where they are associated, going from

the leaves to the tree’s root, broadcasting the intermediate keys in the hierarchical

structure. During the last phase, corresponding to round h + 1, each member calculates

the group key and the initial probability of group activity.

If an entity requires to be incorporated into the group, it will broadcast an association

request to the members of the group, including its blinded key BK. As in the case of

getting the request, each group member defines the place in the tree where the new

member will be inserted, which will correspond to the first empty vertex found when

crossing the tree from left to right. The position assigned to the vertex associated to

the new tree member will be the identification value (ID), as shown in Figure 3.15.

Figure 3.15: Indentification of users and keys in the GAKAP method

The sibling’s new member vertex will be the sponsor, updating and broadcasting the

compromised BKs. It will also send the new key tree to the new group member. Using

the keys sent by the sponsor, all members will be able to calculate the group key.

When a member decides to leave the group, it will broadcast a leave request, including

its ID. Each group member will update its key tree, eliminating the key corresponding

to the leaving member and all BKs from its sponsors path. In addition, the sponsor

36 State of the art

will erase all keys in its branch to the tree’s root, and it will calculate the required keys,

broadcasting the BKs to the remaining users. Using the keys sent by the sponsor, all

members will be able to calculate the group key.

3.2.3.5 Summary

In this section, three important protocols based on a distributed scheme were presented

(G-DH, D-CFKM and TGDH). Also, one of the most recent contributions in this area,

the GAKAP method, was discussed. Table 3.7 compares such protocols, based on the

criteria discussed at the beginning of Section 3.2.3.

The notation used in Table 3.7 is described in Table 3.6.

Table 3.6: Notation used in Table 3.7
Symbol Meaning

n number of users in the group
i user index
E encryption operation
D decryption operation
Ex modular exponentiation

Table 3.7: Comparison of distributed key management mechanisms
Mechanism/ No. of No. of messages Setup

Method rounds multicast unicast DH Key Leader Others

G-DH n n n − 1 Yes n.a. (i + 1)Ex

D-CFKM n 0 2n − 1 No (i − 1)E iD

TGDH log2(n) log2(n) 0 Yes n.a. (log2(n) + 1)Ex

GAKAP log2(n) log2(n) 1 Yes n.a. (log2(n) + 1)Ex

As can be noticed in Table 3.7, the best communication costs are obtained when

combining a Diffie-Hellman exchange-key protocol with a LKH structure. This is true

despite the fact that computational costs of each entity are increased.

Also, notice that the measures obtained from the TGDH protocol and the GAKAP

method are very similar. However, it is important to point out that the principal dif-

ference between them is presented in association events: under the TGDH protocol,

3.3 Key management for multi-group environments 37

each sponsor transmits the whole tree, while during the GAKAP method, the sponsors

transmit only the set of modified keys.

It is clear that the main problem in a distributed scheme is the synchronization that

must be achieved among users of a group. The success in this synchronization depends

on the fact that key updates do not affect the right transmission in the information.

3.3 Key management for multi-group environments

Due to advancements in communications schemes of the type many-to-many, some col-

laborative environments have been designed where there are entities simultaneously as-

sociated to more than one group. Some applications of this type contain heterogeneous

data flows or flows with many data layers, which makes mandatory for users to have

different privileges for information access. On the other hand, there are applications

allowing multi-party collaboration, where users may be involved with more than one

work session.

In this type of environments, each group must preserve privacy in its internal infor-

mation, using different security schemes. An entity involved with several groups must

handle several keys, which may create a significant increment in storage cost if a good

strategy is not used. On the other hand, the dynamics in the rekey process may create

additional difficulties with updates in memberships, due to the fact that user’s associa-

tions, disassociations or switching among groups may be non-monotonic.

Despite of the previously named difficulties, it is possible to take advantage of the

coincidences and overlaps in user memberships to reduce storage and distribution costs,

eliminating redundancy in managed keys. Based on this, efficiency in a key management

scheme for multi-groups environments may be measured using the following parameters

[SL03]:

• Communication costs. It refers to the number of bytes used by KDC or secondary

servers to distribute keys among users in different groups.

38 State of the art

• Storage requirement. It refers to the amount of keys used to code information

that must be stored by the involved entities in the system.

• Distribution redundancy. Depending upon distribution redundancy and the way

in which keys and users are organized in the system, membership’s overlap will

define redundancy level in managed keys. In some schemes, a change in user

membership directly affects all system users (1 affects n), creating an additional

cost in communication and resulting in the need of some users to renew their keys

even if they do not require it.

The next sections discuss the main key management schemes for multi-group envi-

ronments, emphasizing structures and distribution strategies for each case.

3.3.1 Centralized multi-group key management

3.3.1.1 MGKMS

The Multi-group key management scheme (MGKMS) [SL03, SL04] focuses on the trans-

mission of streams with multiple layers or multiple-object types, where different privilege

levels are required.

In MGKMS, users are grouped according to privileges or services to which they may

have access. There are two possible types of groups: data groups (DG) and service

groups (SG). A data group is a set of users that have access to a unique data stream by

a multicast session. A service group is a set of users that have access to same resources,

that is, the same data or privileges layers, and there are no membership overlaps. Figure

3.16 shows properties of service and data groups.

MGKMS defines a centralized hierarchical architecture, named integrated key graph,

to organize all user keys and to exploit overlaps among user memberships, in order to

improve efficiency in access control. An integrated key graph is made with several trees,

following the next three steps:

3.3 Key management for multi-group environments 39

(a) (b)

Figure 3.16: Data groups and service groups in (a) multi-layer and (b) multi-object
environments

Step 1: For each SG Si, a sub-tree is built whose leaves vertices are users at Si, and

whose root is associated with a key defined by KS
i . These sub-trees are called

SG-subtrees.

Step 2: For each DG Dm, a sub-tree is built, whose root is the key of DG KD
m and

whose leaves are the roots of SG sub-trees holding users with the same resources

privileges. These sub-trees are called DG-subtrees.

Step 3: A graph is generated by connecting leaves of the DG-subtrees and roots of the

SG-subtrees.

Figure 3.17 presents the three steps for the generation of the integrated key graph.

This multi-group integrated keys graph may be seen as M overlapped trees, each

having a key KD
m as a root and users in DG Dm as leaves. In this structure, the keys

for a user in a SGS are the keys of the path defined from it to the roots of DG-subtrees.

In addition to association and disassociation, users may switch their memberships,

changing their privilege levels. A centralized entity (KDC) will be responsible for up-

dating the engaged keys in any of these operations. For example, if a user uk with a set

of keys φi moves from the SG-subtree Si to a new location in the SG-subtree Sj, the

KDC performs a rekeying by doing the following:

• first keys are updated in φ̄i ∩ φj using one-way functions, with some procedure

similar to the one defined by the D-CFKM scheme.

40 State of the art

Figure 3.17: Building the integrated key graph

• then, the KDC generates new keys at φ̄i ∩ φj and distributes them in the graph

compromised path, from leaves to root, using children’s keys at each level.

Taking as example the structure defined in Figure 3.17, if user u8 moves from SG

S2 to SG S1, the vertex K4 at SG S1 will be divided to accommodate users u4 and u8,

generating a new vertex for key K4−8 while vertex K7 at SG S2 will be up one level and

will substitute the vertex of the key K7−8. The KDC will generate keys K ′
3−4 and KS′

1

using previous keys and will increment its revision number as in the D-CFKM scheme,

for users 1, 2, 3 and 4 to calculate new keys using one-way functions. In addition, the

KDC will generate keys K ′
4−8, KS′

2 , KD′

2 and SK ′
2 and will distribute them among the

corresponding users, using the following messages:
{

K ′
4−8

}

K8
,
{

K ′
4−8

}

K4
,
{

KS′

2

}

K5−6

,
{

KS′

2

}

K7

,
{

KD′

2

}

KS′
2

,
{

KD′

2

}

KS
3

, {SK ′
2}KD′

2

3.3 Key management for multi-group environments 41

3.3.1.2 IDHKGS

The ID-Based Hierarchical Key Graph Scheme (IDHKGS) [WOCG07] uses an inte-

grated graph defined in MGKMS for key management. Its difference with respect to the

MGKMS is that in the IDHKGS, each key is identified by a unique ID, which is used by

each user to deduce the set of keys stored by other users.

The ID of each key consists of a pair of integers, assigned by KDC according to the

type of tree where key belongs to, that is, a SG-subtree or DG-subtree. For the SG-

subtree, ID of each key is given by pair 〈i,m〉, where i is a prime number (i = 2, 3, 5, ...)

which identifies the SG to which the key belongs to, and m (m ≧ 0) corresponds to the

key position in the SG-subtree. The position of each key in a SG-subtree is enumerated

from the root (KS
i) from up to bottom and left to right, being root ID 〈i, 0〉.

The SG key’s ID’s follow this rule: the vertex associated to key k〈i,⌊(m−1)/2⌋〉 is the

parent of the vertex associated to key k〈i,m〉.

In the section corresponding to the DG-subtree, if a vertex associated to a key KD
m

has two children with associated keys IDs 〈j1, n1〉 and 〈j2, n2〉 respectively, the ID for

key KD
m is pair 〈j, n〉, where j = mcm(j1, j2) and n = max(j1, j2). If a vertex associated

to a key KD
m has only one child, its ID is the couple 〈j1,−1〉. Figure 3.18 shows key

identifications in an integrated graph.

Figure 3.18: Keys identification in a integrated graph

For the case where a user u requests to join the group SGi, the KDC inserts a vertex

associated to u at the end of one of the shortest paths of the SG-subtree. The KDC

42 State of the art

assigns ID 〈i,m〉 to the key associated to user u and broadcasts the ID 〈i,m〉J (where

J shows that it is a new user join), and the maximum ID of current keys stored at SGi,

〈i, nk〉. When a user receives 〈i,m〉J and 〈i, nk〉, it will be able to derive new and past

keys (k′ = f(k)) using a one-way function. If SGi is full when u joining takes place, the

first leftmost vertex associated to key k〈i,n〉 is divided. As a consequence of such division,

the previous key identified with 〈i, n〉, will be identified with ID 〈i, l〉, making the vertex

associated to the new k′
〈i,n〉 the parent of vertices associated to keys k〈i,l〉 and k〈i,m〉. The

new key k′
〈i,n〉 will be calculated with the one-way function k′

〈i,n〉 = f(k〈i,l〉 ⊕ k〈i,0〉).

For the case when a user u leaves group SGi, all keys in the set φu are updated. The

KDC will broadcast the ID of the key associated to user u, 〈i, n〉L (with L showing that

it is the case of a user leave). When the rest of the users get the message, they calculate

new keys using the one-way function k′ = f(k ⊕ k1), where k1 will be the first key that

is not in the path of the disassociated user, as traveling the graph bottom-up. KDC

should only code and send keys being associated to users that cannot calculate keys by

themselves.

When a user u moves from SGi to SGj , the operation is considered as if the user first

leaves SGi and then joins SGj . The KDC will broadcast the user key ID departing from

SGi 〈i, n〉SL and from the user being added to SGj 〈i,m〉SJ (SJ and SL denote a user

switching) as well as the maximum ID from current stored keys at SGi, 〈i, nk〉. After

getting the corresponding messages, users of each SG perform operations for rekeying.

3.3.1.3 DACMGS

Dynamic Access Control for Multi-privileged Groups Scheme (DACMGS) [DML04] has

been designed to handle multiple groups with high dynamism when being created and

decomposed. This is different from schemes based on an integrated key graph, proposed

by MGKMS, that are more efficient in environments where the number of groups is fixed

and where data streams scales just in one dimension.

3.3 Key management for multi-group environments 43

In the DACMGS, each service group (SG) makes a sub-tree, where each leaf vertex

represents users and each root vertex is associated to a set of TEK’s called Access Key

set (AK set). Each AK set is a subset of the set of TEKs (TEK set). The sub-tree of each

SG will have an extra vertex, a level below the root vertex, which will be associated to a

KEK, named service root key (SRK). The rest of the middle vertices will be associated

to other KEKs. Figure 3.19 shows the architecture for DACMGS.

Figure 3.19: DACMGS architecture

Let ΩT be the set of TEKs. Each SG Si will be associated to an AK set Ωi, Ωi ⊆ ΩT .

Each user associated to a SG Si will store a private key, a set of KEKs and an AK set

Ωi.

In the DACMGS, the SG S0 represents a virtual group, associated to AK set Ω0 = ∅

with no access privileges, to whom all users with no membership will be associated.

Therefore, user join is equivalent to a switch from SG S0 to some SG Si. Similarly, a

disassociation is handled as a shift of a user from SG Si to SG S0.

As with the D-CFKM scheme, each TEK and each KEK are referenced by a unique

ID, which consists on a revision field and a version field, with a difference in the fact

that the DACMGS scheme uses both fields for rekeying. In this case, the value of the

revision field is incremented each time that a key is recalculated, while the value of the

version field is incremented when the the KDC transmits a new secret.

As may be anticipated, both user join and user leave are managed as a switch,

therefore in any case, rekeying is done in the same way. Suppose that a user ui is

switched from SG Si to SG Sj, rekeying consists of four steps:

44 State of the art

Step 1: The KDC updates all keys involved in the path affected by the departure of

user ui, in the sub-tree corresponding to SG Si.

Step 2: The KDC generates a new secret cks, updating keys at Ωi∩Ω̄j, using a one-way

function k′ = Hcks
(k) and incrementing the value of the version field in such keys.

Finally, the KDC transmits a rekeying message {cks}s rkl to all SGs Sl, including

Si, such that Ωl ∩ (Ωi ∩ Ω̄) 6= ∅, so that the affected users may be able to derive

keys presenting an increment in the version field.

Step 3: The KDC selects a right position in sub-tree Sj for user ui. If the sub-tree is

partly full, only one vertex will be added to the structure. If the sub-tree is full, a

leaf vertex will be selected to be divided and a new level in the tree will be created.

Once the storage in the sub-tree is solved, the KDC will update all keys in the

affected path, using past keys and the one-way function k′ = H(k), and then sends

all keys to user ui, coding them with the corresponding private key. In order that

the rest of users derive new KEKs, the KDC will increment only the value of the

revision field in each affected key.

Step 4: Similar to step 2, the KDC will update all keys at Ω̄i ∩ Ωj and will increment

the value of revision field for each key so that the rest of the users may derive new

keys.

3.3.1.4 KTR

The Key Tree Reuse scheme (KTR) [GLLC05] is useful in environments where an en-

tity maintains subscriptions simultaneously to several programs (membership to several

groups). It is based on two principles: (1) Users associated to several groups can be

stored in a key structure with shared keys; (2) Previous keys may be reused to reduce

costs in rekeying without compromising the security of the system. In this KTR scheme,

a structure named key forest is defined, which consists of several Shared-key trees (SKT),

where users are allocated according to their memberships. Each tree represents a user

3.3 Key management for multi-group environments 45

group sharing their membership with one or several groups, and they are composed by

KEKs. The root of each tree is connected to the TEKs of existing groups, according to

memberships acquired by users represented in each tree. Figure 3.20 shows a tree with

shared keys.

Figure 3.20: A Shared-key tree

In addition to the shared keys, key forests contain a multi-level structure, called

root graph, made by several vertices acting as mediators among vertices corresponding

to TEKs and tree roots of trees with shared keys. Vertices in root graph are used to

avoid that, facing the departure of a user related to a TEK and consequently its update.

KEKs related to all users associated to the n trees connected with such TEK may have

to be updated. In this way, each TEK will be related to only two intermediate vertices

or two trees. Similarly, each vertex in the root graph will have at most two links,

increasing the number of intermediate vertices as the number of trees associated to a

TEK is incremented. Figure 4.1 shows the structure of a key forest.

Figure 3.21: Key forest

The KTR scheme considers three activities where it is mandatory to perform rekey-

ing: join, leave and switch.

46 State of the art

When a user leaves the system, the server will perform rekeying in the affected trees,

following the LKH scheme.

For join and shwitch, the KTR proposes a key reuse scheme, which consists on

updating only such keys that may compromise the security of the system. Such keys,

called critical keys, are those located in a path traced from some tree to a TEK and

able to break the backward secrecy. The server will decide when a key is critical, based

on the lifetime of that key.When a join or switch event occurs, the server will select the

best path to store the user. Such path must contain the least number of critical keys

in order to be able to perform an efficient rekeying and to reuse the highest number of

keys.

3.3.2 Decentralized multi-group key management

3.3.2.1 DKMS

The Distributed Key Management Scheme (DKMS) [RLK05] is a solution designed to

solve the problem associated to multi-privileges groups facing problems associated to

schemes based on integrated key graph, defined in the MGKMS scheme: decrement in

the complexity associated with the construction of the integrated graph and elimination

in redundancy related to rekeying operations.

In the DKMS, each SG is managed by a SG server, which will keep a key tree to

manage SKs related to users of a SG.

The DKMS structure is composed of two parts: the DG, which contains all SG

servers, and the SG, which includes all users associated to each SG. Figure 3.22 shows

the structure proposed by the DKMS scheme.

The DKMS structure is built by three steps:

Step 1: The DG part is built; a SG server group (SGSG) is built, containing all SG

servers. In this phase, each SG server is related to one SG key KS
i .

3.3 Key management for multi-group environments 47

Figure 3.22: DKMS structure

Step 2: The SG part is built; for each SG Si, a SG-sub-tree is built, whose root vertex

will be a SG key KS
i and leaves vertices will be associated to users related to SG

Si.

Step 3: The SG and DG part are combined, connecting SG keys to roots in each SG-

sub-tree.

The DKMS scheme handles user switch as the departure of a user from a SG, and

the joining of that user to another SG; therefore, only such operations are taken for

rekeying.

During the joining of a new user uk to a SGi, the SG server Si will select a position

in the SG-sub-tree, suitable to house a new user, and it will update keys in the affected

path, using one-way functions. Finally, the SG server Si will send rekeying messages to

users related to the affected path.

When the user uk leaves a SGi, the SG server Si will update the SKs in the affected

path in the SG-sub-tree. Then, the SG server Si will exchange new SKs with some of

the rest of the SG servers, coding them with the SGSG key. Finally, it will multicast

the SK needed into the SG.

3.3.3 Summary

In this section some key management schemes for multi-group environments were pre-

sented. As one can notice, overlaps among user’s memberships can be used to improve

48 State of the art

the efficiency in distribution and storage. Table 3.9 compares the presented schemes

with respect to such factors.

As commented in Section 3.3, the way in which membership overlaps are handled

may create redundancy in key distribution, resulting in the fact that changes in a user

membership affect all users. Table 3.10 shows schemes presenting this problem.

The notation used in Table 3.9 is described in Table 3.8. For the schemes presented

in this section, the organization of keys and users is done by structures using two levels.

In the first level, the users are organized according to their privileges or subscriptions

(SG trees and trees of shared keys). In the second level, memberships are organized (DG

tree and Root Graph). In order to make a fair comparison, in the notation shown in

Table 3.9, the total of structures at first level is named m(s), and the number of users in

each structure in such level is named nt. The second level structure is named common

graph (CG). The server responsible for managing the keys of the system has to send

all the keys in the CG, therefore, the number of keys sent by the responsible server is

denoted as NK .

Table 3.8: Notation used in Table 3.9 and Table 3.10
Symbol Meaning

n total number of users in the whole system
nt number of users grouped in a tree
s number of resources or programs in the system

m(s) number of service or program groups
m(sr) number of service or program groups related to a user
|Ωt| number of keys related to a group
NK number of keys sent by a KDC to the m(sr) involved groups
K key size
Ssk size of revision value descriptor of a secret

In the case of the solutions based on the Integrated Key Graph , NK is approximately

two times the number of resources that the user can access (Nk ≈ 2|Ωt|). In the case of

DACMGS, DKMS and KTR, NK is the number of keys sent by the KDC to the m(sr)

involved groups, NK =
m(sr)
∑

l=1

|Ωt∩Ωl|, where Ωt∩Ωl is the number of keys shared by two

groups.

3.3 Key management for multi-group environments 49

Table 3.9: Comparison of key management mechanisms for multi-group environments
by communication cost

Communication cost
Scheme join switch leave

multicast unicast multicast unicast

MGKMS Ssk (logd(nt)+NK +1)K (d logd(nt) + NK)K (logd(nt)+NK +1)K (d logd(nt) + NK)K

IDHGKS Ssk (logd(nt)+NK +1)K ((d − 1) logd(nt) +
NK)K

(logd(nt)+NK +1)K ((d − 1) logd(nt) + NK)K

DACMGS 0 (logd(nt) + 1)K d(logd(nt) − 1)K +
NKSck

(logd(nt) + 1)K (d logd(nt) − 1)K + NKSck

DKMS d logd(nt)+m(sr) (logd(nt) + |Ωt|)K (d logd(nt)+m(sr))K (logd(nt) + |Ωt|)K (d logd(nt) + m(sr))K

KTR 2Km(sr)m(s) (log2(nt) +
logd(m(sr)) + NK)K

2Km(sr)m(s) (log2(nt) +
log2(m(sr)) + NK)K

2Km(sr)m(s)

Table 3.10: Comparison of key management mechanisms for multi-group environments
by storage cost

Storage cost
Scheme KDC SGSs users 1 affects n

MGKMS (d
d−1n + 2s)K n.a. (logd(nt) + NK + 1)K Yes

IDHGKS (d
d−1n + 2s)K n.a. (logd(nt) + NK + 1)K Yes

DACMGS (d
d−1n + s)K n.a. (logd(nt) + |Ωt|)K No

DKMS n.a. (d
d−1nt + |Ωt| + 1)K (logd(nt) + |Ωt|)K No

KTR (2(n + m(s)))K n.a. (log2(nt) + log2(m(sr)) + NK)K Yes

Considering schemes where a unique hierarchy is defined to manage keys, Table 3.9

shows that best costs are obtained by IDHGKS, which is based on an integrated key

graph, defined by the MGKMS scheme. The main limitation in the mechanisms based

on integrated key graph is the redundancy in distribution; the change in a membership

of a user located at the lowest level in the DG sub-tree will affect users associated to the

SG sub-trees at upper levels. Another problem found in this kind of schemes is related

to the complexity in structure maintenance. In spite of that, this kind of schemes is very

efficient in environments where the number of groups is fixed and data flows are scalable

in only one dimension.

With respect to schemes based on multiple-key hierarchies, both DACMGS and

DKMS solve the redundancy problem found in key distribution, appearing in schemes

based on integrated key graph. These schemes obtain good results for storage and

communication. It must be noted that the DKMS scheme is able to solve this problem

using a decentralized scheme, making each service group be maintained by a KDC.

50 State of the art

The KTR scheme is another important contribution, even though it does not solve

the problem related to the 1 affects n phenomenon. The KTR offers an adequate infras-

tructure for environments where memberships are related not only to access privileges

for data streams, but also to applications or subscriptions of programs.

Chapter 4

Proposed mechanisms for

multi-session key management

According to the proposed methodology, we present two mechanisms for key management

in multi-session environments. The first mechanism is based on a centralized scheme; the

reason is that this scheme has less restrictions than others, and therefore is suitable to

design the main features of a key manager: key generation and key distribution. With

the centralized mechanism, we solve the problem of the key distribution redundancy,

which is the main characteristic of a multi-session environment. The second mechanism

is an extension of the first mechanism and is based on a decentralized scheme. With the

decentralized mechanism, we solve the problems related to a single point of failure, the

scalability and the number of supported sessions of a system.

4.1 Centralized mechanism (MM-MSKMS)

We propose a mechanism named Multimedia Multi-session Key Management Scheme

(MM-MSKMS). The proposed scheme uses a key forest structure, similar to the Key

Management Graph defined in the Dynamic Access Control for Multi-privileged Groups

Scheme (DACMGS) [DML04]. MM-MSKMS differs from the DACMGS in three main

aspects: first, the key forest is combined with a key derivation technique to reduce the

rekeying overhead; second, the users are enabled to transmit multimedia information

generating independent keys for each packet, by using a pseudorandom number genera-

tor; and finally, the users can exchange streams among them in an n to n communication.

52 Proposed mechanisms for multi-session key management

The fact that MM-MSKMS uses one key per packet allows the system to support the

delay, the loss and the transposition of packets, since each packet is completely inde-

pendent of the others, avoiding the need for the decryption to be done in a specific

order.

4.1.1 Architecture

In the MM-MSKMS, the KDC maintains a key forest to organize the joined users accord-

ing to their membership. The key forest will be composed by different key trees, each

one associated with a group of users who have an exact match on their memberships. In

other words, each tree represents a group of users who have a full overlapping in their

sessions. Each group of users with overlapped sessions is named as Overlapping Group

(OG). In order to use a general notation, even those groups where users are involved

with a single session are called OG.

In a system where there are s sessions, there will be at most m(s) Overlapping

Groups, where m(s) is determined by:

m(s) =
s

∑

r=1







s

r






(4.1)

Thus, the key forest is formed by m0 trees, with 1 ≤ m0 ≤ m(s) trees (see Figure

4.1). Each tree is formed by two kinds of keys: the Key Encryption Keys (KEKs) and

the Session Keys (SKs). KEKs are used as auxiliary keys for the rekeying operations.

SKs are used to generate independent Data Encryption Keys (DEKs), which are used to

encrypt and decrypt information related to sessions. In a system with s sessions, there

are s SKs, one for each session.

KEKs are organized in balanced trees, where each key is denoted as Kt
i,j, where t

indicates the OG associated with the tree (1 ≤ t ≤ m0), i indicates the vertex level,

and j indicates the most left position relative to the level i. KEKs located in the Kt
1,1

4.1 Centralized mechanism (MM-MSKMS) 53

Figure 4.1: Key forest for 4 OGs related to three sessions

position are called root-KEKs (rKEKs) and are used to distribute the SKs, while KEKs

in the lowest level are the individual keys of the OG members.

All the SKs associated with the sessions related to an OGt form a set Ωt, which is

represented by an additional vertex in a level above of the KEK-tree.

With such key organization, each OG member must store all the keys along the tree

path where it is joined, from its individual key to the rKEK, along with the SKs in the

corresponding Ωt. Unlike KEKs and SKs, DEKs are not stored by users because they

are generated before the transmission of a packet.

An example of a key forest structure used to organize different OGs is shown in

Figure 4.1. In such example, it is assumed that in the system there are 16 users grouped

according to their memberships into 4 of the 7 possible OGs, related to three different

sessions. Thus, the members of OG1 have access to information of session S1, using

SK1; the members of OG2 have access to the information of sessions S1 and S2, using

SK1 and SK2, the members of OG3 have access to information of sessions S1 and S3,

using SK1 and SK3, while the members of OG4 have access to information of sessions

S1, S2 and S3, using SK1, SK2 and SK3.

4.1.2 Key generation

As we mentioned in section 4.1.1, members in each OG store two kinds of keys: KEKs

and SKs. KEKs are keys generated through derivation technique to avoid having the

54 Proposed mechanisms for multi-session key management

KDC generate, encrypt and transmit all the keys related to the rekeying. SKs are keys

designed to allow the users to generate independent DEKs and transmit multimedia

packets, using one key per packet.

4.1.2.1 KEKs generation

For the generation of KEKs, our mechanism uses a key derivation technique similar to

the one defined in the SKD protocol [LLL05, LHLL09]. With this technique, each user

can compute the new KEKs using a function f(·) and previous keys. Thus, the KDC only

has to transmit the keys which some users cannot derive, decreasing the computational

effort in the KDC and the use of bandwidth. For key derivation, function f(·) could be

a one-way function, a pseudo-random number generator or a trap-door function.

4.1.2.2 SKs generation

Each SKh (1 ≤ h ≤ s) is a packet formed by variables used by the Blum Blum Shub

algorithm (BBS) [BBS86]. The BBS algorithm has the purpose of generating a pseudo-

random number series free of patterns that can be discovered with any reasonable amount

of calculations. With some bits of each of the generated numbers, issuers construct an

individual DEK to encrypt a packet. Receptors can recover any DEK generating the

corresponding number series from the packet index and a seed. Thus, users can use

individual keys to encrypt each transmitted packet.

With the BBS algorithm, each number is generated by:

xk+1 = (xk)
2 mod b (4.2)

where b = pq, being p and q two large primes congruent with 3 mod 4 (p ≡ 3 mod 4

and q ≡ 3 mod 4).

To start the number generation, a seed must be chosen; such seed can be a random

number x0 that is a relative prime with b. Knowing x0, any user can compute the kth

generated number using the equation:

4.1 Centralized mechanism (MM-MSKMS) 55

xk = x
(2k mod ((p−1)(q−1)))
0 mod b (4.3)

Thus, each key SKh will be a packet formed by the variables ph, qh, x0h
and bh,

which will be computed by the KDC.

4.1.2.3 DEKs generation

Generating independent DEKs. When a user starts the transmission of multi-

media information, for each packet Pr, that user locally generates an independent DEK

in the following way:

1: Using the variables of SKh = {ph, qh, x0h
, bh} and equation (4.2), the user gener-

ates a pseudo random number series of k elements, depending upon the required

key size (for example, if the system uses AES-128, then one series of 64 elements

should be generated)

2: At most log2log2bh bits of each generated number are taken to form k bit sequences

3: DEK is formed concatenating the k bit sequences

Finally, each packet is encrypted with the generated DEK, using the specified cypher

algorithm.

Recovering independent DEKs. When a user receives a packet Pr, that user

will use the packet index to recover the DEK to decrypt information in the following

way:

1: Using the variables of SKh = {ph, qh, x0h
, bh} and equation (4.3), the user locally

generates a pseudo random number series of k elements, starting at element (r −

1)k + 1

2: At most, log2log2bh bits of each generated number are taken to form k bit sequences

3: The corresponding DEK is created concatenating the k bit sequences

Finally, each packet is decrypted with the DEK, using the specified cypher algorithm.

56 Proposed mechanisms for multi-session key management

4.1.3 Rekey operations

Rekeying operations must be started by the KDC when a membership change takes

place. We understand as a membership change when a user joins an OG or leaves any

OG in order to leave the whole system or simply to change its OGs and its joined

sessions.

4.1.3.1 User join

When a user requests to join the system, the KDC decides which OG must hold that user,

according to its requested sessions. Then, the KDC randomly generates an individual

key for the new member and sends it through a secure channel. Moreover, the KDC

updates the compromised KEKs and SKs.

Updating KEKs. The KDC assigns a new vertex in the KEK-tree to store the

individual key of the new member. As each KEK-tree maintained by the KDC must be

balanced, each new vertex is inserted in the shortest paths of the KEK-tree.

Assuming that Kt
v,jv

, the root vertex of KEK subtree Xt
v,jv

is the last internal vertex

on the joined path:

• if Xt
v,jv

is not full, the new vertex K ′t
v+1,jv+1

is inserted

• if Xt
v,jv

is full, the left most vertex Kt
v+1,jv+1

is moved to a lower level, becoming

the new vertex K ′t
v+2,jv+2

and its old position is replaced by a new intermediate

vertex K ′t
v+1,jv+1

. Thus K ′t
v+1,jv+1

will be the parent of K ′t
v+2,jv+2

and the vertex

associated with the individual key of the new user, Kt
v+2,jv+2+1.

In both cases, all the new KEKs, found in unchanged vertices between the vertex

asociated with the key of the new user and Kt
1,1, are computed by:

K ′t
i,ji

= f(Kt
i,ji

) (4.4)

where Kt
i,ji

is the previous KEK of that position, named as derivation key.

4.1 Centralized mechanism (MM-MSKMS) 57

If the new intermediate vertex K ′t
v+1,jv+1

is inserted, the new KEK is computed by:

K ′t
v+1,jv+1

= f(K ′t
v+2,jv+2

⊕ Kt
1,1) (4.5)

where K ′t
v+2,jv+2

, the previous KEK Kt
v+1,jv+1

is the derivation key, while the rKEK

Kt
1,1, named the salt value, is used to ensure that the derived key is different even when

the same derivation key is used since Kt
1,1 will be different each time.

For the remaining OG members, the KDC multicasts a message to inform the position

of the new user. Thus, each user can compute the necessary KEKs. As the new user

does not know the KEKs involved with its path, the KDC sends to it a unicast message

with the related keys.

Consider the OG2 of the system shown in Figure 4.1. Suppose that user u17 joins the

system. The KDC moves the vertex associated with the individual key of user u5 to a

lower level, and replaces that position with the new vertex K ′2
3,1. With this modification,

the new intermediate vertex is the parent of K2
4,1 and K2

4,2 (see Figure 4.2), where K2
4,2

is the individual key of the new user.

Figure 4.2: An example of user join

58 Proposed mechanisms for multi-session key management

The compromised KEKs are recomputed by:

K ′2
1,1 = f(K2

1,1)

K ′2
2,1 = f(K2

2,1)

K ′2
3,1 = f(K2

4,1 ⊕ K2
1,1)

The new user u17 cannot derive the KEKs related to its path. For this reason, the

KDC unicasts such keys in the following way:

KDC → u17 : {K ′2
1,1}K ′2

2,1
‖{K ′2

2,1}K ′2
3,1
‖{K ′2

3,1}K2
4,2

Updating SKs. Finishing the updating of the corresponding KEKs, the KDC

updates the SKs of the set Ωt to preserve the backward secrecy.

To generate each SKh, the KDC generates the necessary variables for the BBS

algorithm: two primes ph and qh, congruent with 3 mod 4 and one number x0h
, relative

prime with bh = phqh, which will be the seed of the BBS generator. Thus, the new key

SKh is the packet {ph, qh, x0h
, bh}.

To finish the rekeying, the KDC multicasts the new SKs to all the involved OGs,

encrypting each packet with the corresponding rKEKs.

In the example shown in Figure 4.2, as OG2 members are involved in sessions S1

and S2, the KDC has to generate the new SK1 and SK2, which are elements of Ω2.

Finally, the KDC multicasts the new SKs to the OGs involved with these keys, using

the corresponding rKEKs to encrypt those messages. The KDC transmits the new SKs

4.1 Centralized mechanism (MM-MSKMS) 59

through the following messages:

KDC →OG1 : {SK ′
1}K1

1,1

KDC →OG2 : {SK ′
1}K2

1,1
‖{SK ′

2}K2
1,1

KDC →OG3 : {SK ′
1}K3

1,1

KDC →OG4 : {SK ′
1}K4

1,1
‖{SK ′

2}K4
1,1

The rekeying for the user join process is detailed in Algorithms 1 and 2.

60 Proposed mechanisms for multi-session key management

Algorithm 1 User join algorithm on KDC’s side

Input: join_request_message(user, Θ) /*Θ is a set with the requested sessions*/
Output: Updated Keys
Ωnew_user =get_related_SKs_with(Θ)
t = choose_an_OG_where(Ωt = Ωnew_user)
user_key = generate_key()
unicast(user_key, user)
heigh = get_heigh_of(t)
(i, j) = get_last_iternal_vertex(t)
if subtree(i, j) is not full then /*verifies if the last internal vertex can hold a new vertex*/

(i, j) = get_right_most_leaf(t, heigh + 1)
Kt

i,j+1 = user_key
else

if j < dheigh−1 then /*insert a new vertex under the next available vertex*/
(i, j) = get_left_most_leaf(t, heigh)

else /*create a new KEK-tree level*/
(i, j) = get_left_most_leaf(t, heigh + 1)

end if

/*new intermediate key derivation*/
Kt

i+1,d(j−1)+1 = Kt
i,j

Kt
i,j = f(Kt

i,j ⊕ Kt
1,1)

Kt
i+1,d(j−1)+2 = user_key

end if

multicast(join_notification(i + 1, d(j − 1) + 2), OGt)
i = i − 1
while i > 0 do /*update of the compromised KEKs*/

j = ⌈j/d⌉
Kt

i,j = f(Kt
i,j)

i = i − 1
end while

unicast(updated_KEKs(), user)
for each SKh ∈ Ωt do /*update of the compromised SKs*/

(p, q) =generate_two_primes_congruent_with(3 mod 4)
x = generate_a_relative_prime_with(b = pq)
SKh = {p, q, x, b}

end for

for each βg ∈ {OGl|Ωl ∩ Ωt 6= ∅ ∧ l ∈ [1, m0]} do

multicast({Ωg ∩ Ωt}Kg

1,1
, βg)

end for

4.1 Centralized mechanism (MM-MSKMS) 61

Algorithm 2 User join algorithm on user’s side

Input: join_notification(i, j)
Output: Updated Keys
x = i − 1
y = ⌈j/d⌉
/*verifies if a new intermediate vertex has been inserted*/
if local_user_individual_key()= Kt

x,y then

/*new intermediate key derivation*/
Kt

x+1,d(j−1)+1 =local_user_individual_key()

Kt
x,y = f(Kt

x,y ⊕ Kt
1,1)

i = i − 1
j = ⌈j/d⌉

end if

i = i − 1
while i > 0 do /*update of the compromised KEKs*/

j = ⌈j/d⌉
if local_user_holds({Kt

i,j}) then

Kt
i,j = f(Kt

i,j)
end if

i = i − 1
end while

/*update of the compromised SKs*/
wait_unitl_the_reception_of({Ωt}Kt

1,1
)

decrypt({Ωt}Kt
1,1

)

4.1.3.2 User leave

Updating KEKs. When a user leaves the system, the KDC removes the cor-

responding vertex in the KEK-tree of the affected OG and updates the compromised

keys.

Assuming that Kt
v,jv

is the root vertex of the affected KEK subtree Xt
v,jv

,the KEKs

updating is performed in one of two ways:

• if Kt
v,jv

has at least two children, Kt
v,jv

is only updated

• if Kt
v,jv

has only a child, Kt
v,jv

is replaced by its child (K ′t
v,jv

= Kt
v+1,jv+1

)

In both cases, the new KEKs K ′t
i,ji

of the compromised path are computed using

the previous keys Kt
i,ji

along with the left most key of the lower level i + 1, located in

the opposite path of the removed vertex, as follows:

K ′t
i,ji

= f(Kt
i+1,ji+1

⊕ Kt
i,ji

) (4.6)

62 Proposed mechanisms for multi-session key management

where Kt
i+1,ji+1

is the derivation key and the previous key Kt
i,ji

is used as salt value.

For the remaining OG members, the KDC multicasts a message to inform the position

of the removed user. Thus, each user can start the rekeying.

As the derivation strategy only benefits users in the opposite path of the removed

vertex, the KDC has to send the updated KEKs to users that cannot derive those keys.

Consider the OG2 of Figure 4.2. Assuming that the user u17 leaves the system, the

KDC modifies the KEK-tree, moving the vertex K2
4,1 to an upper level, replacing the

vertex K2
3,1 as shown in Figure 4.3.

Figure 4.3: An example of user leave

The new KEKs are computed by:

K ′2
1,1 = f(K2

2,2 ⊕ K2
1,1)

K ′2
2,1 = f(K2

3,2 ⊕ K2
2,1)

Since not all users can derive the keys, the KDC sends the following messages to

complete the updating process of KEKs:

KDC →u5 : {K ′2
2,1}K2

3,1

KDC →u5 − u6 : {K ′2
1,1}K ′2

2,1

4.1 Centralized mechanism (MM-MSKMS) 63

Updating SKs. To finish the rekeying, the KDC updates the SKs of the set Ωt to

preserve the forward secrecy. For each SKh ∈ Ωt, the KDC computes the corresponding

values ph, qh, x0h
and bh, and then transmits the new SKs to all the involved OGs,

encrypting each packet with the corresponding rKEKs.

In the example shown in Figure 4.3, to finish the rekeying, the KDC updates the SKs

of the set Ω2, and multicasts those keys to the members in the affected OGs through

the following messages:

KDC →OG1 : {SK ′
1}K1

1,1

KDC →OG2 : {SK ′
1}K2

1,1
‖{SK ′

2}K2
1,1

KDC →OG3 : {SK ′
1}K3

1,1

KDC →OG4 : {SK ′
1}K4

1,1
‖{SK ′

2}K4
1,1

The rekeying for the user leave process is detailed in Algorithms 3 and 4.

4.1.3.3 User switch

When a user requires to leave an OGy to join an OGz, the KDC has to modify the

KEK-trees of the affected OGs and update the compromised SKs.

The updating of KEKs is performed as described in Sections 4.1.3.1 and 4.1.3.2. For

the KEK-tree of OGy, the operations related to the user leave event will be performed,

while for the KEK-tree of OGz, the process will be similar to the user join event, with

the only difference being that the KDC does not assign a new individual key to the

user. The KDC only modifies the user key index in order to incorporate it into the new

KEK-tree.

To finish the rekeying, the KDC updates the SKs that sets Ωy and Ωz do not have

in common. In other words, the KDC updates the SKs in Ωy △ Ωz. The renewal of

the SKs in the symmetric difference of Ωy and Ωz, is intended to ensure backward and

64 Proposed mechanisms for multi-session key management

Algorithm 3 User leave algorithm on KDC’s side

Input: leave_request_message(OGt, i, j)
Output: Updated Keys
multicast(leave_notification(i, j), OGt)
delete_vertex(i, j, t)
if number_of_children_of(Kt

i−1,⌈j/d⌉) = 1 then

Kt
i−1,⌈j/d⌉ = Kt

i,j /*move the key to a upper level*/
i = i − 1
j = ⌈j/d⌉

end if

y = i
while i > 1 do /*update of the compromised KEKs*/

(h, v) =get_left_most_sibling_of(i, j, t)
Kt

i−1,⌈j/d⌉ = f(Kt
h,v ⊕ Kt

i−1,⌈j/d⌉) /*KEKs derivation*/
i = i − 1
j = ⌈j/d⌉

end while

multicast(updated_KEKs(), users_that_cannot_derive())
for each SKh ∈ Ωt do /*update of the compromised SKs*/

(p, q) =generate_two_primes_congruent_with(3 mod 4)
x = generate_a_relative_prime_with(b = pq)
SKh = {p, q, x, b}

end for

for each βg ∈ {OGl|Ωl ∩ Ωt 6= ∅ ∧ l ∈ [1, m0]} do

multicast({Ωg ∩ Ωt}Kg
1,1

, βg)

end for

Algorithm 4 User leave algorithm on user’s side

Input: leave_notification(i, j)
Output: Updated Keys

i = i − 1
j = ⌈j/d⌉

while i > 1 do /*update of the compromised SKs*/
(h, v) =get_left_most_sibling_of(i, j)
if local_user_ holds({Kt

i−1,⌈j/d⌉, K
t
h,v}) then

Kt
i−1,⌈j/d⌉ = f(Kt

h,v ⊕ Kt
i−1,⌈j/d⌉) /*KEKs derivation*/

end if

i = i − 1
j = ⌈j/d⌉

end while

/*update of the compromised SKs*/
wait_unitl_the_reception_of({Ωt}Kt

1,1
)

decrypt({Ωt}Kt
1,1

)

4.1 Centralized mechanism (MM-MSKMS) 65

forward secrecy in each of the system’s OGs, using the common SKs in order not to raise

the rekeying overhead.

After the KDC computes the new SKs, those keys will be sent to all the memebers

of the OGs involved with the SKs.

In order to exemplify the user switch process, consider the OG2 and the OG4 in

Figure 4.1. Assuming that user u15 leaves the OG4 in order to join the OG2, first, the

KDC modifies the KEK-tree of OG4, removing the corresponding vertex of the individual

user key. Then, the KDC modifies the KEK-tree of the OG2 in order to asign a new

vertex for the individual key of u15. We illustrate this process in Figure 4.4.

Figure 4.4: An example of user switch

Compromised KEKs are computed by:

K ′4
1,1 =f(K4

2,1 ⊕ K4
1,1)

K ′2
1,1 =f(K2

1,1)

K ′2
2,1 =f(K2

2,1)

K ′2
3,1 =f(K2

4,1 ⊕ K2
1,1)

As users u15 and u16 cannot derive the KEKs, the KDC sends those keys through

the following messages:

KDC →u16 : {K ′4
1,1}K4

2,2

KDC →u15 : {K ′2
1,1}K ′2

2,1
‖{K ′2

2,1}K ′2
3,1
‖{K ′2

3,1}K2
4,2

66 Proposed mechanisms for multi-session key management

To finish the rekeying, the KDC computes the new SK3, which is the key in Ω2 △ Ω4.

Then the KDC transmits the new SK ′
3 to all the members of OG3 and OG4, using the

following messages:

KDC →OG3 : {SK ′
3}K3

1,1

KDC →OG4 : {SK ′
3}K4

1,1

4.2 Decentralized mechanism (DMM-MSKMS)

In the centralized mechanism stated in section 4.1, the responsibilities of the generation

and distribution of the SKs are located in a single entity; thus, making the system to

have a single point of failure: the KDC. If the KDC fails at any given moment, the

security and the functionality of the whole system can be affected. In order to solve that

problem, we propose an extension of the MM-MSKMS, named Decentralized Multimedia

Multi-session Key Management Scheme (DMM-MSKMS). In the DMM-MSKMS each

Overlapping Group (OG) can be controlled by an independent server. In this way, if one

of the independent servers fails, only the users of the related OG are affected without

compromising the remaining system.

4.2.1 Architecture

The DMM-MSKMS inherits the organization of keys and users of the MM-MSKMS,

with the difference that in the DMM-MSKMS each OG is controlled by an independent

server named Overlapping Group Controller (OGC). Thus, each tree of the key forest

is held by an OGC. Therefore, in a system where there are s sessions, there will be at

most m(s) OGCs (see equation 4.1).

In addition to the key forest, in the DMM-MSKMS a second level of key management

is defined and which is used to organize the OGCs and the sessions, as shown in Figure

4.5.

4.2 Decentralized mechanism (DMM-MSKMS) 67

Figure 4.5: Decentralized organization for 4 OGs related to three sessions

As shown in Figure 4.5, the DMM-MSKMS architecture consists of two key manage-

ment levels: the S-Level and the O-Level. In the S-Level, the OGCs that share an SK

agree on a common key to encrypt the interchanged messages among them at the SKs

updating. The agreed keys are called Blinded Keys (BKs), and there will be one BK for

each SK. In the O-Level, each OGC manages the SKs and the KEKs related to an OG

in a similar way in which the KDC does it in the MM-MSKMS. Therefore, each OGC

needs to store all the KEKs involved in its tree, the SKs related to its OG and the BKs

needed to encrypt the SKs.

In the DMM-MSKMS as in the MM-MSKMS, each OG member must store all the

keys located along the tree path where it is joined, from its individual key to the rKEK,

along with the SKs related to its OG. Also OG members do not need to store the DEKs,

since such keys are generated instantly at the beginning of the transmission of packets.

4.2.2 Key generation

In this section we focused only in the BKs generation, because in DMM-MSKMS the

SKs, the KEKs and the DEKs are generated in the same manner as in the MM-MSKMS

(see section 4.1.2).

68 Proposed mechanisms for multi-session key management

4.2.2.1 BKs generation

The BKs are keys generated in a contributory way, using the extended version of the

Diffie-Hellman key exchange (GDH.2 protocol) proposed in [STW96] that supports group

operations.

With the GDH.2 protocol, n entities of a work group, agree a priori on a cyclic

group G, of order q, and a generator α of G. Then, the n entities contribute to collect

n values, in a distributive fashion, to form a key in the following way:

1: Each entity randomly chooses a value xi ∈ G, called nonce. For a work group of

n entities, there will be n different nonces (x1, x2, ..., xn)

2: With all the nonces, the entities form the value αx1x2···xn mod q in a contributory

way. The first entity calculates the first value αx1 and passes it to the next entity.

When the second entity receives the value αx1 , it raises that value to the power of

its nonce (suppose x2) and forms the set {αx1 , αx1x2}, then passes it to the third

entity. Each subsequent entity receives the set of intermediary values and raises

them using its own nonce, generating a new set. A set generated by the ith entity

will have i intermediate values with i−1 exponents and a cardinal value containing

all the exponents. For example, if the fourth member receives the set:

{αx2x3, αx1x3 , αx1x2, αx1x2x3}

generates the set

{αx2x3x4 , αx1x3x4 , αx1x2x4 , αx1x2x3 , αx1x2x3x4}

where αx1x2x3x4 is the cardinal value.

3: Finally, the last entity sets the group key to αx1x2···xn mod q and multicasts to the

whole work group, the set of all the intermediate values received from the previous

entity. Thus, any entity can extract its intermediate value and calculate the group

key.

4.2 Decentralized mechanism (DMM-MSKMS) 69

4.2.3 Rekey operations

In the DMM-MSKMS, two kinds of rekey operations can be performed: the rekeying of

the S-Level and the rekeying of the O-Level. The rekeying of the S-Level is performed

when an OGC joins or leaves the system, for which the OGCs must agree on the BKs,

needed to encrypt the SKs, shared with the new OGC, using the GDH.2 protocol. The

rekeying of the O-Level is performed by an OGC at the change of any user membership,

in a similar manner as the KDC performs the rekeying in the MM-MSKMS.

4.2.3.1 Rekeying of the S-Level

OGC join. When a new OGC joins the system, the OGCs that share some SKs

start a BK agreement for each of the compromised SKs. For each BK, the oldest related

OGC will be the responsible entity for generating the first of the intermediate values.

Thus the new OGC will be the responsible entity for generating the last cardinal value

and to establish the BK.

After the OGCs have agreed on the BKs, the oldest related OGCs update the compro-

mised SKs in order to maintain the backward secrecy in each OG. The OGCs responsible

for generating the SKs will have to encrypt the SKs with the corresponding BKs and

multicast the packet to all the related OGCs. At the receiving of the SKs, each OGC

individually distributes those keys into their OGs, encrypting the messages with the

corresponding rKEKs.

For example, considering the system shown in figure 4.6, if a new OGC (OGC5) joins

the system in order to control an OG5, where users maintain work sessions with S2 and

S3, the OGCs OGC2, OGC3, OGC4 and OGC5 have to agree on the new BK2 and BK3

respectively, and update the corresponding SKs.

To agree on the new BK2, the OGC2 calculates a value αx2

2 and sends it to the

OGC4. The OGC4 calculates the value αx2x4

2 and constructs the set {αx2

2 , αx4

2 , αx2x4

2 },

sending it to the OGC5. Finally, the OGC5 calculates the value αx2x4x5

2 , sets the BK2

to αx2x4x5

2 mod q, and multicasts the set {αx4x5

2 , αx2x5

2 }.

70 Proposed mechanisms for multi-session key management

Figure 4.6: An example of OGC join

In a similar way, to agree on the new BK3, the OGC3 calculates a value αx3

3 and

sends it to the OGC4. The OGC4 calculates the value αx3x4

3 and constructs the set

{αx3

3 , αx4

3 , αx3x4

3 }, sending it to the OGC5. Finally, the OGC5 calculates the value

αx3x4x5

3 , sets the BK3 to αx3x4x5

3 mod q and multicasts the set {αx4x5

3 , αx3x5

3 }.

To finish the rekeying of the S-Level, the OGC2 generates a new SK2 and the OGC3

generates a new SK3, and both OGCs multicast those keys to OGC4 and OGC5. After

receiving the new SKs, the involved OGCs multicast the corresponding SKs into their

OGs, encrypting those keys with the corresponding rKEKs. The involved OGCs transmit

the new SKs using the following messages:

OGC2 →OGC4, OGC5 : {SK2}BK2

OGC3 →OGC4, OGC5 : {SK3}BK3

OGC2 →OG2 : {SK2}K2
1,1

OGC3 →OG3 : {SK3}K3
1,1

OGC4 →OG4 : {SK2, SK3}K4
1,1

OGC5 →OG5 : {SK2, SK3}K5
1,1

The rekeying for the OGC join process is detailed in Algorithms 5 and 6.

OGC leave. When an OGC leaves the system, the remaining OGCs have to agree

on the new BKs in order to maintain the forward secrecy. The BK agreement is per-

formed excluding the OGC that left the system. As in the OGC join process, for each

4.2 Decentralized mechanism (DMM-MSKMS) 71

Algorithm 5 OGC join algorithm in the current OGCs side

Input: OGC_join_notification(Θ)
Output: Updated Keys
Ωm0+1 =get_related_SKs_with(Θ)
if local OGCt holds {SKh|SKh ∈ Ωt ∩ Ωm0+1 ∧ h ∈ [1, s]} then

for each BKh related to a SKh ∈ Ωt ∩ Ωm0+1 do

if local OGCt is the oldest entity related to BKh then

x1 = choose_a_nonce_in(G)
unicast(αx1

h , next_related_OGC)
else

wait_until_the_reception_of({α
Q

(xi|i∈[1,t])
h |t ∈ [1, m0]})

xt = choose_a_nonce_in(G)

for each γ ∈ {α
Q

(xi|i∈[1,t])
h |t ∈ [1, m0]} do

γ = γxt

end for

unicast({α
Q

(xi|i∈[1,t])
h |t ∈ [1, m0]} ∪ {αx1···xt}, next_related_OGC)

end if

end for

wait_until_the_reception_of(all_the_updated_BKs)
m0 = m0 + 1
for each SKh ∈ Ωt ∩ Ωm0

do

if local OGCt is the oldest entity related to SKh then

(p, q) =generate_two_primes_congruent_with(3 mod 4)
x = generate_a_relative_prime_with(b = pq)
SKh = {p, q, x, b}
multicast({SKh}BKh

, related_OGCs)
end if

end for

wait_until_the_reception_of(all_the_updated_SKs)
multicast({Ωt ∩ Ωm0

}Kt
1,1

, OGt)

end if

Algorithm 6 OGC join algorithm in the new OGC side

Input: ({α
Q

(xi|i∈[1,t])
l |t ∈ [1, m0]})

Output: Updated Keys
xnew = choose_a_nonce_in(G)
BKh = αx1···xnew

h

for each γ ∈ {α
Q

(xi|i∈[1,t])
h |t ∈ [1, m0]} do

γ = γxnew

end for

multicast({α
Q

(xi|i∈[1,new])
h |new ∈ [1, m0 + 1]})

wait_until_the_reception_of(all_the_updated_BKs)
wait_until_the_reception_of(all_the_updated_SKs)

multicast({Ωnew}Knew
1,1

, OGnew)

72 Proposed mechanisms for multi-session key management

BK, the oldest related OGC will be the responsible entity for generating the first of

the intermediate values. Therefore, the newest OGC will be the responsible entity for

generating the last cardinal value and to establish the BK.

In the same manner as the OGC join process, the oldest related OGCs have to update

the compromised SKs and distribute those keys among the involved OGCs, encrypting

the messages with the corresponding BKs. Then each involved OGC distributes the

updated SKs into their OGs, encrypting the messages with the corresponding rKEKs.

For example, considering the system shown in Figure 4.7, if the OGC3 leaves the

system, all the OGCs have to agree on the new BK1 and BK3, respectively, and update

the corresponding SKs.

Figure 4.7: An example of OGC leave

To agree on the new BK1, the OGC1 calculates a value αx1

1 and sends it to the

OGC2. The OGC2 calculates the value αx1x2

1 and constructs the set {αx1

1 , αx2

1 , αx1x2

1 },

sending it to the OGC4. Finally, the OGC4 calculates the value αx1x2x4

1 , sets the BK1

to αx1x2x4

1 mod q and multicasts the set {αx2x4

1 , αx1x4

1 }.

To agree on the new BK3, the OGC4 calculates a value αx4

3 and sends it to the

OGC5. In this case, the OGC5 simply sets the BK3 to αx4x5

3 mod q and transmits

{αx5

3 }.

To finish the rekeying of the S-Level, the OGC1 generates a new SK1 and multicasts

that key to OGC2 and OGC4, while the OGC4 generates a new SK3 and sends that key

to OGC5. After receiving the new SKs, the involved OGCs multicasts the corresponding

SKs into their OGs, encrypting those keys with the corresponding rKEKs. The involved

4.2 Decentralized mechanism (DMM-MSKMS) 73

OGCs transmit the new SKs using the following messages:

OGC1 →OGC2, OGC4 : {SK1}BK1

OGC4 →OGC5 : {SK3}BK3

OGC1 →OG1 : {SK1}K1
1,1

OGC2 →OG2 : {SK1}K2
1,1

OGC4 →OG4 : {SK3}K4
1,1

OGC5 →OG5 : {SK3}K5
1,1

The rekeying for the OGC leave process is detailed in Algorithm 7.

Algorithm 7 OGC leave algorithm

Input: OGC_leave_notification(OGCleave, Ωleave)
Output: Updated Keys
if local OGCt holds {SKh|SKh ∈ Ωt ∩ Ωleave ∧ h ∈ [1, s]} then

for each BKh related to a SKh ∈ Ωt ∩ Ωleave do

if local OGCt is the oldest entity related to BKh then

x1 = choose_a_nonce_in(G)
unicast(αx1

h , next_related_OGC)
else

wait_until_the_reception_of({α
Q

(xi|i∈[1,t])
h |t ∈ [1, m0] ∧ i 6= leave})

xt = choose_a_nonce_in(G)

for each γ ∈ {α
Q

(xi|i∈[1,t])
h |t ∈ [1, m0] ∧ i 6= leave} do

γ = γxt

end for

unicast({α
Q

(xi|i∈[1,t])
h |t ∈ [1, m0]∧ i 6= leave}∪{αx1···xt}, next_related_OGC)

end if

end for

wait_until_the_reception_of(all_the_updated_BKs)
m0 = m0 − 1
for each SKh ∈ Ωt ∩ Ωleave do

if local OGCt is the oldest entity related to SKh then

(p, q) =generate_two_primes_congruent_with(3 mod 4)
x = generate_a_relative_prime_with(b = pq)
SKh = {p, q, x, b}
multicast({SKh}BKh

, related_OGCs)
end if

end for

wait_until_the_reception_of(all_the_updated_SKs)
multicast({Ωt ∩ Ωleave|h ∈ [1, s]}Kt

1,1
, OGt)

end if

74 Proposed mechanisms for multi-session key management

4.2.3.2 Rekeying of the O-Level

As we mentioned above, the rekeying of the O-Level is performed individually by an

OGC, when a user joins or leaves an OG in order to leave the whole system or when a

user simply change its OG and its joined sessions. Thus, the rekeying process performed

by an OGC is quite similar to the rekeying process performed by the KDC in the MM-

MSKMS. The main difference is that when an OGC updates an SK, it must also transmit

that key to the other OGCs.

User join. When a new user requests to join the system, the responsible OGC for

controlling the OG involved with the requested sessions will be the entity that processes

the user join.

Assuming that the OGCt is responsible for attending the join request, the user join

process is performed as follows:

1: The OGCt updates the corresponding KEK-tree in the same manner as the KDC

in the MM-MSKMS (see section 4.1.3.1).

2: The OGCt updates the SKs of the set Ωt in the same manner as the KDC in the

MM-MSKMS (see section 4.1.3.1).

3: At the SKs updating, the OGCt also multicasts the updated SKs to the related

OGCs, encrypting the messages with the corresponding BKs.

As in the MM-MSKMS, the members in the OGt derive the compromised KEKs by

themselves after the OGC’s join notification.

The rekeying for the user join process is detailed in Algorithms 8 and 9.

User leave. When a user leaves the system, the involved OGC must update the

compromised KEKs and SKs.

Assuming that the OGCt is responsible for the affected OG, the user leave process

is performed as follows:

4.2 Decentralized mechanism (DMM-MSKMS) 75

Algorithm 8 User join algorithm on OGC’s side

Input: join_request_message(user, Θ) /*Θ is a set with the requested sessions*/
Output: Updated Keys
Ωnew_user =get_related_SKs_with(Θ)
if local OGCt holds Ωt = Ωnew_user then

user_key = generate_key()
unicast(user_key, user)
height = get_height_of(t)
(i, j) = get_last_internal_vertex(t)

if subtree(i, j) is not full then /*verifies if the last internal vertex can hold a new vertex*/
(i, j) = get_right_most_leaf(t, height + 1)
Kt

i,j+1 = user_key
else

if j < dheight−1 then /*insert a new vertex under the next available vertex*/
(i, j) = get_left_most_leaf(t, height)

else /*create a new KEK-tree level*/
(i, j) = get_left_most_leaf(t, height + 1)

end if

/*new intermediate key derivation*/
Kt

i+1,d(j−1)+1 = Kt
i,j

Kt
i,j = f(Kt

i,j ⊕ Kt
1,1)

Kt
i+1,d(j−1)+2 = user_key

end if

multicast(join_notification(i + 1, d(j − 1) + 2), OGt)
i = i − 1
while i > 0 do /*update of the compromised KEKs*/

j = ⌈j/d⌉
Kt

i,j = f(Kt
i,j)

i = i − 1
end while

unicast(updated_KEKs(), user)
for each SKh ∈ Ωt do /*update of the compromised SKs*/

(p, q) =generate_two_primes_congruent_with(3 mod 4)
x = generate_a_relative_prime_with(b = pq)
SKh = {p, q, x, b}
multicast({SKh}BKh

, related_OGCs)
end for

multicast({Ωt}Kt
1,1

, OGt)

end if

76 Proposed mechanisms for multi-session key management

Algorithm 9 User join algorithm in user’s side

Input: join_notification(i, j)
Output: Updated Keys
x = i − 1
y = ⌈j/d⌉
/*verifies is a new intermediate vertex has been inserted*/
if local_user_individual_key()= Kt

x,y then

/*new intermediate key derivation*/
Kt

x+1,d(j−1)+1 =local_user_individual_key()

Kt
x,y = f(Kt

x,y ⊕ Kt
1,1)

i = i − 1
j = ⌈j/d⌉

end if

i = i − 1
while i > 0 do /*update of the compromised KEKs*/

j = ⌈j/d⌉
if local_user_holds({Kt

i,j}) then

Kt
i,j = f(Kt

i,j)
end if

i = i − 1
end while

/*update of the compromised SKs*/
wait_until_the_reception_of({Ωt}Kt

1,1
)

decrypt({Ωt}Kt
1,1

)

1: The OGCt updates the corresponding KEK-tree in the same manner as the KDC

in the MM-MSKMS (see section 4.1.3.2).

2: The OGCt updates the SKs of the set Ωt in the same manner as the KDC in the

MM-MSKMS (see section 4.1.3.2).

3: At the SKs updating, the OGCt also multicasts the updated SKs to the related

OGCs, encrypting the messages with the corresponding BKs.

The remaining members of the OGt that can derive the compromised KEKs compute

such keys by themselves after the OGC’s leave notification. For the members that cannot

derive the compromised KEKs, the OGCt has to send the new KEKs.

The rekeying for the user leave process is detailed in Algorithms 10 and 11.

4.2 Decentralized mechanism (DMM-MSKMS) 77

Algorithm 10 User leave algorithm on OGC’s side

Input: leave_request_message(i, j)
Output: Updated Keys
multicast(leave_notification(i, j), OGt)
delete_vertex(i, j, t)
if number_of_children_of(Kt

i−1,⌈j/d⌉) = 1 then

Kt
i−1,⌈j/d⌉ = Kt

i,j /*move the key to a upper level*/
i = i − 1
j = ⌈j/d⌉

end if

y = i
while i > 1 do /*update of the compromised KEKs*/

(h, v) =get_left_most_sibling_of(i, j, t)
Kt

i−1,⌈j/d⌉ = f(Kt
h,v ⊕ Kt

i−1,⌈j/d⌉) /*KEKs derivation*/
i = i − 1
j = ⌈j/d⌉

end while

multicast(updated_KEKs(), users_that_cannot_derive())
for each SKh ∈ Ωt do /*update of the compromised SKs*/

(p, q) =generate_two_primes_congruent_with(3 mod 4)
x = generate_a_relative_prime_with(b = pq)
SKh = {p, q, x, b}
multicast({SKh}BKh

, related_OGCs)
end for

multicast({Ωt}Kt
1,1

, OGt)

Algorithm 11 User leave algorithm in user’s side

Input: leave_notification(i, j)
Output: Updated Keys

i = i − 1
j = ⌈j/d⌉

while i > 1 do /*update of the compromised SKs*/
(h, v) =get_left_most_sibling_of(i, j)
if local_user_ holds({Kt

i−1,⌈j/d⌉, K
t
h,v}) then

Kt
i−1,⌈j/d⌉ = f(Kt

h,v ⊕ Kt
i−1,⌈j/d⌉) /*KEKs derivation*/

end if

i = i − 1
j = ⌈j/d⌉

end while

/*update of the compromised SKs*/
wait_until_the_reception_of({Ωt}Kt

1,1
)

decrypt({Ωt}Kt
1,1

)

78 Proposed mechanisms for multi-session key management

User switch. The user switch process is the only one that differs from the pro-

cesses performed in the MM-MSKMS, because in the DMM-MSKMS, the user that asks

to change its OG, must inform the current OGC about the desired changes in its mem-

berships, before its departure. Thus, the current OGC negotiates with the destiny OGC,

the SKs that they need to update.

Assuming that a user needs to leave the OGy to join an OGz, the user switch process

is performed as follows:

1: The user requests the OGCy to leave the OGy in order to change its memberships,

indicating which sessions it wants to join.

2: The OGCy sends to the OGCz a message informing about the switch process, the

SKs that it holds, and the user’s ID.

3: The OGCz responds to the OGCy through a message, indicating which SKs are

in the symmetric difference of Ωz and Ωy (Ωz △ Ωy).

4: When the OGCy receives the response from the OGCz , it updates the compromised

KEKs in the same manner as the KDC in the MM-MSKMS, at the user leave

process (see section 4.1.3.2). Then, the OGCy will wait a time τ so that the OGCz

notices the join of the switched user to the OGz.

5: When the OGCz receives the join request from the switched user, it notifies the

OGCy about the user join and updates the compromised KEKs in the same manner

as the KDC in the MM-MSKMS at the user join process (see section 4.1.3.1). Then,

the OGCz updates the SKs in Ωz ∩ (Ωz△Ωy) and multicasts the updated SKs into

its OG, using the corresponding rKEKs to encrypt the message. The OGCz also

multicasts the updated SKs to the related OGCs, encrypting the messages with

the corresponding BKs.

6: When the OGCy receives the notification from the OGCz, about the user join, it

updates the SKs in Ωy ∩ (Ωz △ Ωy). If after a time τ , the notification from the

4.2 Decentralized mechanism (DMM-MSKMS) 79

OGCz is not received, the OGCy updates all the SKs in the set Ωy. The OGCy

multicasts the updated SKs into its OG, using the corresponding rKEKs, and to

the related OGCs, using the corresponding BKs.

The exchange of information between the OGCs involved in the user switch process is

intented to ensure the forward secrecy in the case where a user wouldn’t finish the switch

process. Thus, the time τ involves the period that a user takes to leave an OG and to join

another, a time during which some vulnerability in the forward secrecy could be allowed.

The variable τ should be specified by the system, and will depend on the network

conditions and the join/leave activity. In systems where a high join/leave activity exists,

the time τ can be discarded, because the dynamics of the group composition allows the

frecuent rekey.

In order to show the rekeying of the O-Level, we use an example of the user switch

process.

Considering the system shown in the Figure 4.8, if the user u15 requires to leave the

OG4 to join the OG2, that user sends a switch request to the OGC4, informing that it

will change its sessions, from {S1, S2, S3} to {S1, S2}.

Figure 4.8: An example of user switch

When the OGC4 receives the switch request, sends a messages to the OGC2, in-

forming about the switch process and indicating the SKs that it holds. Then the OGC2

80 Proposed mechanisms for multi-session key management

responds with a message indicating that the only SK in the symmetric difference between

Ωz and Ωy is SK3.

When the OGC4 receives the response from the OGC2, it removes the vertex asso-

ciated with the individual user key and modifies the KEK-tree as shown in Figure 4.8.

Then, the OGC4 computes the new rKEK by:

K ′4
1,1 = f(K4

2,1 ⊕ K4
1,1)

As u16 cannot derive the rKEK, the OGC4 sends that key as follows:

OGC4 → u16 : {K ′4
1,1}K4

2,2

Then, the OGC4 waits for the user join notification from the OGC2.

When the OGC2 receives the join request from u15, it sends a messages to the OGC4

informing about the user join. Then, the OGC2 modifies the KEK-tree in order to

assign a new vertex for the individual key of u15 (see Figure 4.8). The OGC2 updates

the compromised KEKs by:

K ′2
1,1 =f(K2

1,1)

K ′2
2,1 =f(K2

2,1)

K ′2
3,1 =f(K2

4,1 ⊕ K2
1,1)

As u15 cannot derive the KEKs, the OGC2 sends those keys as follows:

OGC2 → u15 : {K ′2
1,1}K ′2

2,1
‖{K ′2

2,1}K ′2
3,1
‖{K ′2

3,1}K2
4,2

As the SK3 is the only key in the symmetric difference between Ω2 and Ω4, the OGC2

does not have to update any SK.

If the OGC4 receives the user join notification from the OGC2, it calculates a new

SK3 and multicasts that key to the members of the OG4 and to the related OGCs

4.2 Decentralized mechanism (DMM-MSKMS) 81

(OGC1, OGC2 and OGC3), using the following messages:

OGC4 →OG4 : {SK3}K4
1,1

OGC4 →OGC1, OGC2, OGC3 : {SK3}BK3

The rekeying for the user switch process is detailed in Algorithms 12 and 13.

82 Proposed mechanisms for multi-session key management

Algorithm 12 User switch algorithm on the side of the responsible OGC of the aban-
doned OG
Input: leave_request_message(i, j, Θ) /*Θ is a set with the requested sessions*/
Output: Updated Keys
Ωz =get_related_SKs_with(Θ)
unicast(switch_notification(Ωy, u_ID), OGCz)
wait_until_the_reception_of(Ωy △ Ωz)
multicast(leave_notification(i, j), OGy)
delete_vertex(i, j, y)
if number_of_children_of(Ky

i−1,⌈j/d⌉) = 1 then

Ky
i−1,⌈j/d⌉ = Ky

i,j /*move the key to a upper level*/
i = i − 1
j = ⌈j/d⌉

end if

y = i
while i > 1 do /*update of the compromised KEKs*/

(h, v) =get_left_most_sibling_of(i, j, t)
Ky

i−1,⌈j/d⌉ = f(Ky
h,v ⊕ Ky

i−1,⌈j/d⌉) /*KEKs derivation*/
i = i − 1
j = ⌈j/d⌉

end while

multicast(updated_KEKs(), users_that_cannot_derive())
wait(τ)
if user_join_notification was received from OGCz then

for each SKh ∈ Ωy ∩ (Ωz △ Ωy) do /*update of the compromised SKs*/
(p, q) =generate_two_primes_congruent_with(3 mod 4)
x = generate_a_relative_prime_with(b = pq)
SKh = {p, q, x, b}
multicast({SKh}BKh

, related_OGCs)
end for

multicast({Ωy ∩ (Ωz △ Ωy)}Ky
1,1

, OGy)

else

for each SKh ∈ Ωy do /*update of the compromised SKs*/
(p, q) =generate_two_primes_congruent_with(3 mod 4)
x = generate_a_relative_prime_with(b = pq)
SKh = {p, q, x, b}
multicast({SKh}BKh

, related_OGCs)
end for

multicast({Ωy}Ky
1,1

, OGy)

end if

4.2 Decentralized mechanism (DMM-MSKMS) 83

Algorithm 13 User switch algorithm on the side of the responsible OGC of the joined
OG
Input: switch_notification(Ωy, u_ID)
Output: Updated Keys
unicast(switch_notification_response(Ωy △ Ωz), OGCy)
if a join_request_message is received from useru_ID then

unicast(user_join_notification(), OGCy)
user_key = generate_key()
unicast(user_key, useru_ID)
height = get_height_of(z)
(i, j) = get_last_iternal_vertex(z)

if subtree(i, j) is not full then /*verifies if the last internal vertex can hold a new vertex*/
(i, j) = get_right_most_leaf(z, height+ 1)
Kz

i,j+1 = user_key
else

if j < dheight−1 then /*insert a new vertex under the next available vertex*/
(i, j) = get_left_most_leaf(z, height)

else /*create a new KEK-tree level*/
(i, j) = get_left_most_leaf(z, height + 1)

end if

/*new intermediate key derivation*/
Kz

i+1,d(j−1)+1 = Kz
i,j

Kz
i,j = f(Kz

i,j ⊕ Kz
1,1)

Kz
i+1,d(j−1)+2 = user_key

end if

multicast(join_notification(i + 1, d(j − 1) + 2), OGz)
i = i − 1
while i > 0 do /*update of the compromised KEKs*/

j = ⌈j/d⌉
Kz

i,j = f(Kz
i,j)

i = i − 1
end while

unicast(updated_KEKs(), useru_ID)
for each SKh ∈ Ωz ∩ (Ωz △ Ωy) do /*update of the compromised SKs*/

(p, q) =generate_two_primes_congruent_with(3 mod 4)
x = generate_a_relative_prime_with(b = pq)
SKh = {p, q, x, b}
multicast({SKh}BKh

, related_OGCs)
end for

multicast({Ωz ∩ (Ωz △ Ωy)}Kz
1,1

, OGz)

end if

84 Proposed mechanisms for multi-session key management

Chapter 5

Performance analysis

In this chapter we analyse the performance of the MM-MSKMS and the DMM-MSKMS,

focusing on storage and communication overheads in order to demostrate the efficiency

of our solution, compared against other similar solutions.

5.1 Analysis of the MM-MSKMS

5.1.1 Storage overhead

As we mentioned above, in the MM-MSKMS trees are used as storage structures to

organize the keys and the members of the different OGs present in the system. Partic-

ularly, the trees used in this work can be viewed as a graph composed of a KEK-tree

connected with an additional vertex used to store the SKs. Each KEK-tree is maintained

as balanced as possible by positioning the joining users on the shortest paths.

Let n denote the number of users joined at the whole system and nt the number of

users involved in a tree (OG). We use ld(nt) to denote the length of the branches of a tree

of d degree. Since each KEK-tree is balanced and it is possible that not all the branches

have the same length at some point, ld(nt) is either L or L + 1, where L = ⌊logd(nt)⌋.

Particularly,

• the number of users who are on branches with length L is dL − ⌈nt−dL

d−1 ⌉,

• and the number of users who are on branches with length L+1 is nt−dL+⌈nt−dL

d−1 ⌉

86 Performance analysis

Therefore, the total number of keys in a KEK-tree is determined by:

TK(nt) = nt +
dL − 1

d − 1
+ ⌈

nt − dL

d − 1
⌉ (5.1)

As the KDC holds the s SKs related to the system sessions and maintains the KEK-

trees of the m(s) OGs, the total number of keys stored by the KDC is determined by:

TKKDC =

m(s)
∑

t=1

TK(nt) + s (5.2)

Each user joined at an OGt has to store the ld(nt) KEKs involved with its branch and

the |Ωt| SKs related to its OG. Thus, the total keys stored by each user is determined

by:

TKu∈OGt = ld(nt) + |Ωt| (5.3)

Assuming the worst case, where all the combinations of the s sessions exist, we can

take m(s) as a fixed value (m(s) = m0) throughout the communication process. If we

also assume that all the OGs have the same number of users (nt = n0), the number of

users in the whole system is n = m0 · n0. Using (5.2), the KDC’s storage overhead is

calculated as:

TKKDC = m0 · TK(n0) + s (5.4)

Using (5.3), we have that the user’s storage overhead is:

TKu∈OGt = ld(n0) + |Ωt| (5.5)

From (5.1), we have that limn0→∞ TK(n0) = d
d−1n0. Therefore, as s is a fixed value

throughout the communication process and s ≪ n0 when n0 → ∞, using (5.4) we can

calculate the KDC’s asymptotic storage overhead as:

TKKDC ∼ O(
d

d − 1
m0 · n0) = O(

d

d − 1
n) (5.6)

5.1 Analysis of the MM-MSKMS 87

Since |Ωt| is fixed for each OG, using (5.5) we can calculate the user’s asymptotic

storage overhead as:

TKu∈OGt ∼ O(logd(n0)) (5.7)

5.1.2 Communication overhead

The communication overhead is determined by the number of messages transmitted at

rekey operations. Therefore, we analyze the number of messages involved in the rekeying

related to the join, leave and switch processes, in order to determine the communication

overhead.

Let m(sr) be the number of OGs involved with the updated SKs in a rekey operation.

According to the algorithm stated in Section 4.1.3.1, when a new user joins the system,

the KDC unicasts to the new user a message with the ld(nt) KEKs related to its branch

and the |Ωt| SKs related to its OG. Moreover, the KDC multicasts a join notification

with the information of the join branch (ld(nt) indices of the affected KEKs) to the

remaining users, and also multicasts m(sr) messages to transmit the SKs to the involved

OGs. Therefore, the number of messages sent out by the KDC is determined by:

Mjoin = m(sr) + 2 (5.8)

As each OGt is related to |Ωt| SKs, the total number of SKs sent by the KDC to the

m(sr) involved groups in a rekey operation is determined by:

NK =

m(sr)
∑

l=1

|Ωt ∩ Ωl| (5.9)

where Ωt denotes the set of SKs related to an OGt and Ωl denotes the set of SKs related

to an OGl.

88 Performance analysis

Therefore, the number of keys sent out by the KDC in the rekeying, needed for the

user join process, is determined by the following equations:

NKJunicast = ld(nt) + |Ωt| (5.10)

NKJmulticast = NK (5.11)

where NKJunicast denotes the number of keys sent out in a unicast communication and

NKJmulticast denotes the number of keys sent out in a multicast way.

When a user leaves the system, the KDC multicasts (d− 1)ld(nt) messages with the

KEKs of the affected branch to the users which cannot derive them, a message with

a leave notification, and also multicasts m(sr) messages with the updated SKs to the

involved OGs. Therefore, the number of messages sent out by the KDC is determined

by:

Mleave = (d − 1)ld(nt) + m(sr) + 1 (5.12)

As for the user leave process only the remaining users are involved, the KDC does

not send any message in a unicast communication. Thus, using 5.9 the number of keys

sent out by the KDC in the rekeying, needed for the user leave process, is determined

by:

NKLmulticast = (d − 1)ld(nt) + NK (5.13)

As the rekey for the user switch process involves the join and leave processes, from

(5.8) and (5.12) we know that (d − 1)ld(nt) + 3 messages are necessary to update the

compromised KEKs, 2 messages to update the KEKs in the joined group and (d −

1)ld(nt) + 1 to update the KEKs of the left group. Assuming that a user switches from

OGy to OGz, the KDC has to update the SKs in Ωy △ Ωz. Let m(sr) be the number

of messages to update such SKs, then the number of messages sent out by the KDC is

determined by:

Mswitch = (d − 1)ld(nt) + m(sr) + 3 (5.14)

5.1 Analysis of the MM-MSKMS 89

Using 5.9, 5.10, 5.11 and 5.13, the total number of keys sent out by the KDC in the

rekeying, needed for the user swtich process is determined by:

NKSunicast = ld(nt) + |Ωt| (5.15)

NKSmulticast = dld(nt) + NK (5.16)

In this case, NK involves the number of SKs sent out by the KDC to the m(sr) groups,

related to the |Ωy △ Ωz| updated SKs.

The switch process involves the two basic rekey operations: join and leave; thus, we

can use it to determine the highest bound of transmitted messages.

Assuming the worst case, which is when the user switch process involves an OG

related to all the s sessions, and an OG related only with one session, we have that

m(sr) = m(s − 1). Furthermore, if we also assume that all the OGs have the same

number of users, nt = n0, using (5.14) the total number of messages involved in the

rekeying process is given by:

M = (d − 1)ld(n0) + m(s − 1) + 3 (5.17)

If n0 → ∞, as s is fixed throughout the communication process and m(s − 1) < n0,

we can see that the asymptotic communication overhead is:

M ∼ O(d logd(n0)) (5.18)

5.1.3 Comparison

In this section we compare the MM-MSKMS and the DACMGS because both schemes

use a similar key organization. The comparison is focused on two measures: the storage

overhead and the communication overhead.

90 Performance analysis

In Table 5.1 we summarize the measurements, which are expressed in bits. These

results are based on the results of DACMGS [DML04], and on the results obtained in

Sections 5.1.2 and 5.1.1.

In Table 5.1, SK denotes the KEK’s and the TEK’s size, Sck denotes the size of

a secret that is smaller than a KEK, while Ssk denotes the size of a SK. If we use a

cryptosystem with KEKs of 128 bits, the size of the SKs should be O(192) bits, using

the BBS algorithm with 32-bit integers.

For a fair comparison, we compare DACMGS and MM-MSKMS breaking down the

communication cost in the indivual costs of join, leave and switch processes. Moreover,

the communication costs, shown in Table 5.1, include the size of the notification messages

sent out by the KDC in the MM-MSKMS.

Table 5.1: Performance comparison for storage and communication overhead

DACMGS MM-MSKMS

Storage costs

KDC (d
d−1n + s)SK

d
d−1nSK + sSsk

User (logd(nt) + |Ωt|)SK logd(nt)SK + |Ωt|Ssk

Communication costs
User join Unicast (logd(nt) + 1)SK logd(nt)SK + |Ωt|Ssk

Multicast 0 logd(nt) + NKSsk

User leave Unicast 0 0
Multicast d(logd(nt) − 1)SK + NKSck (d − 1) logd(nt)SK + NKSsk

User switch Unicast (logd(nt) + 1)SK logd(nt)SK + |Ωt|Ssk

Multicast d(logd(nt) − 1)SK + NKSck d logd(nt)SK + NKSsk

In addition to the costs, we note that both DACMGS as MM-MSKMS lack of the 1

affects n phenomenon, unlike some of the solutions related to multi-group key manage-

ment exposed in Chapter 3.

In Table 5.1 we can observe that DACMGS does not multicast any key in the user

join process. The reason is that all the users in DACMGS work only as receivers entities

5.2 Analysis of the DMM-MSKMS 91

in a 1 to n communication. Thus the KDC does not have to transmit the new keys in the

rekeying process because the new version of the keys are indicated in the received packets.

Unlike the DACMGS, the MM-MSKMS is designed for n to n communications and each

user is a transceiver entity; therefore, the KDC has to multicast some of the updated

keys in the user join process to avoid inconsistencies in transmissions. However, the cost

of MM-MSKMS does not differ significantly compared with the cost of DACMGS.

As can be noticed in Table 5.1, the MM-MSKMS and DACMG are schemes where

the rekey overhead depends on the number of groups in which the keys are involved

(m(sr)). Both schemes are not scalable in the number of groups because the rekey

overhead grows linearly with the number of groups in the system.

5.2 Analysis of the DMM-MSKMS

5.2.1 Storage overhead

As we mentioned in Section 4.2, in DMM-MSKMS each OGC holds the KEK-tree related

to the OG that it manages. In addition, each OGC holds the SKs and BKs related to

the sessions which it is involved. As each OGCt holds |Ωt| SKs and there is a BK for

each SK, using (5.1) the total number of keys stored by each OGC is determined by:

TKOGCt = TK(nt) + 2|Ωt| (5.19)

From (5.1) also it is known that limn0→∞ TK(n0) = d
d−1n0. Furthermore, |Ωt| is a

fixed value for each OGC, throughout the communication process. If we assume that

all the OGs have the same number of users, denoted by nt = n0, using (5.19) we can

calculate the OGC’s storage overhead asymptotically as:

TKOGC ∼ O(
d

d − 1
n0) (5.20)

92 Performance analysis

In the same manner as in MM-MSKMS, in DMM-MSKMS each user joined at an

OGt has to store the KEKs involved with its branch and the |Ωt| SKs related to its

OG. Thus, the total keys stored by each user in DMM-MSKMS is the same given by

equation (5.3). Therefore, assuming the same number of users in all the OGs (nt = n0),

asymptotically the amount of keys held by a user in the DMM-MSKMS is given by

equation (5.7) (TKu∈OGt ∼ O(logd(n0))).

5.2.2 Communication overhead

In DMM-MSKMS there are two levels of key management, for this reason we analyze

the amount of messages involved in the rekeying of each level separately.

5.2.2.1 Communication overhead in the S-Level

As we can notice in the algorithms stated in Section 4.2.3.1, when an OGCt joins or

leaves the system, the OGCs which are involved with the SKs in Ωt have to agree on a

BK for each of the compromised SKs.

Let m(sh) be the number of OGCs involved with a SKh ∈ Ωt, the related BK is

agreed through m(sh) rounds, where each involved OGC sends a message with a set of

intermediate values to the next involved OGC, until the last involved OGC multicasts the

new BK. Thus, a BK agreement needs m(sh) messages. In addition, each SKh ∈ Ωt must

be updated so one message for each compromised SK is required in order to distribute

such keys among the involved OGCs. At the receiving of the updated SKs, each of

the involved OGC multicasts such keys to its OG. Let m(sΩt) be the number of OGCs

involved with the compromised SKs. The number of messages needed for the rekeying

of the S-Level is given by:

MS−Level =

|Ωt|
∑

h=1

m(sh) + |Ωt| + m(sΩt) (5.21)

Assuming the worst case, when the joining of a new OGC, which is involved with

all the s sessions, complements the m(s) OGs in the system, we have that |Ωt| = s and

5.2 Analysis of the DMM-MSKMS 93

m(sΩt) = m(s). Furthermore, as all the OGs are related to the SKs in Ωt, there are the

same number of OGCs involved with each SKh ∈ Ωt, m(sh) = 2s−1. Thus, from (5.21),

the number of messages for the rekeying of the S-Level is calculated asymptotically as:

MS−Level ∼ O(s(2s−1 + 1) + m(s)) (5.22)

Although this cost is high, it does not affect the scalability of the system, since the

addition or the removal of an OGC is handled without involving any user. Those events

are handled only by the OGCs, in the setup phase of an OG. Furthermore, the addition

and/or removal of an OGC are events that occur with a very low frequency.

5.2.2.2 Communication overhead in O-Level

The rekey overhead in the O-Level is determined by the amount of messages sent out

by the OGCs, in the rekeying related to the join, leave and switch processes.

With the same assumptions as in Section 5.1.1, let ld(nt) be the branches length of

the branches of a tree of d degrees. According to the algorithm stated in Section 4.2.3.2,

the number of messages sent out by an OGCt in the user join process is determined by:

Mjoin = |Ωt| + 4 (5.23)

which includes two messages unicasted to the new user with its individual key and the

ld(nt) KEKs of its branch, one message with the join notification (ld(nt) indices of the

affected branch) multicasted to the current users, one message used to multicast the

updated Ωt among the OGt and the |Ωt| messages multicasted to distribute the updated

SKs among the related OGCs. Therefore, the number of keys sent out by an OGCt in

the user join process is determined by the following equations:

NKJunicast = ld(nt) + 1 (5.24)

94 Performance analysis

NKJmulticast = 2|Ωt| (5.25)

According to the algorithm found in Section 4.2.3.2, the number of messages sent

out by an OGCt in the user leave process is determined by:

Mleave = (d − 1)ld(nt) + |Ωt| + 2 (5.26)

which includes up to (d− 1)ld(nt) messages employed to send the updated KEKs to the

users that cannot derive it, |Ωt| messages sent out to distribute the updated SKs among

the related OGCs, one message with the leave notification sent to the remaining users

and one message to distribute the updated Ωt among the OGt.

As for the user leave process only the remaining users are involved, the responsible

OGC does not send any message in a unicast way. Thus the number of keys, sent out

by an OGCt in the user leave process is determined by:

NKLmulticast = (d − 1)ld(nt) + 2|Ωt| (5.27)

When a user switches from OGy to OGz, the involved OGCs have to update the SKs

in Ωy ∩ (Ωz △ Ωy) and Ωz ∩ (Ωz △ Ωy), respectively. In addition, the involved OGCs

exchange extra information to ensure the forward secrecy in the case where a user will

not finish the switch process. As the user switch process involves the join and leave

processes, from (5.23) and (5.26) we can calculate the number of messages sent out by

the OGCy and OGCz as:

Mswitch = (d − 1)ld(ny) + |Ωy ∩ (Ωz △ Ωy)| + |Ωz ∩ (Ωz △ Ωy)| + 9 (5.28)

which inlcudes the messages related to the join and leave events and the three messages

exchanged by the involved OGCs to ensure the forward secrecy.

It is known that in the user switch process the two basic operations are involved:

join and leave; however in the DMM-MSKMS the user switch process is performed by

5.2 Analysis of the DMM-MSKMS 95

two OGCs. An OGC updates the affected KEKs acording to the user join process while

the other OGC updates the affected KEKs following the user leave process and both

OGCs only update the SKs that do not have in common. For this reason the number of

keys unicasted by an OGC is bounded by the number of keys involved in the user join

process, while the number of keys multicasted by an OGC is bounded by the number of

keys involved in the user leave process, given by equations 5.24 and 5.27.

Assuming the worst case, when a user switch process involves an OG related to all the

s sessions, and an OG related only with one session, we have that the number of messages

that are necessary to update the SKs is |Ωy ∩ (Ωz △ Ωy)| + |Ωz ∩ (Ωz △ Ωy)| = s − 1.

Thus, from (5.28) the number of messages sent out by the involved OGCs in the user

switch process is given by:

Mswitch = (d − 1)ld(ny) + s + 8 (5.29)

Furthermore, if we assume that all the OGs in the system have the same number of

users, ny = n0 and n0 → ∞, as s is a fixed value throughout the communication process

and s ≪ n0 using (5.29), we can calculate the rekey overhead of O-Level asymptotically

as:

MO−Level ∼ O(d logd(n0)) (5.30)

5.2.3 Comparison

In this section we compare the DMM-MSKMS and DKMS because both schemes use

an independent server to handle a group, forming a similar key/user organization. The

comparison is focused on two measures: the storage overhead and the communication

overhead. For the communication overhead, we only compare the costs related to the

O-Level because the costs related to the management of the servers in DKMS are not

defined.

In Table 5.2 we summarize the measurements, which are expressed in bits and are

based on the results given in [RLK05] and the results obtained in Sections 5.2.1 and

96 Performance analysis

5.2.2. In Table 5.2, SK denotes the size of the KEK and the TEK, while SSK denotes

size of the SK. As we mentioned above, if we use a cryptosystem with KEKs of 128 bits,

the size of the SKs should be O(192) bits.

For a fair comparison, we compare DKMS and DMM-MSKMS breaking down the

communication cost in the indivual costs of join, leave and switch processes. Moreover,

the communication costs, shown in Table 5.2, include the size of the notification messages

sent out by an OGC in the DMM-MSKMS.

Table 5.2: Performance comparison for storage and communication overheads
DKMS DMM-MSKMS

Storage costs

Servers (d
d−1nt + |Ωt| + 1)SK

d
d−1ntSK + 2|Ωt|SSK

User (logd(nt) + |Ωt|)SK logd(nt)SK + |Ωt|SSK

Communication costs
User join Unicast (logd(nt) + |Ωt|)SK logd(nt)SK + 1

Multicast d logd(nt) + m(sr) logd(nt) + 2|Ωt|SSK

User leave Unicast 0 0
Multicast (d logd(nt) + m(sr))SK (d− 1) logd(nt)SK + 2|Ωt|SSK

User switch Unicast (logd(nt) + |Ωt|)SK logd(nt)SK + 1
Multicast (d logd(nt) + m(sr))SK (d− 1) logd(nt)SK + 2|Ωt|SSK

In addition to the costs, we note that both DKMS as DMM-MSKMS lack of the 1 af-

fects n phenomenon, unlike some of the solutions related to multi-group key management

exposed in Chapter 3.

In Table 5.2 we can notice that in DKMS as in MM-MSKMS, the communication

overhead depends on the number of groups in which some keys are involved (m(sr)). This

is because in DKMS, the session keys are agreed on by the involved servers, increasing

the cost linearly to the number of groups. Therefore, DKMS is not scalable in the

number of groups.

In DMM-MSKMS, the involved servers previously agree on a key (BK) to encrypt

each session key, so the rekey overhead depends on the number of sessions and not on

5.2 Analysis of the DMM-MSKMS 97

the number of groups. Furthermore, as each OGC handles only one tree, the number

of messages needed to distribute the compromised keys is in the order of the logarithm

of the number of users joined at OG (nt). Therefore, DMM-MSKMS is scalable in the

number of users and in the number of groups.

Another important characteristic is that DMM-MSKMS is designed for users who

work as transceivers in an n to n communication, unlike DKMS, which is designed for

users who work only as receivers in a 1 to n communication. Thus, in the DMM-MSKMS,

users can exchange streams among them and are not only limited to decrypting a specific

stream.

98 Performance analysis

Chapter 6

Conclusions and future work

6.1 Summary

This thesis has presented an efficient multi-session key management mechanism for dy-

namic multimedia group communication, these mechanism is characterized by the use

of an independent key per ciphered packet. Unlike other proposed solutions, in our

solutions users not only can decrypt a specific stream, but can also exchange streams

among them in an n to n communication.

According to the proposed methodology, we developed two mechanisms: the MM-

MSKMS and the DMM-MSKMS.

The MM-MSKMS was based on a centralized approach. The MM-MSKMS architec-

ture exploits the overlap of the user sessions in order to reduce the redundancy in key

distribution. This architecture organizes the users according to their memberships form-

ing groups with users who have the same memberships. The proposed architecture uses

two key generation strategies: a key derivation technique to reduce the rekey overhead

and a pseudorandom number generator that allows the users to generate independent

key per ciphered packet. This last characteristic enables the system to support the delay,

loss or transposition of packets.

The MM-MSKMS is scalable in the number of users, but is not scalable in the number

of groups because the number of messages that the KDC needs to distribute the session

keys linearly grows to the number of groups. Nevertheless, it is scalable in the number

of users since the number of messages used to handle a user membership changes in the

100 Conclusions and future work

order of the logarithm with respect to the number of users. Therefore, MM-MSKMS is

an efficient mechanism for environments where there is a high scale associativity of users

and there are a few sessions.

The DMM-MSKMS is an extension of MM-MSKMS and it is the main contribution

of this thesis. With the DMM-MSKMS we solve some problems involved in the MM-

MSKMS, which are: a single point of failure by concentrating the whole key management

in the KDC, and the lack of scalability in the number of groups. Such problems were

solved, using two levels of key management: a level to manage the sessions (S-Level)

and a level to manage the overlapping in the memberships of the users (O-Level). In the

S-Level, several servers agree on some keys to manage the session keys, allowing that

the number of messages required to distribute the session keys depends on the number

of sessions and not on the number of groups. In the O-Level each server, member of

the S-Level, manages a group with users who have the same memberships. With such

organization, the key management task is distributed among several entities, eliminating

the single point of failure, which is present in the MM-MSKMS. Furthermore, the O-

Level inherits the skill of the MM-MSKMS to handle the changes in memberships using

a number of messages that is in the order of the logarithm with respect to the number

of users. Therefore, this solution is appropriate for environments where there is a high

scale associativity of users, and a large number of groups and sessions.

6.2 Future work

Some aspects, observed during the development of the proposed mechanisms, deserve

further studies. However, we consider tree main aspects for future work:

• Design of policies for OGs allocation. In current DMM-MSKMS, we have

not defined any way so that a system can be initiated in a centralized scheme and

dynamically becomes a decentralized system. One way that we see is that such

skill can be achieved in a manner that the system can be initialized by an OGC

6.2 Future work 101

acting as a KDC, using the MM-MSKMS, and following certain criteria, such the

OGC can delegate to other servers the responsibility of handling some OGs.

• Adaptative KEK-tree degree. In some environments, there are groups with

different association levels. For example, if there are some users in an interactive

meeting and some of those users are subscribed in a forum, the number of users

in both applications will be different. Since the users in the forum not necessarily

have to be present every moment, the number of users online may be lesser. In such

case having KEK-trees of the same degree may become inefficient. For this reason,

it is necessary to look into a way to dynamically establish the degree of trees. The

degree of trees may be established based on groups membership dynamism.

• Verification of the performance in real-time environments. In environ-

ments where the information has a short lifetime, long delays in information ex-

change, may affect the efficiency of a system. For this reason, emulation or sim-

ulation of our mechanism would verify whether our solution can be applied to

real-time systems.

102 Conclusions and future work

Bibliography

[BBB04] Andre Boumso, Boucif Amar Bensaber, and Ismail Biskri. Gakap, multicast

key agreement protocol for ad hoc networks based on group activity prob-

ability. In LCN ’04: Proceedings of the 29th Annual IEEE International

Conference on Local Computer Networks, pages 700–704, Washington, DC,

USA, 2004. IEEE Computer Society.

[BBS86] L Blum, M Blum, and M Shub. A simple unpredictable pseudo random

number generator. SIAM J. Comput., 15(2):364–383, 1986.

[CBB04] Yacine Challal, Hatem Bettahar, and Abdelmadjid Bouabdallah. Sakm: a

scalable and adaptive key management approach for multicast communica-

tions. SIGCOMM Comput. Commun. Rev., 34(2):55–70, 2004.

[CQN+02] Hao-hua Chu, Lintian Qiao, Klara Nahrstedt, Hua Wang, and Ritesh Jain.

A secure multicast protocol with copyright protection. SIGCOMM Comput.

Commun. Rev., 32(2):42–60, 2002.

[CS05] Yacine Challal and Hamida Seba. Group key management protocols: A

novel taxonomy, 2005.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.

IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

[DML04] Yongdong Wu Di Ma, Robert H. Deng and Tieyan Li. Dynamic access

control for multi-privileged group communications. In 6th International

104 BIBLIOGRAPHY

Conference on Information and Communications Security (ICICS 2004),

Lecture Notes in Computer Science (LNCS) 3269, pages 508–519, Berlin,

Heidelberg, 2004. Springer-Verlag.

[DW99] R. Agee D. Wallner, E. Harder. Network working group d. wallner request

for comments: 2627 e. harder category: Informational r. agee national secu-

rity agency june 1999 key management for multicast: Issues and architec-

tures, 199.

[FK04] Borko Furht and Darko Kirovski. Multimedia Security Handbook. CRC

Press, Inc., Boca Raton, FL, USA, 2004.

[FLS97] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using

a partitionable group communication service. In ACM Transactions on

Computer Systems, pages 53–62, 1997.

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley &

Sons, Inc., New York, NY, USA, 2003.

[GLLC05] Qijun Gu, Peng Liu, Wang-Chien Lee, and Chao-Hsien Chu. Ktr: an ef-

ficient key management scheme for air access control. In MOBIQUITOUS

’05: Proceedings of the The Second Annual International Conference on

Mobile and Ubiquitous Systems: Networking and Services, pages 499–501,

Washington, DC, USA, 2005. IEEE Computer Society.

[HDP03] Thomas Hardjono, Lakshminath R. Dondeti, and Radia Perlman. Multicast

and Group Security. Artech House, Inc., Norwood, MA, USA, 2003.

[HM97a] H. Harney and C. Muckenhirn. Group key management protocol (gkmp)

architecture. RFC 2094, 1997.

[HM97b] H. Harney and C. Muckenhirn. Group key management protocol (gkmp)

specification. RFC 2093, 1997.

BIBLIOGRAPHY 105

[HM03] Jyh-How Huang and Shivakant Mishra. Mykil: A highly scalable key dis-

tribution protocol for large group multicast. In IEEE GLOBECOM 2003,

Washington, DC, USA, 2003. IEEE Computer Society.

[KPT00] Yongdae Kim, Adrian Perrig, and Gene Tsudik. Simple and fault-tolerant

key agreement for dynamic collaborative groups. In CCS ’00: Proceedings of

the 7th ACM conference on Computer and communications security, pages

235–244, New York, NY, USA, 2000. ACM.

[LHLL09] Jen-Chiun Lin, Kuo-Hsuan Huang, Feipei Lai, and Hung-Chang Lee. Secure

and efficient group key management with shared key derivation. Comput.

Stand. Interfaces, 31(1):192–208, 2009.

[LLL05] Jen-Chiun Lin, Feipei Lai, and Hung-Chang Lee. Efficient group key man-

agement protocol with one-way key derivation. In LCN ’05: Proceedings of

the The IEEE Conference on Local Computer Networks 30th Anniversary,

pages 336–343, Washington, DC, USA, 2005. IEEE Computer Society.

[Mit97] Suvo Mittra. Iolus: a framework for scalable secure multicasting. SIG-

COMM Comput. Commun. Rev., 27(4):277–288, 1997.

[MJMR99] Josyula R. Rao Matthew J. Moyer and Pankaj Rohatgi. A survey of security

issues in multicast communications. IEEE Network, 13(6):12–23, 1999.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook

of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[NPKKI07] Alireza Nemaney Pour, Kazuya Kumekawa, Toshihiko Kato, and Shuichi

Itoh. A hierarchical group key management scheme for secure multicast

increasing efficiency of key distribution in leave operation. Comput. Netw.,

51(17):4727–4743, 2007.

[Per99] Adrian Perrig. Efficient collaborative key management protocols for se-

cure autonomous group communication. In In International Workshop on

106 BIBLIOGRAPHY

Cryptographic Techniques and E-Commerce (CrypTEC â99, pages 192–202,

1999.

[RH03] Sandro Rafaeli and David Hutchison. A survey of key management for

secure group communication. ACM Comput. Surv., 35(3):309–329, 2003.

[RLK05] Jie Li Ruidong Li and Hisao Kameda. Dynamic access control for multi-

privileged group communications. In International Conference on Computer

Network and Mobile Computing 2005 (ICCNMC 2005), Lecture Notes in

Computer Science (LNCS) 3619, pages 539–548, Berlin, Heidelberg, 2005.

Springer-Verlag.

[SL03] Yan Sun and K. J. R. Liu. Multi-layer key management for secure multi-

media multicast communications. In ICME ’03: Proceedings of the 2003

International Conference on Multimedia and Expo, pages 205–208, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[SL04] Yan Sun and K. J. R. Liu. Scalable hierarchical access control in secure

group communications. In INFOCOM 2004. Twenty-third AnnualJoint

Conference of the IEEE Computer and Communications Societies, pages

1296– 1306, Washington, DC, USA, 2004. IEEE Computer Society.

[SM03] Alan T. Sherman and David A. McGrew. Key establishment in large

dynamic groups using one-way function trees. IEEE Trans. Softw. Eng.,

29(5):444–458, 2003.

[STW96] Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-hellman key

distribution extended to group communication. In CCS ’96: Proceedings of

the 3rd ACM conference on Computer and communications security, pages

31–37, New York, NY, USA, 1996. ACM.

[SWM+01] Dapeng Wu Student, Dapeng Wu, Student Member, Yiwei Thomas Hou,

Wenwu Zhu, Ya qin Zhang, Jon M. Peha, and Senior Member. Streaming

BIBLIOGRAPHY 107

video over the internet: Approaches and directions. IEEE Transactions on

Circuits and Systems for Video Technology, 11:282–300, 2001.

[WCS+99] Marcel Waldvogel, Germano Caronni, Dan Sun, Nathalie Weiler, Bernhard

Plattner, and Student Member. The versakey framework: Versatile group

key management. IEEE Journal on Selected Areas in Communications,

17:1614–1631, 1999.

[WGL98] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group com-

munications using key graphs. In IEEE/ACM Transactions on Networking,

pages 68–79, 1998.

[WOCG07] Guojun Wang, Jie Ouyang, Hsiao-Hwa Chen, and Minyi Guo. Efficient

group key management for multi-privileged groups. Comput. Commun.,

30(11-12):2497–2509, 2007.

[YCS05] Abdelmadjid Bouabdallah Yacine Challal and Hamida Seba. A taxonomy

of group key management protocols: Issues and solutions. In Proceedings of

World Academy of Science, Engineering and Technology, volume 6, pages

5–19, Oslo, Norway, 2005.

